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Abstract. In any 0-normal variety (0-regular variety in which {0} is a subalgebra),
every congruence class containing 0 is a subalgebra. These “normal subalgebras”
of a fixed algebra constitute a lattice, isomorphic to its congruence lattice. We are
interested in those 0-normal varieties for which the join of two normal subalgebras
in the lattice of normal subalgebras of an algebra equals their join in the lattice of
subalgebras, as happens with groups and rings. We characterise this property in
terms of a Mal’cev condition, and use examples to show it is strictly stronger than
being ideal determined but strictly weaker than being 0-coherent (classically ideal
determined) and does not imply congruence permutability.

1. Introduction

1.1. Background on 0-normal varieties. Let V be a variety of algebras

with nullary operation the distinguished zero element 0. If for each congruence

ρ on each A ∈ V, the ρ-class containing 0 determines ρ, then V is a 0-regular

variety. There is a well-known Mal’cev condition for 0-regularity; see [5]. If

also σ(0, 0, . . . , 0) = 0 is an identity for each operation σ in the signature of

V, then V is a 0-normal variety, as in [11]. Evidently 0-normality is equivalent

to requiring that the θ-class containing 0 of any congruence θ on any A ∈ V
is a subalgebra. Such 0-normal varieties abound, and include any variety of

groups or (not necessarily associative) rings, along with many others.

If V is a 0-regular variety, then for any A ∈ V, we call the congruence

classes containing 0 its normals. In groups the normals are exactly the normal

subgroups, while in rings they are the ideals. We write I �A if I is a normal

in A ∈ V. (These are called “ideals” in [5], a term which now has a different

meaning in general algebra.) For I � A, let ρI denote the corresponding con-

gruence on A; we write A/I rather than A/ρI , in keeping with the tradition

for groups, rings and so on, and write aI for the ρI -class containing a ∈ A.

1.2. Background on EQ-structures. Varieties of EQ-structures are used

to prove many of the facts below, so we give some background on these. In [4],

the notion of an EQ-monoid is defined, where they were called “E-monoids”.
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(We adopt the “EQ” prefix as it is consistent with more recent usage as in

[12] and elsewhere, and does not conflict with unrelated uses of the term “E-

semigroup”.) For the examples given here, we only need the results relevant

to the commutative case, so we make this assumption throughout.

Thus, for current purposes, an EQ-monoid is a commutative monoid (A, · , 1)
in which there is a submonoid LA that is a (meet-)semilattice for which, for

every a, b ∈ A, there is a largest element e ∈ LA such that ea = eb. We use

the notation (a �� b) for this largest element.

EQ-monoids can be defined purely equationally as the variety of (commu-

tative) monoids with an additional binary operation ��, either finitely or in

terms of the following axiom scheme: for all a, b ∈ A,

• (a �� a) = 1, and

• f(a)(a �� b) = f(b)(a �� b) for all derived unary operations f on A.

So the class of EQ-monoids is a variety. Indeed, it is 0-normal with respect

to the distinguished nullary operation 1 since {1} is always a subalgebra, and

d(x, y) = (x �� y) is a difference term witnessing 0-regularity; see [4].

In any EQ-monoid A, we can define a ∧ b = (a �� b)a, which is a (meet-)

semilattice operation on A. As shown in [4], the normals of an EQ-monoid have

a simple description: they are the filters with respect to ∧ that contain 1; we

call these normal filters. In the case of a finite EQ-monoid, it is easy to see that

every normal filter is principal, and indeed is of the form 〈α〉 = {a ∈ A | α ≤ a}
for some α ∈ LA: simply let α be the ∧-meet of all elements of the filter (one

of which is 1, and so α ∈ LA since a ∧ 1 = (a �� 1) ∈ LA for all a ∈ A).

An EQ-semilattice is an EQ-monoid that is multiplicatively a semilattice.

An example is the power set of a topological space X with open sets O,

equipped with the semilattice operation of intersection and the operation ��

in which S �� T is the largest element U of O for which S ∩ U = T ∩ U (see

Theorem 6 in [4]), which is nothing but the interior of (S∩T )∪ (S∩T ), where

S is the complement of S in X. Since S �� 1 = S for every open set S, it

follows that in such an example A (or even a subalgebra of such an example),

LA consists of the open sets in A. Moreover, for α ∈ LA, a principal normal

filter 〈α〉 consists of all subsets of A containing α (since α ∧ a = α if and only

if α ⊆ a, as is easily seen). Indeed, every EQ-semilattice has a representation

in terms of topological spaces: all are embeddable in an example of this kind.

Given the definition of EQ-semilattices, it is easy to see that the variety

of Brouwerian (or Heyting) semilattices is term equivalent to the variety of

EQ-semilattices satisfying the law (x �� 1) = x, under the translations

(x → y) ⇔ (xy �� x), (x �� y) ⇔ (x → y)(y → x).

So EQ-semilattices generalise Brouwerian semilattices.

An EQ-structure is an EQ-monoid (A, · , 1) equipped with one or more ad-

ditional regular operations ρ of arbitrary arity n for which, for all ai ∈ A and
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α ∈ LA,

αρ(a1, . . . , an) = αρ(αa1, . . . , αan).

It is shown in [4] that the earlier axiom scheme can be extended to define

EQ-structures if one includes such additional operations ρ in the definition

of the derived unary operation f . Moreover, it is shown in [12] that the

congruences of A as an EQ-monoid extend to the additional regular operations

as well (so the normals in an EQ-structure are precisely those of its underlying

EQ-monoid).

Suppose (A, · , ��,∨) is an EQ-structure with ∨ binary, such that the follow-

ing law holds: (α∨β)x = αx∨βx for all α, β ∈ LA and x ∈ A. Then we say A

is a distributive EQ-structure. This concept was defined in greater generality in

[4], where it was noted that the term ρ(x, y, z) = (x �� y)z∨(y �� z)x witnesses

congruence permutability of the variety of all distributive EQ-structures. (A

law involving elements of LA can be viewed as a general law by replacing

α ∈ LA with (x �� 1), for x ∈ A.)

A distributive EQ-lattice is an EQ-semilattice that is also a distributive

lattice under its multiplicative (meet-) semilattice order. An example is the

EQ-semilattice of subsets of a topological space, equipped also with union. A

distributive EQ-lattice A is a regular distributive EQ-structure since trivially

α(a ∨ b) = α(αa ∨ αb), and (α ∨ β)a = αa ∨ βa for all α, β ∈ LA and a ∈ A.

1.3. The various joins of normals. The normals of an algebra A in a 0-

regular variety V form a lattice I(A) in which meet is intersection, isomorphic

to the lattice of congruences. Let us denote the join of any two normals I, J

of some A ∈ V by I + J , so ρI+J = ρI ∨ ρJ .

Let M ≤ A denote that M is a subalgebra of A. The lattice S(A) of

subalgebras of A has meet equal to intersection, and we denote the join of

subalgebras S, T by S ∨ T . In the 0-normal case, the subalgebra join of two

normals is their join in the lattice of normals if and only if I(A) is a sublattice

of S(A) (which holds in all groups for example).

There is a further construction that provides an intermediate notion of

“join”. For A ∈ A, a 0-regular variety, with S a subalgebra of A and I � A,

define S · I =
⋃
{sI | s ∈ S}. Of course, S ∪ I ⊆ S · I, and if S ≤ A, then it

is a familiar fact of general algebra that S · I ≤ A also. (The subalgebra S · I
appears in the 0-regular version of the general algebraic form of the second

isomorphism theorem.) For us, the following observation is fundamental.

Proposition 1.1. Suppose I, J�A in a 0-regular variety A. Then I ·J ⊆ I+J .

If also M ≤ A and A is 0-normal, then M ∨ J ⊆ M · J , so in particular,

I ∨ J ⊆ I · J ⊆ I + J .

Proof. If a ∈ I·J , then a ρJ i for some i ∈ I, so (a, 0) ∈ ρJ◦ρI ⊆ ρJ∨ρI = ρI+J ,

that is, a ∈ I+J . In the 0-normal case, M∨J ⊆ M ·J sinceM ·J is a subalgebra

containing M ∪ J . �
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In groups, it happens that if M is a subgroup of G and I �G, then M · I =

MI, the product of the subgroups M and I, and their join in the lattice of

subgroups. In particular then, the lattice of normal subgroups is a sublattice

of the lattice of subgroups. However, it turns out that groups and rings are

quite special in this regard.

Consider the topological space X = {a, b, c} equipped with the collection

of open sets O = {∅, {a, b}, {c}, X}. Turn 2X into an EQ-semilattice under

intersection as above. It has as a subalgebra (hence, an EQ-semilattice) A =

{∅, {a}, {a, b}, {c}, X} (which is clearly closed under intersections and contains

O, and hence is closed under �� as well), which itself has O as a subalgebra.

(As a poset, A is isomorphic to N5, the smallest non-modular lattice.) Let

I = {{a, b}, X} and J = {{c}, X}, the principal normal filters generated by

{a, b} and {c}, respectively. Then it is straightforward to verify that I ·J = A

while J · I = O. So in this case, I · J is “as large as possible” and J · I “as

small as possible”: I ∨ J = J · I �= I · J = I + J .

From this example, we can construct the direct product A × A, which has

normals K1 = (I, J) and K2 = (J, I) defined in the obvious manner. Then it is

straightforward to verify that K1 ·K2 = (I ·J, J ·I) = (A,O), K2 ·K1 = (O, A),

while K1∨K2 ⊆ (I ∨J, J ∨I) = (O,O) and K1+K2 = (I+J, J+I) = (A,A).

So there is an algebra in a 0-normal variety having normals K1,K2 for which

K1 ·K2 �= K2 ·K1, K1∨K2 is properly contained in both, and both are properly

contained in K1 +K2. Visually:

K1 +K2

K1 ·K2 K2 ·K1

K1 ∨K2

Thus, we have proved the following.

Proposition 1.2. There exists an algebra in a 0-normal variety having nor-

mals K1,K2 as pictured, such that all four possible joins are distinct.

1.4. Congruences that permute at zero. Note that if I · J = I ∨ J for

any two normals I, J of an algebra A in a 0-normal variety, then I · J = J · I
for any two such. This relates to a well-established concept.

Two congruences ρ, θ on an algebra A ∈ A, a variety with nullary 0, are

said to permute at zero if (a, 0) ∈ ρ ◦ θ implies (a, 0) ∈ θ ◦ ρ and vice versa;

equivalently, (a, 0) ∈ ρ∨θ implies the existence of b ∈ A for which (b, 0) ∈ ρ and

(a, b) ∈ θ. If any two congruences on A permute at zero, we say A is permutable
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at zero. If every A ∈ A is permutable at zero, we say A is permutable at zero.

This notion was first introduced in [6].

In the following, all proofs are either easy or else similar facts have been

shown true in [6].

Proposition 1.3. For A ∈ V, a 0-regular variety, the following are equiva-

lent.

(1) I + J = I · J for all I, J �A.

(2) I · J = J · I for all I, J �A.

(3) I · J �A for all I, J �A.

(4) Any two congruences on A permute at zero.

2. Join invariance: the definition and a Mal’cev condition

We say the algebra A in the 0-normal variety A is join invariant if for

all I, J � A, I + J = I ∨ J , and that a 0-normal variety is join invariant

if every member of it is join invariant. In what follows, we obtain a Mal’cev

condition for this property of varieties and relate it to other important possible

properties of 0-normal varieties, such as being ideal determined or congruence

permutable.

Proposition 2.1. Let A ∈ A, a 0-normal variety. The following are equiva-

lent.

(1) For all I, J �A, I · J = I ∨ J .

(2) A is join invariant.

Proof. If I ·J = I∨J for all I, J�A , we must have I ·J = I∨J = J∨I = J ·I,
and so by Proposition 1.3, I · J = I + J , and congruences permute at zero by

that result. Conversely, it is obvious from Proposition 1.1 that if I+J = I ∨J

for all I, J �A, then I · J = I ∨ J also. �

Mal’cev conditions are important when characterising properties of varieties

of algebras. It turns out that join invariance admits such a characterisation.

Theorem 2.2. A 0-normal variety has the join invariance property if and

only if there is a term δ(x1, x2, . . . , xn, y1, y2, . . . , ym) and terms pi(x, y) for

i = 1, 2, . . . , n and qj(x, y) for j = 1, 2 . . . ,m such that for all such i, j,

pi(x, x) = 0, qj(x, 0) = 0, and

x = δ(p1(x, y), p2(x, y), . . . , pn(x, y), q1(x, y), q2(x, y), . . . , qm(x, y)).

Proof. Let A be a 0-normal variety with the join invariance property. Then in

the free algebra F in A on two generators x, y, if ρf,g denotes the least congru-

ence relating f, g ∈ F and If,g the associated normal, we have x ρx,y y ρy,0 0,

so x ∈ Ix,y ·Iy,0 = Ix,y∨Iy,0. So there is a term δ(x1, x2, . . . , xn, y1, y2, . . . , ym)

such that

x = δ(p1(x, y), p2(x, y), . . . , pn(x, y), q1(x, y), q2(x, y), . . . , qm(x, y)),
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where the pi(x, y) ∈ Ix,y and the qj(x, y) ∈ Iy,0. But for any f(x, y) ∈ Ix,y,

0 ρx,y f(x, y) ρx,y f(x, x), so by [3, Lemma 12.1] (for example), f(x, x) = 0 in

F . Similarly, if f(x, y) ∈ Iy,0, then f(x, 0) = 0 in F .

Conversely, suppose there are terms as described. Let A ∈ A with I, J �A.

Let a ∈ J · I. Then a ρI b ∈ J , so pi(a, b) ρI pi(a, a) = 0 and so pi(a, b) ∈ I

for all i. Similarly, qj(a, b) ρJ qj(a, 0) = 0, so qj(a, b) ∈ J for all j. Hence,

a = δ(p1(a, b), p2(a, b), . . . , pn(a, b), q1(a, b), q2(a, b), . . . , qm(a, b)) ∈ I ∨ J.

So, J · I ⊆ I ∨ J , and so J · I = I ∨ J by Proposition 1.1. Hence, the variety

is join invariant by Proposition 2.1. �

The Mal’cev condition in Theorem 2.2 alone implies the existence of a “sub-

traction term” s(x, y) satisfying s(x, x) = 0 and s(x, 0) = x: let

s(x, y) = δ(p1(x, y), p2(x, y), . . . , pn(x, y), 0, 0, . . . , 0).

This provides an alternative proof that a join invariant 0-normal variety is

ideal determined. But it also shows that arbitrary (not necessarily 0-regular)

pointed varieties satisfying this Mal’cev condition are subtractive in the sense

of [14], or equivalently by [14, Proposition 1.2], all congruences permute at 0.

3. Join invariance is stronger than ideal determined

Ideal determined varieties are defined to be 0-regular varieties in which

the normals of algebras are precisely their ideals, which are defined in [6]

in terms of closure under certain “ideal terms”. Those 0-regular varieties

V in which all congruences on every A ∈ V permute at zero are precisely

the ideal determined varieties, by a result in [6]; that is, a 0-regular variety

is ideal determined if and only if it is subtractive. Any variety of multi-

operator groups, such as groups or (possibly non-associative) rings, is an ideal

determined (0-normal) variety. Other examples include loops and hoops, as

well as implication algebras (see [6]), along with others discussed in [11] for

example. Ideal determined varieties may be characterised within 0-normal

varieties (indeed within 0-regular varieties) in terms of a Mal’cev condition,

namely the existence of a term s(x, y) for which s(x, x) = 0 and s(x, 0) = x. (In

0-normal varieties, this generalises the usual Mal’cev condition for congruence

permutability.)

Corollary 3.1. If the 0-normal variety A has join invariance, then A is ideal

determined.

The converse fails. Consider the variety of implication algebras, defined by

the following laws:

(1) (x → y) → x = x;

(2) (x → y) → y = (y → x) → x;

(3) x → (y → z) = y → (x → z).
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Because (x → x) = (y → y) is a derived identity, 1 = (x → x) is an

implicit nullary operation. Implication algebras constitute an ideal determined

variety with distinguished nullary operation 1 as is noted in [6]; moreover, it

is a 0-normal variety since 1 = 1 → 1, so {1} is always a subalgebra. All

implication algebras can be embedded in the implication algebra 2X of all

subsets of some set X, in which S → T = S ∪ T . The variety of implication

algebras is given in [6] as an example of an ideal determined variety that is

not Mal’cev.

Proposition 3.2. The ideal determined 0-normal variety of implication alge-

bras does not have join invariance.

Proof. Consider the implication algebra S = 2X in which X = {a, b}. For

convenience, write 0 = ∅, “a” rather than “{a}”, “b” rather than “{b}”, and
put 1 = X (and recall that 1 is the nullary “zero” here). Then the Cayley

table for 2X as an implication algebra is as follows:

→ 0 a b 1

0 1 1 1 1

a b 1 b 1

b a a 1 1

1 0 a b 1

It is easy to check that the equivalence relations θ1, θ2, which partition S into

{a, 1}, {0, b} and {b, 1}, {0, a} respectively, are congruences; hence, I1 = {a, 1}
and I2 = {b, 1} are ideals of S. It is also easy to check that I1 ∨ I2 = I1 ∪ I2.

But if J is an ideal containing I1 ∪ I2, then because 1 → x = x by the first

law above, we have that 0 = 1 → 0 ρJ a → 0 = b ∈ J , so 0 ∈ J also, and so

J = S. Hence, I1 + I2 = S �= I1 ∨ I2. �

4. 0-coherence is stronger than join invariance

Groups, rings and so on are join invariant varieties, but a rather stronger

condition holds in them.

Proposition 4.1. Let A be a 0-normal variety, with A ∈ A. The following

are equivalent.

(1) If I �A and M ≤ A, then M · I = M ∨ I.

(2) If I �A and M ≤ A with I ⊆ M , then M · I ⊆ M .

Proof. (1) ⇒ (2): This is obvious.

(2) ⇒ (1): Note that M ∨ I ≤ A, with I �M ∨ I. Then (M ∨ I) · I ⊆ M ∨ I

by assumption, and so M · I ⊆ (M ∨ I) · I ⊆ M ∨ I ⊆ M · I. �

The second property above has been considered previously, where varieties

globally satisfying it have been called 0-coherent varieties as in [1], and indeed
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the notion makes sense even in 0-regular varieties (where {0}, hence any nor-

mal, need not be a subalgebra). As a result, we call any algebra in a 0-regular

variety 0-coherent if it satisfies the second condition in the above result.

In [13], 0-coherent varieties are called BIT speciale, (also called classically

ideal determined in [14], where they are shown to be ideal determined), and a

characterising Mal’cev condition is given for them. In [2], 0-coherent varieties

are shown to be exactly semi-abelian when viewed as categories (where they

are characterised as pointed protomodular varieties). All 0-normal varieties

built from groups (such as rings) are 0-coherent. So is the variety of Heyting

algebras, and indeed of Heyting semilattices (Brouwerian semilattices) as was

shown in [9].

Let A be a 0-normal variety. Obviously, if A ∈ A is 0-coherent, it is

join invariant as well: assume M � A in (1) of Proposition 4.1. Indeed,

this also follows from the Mal’cev condition for 0-coherence given in [14],

namely that a 0-normal variety is 0-coherent if and only if there is a term

δ(x1, x2, . . . , xn, y1, y2, . . . , ym) and terms pi(x, y), i = 1, 2, . . . , n such that for

all such i, we have pi(x, x) = 0, and

x = δ(p1(x, y), p2(x, y), . . . , pn(x, y), y).

The Mal’cev condition in Theorem 2.2 yields the above, on letting the only

qj-term be q1(x, y) = y.

Corollary 4.2. Every 0-coherent 0-normal variety is join invariant.

The converse of Corollary 4.2 fails. In the proof of Proposition 1.2, we

showed that in the 0-normal variety of EQ-semilattices, there are normals I, J

of an algebra such that I ·J �= J ·I, so this variety is not even ideal determined.

But the 0-normal variety of distributive EQ-lattices is much better behaved.

Proposition 4.3. The 0-normal variety of distributive EQ-lattices is join

invariant but not 0-coherent.

Proof. Suitable terms for the variety of distributive EQ-lattices witnessing

join invariance, as in Theorem 2.2, are δ(x1, y1) = x1y1, where p1(x, y) =

x ∨ (x �� y), so that p1(x, x) = x ∨ 1 = 1 and q1(x, y) = x ∨ (y �� 1). Hence,

q1(x, 1) = x ∨ (1 �� 1) = x ∨ 1 = 1) and

δ(p1(x, y), q1(x, y)) = (x ∨ (x �� y))(x ∨ (y �� 1))

= x ∨ (x �� y)(y �� 1)

= x ∨ x(x �� 1)(y �� 1) = x.

Consider the distributive lattice of all subsets of X = {a, b, c} under inter-

section and union, equipped with the topology given by the open sets O =

{∅, {c}, {b, c}, X}. It is easy to check that A = {∅, {b}, {c}, {a, b}, {b, c}, X} is

a subalgebra, itself having S = O ∪ {{b}} as a subalgebra. (Evidently, both

contain O, and hence are closed under ��; closure under union and intersection

is clear.) Then I = {{c}, {b, c}, X} is an ideal of A, indeed it is the principal
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filter of {c}. Now in A, ({b} �� {a, b}) = {b, c} ∈ I, so {a, b} ∈ S · I yet

S ∨ I = S, and so S · I �= S ∨ I. Thus, this variety is not 0-coherent. �

In [2], as a special case of a more general result applying to protomodular

varieties, a characterisation of 0-coherence of 0-normal varieties is given in

terms of subalgebras and homomorphisms. Thus, it was shown that A is 0-

coherent if and only if the following holds for every algebra A ∈ A: for all

B ≤ A for which there is a homomorphism f : A → B such that f(b) = b for

all b ∈ B, ker(f)∨B = A. This is the pointed version of 3 in [2, Proposition 2.1]

and was used to obtain the Mal’cev condition for 0-coherence (or in fact the

somewhat more general property of protomodularity considered there).

In fact, we have the following quite general fact.

Lemma 4.4. Let A be a 0-regular variety, with A ∈ A and B ≤ A.

Suppose there is a homomorphism f : A → B such that f(b) = b for all

b ∈ B. Then letting K = ker(f)�A, we have B ·K = A and B ∩K = {0}.
Conversely, if K � A with B ∩K = 0 and B ·K = A, then there exists a

homomorphism f : A → B such that f(b) = b for all b ∈ B, and ker(f) = K.

Proof. Under the conditions of the first part of the lemma, let a ∈ A. Then

b = f(a) ∈ B, so f(b) = b = f(a), and then a ρK b ∈ B; thus, by definition,

a ∈ B · K. So A ⊆ B · K ⊆ A and so B · K = A. If a ∈ B ∩ K, then

a = f(a) = 0 since K = ker(f).

Conversely, if the conditions given in the second part of the lemma state-

ment hold, note that ρK∩(B×B) is the diagonal since its 0-class isB∩K = {0}.
For each a ∈ A, define f(a) to be the unique b ∈ B for which (a, b) ∈ ρK . (This

b ∈ B is unique since if also (a, b′) ∈ ρK for b′ ∈ B, then (b, b′) ∈ ρK ∩ (B×B),

and so b = b′.) It follows that f is a homomorphism (from the fact that ρK is

a congruence), that f(b) = b for all b ∈ B, and that the kernel of f is K. �

It now follows that the pointed version of 3 in [2, Proposition 2.1] can be

re-expressed as follows:

For all B ≤ A and K �A, if B ∩K = {0} and B ·K = A, then B ∨K = A.

In turn, this condition is easily seen to be equivalent to:

For all B ≤ A and K �A, if B ∩K = {0}, then B ∨K = B ·K.

So for 0-normal varieties, 0-coherence is guaranteed by knowing that M ·I =

M ∨ I for all subalgebras M and ideals I for which M ∩ I = {0}. Thus, we

obtain a further equivalent condition to add to those characterising 0-coherent

varieties of 0-normal algebras.

We can also apply Lemma 4.4 to the join invariant setting, in the case in

which it is additionally assumed that B�A. This gives rise to characterisations

of join invariant varieties analogous to those just given for 0-coherent varieties.

Proposition 4.5. Let A be a 0-normal variety. The following are equivalent.

(1) A is join invariant;
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(2) for all B � A for which there is a homomorphism f : A → B such that

f(b) = b for all b ∈ B, then letting K = ker(f)�A, K ∨B = A;

(3) for all B,K � A for which B ∩ K = {0}, B · K = B ∨ K (equivalently,

B +K = B ∨K).

Proof. (1) ⇔ (2): follows from Lemma 4.4. (IfB·K = B∨K, thenB·K = K·B
and so B ·K = B +K.)

(1) ⇒ (3): This is immediate.

(3) ⇒ (1): This follows by noting that in the first direction of the proof of

Theorem 2.2, the ideals Ix,y and Iy,0 have trivial intersection, so (3) can be

deployed rather than the more general form in order to infer the existence of

the Mal’cev terms given there. �

So, analogous to the 0-coherent case, at the variety level, it is sufficient to

consider only ideals I, J intersecting trivially when insisting that I+J = I ∨J

in order to ensure general join invariance.

5. Join invariance and congruence permutability

A fundamental property that a given variety of algebras may have is con-

gruence permutability, also known as the Mal’cev property. There is a familiar

Mal’cev condition for this property in terms of the existence of a ternary term.

A Mal’cev 0-regular variety A is ideal determined since certainly all congru-

ences on every A ∈ A permute at zero. Conversely, not all ideal determined

varieties are Mal’cev; for example, the variety of implication algebras is not

(the example given in [6] of a non-Mal’cev ideal determined variety). At the

other end of the spectrum, 0-coherent varieties are always Mal’cev as noted

in [14], although not all 0-normal varieties with permutable congruences are

0-coherent as shown in [8]. So the Mal’cev property lies strictly between the

ideal determined and 0-coherence properties, sharing this feature with join

invariance.

In this section, we explore the relationship between the Mal’cev and join

invariance properties.

Consider the variety V of EQ-structures that are EQ-monoids equipped with

one additional regular binary operation t(x, y) satisfying the following laws:

• t(x, 1) = 1;

• t(x, x �� y)t(x, y) = x.

This variety is join invariant because we may set p(x, y) = t(x, x �� y), q(x, y) =

t(x, y), and δ(x, y) = xy, as is easily seen.

In particular, in any distributive EQ-lattice A, define t(x, y) = x ∨ (y �� 1)

for all x, y ∈ A, and the above two laws are easily seen to hold. Also, for all
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α ∈ LA,

α · t(x, y) = α(αx ∨ α(y �� 1)) = α(αx ∨ α(αy �� 1))

= α(αx ∨ (αy �� 1)) = αt(αx, αy),

so t(x, y) is a regular (binary) operation on A. Thus, the EQ-semilattice reduct

of A equipped with t is in V, as is any subalgebra of A under the EQ-semilattice

operations plus t.

Theorem 5.1. The 0-normal variety V has join invariance but is not Mal’cev.

Proof. Equip the set X = {a, b, c} with the topology whose open sets are

O = {∅, {b}, {a, b}, {b, c}, X}, and let S = O ∪ {{a}, {c}}. Then S is closed

under the EQ-semilattice operations and t(x, y) (which amounts to saying it

is closed under the operation of taking the union of an arbitrary and an open

subset, but not necessarily the union of two arbitrary subsets), and so S ∈ V.
Consider the principal normal filters I, J generated by the open subsets

{a, b} and {b, c}, respectively. Then I = {{a, b}, X}, J = {{b, c}, X}, and we

see that the ρI -classes of S are I and {∅, {c}}, {{a}}, {{b}, {b, c}}, while the

ρJ -classes are J and {∅, {a}}, {{c}}, {{b}, {a, b}}. So, ({c}, {a}) ∈ ρI ◦ ρJ ,

but obviously ({c}, {a}) /∈ ρJ ◦ ρI . Thus, congruences in S do not permute,

and so V is not Mal’cev. �

It is not known whether Mal’cev 0-normal varieties must have join invari-

ance.

6. Summary and Open Questions

0-normal

ideal determined

Mal’cev join invariant0-coherent
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We have considered the following three properties of 0-normal varieties:

(i) ideal determined, (ii) join invariant and (iii) 0-coherent, and shown that

each defines a class that properly contains the next. We have also shown that

there are join invariant varieties that are not Mal’cev, although we do not

know whether Mal’cev 0-normal varieties must be join invariant.

It may be possible to somehow generalise the results of Section 3 to sub-

tractive varieties satisfying the Mal’cev condition given in Theorem 2.2. Ideals

do not correspond directly to congruences in general subtractive varieties, but

the lattice of 0-classes is a sublattice of the lattice of ideals.

Categorical formulations corresponding to ideal determined and 0-coherent

varieties exist (ideal determined and semi-abelian categories, respectively—

see [8] and [7]). So there is interest in finding a categorical formulation of join

invariance that reduces to join invariance when applied to varieties of algebras.
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