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Abstract 

The insect pest, African black beetle (Heteronychus arator (Fabricus, 1775)) is of 

considerable economic cost to the New Zealand agricultural industry, in regions 

where the insect is established and regular outbreaks are now occurring. Selection 

for Epichloë festucae var. lolii (Latch, M.J. Chr. & Samuels) C. W. Bacon & 

Schardl, stat. nov. et comb. nov. endophyte-perennial ryegrass (Lolium perenne L.) 

associations which do not cause toxicity to livestock and with strong resistance to 

African black beetle (H. arator), would be of significant value to farmers in regions 

where this pest is a problem. 

Epichloë festucae var. lolii strain AR1 endophyte does not produce ergovaline, the 

alkaloid known to deter African black beetle (H. arator), yet pastures infected with 

this endophyte have moderate resistance to adult African black beetle (H. arator). 

Research into AR1 is of importance, as to date there have been no reports of toxicity 

in livestock brought about by consumption of from AR1-infected pastures and in 

the absence of African black beetle (H. arator) this ‘novel’ endophyte can provide 

highly productive pastures. 

AR1 endophyte produces secondary metabolites that are simple indole diterpenes, 

including paxilline and paxilline-like compounds. The numerous paxilline-like 

compounds produced by AR1 are detected by a paxilline ELISA (enzyme linked 

immunosorbant assay) and quantified collectively as paxilline immunoreactive 

equivalents. Earlier work suggested that these paxilline-like compounds could be 

the bioactive, or linked-marker associated with the bioactive compound(s), that 

provide some resistance to adult African black beetle (H. arator) feeding.  

The overall aim of this research was to determine if increased concentration of 

paxilline immunoreactivity was associated with a reduction in feeding damage 

using a series of adult African black beetle (H. arator) feeding trials on closely 

related AR1-infected perennial ryegrasses (L. perenne). 

A negative relationship was established between feeding damage from adult 

African black beetle (H. arator) and plant pseudostem paxilline immunoreactivity 

in AR1-infected perennial ryegrass (L. perenne) post exposure to beetles. However, 

it was not a simple relationship being complicated by: i) paxilline immunoreactivity 
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not reflecting endophyte concentrations; ii) the influence of cultivar on the 

expression levels of paxilline immunoreactivity; iii) the effect of African black 

beetle (H. arator) presence on expression levels of paxilline immunoreactivity; and 

iv) the paxilline ELISA quantifying the complete complex of paxilline-like 

compounds and not simply those that are bioactive. 

The highest concentrations of paxilline immunoreactivity were found in plant 

undamaged pseudostem and were not strongly correlated with the lower 

concentrations found in herbage. Therefore undamaged pseudostem is 

recommended as the section sampled if the entire plant pseudostem was not 

available. Low levels of feeding from adult African black beetle (H. arator) 

accentuated plant tiller production. However, the negative effects of high feeding 

pressure still affected plants four weeks post-exposure to beetles, with reduced 

paxilline immunoreactivity production and plant tiller numbers. Adult African 

black beetle (H. arator) were able to compensate the deterrent effects of AR1 once 

an endophyte-free food source was available. 

Results from this research contribute towards further understanding the bioactivity 

of AR1 endophyte against adult African black beetle (H. arator) and will underpin 

further research into the chemical basis for this resistance. The paxilline ELISA 

could potentially be used for screening E. festucae endophyte ryegrass associations 

that produce unknown compounds which deter African black beetle (H. arator) and 

which do not cause toxicity to livestock. 
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Neotyphodium coenophialum (Morgan-Jones & W. 

Gams) Glenn, C. W. Bacon & Hanlin 
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Epichloë festucae var. lolii (Latch, M.J. Chr. & 

Samuels) C. W. Bacon & Schardl, stat. nov. et comb. 

nov. 

Neotyphodium lolii (Latch, M.J. Chr. & Samuels) 

Glenn, C.W. Bacon & Hanlin 

LpTG-1 (Lolium taxonomic group 1) 

 Acremonium lolii (as Acremonium loliae) Latch, M.J. 

Chr. & Samuels 
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1 Chapter 1 

Introduction 

1.1 Perennial ryegrass, fungal endophytes and African black 

beetle 

Perennial ryegrass (Lolium perenne L.) is the most predominant and intensely 

grazed pasture in New Zealand (Belgrave et al., 1990; Easton & Tapper, 2005). It 

is easily established, very productive and highly digestible. In New Zealand 

perennial ryegrass (L. perenne) contains the clavicipitaceous endophytic fungus, 

Epichloë festucae var. lolii (Latch, M.J. Chr. & Samuels) C. W. Bacon & Schardl, 

stat. nov. et comb. nov., formerly Neotyphodium lolii (Latch, M.J. Chr. & Samuels) 

Glenn, C.W. Bacon & Hanlin and Acremonium lolii Latch, M.J. Chr. & Samuels 

(Leuchtmann et al., 2014) (as Acremonium loliae), which causes toxicosis in 

grazing livestock (Fletcher et al., 1999; Easton & Tapper, 2005) but is essential for 

plant persistence in pastures through tolerance and resistance to invertebrate pests 

(Prestidge & Ball, 1993; Easton & Tapper, 2005). The last four decades of 

endophyte research have primarily focused on endophytes present in forage and turf 

grasses due to their agronomic significance and importance. This includes: 

detrimental effects on grazing livestock, effects on host plant responses to biotic 

and abiotic stresses and effects on the biodiversity and trophic interactions in wild 

populations (Roberts et al., 2005). The endophyte Epichloë coenophiala (Morgan-

Jones & W. Gams) C.W. Bacon & Schardl, comb. nov. (formerly Neotyphodium 

coenophialum (Morgan-Jones & W. Gams) Glenn, C. W. Bacon & Hanlin and 

Acremonium coenophialum Morgan-Jones & W. Gams) (Leuchtmann et al., 2014) 

of tall fescue (Lolium arundinaceum (Schreb.) Darbysh., formerly Festuca 

arundinacea Shreb.) and E. festucae var. lolii of perennial ryegrass (L. perenne) are 

the two most extensively researched endophytes due to their agronomic importance 

particularly in the United States of America (USA) and New Zealand (NZ), 

respectively. 

The anamorphs of Epichloë species previously described as genus Neotyphodium 

(Leuchtmann et al., 2014), infect cool-season grasses (C3 grasses) in the subfamily 
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Pooideae. The feature that distinguishes the anamorphs of Epichloë endophytes 

from the other clavicipitaceous fungi is their inability to reproduce sexually, and 

instead they ‘reproduce’ (propagate) by vertical transmission via the host seed. 

They are obligate biotrophic endosymbionts, solely reliant on their host grass for 

survival and reproduction. The symbiont-host grass relationship is generally 

accepted as being a defensive mutalistic association with the fungus providing its 

host with protection against biotic and abiotic stress through the production of 

secondary metabolites, known as alkaloids. The wild-type E. festucae var. lolii of 

perennial ryegrass (L. perenne) that was introduced into New Zealand produces the 

following secondary metabolites: ergovaline, lolitrems and peramine. Wild-type E. 

festucae var. lolii causes mammalian toxicity, which is attributed mainly to two 

classes of alkaloids, the ergot alkaloids (ergovaline) and the indole diterpenes 

(lolitrems). Ergovaline is responsible for heat stress in animals and the lolitrems for 

ryegrass staggers. Peramine is not known to be toxic to grazing animals, but is a 

potent feeding deterrent to Argentine stem weevil (Listronotus bonariensis 

(Kuschel, 1995)). The ergot alkaloids and indole diterpenes are known to 

demonstrate anti-insect activity and toxicity (Ball et al., 1997a; Bush et al., 1997; 

Byrne et al., 2002). Endophyte strain, plant genotype, tissue type, season, plant age 

and abiotic and biotic stresses influence alkaloid profile and concentrations. 

In New Zealand, selected ‘novel’ E. festucae var. lolii strains are used in 

commercial cultivars and do not produce, or produce less of, the alkaloids known 

to be toxic to mammalian animals, whilst still maintaining anti-insect activity 

against Argentine stem weevil (L. bonariensis), which is a major pasture pest. The 

novel endophyte AR1 was a major step forward in overcoming mammalian toxicity. 

It produces peramine, a potent Argentine stem weevil (L. bonariensis) deterrent but 

not lolitrems or ergovaline, the major causative agents of mammalian toxicity. 

AR1-infected ryegrass has been extensively researched and is considered robust, 

with well-defined codes of practice for pasture establishment and management. It 

is considered a major success story, being widely adopted by the farming 

community and is now the benchmark for the New Zealand pastoral industry. 

African black beetle (Heteronychus arator (Fabricius, 1775)) is a major pest of 

regions in the upper and mid-west and mid-east of the North Island. Although 

regarded as a sporadic pasture pest, in some regions it is a significant and regular 
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problem and compromises the survival and productivity of AR1-infected cultivars. 

AR1 lacks any of the known alkaloids that deter adult African black beetle (H. 

arator), but shows moderate resistance to this insect. Testing of a range of AR1-

infected ryegrass cultivars indicated a plant genotype influence on resistance to 

adult African black beetle (H. arator). Selection of AR1 cultivars with optimal 

resistance to African black beetle (H. arator) would be of significant value to both 

plant breeders and farmers in regions where this pest is a problem.  

1.2 Perennial ryegrass – one of the ‘true grasses’ 

1.2.1 Classification of perennial ryegrass 

The two most commonly used classification systems for flowering plants are the 

morphologically based Cronquist system (Cronquist, 1988), and the more recent 

phylogenetically based Angiosperm Phylogeny Group classification system (APG 

II) (APG II 2003 et al., 2003). APG II is a modern cladistic classification system; 

its predecessor was the APG system. Table 1-1 shows the classification of perennial 

ryegrass (L. perenne) using the APG II & Cronquist systems. 

Monocotyledons or monocots are one of two major groups of flowering plants 

(angiosperms) that are traditionally recognised. The second group is dicotyledons 

or dicots. Monocot seedlings typically have one cotyledon (embryonic leaf in their 

seed), in comparison to the dicots which have two cotyledons. Monocots comprise 

the majority of biomass produced in agriculture (Campbell, 1996). There are 

approximately 59,000 species within this group (Mabberley, 1993). The most 

economically important family group among all plants is Poaceae (Constable, 1985; 

Raven & Johnson, 1995; Bremer, 2002). The Poaceae family includes all the true 

grains (rice, wheat, maize etc.), the bamboos, sugar cane and the pasture grasses 

(Constable, 1985). Plants from this family are called ‘true grasses’ because the term 

‘grass’ is also applied (although incorrectly) to many grass-like plants that are not 

members of the Poaceae family, including rushes (Juncaceae) and sedges 

(Cyperaceae). Plant communities dominated by the ‘true grasses’ are called 

grasslands and it is estimated that grasslands comprise 20% of the vegetation cover 

of the earth (Constable, 1985). Poaceae grasses also occur in many other habitats  
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Table 1-1:  Classification systems for perennial ryegrass. 

AGP II  Cronquist  

Kingdom: Plantae Kingdom: Plantae 

(unranked): Angiosperms Phylum/Division: Tracheophyta 
(vascular plants) 

(unranked): Monocots Subphylum: Magnoliophytina 
(flowering plants, 
angiosperms) 

(unranked): Commelinids Class: Lilopsida 
(Monocotyledons) 

Order: Poales Order: Cyperales 
(sedges and grasses) 

Family: Poaceae Family Poaceae (Gramineae) 

Subfamily: Pooideae Subfamily: Pooideae 

Tribe: Poeae Tribe: Poeae 

Genus: Lolium Genus: Lolium 

Species: Lolium perenne Species: Lolium perenne 

Binomial Name: Lolium perenne L. Binomial Name: Lolium perenne L. 

 

including wetlands, forests and tundra. They have evolved to become highly 

specialised for wind pollination. They produce much smaller flowers, which are 

gathered in highly visible plumes (inflorescences) (Kuldau & Bacon, 2008). 

Compared to dicots, grasses lack the biosynthetic capacity for the production of 

secondary metabolites which are useful in the long-term survival strategy of each 

species (Kuldau & Bacon, 2008). Some grasses overcome this problem by 

cohabitating with microorganisms which produce these secondary metabolites 

(Kuldau & Bacon, 2008). Most of the grasses divide into two physiological groups, 

using the C3 and C4 photosynthetic pathways for carbon fixing. The C3 grasses are 

referred to as ‘cool-season grasses’ and the C4 grasses as ‘warm season grasses’. 

All grasses can be annual or perennial (lasts for more than two growing seasons). 

1.2.2 The genus Lolium 

Ryegrass (Lolium) is a genus of tufted grasses native to Europe, Asia and northern 

Africa but widely cultivated and naturalised globally. Ryegrasses are naturally 

diploid and are described as being closely related to the fescues (Festuca) and some 
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of the fescues (Festuca) have now been reclassified as Lolium species (L. 

arundinaceum (tall fescue) = F. arundinacea, Lolium giganteum (L.) Darbysh. 

(giant fescue) = Festuca gigantea (L.) Vill, Lolium pratense (Huds.) Darbysh. 

(meadow fescue) = Festuca pratensis Huds.). Perennial ryegrass (L. perenne) is a 

low-growing, tufted, hairless, cool-season grass found often infected with fungal 

endophytes in their native environments. Asexual Epichloë endophytes in particular 

are associated with several species of cool-season grasses, particularly those 

belonging to the Lolium genera. The most common asexual Epichloë-infected 

species of Lolium are tall fescue (L. arundinaceum) and perennial ryegrass (L. 

perenne) (Roberts et al., 2005). Cultivated varieties of these two grasses are widely 

grown in temperate climates around the world as forage grasses for cattle, sheep 

and horses, turf and conservation uses (Roberts et al., 2005). Cultivated varieties of 

perennial ryegrass (L. perenne) are the predominant pasture grass in New Zealand. 

It is considered to be the most productive pasture and can be intensively grazed. 

1.3 Endophytic fungi 

1.3.1 General description and traditional classification 

An endophytic fungus is a fungus that lives inside another plant and it may or may 

not be a parasite of its host plant. Fungal endophytes are endosymbionts, i.e., they 

live within a plant for at least part of their lifecycle without causing apparent disease. 

An endosymbiont is any organism that lives within the body or cells of another 

organism forming an endosymbiosis. In an endosymbiotic relationship, one 

organism lives inside the body of another and both function as a single organism. 

Symbionts that are vertically transmitted (in the case of plants, via the seed) should 

evolve a more benign relationship with their host than those that are not vertically 

transmitted, as any net benefit they have on host fitness would likely promote their 

own transmission (Ewald, 1987). In particular, the association of cool-season 

grasses (family Poaceae, subfamily Pooideae) and the Epichloë endophytes, 

formerly known as the Epichloë-Neotyphodium group (Leuchtmann et al., 2014) of 

fungi appear to demonstrate this and occupy a unique place in the realm of host-

symbiotic relationships. 

Historically, two types of endophytic fungi have been recognised; the 

clavicipitaceous and the nonclavicipitaceous endophytes, based on phylogeny and 
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life history traits (Rodriguez et al., 2009). In their review Rodriguez et al. (2009) 

classified the clavicipitaceous endophytes as Class 1 endophytes and the 

nonclavicipitaceous as Classes 2, 3 & 4. 

Unlike mycorrhizal fungi that colonise plant roots and grow into the rhizosphere, 

endophytes reside entirely within the plant tissues and may grow within roots, stems 

and/or leaves emerging to sporulate at plant or host tissue senescence (Sherwood & 

Carroll, 1974; Carroll, 1988; Stone et al., 2004). The clavicipitaceous endophytic 

fungi (classification shown in Table 1-2) represent a small number of 

phylogentically related species that are fastidious in culture and limited to some 

cool- and warm-season grasses (Bischoff & White Jr., 2005). 

Table 1-2:  Classification of Clavicipitaceae fungi. 

Classification Level Name 

Kingdom Fungi 

Division/Phylum Ascomycota 

Subdivision Pezizomycotina 

Class Sordariomycetidae 

Subclass Hypocreomycetidae 

Order Hypocreales 

Family Clavicipitaceae 

 

The Hypocreales lineage is well known for plant pathogens, saprotrophs and 

endophytes of which many produce bioactive compounds (Rodriguez et al., 2009). 

Diehl (1950) divided the Clavicipitaceae family into three subfamilies; 

Clavicipitoideae, Oomycetoideae and Cordycipitoideae. Within the 

Clavicipitoideae subfamily, Diehl (1950) further divided it into three tribes 

(Clavicipiteae, Balansiae and Ustilaginoideae). Since then the Clavicipitaceae 

family has been reassessed and divided into four divisions (tribes) (Kuldau et al., 

1997). Using this common classification for Clavicipitaceae the four tribes are: 

1. Ustilaginoidieae (genus Ustilaginoidea): A tropical tribe that form hardened 

stromata on stems. 
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2. Clavicipeae (genus Claviceps): A tribe that infect florets of grasses and 

replace the host ovules with mycelia that develop into sclerotia (Tydzynski 

et al., 1995; Kuldau et al., 1997) and parasitises a wide range of grasses. 

3. Balansieae: This is the most diverse tribe, consisting of several genera, 

including the Epichloë (which now includes the previously described 

Neotyphodium genus (Leuchtmann et al., 2014), which included most 

asexual Epichloë descendants), Echinodothis, Balansia, Atkinsonella and 

Myriogenospora genera. 

4. Cordycipieae (genus Cordyceps): This tribe are pathogens of insects and 

fungi. 

The first three tribes are biotrophs of grasses (Poaceae) or sedges (Cyperaceae) 

(Kuldau et al., 1997). 

1.3.2 Recent cladistic classifications using molecular techniques and 

phylogenetics 

Using molecular techniques and phylogentic analyses, the theory of monophyly (a 

clade, consisting of a single ancestor and all its descendants) of the family 

Clavicipitaceae has been both supported and rejected by recent authors. Sung et al. 

(2007) state that the discrepancies in the numerous phylogenetic analyses of 

Clavicipitaceae species carried out to resolve the theory of a monophyletic family, 

have arisen because these studies had limited taxon sampling that did not cover the 

morphologicial and ecological diversity of the family. Kuldau et al. (1997) support 

the theory of monophyly, whereas Sung et al. (2007), Spatafora et al. (2007) and 

Tanaka and Tanaka (2008) reject it. Leuchtmann et al. (2014) propose that all 

previously described Neotyphodium species (with two exceptions) be synonymised 

under the monophyletic genus Epichloë. 

1.3.2.1 Work of Kuldau et al. (1997) 

The phylogenetic results of Kuldau et al. (1997) from the analyses of 28S rDNA 

sequences supported the theory of monophyly. Kuldau et al, (1997) distinguished 

four clades among the plant-associated Clavicipitaceae: 1) Monophyletic genus 

Epichloë and related asexual species; 2) Monophyletic genus Claviceps; 3) 

Echinodothis tuberiformis (Berk. & Ravenel) G.F. Atk., the only representative; 4) 
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Ephelis anamorphs (the teleomorphic genus Balansia probably being paraphyletic 

with other genera possessing Ephelis anamorphs). 

1.3.2.2 Work of Sung et al. (2007) and Spatafora et al. (2007) 

Sung et al. (2007) conducted a series of phylogenetic analyses (multi-gene) with 

seventy representatives from Clavicipitaceae to test the monophyly of the family. 

Their results provided evidence for rejecting monophyly in favour of a paraphyly, 

with Clavicipitaceae comprised of three clades (Clavicipitaceae clades A, B and C). 

Clavicipitaceae clade A consisted of four subclades (A1–A4). Species of the 

subfamily Clavicipitoideae (Claviceps, Balansia, Epichloë and Neotyphodium) 

formed subclade A1; clade B consisted of three major subclades (B1–B3); clade C 

consisted of two major subclades (C1–C2). Common to all three clades were 

species from the genus Cordyceps. 

Spatafora et al. (2007) proposed from results of their multi-gene phylogenetic 

analyses and ancestral character state reconstruction that their data did not support 

the monophyly of Clavicipitaceae. In this study Spatafora et al. (2007) divided 

Clavicipitaceae into three distinct clades (Clade A, B and C). Clade A contained 

three subclades, the paraphyletic endophytic fungi (including Epichloë and 

Neotyphodium) and two additional subclades which included two major groups of 

arthropod pathogens. Clades B and C also contained numerous taxa that are 

pathogens of animals including arthropods and nematodes. All three clades 

contained pathogens of fungi. Spatafora et al. (2007) found species of the genus 

Cordyceps in all three clades as did Sung et al. (2007). 

The results of their study support the theory that the endophytic fungi (grass 

symbionts) in the Clavicipitaceae family are a group that were derived from an 

animal pathogen through a dynamic process of interkingdom host jumping. 

Although the endophytic fungi were traced back to a plant-associated common 

ancestor, the data support the theory that the common ancestor of clade A was 

associated with an animal. Therefore the common ancestor of the Clavicipitaceae 

endophytic fungi (grass symbionts) likely originated via an interkingdom host jump 

from animals to plants. With the host shift from animal to plants the biochemical 

arsenal of endophytes was likely to already be in place for defence against animal 

herbivores (Clay, 2009). 
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Jumps to new hosts among organisms closely associated in a common habitat have 

been referred to as the “host habitat hypothesis” (Nikoh & Fukatsu, 2000). This 

hypothesis was put forward to explain shifts to distantly related hosts of 

Hypocreales (Nikoh & Fukatsu, 2000; Spatafora et al., 2007). 

1.3.2.3 Work of Tanaka and Tanaka (2008) 

More recently, Tanaka and Tanaka (2008) have suggested a new classification of 

the Clavicipitaceae from their phylogenetic results from the analyses of Exon 3 

nucleotide sequences of the ALDH1-1 gene. Their results also reject the monophyly 

of Clavicipitaceae. They have divided Clavicipitaceae into two groups, the 

paraphyletic group (Cordyceps-Nomuraea-Ustilaginoidea) and a monophyletic 

group (Clavicipitoideae). The monophyletic group was further divided into three 

clades (Aciculosporium-Claviceps, Epichloë-Neotyphodium and Parepichloë-

Heteroepichloë-Ephelis). 

1.3.2.4 Work of Leuchtmann et al. (2014) 

In 2011, at the 18th International Botanical Congress in Melbourne, Australia, 

nomenclatural rule changes were adopted, with the principle stating a single name 

should be used for each fungal species (McNeill et al., 2012). The genus 

Neotyphodium, which consists of the anamorphs of Epichloë species and includes 

most asexual Epichloë descendants, is proposed to be realigned and classified in to 

the Epichloë genus (Leuchtmann et al., 2014) in line with nomenclature rule 

changes at the 18th International Botanical Congress (2011). Leuchtmann et al. 

(2014) have re-examined the classification of several described Epichloë and 

Neotyphodium species and varieties, proposed new combinations and names, 

resulting in the realignment of Neotyphodium species within genus Epichloë. They 

accept 43 unique taxa in Epichloë including distinct species, subspecies and 

varieties, and excluding two taxa Neotyphodium starrii (J.F. White & Morgan-

Jones) Glen, C.W. Bacon & Hanlin (formerly Acremonium starrii J.F. White & 

Morgan-Jones) and Neotypodium chilense (Morgan-Jones, J.F. White & Piont.) 

Glenn, C. W. Bacon & Hanlin (formerly Acremonium chilense Morgan-Jones, J.F. 

White & Piont.). Epichloë festucae var. lolii, formerly N. lolii and A. lolii (as A. 

loliae) has been included in this realignment and renaming (Leuchtmann et al., 

2014). 
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1.3.3 Summary of the classification of Clavicipitaceae 

Classification of fungi within the Clavicipitaceae family is under constant review, 

refinement and reassessment as new phylogenetic classification tools evolve and 

new studies are completed, especially in the area of molecular genetics. In all of 

these studies it is apparent that the Epichloë-Neotyphodium group of fungal 

endophytes are unique and form a distinct grouping within the various proposed 

classifications. The Epichloë-Neotyphodium group of fungal endophytes have been 

realigned and renamed under the single monophyletic genus Epichloë (Leuchtmann 

et al., 2014), in the family Clavicipitaceae. This was done in line with rule changes 

in the International Code of Nomenclature for algae, fungi and plants adopted at the 

18th International Botanical Congress (2011). 

1.4 Endophytic Clavicipitaceae – The genus Epichloë  

1.4.1 Lifecycles and types of endophytic Clavicipitaceae 

White Jr. (1988) first proposed three types of clavicipitaceous endophytic fungi; 

symptomatic and pathogenic, sexual life cycle (Type I), asymptomatic, asexual life 

cycle (Type III) and mixed, sexual and asexual life cycles (Type II). The Epichloë 

genus of fungal endophytes in the clavicipitaceous family (Clavicipitaceae, 

Ascomycota), are symbionts of temperate grasses (subfamily Pooidaea). The 

Epichloë genus is composed of haploid species that all undergo an external 

contagious stage. When the grass produces flowers, the fungus grows over the 

developing inflorescence to form stroma. The inflorescence primordium remains at 

an arrested stage of development within the fungal mycelium, and development of 

the seed head is prevented (choke disease). The spermatia of the fungus are vectored 

between compatible mating types of the fungus by ‘pollinating’ symbiotic flies 

(genus Botanophila Lioy), which lay eggs on the fungal stroma and the fly larvae 

feed on the post-fertilised mycelium of the fungus (Bultman & White 1988). The 

fungus depends on the fly stage to complete its sexual mating cycle and the fly 

larvae depends on the fungus for nourishment. 

Some Epichloë species, defined as Type II endophytes by Clay and Shardl (2002), 

exhibit stromata only in a proportion of the tillers, allowing partial seed production 

and thus vertical transmission within seeds; while others (Type I endophytes) 
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produce stromata on all (or most) of the tillers (any tillers that do not exhibit 

stromata do not contain the fungus) (White Jr., 1988; Rodriguez et al., 2009). At 

least nine different sexual species are recognised in the Epichloë genus. This 

includes E. festucae a natural endophyte of Festuca species (Leuchtmann et al., 

1994; Scott et al., 2005). This endophyte is also capable of forming compatible 

associations with perennial ryegrass (L. perenne) (Christensen et al., 1997; Scott et 

al., 2005). The ability of E. festucae to infect L. perenne aligns with the subsequent 

reclassification of some host plant Festuca species as Lolium species. 

The Epichloë genus has evolved a diversity of asexual forms in cool-season grasses 

in the subfamily Pooideae (Schardl, 1996). Glenn et al. (1996) reclassified the 

asexual genus Acremonium to the genus Neotyphodium. Neotyphodium species, 

using the Clay and Shardl (2002) classification, are referred to as type III 

endophytes reproducing only by vertical transmission via the host seed. 

Leuchtmann et al. (2014) realigned the nomenclature of Neotyphodium species with 

the genus Epichloë. These asexual Epichloë species are obligate biotrophic 

endosymbionts. The occurrence of regular vertical transmission via the host seed is 

unique to the Epichloë genus. 

1.4.2 History of the Clavicipitaceae endophytes 

Clavicipitaceous endophytes were first studied in Europe in plants in the late 19th 

century (Guerin, 1898; Hanausek, 1898; Vogl, 1898). Vogl (1898) first reported the 

presence of fungal mycelium in plants of darnel ryegrass, Lolium temulentum L., 

that showed no external signs of infection. L. temulentum was considered to be toxic 

and with the discovery of the fungus it was theorised that the presence of the fungus 

was possibly the cause of the toxicosis. Freeman (1902, 1903, 1904) conducted 

detailed studies of the endophyte of darnel and noted the presence of the fungal 

mycelium in the seeds of L. perenne. The darnel endophyte has only recently been 

identified, originally as Neotyphodium occultans C.D. Moon, B. Scott & M.J. Chr. 

(Moon et al., 2000) now renamed Epichloë occultans (C.D. Moon, B. Scott & M.J. 

Chr.) Schardl, comb. nov. (Leuchtmann et al., 2014). Neill (1940) reported that 

hyphae are intercellular and infected host plants show no external symptoms of 

infection. The fungus can only be transferred/spread by the transmission of the 

endophyte via the seed of an infected ryegrass plant (vertical transmission) 
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(Sampson, 1935; Neill, 1941). Bacon et al. (1977) linked the endophyte E. 

coenophiala (Leuchtmann et al., 2014), to the widespread occurrence of ‘summer 

syndrome’ toxicosis in cattle grazing tall fescue (L. arundinaceum) pastures, 

confirming the early hypothesis of toxicosis linked with animals ingesting 

endophyte-infected grasses. 

Sampson (1933) noted that the endophytes of L. perenne and L. temulentum were 

very similar to the asexual stage of Epichloë typhina (Pers.) Tul. & C. Tul., infecting 

many species of Poaceae (Gramineae). Sampson (1933) also reported that for a 

large part of the year, E. typhina existed in an anamorph state as a symptomless 

intercellular mycelium within the host plant, which he termed ‘latent infection’ and 

drew a comparison with the ‘non-choke inducing’ endophytes of perennial ryegrass 

(L. perenne). White Jr. (1988) also noted this and suggested the asexual Epichloë 

endophytes probably evolved from the ‘choke inducing’ endophytes that had an 

anamorphic stage. 

The origin of the asexual Epichloë species indicates that they may be due to both 

clonal and interspecific hybridizations with the sexual Epichloë species (Moon et 

al., 2002; Schardl et al., 2004). Hybrid origins are inferred from phylogenetic 

analyses where there is the tendency for multiple loci of isozymes that are a single 

copy in the sexual Epichloë species. All but E. festucae var. lolii are apparent 

interspecific hybrids (Scott et al., 2005). New endophyte species have been based, 

in part, on their hybrid origins and relationships to the sexual Epichloë species. 

Epichloë festucae var. lolii is a haploid asexual derivative of E. festucae 

(Christensen et al., 1993; Schardl et al., 1994) and is the predominant endophyte of 

L. perenne. 

1.4.3 Distribution of the Clavicipitaceous endophytes in the plant host 

The Epichloë genus are biotrophic fungi that systemically colonise the intercellular 

spaces of leaf primordia, leaf sheaths and leaf blades of vegetative tillers and the 

inflorescence tissues of reproductive tillers (Scott et al., 2005). In the sexual stage, 

the fungus prevents the growth of the flowering structure of the host plant (choke 

disease). Endophytic mycelia are systemic throughout the above-ground portions 

of the grass plant because they proliferate in the shoot meristem and are situated in 

the intercellular places of the newly forming aerial plant parts. The fungi do not 
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colonise root meristems, and roots typically lack these fungi (Rodriguez et al., 

2009). 

The asexual Epichloë species have lost the capacity for development of the sexual 

stage. In these species no obvious symptoms of infection are observable at any stage 

of plant development. These fungi are endophytes of leaves, culms and rhizomes, 

and they frequently colonise inflorescence primordia. As inflorescences develop the 

mycelium grows into ovules, and within seeds it colonises the scutellum and 

embryo axis (Philipson & Christey, 1986) before germination (Rodriguez et al., 

2009). Asexual Epichloë endophytes are transmitted vertically through seeds and 

by clonal reproduction of host plant through vegetative propagation of new plants 

(Clay, 1986; Clay & Kover, 1996; Clay & Schardl, 2002). Many retain an 

epiphyllous mycelium where conidia form, suggesting the potential for horizontal 

transmission (Rodriguez et al., 2009) and most produce conidia in culture. Tadych 

et al. (2007) demonstrated that epiphyllous conidia are released from conidiophores 

only in water, suggesting they may spread among neighbouring plants via rain or 

dew. The likely, but unconfirmed, sites of infection are tillers, where the fungi 

colonise meristems epiphyllously in plant crowns. Colonisation of new tillers may 

then occur, possibly resulting in the eventual infection of some ovules and seeds. 

The original mature plant tissues of neighbouring plants would not bear endophytic 

mycelium as clavicipitaceous endophytes grow rapidly in nutrient-rich 

meristematic tissue but show limited capacity to grow through mature plant tissue 

(Western & Cavett, 1959; White Jr. et al., 1991). If horizontal transmission to a 

neighbouring plant that already contained an endophyte occurred, there is the 

potential for interspecific hybridization that is a feature of the phylogenetic analysis 

of asexual Epichloë endophytes (Tadych et al., 2009). 

Christensen et al. (2008) have published evidence that the Epichloë fungal 

endophytes grow by two methods in the host plant. Most significantly they have 

described how the fungal endophytes grow by intercalary hyphal extension in 

elongating grass leaves. Secondly they have shown that the fungal endophytes grow 

by hyphal division and expansion at the apex, forming heavily branched mycelium 

amongst dividing plant cells in the meristem. In intercalary extension, the hyphae 

are attached to enlarging host cells, and cumulative growth along the length of the 

filaments enables the fungus to extend at the same rate as the host. When plant cells 
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divide and then enlarge to form the leaf, hyphal compartments are subjected to 

stretch, but this stress is relieved by intercalary extension accompanied by cellular 

division along the length of the filament. Christensen et al. (2008) suggest that 

intercalary extension may be activated by this stretching because endophyte 

expansion ceases once the hyphae emerge beyond the leaf expansion zone (Tan et 

al., 2001). Also, hyphae in mature tissue are no longer growing but still remain 

metabolically active (Tan et al., 2001). Fungal growth parallels development of the 

adjacent leaf tissue which also undergoes intercalary extension. Paralleled 

intercalary extension allows for synchronised growth of the endophyte and host. It 

explains the two different fungal morphologies found in the host – a heavily 

branched mycelial net in the plant meristematic zones where plant cells are rapidly 

dividing but not expanding; and the intercellular hyphae in the leaf expansion zone, 

oriented in the direction of plant growth and following the longitudinal axis of the 

leaf. The proposed model also explains the inability of endophytes to infect mature 

tissues that are no longer growing in plants. It also accounts for the fixed number 

of hyphae present in mature leaves and that the number of hyphae in old and new 

sheaths is similar. It is unknown if this mechanism of growth is unique to the 

Epichloë endophytes (Christensen et al., 2008). 

1.4.4 Costs and benefits of the endophyte-plant host symbiotic 

relationship 

1.4.4.1 Defensive Mutualism 

Evolutionarily, symbioses exist because of enhanced fitness in at least one of the 

participant populations. If the fitness of the host population is reduced, the 

association may be characterised as ‘parasitism’ or ‘pathogenicity’; if fitness is not 

affected, as commensalism; if fitness is enhanced, as mutualism (Douglas, 1994). 

Where the endophyte-plant host symbiotic relationship lies on this parasitic-

mutualistic continuum is variable and dependent on the endophtye type and 

association (type I, II or III) and the environmental factors and stressors at any one 

place and time. The fungal endophyte-plant host symbiotic relationship is generally 

described as mutalistic (Clay, 1988b, 1988a). Clay (1988a) coined the term 

‘defensive mutualism’ for the endophyte-plant host symbiotic relationship. The 

primary benefit to the host is the defence against insect and mammalian herbivory 
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via the production of secondary metabolites. The defensive mutualism hypothesis 

now includes any modification or enhancement in host physiology that enables the 

hosts to better tolerate stress of any origin and survive and reproduce as a result of 

it (White Jr. & Torres, 2009). The host plant provides the fungus with nourishment, 

protection from environmental extremes and predation. The host plant receives in 

return, protection from certain biotic and abiotic stresses. Effects of asexual 

Epichloë species on grazing animals (Ball, 1997; Fletcher et al., 1999) and on over 

forty species of insects (Breen, 1994; Clement et al., 1994; Popay & Rowan, 1994) 

provide plenty of support for the defensive mutualism hypothesis.  

Wild and native grasses are frequently infected with Epichloë group endophytes. In 

natural populations the proportion of plants infected ranges from low to 100%. This 

suggests that there is no consistent increase in plant host fitness that can be 

attributed to the presence of the Epichloë endophytes. Where high infection levels 

in native populations are observed, this suggests a selective advantage over 

uninfected plants (Wei et al., 2006). There are exceptions to the defensive 

mutualism theory and in some cases a high endophyte infection level in a host plant 

population has not been found to increase the fitness of the population. For example, 

no resistance to herbivory or plant pathogens account for the high frequency of 

asexual Epichloë endophyte infection (80%) in a native grass population of Arizona 

fescue (Festuca arizonica Vasey) and infection was found to generally decrease the 

host fitness (Faeth & Sullivan, 2003). These authors speculate that the infection is 

parasitic rather than mutualistic. In another study looking at abiotic factors 

(different watering and nutrient regimes), the authors concluded that the costs 

outweighed the benefits to the plant hosting an endophyte in a resource-limiting 

environment (Ahlholm et al., 2002). In some studies the endophyte infection levels 

of a population showed spatial patterns, directly in response to grazing pressure of 

herbivores (Koh & Hik, 2007). Other studies, that tracked endophyte infection 

levels over time, found that infection levels in populations increased over time 

(Neill, 1940; Lloyd, 1959; Clay et al., 2005). Levels of endophyte-infection in host 

populations can be a direct response to environmental factors (Constable, 1985; 

Lewis, 2000; White Jr. et al., 2001). A stable, decreasing or low endophyte-

infection level in a host population does not necessarily reject the defensive 

mutualism hypothesis as it may just reflect where the endophyte-host association is 
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situated on the parasitic-mutualistic scale (parasitic, commensalistic or mutualistic) 

and which way the association is currently heading (Popay, 2009). Especially noted 

in the literature is herbivory pressure and how it can affect endophyte infection 

levels in host populations (White Jr. et al., 2001; Li et al., 2007; Palmer et al., 2008). 

In cultivated populations the selective advantages are often very obvious and the 

selective disadvantages unwanted. This was the case with pastures and turf grasses 

whereby endophyte-infected plants were (and still are) used as they gave insect 

resistance even though they had adverse effects on livestock. Initially, before the 

role of the endophytes was known, the endophyte-infected state was unwittingly 

selected for in both the USA and New Zealand because it gave better yield and 

persistence. Saikkonen et al. (1998, 2006) disagree with the defensive mutualism 

theory, suggesting that the data supporting this come from agronomic, cultivated 

forage and turf grasses that have been artificially selected. They point out that 

defensive mutualism is not often seen in native grass populations. Agronomic 

(cultivated) grasses and the endophytes used in these associations were originally 

isolated from natural populations (Clay, 1990). Where the endophyte-host plant 

symbiosis lies on the parasitic-mutualistic continuum is depicted by environmental 

factors and pressures (stressors) at any given time and place. The association is not 

fixed; instead it is able to slide along this scale depending on circumstances. This 

dynamic process needs to be applied when considering the costs and benefits 

shaping the endophyte-host symbiosis association (Bronstein, 2001). 

Therefore, grass populations maintaining heterogeneity of endophyte-infected and 

endophyte-free individuals will evolutionarily have considerable advantages to the 

species (not an individual) (Popay, 2009). Frequency-dependent selection (Ayala 

& Campbell, 1974) can be seen in the population dynamics of many insect 

herbivores affected by endophtye-infection of host plants. Insect populations are 

characterised by short periods of high density resulting in severe damage to their 

host plants followed by long periods of low density (Varley et al., 1973; Berryman, 

1987; Abbott & Dwyer, 2007). These outbreaks may be localised or widespread. 

During periods of low insect density the proportion of endophyte-infected plants in 

the population may reduce. This reduction would be radically reversed during an 

insect outbreak. In a native grass population, the outbreak may be partly triggered 

by the availability of the insect’s food source, the endophyte-free host plants. The 
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outbreak would initially significantly reduce the total plant population as the 

endophyte-free plants are decimated, resulting in an increase in the proportion of 

endophyte-infected host plants. This would then be followed by high numbers of 

endophyte-infected host plants in the recovering population as a result of the 

original surviving endophyte-infected plants reproducing. This high level of 

endophyte-infection in the host plant population would cause the insect population 

to decline as their food resource (endophyte-free host plants) is now reduced. Insect 

numbers would return back to low levels as long as there were no alternative food 

sources available. Once the insect density had returned to low enough levels, the 

selective advantage of a plant hosting an endophyte would have decreased, possibly 

even to the point of being a cost to the plant. The endophyte-free plants may now 

have a small selective advantage and this would in turn lead to a decline in 

endophyte-infected host plants in the population (Popay, 2009). 

For the endophyte-host plant symbiosis itself there are also likely to be advantages 

to both the endophyte and the host plant in maintaining variability in the expression 

of the endophyte-host plant interaction within populations. This allows for greater 

adaptations to changes in the environment. A natural grass population made up of 

genetically variable endophyte-host plant associations is more likely to be resilient 

in responding to abiotic or biotic selection pressures. In agronomic cultivated grass 

populations less genetic variability in the endophyte-plant host association is 

deemed more advantageous in terms of plant benefit (vegetative growth and plant 

persistence) due to the more constant selective pressures (particularly insect 

herbivory in agricultural environments) (Popay, 2009). 

1.4.4.2 Benefits 

There are numerous clavicipitaceous endophyte benefits to hosts reported in the 

literature. These include: resistance to mammalian and insect herbivory (Clay, 1990; 

Clay & Schardl, 2002), drought tolerance (Arachevaleta et al., 1989; West, 1994), 

resistance to nematodes (West et al., 1988; Kimmons et al., 1990; Prestidge & Ball, 

1993), resistance to fungal pathogens (Gwinn & Gavin, 1992), growth 

enhancements (Malinowski & Belesky, 2000) and greater field persistence (West 

et al., 1988; Hill et al., 1990). Other benefits include reduced seed and seedling 

predation (Clay, 1996; Clay & Holah, 1999). The defence against insect pests spans 
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several taxonomic orders and includes leaf- and root-chewing and plant-sucking 

herbivores. There are some insects, however, that have been found not to be affected 

by endophyte infection. The common E. festucae var. lolii strain in perennial 

ryegrass (L. perenne) has no effect on frit fly (Oscinella frit (Linnaeus, 1758)), 

leather jackets (Tipula species) (Lewis & Clements, 1986; Lewis & Vaughan, 1997) 

and cereal leaf beetles (Oulema melanopus (Linnaeus, 1758)) (Clement et al., 2007). 

The fitness of other insects has been found to be enhanced by the endophyte (Lopez 

et al., 1995; Saikkonen et al., 1999; Tibbets & Faeth, 1999; Bultman & Bell, 2003; 

Popay et al., 2004). The reasons for improved individual insect fitness are unknown 

but are likely to be related to altered plant chemistry due to the presence of the 

endophyte (Rasmussen et al., 2008). In some cases the endophyte’s alkaloids have 

no effect, in other cases the negative effects caused by the insects are offset by 

increased host plant quality (Popay, 2009). 

Host benefits to the clavicipitaceous endophyte include, provision of nutrients and 

propagation through the seed (Scott et al., 2005), and an enclosed protective 

environment. 

1.4.4.3 Costs 

Some infected plants may grow less well compared with endophyte-free plants 

under some conditions; this can be dependent on endophyte strain, host strain and 

environmental conditions. There is some evidence that there is a cost to the plant 

host supporting clavicipitaceous endophytes. There have been dramatic examples 

of this reported in the literature. These include increased disease susceptibility of 

plants carrying endophytes compared to endophyte-free equivalents. For example, 

it was observed plots of an endophyte-containing cultivar of tall fescue grass (L. 

arundinaceum) showed an increased incidence or severity of crown and root rot 

disease caused by Pythium graminicola Subraman. when compared with 

endophyte-free plots at Rutgers University turfgrass breeding station (Rodriguez et 

al., 2009). Other cultivars, with and without endophyte, were examined and none 

showed the same effect. Further investigation showed an unusually high number of 

intercellular hyphal strands. It was postulated that the cultivar had enhanced 

susceptibility due to the abnormally high endophyte content which increased the 

nutrient demands and stress on the grass host (Rodriguez et al., 2009). In other 
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examples, although endophyte-containing grasses were more susceptible to certain 

diseases, they also recovered better once the environmental conditions changed. 

Wäli et al. (2006) observed this in natural populations of red fescue (Festuca rubra 

L.) damaged by winter snow mould (Typhula ishikariensis Imai) and subsequent 

recovery of the plants in spring. In another example, the incidence of endophyte in 

a host plant population can be dependent on need, such as, when herbivore pressure 

is high. This was observed by White Jr. et al. (2001), when damage by leaf-cutting 

ants in a desert environment to populations of Bromus setifolius J. Presl was 

extensive, endophyte Epichloë tembladerae (Cabral & J.F. White) Iannone & 

Schardl, formerly Neotyphodium tembladerae Cabral & J.F. White (Leuchtmann et 

al., 2014), incidence was high (80–100% of sampled plants). In contrast, where 

leaf-cutting ant populations were low or rare, there was a low incidence of 

endophyte infection (0–20% of sampled plants). These examples fit with the 

hypothesis that hosting an endophyte is costly and the benefit/s may be dependent 

on specific circumstances and/or environmental conditions. Thus under certain 

circumstances and environmental conditions, the hosting of an endophyte may 

result in reduced plant fitness and disadvantage the plant. This may be significant 

in both natural and artificial plant populations and associated ecosystems. Costs to 

the endophyte include reliance on the host plant for nutrition, transmission and 

continued survival. For the asexual endophytic fungi, this reliance is absolute. 

1.4.5 Effects on pasture grass invertebrates 

Some of the host fitness enhancements resulting from infection of an endophyte are 

protection from biotic stresses such as herbivory and disease, which is mediated by 

the production of secondary metabolites (Popay & Bonos, 2005). As discussed 

earlier, hosting an endophyte involves both costs and benefits, and if a host plant 

contains an endophyte this is no guarantee of resistance to both biotic (herbivory) 

and abiotic (drought) stresses. In fact insect resistance may be enhanced (desirable), 

reduced or not affected (undesirable) by the presence of endophyte. The effects are 

strain specific and substantially influenced by the plant host genotype. 

Prestidge et al. (1982) found a correlation between decreased Argentine stem 

weevil (L. bonariensis) adults and E. festucae var. lolii infection levels. By 1994, 

many species of insects had been found to be adversely affected by endophytes 
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(Breen, 1994; Clement et al., 1994; Popay & Rowan, 1994). Since 1994, few insects 

have been added to the list as the emphasis has shifted to exploring the biotic 

responses in the diversity of endophyte-plant host associations that exist. The 

effects of endophyte infection have mainly been shown in economically important 

grasses (tall fescue (L. arundinaceum) and perennial ryegrass (L. perenne)) or by 

bioassaying the alkaloids produced by endophyte infection (Popay & Bonos, 2005). 

The alkaloid profile is important directly in the deterrence or toxicity to 

invertebrates but also indirectly by altering insect behaviour, e.g., deterring adults 

so oviposition does not occur or is greatly reduced, as for example with Argentine 

stem weevil (L. bonariensis) adults; in increasing emigration of the insect to more 

‘preferred’ feeding material; deterring feeding, thus reducing larval or pupal 

survival. Insect herbivores that feed near the base of the plant in the region of the 

meristem inflict more severe damage than leaf grazers or sucking insects and they 

appear more sensitive to the presence of endophytes (Popay & Bonos, 2005). 

Although the endophytes do not extend into the roots, root-feeding invertebrates 

can be affected, though to a lesser extent than those feeding on above-ground plant 

parts (Popay & Bonos, 2005). Sensitivity to endophytes in the plant-sucking and 

leaf- and root-grazing invertebrates is much more diverse in the range of responses 

compared with those insects that feed near the base of the plant. 

1.4.6 Alkaloid production and expression 

Alkaloids produced by Epichloë-host grass associations are considered to be 

important in providing protection to pastures against damage by insects and 

response to grazing animal toxicosis. Four classes of alkaloids are common but not 

universally produced by this group of fungi. 

1.4.6.1 Indole diterpenes 

The indole diterpenes are a structurally diverse group of metabolites, principally 

found in the filamentous fungi of the genera Penicillium, Aspergillus, Claviceps 

and Epichloë (Steyn & Vleggaar, 1985; Scott et al., 2005). The group is 

characterised by the presence of a cyclic diterpene skeleton derived from four 

isoprene units, and an indole moiety derived from tryptophan or a tryptophan 

precursor (Byrne et al., 2002; Scott et al., 2005). Many exhibit potent mammalian 

tremorgenic activity; others give anti-insect activity (Parker & Scott, 2004; Scott et 
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al., 2005). Most notable examples of mammalian toxicity are the lolitrems from E. 

festucae and most E. festucae var. lolii, and are known to be responsible for ryegrass 

staggers in livestock (Siegel et al., 1990; Christensen et al., 1993; Bush et al., 1997). 

This group of alkaloids also includes the terpendoles and the epoxy-janthitrems 

(isolated from the novel endophyte AR37). Fungi, such as Pencillium paxilli 

Bainier, produce simple indole diterpene alkaloids (paxilline, paxitriol and 

paspaline). Indole diterpenes are confirmed as fungal metabolites in asexual 

Epichloë (formerly Neotyphodium) species (Penn et al., 1993; Reinholz & Paul, 

2001). Paxilline, first identified by Weedon and Mantle (1987), is a tremogenic 

indole diterpene (Miles et al., 1992), previously thought to be the key intermediate 

in the biosynthetic pathway for lolitriol and lolitrem B production (Miles et al., 

1993) in Neotyphodium species. The paxilline enzyme-linked immunosorbent assay 

(ELISA) and high pressure liquid chromatography (HPLC) were used to screen 

asexual Epichloë isolates for their potential to produce indole diterpenoid 

tremogenic compounds (Penn et al., 1993). Non-tremogenic paspaline is considered 

a key intermediate for the production of indole diterpenes, including the lolitrems 

and paxilline, by multiple pathways (Munday-Finch et al., 1996; Saikia et al., 2012). 

The preferential synthesis of these metabolites in planta suggests that genes for 

lolitrem biosynthesis are symbiotically regulated (Scott et al., 2005). 

1.4.6.2 Ergot alkaloids 

The most notable example of the ergot alkaloids is ergovaline. Ergovaline is well 

known for pest protection and mammalian toxicity, especially in tall fescue pastures. 

The clavines and some derivatives may also be present and add to bioactivity. They 

are known as potent toxins with neurotrophic activities. Ergovaline causes 

vasoconstrictive effects and heat stress in animals. Ergot alkaloid toxicity (ergotism) 

has been known for many centuries (Groger, 1972; Clay & Schardl, 2002) and 

several ergot alkaloids now have pharmaceutical applications (and illegal 

recreational applications), such as lysergic acid diethylamide (also known as LSD, 

LSD-25 or acid). 

1.4.6.3 Peramine 

Peramine is a pyrrolopyrazine alkaloid that has no known effects on grazing 

animals or other mammals (Keogh et al., 1996). This compound is a metabolite 
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unique to the Epichloë genus of fungi (Scott et al., 2005). It is found throughout the 

host plant tissues above ground. Although it has no known effects on grazing 

animals it is a known powerful feeding deterrent for Argentine stem weevil (L. 

bonariensis) adults and to a lesser extent also to larvae (Rowan et al., 1990). 

Although not found to be a deterrent to grey-brown cutworm (Graphania mutans 

(Walker, 1857)), it impaired larval development and increased pupal mortality 

(Dymock et al., 1988). It is commonly inferred in the literature to be a potent insect 

deterrent, but other than its effects on Argentine stem weevil (L. bonariensis) and 

cutworm (G. mutans) there is little published evidence for effects on other insects. 

Ball et al. (1997a) showed that peramine does not deter adult African black beetle 

(H. arator) from feeding. 

1.4.6.4 Lolines 

Lolines are pyrrolizidine alkaloids that have potent insecticidal activity, especially 

for sucking insects of pasture plants (Johnson et al., 1985; Tapper et al., 2004). 

Although pyrrolizidine alkaloids are found in approximately 3% of flowering plants 

(Smith & Culvenor, 1981) the lolines (saturated amino pyrrolizidine alkaloids) are 

not hepatotoxic and are not significant animal and human toxins like the 1, 2–

unsaturated pyrrolizidine alkaloids (Bush et al., 1993). They were first isolated 

from darnel ryegrass (L. temulentum) and later several derivatives were identified 

in tall fescue (L. arundinaceum) (Hofmeister, 1892; Guerin, 1898; Yates et al., 1989; 

Bush et al., 1993; Schardl et al., 2007). Concentrations have been reported that 

exceed the biomass of the endophyte in infected plants (Tapper et al., 2004). They 

are known as potent toxins with neurotrophic activities and have a broad spectrum 

of activity against insects. Lolines are not produced by E. festucae var. lolii in 

association with perennial ryegrass (L. perenne) (Clay & Schardl, 2002). They are 

produced by other asexual Epichloë species, E. coenophiala, Epichloë uncinata (W. 

Gams, Petrini & D. Schmidt) Leuchtm. & Schardl, comb. nov. (formerly 

Neotyphodium uncinatum (W. Gams, Petrini & D. Schmidt) Glenn, C.W. Bacon & 

Hanlin) and E. occultans, and are a characteristic of associations of tall fescue (L. 

arundinaceum), meadow fescue (L. pratense) and Italian (or annual) ryegrass 

(Lolium multiforum Lam.) respectively. Unlike the other three major alkaloid 

classes, they have adverse effects on root-feeding pasture pests such as the native 

grass grub larvae (Costelytra zealandica (White, 1846) (Given, 1952)) (Popay & 
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Lane, 2000). There is no conclusive evidence for endophytes in perennial ryegrass 

(L. perenne) affecting white grubs (Scarabaeidae), which graze on grass roots 

(Prestidge & Ball, 1993). 

1.4.6.5 Alkaloid expression 

Siegel et al. (1989) found that peramine was present in the majority of 

clavicipitaceous endophyte-infected host grasses. A smaller number of these 

endophyte-infected host grasses were found to have ergot alkaloids, loline alkaloids 

and lolitrems (from the indole diterpenes group). The lolitrems are mainly produced 

by E. festucae var. lolii endophytes infecting ryegrass (L. perenne) and usually E. 

coenophiala, but certain isozyme phenotypes infecting tall fescue (L. arundinaceum) 

produce this alkaloid (Christensen et al., 1993). Loline alkaloids are produced by 

E. coenophiala in tall fescue and E. uncinata in meadow fescue but not by the 

endophyte in perennial ryegrass (L. perenne) (Schardl et al., 2007). Ergot alkaloids 

are widespread in the plant-parasitic Clavicipitaceae. Detailed reviews of 

endophyte alkaloids have been published (Porter, 1994; Bush et al., 1997; Siegel & 

Bush, 1997) as reviewed by Clay and Shardl (2002). All four classes of alkaloids 

have been produced by pure fungal cultures (Porter, 1994; Blankenship et al., 2001) 

and are absent in uninfected grasses, clearly demonstrating their fungal origin (Clay 

& Schardl, 2002). 

The specific alkaloid profiles are a function of the fungal species and/or strain, 

while concentrations vary with the symbiotic endophyte-host plant combination and 

are modulated by the host plant. Even the same endophyte genotypes inoculated 

into different plant genotypes from the same species can have major effects on 

alkaloid production in planta. Plant genotype, tissue type, season, plant age and 

other abiotic or biotic stresses influence alkaloid profile and concentrations (Clay 

& Schardl, 2002; Rodriguez et al., 2009). The host plant genotype has a major 

influence on the quantities of alkaloids that are produced. A four- to ten-fold 

difference in concentrations of different alkaloids has been recorded between 

individual ryegrass plants taken from the field and then grown under the same 

conditions as each other (Latch, 1994; Ball et al., 1995a; Ball et al., 1995b). Easton 

et al. (2002) found that concentrations of peramine and ergovaline consistently 

varied across two perennial ryegrass (L. perenne) families. Seasonal changes in 



Introduction  Chapter 1 

24 

alkaloid levels in plants correlated with seasonal changes in endophyte 

concentration (di Menna et al., 1992; Ball et al., 1995a; Ball et al., 1995b; Justus et 

al., 1997) and may alter the resistance to herbivory at different times of the year 

(Popay & Mainland, 1991). It has also been demonstrated in ryegrass plants that 

endophyte metabolic activity varies between different plant genotypes, primarily 

due to variation in the number of metabolically active hyphae (Schmid et al., 2000). 

Environmental stresses often alter the alkaloid content in plants: usually 

concentration is increased. Water deficit is known to elevate ergovaline levels in 

ryegrass (Barker et al., 1993; Lane et al., 1997). 

While the alkaloids are always present in the plant and are regarded as a constitutive 

defence system, they are also inducible. That is, alkaloid levels are raised in 

response to a specific stimulus. The most obvious inducible responses are triggered 

by damage to the plant by herbivores. Re-growth following defoliation often 

contains higher levels of alkaloids than equivalent older plants, probably as a result 

of mycelium being concentrated with meristematic tissue and up-regulation of 

alkaloid genes (Sullivan et al., 2007). This results in the key plant tissues involved 

in re-growth of the plant being protected. Grazing (particularly by livestock) or 

artificial clipping, although generally increasing alkaloid levels, may have no 

adverse effects on the grass and may actually stimulate growth (Popay, 2009). 

Insect damage to the crown and pseudostem, however, increases alkaloids levels 

significantly. This ‘true’ induced response may be significant, with much higher 

levels of alkaloids produced in the crown and pseudostem in response to damage to 

these more vulnerable regions of the plant. Less herbivory on or near the crown and 

on the pseudostems of grasses not only protects the plant but also the endophyte 

(Popay, 2009) and their long term survival. 

1.4.7 Distribution of the four major alkaloids in grasses 

The study of Spiering et al. (2005) study suggests that the levels and distribution of 

the endophyte is not a major determinant of the distribution of the fungal alkaloids 

in perennial ryegrass (L. perenne) (noting that lolines are not produced by perennial 

ryegrass (L. perenne) as stated earlier). The distribution of the four main alkaloid 

classes has been found to be different within the grass. 
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1. The indole diterpenes alkaloid class contains the lolitrems, terpendoles and 

the epoxy-janthitrems). Lolitrem B accumulates over time in older tissue 

and is present only at low levels in young tissue. Compared to other plant 

components the highest concentration of lolitrem B is found in the seed 

(Ball et al., 1995b). 

2. The ergot alkaloids class contains ergovaline, clavines and the clavine 

derivatives. Ergovaline is concentrated in the stem and basal leaf sheath of 

intermediate age (Koulman et al., 2007), showing a very heterogenous 

vertical distribution (Spiering et al., 2005). 

3. Peramine is found fairly evenly distributed in plant tissues and does not 

accumulate in older tissues (Ball et al., 1997b; Spiering et al., 2002; 

Spiering et al., 2005). It appears to be continuously produced by the 

endophyte, but does not progressively accumulate. Compared with other 

plant components, the highest concentration of peramine is found in the seed 

(Ball et al., 1995a). 

4. Lolines are distributed throughout the plant including the roots. They are 

found in greatest amounts in the seed, followed in decreasing amounts in 

the rachis, stem, leaf sheath and leaf blade (Bush et al., 1993). During the 

growing season there is little change in the accumulation of the loline 

alkaloids in the leaf blade (Bush et al., 1993). In leaf sheaths, the 

accumulation of loline alkaloids is positively associated with endophyte 

mycelium concentration (Bush et al., 1993). 

Ball et al. (1995b) found that in perennial ryegrass (L. perenne) the production of 

the alkaloids peramine and lolitrem B were lowest in the winter months. From this 

work it appears an increase in endophyte content was correlated with the 

reproductive development of perennial ryegrass (L. perenne) and content was 

higher in leaf sheafs compared with leaf blades. The two alkaloid concentrations 

were largely determined by endophyte concentration (mycelium mass). This is 

contrary to the later study by Spiering et al. (2005) which found alkaloid and 

endophyte concentrations were not always directly related. 

Distribution of the fungus (Musgrave, 1984) and the alkaloids ensures that 

protection is strongest at the base of plants where herbivory is most likely to 

threaten the survival of both plant and fungus (Popay, 2009). In addition, 



Introduction  Chapter 1 

26 

concentrated alkaloids in the seed are likely to reduce predation of both seed and 

seedlings (Popay, 2009). It has been shown that reduced rodent herbivory of seed 

is a major factor in giving endophyte-infected tall fescue a selective advantage in 

the field (Clay, 1996; Clay & Holah, 1999). 

1.5 Asexual Epichloë (formerly Neotyphodium) in New Zealand 

pastures 

1.5.1 Overview 

Epichloë festucae var. lolii, also known as LpTG-1 (Lolium taxonomic group 1), is 

the predominant endophyte of perennial ryegrass (L. perenne) and is a haploid 

sexual derivative of E. festucae (Christensen et al., 1993; Schardl et al., 1994). The 

second endophyte hosted by L. perenne is the heteroploid LpTG-2 (Lolium 

taxonomic group 2) (Christensen et al., 1993), which contains up to two gene 

sequence variants that are similar to the single gene sequence variants found in E. 

festucae and E. typhina (Schardl et al., 1994). Perennial ryegrass (L. perenne), is 

the predominant pasture grass in New Zealand. In New Zealand E. festucae var. 

lolii is commonly found in many commercial cultivars and native ryegrass. Selected 

E. festucae var. lolii strains are used in the commercial cultivars whereas the native 

ryegrass contains ‘wild-type’ E. festucae var. lolii. In New Zealand all wild-type E. 

festucae var. lolii endophytes produce ergovaline, lolitrems and peramine (Tapper 

& Latch, 1999). It has long been observed that older ryegrass pastures contain a 

disproportionately high frequency of wild-type E. festucae var. lolii infection (Neill, 

1940; Lloyd, 1959). This natural shift in endophyte frequency is very indicative that 

plants containing the endophyte were in some way at a selective advantage to 

endophyte-free plants. The shift of natural endophyte-infection frequency in the 

pasture grasses over time, in conjunction with trial results comparing endophyte-

infected and endophyte-free pastures that resulted in complete pasture devastation 

by Argentine stem weevil (L. bonariensis) adults in the endophyte-free pastures, 

confirmed that the development of endophyte-free pastures was not a viable option 

for turf and forage pastures in New Zealand. 
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1.5.2 History of endophyte and New Zealand pastures 

In the 1980s important discoveries were made in regards to E. festucae var. lolii in 

perennial ryegrass (L. perenne). These discoveries had significant effects on New 

Zealand’s pastoral industry. 

The first discovery was the cause of ryegrass staggers, made by Fletcher and Harvey 

(1981). They established the link between the presence of E. festucae var. lolii in 

perennial ryegrass (L. perenne) and ryegrass staggers. The most obvious solution 

was to remove the endophyte-infected pastures and replace them with endophyte-

free pastures so that the adverse effects on the health of grazing livestock were 

removed. Research began into the elimination of E. festucae var. lolii from infected 

seeds and plants (Harvey et al., 1982; Latch & Christensen, 1982). 

The second discovery was the link between the presence of E. festucae var. lolii and 

increased resistance to Argentine stem weevil (L. bonariensis) attack (Mortimer et 

al., 1982; Prestidge et al., 1982). Argentine stem weevil (L. bonariensis) in the 

1980s was ranked as one of New Zealand’s most important pasture pests as it infests 

all improved ryegrass pastures nationwide and it is still an important pasture pest 

today. In the 1980s Argentine stem weevil (L. bonariensis) effects were estimated 

to cost New Zealand 80 to 2500 million dollars annually due to lost production and 

pasture renovation (Prestidge et al., 1991). 

These two initial discoveries put the farmers in a dilemma in New Zealand: Whether 

to sow high endophyte pastures and significantly improve Argentine stem weevil 

(L. bonariensis) resistance but increase ryegrass staggers risk to stock; or whether 

to plant low endophyte pastures with significant increased susceptibility to 

Argentine stem weevil (L. bonariensis) attack but very low risk of ryegrass staggers 

to stock. A survey of farmers in 1985 indicated that farmers preferred to sow high 

endophyte seed lines as they considered the advantages of pasture persistence 

(resistance/tolerance of Argentine stem weevil (L. bonariensis) attack) and 

production to be of greater value than the risk of ryegrass staggers to stock that they 

could manage when and if it occurred (Prestidge et al., 1985a). 

The most obvious symptom of E. festucae var. lolii toxicosis to livestock, 

particularly sheep, is ryegrass staggers, which in severe cases can be fatal (Easton 



Introduction  Chapter 1 

28 

& Tapper, 2005). Epichloë festucae var. lolii toxicosis also affects the livestock’s 

thermoregulation, faecal moisture regulation, and growth rate (Easton & Tapper, 

2005). Technically, treatment for ryegrass staggers is basic; remove livestock from 

toxic pastures onto non-toxic pastures. In some circumstances, however, this can be 

difficult because if endophyte-free pastures are not available then transfer is not a 

viable option. With E. festucae var. lolii considered to be an effective biocontrol 

agent for Argentine stem weevil (L. bonariensis), if the detrimental effects of the 

endophyte on grazing livestock could be significantly reduced or removed, the 

potential alternative was to find a novel endophyte that did not have detrimental 

effects on grazing livestock but retained insect resistance. 

A third discovery was made by Gallagher et al. (1981, 1982b, 1982a, 1984). They 

found a group of substituted indole diterpenes, named lolitrems, were the likely 

cause of the ryegrass staggers. Initially lolitrem B was implicated as the major 

indole diterpenoid, but since then many other compounds have been discovered and 

characterised by laboratories around the world, and the biosynthetic pathways as 

well (Tapper et al., 2004). 

The fourth major discovery was made by Rowan and Gaynor (1986) that Argentine 

stem weevil (L. bonariensis) resistance was caused by an unrelated alkaloid to that 

of the lolitrems. It is now known as peramine, a pyrrolopyrazine alkaloid (Rowan 

et al., 1986). Peramine is a unique metabolite to the Epichloë group of fungi (Scott 

et al., 2005). Rowan (1993) and Schardl et al. (1991) showed peramine was 

produced in cultures of E. festucae var. lolii and E. typhina respectively, confirming 

it is a fungal metabolite. It is now known to be a potent feeding deterrent against 

Argentine stem weevil (L. bonariensis) (Prestidge et al., 1985b; Rowan & Gaynor, 

1986; Rowan et al., 1990). Although often implicated, peramine has not been 

definitively shown to deter any other insects, suggesting peramine functions 

primarily as a marker for the presence of endophyte, which is detected by the 

Argentine stem weevil (L. bonariensis) adults. The detection of peramine by adult 

Argentine stem weevils (L. bonariensis) means they tend not to lays eggs on 

endophyte-infected perennial ryegrass (L. perenne) pasture. Fewer eggs, results in 

fewer larvae on infected pasture. Any larvae that are produced are exposed to the 

toxic effects of the other endophyte alkaloids. 
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1.6 Evolution of the ‘novel’ endophytes 

1.6.1 Overview 

Some endophytes have been deliberately sought to resolve the problem of 

mammalian toxicity associated with the wild-type endophytes in tall fescue and 

perennial ryegrass (L. perenne). These ‘novel’ endophytes are now widely used in 

agriculture in USA, Australia and New Zealand. The key to exploiting endophytes 

for biotic stress protection in turf and forage grasses without negative effects on 

grazing animals lies in the diversity of endophytes that exist in the Lolium plant 

genera in natural habitats. Endophytes from paddocks with no or minor incidence 

of livestock toxicosis were genetically indistinguishable from endophytes from 

paddocks with major incidence. The genetic difference or diversity was found 

amongst the grass host (de Jong et al., 2005), suggesting that quantitative variability 

in endophyte–related effects may result from variation in host genotype. Other 

studies support host-mediated genetic control of endophyte phenotypic traits: 

Christensen et al., (1998) showed that artificial inoculations of different tall fescue 

cultivars with different E. coenophiala isolates revealed that certain isolates and 

certain cultivars had consistently higher levels of ergovaline. Host genetic control 

of endophyte toxin levels has been detected in perennial ryegrass (L. perenne) by 

Easton et al. (2002) in a partial diallele crossing scheme between different 

endophyte-containing genotypes. In this study as much as 65% of the genetically 

controlled variation in toxin concentration was a function of mycelial mass. Results 

from QTL (quantitative trait locus) of a perennial ryegrass (L. perenne) mapping 

family also support the role of host genetic factors in the control of endophytic traits 

(de Jong et al., 2005). 

1.6.2 AR1 History and other ‘novel’ endophytes 

The primary focus of endophyte research in New Zealand has been the association 

of perennial ryegrass (L. perenne) with E. festucae var. lolii which causes toxicosis 

in grazing livestock (Fletcher et al., 1999), but it is essential to sward persistence 

(Prestidge & Ball, 1993). Epichloë festucae var. lolii can readily be manipulated, 

i.e., it can be isolated from a host plant, cultured in artificial media and reinoculated 

into another grass plant of the same species (Latch & Christensen, 1985; Scott et 

al., 2005). Seed from plants of Lolium species were collected mainly in Europe and 
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screened for the presence of known classes of compounds in order to identify strains 

that lack mammalian toxins (the lolitrems, particularly lolitrem B and the ergot 

alkaloids). New strains were sought that initially did not produce the mammalian 

lolitrem toxins but produced ergovaline and peramine. The majority of collections 

screened in New Zealand had chemical profiles similar to the wild-type endophytes, 

suggesting that these strains of endophytes predominate in the naturalised and wild 

populations of tall fescue (L. arundinaceum) and perennial ryegrass (L. perenne). 

There were strains of endophytes that differed to the wild-type, producing different 

known alkaloid combinations. Comparative insect studies of the endophytes in-

planta identified potentially useful strains (Popay & Bonos, 2005). Subsequently, 

perennial ryegrass (L. perenne) cultivars infected with ‘novel’ endophytes were 

obtained (Grasslands Pacific Endosafe, Grasslands Greenstone Endosafe, AR1, 

AR37, NEA2, AR542, etc,). Endophytes deficient in the production of lolitrem B 

but still producing ergovaline and peramine gave strong resistance to Argentine 

stem weevil (L. bonariensis) in perennial ryegrass (L. perenne) (Popay et al., 1995; 

Popay & Wyatt, 1995). 

Ergovaline was subsequently found to also cause negative and unwanted effects on 

livestock (Fletcher & Easton, 1997; Fletcher et al., 1999). Initially, the Grasslands 

Pacific Endosafe and Grasslands Greenstone Endosafe were thought to be the same 

endophyte (Tapper & Latch, 1999) and were introduced into ryegrass cultivars 

because they did not produce lolitrem B were and deemed to be safe for grazing 

livestock. Grasslands Pacific Endosafe was taken off the market because it was 

discovered it caused significant detrimental effects on the livestock and 

subsequently was found to produce high levels of ergovaline (Latch & Christensen, 

1985; Davies et al., 1993; Easton et al., 1993). Grasslands Greenstone Endosafe 

was found to produce lower levels of ergovaline (Latch et al., 1985; Tapper & Latch, 

1999). 

The novel endophyte, AR1 was a major step forward in overcoming the ruminant 

toxicity associated with wild-type endophytes and the earlier generation of ‘novel’ 

endophytes. AR1 produces no lolitrems or ergovaline (Tapper & Latch, 1999) but 

it does produce peramine, a known potent deterrent for Argentine stem weevil (L. 

bonariensis) adults. AR1 can only produce simple indole diterpenes (including 



Chapter 1 Introduction 

31 

paxilline and paxilline-like compounds such as the terpendoles) as it does not have 

the full complement of genes for the production of more complex indole diterpenes 

such as lolitrem B (Young et al., 2009). Although AR1 genetically can produce 

paxilline, a mild tremogen (Miles et al., 1992) the amounts produced are considered 

minimal (Young et al., 2009) instead production of the other simple indole 

diterpenes including the paxilline-like compounds being more predominant (Young 

et al., 2009). Also there have never been any reports of mammalian neurotoxicosis 

in livestock from AR1-infected pastures (Bluett et al., 2005b; Bluett et al., 2005a). 

AR1 also showed strong resistance to pasture mealy bug (Balanococcus poae 

(Maskell, 1879)) (Popay et al., 2000), reduced resistance to African black beetle (H. 

arator) (Popay & Baltus, 2001) little or no effect on porina (Wiseana cervinata 

(Walker, 1865)) (Jensen & Popay, 2004) and increased susceptibility to root aphid 

(Aploneura lentisci (Passerini, 1865)) (Popay et al., 2004). 

Ryegrass (L. perenne) infected with the endophyte AR37 was found to be more 

productive and persistent, and gave a better range of insect protection than ryegrass 

infected with AR1 endophyte. AR37 had no effect on adult Argentine stem weevil 

(L. bonariensis), but potent activity against its larvae (Popay & Wyatt, 1995). It 

reduced African black beetle (H. arator) adult feeding, as Lp14 in Ball et al. (1994) 

reduced pasture mealy bug (B. poae) populations (Pennell et al., 2004), reduced 

survival of porina (W. cervinata) (Jensen & Popay, 2004), and almost completely 

eliminated root aphid infestations (A. lentisci) (Popay et al., 2004). At the time it 

produced none of the known common alkaloids. It was however, subsequently 

found, on occasion, to cause ryegrass staggers in livestock (Fletcher, 1999; Fletcher 

& Sutherland, 2009), but to date not cattle (Thom et al., 2013b). AR37 was found 

to produce novel indole diterpenes, the epoxy-janthitrems (the same alkaloid class 

as the lolitrems) (Tapper & Lane, 2004). The risk of ryegrass staggers meant that 

some of the focus returned to AR1. 

All companies marketing propriety ryegrass cultivars were invited to have their 

material inoculated with AR1. AR1 was first available for sale in 2002, and up to 

2005, seven different companies have had more than 20 cultivars inoculated. AR1 

was extensively researched in the late 1990s (Hume, 1999; Popay et al., 1999; 

Fletcher & Easton, 2000; Popay et al., 2000), with significant research effort going 

into defining the best practice for its effective use. In 2003, the second year AR1 
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was available, 40% of all proprietary perennial ryegrass (L. perenne) seed sold in 

New Zealand was infected with AR1. On the farm, AR1 has performed to 

expectations, with more than 80% of proprietary perennial ryegrass (L. perenne) 

seed sold now containing this endophyte. Almost all early work determining health 

and productivity of livestock grazing AR1 used sheep as the research animal 

(Fletcher & Easton, 2000). Live weight gains of lambs grazing AR1 are 10–15% 

higher than for lambs grazing wild-type endophyte (Fletcher, 1999; Fletcher et al., 

1999). Dairy farms using AR1-infected perennial ryegrass (L. perenne) have 

undergone intense monitoring (Keogh & Blackwell, 2001) and long term on-farm 

trials are ongoing (Easton & Tapper, 2005). Trial results show ~ 20% improved 

milk production through summer and autumn for cows grazing AR1-infected 

pasture compared with cows grazing ryegrass naturally infected with ergovaline- 

and lolitrem- producing endophyte. Milk production of cows on AR1 has been 

increased by 9% over the whole lactation period (Bluett et al., 2005b; Bluett et al., 

2005a). 

Although AR1-infected ryegrass is robust and research into best practice for 

establishing and managing AR1 pastures was widely distributed (Hume, 1999), 

AR1 did not provide adequate protection against severe outbreaks of African black 

beetle (H. arator) (Popay & Baltus, 2001). AR1-infected ryegrass has been planted 

on farms in potential African black beetle (H. arator) problem areas and has 

provided adequate protection against minor African black beetle (H. arator) 

pressure. However, an outbreak in the Waikato and Bay of Plenty in 2007/8 

persisted over 3–4 seasons (Bell et al., 2011) and AR1-infected pastures were 

devastated from the prolonged high pressure beetle attack. AR1 is now sold with a 

warning to farmers that in the northern New Zealand, the host pasture may lack 

persistence in the face of severe African black beetle (H. arator) attack. 

Research trials are ongoing and at several sites: plots have been monitored for 

percent infection with AR1 and percent contamination with naturally occurring 

endophyte. From ongoing trials and monitoring it has been shown that where 

contamination was high initially at pasture establishment, this contamination has 

increased with time. Where AR1 pasture has been successfully established, it has 

persisted and remained uncontaminated (Bluett et al., 2001). Seed is sold with the 
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expectation that at least 70% are infected with live endophyte. Wholesale seed 

companies have had to provide retailers with protocols for dealing with seed 

retained at the end of the season, and farmers have been discouraged from taking 

possession of seed before they are ready to plant. Demand for seed has been such 

that carryover volumes have not been an issue. AgResearch, a New Zealand 

government-owned agricultural research institute has been involved with quality 

control, assaying certified seed lots containing AR1 endophyte to determine if there 

is any contamination with seed infected with toxin-producing wild-type endophyte. 

Few seed lines to date have failed the quality control check indicating high quality 

seed production by the local seed industry. 

1.7 African black beetle biology and lifecycle in New Zealand 

1.7.1 African black beetle distribution 

African black beetle (H. arator) (Coleoptera: Scarabaeidae: Dynastinae) is a native 

of South Africa. The nomenclature of Heteronychus arator Fabricius, 1775 (H. 

arator F.) has a complex history that Landin (1964) discusses in detail and it is now 

accepted to be based on Fabricius’s original description in 1775 from material held 

in the Banks collection at the British Museum (Kuijten, 1983; Watt, 1984). The 

complex history surrounding the nomenclature of H. arator F. has resulted in the 

following synonyms being used to describe the beetle in the literature; Scarabaeus 

arator Fabricius, 1775 (S. arator F.), the original nomenclature used, Heteronychus. 

arator Burmiester, 1847 (nec. Fabricus) and Heteronychus sanctae-helenae 

Blanchard, 1853 (H. sanctae-heleane Blanch.). The nomenclatural history even 

included the reclassification of from the genus Heteronychus to Hybosorus but this 

was material held in the Kiel, Germany and not from the British Museum. It was 

later determined that the specimens held at the two museums, although labelled the 

same, were not the same species. Landin (1964) emphasises that Fabricius came to 

Kiel in late 1775 and his study was published earlier that year, so the material held 

in the Kiel collection could not have existed at the time of the original publication. 

Therefore the original description in 1775 had to be based on material from the 

British Museum and the specimen in the Kiel museum is not H. arator F., and its 

subsequent placement in the Hybosorus genus is now accepted (Kuijten, 1983). 

African black beetle (H. arator) was first recorded from Waiheke Island in New 
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Zealand in March 1937 (Spiller & Turbott, 1944) and is believed to have arrived 

from Australia. Beetles were first reported in the Auckland region in the late 1930s. 

In the review by Watt (1984), it was deemed unnecessary to use the subspecies 

australis as described by Encrödi (1961) (which is based on New Zealand material) 

until the geographical variation of the beetle in its natural range in Africa is 

determined owing to the variability in the characters used to distinguish the 

subspecies. By the late 1970s the African black beetle (H. arator) range extended 

from the top of the North Island and southwards to Raglan on the west coast and to 

Gisborne on the east coast (Esson, 1973). It is now established throughout the upper 

regions of the North Island of New Zealand (Northland, Waikato, Bay of Plenty, 

Hawkes Bay and coastal Taranaki) and is found mainly in peat and ash soils that 

are light and free-draining. The distribution of African black beetle (H. arator) is 

likely determined by temperature, with the beetle typically only found in areas with 

a mean annual surface air temperature of 12.8°C or higher. The map in Figure 1-1 

illustrates the current expected African black beetle (H. arator) distribution range, 

which has extended beyond that predicted by Watson (1979). In the lower North 

Island there are pockets of land on both coastlines as far south as Wellington that 

are also potential African black beetle (H. arator) areas owing to a mean air 

temperature of  ≥ 12.8°C. 

1.7.2 African black beetle lifecycle 

The African black beetle (H. arator) has an annual life-cycle, that is, one generation 

per year, as shown in Figure 1-2. Adult African black beetle (H. arator) are active 

in spring from late September. Over-wintering adults resume feeding as 

temperatures increase and begin to mate. Emergence times vary year to year 

depending on climatic conditions. In warmer areas of the North Island, the African 

black beetle (H. arator) spring development may be quicker than that shown in 

Figure 1-2 as first-instar larvae have been observed in sandy soil in Dargaville in 

early October (Esson, 1973). 
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Figure 1-1:  Expected distribution of African black beetle in New Zealand. 
The distribution is based on the 12.8°C mean annual air temperature isotherm (NIWA 
1971–2000). Note small pockets of coast as far south as Wellington where the 12.8°C 
isotherm is met or exceeded. Image adapted from Popay, A. J., AgResearch, New Zealand. 
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Figure 1-2:  African black beetle lifecycle in New Zealand. 

Letters – Months of the year. Figure from Bell et al. (2011). 

 

Copulation takes place in the soil and has been observed to last as long as 12 h, and 

is thought to last considerably longer (Harrington, 1953). The female adult lays 

eggs from October through to November and the adult African black beetles (H. 

arator) then die off. The eggs are laid singly and are found about 1.25 cm below 

the soil, but have been found at greater depths (Todd, 1959). The incubation period 

is thought to be about six weeks early in the season, but probably decreases as the 

soil temperatures increase (Todd, 1959). The eggs are ovoid and opaque in colour 

(creamy-white) and just before hatching they become larger and almost spherical 

(Todd, 1959). Larvae are present from late spring through to late summer 

(November to February) and pass through three stages, with fully grown third-

instars about 2.5 cm long (Figure 1-3 D, E & F). The larvae lie in the soil in a curled 

up position. The head capsule is light brown and the body is creamy-white or 

greyish-white, except for the hind segments which appear black (or brown) where 

the contents of the gut show through the gut wall as seen in Figure 1-3 D, E and F.  
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Figure 1-3:  African black beetle larvae and pupa. 
A) Adult male, B) Adult female, C) Pupa, D) 3rd instar larvae, E) 2nd instar larvae, F) 1st instar 
larvae. Images adapted from Popay, A. J., AgResearch, New Zealand. 

 

In comparison, fully grown third-instar larvae are uniformly creamy-white because 

the gut content has been excreted before pupation (Todd, 1959). Larvae begin to 

pupate in February and emerge as adults in late summer/early autumn from late 

February/March to April. The pupa is initially pale to yellow (Figure 1-3 C) and 

just before the adult emerges, it changes to reddish-brown with the adult form 

visible through the pupal skin (Todd, 1959). Adult beetles are active in early autumn 

from March to April when pupae are transforming into adults. The newly-emerged 

adult beetle is chestnut in colour, but soon changes to a glossy black. The female is 

about 1.4 cm long and is generally larger than the male (Todd, 1959) as shown in 

Figure 1-3 A & B. This weight and size difference is known as sexual size 

dimorphism (Shine, 1989; Fairbairn, 1997) and for many animals including African 

black beetle (H. arator), it is associated with female fecundity and egg production 

(Darwin, 1874). Adults are dormant over winter, from May to August, depending 

on temperatures. Throughout winter the adults periodically come to the surface and 

feed and active adults have been observed on warm winter days on the ground 

surface (Ross, pers. obs.). 
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The root-feeding larvae cause the most damage to plants, and during outbreaks they 

can severely damage pastures. The third-instar larvae, present from January to 

February/March, feed on the grass roots close to the soil surface at a time when 

plants are already under considerable moisture and temperature stresses. Drought 

stressed grasses stop producing new roots, making them prone to pulling because 

of larval root feeding (Watson et al., 2000; DairyNZ, 2010; Eden et al., 2011). If 

African black beetle (H. arator) numbers are high, many of the plants will not 

survive and in severe cases the pasture composition changes as the bare ground is 

taken over by clover and weeds (Todd, 1964). 

Adult African black beetles (H. arator) are normally active at dusk when they 

emerge from underground to feed and/or mate. The adult beetles feed on the 

pseudostem near the base of the plant, often destroying the growing point and 

killing the tillers. Adult beetles can cause significant damage to seedlings in newly 

sown pastures. The adult beetles can also fly, and in outbreak years large massed 

flights can be observed in autumn and spring. Flights occur when the soil surface 

temperatures exceed 17 °C at dusk with calm wind conditions (Watson, 1979; Bell 

et al., 2011). Density-dependant spring migration flights may occur before 

oviposition (King et al., 1981e). Adult African black beetle (H. arator) flights 

during autumn and spring are most likely very important in the dispersal of the 

beetle and in the infestation of new pastures and areas especially during outbreak 

years. 

1.7.3 African black beetle hosts 

Grasses are the preferred hosts (food sources) for all life stages of African black 

beetle (H. arator) (Bell et al., 2011). This includes paspalum (Paspalum dilatatum 

Poir.), ryegrasses (Lolium spp.), poa (Poa annua L.; annual meadow grass or annual 

bluegrass), kikuyu (Pennistum clandestinum Hochst. Ex Chiov.) (Bell et al., 2011) 

and other C4 grasses in intensive dairy grazed pastures (Todd, 1959; King, 1976; 

King et al., 1981a, 1981f, 1981d, 1981c; Blank & Olson, 1988; Tozer et al., 2008). 

Unsurprisingly, grasses are also the preferred oviposition sites (King et al., 1981b; 

Bell et al., 2011). So the main breeding grounds for African black beetle (H. arator) 

in New Zealand are grassland pastures, particularly in coastal regions where the soil 

is light and sandy or inland on peaty soils. Legumes are generally unfavourable 
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hosts, although larvae will consume white clover roots when given no other choice 

(King et al., 1981a). In the laboratory, carrots in an artificial diet form (King et al., 

1981c; Bell et al., 2011; Ross, K, M., pers. obs.), are suitable food for both larvae 

and adults. Raw carrot and kumara are also suitable food sources for maintaining 

adult African black beetle (H. arator) in the laboratory (Ross, K, M., pers. obs.) 

1.7.4 On-farm African black beetle monitoring 

Watson et al. (1980b) showed that it was possible to predict paddocks that were at 

risk of developing damaging summer populations of African black beetle (H. arator) 

larvae by monitoring African black beetle (H. arator) adult numbers in the paddock 

in the preceding spring by taking spade square samples. King et al. (1980) found 

that using pitfall traps for monitoring was unreliable. If the number of adults 

was >10/m2 the pasture was determined to be at risk of suffering severe African 

black beetle (H. arator) damage from larval feeding in the following summer. A 

damaging larval population over summer was defined to be 40–60 larvae/m2 and 

was dependant on a range of factors, such as, soil moisture, soil temperature, and 

availability of appropriate host plants (King, 1979; King et al., 1982; Bell et al., 

2011). 

1.7.5 African black beetle population dynamics 

The population of adult beetles varies widely from year to year due to climatic 

variation and the availability of a feed source. In areas where African black beetle 

(H. arator) occurs, outbreaks have occurred sporadically. African black beetle (H. 

arator) outbreaks are associated with warmer and drier than normal conditions 

during spring to autumn, typically droughts. These outbreaks have coincided with 

La Niña weather patterns where warmer than normal conditions occur (Eden et al., 

2011). Warm temperatures allow beetles to begin feeding in early spring, increasing 

their survival. As a consequence the oviposition rate increases and occurs earlier 

than usual, both of which increase the likelihood the larvae will reach adulthood 

(East et al., 1981). Dry conditions in the summer increase the survival of young 

larvae and speeds up larval development; ensuring adults emerge in early autumn 

(East et al., 1981; Bell et al., 2011; Eden et al., 2011). The early emergence of the 

adults and/or extended periods of warm temperatures in autumn, together with the 

availability of an appropriate food source, allow the adult beetles more time to gain 
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fat reserves for when they are mainly dormant, therefore increasing their probability 

of over-wintering survival. 

Availability of suitable food sources (plant hosts) affects the African black beetle 

(H. arator) population by influencing the ability of the beetle to complete its 

lifecycle, including the number of eggs laid and survival at all stages. Grass plants 

that are endophyte-free (E-) or hosting an ineffective endophyte for African black 

beetle (H. arator) control are suitable food sources. 

Population modelling studies in the 1980s (King et al., 1981d) did not take into 

account the role of food resources for overwintering adults or the effect of 

endophyte in ryegrass on feeding activity. Wild-type endophyte-infected ryegrasses 

would have been common in the pastures resulting in reduced over-wintering adult 

survival and a reduction in the number of eggs laid in spring by the surviving beetles 

(Popay & Baltus, 2001). Pastures have significantly changed in composition since 

then so future modelling needs to take into account food resources (Bell et al., 2011), 

pasture composition and endophyte type and status to enable better prediction of 

population outbreaks. 

A particularly severe outbreak of African black beetle (H. arator) began in 2007/8 

in the Waikato and Bay of Plenty regions and population densities are still being 

monitored. In February 2010 population densities of up to 80 larvae/m2 were still 

being found (Bell N., AgResearch, New Zealand; unpublished work, 2013). 

Damage has been severe and exacerbated by drought, with dramatic consequences 

for pasture persistence. Bell et al. (2011) among many other queries, questions if 

the widespread planting of AR1 in African black beetle (H. arator) prone areas has 

contributed to the current ongoing outbreak. 

1.7.6 Control of African black beetle 

1.7.6.1 Crop rotation 

Bell et al. (2011) recommends the sowing of an unsuitable host plant or crop in 

spring, such as, brassicas, legumes or chicory as a control measure as this breaks 

the African black beetle (H. arator) lifecycle by disrupting larval feeding over 

summer, therefore reducing larval survival and development through to the adult 

beetle. It is also suggested that crop rotation should lower the population density 
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once pastures are resown in autumn and that a cropping phase allows for the control 

of weedy host grasses such as paspalum (P. dilatatum) and poa (P. annua) (Bell et 

al., 2011). 

1.7.6.2 Insecticide 

There are no currently marketed insecticides recommended for African black beetle 

(H. arator) control in established pastures (Bell et al., 2011; Eden et al., 2011). Bell 

et al. (2011) suggested, from previous trials (Watson & Webber, 1975, 1976; 

Watson et al., 1978; Watson et al., 1980a; Watson & Wrenn, 1980; King et al., 

1982; Blank & Olson, 1988) that the best beetle control achieved appears to be 

when insecticides are used against the early summer populations. Modelling work 

also suggested that targeting the early larval stages in December will have a greater 

effect than controls applied in early spring, before the eggs are laid (East et al., 

1981). Eden et al. (2011) evaluated the control of African black beetle (H. arator) 

when insecticides are applied in spring and autumn targeting three life stages; newly 

emerged adults in autumn, mating and egg-laying adults in spring and newly 

hatched larvae in summer. Although significant adult mortality occurred in both 

autumn and spring, the remaining live beetles were unaffected and no treatment 

reduced the subsequent larval population in the following summer. The following 

factors were said to have likely contributed to the failure to control or reduce 

African black beetle (H. arator) population numbers. Timing of the insecticide 

application; if applied too early or late the targeted life stage can be missed. Soil 

factors; high organic matter inactivates the insecticide, and granular insecticides 

require rainfall or high soil moisture to penetrate the soil. Lastly, the possibility of 

little or no insecticide contact with targeted life stage and the high mobility of adult 

beetles. 

Pasture renewal is a stage where insecticides are readily available for use in the 

form of seed coats (Anonymous, 2009; Bell et al., 2011). This may reduce adult 

African black beetle (H. arator) numbers in autumn-sown pastures, therefore 

reducing the number of over-wintering beetles which re-emerge in spring for 

mating and egg-laying. This in turn reduces the following spring larval population. 

The use of insecticidal seed coating is likely to be crucial to pasture establishment 
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in outbreak years and for reducing beetle populations building up after pasture 

renewal in the intervening years (Bell et al., 2011). 

1.7.6.3 Biocontrol 

Pathogens of African black beetle (H. arator) have been identified; the protozoa 

Adelina Beauveria fungus, a rickettsia, a RNA virus and entomopathogenic 

nematodes (Archibald et al., 1975; Longworth & Archibald, 1975; King et al., 1985; 

Ford et al.) and a selection of these are undergoing further investigation for possible 

use as biological control agents (Bell et al., 2011). 

1.7.6.4 Endophyte selection 

Sowing a pasture grass that is infected with a suitable endophyte, such as AR37, 

Endo 5, NEA2 in ryegrasses and MaxPTM in tall fescue (L. arundinaceum), to deter 

adult African black beetle (H. arator) is currently the only control measure 

available to reduce populations of this pest. AR1 infected-ryegrasses are not 

recommended for use in African black beetle (H. arator) prone areas (Popay & 

Baltus, 2001; DairyNZ, 2010; Bell et al., 2011). Ergovaline is the only alkaloid 

known to deter adult African black beetle (H. arator) feeding and is produced by 

wild-type endophyte (Ball et al., 1997a). The AR1 strain does not produce 

ergovaline, but does have a weakly deterrent effect, reducing adult feeding relative 

to endophyte-free ryegrass (Popay & Baltus, 2001). In the field AR1-infected 

ryegrass is considerably more vulnerable compared to wild-type-infected ryegrass 

(Popay & Baltus, 2001; Hume et al., 2007; Popay & Thom, 2009). NEA2 and Endo 

5 are two endophytes available in tetraploid ryegrasses that produce low levels of 

ergovaline, but enough to reduce African black beetle (H. arator) populations. 

AR37 endophyte does not produce ergovaline but still has a strong effect on adult 

African black beetle (H. arator) (Ball et al., 1994) and in the field reduces African 

black beetle (H. arator) populations to the same extent as wild-type endophyte 

(Hume et al., 2007; Thom et al., 2008; Popay & Thom, 2009; Thom et al., 2013a). 

However during an outbreak the adult deterrence provided by even the best selected 

endophytes may not be sufficient to prevent damaging larval populations from 

building up or new infestations from mass adult beetle migration in late autumn or 

early spring (Bell et al., 2011; Thom et al., 2013a). Although loline alkaloids are 

not produced by E. festucae var. lolii, loline concentration (in offered food) has 
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been reported to be negatively related to feeding and live weight gain of African 

black beetle (H. arator) larvae and is associated with reduced feeding by adults in 

Festulolium grasses infected with E. uncinata (Barker et al., 2014). 

1.7.6.5 Combinations of control measures 

Bell et al. (2011) suggests control measures can and should be combined. The use 

of an incorrect endophyte-infected grass and weedy pastures provide food sources 

for African black beetle (H. arator) and can assist in the build-up of African black 

beetle (H. arator) populations. Therefore the sowing of the correct endophyte-

infected grasses to deter African black beetle (H. arator) is crucial, especially 

during an outbreak. In addition, combining crop rotation by using a non-host break 

crop and then insecticidal seed coating with pasture renewal should result in 

reduced adult beetle numbers and aid in the disruption of the beetle lifecycle. In 

turn this should result in the general reduction of adults available for egg-laying, 

and hence reduced larval populations in the following spring.  

1.8 Immunoassays for endophyte detection 

1.8.1 Immunology and antibodies 

Antibodies, a large family of glycoproteins known as immunoglobulins (Ig), can be 

produced by animals in response to exposure to foreign molecules (antigens) in the 

body to provide adaptive or specific immunity. Antibodies bind specifically to 

antigens and once bound, the circulating antibody-antigen complexes are removed 

through phagocytosis by macrophages (Harlow & Lane, 1988). Antibodies are 

produced by B-lymphocytes and have two main parts, one region is constant and 

the second region is variable. Antibodies can be visualised as forming a ‘Y’ shape 

and each ‘Y’ contains four polypeptides; two identical copies known as the heavy 

chain and two identical copies known as the light chain (Harlow & Lane, 1988). 

There are five classes of antibodies; IgM, IgG, IgA, IgE and IgD. The class of an 

antibody is determined by the heavy-chain-constant region (Fc) (Crowther, 1995). 

The basic structure of an antibody is shown in Figure 1-4. The constant region binds 

to Fc receptor cells on phagocytes and activates the complement system. This is a 

series of some 30 proteins that enhance the bacterial killing effect of antibodies by 

facilitating phagocytosis or by puncturing of the bacterial membrane. The second   
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Figure 1-4:  Antibody Structure. 
Paratope = antigen binding site, Variable region = Fab domain (fragment having the 
antigen binding site), Constant region = Fc domain (fragment that crystallizes). Adapted 
from figures 2.2, 2.3 & 2.4 Harlow and Lane (1988). 

 

region of the antibody is extremely variable between antibodies and it is this end 

that binds the various antigens. The antibody binds to a portion of the antigen 

known as an epitope (antibody binding site or antigenic determinant). Although this 

response at the variable region is to a specific antigen, as well as binding to the 

antigen, antibodies can also cross-react with similar antigens having one or more 

similar epitopes. The portion of the antibody that binds the antigen epitope is known 

as the paratope (antigen binding site). Antibodies from different classes can contain 

the exact same paratope and variable region, whereas antibodies within a class 

cannot. The segment between the variable and constant regions is called the hinge. 

The hinge allows lateral and rotational movement of the two identical variable 

regions and in practice this allows the variable regions to interact with a large 

number of different antigen conformations (Harlow & Lane, 1988). 

An antigen that elicits an immune response is referred to as an immunogen. All 

immunogens are antigens, but not all antigens are immunogens. While 
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microorganisms and macromolecules (foreign proteins, nucleic acids, 

carbohydrates, polysaccharides etc.,) are usually effective immunogens, low 

molecular weight molecules (below 5000 Da) usually do not elicit an immune 

response and are termed haptens (Crowther, 1995). If haptens are conjugated to a 

large molecule (carrier), such as a protein, they can stimulate an immune response. 

An antibody will be specific to either an epitope on the hapten, or the bridging group 

linking hapten to carrier, or on the carrier itself. Polyclonal antibodies are mixtures 

of serum immunoglobulins and collectively are likely to bind to multiple epitopes 

on the antigen. Monoclonal antibodies by definition contain only a single antibody 

clone and bind specifically with one epitope.   

If an animal has never been exposed to an immunogen it is termed a naïve animal. 

When an antigen is introduced into a naïve animal the initial antibody response is 

called the primary response with the majority of antibodies produced being from 

the IgM class. Mounting an antibody response requires a number of very complex 

processes to occur, involving the following: antigen presenting cells (APCs), helper 

T cells, B cells, phagocytosis, antigen binding, processing and presenting by APCs 

and B cells, helper T cell proliferation, and B cell proliferation and differentiation. 

B cells are differentiated in to plasma cells and memory cells. B plasma cells secrete 

large amounts of antibody and are short-lived (3–4 days). B memory cells are long 

lived, do not secrete antibodies but retain the cell-surface antigen as their specific 

antigen receptor ready to respond to subsequent exposure to the immunogen. For a 

primary response the level of antibody detected in the serum peaks around 7–10 

days after immunization (Harlow & Lane, 1988). If the no further immunogen is 

introduced, the response declines as the B plasma cells die but the memory B cells 

(and helper T cells) remain. When an animal is subsequently exposed to the 

immunogen a second time (weeks, months or years) the antibody response is much 

faster, more potent and more persistent (Harlow & Lane, 1988). This secondary 

response again is very complex and similar to that of the primary response, however, 

the predominant class of antibodies produced is now IgG. IgG antibodies are 

bivalent, that is, they contain two identical paratopes, one on each arm of the 

antibody, as shown in Figure 1-4. Antibodies produced in the secondary response 

tend to bind the immunogen with a higher affinity than those produced in the 
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primary response owing to higher numbers of helper T cells and B memory cells in 

the immune system of the ‘primed’ animal (Harlow & Lane, 1988). 

1.8.2 Immunological techniques 

Antigens and antibodies are used and manipulated in various immunological 

techniques in which the antigen-antibody interaction is exploited. These 

technologies can be used to detect, quantify or locate an analyte of interest. High 

affinity and reversible binding of the antibody to antigen and the use of sensitive 

detection labels enables immunological techniques to achieve high sensitivity and 

specificity. The design of the immunogen (antigen or antigen-conjugate), use of an 

appropriate adjuvant (nonspecific stimulator of the immune response), the 

immunising route and protocol are crucial to the successful production of high 

affinity antibodies. The choice of animal for immunising is determined by; how 

much serum is needed, what species the immunogen is isolated from, how much 

immunogen is available and required, and whether polyclonal or monoclonal 

antibodies needed. The labelling systems used include enzymes, fluorescent or 

chemiluminescent compounds, radioactive nucleotides or combinations of these. 

The two most common enzyme-labels are horseradish peroxidase (HRP) and 

alkaline phosphatase (AP). 

There are two basic immunotechnology formats for detecting the antigen (analyte) 

of interest by antibodies (antibody capture methods); the direct and indirect format 

and are shown in Figure 1-5. In the direct format the analyte is detected directly by 

a labelled specific antibody. Whereas in the indirect format the analyte is detected 

by an unlabelled specific antibody (1°) and then an enzyme-labelled anti-species 

antibody (2°) detects the specific antibody, therefore the analyte is being indirectly 

detected. An advantage of the indirect format is that the enzyme-labelled anti-

species antibodies are commercially available. 

1.8.2.1 The endophyte ELISAs 

The ELISA technique was first developed by Engvall and Perlman (Engvall & 

Perlmann, 1971, 1972). The most common ELISA design that has been applied for 

the detection of endophyte secondary metabolites, as with other small molecules, is 

the competitive ELISA (cELISA) (Candlish, 1991, Stanker & Beier, 1996) (Stanker  
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Figure 1-5:  Antibody Capture Immunotechnology Formats. 
A) Indirect format; the labelled anti-species antibody (2°) binds to the specific antibody 
(1°), which is bound to the antigen (analyte). B) Direct format; the labelled specific 
antibody binds to the antigen. 

 

& Beier, 1996). Competition ELISAs are assays in which measurement involves 

the quantification of a substance by its ability to interfere (compete) with an 

established pre-titrated system and can be used to measure either antibody or 

antigen (Crowther, 1995). Microtitre plates can be coated with either antibody or 

antigen depending on what system is being used. When conjugated antigen is bound 

to the solid phase (microtitre plate) the cELISA involves competition of free analyte 

(antigen) in standard or sample against antigen coated to the plate for binding with 

the specific antibody. The resulting colour intensity is inversely proportional to the 

concentration of the analyte in the sample. There are two formats that can be used 

for this type of cELISA, indirect and direct as described in Section 1.8.2 and shown 

previously in Figure 1-5. 

The basic indirect cELISA steps are shown in Figure 1-6. The microtitre plate is 

coated with antigen or antigen-carrier protein conjugate. Antigen binds to the 

polystyrene microtitre plate wells by non-specific binding. Excess coating antigen 

is removed from the plate by washing. Any remaining non-specific binding sites on 

the plate are blocked using blocking buffer, usually a protein solution. Excess 

blocking buffer is removed by washing. In the competition step, standards or  



 

 

4
8
 

 

Figure 1-6:  The indirect competitive ELISA (cELISA). 



Chapter 1 Introduction 

49 

samples containing free antigen (analyte) are added to the plate followed by the 

unlabelled specific primary antibody. The specific primary antibody can bind either 

to the plate-bound coating antigen or to the free antigen in the standards or samples. 

The specific primary antibody is used at a dilution that is limiting, such that the 

maximum absorbance in the assay, in the absence of free antigen, is approximately 

1.0 absorbance (Amax). The plate is washed to remove free antigen-specific antibody 

complexes, leaving only plate-bound antigen-specific antibody complexes. In the 

antibody detection step, the enzyme-labelled anti-species secondary antibodies are 

added to bind plate-bound specific primary antibodies. The plates are washed 

removing any excess enzyme-labelled anti-species secondary antibodies, leaving 

only plate bound antibodies. Substrate is added and enzyme present converts the 

substrate to a coloured product, the intensity of which is inversely proportional to 

the concentration of the free antigen in the standard or sample. The enzyme reaction 

is stopped by the addition of a stop solution and the absorbances of the wells are 

measured using a microplate reader. A standard curve is generated using reference 

standards and concentrations of analyte in samples are determined. 

When the analyte is present in the sample at a high concentration, few specific 

antibodies remain available to bind the plate-bound antigen; therefore the binding 

of the enzyme-labelled anti-species antibodies to the plate-bound specific 

antibodies is reduced. With enzyme-label reduced, colour development is reduced. 

1.8.2.2 The endophyte immunoblot 

The endophyte immunoblot (tissue print-immunoblot) was first described by 

Gwinn et al. (1991b, 1991a). Endophyte antigens immobilised onto nitrocellulose 

were detected using polyclonal antibodies specific for E. coenophiala (formerly N. 

coenophialum). The endophyte immunoblot (Simpson et al., 2012) uses an indirect 

format (Figure 1-5 A) and polyclonal antibodies that were raised in rabbits against 

the endophyte, E. festucae var. lolii (formerly N. lolii) and goat anti-rabbit IgG 

antibodies conjugated with alkaline phosphatase (goat anti-rabbit IgG-AP). The 

endophyte immunoblot method is a qualitative method detecting the presence of 

endophyte-specific surface antigens immobilised on nitrocellulose membranes, 

confirming either the presence or absence of the endophyte in a grass plant. Specific 
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antibodies are used at saturation and antibody concentration is not limited as in an 

ELISA assay. 

1.9 Overview of thesis 

1.9.1 AR1 and African black beetle 

African black beetle (H. arator) is a major pest of grasses throughout the northern 

part of the North Island, including Waikato and Bay of Plenty, and its range now 

extends into Hawkes Bay. African black beetle (H. arator) is generally regarded as 

a sporadic pest and occasional widespread outbreaks of this insect are devastating 

for farmers. Adult beetles feed at the base of tillers and can destroy new pasture, 

but the root-feeding larvae do the most damage. The adult beetle is deterred by 

certain fungal endophytes producing specific secondary metabolites in ryegrass. 

This reduces the number of eggs the beetle lays and results in fewer root-feeding 

larvae in the pasture. Adult African black beetle (H. arator) were found to be 

deterred from feeding by the presence of asexual Epichloë (Neotyphodium) 

endophytes in perennial ryegrass (L. perenne) (Ball & Prestidge, 1992). The asexual 

Epichloë fungal secondary metabolites, peramine, lolitrem B and paxilline did not 

deter adult African black beetle (H. arator) (Ball et al., 1997a), however, the fungal 

secondary metabolite ergovaline, and the structurally similar ergopeptine ergot 

alkaloids ergotamine, α-ergosine and α-ergocryptine did. (Ball & Prestidge, 1993; 

Ball et al., 1997a). Studies with ryegrass plants infected with asexual Epichloë 

endophytes (producing different alkaloid spectra), confirmed that ergovaline 

(known to deter African black beetle (H. arator)), peramine and lolitrem B were 

not required for African black beetle (H. arator) resistance (Ball et al., 1994). 

The fungal endophyte, AR1, was developed to provide its host perennial ryegrass 

(L. perenne) with resistance to Argentine stem weevil (L. bonariensis) without any 

adverse effects on farm animal production as it produces peramine but does not 

produce the mammalian toxins, ergovaline and lolitrem B (Tapper & Latch, 1999). 

This endophyte lacks any of the alkaloids known to deter adult African black beetles 

(H. arator) but, despite this, shows moderate resistance to this insect (Popay & 

Baltus, 2001). The biochemical basis for this resistance is not understood. 
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Fungal endophytes interact strongly with their host plant genotype and this 

interaction affects resistance to insects. In the AR1-African black beetle (H. arator) 

relationship, some cultivars infected with this endophyte are more resistant than 

others. In a preliminary study (Lincoln trial, Figure 1-7), feeding damage by adult 

African black beetles (H. arator) in a range of different cultivars showed some 

association with the response elicited by infected plant material in a paxilline 

ELISA (Popay A. J., Fletcher L. R., Briggs L. R., AgResearch, New Zealand; 

unpublished work, 2006). Although AR1 genetically is capable of producing 

paxilline, a mild tremogen it does so only at very low levels (Young et al., 2009). 

AR1 can only produce simple indole diterpenes (paxilline and paxilline-like 

compounds such as the terpendoles). 

 

 

Figure 1-7: Mean feeding damage by adult African black beetle compared with mean 
levels of paxilline immunoreactive equivalents (paxilline-IRE) in AR1-infected 
commercial cultivars and a breeding line (PG189) with an endophyte-free control (Nil). 
(Mean ± SEM). (Popay A. J., Fletcher L. R., Briggs L. R., AgResearch, New Zealand; 
unpublished work, 2006). 

 

The immunoassay (paxilline ELISA) recognises compounds that the AR1 and host 

plant associations are producing, these compounds have a paxilline-like structure, 

with epitopes that are the same or similar to that of paxilline. The active component 
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(or compound produced in association with the bioactive) in the infected plant 

material deterring adult African black beetle(H. arator), appears to be one that 

cross-reacts with the antibody used in that paxilline immunoassay. 

AR1-infected ryegrass has been highly successful in reducing the effects of 

Argentine stem weevil (L. bonariensis) without having adverse effects on grazing 

livestock. In fact it is still the only commercially available endophyte that poses no 

risk to animal health or to the occurrence of secondary metabolite residues in animal 

products. It has been widely adopted by New Zealand farmers, increasing live 

weight gains of lambs and milk production of cows. 

Although yields of AR1-infected ryegrass are generally similar to the wild-type, 

persistence, and on occasions its productivity, is lower. In African black beetle (H. 

arator) prone regions, the prolonged outbreak of beetles over many seasons 

(2007/2008–2011/2012) has resulted in AR1 cultivars now being sold with a 

warning about lack of persistence when under severe African black beetle (H. 

arator) attack (Bell et al., 2011). In areas where African black beetle (H. arator) is 

a problem, there is no doubt that this pest compromises both persistence and 

productivity of ryegrass with this endophyte. Selection of AR1 cultivars with 

optimal resistance to African black beetle (H. arator) would provide a significant 

advance to plant breeders. 

1.9.2 Intention of thesis 

The results of the Lincoln trial (Figure 1-7) suggest increasing levels of paxilline 

immunoreactive equivalents (paxilline-IRE) in the host plant is associated with a 

reduction in adult African black beetle (H. arator) feeding damage (Popay A. J., 

Fletcher L. R., Briggs L. R., AgResearch, New Zealand; unpublished work, 2006). 

It was the discovery of the potential association that motivated the research for this 

thesis. The inferred relationship may be misleading as the negative correlation 

found was between different ryegrass cultivars and species. The differences 

observed between the cultivars may have been predominantly a cultivar effect 

irrespective of endophyte infection, rather than a host plant’s influence on the levels 

of endophyte alkaloid production. 
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ELISA was specifically chosen, as the priority was detection (not quantification) of 

paxilline-like compounds, both known and unknown. ELISA is a low cost, fast, 

robust, reliable, repeatable and high throughput system. Furthermore, it was from 

this methodology that the initial trend was observed in the Lincoln Trial. The 

paxilline ELISA quantitatively measures levels of paxilline immunoreactive 

equivalents which is determined by the variable cross-reactivity’s of known and 

unknown paxillline-like compounds. It cannot quantify the paxilline-like 

compounds collectively or individually. Analytical methods could be used to 

quantify known paxilline-like compounds, but not unknkown paxilline-like 

compounds. Further, these analytical methods are high cost with low throughput 

compared to ELISA, and resources were not available. 

This research will investigate the variation in resistance to African black beetle (H. 

arator) within a breeding line (and among 23 half-sibling ryegrass families) 

infected with AR1 and aims to identify the basis for that resistance. The heritability 

of the resistance and plant and environmental factors that impact on expression of 

resistance will also be studied. The study used a series of feeding trials with adult 

African black beetles (H. arator) to investigate what variation there was in paxilline 

ELISA immunoreactivity determined on extracts taken from AR1-infected half-

sibling perennial ryegrass (L. perenne) families from within a breeding-line (GA97), 

and whether any differences were related to feeding by adult African black beetle 

(H. arator). The plant-based feeding trials used either, plants grown from seed or 

cloned plants. Plants grown from seed within a family are a representative plant 

from that family. These plants are closely related but not genetically identical and 

the family variation for characteristics can be determined. In comparison when a 

single plant is separated (cloned) into many smaller plants (ramets), each plant 

clone is genetically identical and from the same original family representative. 

Cloning of plants allows multiple testing on an individual plant within a family, and 

for the variation of that individual plant (inter-clonal variation) for characteristics 

to be determined. This knowledge will ultimately aid the plant breeders to 

effectively screen and select for optimal AR1 and host plant associations. 
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1.9.3 Hypothesis and aims 

1.9.3.1 Hypothesis 

Deterrence of African black beetle (H. arator) feeding is associated with greater 

production of specific active compounds in closely related AR1-infected ryegrasses. 

1.9.3.2 Aims 

 Determine the variation among half-sibling perennial families infected with the 

strain AR1 that deter African black beetle (H. arator) feeding (Chapters 4 and 

5). 

 Determine the variation among half-sibling perennial families infected with the 

strain AR1 in response to ELISAs, which detect particular classes of compounds 

that are associated with the deterrence of African black beetle (H. arator) feeding 

(Chapters 3, 4 and 5). 

 Determine the biochemical basis for the bioactivity providing the host plant 

resistance to African black beetle (H. arator) (Chapters 4 and 8). 

 Ascertain if the production of these active compounds is genetically based 

(Chapters 3, 4 and 5). 

 Determine the various effects of field parameters (season, plant age, etc.) on the 

production of the compounds identified in the plants (Chapters 5, and 7). 

 Determine the relationships between endophyte concentration, production of 

active compounds and resistance to African black beetle (H. arator) (Chapters 6 

and 8). 

 Determine the distribution and concentrations of the active compound/s is in 

various parts of the plants (Chapters 4 and 5). 

1.9.4 Thesis structure 

This thesis consists of a series of five adult African black beetle (H. arator) feeding 

trials conducted at AgResearch, Hamilton, New Zealand (2008–2012) to investigate 

if feeding damage by adult beetles is related to paxilline immunoreactivty in 

ryegrass. Chapter 2 explains the general materials and methods used to conduct this 

research. Chapter 3 describes the preliminary work required before research could 

commence, including the initial selection of plant genotypes from 23 closely related 

families by paxilline ELISA. Chapters 4 (Trial 1) and 5 (Trial 2) present the initial 
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feeding trials using cloned plants from the half-sibling families for the 

determination of plant variation in feeding damage and paxilline immunoreactivity, 

and for further plant and family selection. In addition, the research of Chapter 5 

allows a preliminary assessment of the influence of both beetle presence and season 

on plant responses. Chapter 6 (Trial 3) explores how AR1 endophyte affects adult 

African black beetle (H. arator) in an artificial diet trial, using AR1-infected seed 

from a commercially available ryegrass cultivar. Chapters 7 and 8 are presented as 

papers to be submitted for publication. Chapter 7 presents a further in planta feeding 

trial (Trial 4), from a selected number of families using plants grown from seed, to 

investigate the use of paxilline immunoreactivity to select for plant resistance to 

African black beetle (H. arator). The final feeding trial, described in Chapter 8 

(Trial 5), uses plants grown from seed to explore how long term exposure to African 

black beetle (H. arator) from late autumn–late spring affects plant responses from 

AR1-infected ryegrass families and cultivars, including resistance to African black 

beetle (H. arator), paxilline immunoreactivity and dry matter production. In 

addition; Chapter 8 examines what influence these plant responses have on adult 

African black beetle (H. arator) survival and fecundity.  
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2 Chapter 2 

Materials and Methods 

2.1 Plant and insect techniques 

2.1.1 Seed germination and plant identification 

Seeds of the 23 half-sibling perennial ryegrass (Lolium perenne L.) families from 

the GA97 breeding-line were sourced from Forage Improvement, AgResearch, 

Grasslands, Palmerston North, New Zealand. Seeds of the commercially available 

cultivars containing either AR1 or AR37 endophyte and the endophyte-free 

equivalent were obtained from the AgResearch Margot-Forde Germoplasm Centre, 

Palmerston North, New Zealand. Unused seed was stored in airtight packages in 

the dark at 4°C. Seeds were germinated by spreading on damp filter paper in petri-

dishes sealed with parafilm and left to germinate in the dark at 20°C for 7 to 10 

days. Germinated seedlings were carefully planted out into trays containing a 

general purpose potting mix (Daltons GB Potting Mix) for establishment. 

For perennial ryegrass (L. perenne) plant identification, morphology matched the 

description in the literature (See Champion et al., (2012), p128-130) and seed was 

obtained from reputable sources. 

2.1.2 Plant cloning 

Plants were cloned by splitting the original plant into ramets of four to six tillers 

and re-planted. This always included at least one spare plant clone being re-planted 

back into the original tray or pot. In the first plant/insect trials (Trial 1), cloned 

plants were transferred into the trial trays containing potting mix. From Trial 2, the 

cloned plants were first planted out into mortar sand to encourage root development 

for 10–14 days and then transferred into trays containing general purpose potting 

mix for establishment. 

2.1.3 Planting out 

Cloned plants or seedlings were planted out into polystyrene trays, metal rings or 

pots containing soil : sand (2 : 1) mix, sand or Daltons GB potting mix. Seedlings 

or cloned plants were left to establish either in the glasshouse (late autumn to early 
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spring) or the screenhouse (late spring to early autumn) depending on the ambient 

air temperature outside. 

2.1.4 Plant maintenance 

Yates Thrive All Purpose Soluble Fertiliser (NPK analysis; 27 : 5.5 : 9, with trace 

elements) and urea (plant grade) were sourced from local retail stockists. 

Spare perennial ryegrass (L. perenne) plants and post-trial plants were maintained 

in the screenhouse at ambient temperature with automated watering. Plants were 

trimmed every 4–6 weeks to 3 cm or 4 cm above the crown. The plants were 

fertilised post-trimming using Thrive fertiliser at the recommended label rate (1.8 

g/L) with the addition of urea (2.5 g/l) dissolved in tapwater). 

2.1.5 Adult African black beetle collection and identification 

Pitfall traps as described by King et al. (1980) with minor modifications, for adult 

African black beetle (Heteronychus arator (Fabricius 1775)) collection were made 

from round plastic containers (425 ml, Uni-pack, New Zealand). Small holes, made 

in the bottom of the containers using a soldering iron, were large enough to allow 

water drainage but not to allow an adult African black beetle (H. arator) to escape. 

Cored holes were made in the pasture approximately 1.5 m apart using a 100 mm 

corer and the pitfall trap was placed in the hollow, with 150–200 traps placed out 

at one time. The beetles emerge in the evening and fall into traps when searching 

for food. Figure 2-1 shows the setting of a pitfall trap. 

 

 

Figure 2-1: Setting a pitfall trap.  
A) Corer (100 mm). B) Cored hole and soil core. C) Plastic pitfall trap with drainage holes 
placed in cored hole, with a captured adult African black beetle (H. arator). 
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Adult African black beetle (H. arator) were collected from the traps daily, first 

thing in the morning after other insects were released. This was before the beetles 

died from being exposed to the sun and high temperatures or by being eaten by 

predators. If pitfall traps were not checked daily or first thing in the morning, a 

small layer of soil was placed in the traps with a food source on top (slices of carrot 

or kumara) to ensure survival of adult African black beetle (H. arator). Pitfall traps 

were placed in paddocks with AR1 sown in, or in paddocks where in previous 

seasons the paddock had high numbers of African black beetle (H. arator) recorded 

or damage to pastures. They were placed alongside the fence-line to reduce damage 

from stock. Adult African black beetles (H. arator) were also collected by hand just 

after dusk at places where there was sufficient grass surrounds and strongly lit-up 

large concreted areas, as beetles are attracted to these well-lit areas during flight 

activity. Upon landing the beetles walk on the ground towards the dark, and are 

easily collected because they cannot burrow into soil. Beetles were transferred into 

containers partly filled with damp soil, and perforated lids were placed on the 

container. When beetles were not present in the Waikato they were sourced from 

Kerikeri in the Upper North Island. 

Collection of adult African black beetle (H. arator) was in early autumn from 

March to April when pupae were transforming into adults, or in spring from late 

September when over-wintering dormant adults emerge to mate and feed, as 

discussed in Section 1.7.2 and shown in Figure 1-2. 

For adult African black beetle (H. arator) identification, adults were collected when 

abundant, matching the lifecycle (Bell et al., 2011; Todd, 1959) (also see Section 

1.7.2) and beetle morphology met the description and key indicators (Klimaszewki 

& Watt, 1997; Watt 1984) reported in the literature. 

2.1.6 Adult African black beetle maintenance 

Captured male and female African black beetles (H. arator) were placed into 

separate containers (2–4 litres) with perforated lids. The containers had damp soil 

in the bottom. Each container held 20 to 50 beetles. Males were distinguished from 

females as the last segment on the front legs (fore tarsus) of males is much thicker 

than that on the female leg which elongate and narrow, as shown in Figure 2-2. Soil 

in the containers was kept damp but not too moist. Slices of carrot or kumara were  
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Figure 2-2:  Adult African black beetle gender. 
Showing the difference in the last segment of the front legs (fore tarsus) for gender 
determination (Image from Popay, A. J., AgResearch, New Zealand). 

 

put in the containers to feed the beetles and the slices were changed as necessary 

(approximately weekly for carrot and fortnightly for kumara). 

2.1.7 Adult African black beetle feeding trials 

Three types of adult African black beetle (H. arator) feeding trials were performed: 

 Feeding trial with choice of plants. 

 Feeding trial with no choice of plants. 

 Feeding trial with artificial diet (with no choice). 

In the experimental unit of the feeding trial with choice of plants the beetles had the 

choice of more than one type of plant to feed from. In comparison, with a trial with 

no choice of plants the experimental unit consists of a single ‘plant type’. Plant type 

may refer to plant genera, plant species, plant cultivar, plant breeding line and plant 

family or any combination. Generally plants were trimmed prior to trial 

assessments. The impact of trimming was deemed minimal because of the 

following reasons: all plants were treated the same (including plants in the control 

group), perennial ryegrass is adapted to defoliation, trimming mimics (to a certain 

extent) defoliation by mammalian herbivores, trimming was not lower than 3 cm 

from the crown whereas adult African black beetle feed at the base of the crown 

MALE FEMALE 
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and in severe cases kill the tiller, defoliation does not kill the tiller. Therefore any 

response found was over and above any impact of trimming. 

The experimental unit of a feeding trial with artificial diet with no choice consisted 

of one beetle and one artificial diet plug of a specific formulation. The actual 

number of diet formulations, beetles, plants or diets, and the number of replications 

was specific for each trial. 

2.2 Endophyte detection in plant material 

Presence or absence of endophyte (E+ or E-) in a plant was determined primarily 

using the endophyte tissue print-immunoblot (immuno-detection) technique and 

reagents as described by Gwinn et al. (1991) and Simpson et al. (2012). Endophyte 

status was also determined using the compound microscope method as described 

by Simpson et al. (2012) with minor modifications. This method is also similar to 

that described by Latch and Christensen (1985). When it was not possible to get a 

clear positive or negative result the immunoblot was repeated and a plant sample 

was also checked under the microscope. The compound microscope method was 

used to keep the tiller intact and attached to the plant when there were insufficient 

tillers for immunoblotting. 

2.2.1 Endophyte immunoblot 

Seedlings or cloned plants were established (3–4 tillers) before examination for 

endophyte status. Sheets (10.25 cm × 10.25 cm) of nitrocellulose membrane (0.45 

µm pore size) (Sigma) that had gridlines (printed or hand-drawn 1 cm2 grid squares) 

were used. A single tiller sample from a plant was taken by cutting it at the base. 

Any necrotic (dead) material was removed and a second cut was made by a scalpel 

at the base of the tiller sample to obtain a clean transverse cross-section. The cut 

end was blotted directly onto the nitrocellulose membrane paper within a grid 

square, leaving a circular outline (print) from the plant sap. Five tillers were blotted 

per grid square in the positions shown in Figure 2-3. This was done without 

touching fingers on the nitrocellulose membrane surface. 

The immunoblot sheet was blotted using the multiple grid pattern shown in Figure 

2-4. Prints (blots) of samples of individual plant tillers were recorded using this grid 

reference system. Each sheet was labelled with a sheet number and the collection  
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Figure 2-3:  Immunoblot designated positions within a 1 cm square in the grid. 
 

 

Figure 2-4: Immunoblot position of grid-squares and blots on a sheet. 
Circled blot (A1-5) is recorded by grid-square position (A1) then by blot position (5) next 
to the record of the corresponding plant that the tiller used for the immnoblot came 
from. 

 

date and stored, with the blue cover paper back on it, in a sealed plastic bag at 4°C. 

The sheet was sent to AgResearch, Grasslands, Palmerston. North, New Zealand 

for development of the immunoblot. A red colour on the developed blots indicated 

that endophyte was present (E+) while a light pink colour indicated that endophyte 

was absent (E-). An example of a developed blot is shown in Figure 2-5. 

 

2.2.2 Examination of endophytes with a microscope 

Plants were checked under the microscope for the presence (E+) or absence (E-) of 

endophytes. A single tiller sample was taken by cutting the tiller at the base of the 

plant. When there were insufficient tillers for a tiller sample to be taken a leaf blade 

was removed down to the base of the plant. Any necrotic material was removed 

from the pseudostem to leave clean and live sheath material. Using a scalpel blade 

a single layer of epidermal plant cells was removed from the leaf sheath and  
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Figure 2-5:  A developed immunoblot. 
Showing positive, endophyte present (E+; Grid A1) and negative, endophyte absent (E-; 
GridE1 and blot D2-2) blots. 

 

mounted on a microscope glass slide and then stained with a drop of aniline blue 

stain (glycerol 50%, lactic acid 25%, deionised water 24.95%, Sigma aniline blue 

0.05%). The mounted sample was covered with a coverslip and left at room 

temperature for at least ten minutes for the stain to be absorbed into the plant tissue. 

The sample was then examined at 100× and 400× magnifications. Fungal hyphae 

present stain blue and show up as strands attached to the sides of the plant cell as 

shown in Figure 2-6. 

2.3 Sample preparation for ELISA and chemical analysis 

2.3.1 Freeze-drying 

Plant samples (herbage and pseudostem) were frozen at –20°C. Once samples 

were completely frozen the plastic bags were opened and placed on the freeze-

drying trays ensuring adequate airflow for drying. The trays were loaded into the 

large-scale freeze-drier (Cuddons, 15 litre condenser capacity, Plant and Food, 

Ruakura Research Centre, Hamilton, New Zealand) and were dried for 72 h.   
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Figure 2-6:  Fungal endophyte stained by aniline blue. 
(Image from Christensen, M. J., AgResearch, New Zealand, 2008). 

 

Samples were removed from the freeze-drier and air was expelled from the plastic 

bags prior to sealing. Freeze-dried samples were stored at –20°C until they were 

milled. 

2.3.2 Milling 

All samples were equilibrated to ambient room temperature (21°C) in their sealed 

containers before milling commenced. Seed samples (stored at 4°C) or freeze-dried 

plant samples (Section 2.3.1) were ground either by the IKA-A10 blade mill (IKA®-

WERKE, Staufen, Germany) for small samples (≤2 g) or the Udy Cyclone mill 

(Udy Corporation, CO, USA) for the medium and larger samples (>2 g). Milled 

samples were then stored in sealed containers at –20°C until required for analysis.  
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2.4 Analytical techniques 

2.4.1 Materials and reagents 

All inorganic chemicals and organic solvents were of reagent grade or better and, 

unless stated otherwise, were supplied from a local chemical supplier. Maxisorp 

polystyrene 96-well microtiter plates, plate lids and plate sealers, manufactured by 

Nunc A/S, Roskilde, Denmark and bovine serum albumin (BSA), Fraction V, fatty 

acid poor, manufactured by Gibco, New Zealand, were supplied by Invitrogen 

Corporation, New Zealand. Ovalbumin (OVA), 98% was obtained from Neova, 

Novatech, Canada. Tween 20® was obtained from Merck Schuchardt, Hohenbrunn, 

Germany. Methanol, HPLC grade, and sulphuric acid, concentrated, were obtained 

from BDH, Poole, England. 

The following reagents were prepared for use in the ELISA assays of paxilline, 

peramine, lolitriol/lolitrem and endophyte mycelium mass: 

 Coating buffer: sodium carbonate/bicarbonate buffer, 0.05 mol/L, pH 9.6. 

 Phosphate buffered saline (PBS): sodium chloride (0.15 mol/L), sodium 

dihydrogen orthophosphate (0.017 mol/L), disodium hydrogen 

orthophosphate (0.0084 mol/L), pH 7.4. 

 Wash buffer (PBST): 0.05% Tween 20 (v/v) in PBS. 

 Blocking/antibody buffer: 1% bovine serum albumin (w/v) in PBST (1% 

BSA/PBST) or 1% ovalbumin (w/v) in PBST (1% OVA/PBST). 

 Standard/Sample buffer: 10% methanol (v/v) in PBST (10% 

methanol/PBST) or PBST. 

 Substrate buffer: BioFX TMB One Component HRP microwell substrate 

from SurModics, MN, USA; or K-Blue aqueous TMB substrate from 

Neogen, KY, USA. 

 Stop solution: 0.3 mol/l sulphuric acid (0.3 mol/l H2SO4). 

 Plate coating antigens: OVA-paxilline conjugate (Garthwaite et al., 1993) 

or BSA-peramine conjugate (Garthwaite et al., 1994) or BSA-lolitriol 

conjugate (Briggs et al., 2007) or E. festucae var. lolii mycelium coating 

antigen (Faville et al., 2007). 

 Specific primary antibodies (in-house): anti-paxilline M03/01 mouse 

monoclonal antibody (Garthwaite et al., 1993); or anti-peramine 165-2 
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sheep polyclonal antibody (Garthwaite et al., 1994); or anti-lolitriol 134 

sheep polyclonal antibody (Briggs et al., 2007); or anti-E. festucae var. lolii 

SAPU F2 rabbit polyclonal antibody (Faville et al., 2007). 

 Anti-species secondary antibodies (commercially available): sheep anti-

mouse conjugate with HRP from Chemicon, CA, USA; or rabbit anti-sheep 

conjugated with HRP or goat anti-rabbit conjugated with HRP from DAKO, 

Denmark. 

2.4.2 ELISA analysis 

Extraction and ELISA methods followed were those previously developed in-house 

at AgResearch, Ruakura. 

For all ELISA analyses: 

 All freeze-dried milled grass samples were weighed using a four-place 

balance (Mettler AE 260 Delta Range). 

 A bench-top centrifuge (Eppendorf Centrifuge 5418) was used for the 

centrifugation of samples contained in microfuge tubes. 

 For the coating and substrate ELISA steps, plates were sealed with a plate 

sealer, covered with a lid and then wrapped in tinfoil. 

 For all remaining ELISA steps the plates were sealed with a plate sealer and 

covered with a lid and kept in the dark. 

 Plates were washed four times after each step with PBST on an automated 

plate washer (Dynex, MRW AM60). 

 At the substrate step the plates were placed on an IKA-SCHÜTTLER MTS 

4 (which enhances the enzymatic colour development and reduces the 

incubation time required). Note, the colour development is from clear to 

blue and once the enzyme reaction is stopped by the addition of sulphuric 

acid the colour changes from blue to yellow. 

 The absorbance of the wells on the ELISA plates was determined at 450 

nm using a VERSAmax tunable microplate reader.  

 Data analysis was performed using software developed in-house (4-

parameter curve fit) at AgResearch. The results generated take into account 

the dilutions used on the ELISA plates. 
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2.4.3 Paxilline analysis 

2.4.3.1 Sample extraction 

2.4.3.1.1 Grass (herbage and pseudostem) extraction 

Grass samples prepared as in Section 2.3 were equilibrated to 21°C in their sealed 

containers, then 50 mg of sample was weighed into a microfuge tube (2 ml). 

Weighed samples were stored at –20°C until required. Samples were extracted on 

the same day the paxilline ELISA was performed, the immunoreactivity determined 

by ELISA is not stable on storage. Extracting solvent (1 ml, 90% methanol in water) 

was added to the microfuge tubes and samples were rotated end-over-end (ensuring 

all sample was wetted) on a rotation mixer (Labnet mini labroller, NJ, USA), for 20 

min. Samples were then centrifuged at 8 609 ×g for 5 min. Supernatant was 

collected and analysed by ELISA. In case of the need for re-analysis and because 

of limited availability of plant sample, extracts were stored in screw-top glass vials 

(1.5 ml) at 4°C, or for longer term at –20°C, with the knowledge that the samples 

would have undergone varying degrees of degradation. 

2.4.3.1.2  Seed extraction 

Milled seed samples were equilibrated to room temperature (21°C) in their sealed 

containers then 200 mg samples were weighed into microfuge tubes (2 ml). 

Weighed samples were stored at –20°C until required. Samples were extracted on 

the same day the paxilline ELISA was performed because of the instability of the 

immunoreactivity in the seed samples. Extracting solvent (1 ml, 100% methanol) 

was added to the microfuge tubes and samples were extracted by end-over-end 

rotation for 20 min, ensuring all sample was wetted. The tubes were then 

centrifuged at 8 609 ×g for 5 min. From each the supernatant was recovered for 

ELISA, and transferred to a screw-top glass vial (1.5 ml) for storage at 4°C. Long 

term storage at –20°C was necessary as there was limited seed sample available for 

the majority of trial samples if repeated extraction and analysis was required. This 

was done knowing that sample extracts would have undergone varying degrees of 

degradation on storage. 
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2.4.3.1.3 Artificial diet extraction 

Until required the weighed artificial diet samples were stored at –20°C and prior to 

extraction were equilibrated to room temperature (21°C) in their sealed microfuge 

tubes (2 ml). Samples were extracted on the same day the paxilline ELISA was 

performed because of the known instability of the immunoreactivity in seed 

samples (2.4.3.1.2). Extracting solvent (1 ml, 100% methanol) was added to the 

microfuge tubes and samples were extracted by end-over-end rotation for 20 min, 

ensuring all sample was wetted. Tubes were then centrifuged at 8 609 ×g for 5 min. 

From each tube the supernatant (1 ml) was recovered. Extracts were concentrated 

(10×) with the 1 ml methanol removed under nitrogen blowdown and then the 

extract resuspended in 100 µl methanol for ELISA analysis. Long term storage of 

artificial diet extract at –20°C was necessary (there was no more sample available) 

in case repeated ELISA analysis was required. This was done knowing that sample 

extracts could have undergone varying degrees of degradation on storage. 

2.4.3.2 Paxilline ELISA 

The paxilline ELISA is outlined as shown in Table 2-1. The coating antigen (OVA-

paxilline) and specific primary antibody (monoclonal mouse anti-paxilline M03/01 

antibody) used in this cELISA are those described in Section 2.4.1. The assay 

described by Garthwaite et al. (1993) has since been re-formatted using 1% 

BSA/PBST as the blocking agent and conjugate buffer, Chemicon sheep anti-mouse 

conjugated with HRP for the anti-species secondary antibody and BioFX TMB 

substrate buffer. The assay working range and sensitivity differs from that described 

by Garthwaite et al. (1993) because of the optimisation. 

Microtiter plates were coated with coating conjugate, OVA-paxilline at 3.0 µg/ml 

in bicarbonate coating buffer (100 µl/well). Coated plates were sealed, covered and 

incubated overnight at 4°C, then washed as described in Section 2.4.2. Plates were 

blocked with blocking/antibody buffer, (1% BSA/PBST, 200 µl/well), sealed 

(Section 2.4.2) and incubated for 1 h at 21°C. Paxilline standard curve 

concentrations (0.1–1 000 ng/ml) and sample extract dilutions (minimum extract 

dilutions of 1 in 9 for herbage and 1 in 10 for seed) were prepared in 

standard/sample buffer (PBST and 10% methanol/PBST) to give a final methanol   
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Table 2-1: Outline of the paxilline indirect competitive ELISA. 

STEP REAGENT TEMP 
TIME 

VOLUME 

(µl/Well) 

Coat OVA-paxilline conjugate 
3 µg/ml in coating buffer 

4°C 18 h 100 

Wash 4X with PBST 

Block 1% BSA/PBST 21°C 1 h 200 

Wash 4X with PBST 

Competition 

Standards/samples 

+ 

Specific (1°) antibody 

Diluted sample extract 
or paxilline standard  

(0.1–1000 ng/ml) in 10% 
methanol/PBST 

 

Anti-paxilline M03/01 
diluted 1/23 ×106 in  

1% BSA/PBST 

21°C 1 h 

50 

 

 

50 

 

Wash 4X with PBST 

Antibody detection 

HRP labelled anti-
species (2°) antibody 

Chemicon sheep anti-
mouse-HRP diluted in 

1/2 500 in 1%BSA/PBST 
21°C 2 h 100 

Wash 4X with PBST 

Substrate BioFX TMB substrate 21°C 0.5 h 100 

Stop Stop solution 

(0.3 mol/l H2SO4) 
21°C  100 

Read plate  21°C   
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concentration of 10% (v/v). Specific primary mouse monoclonal antibody, anti-

paxilline was diluted 1 in 23×106 in 1% BSA/PBST. Plates were washed prior to 

the addition of standards and samples (50 µl/well), followed by the specific 

antibody (50 µl/well) giving a total volume of 100 µl/well. Sealed plates were 

incubated for 1 h at 21°C. All sample extracts were analysed using a minimum of 

two dilutions. All standard concentrations and sample dilutions were analysed in 

duplicate wells. The same positive control sample of herbage was extracted and 

analysed on every plate. Pates were washed prior to the addition of the anti-species 

secondary antibody, (sheep anti-mouse conjugated with HRP, Chemicon), which 

was diluted 1 in 2 500 in 1% BSA/PBST (100 µl/well). Plates were sealed and 

incubated for 2 h at 21°C. Plates were washed prior to the addition of the substrate 

solution, BioFX TMB substrate (100 µl/well). Plates were then sealed, covered, 

placed on a plate shaker and incubated for 0.5 h at 21°C to develop the colour 

(Section 2.4.2). The enzyme reaction was stopped by the addition of stop solution, 

0.3 mol/l H2SO4 (100 µl/well). The plates were read and data analysed as described 

in Section 2.4.2. The results generated take into account the dilutions used on the 

ELISA plate. 

Results were expressed as µg of paxilline-immunoreactive equivalents (paxilline-

IRE) per g of milled grass, as paxilline was the reference compound used to 

generate the standard curve in the assay. ELISA analysis of samples was repeated 

within 24 h if required. The assay working range was 1–40 ng/ml with a detection 

limit for the undiluted grass extract of 0.18 µg/g dwt. The analysis was repeated 

either because a result obtained was out of the working range of the assay or there 

was >10 % CV on replicate determination. 

2.4.4 Peramine analysis 

2.4.4.1 Grass (herbage and pseudostem) extraction 

Grass samples (50 mg) as prepared in Section 2.3 were extracted for 1 h in 90% 

methanol in water (1 ml). Owing to the limited availability of plant sample, extracts 

were stored for up to seven days at –20°C as the immunoreactivity measured in the 

peramine ELISA was found to be stable for at least one week. 
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2.4.4.2 Peramine ELISA 

Reagents used for the peramie ELISA (BSA-peramine coating conjugate, specific 

primary polyclonal sheep anti-peramine 165-2 antibody) were those described by 

Garthwaite et al. (1994). The reformatted assay (now using 1% BSA/PBST as the 

blocking agent and conjugate buffer, DAKO rabbit anti-sheep conjugated with HRP 

for the anti-species secondary antibody and BioFX TMB substrate buffer) followed 

a similar protocol as that for the paxilline ELISA (Section 2.4.3.2) and is outlined 

in Table 2-2. The differences from the paxilline ELISA were the coating conjugate, 

standard, specific primary and anti-species secondary antibodies used and the plate 

coating incubation temperature. 

Microtiter plates were coated with coating conjugate, BSA-peramine at 0.2 µg/ml 

in bicarbonate coating buffer (100 µl/well). Plates were sealed, covered and 

incubated overnight at ambient room temperature (21°C). Plates were washed then 

blocked with blocking/antibody buffer (1% OVA/PBST, 200 µl/well), sealed and 

incubated for 1 h at 21°C. Peramine standard curve concentrations (0.1–10 000 

ng/ml) and sample extract dilutions (1/9 minimum dilution) were prepared in 

standard/sample buffer (10% methanol/PBST and PBST) to give a final methanol 

concentration of 10% (v/v). The specific primary sheep polyclonal, anti-peramine 

165-2 antibody was diluted 1 in 3.5 ×105 in 1% OVA/PBST. Plates were washed 

prior to addition of the standards and samples (50 µl/well), followed by the specific 

primary antibody, 50 µl/well) giving a total volume of 100 µl/well. Sealed plates 

were incubated for 1 h at 21°C. All sample extracts were analysed using a minimum 

of two dilutions. All standard concentrations and sample dilutions were analysed in 

duplicate wells. The same positive control sample of herbage was analysed on every 

plate, and this was the same positive control grass sample that was used for the 

paxilline analyses. Plates were washed prior to addition of the anti-species 

secondary antibody (rabbit anti-sheep conjugated with HRP, DAKO), which was 

diluted 1 in 4 500 in 1% OVA/PBST (100 µl/well). Plates were then sealed, 

incubated for 2 h at 21°C. Plates were washed prior to addition of the substrate 

solution, BioFX TMB substrate (100 µl/well). Plates were then sealed, covered, 

placed on a plate shaker and incubated for 0.5 h at 21°C to develop the colour 

(Section 2.4.2). The enzyme reaction was stopped by addition of the stop solution,  
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Table 2-2: Outline of the peramine indirect competitive ELISA. 

STEP REAGENT TEMP 
TIME 

VOLUME 

(µl/well) 

Coat BSA-peramine conjugate 
0.2 µg/ml in coating 

buffer 
21°C 18 h 100 

Wash 4X with PBST 

Block 1% OVA/PBST 21°C 1 h 200 

Wash 4X with PBST 

Competition 

Standards/samples 

+ 

Specific (1°) antibody 

Diluted sample extract or 
peramine standard  

(0.1–10 000 ng/ml) in 
10% Methanol/PBST 

 

Anti-peramine 165-2 
diluted 1/350 ×103 in 1% 

BSA/PBST 

21°C 1 h 

50 

 

 

50 

 

Wash 4X with PBST 

Antibody detection 

HRP labelled anti-
species (2°) antibody 

DAKO rabbit anti-sheep-
HRP diluted 

1/4 500 in 

1% BSA/PBST 

21°C 2 h 100 

Wash 4X with PBST 

Substrate BioFX TMB substrate 21°C 0.5 h 100 

Stop Stop solution 

0.3 mol/l H2SO4 
21°C  100 

Read plate  21°C   
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0.3 mol/l H2SO4 (100 µl/well). Plates were read and data analysed as described in 

Section 2.4.2. 

Results were expressed as µg of peramine-immunoreactive equivalents (peramine-

IRE) per g of milled grass, as peramine was the reference compound used to 

generate the standard curve in the assay. Although it would be anticipated that there 

should be no other peramine-like compounds that would be detected by the assay, 

the assay has not been quantitatively validated against a reference method therefore 

results are expressed as immunoreactive equivalents of the reference standard used. 

The assay working range was 2.5–350 ng/ml with a detection limit for the undiluted 

grass extract of 0.45 µg/g dwt. The ELISA analysis of sample extracts was repeated 

either because a result obtained was out of the working range of the assay or there 

was >10 % CV on replicate determination. 

2.4.5 Lolitrem analysis 

2.4.5.1 Extraction of single tiller samples  

A qualitative test for Epichloë festucae var. lolii (Latch, M.J. Chr. & Samuels) C. 

W. Bacon & Schardl, stat. nov. et comb. nov. wild-type endophyte contamination 

was carried out using methodology developed and validated at AgResearch. Nunc 

96-well untreated plates (Nunc catalogue number 267245) and covers (Nunc 

catalogue number 276002) were used for the single tiller extraction. One basal tiller 

section (2.5 mm long) was placed in a well, with every second row left empty (rows; 

A, C, E, and G contained tiller samples and rows B, D, F, and H remained empty). 

Details of sample and their location on the extraction plate were recorded. Once the 

plate was full, it was sealed using a plate sealer and lid, ensuring all wells were 

sealed. Plates were stored at –20°C until ready for tiller extraction and ELISA. 

To each well containing a tiller, 90% methanol in water (125 µl) was added. The 

plate was sealed (with a plate sealer and lid) and incubated on the plate shaker at 

21°C for 1 h. Extracts (100 µl) were removed and placed in the corresponding well 

in the adjacent row and 0.1 mol/l HCl (50 µl) was added. The plate was sealed and 

samples were hydrolysed for 15 min at 37°C. The hydrolysates (50 µl) were 

removed and added to PBST (250 µl) in titretubes. The resulting hydrolysed 

extracts were at a final dilution of 1 in 9, in 10% methanol/PBST. Residual acid in 

the diluted extracts had been previously shown to not affect results. Extracts were 
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not stored: if the analyses required repeating, fresh tiller samples were collected and 

extracted. 

2.4.5.2 Lolitrem ELISA 

The lolitrem ELISA followed a similar protocol as that for the paxilline and 

peramine ELISAs (Sections 2.4.3.2 & 2.4.4.2) and is outlined in Table 2-3. Coating 

antigen (BSA-lolitriol) and antibodies (specific anti-lolitriol sheep 165-2 polyclonal 

antibody and anti-species antibody, DAKO rabbit anti-sheep conjugated with HRP) 

used in this cELISA are those described by Briggs et al. (2007) with modifications 

required for analysis of fresh tiller samples as in Section 2.4.5.1. 

Microtiter plates were coated with the coating conjugate, BSA-lolitriol at 1.0 µg/ml 

in bicarbonate coating buffer (100 µl/well). Plates were sealed, covered and 

incubated overnight at ambient room temperature (21°C). The plates were washed 

then blocked with blocking/antibody buffer (1% BSA/PBST, 200 µl/well), sealed 

and incubated for 1 h at 21°C. Plates were washed prior to addition of the standards, 

samples and specific antibody. Lolitriol standard curve concentrations (0.01–50 

ng/ml) and the hydrolysed sample extracts (diluted at least 1 in 9 to remove matrix 

interferences) were prepared in standard/sample buffer, 10% methanol/PBST or 

PBST to give a final methanol concentration of 10%. Specific primary sheep 

polyclonal antibody, anti-lolitriol 134 was diluted 1 in 125 ×103 in 1% BSA/PBST. 

Standards and samples (50 µl/well) followed by the specific antibody (50 µl/well) 

were added to the plate giving a total volume of 100 µl/well. Plates were sealed and 

incubated for 1 h at 21°C. All sample extracts were analysed initially at a 1 in 9 

dilution and extracts of two tillers were analysed per individual plant. All standard 

concentrations and sample dilutions were analysed in duplicate wells. The same 

positive control sample (extracts of two tillers from a L. perenne plant infected with 

wildtype E. festucae var. lolii) was analysed on every plate. Plates were washed 

prior to addition of the species-specific secondary antibody, rabbit anti-sheep-HRP 

(DAKO), which was diluted 1 in 4 500 in 1% BSA/PBST (100 µl/well). Plates were 

then sealed and incubated for 2 h at 21°C. The plates were washed then substrate 

solution (BioFX TMB) was added to the plate (100 µl/well). Plates were then sealed, 

covered, placed on the plate shaker and incubated for 0.5 h at 21°C to develop the 

colour. The enzyme reaction was stopped by addition of the stop solution, 0.3 M  
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Table 2-3:  Outline of the lolitrem indirect ELISA. 

STEP REAGENT TEMP TIME 

VOLUME 

(µl/Well) 

Coat BSA-lolitriol conjugate 
1.0 µg/ml in coating 

buffer 
4°C 18 h 100 

Wash 4X with PBST 

Block 1% BSA/PBST 21°C 1 h 200 

Wash 4X with PBST 

Competition 

Standards/samples 

+ 

Specific (1°) antibody 

Diluted hydrolysed 
sample extract or lolitriol 

standard 

(0.01–50 ng/ml) in 

10% methanol/PBST 

 

Anti-lolitriol 134 diluted 
1/125 ×103 in 

1% BSA/PBST 

21°C 1 h 

50 

 

 

 

50 

 

Wash 4X with PBST 

Antibody detection 

HRP labelled anti-
species (2°) antibody 

DAKO rabbit anti-sheep-
HRP diluted 

1/4 500 in  

1% BSA/PBST 

21°C 2 h 100 

Wash 4X with PBST 

Substrate BioFX TMB substrate 21°C 0.5 h 100 

Stop Stop solution 

0.3 mol/l H2SO4 
21°C  100 

Read plate  21°C   
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H2SO4 (100 µl/well). Plates were read and data analysed as described in Section 

2.4.2. 

Lolitriol was the reference compound used to generate the standard curve in the 

assay. Although results were expressed as ng of lolitriol-immunoreactive 

equivalents (lolitriol-IREs) per ml of tiller extract, when applied to the single tiller 

test (Section 2.4.5.1) these were only qualitative giving a yes or no result for wild-

type contamination.  

2.4.6 Analysis of endophyte mycelium mass 

2.4.6.1 Endophyte mycelium mass sample extraction 

Milled grass samples as prepared in Section 2.3 were weighed (20 mg) into a Kimax 

tube (12 ml). PBST (10 ml) was added to the Kimax tube and samples were mixed 

thoroughly, ensuring all sample was wetted. These were then incubated for 3 h at 

30°C. A representative portion was then transferred to a microfuge tube (2 ml) and 

centrifuged at 2 150 ×g for 3 min. Supernatant (1 ml) from each was transferred 

undiluted to screw-top glass vials (1.5 ml). Extracts were stored at 4°C until analysis 

by ELISA. Samples are stable for one week at 4°C or at –20°C for long term storage. 

Owing to the long extraction time (>3 h) the extracts are prepared a day ahead of 

the ELISA being performed. 

2.4.6.2 ELISA of endophyte mycelium mass 

The ELISA for endophyte mycelium mass followed a similar protocol as that for 

the previous ELISAs (paxilline, peramine and lolitrem; Sections 2.4.3.2, 2.4.4.2 & 

2.4.5.2), except it had an extra pre-incubation step before the standards, samples 

and specific antibody were added to the plate. The protocol, coating antigen (E. 

festucae var. lolii mycelium and antibodies (anti-E. festucae var. lolii SAPU F2 

specific primary rabbit polyclonal antibody, DAKO goat anti-rabbit conjugated 

with HRP anti-species secondary antibody), used in this cELISA are those as 

described by Faville et al. (2007) but modified with a pre-incubation step, and are 

outlined in Table 2-4.  

Microtiter plates were coated with the E. festucae var. lolii mycelium coater at 20 

µg/ml in bicarbonate coating buffer (100 µl/well). Plates were then sealed, covered 

and incubated overnight at ambient room temperature (21°C). Plates were washed,   
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Table 2-4: Outline of the indirect competitive ELISA of endophyte mycelium mass. 

STEP REAGENT TEMP TIME 

VOLUME 

(µl/Well) 

Coat E. festucae var. lolii coater 
20 µg/ml in coating buffer 

21°C o/n 100 

Wash 4X with PBST 

Block 1% BSA/PBST 21°C 1 h 200 

Wash 4X with PBST 

Pre-incubation 

Standards/samples 

+ 

Specific (1°) antibody 

Sample extract or E. 
festucae var. lolii 

endophyte standard 

(0.05–200 µg/ml) 

in PBST 

Anti-E. festucae var. lolii 
SAPU (F2) diluted 1/10 

000 in 

1% BSA/PBST 

21°C 2 h 

150 

 

 

150 

 

Competition Add aliquot of pre-
incubation solution to 

ELISA plate 
21°C 1 h 100 

Wash 4X with PBST 

Antibody detection 

HRP labelled species-
specific (2°) antibody 

DAKO goat anti-rabbit-HRP 
diluted 1/10 000 in 1% 

BSA/PBST 
21°C 2 h 100 

Wash 4X with PBST 

Substrate Neogen K-Blue Aqueous 
TMB substrate 

21°C 0.5 h 100 

Stop 
Stop solution 

0.3 mol/l H2SO4 
21°C  100 

Read plate  21°C   
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then blocked with blocking/antibody buffer (1% BSA/PBST, 200 µl/well), sealed 

and incubated for 1 h at 21°C. Prior to performing the blocking step the 2 h pre-

incubation step of standards and samples with the specific antibody was started. 

The E. festucae var. lolii endophyte standard curve concentrations (0.05–200 ng/ml) 

and sample extract dilutions (undiluted and 1 in 2 dilution) were prepared in PBST. 

Specific primary rabbit polyclonal antibody, anti-E. festucae var. lolii SAPU F2 

was diluted 1 in 10 000 in 1% BSA/PBST. Standards and samples (150 µl) and the 

specific antibody (150 µl) were combined in a micro-titretube and incubated for 2 

h at 21°C. Plates were washed and the pre-incubated standard- and sample-antibody 

solutions (100 µl/well) were added to the plates. Sealed plates were incubated for 1 

h at 21°C. All sample extracts were analysed using a minimum of two dilutions. All 

standard concentrations and sample dilutions were analysed in duplicate wells. The 

same positive control sample of herbage was analysed on every plate. Plates were 

washed prior to the addition of the anti-species secondary antibody, goat anti-

rabbit-HRP (DAKO), which was diluted 1 in 10 000 in 1% BSA/PBST (100 

µl/well). Plates were then sealed and incubated for 2 h at 21°C. Plates were washed, 

then substrate solution (Neogen K-Blue Aqueous TMB substrate) was added to the 

plate (100 µl/well). Plates were then sealed, covered, placed on the plate shaker and 

incubated for 0.5 h at 21°C. The enzyme reaction was stopped by addition of the 

stop solution, 0.3 M H2SO4 (100 µl/well). Plates were read and data analysed as 

described in Section 2.4.2. Results were expressed as µg of E. festucae var. lolii-

immunoreactive equivalents (E. festucae var. lolii-IREs) per g of milled grass, as E. 

festucae var. lolii mycelium was the reference material used to generate the standard 

curve in the assay. The assay working range is 0.614–10.62 µg/ml with a detection 

limit for the undiluted grass extract of 6.14 mg/g dwt. The ELISA analysis of 

samples was repeated either because a result obtained was out of the working range 

of the assay (at greater dilutions) or there was >10 % CV on replicate determination. 

2.5 Statistical analyses 

2.5.1 Statistical Models 

A brief introduction to the main statistical methods used in this thesis is given below. 

In each experimental chapter, more detailed descriptions of the statistical analyses 

performed are provided.  



Chapter 2 Materials and Methods 

99 

Analysis of variance (ANOVA) is a widely used statistical method for comparing 

several means (See Moore and McCabe (1989), Chapters 12 and 13, p743–825). 

Underlying ANOVA is the assumption that the residuals are normally distributed 

with mean zero and constant variance. ANOVA deals mainly with balanced and 

orthogonal designs. When the data are unbalanced or non-orthogonal, restricted 

maximum likelihood (REML) can be used. REML fits a linear mixed model which 

consists of two components: 1) a fixed model and 2) a random model. The fixed 

model is formed from fixed terms which typically represent the experimental 

treatments. Structural components of the experimental design are usually accounted 

for by the random model. For more details, see Welham et al. (2014) (Chapter 16, 

p427–450). 

Both ANOVA and REML are based on linear models, and where the response 

variable is assumed to be normally distributed. Data transformations can sometimes 

be used to normalise the data, removing skewness and stabilising the variance, 

allowing the continued use of ANOVA or REML to reach valid statistical 

conclusions. When required, concentrations (such as, paxilline immunoreactivity) 

can usually be normalised using a log transformation, and counts ≥0 (such as, plant 

tiller number) using a square root transformation.  When standard transformations 

fail to normalise the data and/or stablize the variance, a rank transformation is 

sometimes useful. Here the responses are ordered from smallest to largest, and the 

rank is the position within this ordering.  

In certain cases, a generalised linear mixed model (GLMM), an extension of REML, 

can be used to analysis non-normally distributed data (Genstat manual). GLMM 

requires a transformation, known as the link function, in order to fit a linear model. 

For example, the number of damaged tillers on a plant, assumed to be binomially 

distributed, can be modelled using a GLMM with a logit link function. 

2.5.2 Statistical Significance 

The probability value (P) is used to quantify the evidence against the null 

hypothesis. Although throughout this thesis a significance level of 5% was used, 

when interpreting the evidence against a null hypothesis, the following definitions 

were used to describe P to avoid the sharp cut-off between “significant” and “not 

significant” (See Moore and McCabe (1989), Chapter 6, p476–477): 
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 P ≤0.001= strong evidence (statistically significant). 

 0.001< P ≤0.05 = evidence (statistically significant). 

 0.05< P ≤ 0.1 = weak evidence (statistically not significant). 

 P >0.1 = no evidence (statistically not significant). 

It is important to recognise that statistical significance doesn’t imply biological 

significance (Moore and McCabe (1989), Chapter 6, p476–477). For example, a 

statistically significant difference in the mean paxilline immunoreactivity between 

plants may not be biological significant if the difference between the means is not 

large enough to have a meaningful biological impact.   

Post-hoc tests were conducted Fisher’s least significant differences, at the 5% 

significance level (LSD(5%)) (Welham et al. (2014), Chapter 4, p86–87). 
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3 Chapter 3 

Preliminary work and ELISA pre-screening 

The purpose of this preliminary work was to screen 230 individual AR1-infected 

perennial ryegrass (Lolium perenne L.) plants (23 half-sibling families) grown from 

seed to find the highest and lowest paxilline-like metabolite producers and thus 

select a smaller number for the study of resistance to adult African black beetle 

(Heteronychus arator (Fabricius, 1775)) feeding. Included in this preliminary work 

was the screening of plants for their endophyte status (presence or absence) and 

for any wild-type endophyte contamination. The two grinding mills used to mill 

samples throughout this study were compared to ensure either mill could be used 

depending on sample size. 

3.1 Introduction 

The level of protection endophyte secondary metabolites (alkaloids) give ryegrass 

from being eaten by insects is dependent on what and how much of these 

compounds are produced. It is known that different endophyte strains produce 

different secondary metabolites and that the amounts produced are determined by 

the plant and endophyte genetic combination. The effect of host genotype means 

that genetically different ryegrass plants infected with the same endophyte will vary 

in levels of secondary metabolites and therefore also the degree of resistance to 

insects (Clay & Schardl, 2002; Rodriguez et al., 2009). This allows plant breeders 

to select for plant and endophyte associations with high expressions of alkaloids 

that can provide resistance to insects such as Argentine stem weevil (Listronotus 

bonariensis (Kuschel, 1955)) and African black beetle (H. arator). Two fungal 

secondary metabolites that provide resistance to insects are peramine, against 

Argentine stem weevil (L. bonariensis) (Prestidge et al., 1985; Rowan & Gaynor, 

1986; Rowan et al., 1990) and ergovaline, against African black beetle (H. arator) 

(Ball et al., 1997). However ergovaline causes adverse effects to livestock, whereas 

peramine does not (Fletcher & Easton, 1997; Fletcher et al., 1999). 

The novel Epichloë festucae var. lolii (Latch, M.J. Chr. & Samuels) C. W. Bacon 

& Schardl, stat. nov. et comb. nov. AR1 endophyte was developed to provide 
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perennial ryegrass (L. perenne) with resistance to insects without causing ill-health 

to livestock. AR1 produces peramine and simple indole diterpenes, including 

paxilline and paxilline-like compounds such as the terpendoles (Young et al., 2009), 

but does not produce the mammalian toxins, ergovaline and lolitrem B (Tapper & 

Latch, 1999). Although AR1 genetically can produce paxilline a mild tremogen, the 

amounts produced are minimal with production of the other simple indole 

diterpenes being more predominant (Young et al., 2009). Also there have never 

been any reports of livestock ill-health from AR1-infected pastures (Bluett et al., 

2005b; Bluett et al., 2005a). Paxilline and peramine do not deter adult African black 

beetle (H. arator) from feeding (Ball et al., 1997), yet AR1 still shows low to 

moderate resistance to this insect (Popay & Baltus, 2001). Some of the known and 

unknown paxilline-like compounds produced by AR1-infected grasses are detected 

by the paxilline ELISA (enzyme linked immunosorbent assay) (Briggs L. R., 

AgResearch, Hamilton, New Zealand; personal communication, 2006).  

The results of the Lincoln trial (Figure 1-7) for selected commercial cultivars 

suggested increasing levels of paxilline immunoreactive equivalents (paxilline-IRE) 

in the host plant were associated with a reduction in adult African black beetle (H. 

arator) feeding damage for a selection of commercial cultivars (Popay A. J., 

Fletcher L. R., Briggs L. R., AgResearch, New Zealand; unpublished work, 2006). 

The testing of genetically related material (within a cultivar or breeding line) was 

undertaken to investigate further, the resistance of AR1-infected plants to feeding 

from adult African black beetle (H. arator) and to determine if plant resistance to 

African black beetle (H. arator) is related to the levels of paxilline-IRE (paxilline 

immunoreactivity) produced by the hosted endophyte, AR1. A breeding-line is 

made up of half-sibling families, that is, of the two parent plants one parent plant is 

common for all half-sibling families and the other different. Half-sibling families 

from within the breeding line were studied as plants are genetically closely related, 

yet should contain sufficient genetic differences for both levels of resistance to 

feeding from adult African black beetle (H. arator) and for levels of secondary 

metabolite production. 

The GA97 breeding-line studied consists of 23 half-sibling perennial ryegrass (L. 

perenne) families. Although plants from within a family that are grown from seed 
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are very similar, they are not genetically identical. Selections of individual plants 

from within each half-sibling family were chosen for feeding trials with adult 

African black beetle (H. arator). Prior to this plant selection for feeding trials with 

adult African black beetle (H. arator), preliminary work was necessary before a 

pilot trial was undertaken: 

 Depending on sample size, two grinding mills were used to mill plant 

samples. The two mills were compared to ensure that results obtained by 

ELISA or chemical analyses were both comparable and reproducible 

whichever mill was used. A grass sample was milled by each grinding mill, 

and extracts of the milled grass samples were analysed by the paxilline 

ELISA. 

 All plants from the half-sibling families (23) were grown from seed and 

screened for endophyte status (presence or absence) by immunoblot and 

microscopy, and for endophyte wild-type contamination by the 

lolitriol/lolitrem ELISA. 

 Concentrations of paxilline-IRE in plants from the half-sibling families 

were determined prior to exposure to adult African black beetle (H. arator) 

to determine variation in levels between plants, within and between families. 

The purpose of the initial paxilline ELISA pre-screen was to establish baseline 

levels of paxilline immunoreactivity in plants and to aid in the selection of plants. 

Furthermore, the number of plants for used in trial work had to be reduced because 

logistically it was not possible for a single person to experiment on 230 plants. The 

paxilline ELISA was also used in the comparison of the two grinding mills. 

Because AR1 endophyte is not capable of producing lolitrems but wild-type E. 

festucae var. lolii does (Tapper & Latch, 1999; Young et al., 2009), the 

lolitriol/lolitrem ELISA was performed on all plants from each half-sibling family 

using the qualitative single tiller test (Section 2.4.5.1) to determine if any of the 

families were contaminated with wild-type endophyte.  

3.1.1 Paxilline ELISA  

The paxilline ELISA uses an anti-paxilline antibody, a paxilline coating conjugate 

(protein-hapten) and paxilline as the reference standard as described in Section 
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2.4.2. The paxilline-like compounds (paxilline-IRE) produced by AR1 cross-react 

with the monoclonal antibody used in the paxilline ELISA (Briggs L. R., 

AgResearch, New Zealand; personal communication 2009) because they possess 

the same or very similar epitopes to which the antibody can bind (see Section 1.8.1). 

These paxilline-like compounds are thought to be the bioactive compounds (or 

marker compounds) that provide some resistance to adult African black beetle (H. 

arator) and are measured by ELISA as paxilline-IRE (see Figure 1-7). 

3.1.2 Lolitrem ELISA 

The lolitrem ELISA detects lolitrem-like structures and uses an anti-lolitriol 

antibody, a lolitriol coating conjugate (protein-hapten) and lolitriol as the reference 

standard as described in Section 2.4.5.2. Positive results for this ELISA indicated 

that a particular family was contaminated with wild-type endophyte. When a 

sample is extracted for the ELISA the final hydrolysate contains a range of 

hydrolysed lolitrem derivatives. The ELISA measures the immunoreactivity of the 

lolitriol-like analogues, which have been hydrolysed to lolitrem derivatives. The 

results are expressed as lolitriol immunoreactive equivalents (lolitriol-IRE) and are 

an indirect measure of the lolitrem analogues present in a host plant and hence wild-

type endophyte. When testing weighed milled grass samples the results are 

quantitative. However, when applied to the single tiller test for contamination by 

wild-type endophyte the results are qualitative, giving a yes or no answer. 

3.2 Methods 

3.2.1 Planting out 

Seed was sourced from Forage Improvement, AgResearch, Grasslands, Palmerston 

North, New Zealand. Perennial ryegrass (L. perenne) seeds infected with the novel 

endophyte AR1, from 23 half-sibling families (accession) from the breeding-line 

GA97 were germinated and planted out as described in Sections 2.1.1 and 2.1.3 into 

polystyrene trays containing Daltons GB commercial potting mix. Ten germinated 

seeds were planted out for each half-sibling family (230 seedlings total), with each 

seedling plant considered a family representative. In total five trays were planted. 

Each tray contained five families and 50 seedlings per tray (except the final tray 

which contained three families and 30 seedlings) as shown in Figure 3-1. Seedlings  
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Figure 3-1: Planting positions of half-sibling family seedlings planted out per tray. 
1–10 = seedling plant from each family. 

 

were left to establish and were maintained as described in Section 2.1.4. The half-

sibling families investigated are listed in Table 3-1. 

 

Table 3-1: Lolium perenne half-sibling families from the GA97 breeding line 
containing AR1 endophyte. 

Family Number 

Accession 

(half-sibling family) Family Number 

Accession 

(half-sibling family) 

1 A12061 13 A12075 

2 A12063 14 A12077 

3 A12064 15 A12078 

4 A12065 16 A12080 

5 A12066 17 A12081 

6 A12068 18 A12082 

7 A12069 19 A12083 

8 A12070 20 A12084 

9 A12071 21 A12085 

10 A12072 22 A12086 

11 A12073 23 A12087 

12 A12074   
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3.2.2 Endophyte detection 

Endophyte status was determined by immunoblot and when required, by 

microscopy (Section 2.2). One tiller was checked at each sampling as AR1-infected 

perennial ryegrass (L. perenne) plants are known to have a tiller endophyte-

infection rate of almost 100% (Card, S. D., AgResearch, New Zealand; personal 

communication, 2009). 

3.2.3 Wild-type endophyte contamination – analysis by Lolitrem 

ELISA 

Wild-type contamination of family lines was determined by the lolitriol/lolitrem 

ELISA as explained previously in Section 3.1.2. Two single tillers were taken from 

each individual plant from the twenty-three half-sibling families for 

lolitriol/lolitrem analysis as described in Section 2.4.5. 

3.2.4 Comparison of grinding mills using the paxilline ELISA 

The two grinding mills, blade mill (IKA-10) and cyclone mill (Udy) were first 

compared using the paxilline ELISA (Section 3.1.1) to ensure the same 

immunoassay result was obtained using either mill. An AR1-infected grass herbage 

test sample (E+) was prepared as described in Section 2.3.1. The grass sample was 

cut using scissors into smaller sections (25 mm long) and mixed thoroughly. The 

AR1-infected herbage sample was then split into six sub-samples. Three sub-

samples were milled using the blade mill and three sub-samples using the cyclone 

mill (Section 2.3.2). Three lots from each milled sub-sample were weighed, 

extracted then analysed using the paxilline ELISA (Section 2.4.3) and the mean 

concentration of paxilline-IRE per gram of milled grass (µg/g) were compared 

within and between grinding mills. 

3.2.5 Paxilline ELISA pre-screen 

Levels of paxilline immunoreactivity were determined by the paxilline ELISA 

(Section 2.4.3 and 3.1.1) for each plant from the 23 half-sibling families as part of 

the criteria for the selection of plants for the initial pilot trial (including the wild-

type contaminated family lines). As shown in Figure 3-2, all plants were initially 

cut to a height of 8 cm from the crown and the herbage removed was discarded.  
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Figure 3-2: Trimming and herbage sampling of plants. 

 

Plants were trimmed further to 3 cm from the crown, and the 5 cm herbage 

harvested kept for the initial paxilline analyses. Herbage samples were prepared as 

described in Section 2.3 using the blade mill (samples <2 g). Levels of paxilline 

immunoreactivity were determined on the extracts from milled herbage samples as 

described in Section 2.4.3. 

3.2.6 Plant selection for pilot trial 

Selection of 50 plants out of 250 plants was based on the following criteria with a 

minimum of two representatives from each family: 

 Endophyte status: ensuring the plants were infected with the AR1 endophyte. 

 Individual plant paxilline-IRE result: a range of low (<1–4 µg/g), medium 

(>4–8 µg/g), high (>8 µg/g), from the paxilline ELISA were chosen. 

 The family from which the plant originated. 

 Plant health; plants were scored using a scale of 1–5 (5 = very strong, 1 = 

very weak). The plant health score was a visual assessment that took into 

consideration plant tiller number (≥10), tiller strength and general growth of 

plant. Plants with a health score of three or more were chosen. 
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3.3 Results 

3.3.1 Endophyte detection 

Of the eight plants that did not survive, three were from family A12072, and one 

from each of the following five families; A12077, A12065, A12073, A12068 and 

A12083. For all families there were at least nine surviving plants, except for 

A12072 of which there were seven. When plants were older than 6 weeks and had 

established, each plant was checked to determine its endophyte status (222 plants 

had survived). From the primary immunoblot test six of 222 plants returned a 

negative or inconclusive result. These were re-tested by immunoblot and by 

microscopy. All of these plants returned a positive result for infection with 

endophyte. 

3.3.2 Wild-type endophyte contamination – analysis by Lolitrem 

ELISA 

Three half-sibling families (A12074, A12085 and 12086) were positive for 

lolitrems and confirmed to be contaminated with wild-type endophyte. The 

remaining 20 half-sibling families were negative for contamination with wild-type 

endophyte. 

3.3.3 Comparison of grinding mills using the paxilline ELISA 

Two grinders were used in this study owing to sample size. The blade mill (IKA–

10) was used for samples of weight up to 2 g and the cyclone mill (Udy) for samples 

of more than 2 g.  

There were no significant differences (%CV <10) between the two mills for the 

paxilline ELISA result as sub-samples produced by both mills had very similar 

immunoreactivity levels, as shown in Table 3-2. This result provided confidence 

that either mill could be used for milling plant samples for analysis by immunoassay 

and analytical chemistry. From the triplicate extractions from each sub-sample it 

was also confirmed that the paxilline analysis provides comparable and 

reproducible results within normal ELISA working parameters (%CV <10). 
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Table 3-2: Comparison of milled grass samples between and within blade and 
cyclone grinding mills using the grass extracts of these analysed by the paxilline 
ELISA. 

Mill Sub-sample 

aMean paxilline-IRE (µg/g) 
from each sub-sample 

%CV between 
sub-samples 

Blade 1 2.62 (1.72)  

Blade 2 2.42 (1.95)  

Blade 3 2.54 (2.30)  

Mean of all sub-samples with blade 2.53 3.71 

Cyclone 1 2.52 (2.00)  

Cyclone 2 2.46 (3.47)  

Cyclone 3 2.64 (2.96)  

Mean of all sub-samples with cyclone 2.54 3.79 

Mean of all sub-samples with both 
mills 

2.53 3.64 

aPaxilline-IRE (paxilline immunoreactive equivalents) values shown are the mean of 
triplicate extractions of each milled sub-sample lot. Values shown in brackets are the %CV 
of the paxilline-IRE triplicate extractions for each sub-sample.  

 

3.3.4 Paxilline ELISA pre-screen 

The herbage paxilline-IRE levels were square-root transformed prior to analysis to 

normalise the data. The data were analysed using residual maximum likelihood 

(REML) in GenStat version 15 (Section 2.5). Date of ELISA analysis was included 

as a random effect. The square-root transformed values observed for each 

individual plant, illustrated a large variation between individual plants within the 

same family across all families (Figure 3-3). The predicted mean square-root 

paxilline-IRE value for each family is also shown. There was weak evidence that 

the mean square-root paxilline-IRE differed between families (F(22,177) = 1.53; P = 

0.070). The analysis was repeated with the omission for the family lines 

contaminated with wild-type endophyte and similar results were obtained   
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Figure 3-3: Dotplot of levels of paxilline immunoreactive equivalents (paxilline-IRE) 

across families.  
The data graphed has been square-root transformed (with the back-transformed scale on 
the right-hand vertical axis). The circles represent the observed values of individual plants 
in a family. The bars represent the predicted square-root mean for the families. Family 
lines contaminated with wild-type endophyte are highlighted in bold font. 

 

(F(19,149) = 1.54; P = 0.081). Note, the suggestion of a family effect, albeit weak, 

was supported when the data were examined on the basic rank scale (Section 2.5), 

with P <0.5 (contaminated lines included (F(22, 173) = 2.00; P = 0.007) and 

contaminated lines excluded (F(19,149) = 1.94; P =0.015). 

3.3.5 Plant selection for pilot trial 

The 50 plants selected for the pilot trial are shown in Table 3-3 and range from very 

low to very high results in the paxilline ELISA; 12 graded low, 18 graded medium 

and 20 graded high. The three family lines contaminated with wild-type endophyte 

were also included for comparison as a benchmark for African black beetle (H. 

arator) resistance. 
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Table 3-3: Plants selected for pilot trial. 
*The identification number of the family and individual plant (grown from seed) 
in that family is shown for each plant selected. The concentration of paxilline-IRE 
(Pax-IRE) for each is shown, and the grading of this as very high (VH), high (H), 
medium (M), low (L) and very low (VL) is shown. The plant health score (PHS) of 
each plant selected is shown, graded on a scale of 1–5, with 1 = weak unhealthy 
plant and 5 = strong healthy plant. The number of tillers (Tiller #) a plant had is 
shown. Family lines and individual seedling plants shown to be contaminated with 
wild-type endophyte are highlighted in bold font. 

Family Plant* 
Pax–IRE 
(µg/g) 

Pax–IRE 
Grade PHS Tiller # 

A12061 61/6 11.47 VH 3 19 
 61/9 14.43 VH 4 20 

A12063 63/4 5.84 M 4 15 
 63/9 3.50 L 3 25 

A12064 64/1 3.33 L 3 28 
 64/6 5.34 M 3 27 

 64/7 10.56 H 5 44 

 64/10 20.46 VH 3 28 

A12065 65/1 5.78 M 3 23 
 65/6 3.07 L 3 20 

 65/7 1.93 L 3 22 

A12066 66/7 7.37 M 3 13 
 66/8 6.09 M 3 13 

A12068 68/6 14.48 VH 4 27 
 68/8 6.27 M 3 18 

A12069 69/6 10.74 H 3 26 
 69/9 17.23 VH 4 28 

A12070 70/5 4.65 M 3 33 
 70/6 8.81 H 4 49 

 70/8 3.28 L 3 23 

A12071 71/3 6.24 M 3 18 
 71/5 16.28 VH 3 14 

A12072 72/2 9.16 H 4 32 
 72/9 16.47 VH 5 41 

A12073 73/1 0.26 VL 3 28 
 73/2 8.75 H 4 19 

A12074 74/1 13.06 VH 5 49 
 74/10 4.56 M 4 38 

A12075 75/6 18.87 VH 4 35 

Table 3–3 continued on next page 
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Table 3–3 continued 

Family Plant* 
Pax–IRE 
(µg/g) 

Pax–IRE 
Grade PHS Tiller # 

A12077 77/5 5.26 M 4 29 
 77/8 5.64 M 4 32 

A12078 78/1 2.59 L 5 30 
 78/2 10.21 H 4 19 

 78/7 3.04 L 4 19 

A12080 80/2 4.67 M 3 23 
 80/7 3.10 L 3 18 

 80/10 10.72 H 5 59 

A12081 81/1 6.71 M 4 43 
 81/10 5.10 M 4 15 

A12082 82/1 8.54 H 4 19 
 82/4 8.87 H 3 22 

A12083 83/1 6.98 M 3 17 
 83/2 9.92 H 4 26 

A12084 84/1 3.53 L 4 40 
 84/5 4.33 M 4 43 

A12085 85/6 11.46 VH 4 23 

A12086 86/2 2.65 L 3 19 
 86/4 5.95 M 5 32 

A12087 87/5 3.50 L 4 36 
 87/10 4.93 M 5 54 

 

3.4 Discussion 

Previous unpublished work, the Lincoln trial (Popay A. J., Fletcher L. R., Briggs L. 

R., AgResearch, New Zealand; unpublished work, 2006), suggested that AR1-

infected plants with high levels of paxilline ELISA immunoreactivity were 

associated with low feeding damage from adult African black beetle (H. arator). 

The Lincoln study had used plants from different cultivars and not plants from 

within a cultivar, therefore the perceived relationship between paxilline 

immunoreactivity and feeding damage may have been a cultivar effect irrespective 

of endophyte infection and not because of the host plant’s influence on the 

production of the paxilline-like compounds detected as paxilline immunoreactivity 

(by the paxilline ELISA).  
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The ten plants grown from seed (family representatives) and planted out for each 

half-sibling family are closely related but not genetically identical and gave a 

reasonable representation of the varied characteristics of each family. For each half-

sibling family there was a maximum of ten family representatives that underwent 

the preliminary testing for: endophyte status, wild-type endophyte contamination, 

tiller number, plant health score and level of paxilline immunoreactivity in herbage. 

Family differences for the level of paxilline immunoreactivity were indicated, 

although the evidence was weak and not statistically significant, the result provided 

incentive to continue the investigation into paxilline immunoreactivity differences 

between families and how this relates to feeding damage from adult African black 

beetle (H. arator). 

Plants (and families) from the 23 half-sibling families (GA97 breeding line) were 

screened and plants identified as high, medium or low producers of paxilline 

immunoreactivity. Fifty individual AR1-infected plants were selected for the pilot 

trial based on the level of paxilline immunoreacitivity in herbage, plant tiller 

number (≥10) and plant health score (≥3), across all families and across the range 

of levels of paxilline immunoreactivity. Representatives from the three family lines 

contaminated with wild-type endophyte were also included in the selection as 

benchmark plants and families for levels of resistance to feeding by adult African 

black beetle (H. arator).  

In addition to determining the levels of paxilline immunoreactivity in AR1-infected 

plants (and families) the variability in the levels of paxilline immunoreactivity 

across plants within the same family was found. Families with larger variability 

provided greater scope for improving the average family level of paxilline 

immunoreactivity by breeding compared with families with small variability. 

Families with moderate to large plant variation (grown from seed) enables the 

average value of a trait for the family to be potentially increased (or decreased) 

through breeding trials. Therefore families with sufficient variation in plant levels 

of paxilline immunoreactivity, and plants from within these families with moderate 

to high levels of paxilline immunoreactivity, high tiller numbers and high plant 

health scores could be identified as potential candidates for breeding to increase the 

level of paxilline immunoreactivity. Family variation for paxilline 
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immunoreactivity and other characteristics (plant size and robustness) gave 

valuable information used in the selection process and for identifying potential 

families and plants (from within those families) for breeding trials. 

Ideal ryegrass plants wanted for agricultural purposes are plants that are robust 

(high plant health score), have a high herbage production (large plant size and high 

tiller number), and high levels of the beneficial fungal secondary metabolites that 

are not harmful to livestock (e.g. peramine for resistance to Argentine stem weevil 

(L. bonariensis) and nil or negligible levels of the secondary metabolites that are 

harmful to livestock (e.g. ergovaline, although provides for resistance to African 

black beetle (H. arator), is toxic to livestock). Because AR1-infected ryegrass does 

not produce the known secondary metabolites that cause ill health to mammals 

(livestock), but does produce some of the beneficial secondary metabolites for 

insect pest resistance it is still the safest endophyte-plant association available. If 

there is a relationship between paxilline immunoreactivity and feeding damage 

from adult African black beetle (H. arator), increasing the levels of paxilline 

immunoreactivity in AR1-infected cultivars through breeding programs could be 

viable option for improving AR1-infected plant resistance to adult African black 

beetle (H. arator). 

3.5 Summary 

Plants from the 23 half-sibling families (GA97 breeding line) were screened and 

plants were identified as high, medium or low producers of paxilline 

immunoreactivity with family differences indicated. Fifty plants across the range 

of paxilline immunoreactivity (low, medium and high levels) representing all 23 

half-sibling families were selected for further study (Table 3-3) to investigate if 

plant resistance to feeding by adult African black beetle (H. arator) is related to the 

concentration of paxilline immunoreactivity.  

It was established that all plants were infected with endophyte, however, three 

families were identified as being contaminated with wild-type endophyte (A12074, 

A12085 and A12086). 
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It was confirmed that either grinding mill, blade or cyclone (IKA-10 for samples 

≤2 g and Udy for samples >2 g respectively) could be used to mill plant samples 

for analysis by ELISA and analytical chemistry. 
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4 Chapter 4 

Trial 1 – Pilot Study 

The purpose of the feeding pilot trial with adult African black beetle (Heteronychus 

arator (Fabricius, 1775)) was to screen selected AR1-infected perennial ryegrass 

(Lolium perenne L.) plants from 23 genetically related half-sibling families (within 

a breeding-line) for: 

 Expression levels of paxilline-like and peramine fungal metabolites 

throughout. 

 Resistance to adult African black beetle (H. arator) feeding by assessing 

both the proportion of tillers damaged on a plant and the scale of feeding 

damage to each tiller. 

 Plant tiller production and any evidence of a relationship between plant size 

and feeding damage from adult African black beetle (H. arator). 

 Any evidence of an association between feeding damage by adult African 

black beetle (H. arator) and endophyte metabolite production of paxilline-

like compounds and peramine-like compounds. 

Cloned plants were used to determine plant variation within a genotype. With this 

information, a reduced number of AR1-infected plants would be selected for further 

study of plant resistance to adult African black beetle (H. arator) feeding. 

4.1 Introduction 

AR1-infected ryegrass cultivar results from the initial Lincoln trial (Popay A.J, 

Fletcher L.R., Briggs L. R., AgResearch, New Zealand; unpublished work, 2006) 

as mentioned in Section 3.1, suggested the possibility that a relationship between 

damage from adult African black beetle (H. arator) feeding and levels of paxilline 

immunoreactivity exists (also see Figure 1-7). AR1 produces peramine, a potent 

feeding deterrent to Argentine stem weevil (Listronotus bonariensis (Kuschel, 

1955)) adults (Rowan et al., 1990a). Although often stated to be a potent insect 

deterrent, there is little evidence from the literature for effects on other insects, other 

than it affects cutworm (Graphania mutans (Walker, 1857)) larval development 

(Dymock et al., 1988). Ball et al. (1997) showed that peramine does not deter adult 
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African black beetle (H. arator) from feeding. Levels of peramine produced by 

AR1-infected grasses are never-the-less important for the deterrence of Argentine 

stem weevil (L. bonariensis) adults, a major pasture pest in New Zealand.  

This pilot trial was a large scale feeding trial (with choice of plants) with adult 

African black beetles (H. arator) (Section 2.1.7) that used plants selected (Table 

3-3) from half-sibling family lines within a breeding line which exhibited a range 

of paxilline ELISA immunoreactivity results from low to high (0–40 µg/g).The 

purpose of this pilot trial was to determine if there were plant and family differences 

for adult African black beetle (H. arator) feeding damage, and if there were 

differences, then to determine if these related to immunoreactivity measured by the 

paxilline ELISA. The results from the paxilline ELISA pre-screen (Section 3.2.5) 

suggested that there was a family effect related to the levels of paxilline 

immunoreactive equivalents (paxilline-IRE) produced in the plants. Plant clones 

were used rather than individual plants grown from seed for this trial to reduce the 

host genetic variation. This was in response to the large variation found within the 

family lines from the pre-screen with the paxilline ELISA (Figure 3-3).  

Levels of immunoreactivity for paxilline-like metabolites were measured pre- and 

post-exposure to adult African black beetle (H. arator) feeding and peramine 

measured only for the latter. It was anticipated that peramine would be the only 

compound detected in the plants by the peramine ELISA (Section 2.4.4.2) which 

uses an anti-peramine antibody, a peramine coating conjugate (protein-hapten) and 

peramine as the reference standard as described in Section 2.4.4.2. 

4.2 Materials and methods 

This research (Section 2.1.7) was undertaken from October 2008 to November 2011 

at AgResearch, Ruakura Research Centre, Hamilton, New Zealand. Fifty individual 

plants from 23 half-sibling families within the AR1-infected, diploid perennial 

ryegrass (L. perenne) breeding line, GA97 were selected. Individual plants were 

chosen on the basis that they exhibited a range of paxilline ELISA 

immunoreactivity between 0 and 40 µg/g (Table 3-3). Families and plants infected 

with wild-type endophyte were included for comparison of plant resistance and 
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levels of immunoreactivity. The pilot trial was also used to further reduce the 

number of selected plants for continued experimental work. 

4.2.1 Beetle collection 

In spring, active adult African black beetle (H. arator) were collected (Section 

2.1.5) from the field in the Waikato region and maintained (Section 2.1.6) in the 

laboratory until required.  

4.2.2 Plants 

Original plants (Section 3.2.1) grown from seed were used as the parent plants for 

cloning. Selected plants were cloned as described in Section 2.1.2. Three clones of 

each plant were planted into replicate polystyrene trays (internal 49.5 cm × 30 cm) 

containing potting mix (one cloned plant per tray) and the fourth clone was 

replanted back into the same position in the original plant tray.  

4.2.3 Trial design and methodology 

The trial consisted of three replicate trays (three experimental units) each containing 

50 cloned plants (1–4 plants per family) planted in ten rows of five plants per row, 

with the position of the individual plants randomised (rows 5 cm apart, plants 5 cm 

apart). Planting was based on a randomised planting design for each tray. Figure 

4-1 illustrates the experimental unit planting positions. The three replicates were 

laid out next to each other in a 10 row by 15 column grid. 

Cages were constructed for each experimental unit using green knitted windbreak; 

(Ultrapro windbreak.LT 915 mm wide, 55% wind porosity, Cosio Plastics, New 

Zealand), acetate sheets and velcro strips (Figure 4-2). Cages were needed to 

prevent adult African black beetles (H. arator) from escaping. They were resistant 

to water damage and easily removed and replaced for African black beetle (H. 

arator) plant damage assessments through the duration of the trial. 

Plant clones were planted in mid-September 2008 and were allowed to recover and 

establish for 5 weeks prior to the start of the trial in mid-October. Plant 

establishment and the trial were conducted in the glasshouse (temperature range 

15–25°C). Plants were watered by hand as required (2–3 times a week). 



Trial 1 – Pilot Study Chapter 4 

124 

 

Figure 4-1: Experimental unit (tray) planting positions. 

 

 

Figure 4-2: Trays (experimental units) with cages attached. 

 

Prior to introducing the African black beetle (H. arator), the plants were trimmed 

to 3 cm, fertilised (as described in Section 2.1.4), tillers counted per plant at the 

start of the trial (Assessment 0; A0). The first 20 adult African black beetles (H. 

arator) were then added to each tray. Depending on availability, 16–18 adult 

African black beetles (H. arator) were added once a week for the next 3 weeks to 

each tray to give a total of 70 adult African black beetles per tray (Table 4-1). 
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Table 4-1: Addition of adult African black beetles to each tray in Trial 1 (pilot 
trial). 

Time Female Male Total 

Cumulative total 

Female Male All beetles 

Week 0 3 17 20 3 17 20 

Week 1 5 11 16 8 28 36 

Week 2 7 9 16 15 37 52 

Week 3 7 11 18 22 48 70 

 

In the trial schedule (Table 4-2) feeding damage assessments from adult African 

black beetle (H. arator) were performed mid-trial after 2 weeks at Assessment 1 

(A1) and after 4 weeks at the end of the trial at Assessment 2 (A2). Prior to 

assessments A1 and A2 plants were trimmed to 8 cm then herbage samples (5 cm) 

collected (Section 3.2.5; Figure 3-2). At the end of each assessment plants were 

fertilised.  

Total tiller number, and number of damaged and undamaged tillers were recorded 

at each assessment. Damaged tillers were scored on a scale of 1–3; 1 = minor 

damage (surface feeding only), 2 = moderate damage (damage had partially 

penetrated the tiller) and 3 = severe damage (tiller shredded completely and unlikely 

to survive). 

Herbage (5 cm) and damaged pseudostem samples (3 cm) were collected mid-trial 

(A1), and herbage, damaged and undamaged pseudostem samples at the end of the 

trial (A2) as shown in Figure 3-2. All grass samples (herbage and pseudostem) were 

then stored at –20°C. Undamaged pseudostem samples were collected from plants 

that had ≥10 undamaged tillers remaining at the end of the trial, with either 30% or 

a minimum of five undamaged pseudostems collected. This ensured a plant had a 

minimum of five undamaged tillers remaining for regrowth. 

After the trial, the cages were removed from the trays and the experimental units 

(trays) were moved outside for adult African black beetles (H. arator) to disperse. 

The trays were then transferred back to the screenhouse and the plants were 

maintained alongside the trays containing the original 230 plants (as described in 

Section 2.1.4). 
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Table 4-2: Schedule for feeding-choice Trial 1 (pilot trial) with adult African black 
beetle. 

Time Procedure 

Week –5 Plants cloned and planted into trays (experimental 
units) 

Week 0 

(A0) 

Plants trimmed and fertilised 

Tillers counted  

African black beetles added 

Week 1 African black beetles added 

Week 2 

(A1) 

Plants trimmed and herbage collected 

African black beetle damage assessed, tillers 
counted and damaged pseudostem collected 

Plants fertilised 

African black beetles added 

Week 3 African black beetles added 

Week 4 

(A2) 

Plants trimmed and herbage collected 

Feeding damage from African black beetles 
assessed, tillers counted and damaged pseudostem 
collected 

Undamaged pseudostem collected 

Plants fertilised 

A0, A1, A2 = Assessments 0 (start of trial), 1 (mid-trial), 2 (end of trial). 

 

Grass samples consisting separately of herbage, damaged and undamaged 

pseudostems, were prepared for analyses as described in Section 2.3. Grass samples 

were analysed using both the paxilline and peramine ELISAs (Sections 2.4.3 and 

2.4.4, respectively). The peramine and paxilline ELISAs were only performed on a 

subset of samples (14 of the 23 half-sibling families) taken at A2. 
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4.2.4 Statistical Analyses 

The data from each assessment were analysed separately and cumulatively. 

Repeated measures analyses were not used because different experiment protocols 

were imposed prior to each assessment, such as the addition of beetles (See Table 

4-2). The following variables were analysed: total number of tillers, number of 

tillers damaged from feeding adult African black beetles (H. arator), damage score 

of tiller and levels of paxilline and peramine immunoreactivity. Family lines 

contaminated with wild-type endophyte were not removed from the data prior to 

analyses because family was a factor accounted for in the statistical analyses. The 

data were analysed using either generalised linear mixed model (GLMM) or REML 

in GenStat version 15 (Section 2.5) with random effects to account for spatial and 

replicate effects. Two parametrisations of the fixed model were considered: 

 M1: The basic model, tests for differences between plants (Plant). 

 M2: Tests for plant differences within families and between families 

(Family + Family.Plant). 

Note: The term ‘Plant’ allowed for differences between plants, ‘Family’ allowed 

for differences between families and ‘Family.Plant’ allowed for differences 

between plants from within a family. 

Post hoc tests were conducted using Fisher’s least significant difference at the 5% 

significance level (LSD(5%)). 

Tiller number data were analysed using REML and were square root transformed 

prior to analysis to stabilise the variance. The tiller number data were also analysed 

cumulatively (total tiller number at A2 plus number of damaged tillers from A1 

which had been removed), so total tiller production could be examined. 

Both the feeding damage and damage score data were assumed to have 

overdispersed binomial distributions, and therefore were analysed using GLMM, 

with a logit link function. Overdispersion was considered appropriate, as damage 

to tillers on the same plant was unlikely to be independent. The damage data were 

also analysed cumulatively (number of damaged tillers at A2 plus the number of 

damaged tillers from A1 which had been removed), enabling damage over the 

duration of the trial to be examined. 
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ELISA data were analysed using REML and were natural log transformed prior to 

analysis to stabilise the variance. Statistical analyses were only performed on the 

herbage and damaged pseudostem samples, as there were insufficient data from the 

undamaged pseudostem samples. Damage from adult black beetle feeding was 

correlated with both paxilline and peramine immunoreactivity. 

4.3 Results 

For all statistical analyses above, analogous results were obtained when initial tiller 

number, a proxy for plant size, was included as a covariate.  

Families contaminated with wild-type endophyte are indicated with the superscript 

‘WT’in the text, and highlighted in bold in the tables and figures.  

4.3.1 Total tiller number 

For initial tiller number there was strong evidence (P <0.001) that the mean number 

of tillers differed between all plants and between plants from within a family for all 

assessments, and between plants for total tillers produced in the trial (Appendix I, 

Table A). However, a positive relationship was found between initial tiller number 

and plant tiller number at subsequent assessments (A1 F(49,31) = 0.42; P < 0.001 and 

A2 F(49,46) = 0.73; P < 0.001). 

It can be seen that both prior to (Figure 4-3 A) and after African black beetle (H. 

arator) attack (Figure 4-4 A) for median plant tiller number, there was variation 

between families and some families were more variable than others. Within an 

individual plant genotype initially grown from seed, the variation between the 

genetically identical cloned plants (inter-clonal variation) for plant tiller number 

was in some cases quite large and in other cases very small (Figure 4-3 B and Figure 

4-4 B). From the unadjusted cumulative tiller number data (Figure 4-4 A), families 

were grouped into high, medium and low median tiller numbers per plant (Table 

4-3). The cumulative square root transformed means for tiller number of the clones 

from plants grown from seed ranged from 1.52–7.50 (Appendix I, Table A). Plants 

from the family lines contaminated with wild-type endophyte (highlighted in bold 

font) were not significantly different from the AR1-infected lines and had medium–

high median tiller number. 
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Figure 4-3: Total tiller number at the start of the trial (A0). 
A) Boxplot; displaying family median, upper and lower quartiles and showing variation 
within and between families. 
B) Dotplot; displaying individual plants within a family (circles) and the corresponding 
mean (bars), showing the variation within a family and between plants cloned from a 
single individual plant grown from seed. The data graphed has been square root 
transformed (with the back-transformed scale on the right vertical axis). The dotplot is 
coloured by individual plants grown from seed within a family, with each individual circle 
of the same colouring representing a cloned plant with a matching coloured bar denoting 
the mean of the clones for the individual plant. sed = standard error of the difference (fixed 
effects model, M1). 

Family lines contaminated with wild-type endophyte are highlighted in bold font.  
 

A 

B 
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Figure 4-4: Cumulative tiller number at the end of the trial (A2). 
A) Boxplot; displaying family median, upper and lower quartiles and showing variation 
within and between families. 
B) Dotplot; displaying individual plants within a family (circles) and the corresponding 
mean (bars), showing the variation within a family and between plants cloned from a 
single individual plant grown from seed. The data graphed has been square root 
transformed (with the back-transformed scale on the right vertical axis). The dotplot is 
coloured by individual plants grown from seed within a family, with each individual circle 
of the same colouring representing a cloned plant with a matching coloured bar denoting 
the mean of the clones for the individual plant. sed = standard error of the difference (fixed 
effects model, M1).  
Family lines contaminated with wild-type endophyte are highlighted in bold font. 

 

  

A 
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Table 4-3: Median cumulative tiller number per plant for the half-sibling families. 

Median plant tiller number Half-sibling families 

High 

(>30 tillers/plant) 

A12074, A12075*, A12080, A12081, 

A12085*, A12087 

Medium 

(20–30 tillers/plant) 

A12061, A12064, A12066, A12069, 

A12072, A12077, A12078, A12086 

Low 

(<20 tillers/plant) 

A12063, A12065, A12068, A12070, 

A12071, A12073, A12082, A12083, 

A12084 

*A single individual family representative (plant) grown from seed. Family lines 
contaminated with wild-type endophyte are highlighted in bold font.  

 

4.3.2 Feeding damage 

There was statistical evidence that the proportion of tillers damaged differed 

between individual plants and also between plants within families for assessments 

(Table 4-4). There was no evidence that the proportion of tillers damaged was 

related to the initial tiller number (A1 F(1,76) = 0.46; P = 0.501 and A2 F(1,84) = 0.97; 

P = 0.328). The data were analysed from the three perspectives; start to mid-trial 

(A1; Figure 4-5) and mid-trial to end of trial (A2) and total feeding damage 

(cumulative data A0–A2; Figure 4-6) to identify what level of feeding damage each 

of the plants sustained (low to high feeding damage). 

There was considerable variation throughout the trial in the proportion of damaged 

tillers for all plants and also from plants within familes (Figure 4-5 A and Figure 

4-6 A) and some families were more variable than others; A12064 had two of three 

plants (family representatives grown from seed) in the top ten and the remaining 

plant was in the bottom ten. Similarly within an individual plant genotype, the inter-

clonal variation for proportion of tillers damaged was in some cases quite large and 

in other cases very small (Figure 4-5 B and Figure 4-6 B). 
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Table 4-4: Mean plant proportion of damaged tillers (logit transformed), of the 
clones from individual plants grown from seed (from the 23 half-sibling families), 
from feeding by adult African black beetles.  
The data was analysed unadjusted for initial tiller number (plant size) at start of 
trial. The unadjusted data were also analysed cumulatively (cumulative damaged 
tiller number = the number of damaged tillers at Assessment 2 plus the number 
of damaged tillers from Assessment 1 which had been removed). 

Family Plant 

Mean plant logit(proportion of damaged tillers) 
(M1) 

A1 A2 Cum A0–A2 

A12061 61/6 0.21 (0.55) 0.89 (0.71) 1.95 (0.88) 
 61/9 -2.45 (0.08) 0.16 (0.54) 0.28 (0.57) 

A12063 63/4 -1.95 (0.12) -0.23 (0.44) 0.00 (0.50) 
 63/9 -1.07 (0.26) 1.10 (0.75) 1.60 (0.83) 

A12064 64/1 -1.04 (0.26) 0.19 (0.55) 0.74 (0.68) 
 64/6 -0.24 (0.44) 2.18 (0.90) -0.50 (0.38) 
 64/7 -2.40 (0.08) -0.34 (0.42) 2.57 (0.93) 
 64/10 -2.92 (0.05) -0.71 (0.33) -0.04 (0.49) 

A12065 65/1 -1.16 (0.24) 1.55 (0.82) 1.72 (0.85) 
 65/6 -1.09 (0.25) 2.34 (0.91) 2.64 (0.93) 
 65/7 -1.96 (0.12) 0.64 (0.66) 0.85 (0.7) 

A12066 66/7 0.14 (0.54) 1.23 (0.77) 1.92 (0.87) 
 66/8 -1.12 (0.25) -0.02 (0.49) 0.57 (0.64) 

A12068 68/6 -0.95 (0.28) -0.65 (0.34) 0.06 (0.51) 
 68/8 -3.43 (0.03) -1.20 (0.23) -1.06 (0.26) 

A12069 69/6 -0.55 (0.37) 0.61 (0.65) 1.51 (0.82) 
 69/9 -0.98 (0.27) 1.38 (0.80) 1.80 (0.86) 

A12070 70/5 -1.86 (0.13) -0.33 (0.42) 0.00 (0.50) 
 70/6 -1.23 (0.23) -0.29 (0.43) 0.24 (0.56) 
 70/8 -0.27 (0.43) -0.60 (0.35) 0.57 (0.64) 

A12071 71/3 -0.66 (0.34) 0.49 (0.62) 1.31 (0.79) 
 71/5 0.22 (0.56) 1.40 (0.80) 2.85 (0.95) 

A12072 72/2 -0.97 (0.27) 1.16 (0.76) 1.55 (0.82) 
 72/9 -3.04 (0.05) -0.24 (0.44) -0.14 (0.47) 

A12073 73/1 -0.42 (0.40) 1.01 (0.73) 1.50 (0.82) 
 73/2 -1.48 (0.19) 0.95 (0.72) 1.22 (0.77) 

A12074 74/1 -1.75 (0.15) -0.49 (0.38) -0.03 (0.49) 
 74/10 -1.09 (0.25) 0.60 (0.64) 0.88 (0.71) 

A12075 75/6 -1.76 (0.15) 1.53 (0.82) 1.72 (0.85) 

A12077 77/5 -1.79 (0.14) -0.27 (0.43) 0.09 (0.52) 
 77/8 -1.58 (0.17) -0.09 (0.48) 0.30 (0.57) 

Table 4–4 continued on next page 
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Table 4–4 continued 

Family Plant 

Mean plant logit(proportion of damaged tillers) 
(M1) 

A1 A2 Cum A0–A2 

A12078 78/1 -1.89 (0.13) 0.06 (0.51) 0.46 (0.61) 
 78/2 -1.76 (0.15) -1.02 (0.26) -0.52 (0.37) 
 78/7 -1.92 (0.13) -1.17 (0.24) -0.78 (0.31) 

A12080 80/2 -2.09 (0.11) 0.39 (0.60) 0.66 (0.66) 
 80/7 -1.39 (0.20) 0.69 (0.67) 0.54 (0.63) 
 80/10 -2.57 (0.07) 0.57 (0.64) 0.94 (0.72) 

A12081 81/1 -0.76 (0.32) 0.62 (0.65) 1.18 (0.76) 
 81/10 -0.66 (0.34) -0.01 (0.50) 0.85 (0.70) 

A12082 82/1 -1.86 (0.14) 1.39 (0.80) 1.70 (0.85) 
 82/4 -0.11 (0.47) 0.52 (0.63) 1.55 (0.82) 

A12083 83/1 -0.82 (0.30) 0.27 (0.57) 0.97 (0.73) 
 83/2 -3.59 (0.03) -0.27 (0.43) -0.21 (0.45) 

A12084 84/1 0.17 (0.54) 0.79 (0.69) 1.34 (0.79) 
 84/5 -1.54 (0.18) 0.11 (0.53) 0.69 (0.67) 

A12085 85/6 -1.41 (0.20) 0.50 (0.62) 0.82 (0.69) 

A12086 86/2 -1.67 (0.16) 0.37 (0.59) 0.55 (0.63) 
 86/4 -1.49 (0.18) -1.05 (0.26) -0.32 (0.42) 

A12087 87/5 -1.43 (0.19) -0.28 (0.43) 1.48 (0.81) 
 87/10 -0.71 (0.33) 0.89 (0.71) 0.29 (0.57) 

Fisher’s LSD(5%) 4.411 3.285 3.185 

Plant Effect (Individual PlantsP) 
F-statisticdf 1.8349,75 2.2749,70 2.4949,63 

P-value 0.009 <0.001 <0.001 

Fisher’s LSD(5%) 4.411 3.285 3.185 

Plant Effect (Within FamilyFP) 
Wald-statisticdf 51.2627 58.9227 58.2227 

P-value 0.003 0.004 <0.001 

A0, A1, A2 = Assessments 0 (start of trial and treatment phase), 1 (mid-trial), 2 (end of 
trial). Cum = cumulative. df = Degrees of freedom. LSD(5%) = Least significance difference 
at the 5% significance level. M1 = fixed effect model 1; FP = Family.Plant. P = Plant. 
Back transformed values are in brackets. Family lines and plants contaminated with wild-
type endophyte are highlighted in bold font. Statistically significant results are highlighted 
in bold and italic font. Weak evidence of effects (0.05< P ≤1.0) are highlighted in italic font. 
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Figure 4-5: Proportion of tillers damaged at mid-trial (A1). 
A) Boxplot; displaying family median, upper and lower quartiles and showing variation 
within and between families. 
B) Dotplot; displaying individual plants within a family (circles) and the corresponding 
mean (bars), showing the variation within a family and between plants cloned from a 
single individual plant grown from seed. The data graphed has been logit transformed 
(with the back-transformed scale on the right vertical axis). The dotplot is coloured by 
individual plants grown from seed within a family, with each individual circle of the same 
colouring representing a cloned plant with a matching coloured bar denoting the mean of 
the clones for the individual plant. sed = standard error of the difference (fixed effects 
model, M1). 
Family lines contaminated with wild-type endophyte are highlighted in bold font. 
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Figure 4-6: Cumulative proportion of tillers damaged at end of trial (A2). 
A) Boxplot; displaying family median, upper and lower quartiles and showing variation 
within and between families. 
B) Dotplot; displaying individual plants within a family (circles) and the corresponding 
mean (bars), showing the variation within a family and between plants cloned from a 
single individual plant grown from seed. The data graphed has been logit transformed 
(with the back-transformed scale on the right vertical axis). The dotplot is coloured by 
individual plants grown from seed within a family, with each individual circle of the same 
colouring representing a cloned plant with a matching coloured bar denoting the mean of 
the clones for the individual plant. sed = standard error of the difference (fixed effects 
model, M1). 
Family lines contaminated with wild-type endophyte are highlighted in bold font. 
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Plants were under high pressure from feeding by adult African black beetle (H. 

arator) (>1 beetle per plant), resulting in the median cumulative proportion of 

damaged tillers per plant for the majority of families (21 of 23) being >0.5, 

including wild-type–contaminated family lines (Table 4-5). Only families A12068 

and A12078 had medians ≤0.5 (0.36 and 0.50 respectively) as illustrated in Figure 

4-6 A. 

Table 4-5: Median cumulative proportion of damaged tillers per plant for the 
half-sibling families. 

Median proportion of damaged tillers Half-sibling families 

Very High 
(>0.75 proportion of damaged tillers) 

A12061, A12065, A12066, A12069, 
A12071, A12073, A12075*, A12082 

High 
(>0.5–≤0.75 proportion of damaged tillers) 

A12063, A12064, A12070, A12072, 
A12074, A12077, A12080, 
A12081,A12083, A12084, A12085*, 
A12086, A12087 

Medium 
(≤0.5 proportion of damaged tillers) 

A12068, A12078 

Family lines contaminated with wild-type endophyte are highlighted in bold font. *a single 
individual family representative (plant) grown from seed. 

 

Families that had all or the majority of family representatives in the top 25 least 

damaged plants were A12064, A12068, A12070, A12077, A12078, A12080 and 

A12086WT (seven of the top ten plants were from the the families underlined). 

Plants from the family lines contaminated with wild-type endophyte were not 

significantly different from many of the plants from the uncontaminated AR1-

infected family lines (Table 4-4). 

4.3.3 Peramine and paxilline ELISA results 

The peramine and paxilline ELISAs were only performed on a subset of samples 

(14 of the 23 half-sibling families) taken at the end of the trial (A2). From the results 

for tiller number and feeding damage, only plants that were considered likely to be 

proceeding on with, in subsequent trials were analysed. The subgoup of ELISA data 
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refers to the set of ELISA results from plants with peramine or paxilline ELISA 

results for all three plant sections; herbage, damaged and undamaged pseudostems. 

This enabled the calculation of an overall plant pseudostem level of peramine and 

paxilline immunoreactivity, by summing the damaged and undamaged pseudostem 

levels weighted by the proportion of tillers damaged (for the subgroup of ELISA 

data). 

For both peramine and paxilline immunoreactivity, there was strong evidence (P 

<0.001) of differences between plants (Table 4-6), within families and indicated 

between families. For both fungal secondary metabolites, variation was larger 

within some families than others although this depended on the section of plant 

analysed (herbage, damaged or undamaged pseudostem). In general, the inter- 

clonal variation between cloned plants within a single genotype was small, but there 

were significant differences between the plant means of different family 

representatives and these differences could account for the majority of the variation 

within the family (Table 4-6). 

Examples of the peramine and paxilline immunoreactivity in herbage, damaged 

pseudostem and undamaged pseudostem showing plant and family variation are 

illustrated for paxilline immunoreactivity (see Figure 4-7 to Figure 4-9 

respectively). Levels of peramine and paxilline immunoreactivity were generally 

higher in the undamaged pseudostem than the damaged pseudostem, with the 

lowest levels in the herbage (Figure 4-10). 

For family A12073, one of the family representatives (73/1) had no detectable 

levels of peramine immunoreactivity, minimal levels of paxilline immunoreactivity 

in herbage and damaged pseudostem (and insufficient sample available to measure 

immunoreactivity levels in the undamaged pseudostem) therefore family A12073 

was omitted from the immunoreactivity data. The subgroup of ELISA data 

(Appendix I, Table B) that had recorded levels of peramine and paxilline 

immunoreactivity for all three plant sections (herbage, damaged and undamaged 

pseudostem) was analysed. 
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Table 4-6: Mean plant concentrations (natural log transformed) of the clones 
from individual plants grown from seed (from the 23 half-sibling families) for 
peramine-IRE and paxilline-IRE in herbage and damaged pseudostem plant 
sections at A2. 

Family Plant 

Mean natural log transformed concentrations of ELISA 
immunoreactivity (M1) 

Peramine-IRE (µg/g)  Paxilline-IRE (µg/g) 

Herb DP  Herb DP 

A12061 61/6  2.78 (15.1) 3.02 (19.49)  1.74 (5.69) 2.13 (8.41) 
A12061 61/9 3.23 (24.23) 3.28 (25.66)  2.29 (9.87) 2.56 (12.94) 

A12063 63/4 3.13 (21.92) 3.42 (29.48)  2.08 (7.98) 2.49 (12.03) 
A12063 63/9 2.59 (12.28) 2.55 (11.82)  1.33 (3.79) 1.77 (5.85) 

A12064 64/1 3.05 (20.09) 3.15 (22.29)  2.28 (9.77) 2.48 (11.88) 
A12064 64/6 2.62 (12.74) 2.84 (16.15)  1.81 (6.09) 1.86 (6.42) 
A12064 64/7 2.98 (18.67) 3.19 (23.24)  2.25 (9.53) 2.52 (12.37) 
A12064 64/10 3.96 (51.61) 3.22 (24.08)  3.09 (21.89) 2.83 (16.98) 

A12069 69/6 3.17 (22.86) 3.37 (28.02)  1.92 (6.83) 2.37 (10.69) 
A12069 69/9 3.21 (23.78) 3.09 (20.98)  1.77 (5.84) 2.22 (9.17) 

A12072 72/2 2.83 (15.86) 3.00 (19.03)  1.55 (4.73) 2.48 (11.88) 
A12072 72/9 3.15 (22.34) 3.27 (25.23)  2.51 (12.30) 2.60 (13.41) 

A12073 73/1 -0.02 (-0.02) 0.03 (0.03)  -1.32 (0.27) -1.36 (0.26) 
A12073 73/2 3.10 (21.13) 3.43 (29.97)  2.00 (7.37) 2.37 (10.73) 

A12074 74/1 3.06 (20.22) 3.21 (23.78)  2.45 (11.54) 2.73 (15.30) 
A12074 74/10 3.11 (21.33) 2.94 (17.86)  2.03 (7.58) 1.88 (6.58) 

A12077 77/5 2.84 (16.03) 2.67 (13.37)  1.12 (3.07) 1.54 (4.65) 
A12077 77/8 2.97 (18.41) 3.12 (21.62)  1.55 (4.69) 1.97 (7.16) 

A12078 78/1 3.18 (23.14) 3.22 (23.9)  1.5 (4.49) 1.71 (5.5) 
A12078 78/2 3.10 (21.26) 3.28 (25.68)  1.88 (6.53) 2.32 (10.18) 
A12078 78/7 2.65 (13.15) 3.05 (20.07)  1.17 (3.23) 2.00 (7.37) 

A12080 80/2 3.26 (25.05) 3.55 (33.95)  1.78 (5.91) 2.50 (12.15) 
A12080 80/7 3.02 (19.53) 3.06 (20.31)  1.35 (3.86) 1.85 (6.34) 
A12080 80/10 3.74 (41.01) 3.42 (29.69)  2.45 (11.54) 2.31 (10.11) 

A12081 81/1 2.90 (17.14) 2.85 (16.29)  1.64 (5.14) 2.12 (8.35) 
A12081 81/10 2.76 (14.72) 2.54 (11.67)  0.84 (2.31) 1.19 (3.28) 

A12083 83/1 3.40 (29.02) 3.39 (28.76)  1.48 (4.37) 2.37 (10.73) 
A12083 83/2 2.95 (18.14) 3.05 (20.07)  1.87 (6.48) 1.84 (6.30) 

Table 4–6 continued on next page 
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Table 4–6 continued 

Family Plant 

Mean natural log transformed concentrations of ELISA 
immunoreactivity (M1) 

Peramine-IRE (µg/g)  Paxilline-IRE (µg/g) 

Herb DP  Herb DP 

A12086 86/2 2.88 (16.73) 2.61 (12.63)  1.98 (7.21) 2.18 (8.82) 
A12086 86/4 3.09 (20.93) 3.19 (23.22)  2.7 (14.88) 2.79 (16.28) 

A12087 87/5 3.22 (23.93) 3.16 (22.57)  2.1 (8.15) 2.38 (10.75) 
A12087 87/10 3.14 (22.01) 3.39 (28.78)  2.17 (8.73) 2.68 (14.61) 

Fisher’s LSD(5%) 0.394 0.451  0.538 0.518 

Plant Effect (Individual PlantsP) 
F-valuedf 21.0831,52 15.8231,37  16.1931,43 19.4631,41 

P-value <0.001 <0.001  <0.001 <0.001 

Plant Effect (Within familyFP) 
Wald-statisticdf 368.3618 342.5118  257.1918 370.8818 

P-value <0.001 <0.001  <0.001 <0.001 

A2 = Assessment 2 (end of trial). df = Degrees of freedom. DP = Damaged pseudostem. 
Herb = Herbage. LSD(5%) = least significance difference at the 5% significance level. M1 = 
fixed effects model 1; FP = Family.Plant. P = Plant. Peramine- and Paxilline-IRE = Peramine 
and paxilline immunoreactive equivalents. 
Back transformed values are in brackets. Family lines and plants contaminated with wild-
type endophyte are highlighted in bold font. Statistically significant results are highlighted 
in bold and italic font. Weak evidence of effects (0.05< P ≤1.0) are highlighted in italic font. 
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Figure 4-7: Levels of paxilline immunoreactive equivalents (paxilline-IRE) in herbage. 
A) Boxplot; displaying family median, upper and lower quartiles and showing variation 
within and between families. 
B) Dotplot; displaying individual cloned plants within a family and the corresponding mean, 
showing the variation within a family and between plants cloned from a single individual 
plant grown from seed (family representative). The data has been square root transformed 
(with the back-transformed scale on the right vertical axis). The dotplot is coloured to 
distinguish individual family representatives within a family, with each individual circle of 
the same colouring representing a cloned plant with a matching coloured bar denoting the 
mean of the clones for the individual family representative plant. . sed = standard error of 
the difference (fixed effects model, M1). 
Family lines contaminated with wild-type endophyte are highlighted in bold font.  
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Figure 4-8: Levels of paxilline immunoreactive equivalents (paxilline-IRE) in damaged 
pseudostem. 
A) Boxplot; displaying family median, upper and lower quartiles and showing variation 
within and between families. 
B) Dotplot; displaying individual cloned plants within a family and the corresponding mean, 
showing the variation within a family and between plants cloned from a single individual 
plant grown from seed (family representative). The data has been square root transformed 
(with the back-transformed scale on the right vertical axis). The dotplot is coloured to 
distinguish individual family representatives within a family, with each individual circle of 
the same colouring representing a cloned plant with a matching coloured bar denoting the 
mean of the clones for the individual family representative plant. sed = standard error of 
the difference (fixed effects model, M1). 
Family lines contaminated with wild-type endophyte are highlighted in bold font.  
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Figure 4-9: Levels of paxilline immunoreactive equivalents (paxilline-IRE) in undamaged 
pseudostem. 
A) Boxplot; displaying family median, upper and lower quartiles and showing variation 
within and between families. 
B) Dotplot; displaying individual cloned plants within a family showing the variation within 
a family and between plants cloned from a single individual plant grown from seed (family 
representative). The data has been square root transformed (with the back-transformed 
scale on the right vertical axis).The dotplot is coloured to distinguish individual family 
representatives within a family, with each individual circle of the same colouring 
representing a cloned plant from a single family representative. 

Family lines contaminated with wild-type endophyte are highlighted in bold font.  
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Figure 4-10: Comparison of the concentration of peramine and paxilline 
immunoreactivity in the three different plant sections; herbage, damaged and 
undamaged pseudostem from all ELISA data. 

 

From scatterplots, positive correlations were found between the various plant 

sections for each secondary metabolite group, ranging from weak to strong, 

however, some relationships appear non-linear, (Appendix I, Figure A and Figure 

B). Strong correlations (Pearson’s correlation coefficient, CC >0.85) were observed 

for both peramine and paxilline immunoreactivity between the overall pseudostem 

with both damaged and undamaged pseudostem subsections, with the strongest 

correlations (CC >0.95) found with the undamaged pseudostem plant subsection 

(Appendix I, Figure B c-f). When comparing levels of peramine and paxilline 

immunoreactivity within a plant section, however, only weak positive correlations 

were found for the undamaged and overall plant sections (Appendix I, Figure B a-

b). For peramine immunoreactivity, only relatively weak correlations (CC ≤0.65) 

were found between herbage with both pseudostem plant subsections and the 

overall plant pseudostem, and for paxilline immunoreactivity, moderate 

correlations (0.65< CC ≤0.85) (Appendix I, Figure A). Yet when comparing the 

two secondary metabolite groups within a plant section moderate correlations were 
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found for both herbage and damaged pseudostem (Appendix I, Figure C a and b) 

and at best weak correlations in the undamaged and overall pseudsotem sections 

Appendix I, Figure C c and d). In addition, in a scatterplot comparing levels of 

paxilline immunoreactivity in herbage between the initial paxilline screen pre-trial 

(Section 3.3.4) and at end of this trial only a relatively weak positive correlation 

was apparent (CC = 0.63) (Appendix I, Figure D). 

4.3.4 Relationships between feeding damage and the ELISA results 

for peramine and paxilline immunoreactivity 

Damage from adult African black beetle (H. arator) feeding was correlated with 

both paxilline and peramine immunoreactivity. The levels of peramine and paxilline 

immunoreactivity in the different plant sections were compared with the proportion 

of damaged tillers for the subset of samples (from 14 of the 23 half-sibling families) 

that were analysed by ELISA and the subgoup of ELISA data (the set ELISA results 

from plants with peramine or paxilline ELISA results for all three plant sections; 

herbage, damaged and undamaged pseudostems). An estimation of the overall plant 

pseudostem level of peramine and paxilline immunoreactivity was calculated 

weighted by the proportion of tillers damaged. 

The relationship between feeding damage from adult African black beetle (H. 

arator) with peramine immunoreactivity, and with paxilline immunoreactivity are 

presented using scatterplots in Figure 4-11 (for the three plant sections) and in 

Figure 4-12 (overall plant pseudostem). No relationships were found between 

feeding damage with both peramine and paxilline immunoreactivity for any of the 

three plant sections, including the calculated overall pseudostem. 

However, in the plot comparing the overall plant pseudostem with feeding damage 

for paxilline immunoreactivity (Figure 4-12 B) a cluster of data points (circled) was 

evident. 

The group of plants making up this cluster had high levels of paxilline 

immunoreactivity in the overall pseudostem (≥25 μg/g) and low proportions of 

damaged tillers (0.2 or 20%). This cluster of data points can also be seen in the 

plot comparing levels of paxilline immunoreactivity in undamaged pseudostem and 

feeding damage from adult African black beetle (H. arator) (Figure 4-11 F).  
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Figure 4-11: Scatterplots (raw data) between adult African black beetle feeding damage 
with peramine (A, C and E) and paxilline (B, D and F) ELISA immunoreactivity in the three 
plant sections; herbage, damaged and undamaged pseudostem.  
Plots A–F; A and B) herbage, C and D) damaged pseudostem, E and F) undamaged 
pseudostem. Peramine- and paxilline-IRE = peramine and paxilline immunoreactive 

equivalents. 



 

 

1
4
6
 

 

Figure 4-12: Scatterplots (raw data) between adult African black beetle feeding damage with peramine and paxilline ELISA immunoreactivity in the overall 
pseudostem (Subgroup data).  
Plots A and B; A) Peramine data, B) Paxilline data. Subgroup data = subgroup of peramine or paxilline ELISA data (Appendix I Table B) in which individual cloned plants 
had measured levels of peramine or paxilline immunoreactivity for all three plant sections; herbage, damaged and undamaged pseudostem. Overall pseudostem 
levels of peramine or paxilline immunoreactivity were calculated by summing the damaged and undamaged pseudostem immunoreactivity levels weighted by the 
proportion of tillers damaged. Peramine- and paxilline-IRE = peramine and paxilline immunoreactive equivalents.
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4.3.5 Damage score 

The analyses of plant tillers for the severity of damage from feeding by adult 

African black beetle (H. arator) (1 = minor damage, 2 = moderate damage and 3 = 

severe damage causing tiller death, with undamaged tillers = 0) were examined 

from two perspectives; the proportion of all tillers with a damage score of three and 

the proportion of damaged tillers with a score of three. This was because of the low 

number of tillers with damage scores of one or two at each assessment (A1 and A2; 

Figure 4-13). Owing to the sparsity of the data (the proportion of tillers damaged at 

A1 was low relative to A2; Figure 4-13) only the analysis of the proportion of tillers 

with a damage score of three produced sensible results and was used. Plant means 

for the proportion tillers damaged with a damage score of three at A2 are tabled in 

Appendix I, Table C. 

 

 

Figure 4-13: Total number of plant tillers at each assessment (A1 and A2) partitioned by 
tiller damage scores.  
1 = Assessment 1 (A1). 2 = Assessment 2 (A2). Not Damaged = undamaged tiller; damage 
score = 0.  
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The proportion of tillers with a damage score of three differed significantly between 

plants (F(19,73) = 1.85; P = 0.008) at A2, with weak evidence (Wald statisticdf = 

38.6327; P = 0.068) of differences within families. No evidence was found of an 

initial tiller number (plant size) effect on the proportion of tillers with a damage 

score of three. The results mirrored those found for the proportion of all tillers 

damaged (feeding damage) because a tiller was either undamaged or if fed on by a 

beetle it was generally severely damaged causing death of the tiller. Seven of the 

ten plants with lowest proportion of damaged tillers also had the lowest proportion 

of tillers with a damage score of three. Eight of the ten plants with the greatest 

damage also had the highest proportion of tillers with a damage score of three. 

4.3.6 Comparison of current trial results with Lincoln trial results 

The Lincoln trial data were re-analysed using only the undamaged pseudostem 

samples for direct comparison with the current trial. Undamaged pseudostem 

samples were used as earlier analyses suggest that these best reflect overall 

pseudostem immunoreactivity levels (Section 4.3.3). The current trial had much 

higher levels of adult African black beetle (H. arator) damage than the Lincoln trial. 

A scatterplot of the mean level of paxilline-IRE against the mean proportion 

damage (Figure 4-14) provides little evidence of a relationship for the Lincoln trial. 

Conversely, the current trial suggests a positive relationship. However, when the 

raw data is examined (Figure 4-15) within certain cultivars and families there were 

suggestions of a negative association with feeding damage and paxilline-IRE levels 

in the pseudostem (for example, ‘Arrow’ and A12064), in others a positive 

association (for example ‘Alto’ and ‘PG150’) and in others no association (for 

example, ‘Extreme’ and A12087). For the Lincoln Trial, large variation was found 

within the cultivars (Figure 4-15 A), consistent with the variation found within the 

half-sibling famililes in the current trial (Figure 4-15 B). 
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Figure 4-14: Scatterplot of the mean values for the level of paxilline-IRE in half-sibling 
families of the GA97 breeding line in the present study and commercially available 
cultivars in the Lincoln trial.  
The identity of the family or cultivar is shown with its data point. 64–87 = Families A12061–
A12087. Paxilline-IRE = Paxilline immunoreactive equivalents.   
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Figure 4-15: Individual plants and proportion of tillers damaged.  
A) Lincoln trial. B) PhD pilot trial. The identity of the family or cultivar is shown by the 
colour of the data point. 64–87 = Families A12061–A12087. Paxilline-IRE = Paxilline 
immunoreactive equivalents.  
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4.4 Discussion 

The purpose of the pilot trial with African black beetle (H. arator) was to screen 

AR1-infected ryegrass plants from 23 half-sibling families (within the GA97 

breeding line) to determine resistance of plants to feeding from adult African black 

beetle (H. arator), levels of the paxilline-like and peramine-like fungal metabolites, 

tiller production and any associations between fungal metabolites and feeding 

damage; and whether there were associated plant and family differences. Using this 

information, a number of AR1-infected plants were selected for further study of 

plant resistance to feeding by adult African black beetle (H. arator). Inclusion of 

the plants and familes contaminated with wild-type endophyte not only allowed the 

identification of AR1-infected plants and families with at least the same level of 

resistance to African black beetle (H. arator) as the wild-type infected plants, but 

also those AR1-infected plants with at least the same level of secondary metabolite 

production (peramine and paxilline immunoreactivity) and tiller production. All of 

which are useful grass-breeding traits. The trial was run in mid-late spring when 

adult African black beetle (H. arator) were in their reproductive phase and levels 

of alkaloid production in grass were increasing. Seasonal trends have been reported 

for the level of fungal endophytes (Fletcher, 1983; Mortimer et al., 1984; di Menna 

& Waller, 1986; Fletcher, 1986; di Menna et al., 1992; Ball et al., 1995a) and many 

of the metabolites they produce, with general alkaloid production slightly lagging 

endophyte concentration, increasing during spring, through summer and early 

autumn, then falling in late autumn and winter (di Menna et al., 1992; Woodburn 

et al., 1993; Ball et al., 1995a; Easton et al., 1996). Different metabolites may have 

production peaks at slightly different times, with lolitrem B peaking in summer and 

early autumn (Prestidge & Gallagher, 1988; Ball et al., 1991; di Menna et al., 1992; 

Ball et al., 1995a) and with peramine being high from mid-spring through to mid-

autumn (Ball et al., 1995a). 

Differences identified among plants found in the present work were very promising 

and in line with the intention to identify plants and families with high resistance to 

feeding by adult African black beetle (H. arator), average to high tiller production 

and high production of paxilline-like compounds. Differences between plants for 

the levels of the endophyte and endophyte metabolites has been reported previously 



Trial 1 – Pilot Study Chapter 4 

152 

(Musgrave, 1984; Jones et al., 1985; Belesky et al., 1989; Rowan et al., 1990b; Ball 

et al., 1991; Hill et al., 1991; Breen, 1992; Azevedo et al., 1993; Davies et al., 1993; 

Keogh & Tapper Brian, 1993; Agee & Hill, 1994; Ball et al., 1995a). It has been 

found that the genetic characteristics of both endophyte and host plant are important 

in the levels of alkaloid production (Fannin et al., 1990; Christensen et al., 1991; 

Hill et al., 1991; Christensen et al., 1993; Agee & Hill, 1994), with individual plants 

infected with the same endophyte found to contain different levels of endophyte 

and endophyte metabolites (Breen, 1992; Ball et al., 1995a). Other work has shown 

that within a host plant species (e.g. L. perenne) the level of insect resistance is 

variable both between individual plants (Easton et al., 2000) and between cultivars 

infected with the same endophyte (Popay et al., 2003). The number of tillers a plant 

produced did not appear to be influenced by adult African black beetle (H. arator) 

attack, i.e., plants that had high tiller numbers at the start of the trial, prior to 

exposure to feeding by adult African black beetle (H. arator), had high tiller 

numbers at the end of the trial, post exposure. The number of tillers a plant had did 

not influence the proportion of tillers damaged from feeding by adult African black 

beetle (H. arator). The results imply that feeding by beetles is not influenced by 

plant size and feeding by adult African black beetle (H. arator) does not influence 

tiller production for specific plants and families. Instead plant resistance to attack 

by African black beetle (H. arator), plant size and tiller production, are traits 

strongly influenced by host plant genetics. Identification of plants with high tiller 

production is a useful grass breeding trait and was used in the selection of plants 

for further investigation as high tiller number in general reflects, a larger plant size 

resulting in higher drymatter producton. 

Epichloë festucae var. lolii and several of the fungal metabolites it produces are 

known to be concentrated at the base of the plant (Musgrave, 1984; Gallagher et al., 

1987). In agreement with published data, in the present study, the highest levels of 

peramine and paxilline immunoreactivity were found in the pseudostem sections 

(undamaged pseudostem, then damaged pseudostem) and the lowest in the herbage. 

Fungal secondary metabolites differ in solubility properties and therefore 

translocation within the plant will differ. In agreement with the literature, the more 

polar (water soluble) alkaloids, such as peramine and lolines will be more mobile 

within the plant (Tapper et al., 1989; Fannin et al., 1990; Davies et al., 1993; Ball 
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et al., 1995a) and the lipophilic alkaloids, such as lolitrems, paxilline and ergovaline 

are less polar and will be less mobile within the plant (Gallagher et al., 1987; di 

Menna et al., 1992; Davies et al., 1993; Keogh & Tapper Brian, 1993). 

In this current study, concentrations of peramine immunoreactivity between the 

herbage and both pseudostem plant sections (damaged and undamaged) were only 

weakly correlated. Yet concentrations of peramine immunoreactivity between the 

damaged and undamaged pseudostem sections were moderately correlated. Ball et 

al. (1995a) suggests that peramine is translocated from the basal part of the plant (8 

cm from the crown) to the upper parts of the plant (>8 cm). Therefore in the present 

study, the equivalent ‘basal part of the plant’ was separated into the pseudostem (3 

cm from the crown) and herbage (from 3 to 8 cm from the crown) and the equivalent 

‘upper part of the plant’ was not measured and was discarded. This may in part 

explain why, in the current work, higher levels of peramine immunoreactivity were 

found in pseudostem than in the herbage. The pseudostem section includes the base 

of the plant where endophyte and fungal alkaloid concentrations are known to be 

high. Whereas in the herbage section, peramine is possibly being transported to the 

upper parts of the plant (>8cm).  

With less polar alkaloids not as broadly distributed within the plant, comparisons 

between the different plant sections for each secondary metabolite group may 

reflect this difference in solubility properties, with stronger relationships found for 

the paxilline group than for the peramine group. Herbage sections were weakly 

correlated with the damaged, undamaged and overall pseudostem (weighted by the 

proportion of damaged tillers) sections for the peramine group of secondary 

metabolites and moderately correlated for the paxilline group. Whereas the 

damaged and undamaged pseudostem sections were moderately or strongly 

correlated with each other for peramine and paxilline immunoreactivity 

respectively, and both pseudotstem sections were strongly correlated with the 

overall pseudostem for each metabolite group. 

This difference in alkaloid solubility properties may also be reflected in the results 

from comparisons between the two metabolite groups within each plant section. 

Weak correlations were found in the undamaged and overall pseudostem plant 

sections and moderate correlations in herbage and damaged pseudostem. This is 
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unlike correlations found between metabolites reported in the literature (Ball et al., 

1995b; Ball et al., 1995a) and may suggest that there is more than just an 

environmental influence on the undamaged pseudostem samples. 

Davies et al. (1993) suggested that the distribution of paxilline-like compounds may 

relate to hydrophilic components and that the patterns of distribution of individual 

paxilline-like compounds between plant sections may differ depending on both 

seasonal fluctuations and on other environmental effects, such as, pest-resistance.  

Given that adult (H. arator) feed at the base of the plant and the distribution of the 

fungus and the alkaloids at the base of the plant (Musgrave, 1984; Ball et al., 1995a) 

ensures plant and fungus have the strongest protection where herbivory will 

threaten their survival (Popay, 2009); the levels of specific secondary metabolites 

found in the pseudostem section are presumed to be more relevlant for resistance to 

feeding from African black beetle (H. arator) than herbage in this work. Though, 

if the level of specific secondary metabolites in the herbage were relative to the 

level found in the pseudostem section, the herbage section could be used for 

sampling. Herbage is the most practical plant section for sampling throughout the 

duration of a trial because no tillers are required to be scarified for sampling, as is 

required when sampling the pseudostem section. However, it was found 

pseudostem sampling is required. With the undamaged pseudostem section having 

the strongest correlation with the overall pseudostem for both peramine and 

paxilline immunoreactvity it was considered the best plant section for sampling. 

With higher levels of immunoreactivity found in the undamaged than damaged 

pseudostem (especially paxilline immunoreactivity) it is important to be measuring 

the same sample types (plant sections) for plant comparisons as mixed pseudostem 

samples could skew the results if the entire plant pseudostem is not available for 

testing. 

Comparison of paxilline immunoreactivity concentrations in herbage from the 

initial pre-screen (Chapter 3), prior to adult African black beetle (H. arator) attack 

and at the end of this trial, after exposure to beetles were not strongly correlated 

(Appendix I, Figure D). This result may indicate that paxilline immunoreactivity 

could be influenced by adult black beetle feeding. If the levels of paxilline 

immunoreactivity were constitutively produced or from a generalised response due 
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to seasonal and/or insect attack, a strong correlation would be expected as the plants 

were genetically identical. It is known that the production levels of secondary 

metabolites including paxilline immunoreactivity, are strongly influenced by the 

host plant (Fannin et al., 1990; Christensen et al., 1991; Hill et al., 1991; 

Christensen et al., 1993; Agee & Hill, 1994) and it was anticipated that the relative 

production level would be consistent within the specific endophyte and plant 

association. Although production levels of the metabolites are influenced by 

seasonal variation (di Menna et al., 1992; Woodburn et al., 1993; Ball et al., 1995a; 

Easton et al., 1996) and Davies et al. (1993) suggested distribution of individual 

paxilline-like metabolites in plant sections may differ if exposed to insect attack, it 

was anticipated that the relative levels of paxilline immunoreactivity between plants 

would remain the same over time as reported by Ball et al. (1995). Peramine was 

not measured prior to plant exposure to actively feeding adult African black beetle 

(H. arator). 

Although it was anticipated that there would be no other peramine-like compounds 

detected by the peramine ELISA, the ELISA has not been validated against a 

reference method therefore results were expressed as immunoreactive equivalents 

of the reference standard used (peramine). In this current study there was no 

evidence found that peramine immunoreactivity influences adult African black 

beetle (H. arator) feeding. This was in agreement with data published by Ball et al. 

(1997). The antibody in the paxilline ELISA is generic and each paxilline-like 

compound (known and unknown) will cross-react with the antibody to varying 

degrees. The paxilline ELISA uses paxilline as the reference standard and 

quantitatively measures equivalents of paxilline immunoreactivity, but it is not a 

quantitative measure of the mix of paxilline-like compounds. The ELISA detects 

both known and unknown paxilline-like compounds by measuring equivalents of 

paxilline immunoreactivity determined by the different cross-reactivities of the mix 

of paxilline-like compounds and the level of each compound. Although no 

correlations were found between paxilline immunoreactivity and feeding damage 

by adult African black beetle (H. arator), a cluster of data points was observed with 

an apparent association between high levels of paxilline-IRE (≥25 µg/g) in the 

overall pseudostem (Figure 4-12 B) and undamaged pseudostem sections and 

corresponding low feeding damage (Figure 4-12 B and Figure 4-11 F respectively). 
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Owing to the small sample size the cluster results from this present work can only 

be treated as indicative. In the paxilline-like mix of compounds, those that are not 

associated with feeding may be produced at lower levels or stay the same, while those 

that are associated with feeding may be produced at higher levels. However, because 

the cross-reactivity of the different compounds will be different, the overall level of 

paxilline-IRE may stay the same, lower or increase depending on the production 

profile of alkaloids. Therefore, initially until the paxilline-like compounds associated 

with feeding are produced at high enough levels, they may be masked by those not 

associated with feeding and the bioactivity is only detectable by ELISA once the 

profile of paxilline-like compounds changes sufficiently to allow detection. Therefore, 

it is possible that a subset of paxilline-like compounds is being masked by others 

recognised by the ELISA that do not affect adult African black beetle (H. arator) 

feeding, for example, the simple indole diterpene, paxilline itself (Ball et al., 1997), 

which is produced in low amounts in AR1-infected plants (Young et al., 2009) but 

has high cross-reactivity (100%).  

It has been shown that grasses with endophytes deter or are toxic to many insect 

herbivores (Popay & Rowan, 1994) and this has not been considered as induced 

resistance because the endophytes produce compounds that are directly active 

rather than inducing changes in the host plant (Karban & Baldwin, 1997). There is 

evidence, however, in the literature that suggests some beneficial effects of 

endophytes against insect herbivory are induced and that the endophyte mediates 

the induced response by its host grass (Bultman & Ganey, 1995; Bultman et al., 

2004; Sullivan et al., 2007). Bultman & Ganey (1995) first showed that endophyte-

infected ryegrass was detrimental to fall armyworm (Spodoptera frugiperda (Smith 

1797)) larvae and pupae compared with endophyte-free ryegrass. They also showed 

that endophyte-infected ryegrass that had been damaged (clipped) produced larger 

deleterious effects on fall armyworm pupal mass and development times compared 

with endophyte-infected plants that were not artificially clipped. The interaction 

between prior damage and endophyte infection suggests that induced plant 

responses accentuate the effects of the endophytes (Karban & Baldwin, 1997). 

Bultman et al. (2004) reported inducible loline production and Sullivan et al. (2007) 

showed that this increase in loline concentration involved the upregulation of genes 

encoding for loline production following damage in endophyte-infected tall fescue 
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(L. arundinaceum). Bultman et al. (2004) and Sullivan et al. (2007) also showed 

that damaged plants containing the fungus were more resistant to insects and had 

negative effects on these insects. In comparison, endophyte-free plants had 

increased susceptibility to insects following damage. Foliar N% is postively 

correlated with photosynthesis and plant growth rate (Reich et al., 1997; Wright et 

al., 2004) and high foliar N% in new leaves is attractive to herbivores (Sullivan et 

al., 2007). The Bultman et al. (2004) and Sullivan et al. (2007) studies suggest that 

the endophyte does not enhance the plants strategy for dealing with herbivores, 

instead it changes the plant’s strategy competely; from a strategy of compensation 

(high foliar N%, increased foliar growth) found in endophyte-free plants, to 

resistance (low foliar N%, increased fungal alkaloid production) by diverting 

nitrogen to the endophyte for defence. Low foliar N% in new leaves has the added 

advantage of being less palatable to herbivores.  

The response of increased levels of paxilline (and peramine) immunoreactivity 

appears to be concentrated in the undamaged pseudostem plant section. After attack 

from adult African black beetle (H. arator) the AR1-infected plant potentially 

responds by increasing fungal metabolite production in general plus increasing the 

production levels of specific metabolites over and above that of the general increase 

in fungal metabolite production (the accentuated response). All plant tillers would 

be affected, but damaged tillers would have fewer resources available for increased 

metabolite production because of the physical interruption in the vascular tissues 

for the movement of resources up and down the plant tiller and for both metabolite 

production and photosynthesis in the leaf blades. This would further limit the 

resources available in the damaged tiller for fungal metabolite production.  The 

higher levels of peramine and paxilline immunoreactivity found in the undamaged 

pseudsostem than in the damaged pseudostem futher support this theory of limited 

resources for metabolite production in damaged tillers. 

The weak correlation found between pre and post exposure to beetles for levels of 

paxilline immunoreactivity in herbage and the potential cluster of plants found with 

low damage and high paxilline immunoreactivity in undamaged and overall 

pseudostem, indicates that exposure to adult African black beetle (H. arator) attack 

could influence levels of paxilline immunoreactivity in plants. Potentially, a subset 
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of paxilline-like secondary metabolites was produced in large enough quantities 

(≥25 µg/g) in some plants to be detected by the paxilline ELISA, forming the cluster. 

The other plants that have low adult African black beetle (H. arator) feeding 

damage (20%), but not high levels of paxilline immunoreactivity were possibly 

producing this subset of paxilline-like compounds at levels high enough to reduce 

feeding but this was not identified by ELISA due to a low cross-reactivity of these 

compounds and the paxilline-like alkaloid profile of the plants. Or the reduction of 

feeding may have been associated with other unrelated compounds. 

The original plot of mean feeding damage versus mean levels of paxilline 

immunoreactivity from the Lincoln trial (Figure 1-7; also see Section 1.9.2 and 

Chatper 7) suggests increasing levels of paxilline immunoreactive equivalents 

(paxilline-IRE) in the host plant is associated with a reduction in adult African black 

beetle (H. arator) feeding damage (Popay A. J., Fletcher L. R., Briggs L. R., 

AgResearch, New Zealand; unpublished work, 2006). The Lincoln trial results, 

however, were not directly comparable with the results from the current work 

because the samples were not consistent, with varying ratios of damaged and 

undamaged tillers in the samples. To statistically compare results of these two trials, 

only undamaged pseudostem samples were compared. With the mixed pseudostem 

samples removed, the proposed negative association for the Lincoln trial was not 

as strong (Figure 4-14). Inclusion of the samples containing damaged pseudostem 

appears to have accentuated the initial proposed association (Figure 1-7). In the 

present trial, there was very high feeding pressure on the plants (≥1 adult/plant) and 

the half-sibling families sustained much higher adult African black beetle (H. 

arator) damage than the Lincoln trial. The families appeared to be grouped in 

bunches and instead of an overall proposed negative association with paxilline-IRE 

levels and feeding damage by adult African black beetle (H. arator), there appeared 

to be a positive association (Figure 4-14). 

When comparing the means between paxilline immunoreactivity and adult African 

black beetle (H. arator) damage of the families (Trial 1) and cultivars (Lincoln 

Trial), the relationship within these families and cultivars was not being examined. 

Although the Lincoln trial had more individual family representatives, further 

investigation found large variation within the cultivars, consistent with the results 
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of the present study (Figure 4-15). Within certain cultivars and families there was 

the suggestion of negative, positive and no associations with feeding damage and 

paxilline-IRE levels in the pseudostem.  

The beetles had the choice of 50 genetically different plant types for feeding. 

Although the use of plant clones reduced the number of plants representing each 

family, it allowed for multiple testing on individual plants within a family and the 

plant inter-clonal variation for various traits to be examined. Small plant inter-

clonal variation ensures the trait is consistent and can be maintained. The limitations 

of low clonal replication (3) and analysis of a subset of samples by ELISA (Section 

4.3.3) and low family representation were unavoidable concessions that had to be 

made to ensure the pilot trial work could be completed with the available resources, 

of which labour was a major limitation, yet still encompass representatives from all 

23 half-sibling families. These aspects were addressed in subsequent trial work 

(Chapters 5, 7 and 8). 

Although this trial was only a preliminary study, results from this work suggest that 

levels of paxilline immunoreactivity may be influenced by adult African black 

beetle (H. arator) feeding. The results indicate the possibility that AR1-infected 

ryegrass produces a specific subset of paxilline-like secondary metabolites that are 

associated with reduced adult African black beetle feeding damage. Other 

metabolites produced by the endophyte and detected by the paxilline ELISA and 

known to have no effect on African black beetle (H. arator), such as paxilline, likely 

mask the production of this subset of compounds. This could account for a lack of 

correlation between feeding damage and paxilline immunoreactivity. It is important 

to consider that this proposed subset of paxilline-like compounds may not be 

bioactive, instead associated with reduced feeding damage. They could, however, 

act as marker compounds for plant resistance to feeding by adult African black 

beetle (H. arator). The families contaminated with wild-type endophyte did not 

stand out from the other families. 

The results from the Lincoln trial and this current trial provide incentive to examine 

more extensively, the relationship between feeding damage and associated 

pseudostem levels of paxilline immunoreactivity within and between half-sibling 

family lines. Using the results from the unadjusted cumulative data for the 
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proportion of damaged tillers, paxilline immunoreactivity and tiller number, plants 

and families were identified and selected for further investigation into the AR1-

African black beetle (H. arator) relationship. 

4.5 Summary 

Fifty AR1-infected ryegrass plants were selected from 23 half-sibling families 

(GA97 breeding line) and screened for resistance to feeding by adult African black 

beetle (H. arator) and for their levels of paxilline and peramine immunoreactivity. 

The results from this trial showed differences found between plants for feeding 

damage and levels of paxilline and peramine immunoreactivity. The level of 

peramine immunoreactivity appears to be a generalised response to both seasonal 

conditions and herbivory damage and does not influence adult African black beetle 

(H. arator) feeding. 

The results indicate feeding adult African black beetle (H. arator) could influence 

levels of paxilline immunoreactivity in plants and potentially a subset of paxilline-

like compounds could be associated with reduced feeding damage. Other paxilline-

like compounds could be masking the detection by ELISA of these ‘bioactive’ 

paxilline-like compounds until immunoreactivity levels reach a threshold of ≥25 

µg/g in the base of the tillers. 

Higher levels of both peramine and paxilline immunoreactivity were found at the 

base of the plant which is consistent with reports from the literature, providing the 

strongest level of protection at the most vulnerable part of the plant against 

herbivory. The highest concentrations were found in the undamaged pseudostems, 

next in the damaged pseudostem and the lowest in the herbage. The undamaged 

pseudostem plant section is considered the best option for sampling in subsequent 

feeding trials with adult African black beetle (H. arator). 
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5 Chapter 5  

Trial 2 – Family and plant selection 

The purpose of the second feeding trial with adult African black beetle 

(Heteronychus arator (Fabricius, 1775)) was to further study, plant resistance to 

adult African black beetle (H. arator) using a reduced number of AR1-infected plant 

genotypes from the genetically related half-sibling families. The suggested 

association between feeding damage and concentration of paxilline 

immunoreactivity was further investigated using cloned plants by: 

 Examining the expression levels of paxilline-like fungal metabolites for 

plants exposed and not exposed to adult African black beetle (H. arator). 

 Assessing plant resistance in plants exposed to adult African black beetle 

(H. arator) feeding by measuring both the proportion of tillers damaged on 

a plant and the scale of feeding damage to each tiller. 

 Comparing feeding damage by adult African black beetle (H. arator) with 

endophyte production of paxilline-like compounds for any evidence of a 

relationship or association between the two. 

 Comparing plant tiller production between plants exposed and not exposed 

to adult African black beetle (H. arator). 

 Looking at the consistency of results between Trials 1 and 2 for plant 

resistance against adult African black beetle (H. arator), paxilline 

immunoreactivity concentrations and plant tiller production for plants and 

families. 

With this information plants and families would be identified and classified into 

different groupings for levels of plant resistance to adult African black beetle (H. 

arator), paxilline immunoreactivity and tiller production. From these groupings a 

reduced number of AR1-infected plants would be identified for further study. 
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5.1 Introduction 

The results from the preliminary trial (Chapter 4) using AR1-infected half-sibling 

perennial ryegrass (Lolium perenne L.) families from within a breeding-line (GA97) 

indicated that differences can be found between plants, within families, results were 

indicative for differences between families for adult African black beetle (H. arator) 

feeding damage, paxilline (and peramine) immunoreactivity and tiller number. 

Results suggested that black beetle influence paxilline immunoreactivity levels in 

plant psuedostem. Although no correlations were found between adult African 

black beetle (H. arator) feeding damage and paxilline (or peramine) 

immunoreactivity, of particular interest was a small cluster of plants which showed 

high concentrations of paxilline immunoreactivity in the undamaged and overall 

pseudostem plant sections and low adult (H. arator) feeding damage in the plant. 

The indicative result suggested the possibility that a subset of paxilline-like 

compounds paxilline-like compounds were associated with reduced plant feeding 

damage and detection of these compounds by ELISA was being masked by other 

paxilline-like compounds (that were not associated with bioactivity, such as, 

paxilline). Results from Trial 1 (Chapter 42) are consistent with the theory proposed 

from the Lincoln trial results, that paxilline immunoreactivity is negatively 

associated with feeding damage from adult African black beetle (H. arator).  

Using the information gained from the preliminary trial a second large scale 

feeding-choice trial was planned and conducted using the AR1-infected half-sibling 

perennial ryegrass (L. perenne) families from within the breeding-line GA97, 

exposed and not exposed to feeding from adult African black beetle (H. arator). 

The trial had two phases, a treatment phase (plants exposed and not exposed to 

beetles) and a post-treatment phase (no beetle exposure) to examine African black 

beetle (H. arator) and seasonal effects on plants. A selection of plants (20) from 

half-sibling families (10 of 23) was chosen for further investigation into the AR1-

African black beetle (H. arator) relationship. In addition, valuable information was 

gained on how the presence of beetles affects levels of paxilline immunoreactivity 

and tiller production in plants during and after exposure. 
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The number of cloned replicate plants used in this second large scale feeding-choice 

trial was increased from that used in Trial 1. The trial was also used to further reduce 

the number of original plants (grown from seed) for continued experimental work. 

5.2 Materials and methods 

This research (Trial 2) was undertaken from November 2009 to January 2010 at 

AgResearch, Ruakura Research Centre, Hamilton, New Zealand.  

5.2.1 Beetle collection 

In spring active adult African black beetle (H. arator) were collected (Section 2.1.5) 

from the field in the Waikato region and maintained (Section 2.1.6) in the laboratory 

until required.  

5.2.2 Plants 

Plants (20) were selected for Trial 2 (Table 5-1) from 10 out of 23 half-sibling 

families. The plants chosen ranged from low to high graded plants for tiller number, 

feeding damage and paxilline immunoreactivty. One family (A12086) 

contaminated with wild-type endophyte was included for comparison. Two 

representatives (plants orginally grown from seed) from each family were chosen. 

The plants were selected on the following criteria: 

 Endophyte status ensuring plants were infected with endophyte (presumed 

to be AR1 from the specified seed except for the half-sibling family that 

tested positive for wild-type endophyte contamination).  

 Adult African black beetle (H. arator) feeding damage results in regard to 

individual plants and family ensuring representatives from the cluster in 

Trial 1 were chosen. 

 Individual plant paxilline ELISA results; a range of low (0–10 µg/g), 

medium (11–20 µg/g), high responses (>20 µg/g) from the paxilline ELISA 

were chosen. 

 Plant health. The plants were scored using a scale of 1–5 (5 = very strong, 

1 = very weak). The plant health score was a visual assessment that took  
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Table 5-1: Plants selected for Trial 2. 

Family Plant 

Tiller number 
and feeding 

damage rank 

Paxilline ELISA rank 

Mean 
Herb 

Mean 
DP 

Mean 
UdP 

A12061 61/6 L L L n/a 
 61/9* H L M H 

A12063 63/4*/†/†† L L M H 
 63/9 L L L n/a 

A12064 64/7*/†/†† H M M M 
 64/10*/†/†† H H M H 

A12069 69/6 L L M n/a 
 69/9* L L L H 

A12073 73/1 M L L n/a 
 73/2* H L M H 

A12077 77/5*/† M L L L 
 77/8*/† M L L M 

A12078 78/1 H L L L 
 78/7*/† M L L L 

A12083 83/1 L L M n/a 
 83/2*/† H L L M 

A12086 86/2* H L L M 
 86/4*/†/†† H M M H 

A12087 87/5*/† H L M M 
 87/10 L L M M 

 
Herb = herbage. DP = damaged pseudostem. UdP = undamaged pseudostem. L= low, M = 
medium, H = high. n/a = not applicable. 
From Trial 1: Tiller number ranked from low to high number of tillers and feeding damaged 
ranked from high damage to low damage; L = low tiller number and high feeding damage, 
H = high tiller number and low feeding damage. Paxilline ELISA rank; L ≤10 µg/g, 10< M 
≤20 µg/g, H >20 µg/g paxilline immunoreactive equivalents. *elevated paxilline ELISA 
response in undamaged pseudostem. †<20% feeding damage. ††undamaged pseudostem 
paxilline ELISA response of >25µg/g and <20% feeding damage (cluster). 
Families and plants contaminated with wild-type endophyte are highlighted in bold font.  

 

into consideration plant tiller number (≥10), tiller size and general growth 

of plant. Plants with a health score of ≥3 were chosen. 

 Family means and variation were taken into consideration for feeding 

damage, paxilline ELISA immunoreactivity responses and tiller number. 
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5.2.3 Trial design and methodology 

Selected plants (20) were cloned as described in Section 2.1.2 into seven plants and 

six were placed in polystyrene (internal 49.5 cm × 30 cm) trays in September 2009 

and the final clone was replanted back into the original plant pot. The cloned plants 

were initially planted into sand for 10 days to encourage root development and were 

then re-planted into polystyrene trays containing Daltons GB potting mix for 

establishment. Once plants had recovered and grown sufficiently they were 

screened by immunoblot (Section 2.2) to ensure they were still infected with 

endophyte and presumed to be AR1 (or wild-type if previously identified as being 

one of the half-sibling families contaminated with wild-type endophyte).  

Two months later (November 2009) six plant clones from each selected individual 

plant were planted into polystyrene trays containing Daltons GB potting mix for the 

trial (one cloned plant per tray and each tray was considered an experimental unit). 

The trial consisted of six replicates (trays), and 20 cloned plants per tray. Plant 

clones were planted using a randomised planting plan for each tray with rows 10 

cm apart and plants 5 cm apart.  

The cages to enclose the African black beetle (H. arator) were the same design as 

those used for Trial 1 (Section 4.2.3, Figure 4-2). Plant establishment and the trial 

were conducted in the screenhouse with automated watering.  

When the replanted cloned plants had sufficiently recovered and grown, the trial 

commenced in late spring–early summer (November–December 2009). The trial 

consisted of two treatments; with adult African black beetle (H. arator) (four 

replicates) and without adult African black beetle (H. arator) (two replicates). Both 

treatments were caged once the adult beetles were added, to ensure plants were 

exposed to the same environmental conditions. Depending on availability, adult 

African black beetle (H. arator) were added once a week for the next 3 weeks. A 

minimum of at least one adult beetle per plant was added as shown in Table 5-2 

with a total of 41 beetles per tray. The ratio of female to male adult African black 

beetle (H. arator) was approximately 1 : 1. 
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Table 5-2: Addition of adult African black beetle to Trial 2. 

Time Female Male Total 

Total on Tray 

Female Male All 

Week 0 9 11 20 9 11 20 

Week 1 4 5 9 13 16 29 

Week 2 6 6 12 19 22 41 

 

From the trial schedule (Table 5-3) assessments were performed at the start of trial 

(A0), mid-treatment phase (A1), end of treatment phase (A2) and the end of the 

post-treatment phase (A3; end of trial). The plants were not trimmed and no herbage 

sample was taken at the start of the trial (A0), but the numbers of tillers per plant 

were counted prior to addition of beetles.  

African black beetle (H. arator) feeding damage assessments were performed at A1 

and A2, with no feeding damage at the start (A0) and end of the trial (A3). Prior to 

assessments A1–A3 plants were trimmed to 8 cm and herbage samples (5 cm) 

collected (Section 3.2.5, Figure 3-2). At the end of each assessment plants were 

fertilised (Section 2.1.4). 

Total tiller number (A0–A3), damaged tillers and undamaged tillers were recorded 

at each assessment (A1–A3). Damaged tillers were scored on a scale of 1–3 as 

described for Trial 1 (Section 4.2.3). Herbage (both treatments) and damaged 

pseudostem samples were collected at A1 and undamaged pseudostems collected 

at the end of treatment phase (A2). Plant trimming, herbage and pseudostem 

sampling were the same as that for Trial 1, (Section 4.2.3). Data on tiller damage 

was only collected from trays with beetles. 

After the treatment phase of the trial, cages were removed and the trays were moved 

outside for adult African black beetle (H. arator) to disperse. The trays were then 

transferred to the screenhouse and plants maintained as described in Section 2.1.4. 

The post-treatment assessment (A3) was performed in the screenhouse.  
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Table 5-3: Adult African black beetle feeding Trial 2 schedule. 

Time Description 

Week –1 Cloned plants transplanted into trays (experimental 
units) 

Week 0 

(A0) 

Start of Trial (treatment phase): 

Tillers counted  

African black beetle added 

Week 1 African black beetle added 

Week 2 

(A1) 

Mid-treatment phase: 

Plants trimmed and fertilised 

African black beetle damage assessed 

Tillers counted 

Herbage and damaged pseudostem collected 

African black beetle added 

Week 4 

(A2) 

End of treatment phase: 

Plants trimmed and fertilised 

Herbage collected 

African black beetle damage assessed 

Tillers counted 

Herbage, damaged and undamaged pseudostem 
collected 

Cages removed to allow adult African black beetle to 
disperse 

Week 8  

(A3) 

End of post-treatment phase: 

Plants trimmed and fertilised 

Tillers counted 

Herbage collected 

A0, A1, A2, A3 = Assessments 0 (start of trial and treatment phase), 1 (mid-treatment 
phase), 2 (end of treatment phase), 3 (End of post-treatment phase and trial). 

 

The grass samples (herbage and, damaged and undamaged pseudostem) were 

prepared for analysis as described in Section 2.1.3. Grass samples were analysed 

by paxilline ELISA (Section 2.4.3). 
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5.2.4 Statistical analyses 

All statistical analyses were conducted in GenStat version 15. The following 

variables were analysed: adult African black beetle (H. arator) feeding damage 

(number of damaged and undamaged tillers), levels of paxilline-IRE, damage score 

and tiller number. Repeated measures analyses were not used because different 

experiment protocols were imposed prior to each assessment, such as addition or 

removal of beetles, removal of cages and movement of experimental units during 

trial. The data were analysed using either REML or GLMM, as appropriate with 

random terms accounting for temporal replicate effects. Two parametrisations of 

the fixed model were considered: 

 M1:Plant+Treatment+Plant.Treatment+Location 

The term ‘Plant’ allowed differences between plants. For tiller number and 

paxilline immunoreactivity data the term ‘Treatment’ allowed for an effect of adult 

African black beetle (H. arator) presence, and ‘Plant.Treatment’ allowed the 

treatment effect to differ between plants. Location allowed for an overall effect of 

inner and outer location in the tray. The full model M1 was initially fitted; Plant + 

Treatment + Plant.Treatment + Location. If ‘Plant.Treatment’ was not statistically 

significant it was dropped and the additive model was used; Plant + Treatment + 

Location. 

 M2: Family + Treatment + Family.Treatment + Family.Plant + 

Family.Plant.Treatment + Location 

The term ‘Family’ allowed differences between families. ‘Family.Plant’ allowed 

differences between plants within a family. For tiller number and paxilline 

immunoreactivity the term '‘Family.Treatment’ allowed for family specific 

treatment effects. The term ‘Family.Plant.Treatment’ allowed specific plant 

treatment effects within a family. The effects of the terms ‘Location’ and 

‘Treatment’ are as described above for M1. The full model M2 was used initially; 

Family + Family.Plant + Family.Treatment + Family.Plant.Treatment + Location. 

If ‘Family.Plant.Treatment’ was not significant it was dropped from the model.  

Post hoc tests were conducted using Fisher’s least significant difference at the 5% 

significance level (LSD(5%)). The wild-type endophyte contaminated family line 
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was not removed from the data because family (or plant) was a factor accounted for 

in the statistical analyses. Adjusting for the covariate initial tiller number, a proxy 

for plant size, produced analogous results.  

Total tiller number was analysed using a linear mixed model fitted by REML. To 

stabilise the variance the total tiller number was square root transformed. The 

number of damaged tillers, assumed to be binomially distributed, was analysed 

using a GLMM with a logit link function. For feeding damage and tiller number, 

the data from each assessment were analysed separately and cumulatively.  

Damage score data were analysed using GLMM analogous to the adult African 

black beetle (H. arator) feeding damage data. Two variables were examined: a) 

proportion of total tillers with a damage score of three and b) proportion of 

damaged tillers with a damage score of three. Owing to convergence issues with 

GLMM, the proportion of damaged tillers with a score of three could only be 

analysed by logistic regression. Only data mid-treatment (A1) were analysed 

because at the end of the treatment phase (A2), all but five of the damaged tillers 

were given a score of three. 

Level of paxilline immunoreactivity in herbage and pseudostem grass samples were 

analysed using one-way analysis of variance (ANOVA). Data from the three 

assessments were independently analysed. All paxilline immunoreactivity data 

were log transformed prior to analysis. Analyses of herbage samples by the 

paxilline ELISA was performed on samples from both the end of treatment phase 

(A2) and the end of the post-treatment phase (A3), whereas damaged and 

undamaged pseudostem samples were only measured at the end of the treatment 

phase (A2). No statistical analyses were performed on the undamaged pseudostem 

paxilline immunoreactivity data as it was extremely sparse. Damage from adult 

African black beetle (H. arator) feeding was correlated with paxilline 

immunoreactivity.  
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5.3 Results 

5.3.1 Feeding damage 

There was no evidence of a relationship between the proportion of tillers damaged 

and initial tiller number, so the covariate adjustment for initial tiller number had 

very little impact on the estimated proportions. For all analyses, there was 

significant evidence (P <0.05) that the mean proportion of damaged tillers differed 

between plants at the end of the treatment phase (A2; Table 5–4) but not at the mid- 

treatment phase (A1). With no evidence of plant differences prior to the end of the 

treatment phase, the data from the cumulative proportion of damaged tillers (Figure 

5-1) was used to identify which plants and families sustained high and low feeding 

damage, and for comparison with the paxilline ELISA results. Large variation in 

feeding damage was found within families (Figure 5-1 A), and for some families 

(family 78) between the two family representatives (means of cloned plants; Figure 

5-1 B) with the interclonal variation (between cloned plants) larger for some plants 

(86/4) than others (78/1); also see Table 5–4 for plant clone means. 

5.3.2 Paxilline ELISA result 

Paxilline immunoreactivity was measured at the end of the treatment phase (A2) 

and at the end of the post-treatment phase (A3) for herbage, and at the end of the 

treatment phase (A2) for pseudsotem. For mean herbage paxilline 

immunoreactivity there was significant evidence (P <0.05) of differences between 

plants at end of the treatment phase (A2) and end of the post-treatment phase (A3) 

(Table 5-5). For plants within families the evidence of plant differences was found 

only at the end of the treatment phase. There was weak evidence (0.05< P ≤0.1) of 

an African black beetle (H. arator) feeding effect with paxilline immunoreactivity 

levels higher in the plants that had not been exposed to beetles (Table 5-6). 

Evidence of this effect was stronger at the end of the treatment phase (A2) and close 

to being statistically significant (F(1,4) = 7.34; P = 0.053). For mean damaged 

pseudostem paxilline immunoreactivity at the end of the treatment phase (A2) there 

were significant differences (P <0.05) found between plants and between plants 

within families at end of the treatment phase (Table 5–7).   
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Table 5-4: Mean plant proportion of damaged tillers (logit transformed) from 
feeding by adult African black beetle. 
The data was analysed unadjusted for initial tiller number (plant size) at start of 
trial. The unadjusted data were also analysed cumulatively (cumulative damaged 
tiller number = the number of damaged tillers at Assessment 2 plus the number 
of damaged tillers from Assessment 1 which had been removed). 

Family Plant 

Mean plant logit(proportion of damaged tillers) 

A1 A2 Cum A0–A2 

A12061 61/6 -1.69 (0.16) 1.28 (0.78) 1.50 (0.82) 
 61/9 -1.06 (0.26) -0.30 (0.43) 0.08 (0.52) 

A12063 63/4 -0.72 (0.33) -0.52 (0.37) 0.45 (0.61) 
 63/9 -0.71 (0.33) 0.36 (0.59) 0.92 (0.72) 

A12064 64/7 -1.69 (0.16) 0.27 (0.57) 0.56 (0.64) 
 64/10 -1.09 (0.25) 0.52 (0.63) 0.85 (0.70) 

A12069 69/6 -0.81 (0.31) 0.74 (0.68) 1.25 (0.78) 
 69/9 -0.55 (0.37) 0.27 (0.57) 0.95 (0.72) 

A12073 73/1 -0.32 (0.42) 2.02 (0.88) 2.78 (0.94) 
 73/2 -1.26 (0.22) -0.21 (0.45) 0.14 (0.54) 

A12077 77/5 -1.07 (0.25) 0.22 (0.56) 0.62 (0.65) 
 77/8 -0.93 (0.28) 1.15 (0.76) 1.56 (0.83) 

A12078 78/1 -0.28 (0.43) 0.98 (0.73) 1.61 (0.83) 
 78/7 -2.80 (0.06) -1.08 (0.25) -0.93 (0.28) 

A12083 83/1 -1.01 (0.27) -0.09 (0.48) 0.48 (0.62) 
 83/2 -0.94 (0.28) 0.62 (0.65) 1.14 (0.76) 

A12086 86/2 -0.98 (0.27) 0.25 (0.56) 0.69 (0.67) 
 86/4 -1.59 (0.17) 0.64 (0.66) 0.89 (0.71) 

A12087 87/5 -1.28 (0.22) 0.31 (0.58) 0.65 (0.66) 
 87/10 -0.30 (0.43) 1.36 (0.80) 2.04 (0.89) 

Fisher’s LSD(5%) 2.012 2.348 2.368 

Plant Effect (Individual PlantsP) 
F-statisticdf 1.1719,51 2.2219,56 2.7619,56 
P-value 0.315 0.011 0.002 

Plant Effect (Within FamilyFP) 
Wald-statisticdf 15.7910 33.9810 43.0510 

P-value 0.106 <0.001 <0.001 

A0, A1 and A2 = Assessments 0 (start of trial and treatment phase), 1 (mid-treatment 
phase), 2 (end of treatment phase). Cum = Cumulative. df = Degrees of freedom. LSD(5%) 
= least significance difference at the 5% significance level. M1 = fixed effects model 1; FP = 
Family.Plant, P = Plant. Back transformed values are in brackets. Family lines and plants 
contaminated with wild-type endophyte are highlighted in bold font. Statistically 
significant results are highlighted in bold and italic font. Weak evidence of effects (0.05< 
P ≤1.0) are highlighted in italic font.  
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Figure 5-1: Cumulative proportion of damaged tillers at the end of the treatment phase 
(A2). 
A) Boxplot; displaying family median, upper and lower quartiles and showing variation 
within and between families. 
B) Dotplot; displaying individual plants within a family and the corresponding mean, 
showing the variation within a family and between cloned plants from a single individual 
seedling plant. The dotplot is coloured by individual plants within a family, with each 
individual circle of the same colouring representing a cloned plant with a matching 
coloured bar denoting the mean for the individual seedling plant. sed = standard error of 
the difference (fixed effects model, M1). 
Wild-type contaminated family lines are highlighted in bold font. 
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Table 5-5: Mean plant paxilline-IRE concentrations (natural log transformed) in herbage of the clones from individual plants grown from seed (from 
10 of the 23 half-sibling familes). 

Family Plant 

Mean paxilline-IRE (µg/g) in Herbage (natural log (ln), M1) 

End of trial (A2)  Post-trial (A3) 

By plant 

 Plant by treatment  

By plant 

 Plant by treatment 

 w BB w/o BB   W BB w/o BB 

A12061 61/6 0.79 (2.19)  0.61 (1.85) 1.02 (2.78)  1.36 (3.88)  0.97 (2.63) 1.81 (6.10) 
 61/9 0.77 (2.16)  0.58 (1.78) 1.12 (3.07)  1.20 (3.32)  0.82 (2.28) 1.63 (5.12) 

A12063 63/4 0.33 (1.40)  0.19 (1.21) 0.56 (1.75)  1.23 (3.41)  1.15 (3.14) 1.30 (3.66) 
 63/9 0.00 (1.00)  -0.14 (0.87) 0.16 (1.17)  0.71 (2.04)  0.61 (1.83) 0.73 (2.08) 

A12064 64/7 1.31 (3.71)  1.22 (3.38) 1.50 (4.47)  1.59 (4.89)  1.39 (4.00) 1.85 (6.39) 
 64/10 1.65 (5.19)  1.48 (4.39) 1.82 (6.15)  1.71 (5.54)  1.32 (3.74) 2.19 (8.91) 

A12069 69/6 0.94 (2.55)  0.84 (2.32) 0.99 (2.69)  1.39 (4.00)  1.12 (3.06) 1.63 (5.08) 
 69/9 0.92 (2.52)  0.86 (2.35) 0.95 (2.59)  1.15 (3.17)  0.91 (2.47) 1.42 (4.15) 

A12073 73/1          
 73/2 0.67 (1.95)  0.55 (1.74) 0.77 (2.16)  0.75 (2.12)  0.47 (1.60)  

A12077 77/5 0.01 (1.01)  -0.16 (0.85) 0.04 (1.04)  1.21 (3.35)  1.04 (2.83) 1.24 (3.45) 
 77/8 0.38 (1.46)  0.43 (1.53) 0.32 (1.38)  0.47 (1.60)   0.73 (2.08) 

A12078 78/1 0.38 (1.46)  0.11 (1.12) 0.67 (1.95)  0.69 (1.99)  0.41 (1.51) 0.93 (2.54) 
 78/7 -0.03 (0.97)  0.03 (1.03) -0.22 (0.80)  0.52 (1.69)  0.43 (1.53) 0.52 (1.69) 
           

A12083 83/1 1.08 (2.93)  0.88 (2.41) 1.24 (3.46)  1.06 (2.90)  0.67 (1.95) 1.39 (4.02) 
 83/2 1.04 (2.82)  0.88 (2.40) 1.26 (3.53)  1.46 (4.32)  1.19 (3.27) 1.67 (5.32) 

Table 5–5 continued on next page 
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Table 5–5 continued 

Family Plant 

Mean paxilline-IRE (µg/g) in herbage (natural log (ln), M1) 

End of trial (A2)  Post-trial (A3) 

By plant 

 Plant by treatment  

By plant 

 Plant by treatment 

 w BB w/o BB   w BB w/o BB 

A12086 86/2 0.98 (2.65)  0.80 (2.21) 1.29 (3.64)  0.89 (2.44)  0.28 (1.32) 1.53 (4.60) 
 86/4 1.48 (4.38)  1.40 (4.06) 1.60 (4.95)      

A12087 87/5 1.65 (5.19)  1.55 (4.71) 1.72 (5.57)  1.76 (5.82)  1.68 (5.38) 1.68 (5.36) 
 87/10 0.78 (2.17)  0.60 (1.82) 1.01 (2.73)  1.32 (3.76)  1.15 (3.16) 1.60 (4.96) 

†Fisher’s LSD(5%) †0.379    †0.880   

‡Fisher’s LSD(5%) 
within treatment 
within plant  

 

‡0.790 
‡0.716   

 

‡1.401 
‡1.416 

Plant Effect (†Individual PlantsP) or (‡Individual PlantsPTrt) 

F-statisticdf †17.7318,73 
 ‡0.5918,53  †3.6217,45 

 ‡0.5815,27 
P-value †<0.001  ‡0.891  †<0.001  ‡0.862 

Plant Effect (Within FamilyFP) 
F-statisticdf 5.159,65    1.058,36   
P-value <0.001    0.420   

A2 and A3 = Assessments 2 (end of treatment phase) and 3 (end of post-treatment phase and trial). Cum = cumulative. df = Degrees of freedom. LSD(5%) = Least 
significance difference at the 5% significance level. M1 = fixed effects model 1; FP = Family.Plant, P = Plant, PTrt = Plant.Treatment. Paxilline-IRE = Paxilline 
immunoreactive equivalents. w BB = with African black beetle (H. arator) treatement. w/o = without African black beetle (H. arator) treatment. Back transformed 
values are in brackets. Family lines and plants contaminated with wild-type endophyte are highlighted in bold font. Statistically significant results (P ≤0.05) are 
highlighted in bold and italic font. Weak evidence of effects (0.05< P ≤1.0) are highlighted in italic font. 
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Table 5-6: Concentrations of paxilline immunoreactivity in herbage between the 
two treatments; with and without adult African black beetle. 

Treatment 

Mean paxilline-IRE (µg/g)in herbage (natural log (ln), M1) 

A2 A3 

w BB 0.66 (1.94) 0.87 (2.39) 

w/o BB 0.93 (2.53) 1.41 (4.08) 

Treatment Effect (Individual PlantsTrt) 

F-statisticdf 7.341,4 5.991,4 

P-value 0.053 0.075 

Fisher’s LSD(5%) 2.749 0.605 

A2 and A3 = Assessments 2 (end of treatment phase) and 3 (end of post-treatment phase 
and trial). Cum = cumulative. df = degrees of freedom. LSD(5%) = least significance 
difference at the 5% significance level. M1 = fixed effects model 1; Trt = Treatment. 
Paxilline-IRE = Paxilline immunoreactive equivalents. w BB = with African black beetle (H. 
arator) treatment. w/o = without African black beetle (H. arator) treatment. 
Back transformed values are in brackets. Statistically significant results (P ≤ 0.05) are 
highlighted in bold and italic font. Weak evidence of effects (0.05< P ≤1.0) are highlighted 
in italic font. 

 

There was no evidence (P >0.05) of a relationship between the proportions of 

damaged tillers and the level of paxilline immunoreactivity in herbage or damaged 

pseudostem. 

In general, the mean concentrations of paxilline immunoreactivity was higher in the 

undamaged pseudostem than in the damaged pseudostem (Figure 5-2) and the 

herbage plant sections; also see Table 5-5 and Table 5-7. Overall, paxilline 

immunoreactivity concentrations in pseudostem from plants not exposed to beetle 

feeding were higher than those found for exposed plants in both the weighted 

pseudostem and undamaged pseudostem (Figure 5-2) which is consistent with the 

results found for herbage (Table 5-6). Significant differences were found between 

control plants (without exposure to beetles) for paxilline immunoreactivity 

concentrations in pseudostem (F(12,11) = 8.57; P <0.001).  



Trial 2 – Family and plant selection Chapter 5 

180 

Table 5-7: Mean plant paxilline immunoreactivity in the adult African black 
beetle treatment group for damaged and undamaged pseudostem at end of 
the treatment phase (A2). 

Family Plant 

Mean paxilline-IRE (µg/g) 
(natural log (ln), M1) 

Damaged Undamaged 

A12061 61/6 1.60 (4.95) 1.67 (5.31) 
 61/9 1.75 (5.74) 1.83 (6.45) 

A12063 63/4 1.35 (3.86) 1.56 (4.88) 
 63/9 1.21 (3.35)  

A12064 64/7 1.21 (3.35)   
 64/10 2.19 (8.97) 2.79 (16.86) 

A12069 69/6 1.79 (6.00)  
 69/9 1.64 (5.16)  

A12073 73/1   
 73/2 1.95 (7.01) 2.39 (10.90) 

A12077 77/5 1.08 (2.93) 1.77 (5.89) 
 77/8 1.00 (2.72) 2.30 (10.00) 

A12078 78/1 1.48 (4.38)  
 78/7 1.00 (2.73) 1.52 (4.72) 

A12083 83/1 1.68 (5.35)  
 83/2 2.31 (10.11)  

A12086 86/2 1.26 (3.51) 1.74 (5.69) 
 86/4 1.94 (6.94) 2.39 (10.92) 

A12087 87/5 2.04 (7.71) 2.62 (13.74) 
 87/10 1.90 (6.68)  

Fisher’s LSD(5%) 0.564  

Plant Effect (Individual PlantsP) 
F-statisticdf 5.5318,29  
P-value <0.001  

Plant Effect (Within FamilyFP) 
Wald-statisticdf 26.719  
P-value 0.002  

A0, A1, A2 and A3 = Assessments 0 (start of trial and treatment phase), 1 (mid-treatment 
phase), 2 (end of treatment phase), 3 (end of post-treatment phase and trial). df = Degrees 
of freedom. LSD = Least significance difference at the 5% significance level. M1 = Fixed 
effect model 1; FP = Family.Plant, P = Plant. Paxilline-IRE = Paxilline immunoreactive 
equivalents.  
Back transformed values are in brackets. Family lines and plants contaminated with wild-
type endophyte are highlighted in bold font. Statistically significant results are highlighted 
in bold and italic font. Weak evidence of effects (0.05< P ≤1.0) are highlighted in italic font. 
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Figure 5-2: Mean levels of paxilline immunoreactvity from plants exposed (damaged, 
undamaged and weighted overall pseudostem) and not exposed (control means) to 
adult African black beetle feeding. 
Weighted overall pseudostem levels of paxilline immunoreactivity were calculated by 
summing the damaged and undamaged pseudostem immunoreactivity levels weighted by 
the proportion of tillers damaged. Paxilline-IRE = Paxilline immunoreactive equivalents. 
Plants contaminated with wild-type endophyte are highlighted in bold font. 

 

5.3.3 Damage score 

The analyses of plant tillers for the severity of damage from feeding by adult 

African black beetle (H. arator) (1 = minor damage, 2 = moderate damage and 3 = 

severe damage causing tiller death, with undamaged tillers = 0) was examined from 

two perspectives; the proportion of all tillers with a damage score of three and the 

proportion of damaged tillers with a score of three. Statistical results for the 

proportion of tillers with a damage score of three are summarised in Table 5-8. 

When data were unadjusted for initial tiller number, the proportion of tillers with a 

damage score of three differed between plants (Table 5-8) and within families at 

end of trial (P ≤0.5). These results mirrored the results of the total proportion of 

damaged tillers at A2 because the majority of tillers were severely damaged at this 

stage. For the same reason, only mid-treatment (A1) data were analysed when 

examining the proportion of damaged tillers with a score of three and there was no 

evidence of differences between plants or within families at this time.  
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Table 5-8: Mean proportion of all tillers and damaged tillers with a damage 
score of 3 for plant clones. 

Family Plant 

Mean proportion of tillers and damaged tillers 
with a damage score of three (logit Scale, M1) 

All tillers  Damaged tillers 

A1 A2  A1 

A12061 61/6 -1.94 (0.13) 1.28 (0.78)  0.79 (0.69) 
 61/9 -1.45 (0.19) -0.30 (0.43)  0.73 (0.68) 

A12063 63/4 -0.90 (0.29) -0.52 (0.37)  0.89 (0.71) 
 63/9 -0.84 (0.30) 0.36 (0.59)  0.92 (0.71) 

A12064 64/7 -1.66 (0.16) 0.28 (0.57)  0.97 (0.73) 
 64/10 -1.51 (0.18) 0.53 (0.63)  0.73 (0.67) 

A12069 69/6 -0.93 (0.28) 0.74 (0.68)  0.92 (0.72) 
 69/9 -0.86 (0.30) 0.26 (0.56)  0.80 (0.69) 

A12073 73/1 -0.39 (0.40) 2.03 (0.88)  0.96 (0.72) 
 73/2 -1.65 (0.16) -0.21 (0.45)  0.72 (0.67) 

A12077 77/5 -1.26 (0.22) 0.22 (0.55)  0.87 (0.70) 
 77/8 -1.05 (0.26) 1.16 (0.76)  0.92 (0.71) 

A12078 78/1 -0.29 (0.43) 0.99 (0.73)  0.96 (0.72) 
 78/7 -3.16 (0.04) -1.07 (0.26)  0.69 (0.67) 

A12083 83/1 -1.30 (0.21) -0.10 (0.48)  0.75 (0.68) 
 83/2 -1.42 (0.19) 0.64 (0.65)  0.69 (0.66) 

A12086 86/2 -1.15 (0.24) 0.18 (0.55)  0.84 (0.70) 
 86/4 -1.63 (0.16) 0.35 (0.59)  1.00 (0.73) 

A12087 87/5 -1.73 (0.15) 0.33 (0.58)  0.68 (0.66) 
 87/10 -0.44 (0.39) 1.36 (0.80)  0.92 (0.72) 

Fisher’s LSD(5%) 2.173 2.362  0.636 

Plant Effect (Individual PlantP) 
F-statisticdf or †Wald-statisticdf 1.4619,50 2.1719,56 

 †18.9619 

P-value 0.144 0.013  0.478 

Plant Effect (Within FamilyFP) 
F-statisticdf or †Wald-statisticdf †17.2310 †33.4410 

 †11.2310 

P-value 0.070 <0.001  0.363 

A1 and A2 = Assessments 1 (mid-trial), 2 (end of trial). df = Degrees of freedom. LSD(5%) = 
Least significance difference at the 5% significance level. M1 = Fixed effect model 1;  
FP = Family.Plant, P = Plant. 
Back transformed values are in brackets. Family lines and plants contaminated with wild-
type endophyte are highlighted in bold font. Statistically significant results are highlighted 
in bold and italic font. Weak evidence of effects (0.05< P ≤1.0) are highlighted in italic font. 
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5.3.4 Tiller number 

Strong evidence (P <0.001) was found for mean plant tiller number differences 

between plants at all assessment dates (Table 5-9). As shown in Table 5-10, there 

was weak evidence (F(1,4) = 5.80; P = 0.074) of an adult African black beetle (H. 

arator) feeding effect with mean plant tiller number greater at the mid-treatment 

phase for plants exposed to adult African black beetle (H. arator) feeding. At the 

end of the treatment phase (A2) there was no evidence of mean plant tiller 

differences (P >0.1). However, four weeks later at the end of the post-treatment 

phase and trial (A3) the beetle feeding effect had reversed with plants not exposed 

to beetles having the greater mean plant tiller number (F(1,4) = 4.86; P = 0.092). For 

the total number of tillers produced throughout the entire trial (cumulative tiller 

number) plants exposed to adult African black beetle (H. arator) on average 

produced more tillers than plants not exposed (M1 A0–A2 F(1,4) = 6.78; P = 0.060 

and M1 A0–A3 F(1,4) = 10.02; P = 0.034).  

Plant differences were evident within a family for plant tiller number unadjusted 

for initial tiller number at assessments and cumulatively (P ≤0.5; Table 5-9). 

Positive relationships were found between initial plant tiller number and plant tiller 

numbers at the other assessments (A1, A2, A3); A1 (F(1,87) = 110.02; P < 0.001), 

A2 (F(1,83) = 26.52; P < 0.001) and A3 (F(1,97) = 3.91; P = 0.051).  

The top performing families with high tiller numbers were 64, 78, and 77 (Table 

5-9). Results for tiller number were similar with those from Trial 1 with the top 

performing plants and families in this current trial (Trial 2) coming from the 

medium and high grouped families for median plant tiller number, determined in 

Trial 1 (Table 4-5). 

5.4 Discussion 

As for Trial 1, this second feeding choice trial was performed in late spring–early 

summer when adult African black beetle (H. arator) were emerging to feed and 

reproduce (Todd, 1959; Bell et al., 2011) and when it was anticipated that there 

would be high alkaloid levels in the endophyte-infected ryegrass plants. Samples 

were not analysed by peramine ELISA owing to the results obtained in Trial 1. The   
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Table 5-9: Mean plant tiller number (square root transformed) for plant clones. 

Family Plant 

Mean square root transformed tiller number (M1) 

A0 A1 A2 A3 Cum A0–A2 Cum A0–A3 

A12061 61/6 4.30 (18.46) 4.40 (19.39) 4.37 (19.13) 2.97 (8.79) 4.53 (20.48) 4.33 (18.71) 
 61/9 3.58 (3.58) 3.78 (14.27) 4.09 (16.74 5.25 (27.52) 4.27 (18.20) 5.31 (28.20) 

A12063 63/4 3.94 (15.50) 4.02 (16.19) 3.68 (13.56) 3.63 (13.17) 4.15 (17.26) 4.22 (17.83) 
 63/9 4.83 (23.34) 4.76 (22.61) 4.34 (18.82) 2.93 (8.58) 4.87 (23.67) 4.24 (17.99) 

A12064 64/7 6.40 (40.93) 6.97 (48.58) 6.88 (47.38) 5.44 (29.60) 7.19 (51.67) 7.16 (51.22) 
 64/10 6.41 (41.13) 6.92 (47.86) 7.20 (51.90) 7.38 (54.41) 7.70 (59.35) 8.80 (77.35) 

A12069 69/6 5.71 (32.64) 5.64 (31.83) 5.63 (31.65) 5.34 (28.52) 6.21 (38.60) 7.10 (50.38) 
 69/9 3.64 (13.27) 3.83 (14.68) 3.60 (12.93) 3.92 (15.40) 4.11 (16.91) 4.82 (23.20) 

A12073 73/1 3.82 (14.57) 3.89 (15.14) 3.32 (11.00) 1.28 (1.64) 3.87 (14.98) 3.16 (9.99) 
 73/2 4.37 (19.10) 4.42 (19.54) 4.67 (21.78) 2.96 (8.76) 4.86 (23.64) 3.55 (12.61) 

A12077 77/5 4.45 (19.80) 4.79 (22.92) 4.75 (22.55) 3.18 (10.11) 5.09 (25.86) 4.53 (20.52) 
 77/8 4.15 (17.26) 4.72 (22.23) 4.56 (20.82) 1.54 (2.36) 5.02 (25.22) 4.17 (17.42) 

A12078 78/1 4.82 (23.22) 5.31 (28.21) 5.15 (26.52) 6.02 (36.24) 5.88 (34.62) 7.28 (52.98) 
 78/7 4.22 (17.84) 4.43 (19.61) 5.17 (26.71) 5.15 (26.53) 5.14 (26.41) 5.17 (26.71) 

A12083 83/1 4.16 (17.31) 4.34 (18.79) 4.26 (18.18) 2.28 (5.18) 4.58 (20.97) 3.93 (15.46) 
 83/2 4.01 (16.09) 3.87 (14.98) 3.37 (11.36) 2.79 (7.78) 3.83 (14.65) 4.04 (16.31) 

A12086 86/2 4.41 (19.46) 4.47 (19.98) 4.48 (20.03) 3.25 (10.57) 4.81 (23.11) 4.42 (19.55) 
 86/4 3.89 (15.12) 3.67 (13.50) 3.75 (14.09) 0.94 (0.88) 3.81 (14.49) 2.47 (6.11) 

Table 5–9 continued on next page 
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Table 5–9 continued 

Family Plant 

Mean square root transformed tiller number (M1) 

A0 A1 A2 A3 Cum A0–A2 Cum A0–A3 

A12087 87/5 5.22 (27.25) 5.30 (28.09) 4.95 (24.52) 2.01 (4.05) 5.30 (28.07) 3.97 (15.78) 
 87/10 3.81 (15.53) 3.80 (14.43) 3.41 (11.66) 2.13 (4.54) 3.96 (15.65) 3.84 (14.71) 

Fisher’s LSD(5%) 0.884 0.771 1.095 2.510 0.962 1.906 
Plant Effect (Individual PlantsP) 
F-statisticdf 4.4719,88 12.6719,89 7.8219,98 3.9919,87 10.4419,88 5.7119,88 
P-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
Plant Effect (Within familyFP) 
F-statisticdf 4.0210,85 5.8110,82 3.5010,89 1.6110,81 4.5610,82 2.0410,82 

P-value <0.001 <0.001 <0.001 0.118 <0.001 0.039 

A0, A1, A2 and A3 = Assessments 0 (start of treatment phase and trial), 1 (mid-treatment phase), 2 (end of treatment phase) and 3 (end of post-treatment phase 
and end of trial). Cum = Cumulative. df = Degrees of freedom. LSD(5%) = Least significance difference at the 5% significance level. M1 = Fixed effect model 1; FP = 
Family.Plant, P = Plant. 
Back transformed values are in brackets. Family lines and plants contaminated with wild-type endophyte are highlighted in bold font. Statistically significant results 
are highlighted in bold and italic font. Weak evidence of effects (0.05< P ≤1.0) are highlighted in italic font. 



 

 

1
8
6
 

Table 5-10: Mean plant tiller number (square root transformed) by treatment group, with and without African black beetle for plant clones. 

Treatment group 

Mean square root transformed tiller number (M1) 

A0 A1 A2 A3 Cum A0–A2 Cum A0–A3 

w BB 4.82 (23.23) 5.02 (25.15) 4.48 (20.11) 2.76 (7.61) 5.23 (27.35) 5.48 (30.06) 

w/o BB 4.20 (17.60) 4.32 (16.65) 4.68 (21.90) 4.28 (18.30) 4.69 (21.97) 4.17 (17.36) 

Fisher’s LSD(5%) 0.821 0.804 0.357 1.913 0.579 1.154 

Treatment Effect (Individual PlantTrt) 
F-statisticdf 4.471,4 5.801,4 1.181,98 4.861,4 6.781,4 10.021,4 

P-value 0.102 0.074 0.280 0.092 0.060 0.034 

Plant by Treatment Effect (Individual PlantPTrt) 
F-statisticdf 0.5919,75 1.0719,67 1.1019,79 1.3619,66 1.0619,66 1.4219,61 

P-value 0.899 0.402 0.371 0.177 0.406 0.154 

A0, A1, A2 and A3 = Assessments 0 (start of treatment phase and trial), 1 (mid-treatment phase), 2 (end of treatment phase) and 3 (end of post-treatment phase 
and end of trial). Cum = Cumulative. df = Degrees of freedom. LSD(5%) = Least significance difference at the 5% significance level. M1 = Fixed effect model 1, PTrt = 
Plant.Treatment, Trt = Treatment. w BB = with African black beetle (Heteronychus arator) treatment. w/o = without African black beetle (H. arator) treatment. 
Back transformed values are in brackets. Statistically significant results are highlighted in bold and italic font. Weak evidence of effects (0.05< P ≤1.0) are highlighted 
in italic font. 
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paxilline ELISA (Sections 2.4.3 and 3.1.1) was used in this section of work as a 

subset of unknown paxilline-like compounds were suggested to be associated with 

reduced adult African black beetle (H. arator) feeding, although currently, cannot 

be detected separately from the other paxilline-like compounds (Trial 1, Chapter 4). 

Although the paxilline ELISA detects paxilline-like compounds, it cannot measure 

the concentration of each paxilline-like compound, instead quantitatively 

measuring levels of immunoreactivity as paxilline immunoreactive equivalents. 

Levels of paxilline immunoreactivity were higher in the herbage of plants that were 

not exposed to adult African black beetle (H. arator) feeding, although this was not 

statistically significant. In general, the undamaged pseudostem from plants not 

exposed to adult African black beetle (H. arator) had higher concentrations of 

paxilline-IRE than those exposed to adult African black beetle (H. arator) (Figure 

3). This observation was still unexpected because if the proposed subset of 

paxilline-like secondary metabolites were produced in association with feeding 

damage as suggested in Chapter 4, the concentration of immunoreactivity in the 

plants exposed to beetles was predicted to be higher than plants not exposed. The 

observed result may simply be because unexposed plants, having optimal 

conditions for growth and not being under any stress, did not have limiting 

resources for secondary metabolite production including paxilline 

immunoreactivity. In addition, in the undamaged plants, paxilline-like compounds 

not associated with feeding damage but with high cross-reactivities in the ELISA, 

may have been produced at higher levels than in damaged plants. Or in damaged 

plants, production of paxilline-like compounds was simply down regulated, 

resulting in lower levels of paxilline immunoreactivity. 

In herbage the negative effects of feeding adult beetles were still apparent one 

month post-exposure, with plants previously exposed to African black beetle (H. 

arator) still with lower levels of paxilline immunoreactivity than those not exposed. 

In addition, a seasonal effect could be identified in herbage with higher levels of 

paxilline immunoreactivity at the post-treatment phase (mid-summer) compared 

with the end of the treatment phase (early summer) in both the presence and absence 

of beetles. 
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Greater tiller production was found for plants exposed to beetles intially, but then 

under high beetle pressure, tiller production did not keep ahead of the sustained 

feeding damage to tillers. Then following exposure to beetles, a long recovery time 

was needed for plant tiller numbers (undamaged) to return to the same level as those 

of the unexposed plants. These results for tiller number suggest that plants may 

respond to low levels of herbivory by producing more tillers than plants not exposed 

and this effect was common to all plants, however, high levels of herbivory are 

detrimental to the plants. Maschinski and Whitham (1989) reported evidence that a 

plant’s response to herbivory is plastic and varies according to the prevalent biotic 

and abiotic conditions it experiences. Herbivory can be detrimental, of no 

consequence, or even beneficial, depending on the conditions governing a plant’s 

ability to replace tissue consumed by herbivores and that the negative and positive 

responses reported in the literature are not in conflict but are extremes of the same 

continuum (Maschinski & Whitham, 1989; Whitham et al., 1991). 

The negative effect of African black beetle (H. arator) feeding on tiller number was 

still apparent four weeks post trial, so plants took a long time to recover. This 

suggests tiller production is costly to the plant. In addition, the plant may be putting 

resources into protection via the endophyte, for increased alkaloid production 

(Bultman et al., 2004; Sullivan et al., 2007) for the protection of both old and new 

tillers. If resources are diverted for protection and recovery against herbivory, it is 

possible fewer resources are available for other aspects of plant growth, such as root 

formation, which in turn may further hinder the recovery of tiller numbers. Plant 

interclonal variation for portion of damaged tillers was more variable for some 

plants and families and consistent with Trial 1 results suggesting some plants would 

respond better than others in a breeding program. 

For plants exposed to adult African black beetle (H. arator), results from this trial 

were consistent with results from Trial 1, although the cluster of plants with low 

feeding damage and high paxilline immunoreactivity was not observed in Trial 2. 

The relative performance of the plant genotypes for feeding damage, paxilline 

immunoreactivity and tiller production is consistent between the two trials, however, 

the actual concentration of paxilline-IRE in Trial 2 plants was lower than that in 

Trial 1 plants. Consequently for Trial 2, lower alkaloid production may explain the 
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lack of a negative association observed between feeding damage and paxilline 

immunoreactivity that was in seen in both the Lincoln Trial and Trial 1. 

Significant plant and within family plant differences were found for feeding damage, 

paxilline immunoreactivity and tiller number. Plants that produced a lot of tillers at 

the start of the trials still produced a lot of tillers during and at the end of the trials 

and the initial tiller number (plant size) was not related to the proportion of tillers 

damaged. The distribution of paxilline immunoreactivity in the plant sections was 

consistent, with the highest concentrations of paxilline-IRE found in the undamaged 

pseudostem and the lowest concentrations in the herbage. The severity of the 

feeding damage to damaged tillers (damage score; 1–3) could not be analysed as 

the majority of tillers were severely damaged (damage score three). 

High beetle pressure may explain the lack of differences found between plants in 

the severity of damage the tillers sustained. Another possibility is that the beetles 

were not detecting the presence and levels of either the endophyte or certain 

alkaloids produced through feeding but instead by other mechanisms, possibly 

detecting volatiles released by endophyte-infected plants. Qawasmeh et al. (2015) 

describe how adult African black beetle (H. arator) are less attracted to wild-type 

and AR1-infected plants than endophyte-free plants. Although they mention that 

adults do not discriminate between host plants solely on these volatiles but also on 

visual and leaf-chemical cues (Qawasmeh et al., 2015). 

The beetles used in these spring trials were mature beetles that had first emerged 

the previous autumn. Beetle age may be important when assessing the deterrent 

effects of endophyte-plant associations, with a reduction in sensitivity to the 

adverse effects of the bioactives with age. Plants infected with wild-type endophyte 

also had high damage, which is unusual and supports the suggestion of reduced 

beetle sensitivity to the bioactive secondary metabolites with age. Also, when 

feeding by beetles is deterred by endophyte, the beetle moves onto another food 

source, however, in the trial the beetles were confined for 4 weeks. With the beetles 

in the phase of regular feeding, it is likely deterrent effects of the endopyte were not 

as influential as food choices were limited. This may in part explain some of the 
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variation found between plants within a family and also the large plant interclonal 

variation seen for some plant genotypes.  

Differences between families were undetermined because of plant differences 

found within families and low family representation, but the data from both trials 

indicated the possibility of family differences. Differences found between plants 

and between plants within families for levels of feeding damage and paxilline 

immunoreactivity (in both the presence and absence of beetles) demonstrate the 

importance of the host plant genotype influence as previously reported in the 

literature (Easton et al., 2000; Popay & Baltus, 2001; Easton et al., 2002; Popay et 

al., 2003), and provide potential for selecting plants with more resistance to adult 

African black beetle (H. arator) feeding on the basis of the AR1-host plant 

association. In general plant genotypes (and families) performed consistently in 

both trials and the following three families with low–moderate feeding damage and 

medium–high levels of paxilline immunoreactivity and tiller production were 

selected for further investigation; A12064, A12078 and A12087.  

The reduction of the number individual plant genotypes used, from 50 in Trial 1 to 

20 in Trial 2, allowed the number of clonal experimental units to be increased from 

three to six, two of which weren’t exposed to African black beetle (H. arator). The 

low number of representatives from within each family, however, has reduced the 

ability to investigate family differences. The limitations of low numbers of 

individuals from within a family and low clonal replication (for both trials and for 

each treatment in Trial 2) were unavoidable concessions made to ensure the trials 

could be completed with the labour available. These limitations are addressed in 

subsequent trial work (Chapters 7 and 8).  

5.5 Summary 

Higher levels of paxilline immunoreactivity were found in plants not exposed to 

adult African black beetle (H. arator). This may be a simple reflection of the 

unexposed plants being under minimal stress and resources for secondary 

metabolite production were not as limited, or a simple down regulation of secondary 

metabolite production. A seasonal effect was seen with higher levels of paxilline 

immunoreactivity found in herbage mid-summer than early summer. Low levels of 
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feeding from adult African black beetle (H. arator) appears to accentuate plant tiller 

production, however, high levels of feeding are detrimental to plants and plant tiller 

number is reduced. The negative effects of high feeding pressure from adult African 

black beetle (H. arator) were still apparent one month post exposure to beetles, with 

lower levels of paxilline immunoreactivity and lower plant tiller numbers. 

Distribution of paxilline immunoreactivity in the plant was consistent between 

Trials 1 and 2, with the highest levels found in undamaged pseudostem, then 

damaged pseudostem and the lowest in herbage. Relative plant performance for the 

measured variables (feeding damage, paxilline immunoreactivity, damage score 

and tiller production) were consistent between Trials 1 and 2, however, paxilline-

IRE concentrations were lower in Trial 2. This may explain why a negative 

association between feeding damage and paxilline immunoreactivity was not 

apparent in Trial 2. Initial tiller number (plant size) was related to plant tiller 

number throughout both trials. Plants that had high tiller numbers at the start of a 

trial had relatively high plant tiller numbers at the end of a trial. Initial plant size, 

however, did not affect the proportion of damaged tillers, the severity of the tiller 

damage or the level of paxilline immunoreactivity. 

  



Trial 2 – Family and plant selection Chapter 5 

192 

5.6 References 

Bell, N. L., Townsend, R. J., Popay, A. J., Mercer, C. F., & Jackson, T. A. (2011). 

Black beetle: lessons from the past and options for the future. Grassland 

Research and Practice Series 15(15), 119–124. 

Bultman, T. L., Bell, G., & Martin, W. D. (2004). A fungal endophyte mediates 

reversal of wound-induced resistance and constrains tolerance in a grass. 

Ecology, 85(3), 679–685. 

Easton, H. S., Latch, G. C. M., Tapper, B. A., & Ball, O. J. P. (2002). Ryegrass host 

genetic control of concentrations of endophyte-derived alkaloids. Crop 

Science, 42(1), 51–57. 

Easton, H. S., Cooper, B. M., Lyons, T. B., Pennell, C. G. L., Popay, A. J., Tapper, 

B. A., & Simpson, W. R. (2000). Selected endophyte and plant variation. In 

V. H. Paul & P. D. Dapprich (Eds.), 4th International Neotyphodium/Grass 

Interactions Symposium (pp. 351–356). Soest, Germany. 

Maschinski, J., & Whitham, T. G. (1989). The Continuum of Plant Responses to 

Herbivory: The Influence of Plant Association, Nutrient Availability, and 

Timing. The American naturalist, 134(1), 1–19. 

Popay, A. J., & Baltus, J. G. (2001). Black beetle damage to perennial ryegrass 

infected with AR1 endophyte. Proceedings of the New Zealand Grassland 

Association, 63, 267–271. 

Popay, A. J., Hume, D. E., Davis, K. L., & Tapper, B. A. (2003). Interactions 

between endophyte (Neotyphodium spp.) and ploidy in hybrid and perennial 

ryegrass cultivars and their effects on Argentine stem weevil (Listronotus 

bonariensis). New Zealand Journal of Agricultural Research, 46(4), 311–

319. 

Qawasmeh, A., Raman, A., & Wheatley, W. (2015). Volatiles in perennial ryegrass 

infected with strains of endophytic fungus: Impact on African black beetle 

host selection. Journal of Applied Entomology, 139(1-2), 94–104. 

Sullivan, T. J., Rodstrom, J., Vandop, J., Librizzi, J., Graham, C., Schardl, C. L., & 

Bultman, T. L. (2007). Symbiont-mediated changes in Lolium 

arundinaceum inducible defenses: evidence from changes in gene 

expression and leaf composition. New Phytologist, 176(3), 673–679. 

Todd, D. H. (1959). Black beetle Heteronychus sanctaehelenae Blanch., in pastures 

in New Zealand. New Zealand Journal of Agricultural Research, 2, 1262–

1273. 

Whitham, T. G., Maschinski, J., Larson, K. C., & Paige, K. N. (1991). Plant 

responses to herbivory: the continuum from negative to positive and 

underlying physiological mechanisms. In P. W. Price, T. M. Lewinsohn, G. 

W. Fernandes & W. W. Benson (Eds.), Plant-Animal Interactions: 

Evolutionary  Ecology in Tropical and Temperate Regions (pp. 227–256): 

John Wiley & Sons, Inc. 



Chapter 6 Trial 3 – Feeding trial with ryegrass seed 

193 

6 Chapter 6 

Trial 3 – An artificial diet feeding trial with 

adult African black beetle using AR1-infected 

and endophyte-free perennial ryegrass seed. 

6.1 Introduction 

Despite the absence of significant correlations between adult African black beetle 

(Heteronychus arator (Fabricius, 1775)) feeding damage and paxilline ELISA 

(enzyme-linked immunosorbant assay) immunoreactivity, results from the first two 

feeding trials using plants (Chapters 4 and 5) from AR1-infected half-sibling 

perennial ryegrass (Lolium perenne L.) families from within a breeding line (GA97), 

did show some support for the hypothesis that high paxilline immunoreactivity is 

associated with low feeding damage from adult African black beetle (H. arator). 

Of particular interest was the cluster of plants, with low adult African black beetle 

(H. arator) feeding damage and high paxilline immunoreactivity in the plant 

pseudostem (>25 µg/g). This cluster was not observed in the second feeding-choice 

trial (Chapter 5), although levels of paxilline immunoreactive equivalents 

(paxilline-IRE) in pseudostem were lower than Trial 1 and did not exceed 25 µg/g 

grass. 

Although adult African black beetle (H. arator) feed on the pseudostem near the 

crown of the plant, seed incorporated into the artificial diet rather than plant material 

was chosen for Trials 3a and 3b, because endophyte-infected (E+) seed acts as a 

reservoir for alkaloids produced by the endophyte (Miles et al., 1993; Miles et al., 

1994). The endophytic fungus is contained within the seed as a means of 

transmission (Neill, 1940; Clay, 1986; Clay & Kover, 1996; Clay & Schardl, 2002) 

and often contains higher levels of alkaloids than the plants themselves do 

(Gallagher et al., 1982). The standard method used by chemists to isolate and 

characterise endophyte-produced compounds is by bulk extraction of seed (Miles 

et al., 1993; Miles et al., 1994), as this provides a much cleaner matrix compared 

with plant material (Finch S.C., AgResearch, New Zealand; personal 
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communication, 2010). Seed also provides consistency and reproducibility of 

sample that would be difficult to obtain when using freshly grown plant pseudostem 

(freeze-dried or fresh) for individual diet trials owing to plant-age, growing 

conditions and seasonal trends influencing both alkaloid expression and the 

palatability of the diet for the insect. Incorporation of ryegrass seed into artificial 

diets for consumption by adult African black beetle (H. arator) was already an 

established AgResearch method (Popay A.J., AgResearch, New Zealand; personal 

communication, 2010) and the seed from infected plants may produce the same or 

stronger effects seen with vegetative plant material (Gallagher et al., 1982).  

Feeding trials using AR1-infected perennial ryegrass (L. perenne) seed 

incorporated into artificial diet were undertaken to determine if presence of AR1 

endophyte is detrimental to adult African black beetle (H. arator) and to provide 

evidence supporting the hypothesis that paxilline immunoreactivity is associated 

with low or reduced feeding damage from adult African black beetle (H. arator). 

Because there was insufficient seed from the GA97 breeding line used in plant trials 

available, seed from a commercially available ryegrass cultivar ‘Extreme’ that was 

infected with AR1 endophyte or was endophyte-free (E-) was used. This cultivar is 

known to contain high levels of paxilline-IRE when analysed by the paxilline 

ELISA, and to provide moderately high resistance to feeding by adult African black 

beetle (H. arator) (Popay A.J., AgResearch, New Zealand; personal 

communication, 2006) as shown in the initial Lincoln trial discussed in Chapter 1, 

Section 1.9.2 and Chapter 7.  

The feeding trials (3a and 3b) using artificial diets were performed in spring 

(September–November 2010) when over-wintering adult African black beetles (H. 

arator) had come out of dormancy and were emerging to feed and mate. The 

objective of the first trial (3a) was to establish that the presence of the AR1 

endophyte in seed of ‘Extreme’ reduces adult African black beetle (H. arator) 

feeding. A second objective of Trial 3a was to determine if the presence of AR1 

endophyte modified the behaviour of adult African black beetles (H. arator). In the 

second trial, 3b, seed of ‘Extreme’ and extracts from seed were tested for their 

effects on African black beetle (H. arator) feeding. Indole diterpenoid profiles were 

determined for seed and pseudostem of cultivar ‘Extreme’.  
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6.2 Methods 

6.2.1 Adult African black beetle 

6.2.1.1 Beetle collection 

In spring active adult African black beetles (H. arator) were collected (Section 2.1.5) 

from the field in Waikato region and maintained (Section 2.1.6) in the laboratory 

until required. 

6.2.1.2 Beetle weight and replicate allocation 

The day before a trial started the beetles, field-collected in the Waikato region 

(Section 6.2.1.1), were sorted by gender, weighed and assigned to replicates based 

on similarity of weight. Beetles were first separated according to gender, and then 

for each gender the beetle weights were recorded. Beetles within each gender, of 

similar weight were allocated to a replicate with individual beetles randomly 

assigned to each treatment within the replicate group. For example, in replicate one 

(A1, B1, C1 and D1, where A, B, C and D were four different treatment groups) all 

beetles were of the same gender and had weights preferably within a 10–20 mg 

range depending on beetle availability. Each treatment group had 20 replicates 

consisting of 10 female and 10 male beetles. 

6.2.1.3 Beetle replicate set-up 

Single beetles were placed into their allocated individual containers (three quarters 

filled with moist soil). A 9 cm diameter petri-dish lid was placed on the container 

(experimental unit) to ensure the adult African black beetle (H. arator) did not 

escape. Spare experimental units for each replicate containing a single beetle were 

also set up to replace any experimental units removed owing to inactive beetles. 

After the beetles had buried themselves, the soil in the containers was tamped down. 

The next day the containers were checked to ensure the beetles were active. 

Containers that did not appear to have had the soil disturbed were deemed to contain 

inactive beetles. These containers were removed and replaced with containers from 

the ‘spares’ that were deemed to contain an ‘active’ beetle (that is, the soil was 

disturbed and indicated that the beetles had been up on top of the soil overnight, 

probably foraging for food) within the same weight group. 
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6.2.2 Ryegrass seed. 

Whole seed was stored in the dark at 4°C and milled seed in the dark at –20°C until 

required for use. The two “Extreme” cultivar ryegrass (L. perenne) seed lines (E+, 

accession 15150 and E- accession 15149) were extracted using the standard 

paxilline ELISA extraction procedure (Section 2.4.3.1.2). Extracts were analysed 

by the paxilline ELISA (Section 2.4.3.2) prior to the start of each feeding trial to 

confirm levels of paxilline-IRE in each seed line and the endophyte status (E+ or 

E-) of the seed. 

6.2.2.1 Bulk extraction of ryegrass seed 

Seed was milled using the Udy cyclone mill (Section 2.3.2). HPLC grade methanol 

(2× 12.5 mL) was added to milled seed (2× 2.5 g) at a ratio of 1 : 5 (w/v) in glass 

Kimax tubes (2× 12 mL). The solutions were rotated end over end for 20 minutes 

then centrifuged at 1294 rcf for 5 mins (Sorvall RT7 centrifuge, RTH-750 rotor 

with buckets at 2500 rpm). The supernatant from each tube was collected and 

combined into a 50 mL glass round bottom flask and the methanol removed via 

rotary evaporation. The extract was stored at –20°C until required and re-suspended 

in ethanol (250 µl) for use. The extracted milled seed from each Kimax tube was 

combined, left overnight in a fume-hood to remove residue methanol and then 

stored in the dark at –20°C until required for use. 

Extracts and seed (both E+ and E-) from the bulk extraction procedure were used 

for diet preparation (see below in Table 6-1). In addition, the bulk extracted seed, 

both E+ and E-, were re-extracted using the standard paxilline ELISA extraction 

procedure (Section 2.4.3.1.2) and analysed by paxilline ELISA. 

6.2.3 Diet preparation 

6.2.3.1 Carrot agar 

The following diet as described by Ball et al. (1997) was used. Fresh diced carrot 

(150 g), distilled water (75 mL), penicillin-G (0.032 g) and streptomycin sulphate 

(0.032 g) were thoroughly liquidised in a 400 W commercial Waring Blender 

(Model HGB2WTG4). During blending, 1.5 mL of absolute ethanol (BDH) was 

added to the carrot mix. In a 250 mL glass beaker, agar (7.5 g) was dissolved in 
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distilled water (94 mL) by heating over a Bunsen burner (or in a microwave oven). 

Once the agar mix had cooled to 60°C 4-hydroxybenzoic acid (0.112 g) and sorbic 

acid (0.094 g) were added as mould inhibitors. The liquidised carrot and the agar 

solution were then added together and mixed thoroughly. 

6.2.3.2 Artificial diet treatments 

Eight diet treatments using carrot agar as the base were prepared as described in 

Table 6-1. For the milled seed diets the appropriate seed (2g) was added to carrot 

agar (20g); also see Section 6.2.2. For the bulk extract of seed diets the appropriate 

extract (100 µl of dried methanol extract re-suspended in ethanol) was added to 

carrot agar (22g); also see Sections 6.2.2 and 6.2.2.1. The amount of extract added 

(100 µl) was equivalent to 2 g seed. The agar control diet was carrot agar (22 gm). 

The eight diet treatments used in artificial diet trials are described in Table 6-1.  

6.2.3.3 Diet and feeding tube set-up 

Diets were made on the first day of a trial, Day 0 (Sections 6.2.3.1 and 6.2.3.2). 

After diets had cooled and firmly set, discs were cut using a number 7 cork-borer 

(11 mm diameter). The diet discs were weighed prior to placement into feeding 

tubes. Feeding tubes were constructed using a cut 5 mL Eppendorf pipette tip 

attached to the centre of a small plastic lid as shown in Figure 6-1 A. Feeding tubes 

were then placed into the appropriately labelled container on the soil surface (Figure 

6-1 B) and the beetles could access the diet from either end of the feeding tube 

(Figure 6-1 C). The petri-dishes containing the remaining diets were sealed using 

parafilm and stored at 4°C until used for replacing diet during the trial. Diet discs 

were replaced weekly (or sooner if required because of rapid consumption). 
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Table 6-1: Description of treatments used in artificial diet trials. 

Treatment 
code Diet treatment 

A Milled E+ seed in carrot agar 

B Milled E- seed in carrot agar (endophyte control) 

C Bulk extracted milled E+ seed in carrot agar 

D Bulk extracted milled E- seed in carrot agar (endophtye control) 

E Bulk extract of E+ seed in carrot agar 

F Bulk extract of E- seed in carrot agar (endophyte control) 

G Carrot agar diet (agar control) 

H Carrot agar diet with additional 100 µl ethanol (extract solvent 
control) 

I Raw carrot (maintenance food) 

Milled E+ seed = AR1-infected Lolium perenne ryegrass seed cv. “Extreme”, Accession 
15150. Milled E- seed = endophyte-free Lolium perenne ryegrass seed cv. “Extreme”, 
Accession 15149.  

 

 

Figure 6-1: The artificial diet experimental unit set up. 
A) The feeding tube (made from a cut 5 mL pipette tip attached to the center of a small 
plastic lid) containing a carrot agar diet disc. B) The feeding tube placed on the soil surface 
in the container, with the 9 cm petri-dish lid removed and placed next to the container. C) 
An adult African black beetle feeding on the carrot agar diet disc inside the feeding tube 
which is on the soil surface.  
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6.2.4 Trial Assessments 

6.2.4.1 Daily assessment 

 Soil disturbance; was the soil disturbed, yes or no? 

 Adult African black beetle (H. arator) position; was the beetle buried or on 

the surface? If on the surface, was the adult African black beetle (H. arator): 

Active or inactive, in the feeding tube or on the soil, feeding or not feeding? 

 Diet position; was the diet disc in place or had it been moved? (Any moved 

diet disc or pieces were returned to the feeding tube). 

Diet score; the diet disc was scored visually for amount of diet consumed, on a scale 

of 0–10; 0 = no feeding, 1 = 10% and 10 = 100% of diet disc consumed. After each 

daily assessment the soil was tamped down again so that beetle activity could be 

recorded again the following day. 

6.2.4.2 Final assessment in diet phase 

 Daily assessment was performed as above. 

 Remaining diet was weighed and stored at –20°C. 

 Beetles were recovered and weighed. 

 Beetles were returned to containers and feeding tubes were removed for 

post-trial recovery. 

 Fresh carrot was placed into containers (¼ sliced ring). 

6.2.4.3 Post-diet phase 

 Daily assessments were performed as described in Section 6.2.4.1 with the 

following alteration; instead of a feeding score it was recorded if the beetle 

had fed or not fed, by checking the carrot for signs of feeding. 

 Carrot was replaced daily (¼ sliced ring). 

 On final day of post-treatment phase in addition to the daily assessments, 

the adult African black beetles (H. arator) were recovered and weighed. 
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6.2.5 Feeding trials using artificial diets  

6.2.5.1 Feeding Trial 3a using artificial diets 

Trial 3a with milled ryegrass seed incorporated in an artificial diet was performed 

in early spring (September 2010). The trial consisted of four treatments (A, B, G 

and I, Table 6-1) and was set-up as described in Sections 6.2.1, 6.2.2 and 6.2.3. The 

raw carrot (treatment I, Table 6-1) was used to ensure the adult African black 

beetles (H. arator) were active and feeding after their over-wintering dormancy 

cycle. Trial 3a had two phases, diet phase and post-diet phase. The diet phase of 

this current trial lasted 15 days with daily assessments (Section 6.2.4.1) and a final 

assessment in the diet phase (Section 6.2.4.2). At the end of the diet phase all beetles 

were put back on maintenance food (raw carrot) for a post-diet phase which lasted 

5 days. Beetles were monitored and assessed as described in Section 6.2.4.3. 

6.2.5.2 Feeding Trial 3b using artificial diets 

Trial 3b with milled ryegrass seed and extracts of milled seed incorporated in an 

artificial diet was performed mid-late spring (October-November 2010). The trial 

consisted of eight treatments (A–H, Table 6-1), a single diet-phase and was set-up 

as described in Sections 6.2.1, 6.2.2 and 6.2.3. In addition to the standard 

experimental units containing African black beetle (H. arator) (Section 6.2.1.2), 

further experimental units were set up containing artificial diet discs but no adult 

African black beetle (H. arator) for each treatment. The experimental units without 

African black beetle (H. arator) were set up for testing the levels of paxilline-

immunoreactivity in the diet discs each time they were replaced to determine the 

stability of the paxilline immunoreactivity. When the diet discs were replaced, a 

single old and new disc from each treatment were collected and stored at –20°C. 

These were later extracted (Section 2.4.3.1.3) and analysed by the paxilline ELISA 

(Section 2.4.3.2). 
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6.2.6 Statistical analyses 

For Trial 3a the following variables were analysed: 

Non behavioural; 

 Weight at start of diet phase (start of trial). 

 Weight change from start to end of diet phase of trial. 

 Weight at end of post-diet phase (end of trial). 

 Weight change from end of diet phase to end of post-diet phase. 

 Diet consumed. 

 Cumulative diet score. 

Behavioural; 

 Days soil disturbed (by beetle overnight; overall trial). 

 Days soil disturbed (by beetle overnight; diet phase). 

 Days soil disturbed (by beetle overnight; post-diet phase). 

 Days buried (beetle buried during assessment; overall trial). 

 Days buried (beetle buried during assessment; diet phase). 

 Days buried (beetle buried during assessment; post-diet phase). 

 Days diet undisturbed (diet remained in place inside the feeding tube and 

not removed by the beetle). 

 

Raw carrot (Treatment I), was excluded from the diet consumed, diet score and diet 

disturbance measurements during the diet phase. The data for each variable were 

analysed using a two-way blocked analysis of variance (ANOVA) initially using 

the full model, Gender+Treatment+Gender.Treatment whereby: 

 Gender.Treatment: The F test assesses whether the means for each 

treatment by gender group are the same. 

 Gender: (If Gender.Treatment is dropped) The F test assesses whether the 

means for female and male beetles are the same. 

 Treatment: (If Gender.Treatment is dropped) The F test treatment assesses 

whether the means for all treatment groups (diets) are the same. 
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The block was the African black beetle (H. arator) replicate. Blocking controls for 

the differences in the initial weights between beetles, and by accounting for this 

source of variation the treatment effects are more easily detected. Insignificant 

terms at the 5% level were sequentially dropped. The model assumptions of normal 

data with constant variance were checked by examining residual plots.  

6.2.7 Analysis by LCMS/MS for indole diterpenes 

Milled seed and plant (pseudostem) samples from perennial ryegrass (L. perenne) 

cultivars, “Extreme” AR1-infected and “Extreme” endophyte-free were sent to 

AgResearch, Palmerston North. As described by Rasmussen et al. (2012), samples 

were extracted in 80% acetonitrile with 1% acetic acid and extracts analysed by 

LC-MS/MS for known indole diterpenes, including paxilline-like compounds, with 

the numbers reported being standardised relative peak areas. 

6.3 Results 

From analysis by the paxilline ELISA, it was confirmed ‘Extreme E+’ seed (AR1-

infected) was positive for the paxilline-like endophyte secondary metabolites 

(18.11 µg/g), and that ‘Extreme E-’ seed did not contain detectable levels of these 

metabolites. Analysis by LCMS/MS of the seed from the ‘Extreme E-’ cultivar 

detected the presence of lolitrems indicating a low level of contamination by the 

wild-type endophyte. Lolitrems are not detected by the paxilline ELISA, and 

pseudostem of plants grown from the same batch of seed tested negative for 

paxilline-immunoreactivity by the paxilline ELISA, negative for endophyte 

infection by immunoblot and negative for lolitrems by LCMS/MS. It was likely that 

some of the endophyte-free seed contained wild-type endophyte that was no longer 

viable but still contained alkaloids. 

6.3.1 Feeding Trial 3a results 

Initially all diet treatments (A, B, G and I; Table 6-1) were analysed together, but 

owing to gender by treatment interactions (P <0.05; Table 6-2 and Table 6-4) in 

Treatment G (carrot agar only), the two seed diet treatments, A and B, were also 

analysed separately (mean values for measured variables are shown in Table 6-3 

and Table 6-5). From the concentration of paxilline immunoreactivity in the  
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Table 6-2: Summary table of statistical analyses for weights of adult African black beetle, diet consumed and cumulative diet score, in a feeding trial 
with endophyte-infected (E+) and endophtye-free (E-) ryegrass seed incorporated in the diet, carrot agar diet and raw carrot. 

Variable 

All diet treatments (A, B, G and I)  Seed diet treatments (A and B) 

Effect F-statistic P-value  Effect F-statistic P-value 

Beetle weight at start of diet phase (start of 
trial) 

Gender by treatment F(3,54) = 0.07 0.975  Gender by treatment F(1,18) = 0.23 0.637 
Gender F(1,18) = 7.43 0.014  Gender F(1,18) = 6.92 0.017 

Treatment F(3,57) = 0.45 0.715  Treatment F(1,19) = 0.78 0.389 

Weight change 
(start to end of diet phase) 

Gender by treatment F(3,54) = 0.93 0.432  Gender by treatment F(1,18) = 0.13 0.724 
Gender F(1,18) = 0.81 0.380  Gender F(1,18) = 0.52 0.480 

Treatment F(3,57) = 3.70 0.017  Treatment F(1,19) = 10.75 0.004 

Beetle weight at end of post-diet phase (end of 
trial) 

Gender by treatment F(3,54) = 1.75 0.168  Gender by treatment* F(1,18) = 4.59 0.046 
Gender F(1,18) = 17.95 <0.001     

Treatment F(3,57) = 0.57 0.637     

Weight change 
(end of diet phase to end of post-diet phase) 

Gender by treatment F(3,54) = 2.51 0.068  Gender by treatment* F(1,18) = 10.51 0.005 
Gender F(1,18) = 0.13 0.727     

Treatment F(3,57) = 5.86 0.001     

Diet consumed Gender by treatment F(2,36) = 4.96 0.013  Gender by Treatment F(1,18) = 0.04 0.845 
    Gender F(1,18) = 0.24 0.632 
    Treatment* F(1,19) = 7.70 0.012 

Cumulative diet score Gender by treatment F(2,36) = 3.50 0.041  Gender by treatment F(1,18) = 0.38 0.547 
    Gender F(1,18) = 0.11 0.744 
    Treatment* F(1,19) = 5.65 0.028 

Values that are statistically significantly different (P ≤0.05) are highlighted in bold and italics. Values that show weak evidence (0.05< P ≤0.10) but are not statistically 
significant are highlighted in italics. Diet treatments; A = Carrot agar diet with AR1-infected seed. B = Carrot agar diet with endophyte-free seed. G = Carrot agar diet. 
I = Raw carrot. * = change in effect between all diet treatments analysed and diet treatments A and B only.  
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Table 6-3: Mean values for weights of adult African black beetle, diet consumed and cumulative diet score in a feeding trial with endophyte-infected 
(E+) and endophtye-free (E-) ryegrass seed incorporated in the diet, carrot agar diet and raw carrot. 

Gender Diet Treatment 

Beetle weight (mg) 

Diet consumed 
(mg) 

Cumulative diet 
score 

At start of 
diet phase 

Weight change (start 
to end of diet phase) 

Weight at end of 
post-diet phase 

Weight change 
(end of diet phase to end of 

post-diet phase) 

Female A 189.9 -12.0 211.0 33.1 232 4.2 

Female B 190.6 2.9 190.8 -2.7 377 7.3 

Female G 190.3 6.5 198.1 1.3 822 19.1 

Female I 189.7 11.3 208.6 7.6   

Male A 167.3 -8.0 174.6 15.3 255 2.4 

Male B 167.5 3.9 181.2 9.8 422 7.8 

Male G 167.5 -1.6 170.5 4.6 364 6.5 

Male I 167.1 0.4 170.6 3.1   

All diet 
treatments 
(A, B, G, I) 

LSD 17.61 14.92 21.52 16.69 292.8 8.24 

LSD (within gender) 1.78 14.81 19.75 16.22 259.1 7.60 

Seed diet 
treatments 
(A and B) 

LSD 18.27 11.03 22.30 17.90 184.40 5.36 

LSD (within gender) 1.55 12.43 18.58 13.90 171.50 5.39 

Table 6-3 continued on next page 
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Table 6-3 continued 

Gender Diet Treatment 

Beetle weight (mg) 

Diet consumed 
(mg) 

Cumulative diet 
score 

At start of 
diet phase 

Weight change (start 
to end of diet phase) 

Weight at end of post-
diet phase 

Weight change 
(end of diet phase to end 

of post-diet phase) 

All diet treatments (A, B, G, I) 

Female All (A, B, G and I) 190.1  202.1    

Male All (A, B, G and I) 167.4  174.2    

Combined A  -10.0  24.2   

Combined B  3.4  3.5   

Combined G  2.4  2.9   

Combined I  5.8  5.3   

Fisher’s LSD 17.56 10.44 13.84 11.90   

Significant effects (P ≤0.05) Gender Treatment Gender Treatment 
Gender by 
Treatment 

Gender by 
Treatment 

Seed diet treatments (A and B) 

Female A–B 190.3      

Male A–B 167.4      

Combined A  -10.0   244 3.3 

Combined B  3.4   400 7.5 

Fisher’s LSD 18.25 8.55   117.7 3.73 

Significant effects (P ≤0.05) Gender Treatment Gender by Treatment* Gender by Treatment* Treatment* Treatment* 

Diet treatments; A = Carrot agar diet with AR1-infected seed. B = Carrot agar diet with endophyte-free seed. G = Carrot agar diet. I = Raw carrot. LSD = Fisher’s least 
significant difference at the 5% significance level. Values that are significantly different are highlighted in bold and italics. Values that are of interest but not 
significantly different between are highlighted in italics. * = change in effect between all diet treatments analysed and diet treatments A and B only.  
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Table 6-4: Summary table of statistical analyses for adult African black beetle activity (days soil disturbed overnight, days adults buried during 
assessment) and the diet position (days the diet was undisturbed and remained in the feeding tube) in a feeding trial with endophyte-infected (E+) 
and endophtye-free (E-) ryegrass seed incorporated in the diet, carrot agar diet and raw carrot. 

Variable 

All diet treatments (A, B, G and I)  Seed diet treatments (A and B) 

Effect F-statistic P-value  Effect F-statistic P-value 

Days soil disturbed (overall trial) Gender by treatment F(3,54) = 0.86 0.465  Gender by treatment F(1,18) = 1.64 0.217 
 Gender F(1,18) = 8.90 0.008  Gender F(1,18) = 5.29 0.034 
 Treatment F(3,57) = 0.30 0.828  Treatment F(1,19) = 0.54 0.470 

Days soil disturbed (diet phase) Gender by treatment F(3,54) = 0.83 0.481  Gender by treatment F(1,18) = 1.32 0.266 
 Gender F(1,18) = 11.52 0.003  Gender F(1,18) = 7.67 0.013 
 Treatment F(3,57) = 0.49 0.688  Treatment F(1,19) = 0.61 0.446 

Days soil disturbed (post-diet phase) Gender by treatment F(3,54) = 0.61 0.611  Gender by treatment F(1,18) = 1.50 0.237 
 Gender F(1,18) = 0.92 0.350  Gender F(1,18) = 0.27 0.609 
 Treatment F(3,57) = 0.87 0.462  Treatment F(1,19) = 0.23  0.635 

Days buried (overall trial) Gender by treatment F(3,54) = 1.13 0.347  Gender by treatment F(1,18) = 1.39 0.254 
 Gender F(1,18) = 0.95 0.342  Gender F(1,18) = 0.68 0.422 
 Treatment F(3,57) = 1.06 0.375  Treatment F(1,19) = 0.82 0.376 

Days buried (diet phase) Gender by treatment F(3,54) = 0.64 0.591  Gender by treatment F(1,18) = 0.67 0.424 
 Gender F(1,18) = 0.76 0.396  Gender F(1,18) = 0.95 0.342 
 Treatment F(3,57) = 1.27 0.293  Treatment F(1,19) = 0.68 0.419 

Days buried (post-diet phase) Gender by treatment F(3,54) = 0.96 0.418  Gender by treatment F(1,18) = 1.40 0.253 
 Gender F(1,18) = 0.46 0.507  Gender F(1,18) = 0.17 0.688 
 Treatment F(3,57) = 2.85 0.045  Treatment* F(1,19) = 3.80 0.066 

Table 6-4 continued on next page 
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Table 6-4 continued 

Variable 

All diet treatments (A, B, G and I)  Seed diet treatments (A and B) 

Effect F-statistic P-value  Effect F-statistic P-value 

Days diet undisturbed (diet phase) Gender by treatment F(2,36) = 4.07 0.026  Gender by treatment F(1,18) = 0.51 0.484 
     Gender F(1,18) = 0.55 0.469 
     Treatment* F(1,19) = 6.29 0.021 

Values that are statistically significantly different (P ≤0.05) are highlighted in bold and italics. Values that show weak evidence (0.05< P ≤0.10) but are not statistically 
significant are highlighted in italics. Diet treatments; A = Carrot agar diet with AR1-infected seed. B = Carrot agar diet with endophyte-free seed. G = Carrot agar diet. 
I = Raw carrot. * = change in effect between all diet treatments analysed and diet treatments A and B only. 
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Table 6-5: Mean values for adult African black beetle activity (days soil disturbed overnight, days adults buried during assessment) and the diet 
position (days the diet was undisturbed and remained in the feeding tube) in a feeding trial with endophyte-infected (E+) and endophtye-free (E-) 
ryegrass seed incorporated in the diet, carrot agar diet and raw carrot. 

Gender Treatment 

Adult African black beetle activity  Diet position 

Days soil disturbed  Days buried Days diet 
undisturbed Trial overall Diet phase Post-diet phase  Trial overall Diet phase Post-diet phase 

Female A 17.1 12.4 4.7  19.5 15.0 4.5  12.8 

Female B 14.8 10.8 4.0  19.4 14.7 4.7  11.2 

Female G 16.5 12.2 4.3  19.6 14.7 4.9  8.5 

Female I 16.6 12.7 3.9  19.6 14.8 4.8   

Male A 18.1 13.7 4.4  18.8 14.7 4.1  12.5 

Male B 18.7 14.0 4.7  19.6 14.7 4.9  9.6 

Male G 18.5 13.8 4.7  19.0 14.4 4.6  12.5 

Male I 17.9 13.8 4.1  19.8 14.9 4.9   
All diet 
treatments 
(A, B, G, I) 

LSD 2.78 2.09 1.06  0.92 0.53 0.60  3.39 

LSD (within gender) 2.81 2.10 1.08  0.93 0.52 0.60  2.95 

Seed diet 
treatments 
(A and B) 

LSD 3.16 2.35 1.14  0.99 0.49 0.72  3.21 

LSD (within gender) 3.37 2.46 1.22  1.14 0.53 0.75  2.70 

All diet treatments (A, B, G, I) 

Female All (A, B, G and I) 16.3 12.0        

Male All (A, B, G and I 18.3 13.8        

Table 6-5 continued on next page 
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Table 6-5 continued 

Gender Treatment 

Adult African black beetle activity  Diet position 

Days soil disturbed  Days buried Days diet 
undisturbed Trial overall Diet phase Post-diet phase  Trial overall Diet phase Post-diet phase 

All diet treatments (A, B, G, I) continued 

Both All (A, B, G and I   4.4  19.4 14.7    

Both A       4.3   

Both B       4.8   

Both C       4.8   

Both D       4.9   

LSD 1.44 1.11 na  na na 0.42   

Significant Effects (P ≤0.05) Gender Gender Nil  Nil Nil Treatment  
Gender by 
Treatment 

Seed diet treatments (A and B) 

Female A–B 16.0 11.6        

Male A–B 18.4 13.9        

Combined A–B   4.4  19.4 14.7 4.7   

Combined A         12.7 

Combined B         10.4 

 LSD 2.24 1.11       1.88 

Significant Effects (P ≤0.05) Gender Gender Nil  Nil Nil Nil*  Treatment* 

Diet treatments; A = Carrot agar diet with AR1-infected seed. B = Carrot agar diet with endophyte-free seed. G = Carrot agar diet. I = Raw carrot. LSD = Fisher’s least 
significant difference at the 5% significance level. Values that are significantly different are highlighted in bold and italics. Values that are of interest but not 
significantly different between are highlighted in italics. * = change in effect between all diet treatments analysed and diet treatments A and B only. 
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‘Extreme E+’ L. perenne seed measured by the paxilline ELISA, Diet A was 

estimated to contain paxilline-IRE at a concentration of 1.65 µg/g of diet (wet 

weight). 

6.3.1.1 Adult African black beetle weight, diet consumed and diet score 

Table 6-2 summarises the statistical analyses and Table 6-3 the mean values, for 

beetle weights, diet consumed and total diet score. For the mean beetle weights at 

the start of the trial (Table 6-3) there was no evidence (P >0.05; Table 6-2) of a 

gender by treatment interaction or a treatment effect. However there was evidence 

of sexual size dimorphism, i.e., a gender effect (P ≤0.05; Table 6-2) with female 

beetles on average, heavier than male beetles by 22.7 mg (Table 6-3). 

Diet phase. The weight change of beetles from the start of the trial to the end of the 

diet phase was significantly less (P ≤0.05; Table 6-2) on AR1-Extreme L. perenne 

seed (Diet A), the only diet with a mean negative weight change, than for the other 

diet treatments. There were no significant differences for weight change of beetles 

from the other diets; Diet B (endophyte-free seed; endophyte control), Diet C 

(carrot agar; agar control) and Diet D (raw carrot; African black beetle (H. arator) 

feeding control). There was no evidence (P >0.05; Table 6-2) of gender or gender 

by treatment effects. 

For the diet consumed and diet score there was evidence of gender by treatment 

interactions (F(2,36) = 4.96; P = 0.013 and F(2,36) = 3.50; P = 0.041 respectively). 

Significantly more diet was consumed by female beetles on the carrot agar diet 

(Diet G) than by males on the same diet. Female beetles on carrot agar diet also 

consumed significantly more diet than beetles (male and female) on the two diets 

containing seed (Diets A: E+ seed and B: E- seed), also see Table 6-3. When only 

the two seed diets (A and B) were compared, beetles consumed significantly more 

of the diet containing endophyte-free seed than of diet with AR1-infected seed 

(Weight change of diet: F(1,19) = 7.70; P = 0.012; Diet score: F(1,19) = 5.65; P = 

0.028) (Table 6-3).  

Post-diet phase. Average weight change during the post-diet phase was 

significantly higher (F(3,57) = 5.86; P <0.001) for beetles on Diet A (E+ seed) than 

the other diets (Table 6-3). There was evidence of a weak gender by treatment 
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interaction, (F(3,54) = 2.51; P = 0.068) with the diet A (E+ seed) female beetles 

having the highest weight change (Table 6-3). The gender by treatment interaction 

was confirmed for comparisons of Treatments A and B (F(1,18) = 10.51; P = 0.005), 

with female beetles on the AR1-infected seed diet gaining the most weight (Table 

6-3). 

Overall trial. At the end of the post-diet phase (end of trial) female beetles weighed 

more than male beetles by 27.9 mg (F(1,18) = 17.95; P = <0.001), as they did at the 

start of the trial, and there was no evidence (P >0.05, Table 6-2) of gender by 

treatment interactions or treatment effects. Beetles from Diet A (E+ seed) recovered 

the weight that was lost during the diet phase and gained sufficient weight during 

the post-diet phase that resulted in beetle weights (gender specific) that were no 

different to the other diet treatments. When comparing only the seed diets, however, 

female beetles in Treatment A weighed more than female beetles in Treatment B 

and males on both diets A and B at the end of the trial (F(1,18) = 4.59; P = 0.046) 

(Table 6-3). 

6.3.1.2 Adult African black beetle activity and diet position 

Adult African black beetle (H. arator) activity (number of days the soil was 

disturbed overnight and the number of days adults were buried during assessment) 

and diet position (number of days the diet was undisturbed and remained in the 

feeding tube) were monitored to determine if the presence of the diet treatments 

influenced adult beetle behaviour. Diet position related only to the diet-phase of the 

trial. The statistical results are summarised in Table 6-4 and the mean values in 

Table 6-5, for African black beetle (H. arator) activity and diet position. 

During the diet phase, no treatment effects were found (P >0.05; Table 6-4) but 

overall (P ≤0.05; Table 6-4) male beetles on average emerged from the soil 

overnight significantly more often (by ~2 more days; Table 6-5) than females. No 

significant effects (P >0.05, Table 6-4), were found in the post-diet phase although 

interestingly female beetles on the AR1-infected seed diet (Diet A) emerged from 

the soil overnight more frequently than the males on this diet, whereas for all other 

diet treatments (endophyte-free, carrot agar and raw carrot) the males had the higher 

average, albeit not significantly so (Table 6-5). 
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The average number of days a beetle was buried in soil (at assessment) was not 

affected by gender or treatment during the diet phase and overall trial (P >0.05; 

Table 6-4). During the post-diet phase, however, beetles that had been on the E+ 

seed diet (Diet A) were on average buried on significantly fewer occasions than 

those on the other diets (F(3,57) = 2.85; P = 0.045) (Table 6-5). This result is 

consistent with the increased diet consumption and large positive weight change 

found for beetles on E+ seed diet during the post-diet phase of the trial. However, 

once the statistical analyses were redone omitting the carrot agar diet and raw carrot 

treatments, there was only weak evidence of a treatment effect (F(1,19) = 3.80; P = 

0.066) between the two seed diet treatments. There was evidence of a gender by 

treatment effect (F(2,36) = 4.07; P = 0.026) for the average number of times the diet 

was disturbed with female beetles from the carrot agar diet (Diet G, highlighted in 

bold and italics in Table 6-5) disturbing the diet more often than beetles from diets 

containing seed, Diets A (E+) and B (E-), and with male beetles from the carrot 

agar diet. When only the two seed diets were re-analysed there was evidence of a 

treatment effect (F(1,19) = 6.29; P = 0.021) for the number of days the diet was 

undisturbed and in place inside the feeding tube (diet position) with the diets 

containing AR1-infected seed left undisturbed more often than diets with 

endophyte-free seed (Table 6-5). 

6.3.2 Feeding Trial 3b results 

The results are not reported for this trial because the beetles, whilst still active, had 

ceased regular feeding and therefore the trial results were unusable.  

Important information, however, was gained in regard to the extraction of paxilline-

like compounds from the E+ seed. The E- seed used in Trial 3b was confirmed (as 

it was for Trial 3a), to have no detectable levels of paxilline immunoreactivity by 

paxilline ELISA. For the E+ seed it was found that the bulk extraction procedure 

used did not adequately extract the paxilline immunoreactivity, with the level of the 

paxilline immunoreactivity remaining in the bulk extracted seed found to be higher 

than that in the bulk extract when re-extracted and analysed by paxilline ELISA 

(19.01 µg/g, 10.01 µg/g and 14.82 µg/g of seed for whole seed, bulk extract and 

bulk extracted seed, respectively). The actual measured levels of paxilline-IRE in 

Diets A (containing E+ seed), C (containing E+ seed extract) and E (containing 
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extracted E+ seed) were 1.14, 0.58 and 0.69 µg/g diet (wet weight) respectively. 

The level of paxilline immunoreactivity in the diets containing E+ seed (not 

extracted and extracted) remained constant, indicating the immunoreactive 

compounds were stable for up to 5 days. However, in the diets containing extract, 

the paxilline immunoreactivity became non-detectable within 5 days. 

6.3.3 Instrumental chemical analyses (3c) – Indole-diterpernoid 

chemical profiles determined by LCMS/MS 

Non-polar extracts (80% acetonitrile with 1% acetic acid) of seed and plant 

pseudostem were analysed by LCMS/MS, with the results reported as standardised 

relative peak areas (Table 6-6). The values do not allow comparison between 

analytes/compounds, but do allow comparison of a single analyte/compound 

between samples. Suitable standards were not available to enable quantitative 

analyses. Compounds terpendole E, terpendole K and terpendole N have been 

tentatively identified by Wade Mace, AgResearch, NZ, by comparison of 

fragmentation and retention times with known compounds. 

The majority of the compounds detected were more concentrated in seed than in the 

pseudostem, ranging from 3.8–48 times more in the seed (terpendole C 48×, 

paspaline 7.8×, and 13-desoxypaxilline 3.8×). However, terpendole K and 

terpendole N were more concentrated in the pseudostem (3.2× and 2.2× respectively) 

compared with that of seed. 

The distribution of expression of detected compounds within seed and pseudostem, 

for the ‘Extreme’ cultivar infected with AR1 were not the same (Table 6-6). In 

AR1-infected seed the early pathway indole diterpenes (highlighted by terpendole 

C, paspaline and 13-desoxypaxilline) were more highly expressed relative to the 

pseudostem (Table 6-6 and Figure 6-2). Compared with seed, the pseudostem 

showed relatively higher proportions of terpendole K and terpendole N, both late 

pathway indole diterpenes. The pseudsostem samples that were analysed by 

LCMS/MS were taken from plants that had not been exposed to adult African black 

beetle (H. arator) feeding. 
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Table 6-6: LCMS/MS indole diterpene alkaloid screen and % cross-reactivity of 
detected indole diterpenoids in the paxilline ELISA. 

Detected indole 
diterpenoid 

Standardised peak area 

Extreme E- 
pseudostem 

Extreme E+ 
pseudostem 

Extreme E- 
seed 

Extreme 
E+ seed 

%CR on 
paxilline 

ELISA 

Paspaline ND 0.36 ND 2.80 NT 

†Terpendole-E ND 0.00 ND 0.19 NT 

Paspaline-B ND ND ND ND NT 

13-Desoxypaxilline ND 0.22 ND 0.82 NT 

Paxilline ND ND ND ND 100 

Terpendole-C ND 0.09 ND 4.42 35 

†Terpendole-K ND 0.09 ND 0.03 NT 

†Terpendole-N ND 0.14 ND 0.06 NT 

Lolitriol ND ND 0.05 ND <0.6 

Lolitrem-B ND ND 0.13 ND <0.3 

†Compounds tentatively identified by Mace, W. J., AgResearch, New Zealand, by 
comparison of fragmentation and retention times with known compounds. ND = non-
detectable. NT = not tested % CR = percent cross-reactivity. %CR data supplied by Briggs, 
L. R., AgResearch, New Zealand 2008.  

 

 

Figure 6-2: Relative expression levels of indole diterpenoids from standardised relative 
peak areas detected by LCMS/MS in AR1-infected pseudostem and seed. 
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The endophyte-free seed (also used for Trials 3a and 3b) was found to have low 

levels of wild-type endophyte contamination by LCMS/MS as it had a minor peak 

for lolitrem B and lolitriol. However, plants grown from the same batch of seed 

(pseudostem samples) did not test positive for lolitrems (wild-type endophyte 

contamination) or other paxilline-like indole diterpenoids by LCMS/MS. 

Endophyte-free seed and pseudostem did not test positive by paxilline ELISA for 

any detectable levels of paxilline-like immunoreactivity. 

6.4 Discussion 

Bulk extraction of seed is the preferred method for isolation and characterisation of 

secondary metabolites produced by endophytes. Artificial diet containing seed of 

“Extreme” cultivar infected with AR1 endophyte (Trial 3a) was found to adversely 

affect adult African black beetle (H. arator) feeding resulting in significant weight 

loss. The weight loss, reduced feeding and the finding that beetles were able to 

recover from this weight loss once they had access to a food supply that did not 

contain AR1 endophyte, suggests that the seed was a strong feeding deterrent but 

was not toxic. 

The female beetles had the highest beetle weights at the end of the trial (consistent 

with the sexual size dimorphism observed in adult African black beetle (H. arator)). 

Female beetles on average gained more weight than male beetles (6.3% and 4.3% 

weight gain respectively), which may reflect the greater need for energy resources 

for egg production. Therefore in this current trial (Trial 3a), the large weight loss 

for the female beetles found at this time of the African black beetle (H. arator) 

lifecycle (prior to egg production), may adversely affect egg production. If female 

beetles gain access to a suitable food source, however, they could compensate for 

the weight loss quite quickly. 

Adult African black beetle (H. arator) in pastures do not feed on seed, instead they 

feed on vegetative plant material (Bell et al., 2011) and evidence of strong 

deterrence in plants has not been reported (Popay & Baltus, 2001; Thom et al., 

2013), with levels of secondary metabolites often lower in plants compared with 

seed (Gallagher et al., 1982). Grasses are the preferred food source for all life stages 

of African black beetle (H. arator) (Bell et al., 2011) and preferred oviposition sites 

(King et al., 1981; Bell et al., 2011). From the literature (Popay & Baltus, 2001; 
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Bell et al., 2011) female beetles lay fewer eggs in environments that contain high 

levels of certain alkaloids. Popay and Baltus (2001), however, reported that in 

planta there were no significant differences in egg counts on AR1-infected and 

endophyte-free perennial ryegrass (L. perenne) plants, and significantly fewer eggs 

were found under wild-type infected plants in a pot trial. Thom et al. (2013) 

reported that African black beetle (H. arator) populations build up more quickly 

under AR1-infected pastures than pastures with grasses infected with AR37 or wild-

type endophyte. From the results of Trial 3a and the evidence reported in the 

literature (Gallagher et al., 1982; Popay & Baltus, 2001; Thom et al., 2013), the 

concentration of secondary metabolites (and level of bioactivity) providing 

deterrence from AR1 endophyte in planta is considered to be a lot lower than in 

seed. 

Although the indole diterpenoid profiles of the AR1-infected seed and pseudostem 

material from the ryegrass cultivar ‘Extreme’ were similar for the known detectable 

compounds, the relative expression levels of compounds in the seed was different 

to that found in the pseudostem. The relative expression levels of indole 

diterpenoids (3c) from standardised relative peak areas showed the majority of 

alkaloids were higher in seed than in pseudostem, consistent with the literature 

(Gallagher et al., 1982). Relative expression levels of terpendoles K and N, 

however, indicated higher expression levels in pseusostem than seed indicating that 

vegetative plants are metabolising and are producing fungal secondary metabolites 

at different ratios and expression levels than found in the seed. There may also be 

other intermediate metabolites that may or may not be accumulated in the seed. 

Compounds deterrent to adult African black beetle (H. arator) feeding in seed may 

not be present in the plant at high enough quantities to be detrimental in the plant. 

For example, terpendole C had high expression in seed but low expression in 

pseudostem. Terpendole C detected by LCMS/MS had moderate cross-reactivity in 

the paxilline ELISA, whereas, the cross-reactivity for the other detected indole 

diterpenes (excluding paxilline) has not been tested. Another group of compounds 

in the metabolising plant may be causing the adverse effects (albeit reduced) and 

may not being detected by ELISA or LCMS/MS. Young et al. (2009) speculated 

the less tremorgenic indole-diterpenes could be beneficial to their host by acting 
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against insects, as has been demonstrated for the potent insecticide, nodulisiporic 

acid A (Ondeyka et al., 1997), a biogenically related yet structurally distinct 

compound (Byrne et al., 2002). Nodulisporic acid has good insecticidal activity 

against a range of insects. 

In the current trial using seed in artificial diet, the dry weight concentration of 

paxilline IRE at which feeding deterrent effects occurred was 18 µg/g (equivalent 

to a wet weight concentration of 1.65 µg/g), less than the 25 µg/g threshold 

estimated in plants suggest in Trial 1 Chapter 4. This may be explained by the 

concentration and proportion of the proposed specific paxilline-like secondary 

metabolites associated with reduced African black beetle (H. arator) feeding being 

higher in seed than pseudostem. Alternately, the deterrence observed in this current 

trial may have been associated with other unrelated compounds. 

The indole diterpenoid chemical profile (of known compounds) was determined by 

LCMS/MS (Section 6.2.7) for pseudostem plant material collected from plants that 

were not previously exposed to feeding by adult African black beetle (H. arator). 

The proposed specific paxilline-like secondary metabolites associated with reduced 

feeding damage from adult African black beetle (H. arator) in planta, therefore, 

may not have been produced or detected in this material. A comparison of the indole 

diterpene profile (including paxilline-like alkaloids) profile of plants exposed to 

feeding adult African black beetle (H. arator) with those that are not exposed prior 

to analysis by LCMS/MS may indicate if, and which indole diterpenoids are 

associated with bioactivity in planta. Feeding by adult African black beetle (H. 

arator) is complex, influenced by a balance of both positive feeding stimulants and 

anti-feedants. 

The adverse effect of AR1 in seed on adult African black beetle (H. arator) feeding 

is likely to be due to one or a group of compounds concentrated in the seed. These 

compounds may or may not be detected by LCMS/MS or by paxilline ELISA. The 

two detection systems, LCMS/MS and ELISA, use different extract solvent systems 

(non-polar and methanolic respectively), each optimised carefully to overcome 

matrix effects for the method of analysis. The different solvents extract a different 

range of compounds and in different proportions, although the extracts will contain 

compounds in common. The active compound or group of compounds in seed may 
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not be found in the plant (pseudostem section) or be produced in large enough 

quantities to be effective until the plant has been damaged. A further possibility is 

that other, unidentified active compounds could be produced that are not present in 

extracts from either solvent system or if present in the extract, not detected by either 

detection system (paxilline ELISA or LCMS/MS). 

Given the strong effect of AR1-infected seed on African black beetle (H. arator), 

the use of seed for the isolation and characterisation of bioactive compounds 

produced by AR1 endophyte that provide in planta resistance against adult African 

black beetle (H. arator) appears to be the best option available. However, the use 

of pseudostem plant material for feeding trials and the methods for the bulk 

extraction of alkaloids from seed, do need further investigating. 

Female beetles have generally been observed to be larger than the male beetles 

(Todd, 1959) and this is confirmed by their higher weight in these experiments. 

This gender difference in size is believed to be caused by natural selection for large 

females due to a fecundity advantage, a common occurrence observed in many 

insects, fish, birds and certain mammals (Vollrath & Parker, 1992; Hayssen & Kunz, 

1996; Arnqvist et al., 2003; Bornholdt et al., 2008). The difference observed 

between the genders in weight gain from the start to the end of the trial (6.31% and 

4.06% for females and males respectively) are consistent with the gender disparity 

in energy requirements for reproduction and sexual size dimorphism (Darwin, 1874; 

Shine, 1989; Fairbairn, 1997). 

Diet consumed and diet score were consistent with average change in beetle weights 

except for the females from the carrot agar treatment. Females on carrot agar 

consumed very large amounts of this diet compared to those on endophyte-free seed 

diets but this was not reflected in higher weight gains. This may be due to the seed-

based diets (and raw carrot) having a greater nutritional value or calorie count and 

lower moisture content than the carrot-agar diet for the same amount of diet eaten. 

Males on the other hand did not consume significantly more carrot agar than males 

on seed diets, suggesting the nutritional value was sufficient at this time for male 

beetles to maintain and gain weight. This may be due to larger energy requirements 

of the larger females at this time in the African black beetle (H. arator) lifecycle 

for reproduction, as sperm production is less costly than egg production. It would 
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be interesting to determine if this gender difference in consumption would be as 

large in autumn, when the new generation of adult African black beetle (H. arator) 

are feeding at high intensity to build up their fat energy stores before the winter 

dormancy period but when sexual reproduction is not occurring. 

Despite the general differences in feeding, male beetles were on average more 

active than the female beetles during the treatment phase and overall. This may have 

been due to behaviourally related influences other than feeding, with the male 

beetles searching for a mate. This gender difference was masked in the post-

treatment phase of the trial because the beetles that had been on the AR1-infected 

seed diet that lost weight significantly increased their feeding and, thus emerged 

more often from the soil and were buried significantly less often during the daytime 

than the beetles that had been on the other treatments. In spring and autumn adult 

African black beetle (H. arator) are normally active at dusk and remain buried 

during the daytime. The increased activity of the beetles exposed to AR1 likely 

results from a compensatory requirement for food. Therefore the presence of 

endophytes that deter beetle feeding, including AR1, may modify the behaviour of 

beetles after exposure, and in the field this may increase their vulnerability to 

diurnal predators, such as birds. 

Results from Trial 3b (not reported) were not useable because adult African black 

beetle (H. arator) had ceased regular feeding. Regular feeding occurs in spring 

(post-winter) prior to egg production and again in autumn prior to the African black 

beetle (H. arator) overwintering dormancy period (Todd, 1959, 1964). It is 

surmised that in late spring, once the beetle fat reserves have built up post-winter 

and for sexual reproduction, feeding becomes irregular but beetles were observed 

remaining active searching for potential mates. In late autumn/early winter once the 

beetle has built up sufficient fat reserves, they enter a dormancy phase (Todd, 1959, 

1964) and feeding becomes irregular, then appears to largely cease although beetles 

were observed to periodically emerge on warm days to feed during this period. To 

date, regular feeding by adult African black beetle (H. arator) in the laboratory 

cannot be maintained and the dormancy period cannot be averted. 

From Trial 3b, it was found that high levels of immunoreactivity remained in the 

bulk extracted seed when re-extracted and analysed by the paxilline ELISA. The 
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concentration found was lower than that in seed without bulk extraction and higher 

than that contained in the extract. This result indicated that further work needs to 

be done to improve or modify the bulk extraction procedure of paxilline-

immunoreactive compounds from seed, including multiple extraction steps. In 

addition, the level of paxilline immunoreactivity in the diet containing extract (E+ 

seed) was unstable and lost within 5 days, and may be due to removal of the 

alkaloids from protective components in the seed, such as antioxidants. For future 

diet work, the diets containing extracts would either need to be made up on a more 

regular basis (possibly daily) and work would need to be done to improve the 

stability of the extracted immunoreactive compounds in African black beetle (H. 

arator) artificial diets. In addition, feeding trials using artificial diets made with 

undamaged pseudostem material (Chapter 4) would be useful. 

Although the methanolic bulk extraction of AR1-infected ryegrass seed was found 

not to be optimal, this does not affect the immunoreactivity results from Trials 1 

and 2. Trial 1 and 2 results were based on a small scale (50mg) methanolic 

extraction optimised for ELISA. The small scale extraction, although may not 

extract 100% of paxilline immunoreactive equivalents, is reproducible. Therefore 

results can be compared between Trials 1 and 2. The large scale bulk extraction 

(Trial 3b), however, had not been optimised for ELISA. In addition, different 

substrates were extracted, with vegetative plant material used in Trials 1 and 2, and 

seed in Trial 3. 

The indole diterpenoid profiling and work with components incorporated in 

artificial diet requires a significant amount of developmental work to determine 

how to best incorporate pseudostem plant material (freeze-dried or fresh) into 

artificial diets for adult African black beetle (H. arator), and would involve large 

chemistry- and biochemistry-based inputs, which are outside the bounds of this PhD 

study. The decision was then made to not continue with artificial diet experiments 

but to seek further evidence that there was an endophyte-host heritable factor in 

AR1-infected plants that may be used to enhance the effect of AR1 on African black 

beetle (H. arator). 
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6.5 Summary 

Artificial diet containing seed of cultivar ‘Extreme AR1’ showed evidence of 

adverse effects that resulted in beetles unable to maintain current weight or gain 

weight. Once beetles had an endophyte-free food source the beetles recovered and 

the beetle weights returned to normal. These results (Trial 3a) suggest a strong 

deterrent effect from AR1 endophtye. 

The presence of AR1 endophyte did not modify the behaviour of the adult African 

black beetle (H. arator) when considering emergence activity at dusk and the time 

spent on the surface during diurnal hours. However, it did influence feeding 

behaviour by reducing the level of feeding. Adult African black beetle (H. arator) 

behaviour was affected post-exposure to AR1 endophyte, with both emergence 

activity at dusk and diurnal surface time increasing, potentially increasing beetle 

vulnerability to predators (these behaviour changes were consistent with large 

weight gain). 

The methanolic bulk extraction of AR1-infected ryegrass seed did not extract all 

the immunoreactivity detected by the paxilline ELISA, with higher levels of 

immunoreactivity left in the bulk extracted seed than in the extract. This 

immunoreactivity was stable in the artificial diets containing seed, but was unstable 

and not detectable within 5 days from the artificial diets containing extracts. 

Although the bulk extraction of AR1-infected seed was not optimal, this does not 

affect the immunoreactivity results from Trials 1 and 2. In Trials 1 and 2 a small 

scale extraction of vegetative plant material, optimised for ELISA was used. 

Whereas in Trial 3b, a large scale bulk extraction of seed, which had not been 

optimised was used. 

The non-polar indole diterpenoid profiles (determined by LCMS/MS) of ‘Extreme 

AR1’ although similar are different for seed and pseudostem. The majority of the 

compounds detected in both seed and pseudostem were more concentrated in seed 

and had higher relative expression levels in seed than in plant pseudostem (not 

exposed to adult African black beetle (H. arator)), but not for terpendoles K and N. 

These compounds had much higher relative expression levels in the pseudostem, 

than in the seed. An indole diterpenoid LCMS/MS profile from plants (pseudostem) 

that had been exposed to feeding from adult African black beetle (H. arator) may 
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be different (by relative expression levels) from that of an unexposed plant and from 

seed. 

The decision was made to focus on trials with AR1-infected plants with the aim of 

identifying AR1-infected ryegrass combinations with high resistance to feeding by 

adult African black beetle (H. arator) and to cease any further trial work using 

artificial diets. Further work is required for optimising the composition of diet, 

optimising extraction of seed and plant material, and to overcome stability issues.  
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7 Chapter 7 

Selection for resistance to Heteronychus arator 

(Coleoptera: Scarabaeidae) in perennial 

ryegrass infected with Epichloë strain, AR1, 

on the basis of paxilline immunoreactivity 

This chapter is written as a journal paper. It includes trial work that was not 

performed by this author but has been discussed earlier in this thesis (Lincoln 

Trial), previous work already presented in this thesis (Trials 1 and 2) and work new 

to this thesis (Trial 4): 

 Trial A = Lincoln Trial; Popay A. J., Fletcher L. R., Briggs L. R., 

AgResearch, New Zealand; unpublished work, 2006 (first presented on 

p51, also see Figure 1-7 and Section 4.3.6). 

 Trial B = Trial 1 (first presented in Chapter 4). 

 Trial C = Trial 2 (first presented in Chapter 5). 

 Trial D = Trial 4 (first presented in Chapter 7). 

 

To be submitted for publication under the same title as this chapter title. 
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7.1 Abstract 

A series of adult African black beetle (Heteronychus arator (Fabricius, 1775)) 

choice feeding trials (A–D) using AR1-infected perennial ryegrass (Lolium perenne 

L.) cultivars (plus endophyte-free) and half-sibling families selected from within a 

breeding line, found differences between lines for levels of feeding damage, 

paxilline immunoreactivity and tiller production. The presence of endophyte was 

only an advantage when adult beetle feeding levels were high. At low feeding levels 

there was no advantage. A negative trend between mean feeding damage and mean 

paxilline immunoreactivity was observed in Trial A. Although significant 

differences in feeding damage and paxilline immunoreactivity were found in 

subsequent trials, there was no significant relationship evident. The correlation 

results in Trial B, however, suggest there is a subset of paxilline-like compounds 

that could be associated with reduced feeding damage from adult beetles. Other 

paxilline-like compounds are likely masking the detection (by paxilline ELISA) of 

this association until the paxilline-IRE concentrations reach a threshold of ≥25 µg/g 

in the base of the tillers. Plant resistance to attack by adult African black beetle (H. 

arator), plant size and tiller production, were traits strongly influenced by host plant 

genetics although a general increase in tiller production was accentuated by 

herbivory and was not cultivar or family specific. The highest concentrations of 

paxilline immunoreactivity were found in the undamaged pseudostems, next in the 

damaged pseudostem and the lowest in the herbage, with levels higher in plants not 

exposed to feeding from adult beetles. There was strong evidence of endophyte and 

family or cultivar effects for both feeding damage and plant tiller number with 

benefits for hosting the AR1 endophyte.   

7.2 Introduction 

African black beetle (H. arator) is a major pest of grasses throughout the northern 

part of New Zealand’s North Island, including Waikato, Bay of Plenty and Hawkes 

Bay. It was generally regarded as a sporadic pest but an outbreak in the Waikato 

and Bay of Plenty in 2007–8 persisted for three seasons (Bell et al., 2011). 

Widespread outbreaks of this insect are economically devastating for farmers. Adult 

beetles feed at the base of tillers and can destroy new grass seedlings but it is the 

root-feeding larvae that do the most damage to the persistence and productivity of 



Chapter 7 Selection of plant resistance using paxilline immunoreactivity 

229 

grass-based pastures (Popay & Baltus, 2001; DairyNZ, 2010). The adult beetle is 

deterred by certain fungal endophytes in ryegrass and tall fescue resulting in fewer 

eggs and therefore fewer root-feeding larvae in the pasture (Popay & Baltus, 2001; 

Thom et al., 2013). 

Perennial ryegrass (L. perenne) is the most predominant and intensely grazed 

pasture in New Zealand (Belgrave et al., 1990; Easton & Tapper, 2005). It is easily 

established, very productive and highly digestible. In New Zealand perennial 

ryegrass (L. perenne) contains the clavicipitaceous endophytic fungus, Epichloë 

festucae var. lolii1, formerly Neotyphodium lolii2 (Leuchtmann et al., 2014). This 

endophyte causes toxicosis in grazing livestock (Fletcher et al., 1999; Easton & 

Tapper, 2005) but is essential for plant persistence in pastures through resistance to 

invertebrate pests (Prestidge & Ball, 1993; Easton & Tapper, 2005). Epichloë 

coenophiala3 of tall fescue (Lolium arundinaceum4) and E. festucae var. lolii of 

perennial ryegrass (L. perenne) are the two most extensively researched endophytes 

due to their agronomic importance particularly in the United States of America and 

New Zealand, respectively. 

The anamorphs of Epichloë species previously described in the genus 

Neotyphodium (Leuchtmann et al., 2014), infect cool-season grasses (C3 grasses) 

in the subfamily Pooideae. The feature that distinguishes these Epichloë anamorph 

endophytes from the other clavicipitaceous fungi is they lack the capacity to 

reproduce sexually, and instead they are propagated by vertical transmission via the 

host seed. They are obligate biotrophic endosymbionts, solely reliant on their host 

grass for survival and reproduction (Ewald, 1987). The asexual fungus provides its 

host with protection against biotic and abiotic stress through the production of 

alkaloids (Clay, 1988a, 1988b, 2009). The wild-type E. festucae var. lolii of 

 

1 Epichloë festucae var. lolii (Latch, M.J. Chr. & Samuels) C. W. Bacon & Schardl, stat. nov. et 

comb. nov.. 

2 Neotyphodium lolii (Latch, M.J. Chr. & Samuels) Glenn, C.W. Bacon & Hanlin. 

3 Epichloë coenophiala (Morgan-Jones & W. Gams) C.W. Bacon & Schardl, comb. nov. (formerly 

Neotyphodium coenophialum (Morgan-Jones & W. Gams) Glenn, C. W. Bacon & Hanlin and 

Acremonium coenophialum Morgan-Jones & W. Gams). 

4 Lolium arundinaceum (Schreb.) Darbysh. formerly Festuca arundinacea Schreb. 
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perennial ryegrass (L. perenne) that was introduced into New Zealand produces the 

following secondary metabolites: ergovaline, lolitrems and peramine (Tapper & 

Latch, 1999). Wild-type E. festucae var. lolii causes both mammalian toxicity 

(Fletcher & Harvey, 1981) and resistance to Argentine stem weevil (Listronotus 

bonariensis (Kuschel, 1995)) (Mortimer et al., 1982; Prestidge et al., 1982). 

Mammalian toxicity was attributed mainly to two classes of alkaloids, the ergot 

alkaloids (ergovaline) and the indole diterpenes (lolitrems). Ergovaline is 

responsible for heat stress (Fletcher & Easton, 1997; Fletcher et al., 1999) in 

animals and the lolitrems for ryegrass staggers (Gallagher et al., 1981, 1982b, 

1982a, 1984; Tapper et al., 2004). Peramine is not known to be toxic to grazing 

animals, but is a potent feeding deterrent to Argentine stem weevil (L. bonariensis) 

(Prestidge et al., 1985; Rowan & Gaynor, 1986; Rowan et al., 1990a). The ergot 

alkaloids and indole diterpenes are known to demonstrate anti-insect activity and 

toxicity. Endophyte strain, plant genotype, tissue type, season, plant age and abiotic 

and biotic stresses influence alkaloid profile and concentrations (Clay & Schardl, 

2002; Easton et al., 2002; Popay et al., 2003; Rodriguez et al., 2009). 

There are diverse strains of E. festucae var. lolii that occur in natural grasslands 

worldwide. In New Zealand, many of these strains are being collected and screened, 

for potential use in the forage industry. Selected ‘novel’ E. festucae var. lolii strains 

are used in commercial cultivars that do not produce, or produce less of, the 

alkaloids known to be toxic to mammalian animals, whilst still maintaining anti-

insect activity.  

The E. festucae var lolii strain, AR1 was developed to provide its host perennial 

ryegrass (L. perenne) with resistance to Argentine stem weevil (L. bonariensis) 

through the production of peramine without any adverse effects on animal 

production. AR1 produces simple indole diterpenes (including paxilline and 

paxilline-like compounds such as the terpendoles) but it lacks the genes for the 

production of more complex indole diterpenes such as lolitrem B (Young et al., 

2009), which is highly detrimental to livestock (Tapper et al., 2004). Although AR1 

genetically can produce paxilline, a mild tremogen (Miles et al., 1992) the amounts 

produced are considered minimal (Young et al., 2009). Instead production of the 

other simple indole diterpenes including the paxilline-like compounds is more 
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predominant (Young et al., 2009). To date there have never been any reports of 

mammalian toxicity in livestock from AR1-infected pastures (Bluett et al., 2005b; 

Bluett et al., 2005a). AR1 endophyte does not produce ergovaline, the only alkaloid 

known to deter adult beetles (Ball et al., 1997) but, despite this, plants infected with 

AR1 show some resistance to this insect (Popay & Baltus, 2001; Thom et al., 2013). 

Lolines have also been indicated to deter African black beetle (H. arator) (Barker 

et al., 2014), but E. festucae var. lolii in perennial ryegrass (L. perenne) does not 

produce lolines (Clay & Schardl, 2002). AR1-infected ryegrass is not recommended 

for use in black-beetle-prone areas, because other endophytes are available to 

farmers that have stronger resistance. 

The chemical basis for the mild deterrent effects of AR1-infected ryegrass on 

African black beetle (H. arator) is not understood. In this study we sought to 

determine if African black beetle (H. arator) resistance was related to the 

differences in paxilline immunoreactivity and whether this could be used to select 

breeding lines with improved resistance to African black beetle (H. arator). 

Selection of AR1 cultivars highly resistant to African black beetle (H. arator) 

would provide a significant advantage to farmers given the lack of animal toxicity 

associated with this endophtye. 

7.3 Materials and Methods 

Feeding trials involving adult African black beetle (H. arator) were undertaken 

between 2006 and 2011 at Ruakura Research Centre, Hamilton, New Zealand. 

Plants. Seed germination and seedling plants. Seed of cultivars containing AR1 

endophyte or endophyte-free equivalents were obtained from the AgResearch 

Margot-Forde Germoplasm Centre, Palmerston North, New Zealand. Seed of the 

half-sibling families from the BL-1 breeding-line were sourced from Forage 

Improvement, AgResearch, Grasslands, Palmerston North, New Zealand. 

Germination was achieved by spreading seeds on damp filter paper in petri-dishes 

sealed with parafilm and left in the dark at 20°C for 7 to 10 days. Germinated 

seedlings were planted out into plant pots (100 mm depth × 125 mm top diameter) 

or polystyrene trays (internal 495 mm L × 300 mm W) containing a general purpose 

potting mix (Daltons GB Potting Mix) for establishment (6 weeks minimum). 
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Cloned plants. Plants were cloned by splitting the original plant into ramets of four 

to six tillers and re-planted. This always included at least one spare clone being re-

planted back into the original tray or pot. The cloned plants were first planted out 

into mortar sand to encourage root development for 10–14 days and then transferred 

into polystyrene trays containing general purpose potting mix for establishment (2 

weeks minimum). 

Plant maintenance. Seedling and cloned plants were housed in either a glasshouse 

(late autumn–early spring) or screenhouse (late spring–early autumn) depending on 

the ambient air temperature outside for both establishment and plant-based trials. 

Plants were fertilised post-trimming, using Thrive All Purpose Soluble Fertiliser 

(NPK analysis; 27 : 5.5 : 9, with trace elements) from Yates (Auckland, New 

Zealand; sourced from local stockists) at the recommended label rate (1.8 g/L) with 

the addition of urea (2.5 g/L) dissolved in tapwater). 

Endophyte status. After plant establishment the endophyte status (endophyte-

infected, E+ or endophyte-free, E-) of all seedling and cloned plants (>6 weeks old) 

were checked using the endophyte tissue immunoblot technique (Gwinn et al., 

1991; Simpson et al., 2012). A single tiller sample was tested from each plant. 

Selected plants with the correct endophyte status and a minimum of five tillers were 

replanted into containers as required for each specific trial. 

African black beetle. Adult African black beetle (H. arator) were collected from 

the field when they were active and feeding regularly either in autumn when teneral 

adults had recently emerged or spring when having overwintered and entering their 

reproductive phase. Beetle collection was done by pitfall trapping with traps 

checked daily in the early morning. In the laboratory, African black beetle (H. 

arator) were separated by gender and maintained at ambient temperature (~20–

25°C) in containers with perforated lids and partly filled with moist soil. A diet of 

sliced carrot was fed. 

Grass sample preparation. Plant samples (herbage and pseudostem) were frozen 

at –20ºC then freeze-dried. After storage at –20°C freeze-dried samples were 

equilibrated to ambient room temperature (21°C) and then ground either by the 

IKA-A10 blade mill (IKA®-WERKE, Staufen, Germany) for small samples (≤2 g) 



Chapter 7 Selection of plant resistance using paxilline immunoreactivity 

233 

or by the Udy Cyclone mill (Udy Corporation, CO, USA) for larger samples (≥2 g). 

Milled samples were stored in sealed containers at –20°C until required for analysis 

by ELISA. 

Extraction of grass samples for paxilline and peramine analyses. All grass 

samples (herbage and pseudostem) were equilibrated to 21°C and then accurately 

weighed (50 mg ± 0.5 mg) using a four place balance (Mettler AE 260 Delta Range) 

in an Eppendorf microfuge tube (2 ml) and stored at –20°C until required. Samples 

that required analyses by both the paxilline and peramine ELISAs had the same 

extract analysed concurrently. Samples were extracted on the same day the paxilline 

ELISA was performed, as previous studies have shown that immunoreactivity 

determined by the paxilline ELISA decreases on storage. After addition of 

extracting solvent (1 ml, 90% HPLC grade methanol in water), samples were 

rotated end-over-end using a Labnet mini labroller (NJ, USA) for 20 min. Samples 

were centrifuged at 8 609 ×g for 5 min (Eppendorf Centrifuge 5418), the 

supernatant collected and analysed by ELISA. 

ELISA analyses. ELISA data analysis was performed using software developed 

in-house (4-parameter curve fit) at AgResearch. The ELISA analysis of samples 

was repeated within 24 h if a result obtained was out of the working range of the 

assay or if there was >10 % CV on replicate determination. 

Paxilline ELISA. Plant (herbage and pseudostem) and seed extracts were analysed 

using an indirect competitive paxilline ELISA developed in-house at AgResearch 

(Garthwaite et al., 1993) with the following modifications. Phosphate buffered 

saline (PBS) containing 0.05% Tween 20 (v/v) was the wash buffer (PBST). The 

blocking agent and antibody buffer was 1% bovine serum albumin (w/v) in PBST 

(1% BSA/PBST). Sheep anti-mouse conjugated to HRP (Chemicon, CA, USA) was 

the secondary antibody. The HRP substrate was BioFX TMB One Component HRP 

microwell substrate buffer (SurModics, MN, USA). The results generated were 

expressed as µg of paxilline-immunoreactive equivalents (paxilline-IRE) per g of 

milled grass, as paxilline was the reference compound used to generate the standard 

curve in the assay. Assay working range was 1–40 ng/ml with a detection limit for 

the undiluted grass extract of 0.18 µg/g dwt. 
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Peramine ELISA. Plant (herbage and pseudostem) extracts were analysed using an 

indirect competitive peramine ELISA developed in-house at AgResearch 

(Garthwaite et al., 1994) with the same modifications as for the paxilline ELISA 

except the secondary antibody was rabbit anti-sheep conjugated to HRP (DAKO, 

Denmark). Results generated take into account the dilutions used on the ELISA 

plate and were expressed as µg of peramine-immunoreactive equivalents 

(peramine-IRE) per g of milled grass, as peramine was the reference compound 

used to generate the standard curve in the assay. Although it was anticipated that 

there should be no other peramine-like compounds that would be detected by the 

assay, results were expressed as peramine-IRE because the assay has not been 

quantitatively validated against a reference method. The assay working range was 

2.5–350 ng/ml with a detection limit for the undiluted grass extract of 0.45 µg/g 

dwt. 

Lolitrem ELISA. Single tiller extracts were analysed using an indirect competitive 

lolitrem ELISA developed in-house at AgResearch (Briggs et al., 2007), with the 

following sample extraction modification for the qualitative analysis of fresh single 

tiller samples (developed and validated in-house at AgResearch). One basal tiller 

section (2.5 mm long) per well was placed in a Nunc 96-well untreated plate, with 

every second row left empty. Plates were sealed using Nunc sealing tape and lids 

and stored at –20°C until ready for tiller extraction and ELISA analysis. To each 

well containing a tiller, 90% methanol in water (125 µl) was added. The plate was 

sealed and incubated on a plate shaker (IKA-SCHÜTTLER MTS 4) at 21°C for 1 

h. Extracts (100 µl) were removed and placed in the corresponding well in the 

adjacent row and 0.1 mol/l HCl (50 µl) was added. The plate was sealed and the 

samples were hydrolysed for 15 min at 37°C. The hydrolysates (50 µl) were 

removed and added to PBST (250 µl) in titretubes. The resulting hydrolysed 

extracts were at a final dilution of 1 in 9, in 10% methanol/PBST. Residual acid in 

the diluted extracts had been previously shown to not affect results. Although 

results were expressed as ng of lolitriol-immunoreactive equivalents (lolitriol-IREs) 

per ml of tiller extract, these were only qualitative giving a yes or no result for wild-

type contamination. 
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Trial Design. Trial A. In a pilot trial to determine if African black beetle (H. arator) 

feeding differed on seven ryegrass cultivars known to vary in paxilline 

immunoreactivity, four diploid lines (‘Alto’, ‘Arrow’, ‘Extreme’ and a non-

commercial cultivar (NC-1) and three tetraploid lines; ‘Galaxy’, ‘Quartet’ and a 

second non-commercial cultivar (NC-2), each infected with AR1 (E+) were used. 

The endophyte-free (E-) cultivar ‘Extreme’ was also used as the nil control. Seed 

was sown in 0.15 ha blocks in autumn 2005 at Lincoln, Canterbury, New Zealand. 

The fields had been grazed regularly by sheep. Twenty plants from each block were 

randomly selected and transferred to Ruakura Research Centre in autumn 2006. 

Plants were potted into commercial potting mix and maintained in a screenhouse. 

After each plant was tested for endophyte presence by immunoblot, one plant of 

each treatment with the appropriate endophyte status was transplanted into a 

polystyrene tray to provide a choice feeding test for the African black beetle (H. 

arator). Plants were arranged in 2 × 4 grid pattern within each planter box (500 × 

300 mm) with 100 mm spacing between each plant. The position of each treatment 

within the row was fully randomised. Fifteen replicate trays were prepared and 

maintained in a glasshouse.  

Eight weeks later, eight adult African black beetle (H. arator), collected from the 

field, were released onto each of 10 replicates, chosen as having the healthiest 

plants. Each tray was then covered with fine nylon mesh material supported by wire 

frames. African black beetle (H. arator) damage assessments were carried out on 

each plant 4 weeks later. The number of new and old undamaged tillers was 

recorded, with new tillers being those that had emerged since the beetles were 

introduced to the plants. Damage was categorised as minor where there was surface 

feeding only, moderate where damage had partially penetrated the tiller and severe 

where the tiller was shredded completely and unlikely to survive. 

At the same time as African black beetle (H. arator) feeding was assessed, the basal 

20 mm of leaf sheath was sampled from 10 tillers on each plant for analysis of 

paxilline immunoreactivity by ELISA. Where possible, only old undamaged tillers 

were sampled but to ensure that 10 tillers were sampled per plant new undamaged 

tillers and/or old damaged tillers were also taken to provide sufficient material for 
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the ELISA. Two tillers from each plant were also tested for endophyte by 

immunoblot. 

Trial B. In this choice feeding experiment 23 half-sibling families of L. perenne 

infected with AR1 from a single breeding line BL-1 (diploid) were tested to 

determine if there were differences in adult African black beetle (H. arator) feeding 

damage and if this was related to paxilline immunoreactivity. Plants had been 

grown from seed in polystyrene trays and paxilline immunoreactivity tested for by 

ELISA in herbage (50 mm section; 30–80 mm from the crown). Plants (and 

families) had also been screened for wild-type E. festucae var. lolii endophyte 

contamination using the lolitrem ELISA. From this initial screening, 50 individual 

AR1-infected plants were then selected for further testing based on the level of 

paxilline immunoreacitivity in herbage, plant tiller number (≥10) and plant vigour 

score (≥3; graded on a scale of 1–5, with 1 = weak unhealthy plant and 5 = strong 

healthy plant), across all families and across the range of concentrations of paxilline 

immunoreactivity. Representatives from the three family lines contaminated with 

wild-type endophyte were also included in the selection as benchmark plants and 

families with high levels of resistance to feeding by adult African black beetle (H. 

arator). Selected plants (50) were cloned to provide four genetically identical plants 

with one clonal plant used in each of three experimental replicates and the 

remaining clone replanted back into the original tray in early spring (September 

2008). Cloned plants were tested for endophyte presence using immunoblot. For 

each replicate, cloned plants were planted in a randomised design into polystyrene 

trays (internal 495 mm × 300 mm) in ten rows of five plants per row, (rows 50 mm 

apart, plants 50 mm apart). The three replicates were laid out next to each other in 

a 10 row by 15 column grid. Plant establishment and the trial (in mid-spring, 

October 2008) were conducted in the glasshouse (temperature range 15–25°C) and 

plants were watered by hand as required.  

Cages were constructed for each replicate using green knitted windbreak (Ultrapro 

windbreak.LT 915 mm wide, 55% wind porosity, Cosio Plastics, New Zealand), 

acetate sheets and velcro strips. Prior to addition of adult African black beetle (H. 

arator) at the start of the trial, plants were trimmed to 3 cm from the crown, 

fertilised and tillers per plant counted (Assessment A0). The first 20 adult African 
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black beetles (H. arator) were then added to each replicate. Depending on 

availability, 16–18 adult African black beetles (H. arator) (per replicate) were 

added once a week for the next 3 weeks to all replicates to give a total of 70 adult 

beetles per replicate (48 male, 22 female). 

Assessments of feeding damage by adult African black beetles (H. arator) were 

performed after 2 weeks at Assessment 1 (A1) and at the end at Assessment 2 (A2) 

after 4 weeks. Prior to each assessment plants were initially cut to a height of 80 

mm from the crown and the herbage removed was discarded. Plants were trimmed 

further to 30 mm from the crown, and the 50 mm herbage harvested for analysis by 

ELISA (paxilline and peramine). At the end of each assessment plants were 

fertilised. Total tiller number, and number of damaged and undamaged tillers were 

recorded at each assessment. Damaged tillers were scored on a scale of 1–3; 1 = 

minor damage (penetrated the outer layers of the tiller only, cuticle and epidermal 

layer with minimal damage), 2 = moderate damage (penetrated the inner layers of 

the tiller reaching the vascular bundle but tiller likely to survive) and 3 = severe 

damage (tiller severed or nearly severed and tiller unlikely to survive). Damaged 

pseudostem samples (3 cm) were collected at A1 and damaged and undamaged 

pseudostem samples (separately) at A2 for measurement of paxilline 

immunoreactivity. Undamaged pseudostem samples were collected from plants that 

had ≥10 undamaged tillers remaining at the end of the trial, with either 30% or a 

minimum of five undamaged pseudostems collected. 

Trial C. In this choice feeding experiment 10 of the 23 half-sibling families from 

breeding line BL-1 underwent further testing to determine if feeding damage was 

related to paxilline immunoreactivity. The original plants grown from seed were 

the same as those used in Trial B, with 20 individual plants selected (two 

representatives per family) on the basis of feeding damage and tiller number results 

from Trial B; high ranked plants (9, high tiller number and low feeding damage), 

medium ranked plants (4) and low ranked plants (7). A family line contaminated 

with wild-type endophyte was also included in the selection as benchmark plants 

and families with high levels of resistance to feeding by adult African black beetle 

(H. arator). Selected plants underwent a two-step cloning process to provide 

sufficient clonal plants for Trial C. In the first step, plants were cloned to provide 



Selection of plant resistance using paxilline immunoreactivity Chapter 7 

238 

three genetically identical plants. Two clones were replanted into two plant pots 

(100 mm depth × 125 mm top diameter) and the third clone replanted back into the 

original tray. Once clonal plants (in the pots) had established the endophyte status 

of every plant was confirmed to be positive by the endophyte tissue immunblot and 

was presumed to be AR1 (or wild-type) infected. In the second step, plants from a 

single pot were cloned into seven clonal plants, six of which were used in Trial C 

(one per replicate) and the final clone was replanted back into the plant pot. For 

each replicate, cloned plants (20) were planted in a randomised design into 

polystyrene trays (internal 495 mm × 300 mm) in four rows of five plants per row, 

(rows 100 mm apart, plants 50 mm apart). Plant establishment and the trial (in early 

to mid-summer, December 2009–January 2010) were conducted in the screenhouse 

(temperature range 15–25°C) and plants were watered by an automated system for 

2 hours, 3 times a week. 

The trial lasted 8 weeks and was divided into two phases, each lasting 4 weeks; a 

treatment phase (with and without African black beetle (H. arator)) and a post-

treatment phase (without beetles). There were four replicates for the treatment with 

beetles and two replicates for the treatment without beetles. In the treatment phase 

of the trial both treatments were caged (same design as those used in Trial B). The 

first 20 beetles were then added to each replicate. Depending on availability, 9–12 

adult African black beetles (H. arator) were added (per replicate) once a week for 

2 weeks (during the treatment phase of the trial). A minimum of at least two beetles 

per plant was added with a total of 41 beetles per replicate (19 female : 22 male). 

Assessments in the treatment phase of the trial were performed as for Trial B, at 

start of trial and treatment phase (A0), after 2 weeks in the mid-treatment phase 

(A1) and at the end of treatment phase (A2) after 4 weeks. At the end of the 

treatment phase, cages were removed and all replicates were left outside (24 h) for 

adult African black beetle (H. arator) to disperse. Replicates (uncaged) were 

returned to the screenhouse for the post-treatment phase. At the end of the trial and 

post-treatment phase (A3), plants were trimmed, herbage samples collected (as for 

Trial B) and tillers counted. Grass samples (herbage, damaged and undamaged 

pseudostem) were analysed by the paxilline ELISA.  
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Trial D. In this choice feeding experiment ten lines of perennial ryegrass (L. 

perenne) (plant-line) were selected; three cultivars (AR1-infected and the 

equivalent endophyte-free), ‘Extreme’ (diploid), ‘Quartet’ (tetraploid) and 

‘Galaxy’ (tetraploid), and four diploid AR1-infected half-sibling families (E+) from 

the breeding line BL-1 (F3, F14, F15 and F23; from a total of 23 families). The 

seven AR1-infected lines were chosen on the basis of four combinations of two 

parameters; feeding damage from adult African black beetle (H. arator) and 

paxilline immunoreactivity. Plants were grown initially from seed, after seedling 

establishment the endophtyte status of each plant was checked using the endophyte 

tissue immunoblot before individual plants selected for the trial from each plant line 

were replanted into black planter bags (PB1½; 1.5 Pints, 0.9 L, 90 × 90 × 150 mm, 

Caranz, New Zealand). 

Trial (25 replicates, 250 plants in total) set-up and subsequent assessments were 

staggered over a 5 day period (day 1–day 5), with five replicates randomly assigned 

to each of the five sampling periods. Selected plants (transplanted into planter bags) 

were then placed into metal rings (diameter 330 mm) with a 20 mm base of mortar 

sand. The location of the ten plant-lines per replicate ring was randomised. Mortar 

sand was then used to fill the surrounds of the planter bags and made flush (30–40 

mm below the top of the metal ring). Plants were left to establish in the glasshouse. 

Twelve adult African black beetle (H. arator) were added per replicate at a ratio of 

1 male :1 female beetle (a high stocking rate of 1.2 beetles per plant). Replicates 

were covered with green knitted windbreak; (Ultrapro windbreak.LT 915 mm wide, 

55% wind porosity, Cosio Plastics, New Zealand) supported by wire frames to 

enclose the adult African black beetle (H. arator) and prevent escape while 

allowing space for plant growth. 

Four trial assessments (A0–A3) were performed over a period of 4 weeks; A0 = day 

0, A1 = day14, A2 = day 21, A3 = day 28. Prior to each assessment plants were 

trimmed to 40 mm from the crown. At the initial assessment (A0), before addition 

of the adult African black beetle (H. arator), a sub-sample of tillers 40 mm from 

the crown (pseudostem sample) was collected. At each subsequent assessment (A1 

to A3) the total number of tillers, undamaged, damaged (feeding by adult African 

black beetle (H. arator)) and dead tillers were recorded. At assessments A1 and A2 
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the trimmed African black beetle (H. arator) damaged tillers were removed and 

collected (pseudostem sample); the dead tillers were removed and discarded. At 

assessment A3 all trimmed plant tillers (undamaged, damaged and dead) were 

removed and collected (pseudostem sample). To ensure enough sample for analysis 

by ELISA, collected tillers were pooled according to plant-line and day of 

collection at each assessment, i.e., five replicates were pooled for each day. This 

resulted in five pooled pseudostem tiller samples per plant-line per assessment (a 

reduction from a total of 250 individual samples to 50 pooled samples per 

assessment). All collected tillers were frozen at –20°C at the time of collection and 

subsequently freeze-dried for analysis by the paxilline ELISA. 

Statistical Analyses. Trial A. Total tiller number and paxilline immunoreactivity 

were analysed using one-way analysis of variance (ANOVA) blocked by replicate. 

To stabilise the variance total tiller number was square root transformed. The 

number of damaged tillers was analysed using an overdispersed logistic regression 

model, with rep incorporated as a fixed effect. 

Trial B. Total tiller number, peramine immunoreactivity, and paxilline 

immunoreactivity were analysed using restricted maximum likelihood (REML), 

with random effects of replicate, row, and column to account for spatial variability. 

To stabilise the variance total tiller number was square root transformed and 

immunoreactivity data natural log transformed. The number of damaged tillers was 

analysed using generalised linear mixed model (GLMM) with an overdispersed 

Binomial distribution and a logit link. Replicate, row, and column random effects 

were used to model spatial variability. To assess whether there were differences 

between plants from a family line, the fixed effect of Plant was reparameterised in 

terms of Plant within Family. Data from each assessment was analysed both 

independently and cumulatively.   

Trial C. Data from Trial C was analysed analogously to Trial B, but with random 

effects of replicate, row within replicate, and column within replicate. Plant, Beetle 

and their interaction were included as fixed effects. A fixed term was also included 

to account for potential differences between plants within the interior, versus those 

on the edges, of the tray. 
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Trial D. Data on total tiller number at each assessment was analysed using repeated 

measures REML. Random terms, allowing for temporal replicate effects, were 

included. To stabilise the variance the total tiller number was square root 

transformed. The number of damaged tillers, assumed to be binomially distributed, 

was analysed using a repeated measures GLMM with a logit link function. 

Cumulative tiller number, and cumulative damage, was similarly analysed using 

REML and GLMM, respectively, with replicate a random effect.  Level of paxilline 

immunoreactivity in pseudostem grass samples was analysed using one-way 

(ANOVA). 

Post hoc tests were conducted using Fisher’s least significant difference at the 5% 

significance level (LSD(5%)). Repeated measures analyses were not used for Trials 

A–C because there were either no repeated measures (Trial A) or different 

experiment protocols were imposed prior to each assessment, such as addition 

(Trials B and C) or removal of beetles, removal of cages and movement of experimental 

units during trial. All statistical analyses were conducted in GenStat version 16. 

7.4 Results 

Half-sibling family lines and plants contaminated with wild-type endophyte are 

highlighted with the superscript WT in the text, and in bold font in tables and 

figures. For Trials B and C, when comparing the scale of tiller damage (1–3) in the 

damaged tillers, the data were too sparse to be analysed because the majority of 

African black beetle (H. arator) damaged tillers scored level 3, severely damaged, 

causing death of the tiller. 

Trial A. Tiller number. Cultivars listed in rank order from highest to lowest for 

mean plant tiller number: ‘Galaxy,’ ‘Arrow’, ‘Extreme’, NC-2, ‘Alto’, NC-1, 

‘Extreme Nil’ and Quartet. Differences (F(7,63) = 2.43; P = 0.029) were found 

between cultivars for mean plant tiller number Table 7-1 with the tetraploid cultivar 

‘Quartet’ significantly different from ‘Arrow’, ‘Extreme’ (diploids), ‘Galaxy’ and 

NC-2 (tetraploids) but not ‘Alto’, NC-1 or ‘Extreme Nil’ (diploids).  
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Table 7-1: Trial A; mean plant tiller numbers, mean proportions of feeding damage and mean concentrations of paxilline immunoreactivity, in 
plant pseudostem for AR1-infected cultivars. 

Ploidy Cultivar 

Plant tiller number*  

Proportion of damaged tillers 
from African black beetle 

feeding**  
Paxilline immunoreactivity 

(Paxilline-IRE µg/g) 

Mean SEM  Mean SEM  Mean SEM 

Diploid Alto 5.41 (29.3) 0.294  -1.97 (0.12) 0.334  24.19 2.057 
 Arrow 6.04 (36.5) 0.294  -1.38 (0.20) 0.255  19.65 2.057 
 Extreme 5.58 (31.1) 0.294  -1.61 (0.17) 0.278  21.63 2.057 
 NC-1 5.29 (28.0) 0.294  -1.9 (0.13) 0.315  20.97 2.057 
 Extreme Nil 5.20 (27.0) 0.294  -0.01 (0.50) 0.245  4.4 2.057 

Tetraploid Galaxy 6.01 (36.1) 0.294  -0.29 (0.43) 0.213  10.58 2.057 
 Quartet 4.62 (21.3) 0.294  -1.16 (0.24) 0.302  11.11 2.057 
 NC-2 5.59 (31.2) 0.294  -0.26 (0.43) 0.231  12.14 2.057 

Fisher’s LSD(5%) 0.832  0.906  5.815 

Culitvar Effect      
F-statisticdf 2.437,63  8.687,63  11.417,62 
P-value 0.029  <0.001  <0.001 

SEM = standard errors of means. LSD(5%) = least significant differences of means (5% level). Max = maximum. *Square-root transformed. **Logit transformed. Back 
transformed values are in brackets. 
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Feeding damage. Differences were found between cultivars (F(7,63) = 8.68; P 

<0.001) for mean proportion of damaged tillers from adult African black beetle (H. 

arator) feeding Table 7-1. Listed in rank order from lowest to highest mean 

proportion of damaged tillers from adult African black beetle (H. arator) feeding: 

‘Alto’, NC-1, ‘Extreme’, ‘Arrow’, ‘Quartet’, ‘Galaxy’, NC-2 and ‘Extreme Nil’, no 

significant differences were found between the top five ranked cultivars, and 

between the bottom five ranked cultivars. However, significant differences were 

found between the following cultivars; ‘Alto’ and NC-1 had significantly less 

damage than ‘Galaxy’, NC-2 and ‘Extreme Nil’ and ‘Extreme’ had significantly 

less damage than ‘Extreme Nil’. A replicate effect was found (F(9,63) = 4.37; P 

<0.001) with some beetles in certain replicates not actively feeding. 

Paxilline ELISA. Differences were found between cultivars (F(7,62) = 11.41; P 

<0.001) for mean concentration of paxilline-IRE Table 7-1. Listed in rank order 

from highest to lowest concentrations of paxilline immunoreactivity (‘Alto’, 

‘Extreme’, NC-1, ‘Arrow’, NC-2, ‘Quartet’, ‘Galaxy’ and ‘Extreme Nil’), all AR1-

infected cultivars had significantly higher concentrations of paxilline 

immunoreactivity than ‘Extreme Nil’. No significant differences were found 

between the top four ranked cultivars or between the bottom three ranked AR1-

infected cultivars. Samples were not consistently collected across the replicates and 

had different compositions, from all old undamaged tillers through to all damaged 

tillers. This resulted in the proportion of damaged tillers being under-represented in 

the tiller samples analysed for paxilline immunoreactivity. 

Relationship between feeding damage and paxilline immunoreactivity. When 

cultivar means for feeding damage and paxilline immunoreactivity were plotted it 

appeared there was an association between feeding damage and paxilline 

immunoreactivity. However a regression analysis was not significant (F(7,57) = 1.05; 

P = 0.409). Within a cultivar the relationship or trend between feeding damage and 

paxilline immunoreactivity appeared different depending on the cultivar. 
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Trial B. Tiller number. Significant differences (P <0.05) were found for plant tiller 

number at all three assessments (A0, A1 and A2) for total tiller number (A0–A2; 

Table 7-2) between plants5 irrespective of family, and between plants from the same 

family line (within family6). Initial tiller number (plant size) was related to plant 

tiller number at subsequent assessments; A1 (F(1,95) = 198.88; P <0.001) and A2 

(F(49,69) = 1.46; P <0.001), and this relationship was consistant across all plants. 

Therefore plants and families that were high tiller producers at the start of the trial 

were high producers at the end of the trial. Using total tiller production (cumulative 

tiller number results; Table 7-2) families were grouped by median tiller numbers 

per plant into high (>30), medium (20–30) and low (<20) categories. 

Feeding damage. The proportion of tillers damaged differed (P ≤0.05) between 

plants7 and within family8 at A1, A2 and for the total proportion of tillers damaged 

in trial (A0–A2; cumulatively; Table 7-2) between plants and within families. A 

large range was found for the cumulative proportion of feeding damage in plants, 

with some families being more variable than others (Figure 7-1). If the family 

variation was large, this was from either clonal plant mean differences within the 

family or because of large clonal plant variation between replicates. The median 

cumulative proportion of damaged tillers per plant for the majority of families (21 

of 23) was >0.5, including family lines contaminated with wild-type endophyte 

(Table 7-2; also see Figure 7-1).  

 

5 Plant effect (individual plants): A0 (F(49,77) = 3.52; P <0.001), A1 (F(49,78) = 3.67; P <0.001), A2 

(F(49,75) = 3.12; P <0.001), A0–A2 (F(49,80) = 3.88; P <0.001). 

6 Plant effect (within family): A0 (Wald27 = 82.83; P <0.001), A1 (Wald27 = 66.60; P <0.001), A2 

(Wald27 = 51.58; P = 0.003), A0–A2 (Wald27 = 69.82; P <0.001). 

7 Plant effect (individual plants): A1 (F(49,75) = 1.83; P =0.009), A2 (F(49,70) = 2.27; P =<0.001), A0–
A2 (F(49,80) = 3.88; P <0.001). 

8 Plant effect (within family): A1 (Wald(27) = 51.26; P = 0.003), A2 (Wald(27) = 58.92; P = 0.004), 

A0–A2 (Wald(27) = 69.82; P <0.001). 
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Table 7-2: Trial B; mean cumulative plant tiller number, mean proportion damaged tillers and mean plant ELISA immunoreactivity of the clones 
from individual plants grown from seed (from the 23 half-sibling families). The data were analysed unadjusted for initial tiller number. 

Family Plant 

Plant tiller 
number 
(Sqrt)*  

Proportion 
damaged tillers 

(Logit)**  ELISA immunoreactivity (µg/g) at A2 (ln)*** 

Cum 
A0–A2 SEM  

Cum 
A0–A2 SEM  

Peramine 

 

Paxilline 

Herb SEM DP SEM Herb SEM DP SEM 

F1 F1-6 
5.21 

(27.14) 0.576 
 

1.95 
(0.88) 0.754 

 
2.78 

(15.1) 0.143 
3.02 

(19.49) 0.165  
1.74 

(5.69) 0.231 
2.13 

(8.41) 0.201 

 F1-9 
5.06 

(25.60) 0.601 
 

0.28 
(0.57) 0.669 

 
3.23 

(24.23) 0.143 
3.28 

(25.66) 0.136  
2.29 

(9.87) 0.232 
2.56 

(12.94) 0.171 

F2 F2-4 
3.90 

(15.21) 0.579 
 

0.00 
(0.5) 0.704 

 
3.13 

(21.92) 0.143 
3.42 

(29.48) 0.165  
2.08 

(7.98) 0.232 
2.49 

(12.03) 0.201 

 F2-9 
5.02 

(25.2) 0.582 
 

1.6 
(0.83) 0.724 

 
2.59 

(12.28) 0.142 
2.55 

(11.82) 0.136  
1.33 

(3.79) 0.23 
1.77 

(5.85) 0.169 

F3 F3-1 
4.69 

(22.0) 0.579 
 

0.74 
(0.68) 0.669 

 
3.05 

(20.09) 0.142 
3.15 

(22.29) 0.165  
2.28 

(9.77) 0.231 
2.48 

(11.88) 0.199 

 F3-6 
5.21 

(27.14) 0.577 
 

-0.50 
(0.38) 0.950 

 
2.62 

(12.74) 0.142 
2.84 

(16.15) 0.136  
1.81 

(6.09) 0.231 
1.86 

(6.42) 0.169 

 F3-7 
4.25 

(18.06) 0.580 
 

2.57 
(0.93) 0.627 

 
2.98 

(18.67) 0.143 
3.19 

(23.24) 0.136  
2.25 

(9.53) 0.231 
2.52 

(12.37) 0.17 

 F3-10 
5.32 

(28.3) 0.579 
 

-0.04 
(0.49) 0.605 

 
3.96 

(51.61) 0.143 
3.22 

(24.08) 0.165  
3.09 

(21.89) 0.231 
2.83 

(16.98) 0.201 

F4 F4-1 
4.87 

(23.72) 0.584 
 

1.72 
(0.85) 0.749 

 
         

Table 7–2 continued on next page 
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Table 7–2 continued 

Family Plant 

Plant tiller 
number 
(Sqrt)*  

Proportion 
damaged tillers 

(Logit)**  ELISA immunoreactivity (µg/g) at A2 (ln)*** 

Cum 
A0–A2 SEM  

Cum 
A0–A2 SEM  

Peramine 

 

Paxilline 

Herb SEM DP SEM Herb SEM DP SEM 

F4 F4-6 
4.01 

(16.08) 0.577 
 

2.64 
(0.93) 1.039 

 
         

 F4-7 
3.82 

(14.59) 0.592 
 

0.85 
(0.70) 0.758 

 
         

F5 F5-7 
5.45 

(29.7) 0.593 
 

1.92 
(0.87) 0.774 

 
         

 F5-8 
4.41 

(19.45) 0.599 
 

0.57 
(0.64) 0.678 

 
         

F6 F6-6 
4.97 

(24.7) 0.578 
 

0.06 
(0.51) 0.666 

 
         

 F6-8 
2.81 
(7.9) 0.580 

 
-1.06 
(0.26) 0.844 

 
         

F7 F7-6 
4.91 

(24.11) 0.581 
 

1.51 
(0.82) 0.754 

 
3.17 

(22.86) 0.143 
3.37 

(28.02) 0.136  
1.92 

(6.83) 0.231 
2.37 

(10.69) 0.169 

 F7-9 
5.5 

(30.25) 0.590 
 

1.8 
(0.86) 0.690 

 
3.21 

(23.78) 0.142 
3.09 

(20.98) 0.136  
1.77 

(5.84) 0.231 
2.22 

(9.17) 0.169 

F8 F8-5 
5.22 

(27.25) 0.578 
 

0.00 
(0.50) 0.628 

 
         

 F8-6 
3.85 

(14.82) 0.580 
 

0.24 
(0.56) 0.710 
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Table 7–2 continued 

Family Plant 

Plant tiller 
number 
(Sqrt)*  

Proportion 
damaged tillers 

(Logit)**  ELISA immunoreactivity (µg/g) at A2 (ln)*** 

Cum 
A0–A2 SEM  

Cum 
A0–A2 SEM  

Peramine 

 

Paxilline 

Herb SEM DP SEM Herb SEM DP SEM 

F8 F8-8 
3.28 

(10.76) 0.579 
 

0.57 
(0.64) 0.824 

 
         

F9 F9-3 
4.29 

(18.4) 0.579 
 

1.31 
(0.79) 0.702 

 
         

 F9-5 
2.85 

(8.12) 0.582 
 

2.85 
(0.95) 1.381 

 
         

F10 F10-2 
5.04 

(25.4) 0.584 
 

1.55 
(0.82) 0.717 

 
2.83 

(15.86) 0.143 
3 

(19.03) 0.136  
1.55 

(4.73) 0.232 
2.48 

(11.88) 0.17 

 F10-9 
4.81 

(23.14) 0.589 
 

-0.14 
(0.47) 0.621 

 
3.15 

(22.34) 0.143 
3.27 

(25.23) 0.136  
2.51 

(12.3) 0.232 
2.6 

(13.41) 0.171 

F11 F11-1 
4.83 

(23.33) 0.591 
 

1.5 
(0.82) 0.764 

 
-0.02    

(-0.02) 0.143 
0.03 

(0.03) 0.165  
-1.32 
(0.27) 0.232 

-1.36 
(0.26) 0.199 

 F11-2 
4.81 

(23.14) 0.591 
 

1.22 
(0.77) 0.716 

 
3.1 

(21.13) 0.143 
3.43 

(29.97) 0.136  2 (7.37) 0.231 
2.37 

(10.73) 0.171 

F12 F12-1 
5.48 

(30.03) 0.579 
 

-0.03 
(0.49) 0.602 

 
3.06 

(20.22) 0.142 
3.21 

(23.78) 0.165  
2.45 

(11.54) 0.231 
2.73 

(15.3) 0.198 

 F12-10 
6.48 

(41.99) 0.596 
 

0.88 
(0.71) 0.613 

 
3.11 

(21.33) 0.142 
2.94 

(17.86) 0.136  
2.03 

(7.58) 0.231 
1.88 

(6.58) 0.17 
                 

F13 F13-6 
6.62 

(43.82) 0.577 
 

1.72 
(0.85) 0.630 

 
         

Table 7–2 continued on next page 
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Table 7–2 continued 

Family Plant 

Plant tiller 
number 
(Sqrt)*  

Proportion 
damaged tillers 

(Logit)**  ELISA immunoreactivity (µg/g) at A2 (ln)*** 

Cum 
A0–A2 SEM  

Cum 
A0–A2 SEM  

Peramine 

 

Paxilline 

Herb SEM DP SEM Herb SEM DP SEM 

F14 F14-5 
5 (25) 0.583 

 
0.09 

(0.52) 0.642 
 

2.84 
(16.03) 0.143 

2.67 
(13.37) 0.165  

1.12 
(3.07) 0.231 

1.54 
(4.65) 0.2 

 F14-8 
5.54 

(30.69) 0.579 
 

0.3 
(0.57) 0.637 

 
2.97 

(18.41) 0.142 
3.12 

(21.62) 0.165  
1.55 

(4.69) 0.23 
1.97 

(7.16) 0.198 

F15 F15-1 
5.07 

(25.7) 0.579 
 

0.46 
(0.61) 0.653 

 
3.18 

(23.14) 0.143 
3.22 

(23.9) 0.136  
1.5 

(4.49) 0.231 
1.71 
(5.5) 0.17 

 F15-2 
4.12 

(16.97) 0.581 
 

-0.52 
(0.37) 0.689 

 
3.1 

(21.26) 0.143 
3.28 

(25.68) 0.165  
1.88 

(6.53) 0.232 
2.32 

(10.18) 0.2 

 F15-7 
4.51 

(20.34) 0.579 
 

-0.78 
(0.31) 0.660 

 
2.65 

(13.15) 0.143 
3.05 

(20.07) 0.165  
1.17 

(3.23) 0.231 2 (7.37) 0.199 

F16 F16-2 
5.41 

(29.27) 0.597 
 

0.66 
(0.66) 0.616 

 
3.26 

(25.05) 0.143 
3.55 

(33.95) 0.136  
1.78 

(5.91) 0.231 
2.5 

(12.15) 0.17 

 F16-7 
4.39 

(19.27) 0.580 
 

0.54 
(0.63) 0.691 

 
3.02 

(19.53) 0.142 
3.06 

(20.31) 0.136  
1.35 

(3.86) 0.231 
1.85 

(6.34) 0.17 

 F16-10 
5.52 

(30.47) 0.581 
 

0.94 
(0.72) 0.620 

 
3.74 

(41.01) 0.142 
3.42 

(29.69) 0.136  
2.45 

(11.54) 0.231 
2.31 

(10.11) 0.17 

F17 F17-1 
5.78 

(33.41) 0.580 
 

1.18 
(0.76) 0.627 

 
2.9 

(17.14) 0.143 
2.85 

(16.29) 0.136  
1.64 

(5.14) 0.231 
2.12 

(8.35) 0.17 

 F17-10 
4.58 

(20.98) 0.584 
 

0.85 
(0.7) 0.657 

 
2.76 

(14.72) 0.143 
2.54 

(11.67) 0.136  
0.84 

(2.31) 0.232 
1.19 

(3.28) 0.17 

Table 7–2 continued on next page 
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Table 7–2 continued 

Family Plant 

Plant tiller 
number 
(Sqrt)*  

Proportion 
damaged tillers 

(Logit)**  ELISA immunoreactivity (µg/g) at A2 (ln)*** 

Cum 
A0–A2 SEM  

Cum 
A0–A2 SEM  

Peramine 

 

Paxilline 

Herb SEM DP SEM Herb SEM DP SEM 

F18 F18-1 
1.52 

(2.31) 0.581 
 

1.7 
(0.85) 1.047 

 
         

 F18-4 
4.84 

(23.43) 0.580 
 

1.55 
(0.82) 0.688 

 
         

F19 F19-1 
3.7 

(13.69) 0.579 
 

0.97 
(0.73) 0.764 

 
3.4 

(29.02) 0.143 
3.39 

(28.76) 0.165  
1.48 

(4.37) 0.231 
2.37 

(10.73) 0.2 

 F19-2 
5.19 

(26.94) 0.594 
 

-0.21 
(0.45) 0.639 

 
2.95 

(18.14) 0.143 
3.05 

(20.07) 0.136  
1.87 

(6.48) 0.232 
1.84 
(6.3) 0.17 

F20 F20-1 
5.7 

(32.49) 0.589 
 

1.34 
(0.79) 0.680 

 
         

 F20-5 
5.04 

(25.4) 0.593 
 

0.69 
(0.67) 0.887 

 
         

F21 F21-6 
5.39 

(29.05) 0.600 
 

0.82 
(0.69) 0.645 

 
         

F22 F22-2 
5.5 

(30.25) 0.582 
 

0.55 
(0.63) 0.616 

 
2.88 

(16.73) 0.143 
2.61 

(12.63) 0.136  
1.98 

(7.21) 0.231 
2.18 

(8.82) 0.17 

 F22-4 
6.18 

(38.19) 0.580 
 

-0.32 
(0.42) 0.593 

 
3.09 

(20.93) 0.143 
3.19 

(23.22) 0.136  
2.7 

(14.88) 0.231 
2.79 

(16.28) 0.17 

F23 F23-5 
6.74 

(45.43) 0.581 
 

1.48 
(0.81) 0.553 

 
3.22 

(23.93) 0.143 
3.16 

(22.57) 0.136  
2.1 

(8.15) 0.231 
2.38 

(10.75) 0.17 

Table 7–2 continued on next page 
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Table 7–2 continued 

Family Plant 

Plant tiller 
number 
(Sqrt)*  

Proportion 
damaged tillers 

(Logit)**  ELISA immunoreactivity (µg/g) at A2 (ln)*** 

Cum 
A0–A2 SEM  

Cum 
A0–A2 SEM  

Peramine 

 

Paxilline 

Herb SEM DP SEM Herb SEM DP SEM 

F23 F23-5 
6.74 

(45.43) 0.581 
 

1.48 
(0.81) 0.553 

 
3.22 

(23.93) 0.143 
3.16 

(22.57) 0.136  
2.1 

(8.15) 0.231 
2.38 

(10.75) 0.17 

 F23-10 
7.5 

(56.25) 0.579 
 

0.29 
(0.57) 0.617 

 
3.14 

(22.01) 0.143 
3.39 

(28.78) 0.136  
2.17 

(8.73) 0.231 
2.68 

(14.61) 0.17 

Fisher’s LSD(5%) 1.640   3.185   0.394  0.451   0.538  0.518  

Plant Effect (Individual Plants) 
F-statisticdf 3.8849,80   2.4949,63   21.0831,52  15.8231,37   16.1931,43  19.4631,41  

P-value <0.001   <0.001   <0.001  <0.001   <0.001  <0.001  

Plant Effect (Within family) 
Wald-statisticdf 69.8227   58.2227   368.3618  342.5118   257.1918  370.8818  

P-value <0.001   <0.001   <0.001  <0.001   <0.001  <0.001  

A0 and A2 = Assessments 0 (start of trial) and 2 (end of trial). Cum = Cumulative. DP = Damaged pseudostem. df = Degrees of freedom. Herb = Herbage LSD(5%) = 
least significance difference at the 5% significance level. M1 = fixed effect models 1. (M1). *Square-root transformed. **Logit transformed. ***Natural log 
transformed. Back transformed values are in brackets. Family lines and plants contaminated with wild-type endophyte are highlighted in bold font. Statistically 
significant results are highlighted in bold and italic font. Weak evidence of effects (0.05< P ≤1.0) are highlighted in italic font. 
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Figure 7-1: Trial B; Cumulative proportion of tillers damaged at end of trial (A2).  
Boxplot; displaying family median, upper and lower quartiles and showing variation within 
and between families. Family lines contaminated with wild-type endophyte are 
highlighted in bold font. 

 

Families were grouped by the median proportion of damaged tillers into low (≤0.5), 

medium (>0.5–≤0.75) and high (>0.75) categories, with and only families F6 and 

F15 in the low category. Families F3, F6, F8, F14, F15, F16 and F22WT had all or 

the majority of family representatives in the top 25 plants (least damaged) and 

families underlined accounted for seven of the top ten plants for least amount of 

damage. Plants from the family lines contaminated with wild-type endophyte were 

not significantly different from many of the AR1-infected plants (Table 7-2). The 

proportion of damaged tillers was not related to the initial tiller number of a plant 

(plant size). 

Peramine and paxilline ELISAs. The peramine and paxilline ELISAs were only 

performed on a subset of samples from 14 of the 23 half-sibling families taken at 

A2 (Table 7-2). Samples selected for ELISA analyses were on the basis of the tiller 

number and feeding damage results, with samples from plants likely to be continued 

with in subsequent trial work analysed. For both peramine (per) and paxilline (pax) 

immunoreactivity, there were significant differences (P <0.001) between plants and 
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within family for both the mean herbage 9  and mean damaged pseudostem 10 

immunoreactivity (Table 7-2); between plants and within families. Undamaged data 

were too sparse to be analysed. For both fungal secondary metabolites, variation 

was larger within some families than others (as shown for concentrations of 

paxilline immunoreactivity in damaged pseudostem; Figure 7-2), although family 

variability depended on the plant section analysed (herbage, damaged or 

undamaged pseudostem). The plant inter-clonal variation in general was small, but 

for some families there were significant differences between the plant means of the 

different family representatives and these differences could account for the majority 

of the variation within the family (Table 7-2). Generally higher levels of peramine 

and paxilline immunoreactivity were found in the undamaged pseudostem, the next 

highest being the damaged pseudostem, with the lowest levels found in the herbage 

(Table 7-3). 

 

 

Figure 7-2: Trial B; concentrations of paxilline immunoreactive equivalents (paxilline-
IRE) in damaged pseudostem. 
Boxplot; displaying family median, upper and lower quartiles and showing variation 
within and between families. Family lines contaminated with wild-type endophyte are 
highlighted in bold font.  

 

9 Herbage: 1) Plant effect (individual plants); per (F(31,52) = 21.08: P <0.001), pax (F(31,43) = 16.19; P 

<0.001). 2) Plant effect (within family); per (Wald(18) = 368.36; P <0.001) pax (Wald(18) = 257.19; 

P <0.001). 
10 Damaged pseudostem: 1) Plant effect (individual plants); per (F(31,37) = 15.82; P <0.001), pax 

(F(31,41) = 19.46; P < 0.001). 2) Plant effect (within family); per (Wald(18) = 342.51; P <0.001), pax 

(Wald(18) = 370.88; P < 0.001). 
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Table 7-3: Trial B; distribution of peramine and paxilline immunoreactivity in the three plant sectons, herbage, damaged pseudostem and 
undamaged pseudostem. 

Raw data 

Peramine-IRE (µg/g)  Paxilline-IRE (µg/g) 

Herbage 
Damaged 

pseudostem 
Undamaged 
pseudostem  Herbage 

Damaged 
pseudostem 

Undamaged 
pseudostem 

All ELISA data 

range 1.45–37.49 8.06–40.75 13.13–48.09  1.45–37.49 2.78–19.91 7.05–34.43 

median 21.02 21.84 25.48  6.73 9.09 13.76 

mean 9.87 21.86 28.77  7.93 9.83 16.21 

Subgroup ELISA data 

range 12.94–48.66 10.85–40.75 13.13–48.09  2.34–23.51 3.37–18.07 7.05–27.68 

median 21.55 21.79 24.48  7.15 11.37 13.38 

mean 22.02 23.52 28.03  8.53 10.92 15.09 

Peramine- and paxilline-IRE = Peramine and paxilline immunoreactive equivalents Subgroup data = subgroup of peramine or paxilline ELISA data in which individual 
cloned plants had measured levels of peramine or paxilline immunoreactivity for all three plant sections; herbage, damaged and undamaged pseudostem. 
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Relationships between feeding damage and the ELISA results for peramine and 

paxilline immunoreactivity. The concentrations of peramine and paxilline 

immunoreactivity in the different plant sections were compared to the proportion 

of damaged tillers. No correlations were found between feeding damage and 

peramine immunoreactivity. Although no correlations were found with paxilline 

immunoreactivity when comparing the levels in the overall plant pseudostem and 

in undamaged pseudostem with feeding damage, an interesting cluster of data 

points (circled) was found (Figure 7-3). The group of four plants making up this 

cluster had high concentrations of paxilline immunoreactivity in the pseudostem 

(≥25 μg/g) and low proportions of damaged tillers (0.2 or 20%). 

 

 

Figure 7-3: Trial B; scatterplot (raw data) between adult African black beetle feeding 
damage and paxilline ELISA immunoreactivity in overall pseudostem.  
Pseudostem = overall pseudostem, in which the concentrations of paxilline 
immunoreactivity were calculated by summing the two paxilline immunoreactivity levels 
in damaged and undamaged pseudsotem weighted by the proportion of tillers damaged. 
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Trial C. Tiller number. As for Trial B, positive relationships were found between 

initial plant tiller number and plant tiller numbers at subsequent assessments; A1 

(F(1,87) = 100.02; P <0.001), A2 (F(1,83) = 26.52; P <0.001) and A3 (F(1,97) = 3.91; P 

= 0.051). This accounts for the significant differences (P ≤0.05) found between 

plants11 and within families12 at all assessments including cumulative tiller number 

and for cumulative tiller production being constant across assessments and for 

cumulative tiller production being constant across assessments (Also see Table 7-4; 

cumulative tiller number A0–A2).  

There was evidence of an adult African black beetle (H. arator) feeding effect and 

this effect changed in the different phases of the trial (Table 7-5). Although not 

significant, mean plant tiller number was higher at the mid-treatment phase (A1) 

for plants exposed to adult beetle feeding (F(1,4) = 5.80; P = 0.074). By the end of 

the treatment phase (A2) there was no evidence of mean plant tiller number 

differences (P >0.1). However, by the end of the post-treatment phase and trial (A3) 

the effect had reversed by which plants not exposed to beetles had the greater mean 

plant tiller number (F(1,4) = 4.86; P = 0.092). When the cumulative proportion of 

damaged tillers was assessed, at the end of the treatment phase (A0–A2) there was 

weak evidence of a beetle feeding effect (F(1,4) = 6.78; P = 0.060) with greater tiller 

production from plants exposed to beetles, and by the end of the post-treatment 

phase this effect was significant (F(1,4) = 10.02; P = 0.034).  

For plants exposed to beetles, results for tiller number were consistent with Trial B 

results (including the post-treatment assessment, A3) with the top performing 

family representatives in Trial C for plant tiller number coming from the medium 

and high grouped families from Trial B for median plant tiller number (Table 7-2).  

 

11 Plant effect (individual plants): A0 (F(19,88) = 7.31; P <0.001), A1 (F(19,89) = 12.67; P <0.001), A2 

(F(19,98) = 7.82; P <0.001), A3 (F(19,87) = 3.99; P <0.001), A0–A2 (F(19,88) = 10.44; P <0.001) and A0–
A3 (F(19,88) = 5.71; P <0.001). 

12 Plant effect (within family): A0 (F(10,85) = 4.02; P <0.001), A1 (F(10,82) = 5.81; P <0.001), A2 

(F(10,89) = 3.50; P <0.001), A0–A2 (F(10,82) = 4.56; P <0.001) and A0–A3 (F(10,82) = 2.04; P = 0.039). 
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Table 7-4: Trial C; mean plant tiller number (square root scale*), mean proportion of damaged tillers (logit scale**) and mean concentration of 
paxilline immunoreactivity (natural log (ln) scale***) unadjusted for initial tiller number. 

Family Plant 

Tiller number* 
(Cum A0–A2)  

Proportion of 
damaged 
tillers** 

(Cum A0–A2) 

 

Paxilline-IRE (µg/g)*** (A2)  

 w BB  w/o BB 

w BB SEM w/o BB SEM  Mean SEM  Herb SEM DP SEM UdP  Herb SEM UdP SEM 

F1 F1-6 4.68 
(21.92) 

0.426 4.58 
(21.01) 

0.586  1.50 
(0.82) 

0.552  0.61 
(1.85) 

0.171 1.60 
(4.95) 

0.188 1.67 
(5.31) 

 1.02 
(2.78) 

0.227 1.97 
(7.16) 

0.147 

 F1-9 4.52 
(20.41) 

0.417 4.24 
(18.01) 

0.593  0.08 
(0.52) 

0.460  0.58 
(1.78) 

0.161 1.75 
(5.74) 

0.203 1.83 
(6.23) 

 1.12 
(3.07) 

0.230 2.29 
(9.84) 

0.161 

F2 F2-4 4.45 
(19.8) 

0.414 3.85 
(14.83) 

0.593  0.45 
(0.61) 

0.475  0.19 
(1.21) 

0.161 1.35 
(3.86) 

0.179 1.56 
(4.76) 

 0.56 
(1.75) 

0.231 1.95 
(6.99) 

0.161 

 F2-9 5.11 
(26.11) 

0.417 4.55 
(20.69) 

0.586  0.92 
(0.72) 

0.453  -0.14 
(0.87) 

0.159 1.21 
(3.35) 

0.178   0.16 
(1.17) 

0.229 1.43 
(4.17) 

0.218 

F3 F3-7 7.55 
(56.96) 

0.417 6.82 
(46.54) 

0.594  0.56 
(0.64) 

0.337  1.22 
(3.38) 

0.162 1.52 
(4.59) 

0.177   1.50 
(4.47) 

0.237 2.28 
(9.8) 

0.161 

 F3-10 8.08 
(65.33) 

0.425 7.29 
(53.2) 

0.586  0.85 
(0.7) 

0.345  1.48 
(4.39) 

0.163 2.19 
(8.97) 

0.187 2.79 
(16.28) 

 1.82 
(6.15) 

0.228 3.00 
(20.01) 

0.147 

F7 F7-6 6.41 
(41.09) 

0.417 6.23 
(38.78) 

0.586  1.25 
(0.78) 

0.408  0.84 
(2.32) 

0.161 1.79 
(6.00) 

0.180   0.99 
(2.69) 

0.228   

 F7-9 4.26 
(18.11) 

0.417 4.07 
(16.55) 

0.594  0.95 
(0.72) 

0.528  0.86 
(2.35) 

0.162 1.64 
(5.16) 

0.181   0.95 
(2.59) 

0.235   

F11 F11-1 3.87 
(14.98) 

0.417 4.27 
(18.21) 

0.594  2.78 
(0.94) 

0.978            

Table 7–4 continued on next page 
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Table 7–4 continued 

Family Plant 

Tiller number* 
(Cum A0–A2)  

Proportion of 
damaged 
tillers** 

(Cum A0–A2) 

 

Paxilline-IRE (µg/g)*** (A2)  

 w BB  w/o BB 

w BB SEM w/o BB SEM  Mean SEM  Herb SEM DP SEM UdP  Herb SEM UdP SEM 

 F11-2 5.45 
(29.68) 

0.417 3.98 
(15.83) 

0.586  0.14 
(0.54) 

0.403  0.55 
(1.74) 

0.160 1.95 
(7.01) 

0.179 2.39 
(10.91) 

 0.77 
(2.16) 

0.230 2.24 
(9.35) 

0.147 

F14 F14-5 5.51 
(30.34) 

0.414 4.47 
(19.95) 

0.586  0.62 
(0.65) 

0.408  -0.16 
(0.85) 

0.160 1.08 
(2.93) 

0.176 1.77 
(5.87) 

 0.04 
(1.04) 

0.230 1.47 
(4.33) 

0.147 

F14 F14-8 5.52 
(30.44) 

0.417 4.36 
(19) 

0.594  1.56 
(0.83) 

0.485  0.43 
(1.53) 

0.187 1.00 
(2.72) 

0.177 2.30 
(9.97) 

 0.32 
(1.38) 

0.236 1.38 
(3.98) 

0.161 

F15 F15-1 6.16 
(37.98) 

0.417 5.67 
(32.14) 

0.586  1.61 
(0.83) 

0.453  0.11 
(1.12) 

0.160 1.48 
(4.38) 

0.178   0.67 
(1.95) 

0.229   

 F15-7 5.83 
(33.95) 

0.417 4.07 
(16.56) 

0.594  -0.93 
(0.28) 

0.406  0.03 
(1.03) 

0.163 1.00 
(2.73) 

0.204 1.52 
(4.57) 

 -0.22 
(0.80) 

0.233 1.66 
(5.28) 

0.161 

F19 F19-1 4.75 
(22.55) 

0.417 4.46 
(19.91) 

0.586  0.48 
(0.62) 

0.461  0.88 
(2.41) 

0.160 1.68 
(5.35) 

0.178   1.24 
(3.46) 

0.231   

 F19-2 4.69 
(21.96) 

0.417 2.53 
(6.39) 

0.593  1.14 
(0.76) 

0.489  0.88 
(2.4) 

0.160 2.31 
(10.11) 

0.199   1.26 
(3.53) 

0.320   

F22 F22-2 4.63 
(21.41) 

0.417 5.65 
(31.9) 

0.593  0.69 
(0.67) 

0.469  0.80 
(2.21) 

0.160 1.26 
(3.51) 

0.179 1.74 
(5.70) 

 1.29 
(3.64) 

0.230 2.02 
(7.51) 

0.161 

 F22-4 3.98 
(15.84) 

0.417 3.8 
(14.42) 

0.586  0.89 
(0.71) 

0.542  1.40 
(4.06) 

0.162 1.94 
(6.94) 

0.206 2.39 
(10.91) 

 1.6 
(4.95) 

0.234 2.25 
(9.49) 

0.147 

F23 F23-5 5.58 
(31.13) 

0.426 5.11 
(26.08) 

0.593  0.65 
(0.66) 

0.421  1.55 
(4.71) 

0.169 2.04 
(7.71) 

0.183 2.62 
(13.74) 

 1.72 
(5.57) 

0.236 2.11 
(8.27) 

0.161 

Table 7–4 continued on next page 
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Table 7–4 continued 

Family Plant 

Tiller number* 
(Cum A0–A2)  

Proportion of 
damaged 
tillers** 

(Cum A0–A2) 

 

Paxilline-IRE (µg/g)*** (A2)  

 w BB  w/o BB 

w BB SEM w/o BB SEM  Mean SEM  Herb SEM DP SEM UdP  Herb SEM UdP SEM 

 F23-10 3.97 
(15.75) 

0.414 4.13 
(17.02) 

0.586  2.04 
(0.89) 

0.730  0.60 
(1.82) 

0.160 1.90 
(6.68) 

0.179   1.01 
(2.73) 

0.228   

Fisher’s LSD(5%) 
†0.962  2.368  †0.379 0.564   †0.379 0.632 

Fisher’s LSD(5%) 

within trt 
within plant 

1.672 
1.461    

0.790 
0.716    

0.790 
0.716  

Plant Effect (Individual plants) 
F-statisticdf 10.4419,88  2.7619,56  17.7318,73 5.5318,29   17.7318,73 8.5712,11 
P-value <0.001  0.002  <0.001 <0.001   <0.001 <0.001 

Plant Effect (Within family) 
F-statisticdf or 

†Wald-statisticdf 
4.5610,82  †43.0510  5.159,65 †26.719   5.159,65  

P-value <0.001  <0.001  <0.001 0.002   <0.001  

A0, A2 and A3 = Assessments 1 (start of trial and treatment phase), 2 (end of treatment phase) and 3 (end of post-treatment phase and trial). Cum = cumulative. 
Paxilline-IRE = Paxilline immunoreactive equivalents. df = degrees of freedom. LSD(5%) = least significance difference at the 5% significance level. †For herbage 
paxilline immunoreactivity or tiller number, weak evidence of treatment differences (but not significant), plant means for each treatment are tabled separately. 
Back transformed values are in brackets. Family lines and plants contaminated with wild-type endophyte are highlighted in bold font. Statistically significant results 
are highlighted in bold and italic font. Weak evidence of effects (0.05< P ≤1.0) are highlighted in italic font. trt = treatment. w BB = with African black beetle (H. 
arator) treatment. w/o BB = without African black beetle (H. arator) treatment. Herb = Herbage. DP = Damaged pseudostem. UdP = Undamaged pseudostem. SEM 
= standard error of the mean. 
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Table 7-5: Trial C; African black beetle feeding (treatment) effects.  
Mean plant tiller number and herbage paxilline immunoreactivity in the treatment 
phase (A0, A1 and A2), at the end of the post-treatment (A3) phase and 
cumulatively; at the end of the treatment (A0–A2) and post-treatment phases 
(A0–A3) of the trial. The data was analysed unadjusted initial tiller number. 

 A0 A1 A2 A3  
Cum 

A0–A2 
Cum 

A0–A3 

†Plant tiller number (M1) 

Mean (w BB) 
4.82 

(23.23) 
5.02 

(25.15) 
4.48 

(20.11) 
2.76 

(7.61)  
5.23 

(27.35) 
5.48 

(30.06) 

Mean (w/o BB) 
4.2 

(17.60) 
4.32 

(18.65) 
4.68 

(21.90) 
4.28 

(18.30)  
4.69 

(21.97) 
4.17 

(17.36) 

Fisher’s LSD(5%) 0.821 0.804 0.357 1.913  0.579 1.154 

Treatment Effect 

F-valuedf 4.471,4 5.801,4 1.181,98 4.861,4  6.781,4 10.021,4 

P-value 0.102 0.074 0.280 0.092  0.060 0.034 

‡Herbage Paxilline-IRE (µg/g) (M1) 

Mean (w BB)   
0.66 

(1.94) 
0.87 

(2.39)     

Mean (w/o BB)   
0.93 

(2.53) 
1.41 

(4.08)     

Fisher’s LSD(5%)   0.275 0.606     

Treatment Effect 

F-valuedf   7.341,4 5.991,4     

P-value   0.053 0.075     

A0 and A2 = Assessments 0 (start of trial) and 2 (end of treatment phase). Cum = 
Cumulative. DP = Damaged pseudostem. df = degrees of freedom. LSD(5%) = least 
significance difference at the 5% significance level. M1 = fixed effect models 1. w BB = 
with adult beetles treatment. w/o BB = without adult beetles treatment. †Means of square 
root transformed data. ‡Means of natural log transformed data. Back transformed values 
are in brackets. Family lines and plants contaminated with wild-type endophyte are 
highlighted in bold font. Statistically significant results are highlighted in bold and italic 
font. Weak evidence of effects (0.05< P ≤1.0) are highlighted in italic font. 
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Feeding damage. For plants exposed to adult African black beetle (H. arator), 

results at the end of the treatment phase (A2) and for cumulative feeding damage 

during the treatment phase (A0–A2) for feeding damage were consistent with Trial 

B results with differences found between plants (Table 7-4), and between plants 

from within the same family; A2 (Wald(10) = 33.98; P <0.001) and A0–A2 (Wald(10) 

= 43.05; P <0.001). Eight of the ten top performing family representatives (low 

feeding damage) came from the low and medium grouped families from Trial B 

(Table 7-2) for median cumulative proportion of damaged tillers. The proportion of 

damaged tillers was not related to the initial tiller number of a plant (plant size). 

Paxilline ELISA. In the treatment phase (A2) of the trial, differences were found (P 

≤0.05) between plants 13  and within family 14  for concentrations of paxilline 

immunoreactivity for plants exposed and not exposed (controls) to adult African 

black beetle (H. arator) in herbage (Herb), damaged pseudsotem (DP) and 

undamaged pseudostem (UdP). Mean herbage was used when there were no beetle 

effects found. In general the paxilline immunoreactivity levels found in plants not 

exposed to adult African black beetle (H. arator) feeding were higher than those in 

exposed plants, for both herbage and pseudostem plant sections (Table 7-4). Weak 

evidence (0.05< P ≤ 0.10) of a African black beetle (H. arator) treatment effect for 

herbage paxilline immunoreactivity levels (Table 7-5) was found at the end of both 

the treatment and post-treatment phases of the trial. At the end of the treatment 

phase evidence of the effect was stronger and close to being significant. An overall 

pseudostem paxilline immunoreactivity mean was calculated, weighted by the 

proportion of damaged tillers, for exposed plants because too few undamaged tillers 

were available for analysis of paxilline immunoreactivity (Figure 7-4). 

 

13 Plant effects (individual plants); mean Herb(pax) (F(18,72.6) = 17.73; P <0.001), plants exposed to 

black beetle DP(pax) (F(18,29.4) = 5.53; P <0.001) and plants not exposed to African black beetle (H. 

arator) (controls) UdP(pax) (F(12,11) = 8.57; P <0.001). 

14 Plant effects (within family); plants exposed to frican black beetle (H. arator) Herb(pax) (F(9,65.4) = 

5.15; P <0.001) and plants exposed to black beetle DP(pax) (Wald(9) = 26.71; P = 0.002). 
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Figure 7-4: Trial C; mean concentrations of paxilline immunoreactvity from plants 
exposed (damaged, undamaged and weighted overall pseudostem) and not exposed 
(control means) to adult African black beetle feeding. 
Weighted overall pseudostem concentrations of paxilline immunoreactivity were 
calculated by summing the damaged and undamaged pseudostem immunoreactivity 
levels weighted by the proportion of tillers damaged. Paxilline-IRE = Paxilline 
immunoreactive equivalents. Plants contaminated with wild-type endophyte are 
highlighted in bold font. 

 

In general plants not exposed to African black beetle (H. arator) (controls) had 

higher concentrations of paxilline immunoreactivity in the pseudostem than from 

plants exposed to beetles (weighted pseudostem). When comparing the paxilline 

concentrations in the controls with the undamaged pseudostem in plants exposed to 

African black beetle (H. arator), approximately four of 12 plants had higher levels 

recorded in the undamaged pseudostem from exposed plants. When paxilline 

immunoreactivity levels in undamaged pseudostem for plants exposed and not 

exposed to beetles (Table 7-4), were compared in a scatterplot (not shown) no 

correlations were observed. Consistent with Trial B results, plants exposed to adult 

beetle feeding, in general had higher concentrations of paxilline immunoreactivity 

in the undamaged pseudostem than in the damaged pseudostem, with lowest levels 

found in the herbage (Table 7-4). Seasonal increases in concentrations of paxilline 
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immunoreactivity were found in the herbage plant sections when comparing the end 

of the treatment phase (A2) with the end of the post-treatment phase (A3) for both 

treatments (Table 7-5; also see Table 7-4 for plant means). 

Relationship between feeding damage and paxilline immunoreactivity. For the 

plants in the treatment group exposed to beetles, no relationship was found between 

levels of immunoreactivity and adult African black beetle (H. arator) feeding for 

herbage or damaged pseudostem plant sections, consistent with Trial B results. 

Many plants had insufficient undamaged pseudostem for comparison. However, 10 

of 12 plants that had measured concentrations of paxilline immunoreactivity in 

undamaged pseudostem, were also the top performing plants for feeding damage 

(least to most damage) and seven of eight plants that had insufficient undamaged 

pseudostem for analyses were the bottom performing plants for feeding damage. 

Trial D. Feeding damage. The feeding damage results are summarised in Table 7-6. 

There was strong evidence of an interaction between plant-line and assessment time 

(F(18,440) = 4.62; P <0.001). In general, plant-lines with endophyte infection 

sustained the least damage and overall damage was higher at A1 than at other 

assessment times (Figure 7-5). This result was mirrored when plants were re-

parameterised in terms of endophyte status, i.e., endophtye-infected (E+) or 

endophyte-free (E-) with an assessment time by endophyte interaction found 

(F(2,445) = 29.34; P <0.001). For the endophyte-free plants the level of damage was 

significantly higher at A1 than at subsequent assessments (LSD(5%)) when the 

beetles were feeding at their highest level, whereas, for the endophyte-infected 

plants, the level of damage was consistent throughout the trial (Figure 7-5).  

When plants were classified in terms of family or cultivar (‘F3’, ‘F14’, ‘F15’, ‘F23’, 

‘Extreme’, ‘Galaxy’ and ‘Quartet’) there was strong evidence of a family-cultivar 

effect (F(6,168) = 6.85; P <0.001). This was for the cultivar ‘Galaxy’ with 

significantly higher levels of feeding damage from adult African black beetle (H. 

arator) than for the other half-sibling families and cultivars (Figure 7-6 A). There 

was no evidence (P >0.05) that the family-cultivar effect depended on endophyte 

status or varied over time. 



 

 

2
6
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Table 7-6: Trial D; mean plant tiller number (square root transformed*), mean proportion of feeding damage (logit transformed**) and mean 
concentrations of paxilline immunoreactivity, in plant pseudostem for cultivars and half-sibling families. 

Ploidy 
Family or 
Cultivar 

Cum plant tiller number* 
(A0–A3)  

Cum proportion of damaged 
tillers from African black beetle 

feeding** (A0–A3)  

Paxilline 
immunoreactivity (A3) 

(Paxilline-IRE µg/g) 

Mean SEM  Mean SEM  Mean SEM 

Diploid Extreme E+ 4.81 (23.1) 0.232  0.76 (0.68) 0.214  27.86 3.260 
 Extreme E- 4.88 (23.8) 0.232  1.95 (0.88) 0.263  0.00 3.260 
 F3 5.83 (34.0) 0.232  0.57 (0.64) 0.194  27.96 3.260 
 F14 5.31 (28.2) 0.232  0.88 (0.71) 0.208  34.73 3.260 
 F15 5.82 (33.9) 0.232  0.77 (0.68) 0.197  39.65 3.260 
 F23 6.69 (44.7) 0.232  0.86 (0.70) 0.187  38.66 3.260 

Tetraploid Galaxy E+ 2.83 (8.0) 0.232  1.94 (0.87) 0.387  21.39 3.260 
 Galaxy E- 4.01 (14.1) 0.232  3.27 (0.96) 0.453  0.00 3.260 
 Quartet E+ 3.58 (12.8) 0.232  1.28 (0.78) 0.279  26.02 3.260 
 Quartet E- 4.03 (16.2) 0.232  1.72 (0.85) 0.280  0.00 3.260 

 Fisher’s LSD(5%) 0.655  0.646  9.220  

 Plant-line Effect 
 F-statisticdf 24.629,240  9.019,215  4.536,28 

 P-value <0.001  <0.001  0.003 

SEM = standard errors of means. LSD(5%) = least significant differences of means (5% level). * Square-root transformed. **Logit transformed. Back transformed 
values are in brackets. 
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Figure 7-5: Trial D; comparison of feeding damage by adult African black beetle for 
individual plant-lines at each assessment.  
Mean data unadjusted for the covariate, initial tiller number (initial plant size) on the logit 
scale for proportion of damaged tillers, with the back transformed scale on the right-hand 
vertical axis of the graph. LSD(5%) = Fisher’s least significant difference (LSD) post hoc test 
at the 5% significance level. A1, A2 and A3 = assessments 1, 2 and 3 respectively. 
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Figure 7-6: Trial D; feeding damage by adult African black beetle.  
Mean + LSD(5%). A) Family-cultivar effects; plants separated by cultivar or half-sibling 
family for the proportion of damaged tillers in rank order from lowest to highest, from the 
pooled data from all three damage assessments (A1–A3) as there was no assessment by 
plant family-cultivar effect (F(12,439) = 1.19; P = 0.077). B–C = Cumulative feeding damage 
from adult African black beetle for plant-lines in rank order from lowest to highest. B) 
Cumulative proportion of damaged tillers from the start to mid-trial, days 0–14 (A0–A1). 
C) Cumulative proportion of damaged tillers from start to end of trial, days 0–28 (A0–A3). 
A0, A1 and A3 = assessments 0 (day 0), 1 (day 14) and 3(day 28) respectively. LSD(5%) = 
Fisher’s least significant difference (LSD) post hoc test at the 5% significance level. 
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The cumulative proportion of damaged tillers was analysed for plant-line with each 

assessment interval analysed separately, and strong evidence of plant-line effects 

were found at each assessment level; A0–A1 (F(9,216) = 16.97; P <0.001), A0–A2 

(F(9,215) = 13.54; P <0.001) and A0–A3 (F(9,215) = 9.01; P <0.001). Total damage, 

that is, the cumulative proportion of damaged tillers, by day 14 (A0–A1) and by 

day 28 (A0–A3) are shown in Figure 7-6 B and C respectively, with plant-lines that 

are significantly different from each other easily distinguished. 

By day 14 (A0–A1; Figure 7-6 B) there were no differences between the half-

sibling families for feeding damage and for all cultivars (‘Extreme’, ‘Quartet’ and 

‘Galaxy’), the endophyte-infected plant-lines were significantly different from their 

equivalent endophyte-free plant-lines with ‘Galaxy E-’ significantly more damaged 

than any other plant-line. Although plant-line ‘F15’ was not significantly different 

from the other half-sibling families for feeding damage it was significantly different 

from all cultivar lines (E+ and E- lines), except for plant-line ‘Extreme E+’. 

By the end of the trial (A0–A3; Figure 7-6 C) the order from least to most damaged 

had changed minimally. The five least damaged plant-lines were the same as those 

at day 14 (A0–A1). These plant-lines remained significantly different from all 

endophyte-free lines and not significantly different from each other. For the cultivar 

‘Quartet’, plant-line ‘Quartet E+’ was now not significantly different from ‘Quartet 

E-’. Plant-line ‘Galaxy E-’ remained significantly different from all other plant-

lines, sustaining the highest level of feeding damage from adult African black beetle 

(H. arator). ‘Galaxy’ was the most susceptible family or cultivar to feeding from 

adult African black beetle (H. arator) (Figure 7-6). 

Paxilline immunoreactivity in plant pseudostem. The data from each assessment for 

the level of paxilline immunoreactivity in pseudostem samples were analysed 

separately (Table 7-6). Pseudostem samples taken at the start of the trial, day 0 (A0), 

prior to addition of adult African black beetles (H. arator) were all from undamaged 

tillers and were a subset of the pseudostems from the whole plant. Samples at 

assessments day 14 (A1) and day 28 (A2) consisted of only damaged tillers. 

Samples at day 28 (A3) consisted of all the tillers from the entire plant (undamaged, 

dead and damaged). Statistically significant differences for mean concentrations of 

paxilline immunoreactivity between plant-lines were found at all assessments; A0 
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(F(6,28) = 3.87; P = 0.006), A1 (F(6,28) = 2.56; P = 0.0.42), A2 (F(6,28) = 5.67; P 

<0.001), and A3 (F(6,28) = 4.53; P = 0.003). 

The order of AR1-infected plant-lines from highest to lowest for concentrations of 

paxilline immunoreactivity at the start and end of the trial (before and after addition 

of adult African black beetle (H. arator)) (Figure 7-7 A and B respectively) differed 

considerably after addition of feeding adult African black beetle (H. arator). When 

plotted in rank order, plant-lines that were significantly different (LSD(5%)) from 

each other for concentrations of paxilline immunoreactivity were clearly 

distinguishable at each assessment Figure 7-7. The top five ranked AR1-infected 

plant-lines with the highest concentrations of paxilline immunoreactivity at the end 

of the trial, A3 (Figure 7-7 B; ‘F15’, ‘F23’, ‘F14’, ‘F3’, ‘Extreme E+’) were also 

the top five ranked plant-lines for least feeding damage (cumulative damage) from 

adult African black beetle (H. arator) (Figure 7-6 C). The three half-sibling families 

‘F14’, ‘F15’ and ‘F23’ had the largest increases in mean paxilline immunoreactivity 

from the start to the end of the trial (Figure 7-7). There was no trend observed 

between concentrations of paxilline immunoreactivity in pseudostem measured at 

the start (A0) and end (A3) of the trial. 

Feeding damage and paxilline immunoreactivity. A regression analysis was not 

able to be performed as there were not enough ELISA data points (from pooling 

samples). When comparing the family and cultivar means for levels of feeding 

damage with concentrations of paxilline immunoreactivity there was a suggestion 

of an association (negative trend) with differences found between cultivars and half-

sibling families (Figure 7-8). That negative trend was still apparent when the 

endophyte-free lines were omitted from the analysis and the AR1-infected plant-

lines were plotted (Figure 7-8; squares and circles only). However, for the AR1-

infected half-sibling families (within a breeding line), no trend was evident (Figure 

7-8; patterned circles only), consistent with Trial B results. Within a cultivar or half-

sibling family line when simple scatterplots were plotted for individual plant-lines 

there were no consistent trends observed (data not shown).  
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Figure 7-7: Trial D; concentrations of paxilline immunoreactivity in pseudostem plant 
sections of the seven AR1-infected plant-lines measured as paxilline-IRE (paxilline 
immunoreactive equivalents) in rank order from highest to lowest.  
Mean + LSD(5%). A = Levels of pseudostem paxilline immunoreactivity at the start of the 
trial, pre-addition of feeding adult African black beetle (H. arator) at assessment 0 (A0). B 
= Levels of pseudostem paxilline immunoreactivity at the end of the trial, post addition of 
feeding adult African black beetle (H. arator) at assessment 3 (A3). LSD(5%) = Fisher’s least 
significant difference (LSD) post hoc test at the 5% significance level. 
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Figure 7-8: Trial D; scatterplot of predicted means of pseudostem paxilline 
immunoreactivity measured as paxilline-IRE (paxilline immunoreactive equivalents) at 
A3 versus the logit proportion of cumulative damaged tillers from the start of the trial 
to the end of the trial (A0–A3) for all ten plant-lines, with the back transformed scale on 
the right-hand vertical axis of the graph. 
Mean ± SEM. Triangle = endophyte-free (E-) cultivars. Square = AR1-infected (E+) cultivars. 
Circle with pattern fill = AR1-infected (E+) half-sibling families. Black fill = cultivar 
“Extreme’. White fill = cultivar “Galaxy”. Grey fill = cultivar “Quartet’. A0 and A3 = 
assessments 0 (day 0) and 3 (day 28) respectively. 

 

Tiller number. There was strong evidence of an assessment by plant-line interaction 

(F(27,476) = 6.23; P <0.001) (Table 7-6). However, with the half-sibling families had 

consistently the highest mean number of tillers at each assessment and ‘Galaxy E+’ 

the lowest. For all plant-lines the highest mean number of tillers was at A1 and 

lowest at A3. The overall family-cultivar effect did not depend on endophyte status 

at any time. A positive relationship with initial tiller number was found at all 

subsequent assessments (A1, A2 and A3) and at A2 and A3 the slope of relationship 

depended on the cultivar: A1 (F(1,225) = 3840.23; P <0.001), A2 (F(9,217) = 2.23; P = 

0.021) and A3 (F(9,214) = 3.17; P = 0.001). 

When plants were parameterised in terms of family or cultivar, the highest mean 

tiller numbers were from the BL-1 breeding line families, followed by the cultivars, 
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‘Extreme’, then ‘Quartet’, and the lowest ‘Galaxy’ (LSD(5%)). The top five family-

cultivars for tiller number were also the same as those with the least feeding damage 

(Figure 7-6 C), that is, all four half-sibling families from BL-1 breeding line and 

the cultivar ‘Extreme’. When plants were parameterised in terms of endophyte 

status (E+ or E-) for tiller number, there was strong evidence of an assessment by 

endophyte interaction (F(3,233) = 32.17; P <0.001) with endophyte-free plants having 

more tillers in the first half of the trial, and the least in the second half. There was 

no evidence that the overall family-cultivar effect depended on the endophyte status 

at any time.  

For total tiller production (cumulative tiller number) there was strong evidence of 

differences for mean cumulative tiller number between plant-lines at all 

assessments; A0–A1 (F(9,240) = 22.84; P <0.001), A0–A2 (F(9,240) = 24.62; P <0.001) 

and A0–A3 (F(9,240) = 25.97; P <0.001). The rank order of the cumulative number 

of tillers for each plant-line when plotted remained relatively constant from start of 

the trial to finish of the trial and there were no indications that feeding by adult 

African black beetle (H. arator) altered tiller production for any of the cultivars or 

half-sibling families from breeding line BL-1. These results were consistent with 

Trials B and C. 

7.5 Discussion 

The severity of African black beetle (H. arator) feeding damage depended on both 

the choice of cultivar and plant endophyte status (E+ or E-). AR1-infected 

ryegrasses had more resistance to African black beetle (H. arator) when compared 

to endophyte-free ryegrasses, consistent with results reported by Popay and Baltus 

(2001). However, once feeding levels of African black beetle (H. arator) declined, 

the benefit of hosting an endophyte diminished. 

AR1-infected plant-lines had increased concentrations of paxilline and peramine 

immunoreactivity post African black beetle (H. arator) feeeding, and this is 

consistent with a general plant-endophtye response to insect attack protecting the 

most vulnerable section of the plant above ground (Popay, 2009). Distribution of 

the fungus and the alkaloids at the base of the plant (Musgrave, 1984; Gallagher et 

al., 1987) ensures the plant and fungus have the strongest protection from herbivory 
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(Popay, 2009). In addition, plants generally had higher concentrations of paxilline 

and peramine immunoreactivity in the undamaged pseudostem sections than in the 

damaged pseudostem, with lowest levels found in the herbage. This difference in 

levels of immunoreactivity between damaged and undamaged pseudostem is likely 

due to reduced resources for alkaloid production in the damaged tillers.  

The chemical basis of African black beetle (H. arator) resistance in AR1-ryegrass 

associations is not well understood, however, it is known that fungal endophytes 

interact strongly with their host plant genotype and that this interaction affects 

resistance to insects, as does the ryegrass species (Fannin et al., 1990; Christensen 

et al., 1991; Hill et al., 1991; Christensen et al., 1993; Agee & Hill, 1994; Popay et 

al., 2003). In the initial trial, Trial A, the African black beetle (H. arator) deterrent 

properties of a range of diploid and tetraploid ryegrass cultivars infected with AR1 

endophyte were explored. Overall the tetraploid cultivars incurred greater beetle 

feeding damage than the diploid cultivars. This is consistent with the finding of 

Popay et al. (2003) that, in general, tetraploids and hybrids sustain more damage by 

African black beetle (H. arator) than diploids or perennials. The three diploid 

cultivars, ‘Alto’, ‘Extreme’ and ‘Arrow’ in rank order for highest resistance to 

beetle feeding, also had high paxilline immunoreactivity and high plant tiller 

numbers.  

At the ryegrass cultivar level, a negative relationship between mean paxilline 

immunoreactivity (in pseudostem) and mean feeding damage was discernible. 

However, at an individual plant level no relationship was found between paxilline 

immunoreactivity and feeding damage. Despite inconsistencies in sample 

collection for analysis by the paxilline ELISA, subsequent trials revealed AR1-

interactions with the host plant genotype strongly influenced alkaloid expression 

even within cultivars. 

To better understand AR1 bioactivity, the cultivar effect was removed and host 

plant genotype variability reduced, by studying closely related plant-genotypes 

from within a breeding line. In Trials B and C, an AR1-infected diploid, perennial 

ryegrass (L. perenne) breeding line (BL-1), consisting of 23 half-sibling families 

with clonal replication, was chosen for study of resistance to adult African black 

beetle (H. arator) and concentrations of paxilline immunoreactivity. Despite 
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indications of differences between half-sibling families for levels of feeding 

damage, paxilline immunoreactivity and tiller number, there was no evidence of a 

relationship between any of these variables.  

Trial D established which tested AR1-infected cultivars and half-sibling families 

(from BL-1) had strong resistance to feeding from adult African black beetle (H. 

arator) using a feeding trial with a choice of plants grown from seeds (i.e. not 

clones). As with Trial A, no relationship was found between paxilline 

immunoreactivity and feeding damage at either the cultivar or family level. Nor was 

a relationship found within cultivars or within families. Sample limitations could 

account for this lack of relationships. Firstly, a lack of families from within the 

breeding line was represented (four of 23) and secondly, a reduced number of 

samples were measured for paxilline immunoreactivity (the 25 individual replicate 

samples were pooled by assessment day to make five pooled samples per plant-line 

to ensure there was adequate sample for analysis by paxilline ELISA). However, a 

negative trend was observed between mean paxilline immunoreactivity and mean 

feeding damage between cultivars and families that was consistent with Trial A. 

Yet no associations were found between feeding damage and peramine 

immunoreactivity, consistent with Ball et al. (1997) who concluded that peramine 

does not deter adult African black beetle (H. arator) from feeding.  

Trial B provided indications of a potential subset of the paxilline-like compounds 

detected by the paxilline ELISA, associated with reduced feeding damage with a 

cluster of plants with high paxilline immunoreactivity (≥25 µg/g) and low feeding 

damage (≤20%). In addition, no relationship was found between paxilline and 

peramine immunoreactivity suggesting more than just an environmental influence 

on paxilline-like alkaloid production. 

Results from Trials C and D also support the suggestion that a subset of paxilline-

like compounds are associated with reduced feeding damage from adult beetles. In 

Trial D, concentrations of paxilline immunoreactivity differed between plant 

cultivars and families throughout the trial. The level of paxilline immunoreactivity 

when compared at start with end of the trial, increased for all AR1-infected plant-

lines, with families F14, F15 and F23 having the greatest increase. The change in 

level of paxilline immunoreactivity was dependent on the host plant and the final 
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concentrations of paxilline immunoreactivity were not related to initial levels. In 

Trial C there was no correlation between plants exposed and not exposed to beetles 

for concentrations of paxilline immunoreactivity, consistent with the suggestion 

that adult African black beetle feeding influences levels of paxilline 

immunoreactivity. 

There is also evidence that African black beetle (H. arator) feeding affects tiller 

production, with greater production by plants exposed to feeding beetles. Plants 

exposed to adult African black beetle (H. arator) initially had more tillers than 

plants not exposed, suggesting that plants may respond to low levels of herbivory 

and produce more tillers than plants not exposed. However, with high feeding 

pressure, exposed plants could not sustain tiller production at high enough levels to 

compensate for tiller damage from feeding African black beetle (H. arator). The 

negative effect from high levels of African black beetle (H. arator) feeding on tiller 

number was still apparent up to 4 weeks post-exposure. The long plant recovery 

period, suggests that tiller production is costly to the plant. Herbivory can be 

detrimental, of no consequence, or even beneficial, depending on the conditions 

governing a plant’s ability to replace tissue consumed by herbivores (Maschinski 

& Whitham, 1989; Whitham et al., 1991).  

Time of year the adult African black beetle (H. arator) feeding trials were run (four 

trials spring and one trial in autumn) was based on two considerations. First 

consideration was the African black beetle (H. arator) lifecycle when adult beetles 

were actively feeding. This was either as overwintering beetles emerging from their 

dormancy period to actively feed and reproduce in spring (Todd, 1959; Todd, 1964; 

Bell et al., 2011) or as new beetles (from pupae) in autumn. Secondly, trials were 

performed in the glasshouse or screenhouse (depending on the time of the year), to 

provide climatic conditions known for high alkaloid production. Seasonal trends 

have been reported for the level of fungal endophytes (Fletcher, 1983; Mortimer et 

al., 1984; di Menna & Waller, 1986; Fletcher, 1986; di Menna et al., 1992; Ball et 

al., 1995) and many of the metabolites they produce, with general alkaloid 

production slightly lagging behind endophyte concentration, increasing during 

spring, through summer and early autumn, then falling in late autumn and winter 

(di Menna et al., 1992; Woodburn et al., 1993; Ball et al., 1995; Easton et al., 1996). 
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Different metabolites may have production peaks at slightly different times, with 

lolitrem B peaking in summer and early autumn (Prestidge & Gallagher, 1988; Ball 

et al., 1991; di Menna et al., 1992; Ball et al., 1995) and with peramine being high 

from mid-spring through to mid-autumn (Ball et al., 1995). Seasonal trends were 

found in Trial C, conducted in late spring–early summer with increasing 

concentrations of paxilline immunoreactivity found in herbage for the plants not 

exposed to adult African black beetle (H. arator).  

Given that adult African black beetle (H. arator) feed at the base of the plant, the 

levels of the specific fungal secondary metabolites in the pseudostem plant section 

for resistance to feeding from African black beetle (H. arator), were considered 

more relevant than levels in the herbage plant section. For Trials A and D 

concentrations of paxilline immunoreactivity were measured by paxilline ELISA in 

the pseudostem sections of the plants (3 or 4 cm from the crown). In practical terms, 

herbage collection is preferable to pseudsotem collection as it doesn’t require 

destructive sampling. Therefore, it was interesting to investigate whether 

concentrations of paxilline immunoreactivity in herbage reflect that in pseudostem. 

This was not found.  

Differences between plants for the levels of endophyte and endophyte metabolites 

have been reported previously (Jones et al., 1985; Belesky et al., 1989; Rowan et 

al., 1990b; Ball et al., 1991; Hill et al., 1991; Breen, 1992; Azevedo et al., 1993; 

Davies et al., 1993; Agee & Hill, 1994; Ball et al., 1995). It has been found that the 

genetic characteristics of both endophyte and host plant are important in the levels 

of alkaloid production (Fannin et al., 1990; Christensen et al., 1991; Hill et al., 

1991; Christensen et al., 1993; Agee & Hill, 1994). Research has shown that within 

a host plant species (e.g. L. perenne) the level of insect resistance is variable both 

between individual plants (Easton et al., 2000), and between cultivars infected with 

the same endophyte (Trial A). 

Results from Trials A–D provide further encouragement to look more extensively 

at the half-sibling families and the proposed negative association of paxilline 

immunoreactivity with resistance to adult black feeding, both between families 

within a breeding line and within cultivars or families. The sample limitations 

incurred in these studies of family representation and number of samples analysed 
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by the paxilline ELISA will need to be addressed to establish if there are any 

relationships within a breeding line and within a cultivar or family.  

Further study is required to establish if the paxilline immunoreactivity response is 

associated with reduced feeding damage and if exposure to feeding from African 

black beetle (H. arator) accentuates the response. This further work is required 

before it can be suggested that the paxilline ELISA can be used as a screening tool 

by plant breeders for plant resistance to feeding from adult African black beetle (H. 

arator) in Epichloë endophyte-ryegrass associations. However, for any further 

work with the paxilline ELISA in developing a screening tool, it would be 

recommended that either entire plant or undamaged pseudostem samples would 

need to be collected for analysis by ELISA, post-exposure to feeding from adult 

African black beetle (H. arator). 
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8.1 Abstract 

African black beetle (Heteronychus arator (Fabricius, 1775)) is a major pasture pest 

in northern New Zealand. The adult beetle is deterred by ergotpeptine alkaloids 

produced by fungal endophytes in grasses, but these compounds are also toxic to 

grazing mammals. A novel fungal endophyte strain, AR1 provides weak resistance 

to African black beetle (H. arator) without any adverse effects on animal 

production. Although AR37 provides stronger resistance to African black beetle (H. 

arator), adverse effects on animals have been reported. Both novel endophytes do 

not produce any of the known compounds that deter African black beetle (H. arator). 

A mid-autumn to late spring non-choice feeding trial was performed with 

endophyte-free, AR1- and AR37-infected perennial ryegrass (Lolium perenne L.) 

exposed and not exposed to feeding from adult African black beetle (H. arator). 

The trial provided evidence of a negative relationship between feeding damage and 

paxilline immunoreactivity and this relationship was influenced by the cultivar or 

half-sibling family. However, endophyte mycelium mass was not strongly 

correlated with paxilline immunoreactivity and no evidence of a relationship 

between endophyte mycelium mass and feeding damage was found. Plant-line 

differences for herbage and pseudostem dry matter, live African black beetle (H. 

arator) and number of offspring were found. Positive relationships were established 

for paxilline immunoreactivity with both herbage and pseudostem dry matter, 

which were steeper in the presence of beetles. In general for the AR1-infected 

ryegrasses, the average amount of paxilline immunoreactivity, endophyte 

mycelium mass, herbage and pseudostem dry matter, was higher in the absence of 

African black beetle (H. arator). Further studies are needed to determine if the 

negative association between feeding damage and paxilline immunoreactivity 

found in plants exposed to actively feeding adult beetles is either a general or 

induced plant response. 

8.2 Introduction 

Perennial ryegrass (L. perenne) is the predominant component of intensely grazed 

pasture in New Zealand (Belgrave et al., 1990; Easton & Tapper, 2005). It is easily 

established, very productive and highly digestible. In New Zealand perennial 

ryegrass (L. perenne) contains the clavicipitaceous endophytic fungus, Epichloë 
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festucae var. lolii (Latch, M.J. Chr. & Samuels) C. W. Bacon & Schardl, stat. nov. 

et comb. nov., which causes toxicosis in grazing livestock (Fletcher et al., 1999; 

Easton & Tapper, 2005) but is essential for plant persistence in pastures through 

tolerance and resistance to invertebrate pests (Prestidge & Ball, 1993; Easton & 

Tapper, 2005). The anamorphs of Epichloë species are distinguished from the other 

clavicipitaceous fungi because they have no external stage and infected plants look 

no different from uninfected (endophyte-free) plants. Lacking the capacity to 

reproduce sexually and progagating by vertical transmission via the host seed, these 

anamorphs infecting cool-season grasses (C3 grasses) in the sub-family Pooideae, 

are solely reliant on their host grass for survival and reproduction. 

The last four decades of endophyte research have primarily focused on endophytes 

present in forage and turf grasses due to their agronomic significance and 

importance. This includes; detrimental effects on grazing livestock, effects on host 

plant responses to biotic and abiotic stresses, effects on the biodiversity and trophic 

interactions in wild populations (Roberts et al., 2005). The endophytes Epichloë 

coenophiala (Morgan-Jones & W. Gams) C.W. Bacon & Schardl, comb. nov., of 

tall fescue (Lolium arundinaceum (Schreb.) Darbysh.) and E. festucae var. lolii of 

perennial ryegrass (L. perenne) are the two most extensively researched endophytes 

due to their agronomic importance particularly in the United States of America 

(USA) and New Zealand (NZ), respectively. 

The wild-type E. festucae var. lolii of perennial ryegrass (L. perenne) that was 

introduced into New Zealand produces the following secondary metabolites: 

ergovaline, lolitrems and peramine (Tapper & Latch, 1999). This endophyte causes 

mammalian toxicity, which is attributed mainly to two classes of alkaloids, the ergot 

alkaloids (ergovaline) and the indole diterpenes (lolitrems). Ergovaline is 

responsible for heat stress in animals (Fletcher & Easton, 1997; Fletcher et al., 1999) 

and the lolitrems for ryegrass staggers (1981; Gallagher et al., 1982b; 1982a; 1984; 

Tapper et al., 2004). Peramine is not known to be toxic to grazing animals, but is a 

potent feeding deterrent to major ryegrass pest, Argentine stem weevil (Listronotus 

bonariensis (Kuschel, 1955)) (Prestidge et al., 1985; Rowan & Gaynor, 1986; 

Rowan et al., 1990). The ergot alkaloids and indole diterpenes also demonstrate 

anti-insect activity and toxicity. Endophyte strain, plant genotype, tissue type, 
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season, plant age and abiotic and biotic stresses influence alkaloid profile and 

concentrations (Clay & Schardl, 2002; Easton et al., 2002; Popay et al., 2003; 

Rodriguez et al., 2009). 

In New Zealand, selected ‘novel’ E. festucae var. lolii strains have been inoculated 

into local commercial cultivars that do not produce, or produce less of, the alkaloids 

known to be toxic to mammalian animals, whilst still maintaining activity against 

Argentine stem weevil (L. bonariensis). The novel endophyte strain AR1 produces 

peramine, a potent Argentine stem weevil (L. bonariensis) deterrent but not 

lolitrems or ergovaline, the major causative agents of mammalian toxicity. AR1 can 

only produce simple indole diterpenes (including paxilline and paxilline-like 

compounds such as the terpendoles) as it does not have the full complement of 

genes for the production of more complex indole diterpenes such as lolitrem B 

(Young et al., 2009). Although AR1 genetically can produce paxilline, a mild 

tremogen (Miles et al., 1992), the amounts produced are considered minimal 

(Young et al., 2009), with production of the other simple indole diterpenes 

including the paxilline-like compounds being more predominant (Young et al., 

2009). In New Zealand the endophyte strain AR1 has been available in proprietary 

diploid perennial ryegrasses (L. perenne) since 2000 (Thom et al., 2013). To date 

there have never been any reports of mammalian neurotoxicosis in livestock from 

AR1-infected pastures (Bluett et al., 2005b; Bluett et al., 2005a). AR1-infected 

ryegrass has been extensively researched and is considered robust, with well-

defined codes of practice for pasture establishment and management. However, in 

areas where African black beetle (H. arator) is a problem, there is no doubt that this 

pest compromises both persistence and productivity of AR1-infected pastures 

(Thom et al., 2013). Although other commercial endophytes provide their host with 

resistance to African black beetle (H. arator) some, such as AR37 are associated 

with livestock toxicity (Fletcher, 1999; Fletcher & Sutherland, 2009). Selection for 

AR1-infected ryegrass with strong resistance to African black beetle (H. arator) 

would be of significant value to farmers in regions where this pest is a problem. 

African black beetle (H. arator) is a major pest of regions in the upper and mid-

west and mid-east of the North Island, New Zealand. Sporadic region-wide 

outbreaks of this pest cause significant damage to ryegrass pastures. An outbreak 
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in the Waikato and Bay of Plenty in 2007/8 persisted over 3–4 seasons (Bell et al., 

2011). Adult beetles feed at the base of tillers and can destroy new pasture but the 

root-feeding larvae do the most damage. The adult beetle is deterred by certain 

fungal endophytes in ryegrass and tall fescue. This reduces the number of eggs the 

beetle lays and results in fewer root-feeding larvae in the pasture (Popay & Baltus, 

2001; Thom et al., 2013). Both AR1 and AR37 lack any of the known alkaloids that 

deter adult African black beetle (H. arator), but show moderate (AR1) to strong 

(AR37) resistance to this insect (Popay & Baltus, 2001; Hume et al., 2007). 

Although AR1 did not reduce egg numbers in a pot trial (Popay & Baltus, 2001), 

build-up of populations in AR1 pastures was delayed in a 4-year large scale 

paddock experiment compared with endophyte-free paddocks (Thom et al., 2013). 

The chemical basis for this resistance is not understood. However, testing a range 

of AR1-infected ryegrass cultivars (diploids and tetraploids) and half-sibling 

families from within a diploid breeding line indicated a cultivar genotype influence 

on resistance to adult African black beetle (H. arator) with paxilline 

immunoreactivity measured by ELISA associated with resistance (Ross et al, 

unpublished 2015, Chapter 7). It may be possible to use the paxilline ELISA as a 

tool for screening AR1 endophyte ryegrass associations that produce unknown 

compounds that deter African black beetle (H. arator), which do not cause toxicity 

to livestock. 

This study presents results from an African black beetle (H. arator) feeding trial 

using AR1-infected plants (and an equivalent AR37-infected cultivar as the 

benchmark comparison) from mid-autumn to late spring 2012. The first objective 

of this study was to examine more extensively the associations between paxilline 

immunoreactivity and feeding damage from adult African black beetle (H. arator) 

between cultivars and half sibling families (from within a breeding line) and within 

a cultivar or family. The second objective was to determine if paxilline 

immunoreactivity and endophyte mass differed between cultivars, and if so, was 

paxilline immunoreactivity correlated with endophtye mass and feeding damage. 

The third objective was to determine if there were relationships between dry matter 

production and paxilline immunoreactivity. The fourth objective was to determine 

if adult survival and offspring abundance were related to paxilline 

immunoreactivity, endophyte mass or dry matter. 
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8.3 Materials and methods 

This research was undertaken from May 2012 to November 2012 at AgResearch, 

Ruakura Research Centre, Hamilton, New Zealand. Eight lines of seed (plant type) 

were selected; two cultivars infected with endophtye (E+; ‘Extreme AR1’, 

‘Extreme AR37’ and ‘Quartet AR1’) and the equivalent endophyte-free (E-; 

‘Extreme Nil’ and ‘Quartet Nil’), and three AR1-infected half-sibling families from 

the breeding line BL-1 (F3-AR1, F15-AR1 and F23-AR1). The AR1-infected lines 

were chosen based on results of plant resistance to adult African black beetle (H. 

arator) and levels of paxilline immunoreactivity reported in previous AgResearch 

in-house studies. 

Plants. Individual plants were grown from seed. For the cultivars, seed containing 

endophyte (AR1 and AR37) or the endophyte-free equivalent were obtained from 

the AgResearch Margot-Forde Germoplasm Centre, Palmerston North, New 

Zealand. Seed of the half-sibling families from the BL-1 breeding-line were sourced 

from Forage Improvement, AgResearch, Grasslands, Palmerston North, New 

Zealand. Seeds were germinated by spreading on damp filter paper in petri-dishes 

sealed with parafilm and left in the dark at 20°C for 7 to 10 days. Germinated 

seedlings were planted out into polystyrene trays (internal 495 mm L by 300 mm 

W) containing a general purpose potting mix (Daltons GB Potting Mix) and left to 

establish (minimum 6 weeks) in the shadehouse over mid to late summer (January–

February 2012). After 8 weeks a single tiller sample from each plant was cut at the 

tiller base and checked for endophyte infection using the endophyte tissue 

immunoblot technique and reagents as described by (Gwinn et al., 1991) and 

Simpson et al. (2012). In early autumn (March 2012) plants with the correct 

endophyte status and a minimum of five tillers were trimmed to 4 cm from the 

crown and replanted into 10 L buckets containing soil : sand (2 : 1 v/v) mix (3/4 

full) in a ring formation. Plants were left to re-establish for a minimum of 4 weeks 

before the trial commenced in late autumn (May 2012). 

The feeding trial consisted of a single plant-line per replicate bucket (8 plants), two 

treatments (with and without adult African black beetle (H. arator)) and seven 

replicates per treatment. The trial was a fully randomised split plot design, blocked 

by replicate. The trial set-up and subsequent assessments were staggered over a 7 
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day period (days 1–7), a single replicate per day was assessed. All buckets were 

covered with green knitted windbreak (Ultrapro windbreak.LT 915 mm wide, 55% 

wind porosity, Cosio Plastics, NZ). The windbreak prevented adult African black 

beetle (H. arator) escaping whilst allowing space for plant growth. 

Eight trial assessments were conducted every 4 weeks over a period of 28 weeks 

from mid-late autumn to late spring. At each assessment plants were trimmed to 4 

cm from the crown, and the trimmed herbage (per bucket) stored at –20ºC. For the 

initial assessment (A0) all tillers were undamaged as the assessment was performed 

prior to the addition of the adult African black beetle (H. arator). At each 

subsequent assessment (A1–A7) feeding damage was measured for each plant in 

each replicate i.e., the total number of tillers, undamaged, damaged (from feeding 

by adult African black beetle (H. arator)) and dead tillers were recorded per bucket. 

At the end of A7, all the tillers from the trimmed plants (pseudostem sample; 

consisting of undamaged, damaged and dead tillers per bucket) were removed at 

ground level and frozen at –20ºC. Adult African black beetle (H. arator) were 

recovered, recorded if dead or alive and number of offspring (eggs and larvae) 

counted and recorded per bucket. The frozen herbage and pseudostem samples 

taken during and at the end of the experiment were freeze-dried and weighed. 

Pseudostem grass samples were analysed by the paxilline and endophyte mycelium 

mass ELISAs. 

ELISA analysis of grass pseudostem samples. Freeze-dried pseudostem samples 

(stored at –20°C) were equilibrated to ambient room temperature (21°C) prior to 

milling. Samples were then ground by the Udy Cyclone mill (Udy Corporation, CO, 

USA). Milled pseudostem samples were stored in sealed containers at –20°C until 

required. The samples were equilibrated to 21°C in their sealed containers before 

being weighed out for sample extraction and analysis by ELISA. 

Extraction of pseudostem samples for paxilline ELISA analysis; 50 mg of sample 

was weighed out to the nearest 0.1 mg (Mettler AE 260 Delta Range) into an 

Eppendorf microfuge tube (2 ml) and stored at –20°C until required. Samples were 

extracted on the same day the paxilline ELISA was performed, as the paxilline 

immunoreactivity determined by the paxilline ELISA decreases on storage. After 

addition of extracting solvent (1 ml, 90% HPLC grade methanol in water), samples 
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were rotated end-over-end on a rotation mixer (Labnet mini labroller, NJ, USA) for 

20 min. Samples were then centrifuged at 8 609 ×g for 5 min (Eppendorf Centrifuge 

5418), the supernatant collected and analysed by ELISA. 

Extraction of pseudostem samples for analysis by endophyte mycelium mass 

ELISA; 20 mg of sample was weighed out to the nearest 0.1 mg (Mettler AE 260 

Delta Range) into a Kimax tube (12 ml). PBST (10 ml) was added and samples 

were mixed thoroughly ensuring all sample was wetted. Kimax tubes were 

incubated for 3 h at 30°C. A representative sample was then transferred to a 

microfuge tube (2 ml) and centrifuged at 2 150 ×g for 3 min. Supernatant (1 ml) 

from each was transferred undiluted to screw-top glass vials (1.5 ml). Extracts were 

stored at 4°C until analysis by ELISA. Samples are stable for one week at 4°C or at 

–20°C for long term storage. Owing to the long extraction time (>3 h) the extracts 

are prepared a day ahead of the ELISA being performed. 

ELISA data analysis was performed using software developed in-house (4-

parameter curve fit) at AgResearch. 

Paxilline ELISA. Plant (pseudostem) extracts were analysed using an indirect 

competitive paxilline ELISA developed in-house at AgResearch (Garthwaite et al., 

1993) with the following modifications. Phosphate buffered saline (PBS) 

containing 0.05% Tween 20 (v/v) was the wash buffer (PBST). The blocking agent 

and antibody buffer was 1% bovine serum albumin (w/v) in PBST (1% BSA/PBST). 

Sheep anti-mouse conjugated to HRP (Chemicon, CA, USA) was the secondary 

antibody. The HRP substrate was BioFX TMB One Component HRP microwell 

substrate buffer (SurModics, MN, USA) and the stop solution was sulphuric acid 

(0.3 M H2SO4). Results were expressed as µg of paxilline-immunoreactive 

equivalents (paxilline-IRE) per g of milled grass, as paxilline was the reference 

compound used to generate the standard curve in the assay. The assay working 

range was 1–40 ng/ml with a detection limit for the undiluted grass extract of 0.18 

µg/g dwt. 

Endophyte mycelium mass ELISA. Plant (pseudostem) extracts were analysed using 

an indirect competitive paxilline ELISA developed in-house at AgResearch. The 

coating antigen (E. festucae var. lolii mycelium) and antibodies (anti-E. festucae 
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var. lolii SAPU F2 specific primary rabbit polyclonal antibody, DAKO goat anti-

rabbit conjugated with HRP anti-species secondary antibody) used in this cELISA 

are those described by Faville et al. (2007), but modified with a 2 h pre-incubation 

step before the standards, samples and specific antibody were added to the plate. 

The assay working range is 0.614–10.62 µg/ml with a detection limit for the 

undiluted grass extract of 6.14 mg/g dwt. Results were expressed as mg of E. 

festucae var. lolii-immunoreactive equivalents (E. festucae var. lolii -IREs) per g of 

milled grass, as E. festucae var. lolii mycelium was the reference material used to 

generate the standard curve in the assay. 

ELISA data analysis was performed using software developed in-house (4-

parameter curve fit) at AgResearch. 

African black beetle. Adult African black beetle (H. arator) were collected from 

the field by pitfall trapping in autumn soon after teneral adults had emerged to feed. 

African black beetle (H. arator) were separated by gender and maintained in the 

laboratory at ambient temperature (20–25°C) in containers with perforated lids, 

damp soil and sliced carrot. Six adult African black beetle (H. arator) were added 

per replicate at the commencement of the trial after initial tiller count (A0) at a ratio 

of 1:1 male to female beetles. 

Statistical Analysis. All statistical analyses were conducted in GenStat version 15. 

The arcsine-square root transformed proportion of damaged tillers was analysed 

using one way analysis of variance (ANOVA), blocked by replicate. The proportion 

of damaged tillers was transformed to stabilise the variance. Data from the seven 

assessments were analysed independently. Levels of paxilline immunoreactivity 

and endophyte mass in pseudostem grass samples, levels of dry matter for herbage 

and pseudostem, and the number of live tillers were analysed using split plot 

ANOVA. At each of the seven assessments, dry matter herbage and number of live 

tillers was analysed independently. The number of African black beetles (H. arator) 

found alive and the number of offspring were analysed using one-way ANOVA, 

blocked by replicate. To normalise the data, the number of offspring was natural 

log transformed prior to analysis. Post hoc tests were conducted using Fisher’s least 

significant difference at the 5% significance level (LSD(5%)). The relationship 
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between African black beetle (H. arator) feeding damage with paxilline 

immunoreactivity and with endophyte mycelium mass was analysed using REML 

with replicate included as a random effect. To linearise the relationship, the African 

black beetle (H. arator) feeding damage data were converted to a proportion and 

arcsine-square root transformed. Only the replicate buckets containing African 

black beetle (H. arator) were used in the analysis. 

Between assessments A6 and A7, extra plants were added to some of the buckets 

to ensure sufficient food for the African black beetle (H. arator). The addition of 

plants has been taken into account in the analyses of feeding damage (resulting in 

some plants lines having values >1 for proportion of damaged tillers), endophyte 

data (excluded) and dry matter (excluded). 

The repeated analyses were not presented for simplicity due to the presence of 

treatment by time interactions and evidence of heterogeneity in variance between 

time-points. 

8.4 Results 

Feeding damage. In late autumn-early winter and from early spring (A1, A5–A7) 

there were differences (P ≤0.05; Table 8-1) in feeding with ‘Extreme AR37’ and 

half-sibling family F15-AR1 having significantly lower feeding damage than both 

endophyte-free lines (‘Extreme Nil’ and ‘Quartet Nil’) and family F3-AR1 

significantly less damage than ‘Extreme Nil’. 

In early spring only the three half-sibling families had significantly lower feeding 

damage than the two cultivar endophyte-free lines (‘Extreme Nil’ and ‘Quartet Nil’). 

By mid-spring all AR1-infected lines (except ‘Extreme AR1’) had significantly 

lower damage than the endophyte-free cultivar lines (‘Extreme Nil’ and ‘Quartet 

Nil’). There was no evidence of significant differences between the AR1-infected 

cultivars and families for feeding damage with the exception of family F23-AR1 

which had significantly less feeding damage than ‘Extreme AR1’.  
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Table 8-1: Mean proportion of tillers damaged by African black beetle (on arcsine-square root scale) for three half sibling families infected with 
AR1 and two commercial cultivars infected with AR1 and/or AR37 or without endophyte. 

 Proportion of damaged tillers (arcsine-square root transformed) per bucket 

Family or cultivar A1 A2 A3 A4 A5 A6 A7* 

F3-AR1 0.077 0.095 0.059 0.086 0.197 0.360 0.802 

F15-AR1 0.055 0.055 0.027 0.068 0.184 0.463 1.010 

F23-AR1 0.106 0.114 0.048 0.086 0.173 0.332 0.810 

‘Extreme AR1’ 0.138 0.155 0.083 0.230 0.362 0.555 1.014 

‘Extreme AR37’ 0.042 0.075 0.037 0.117 0.266 0.383 0.688 

‘Extreme Nil’ 0.228 0.229 0.088 0.312 0.549 0.754 1.294 

‘Quartet AR1’ 0.128 0.112 0.077 0.175 0.241 0.376 0.874 

‘Quartet Nil’ 0.192 0.187 0.181 0.311 0.436 0.683 1.203 

Mean cultivar 0.121 0.128 0.075 0.173 0.301 0.488 0.962 

LSD(5%) 0.116 0.1233 0.1286 0.1929 0.1887 0.1919 0.1993 

Cultivar effect 

F-statistic F(7,42) = 2.58 F(7,42) = 1.84 F(7,42) = 1.84 F(7,42) = 2.22 F(7,42) = 4.22 F(7,42) = 5.62 F(7,41) = 7.33 

P-value 0.027 0.105 0.355 0.052 0.001 <0.001 <0.001 

A1–A7 = Assessments 1 (week 4, late autumn–early winter), 2 (week 8, early winter), 3 (week 12, mid-winter), 4 (week 16 late-winter), 5 (week 20, early spring), 6 
(week 24 mid-spring), 7 (week 28, late spring). *Proportion of damaged tillers adjusted for added plants between A6 and A7. Statistically significant evidence (P 
≤0.05) is highlighted in bold and italics. Weak evidence (0.05 < P ≤0.01) although not statistically significant is highlighted in italics. LSD(5%) = Fisher’s least significant 
difference (LSD) post hoc test at the 5% significance level. 
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By late spring all endophyte-infected lines (AR1 and AR37) were significantly less 

damaged than the two endophyte-free lines (‘Extreme Nil’ and ‘Quartet Nil’). 

‘Extreme AR37’ had significantly less feeding damage than ‘Quartet AR1’, F15-

AR1 and ‘Extreme AR1’. Of the three half-sibling families, F3-AR1 and F23-AR1 

were the best performing with significantly less feeding damage than F15-AR1 and 

‘Extreme AR1’. In the cultivar ‘Extreme’, endophyte AR37 out-performed AR1 for 

resistance to feeding from adult African black beetle (H. arator), although damage 

was still very high (>50% of tillers damaged) in AR37-infected plant-line. 

Dry matter. Herbage refers to plant material >4 cm from the crown and 

pseudostem to plant material ≤4 cm from the crown. At all assessments, mean 

herbage dry matter per bucket differed (P <0.001; Table 8-2) between cultivars. In 

the late autumn–early winter (A1 and A2) and in early–late spring (A5–A7) on 

average plants exposed to adult African black beetle (H. arator) had lower mean 

levels of dry herbage matter than plants not exposed (P ≤0.05; Table 8-2). This 

difference between treatments in herbage dry matter was not seen in the mid–late 

winter time (A3 and A4). 

By late-spring (A7), there was a cultivar by treatment effect F(4,48) = 2.99; P = 0.11; 

Figure 8-1), by which the endophyte-free lines (‘Extreme Nil’ and ‘Quartet Nil’) 

had the largest, and family F23-A and ‘Extreme AR37’ had the smallest differences 

between with and without African black beetle (H. arator) treatments, with all 

differences significant. For plants not exposed to adult African black beetle (H. 

arator), herbage dry matter was similar for all plant-lines. By comparison, in the 

presence of beetles, herbage dry matter production significantly differed between 

certain plant-lines. Families F23-AR1, F3-AR1 and ‘Extreme AR37’ (no significant 

differences) had the highest levels of herbage dry matter production (4.21, 3.30 and 

3.30 g/bucket respectively), and were significantly different from the remaining 

plant-lines. Endophyte-free plant-lines had the lowest levels of herbage dry matter 

production (‘Extreme Nil’ = 0.37 and ‘Quartet Nil’ = 0.70 g/bucket), with ‘Extreme 

AR1’ the lowest of the endophyte-infected plant-lines (1.58 g/bucket) which was 

not significantly different from the the endophyte-free plant-lines. Even under 

African black beetle (H. arator) attack, family F23-AR1 had high herbage dry 

matter production (Figure 8-1), with mean production similar to unexposed plants. 
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Table 8-2: Mean herbage dry matter production from half-sibling families and 
cultivars, with and without adult African black beetle, at seven assessments 
over 28 weeks. 

 Mean herbage dry matter per bucket (g) 

Plant type A0 A1 A2 A3 A4 A5 A6 A7* 

Without beetle 

F3-AR1 4.40 4.11 3.70 2.73 3.32 4.28 5.82 6.18 

F15-AR1 3.36 3.52 2.90 2.27 3.33 4.32 6.25 5.17 

F23-AR1 3.28 2.98 2.62 1.96 2.53 3.78 5.58 6.01 

‘Extreme AR1’ 3.49 2.97 1.96 1.29 1.93 2.91 5.26 5.45 
‘Extreme 
AR37’ 3.30 3.56 3.05 1.95 2.16 2.81 4.26 4.80 

‘Extreme Nil’ 2.82 3.32 2.80 1.80 2.10 3.13 4.76 5.04 

‘Quartet AR1’ 3.75 3.43 2.82 2.08 2.82 3.85 5.48 5.13 

‘Quartet Nil’ 3.58 3.32 2.59 1.67 2.17 3.06 4.85 5.03 

With beetle         

F3-AR1 4.25 3.80 3.38 2.64 3.24 3.56 4.00 3.30 

F15-AR1 3.69 3.45 2.79 2.28 3.03 3.74 3.97 1.83 

F23-AR1 3.62 3.22 2.54 1.90 2.69 3.71 4.58 4.21 

‘Extreme AR1’ 3.37 3.10 2.41 1.59 1.79 2.13 2.58 1.58 
‘Extreme 
AR37’ 3.05 3.46 2.90 1.86 2.10 2.28 2.71 3.30 

‘Extreme Nil’ 3.05 2.71 2.30 1.64 1.88 1.90 1.42 0.37 

‘Quartet AR1’ 3.70 3.27 2.57 1.81 2.30 2.71 3.44 2.47 

‘Quartet Nil’ 3.35 2.67 1.93 1.64 2.06 2.10 1.81 0.70 

LSD(5%) 
between cultivars 

0.805 0.541 0.548 0.371 0.588 0.779 1.182 1.405 

LSD(5%) 
within cultivars 

0.535 0.470 0.566 0.417 0.672 0.809 1.147 1.437 

Cultivar effect 
F-statistic, F(7,42) 
P-value 

2.60 
0.025 

4.87 
<0.001 

10.15 
<0.001 

22.53 
<0.001 

18.43 
<0.001 

12.70 
<0.001 

7.10 
<0.001 

5.73 
<0.001 

Treatment effect 
F-statistic, F(1,48) 
P-value 

0.02 
0.894 

5.21 
0.027 

4.28 
0.044 

0.43 
0.517 

1.86 
0.179 

27.74 
<0.001 

121.01 
<0.001 

153.58 
<0.001 

Cultivar by Treatment effect 
F-statistic, F(7,48) 
P-value 

0.89 
0.525 

1.87 
0.095 

1.39 
0.233 

0.63 
0.729 

0.36 
0.922 

0.87 
0.539 

1.87 
0.095 

2.55 
0.026 

A0–A7 = Assessments 0 (week 0, mid-late autumn), 1 (week 4, late autumn–early winter), 
2 (week 8, early winter), 3 (week 12, mid-winter), 4 (week 16 late-winter), 5 (week 20, 
early spring), 6 (week 24 mid-spring), 7 (week 28, late spring). Statistically significant 
evidence (P ≤0.05) is highlighted in bold and italics. Weak evidence (0.05 < P ≤0.01) 
although not statistically significant is highlighted in italics. LSD(5%) = Fisher’s least 

significant difference (LSD) post hoc test at the 5% significance level.  
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Figure 8-1: Herbage dry matter in late spring (A7) for half-sibling families and cultivars 
with and without adult African black beetle. 
Mean ± SEM. A7 = Assessment 7 (week 28, late spring). BB = Adult African black beetle (H. 
arator). LSD(5%) = Fisher’s least significant difference (LSD) post hoc test at the 5% 
significance level. 

 

For pseudostem dry matter taken at the final assessment (A7) in late spring (Table 

8-3), a cultivar by treatment interaction was found (F(4,48) = 2.99; P = 0.011; Figure 

8-2). In the absence of African black beetle (H. arator), family F3-AR1 had 

significantly higher production than the other plant-lines. 

In the presence of African black beetle (H. arator), F3-AR1 had significantly higher 

dry matter production (2.22 g/bucket) than the other plant-lines except family F23-

AR1 (2.08 g/bucket). The two endophyte-free cultivars (‘Extreme Nil’ and ‘Quartet 

Nil’) were not significantly different (1.007 and 1.176 g/bucket respectively), and 

both of these treatments had significantly lower pseudostem dry matter than all or 

some of the AR1-infected cultivars and families. The four plant-lines, F3-AR1, 

F15-AR1, ‘Extreme Nil’ and ‘Quartet Nil’ had significantly higher pseudostem dry 

matter production in the absence of adult African black beetle (H. arator) than in 

their presence. For the remaining families, although pseudostem dry matter in 

general was higher in the absence rather than in the presence of adult African black 

beetle (H. arator), the difference was not significant. 
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Table 8-3: Mean total pseudostem dry matter production from half-sibling 
families and cultivars, with and without adult African black beetle in late spring 
(A7). 

Family or cultivar 

Mean total pseudostem dry matter per bucket (g) at A7 

Without beetle With beetle 

F3-AR1 2.79 2.22 
F15-AR1 1.96 1.50 
F23-AR1 2.05 2.08 
‘Extreme AR1’ 1.86 1.59 
‘Extreme AR37’ 1.73 1.81 
‘Extreme Nil’ 2.05 1.01 
‘Quartet AR1’ 1.82 1.60 
‘Quartet Nil’ 1.91 1.18 

LSD(5%) between 

cultivars 
0.4234 

LSD(5%) within cultivars 0.4451 

Cultivar by treatment effect 
F-statistic 
P-value 

F(4,48) = 2.99 
0.011 

A7 = Assessment 7 (week 28, late spring). Statistically significant evidence (P ≤0.05) is 
highlighted in bold and italics. LSD(5%) = Fisher’s least significant difference (LSD) post hoc 

test at the 5% significance level. 

 

 

Figure 8-2: Pseudostem dry matter in late spring (A7) for half-sibling families and 
cultivars with and without adult African black beetle. 
Mean ± SEM. A7 = Assessment 7 (week 28, late spring). BB = Adult African black beetle 
(H. arator). LSD(5%) = Fisher’s least significant difference (LSD) post hoc test at the 5% 
significance level. 
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Live Tillers. There was strong evidence at all assessments (A0–A7) that the mean 

total number of live tillers per bucket differed between cultivars (P <0.001). From 

mid-spring (A6 and A7) there was a cultivar by beetle effect (F(7,48) = 3.00; P = 

0.011 and F(7,48) = 7.48; P <0.001 respectively) and in late spring (A7) families F3-

AR1, F23-AR and cultivars ‘Extreme AR37’ and ‘Quartet AR1’ had more live 

tillers in the presence of adult African black beetle (H. arator) than without, 

whereas, family F15 and cultivars ‘Extreme AR1’, ‘Extreme Nil’ and ‘Quartet Nil’ 

had less tillers in the presence of beetles. The number of live tillers a family or 

cultivar had in the presence or absence of African black beetle (H. arator) in late 

spring were significantly different for family F23-AR1, cultivars ‘Extreme AR1’, 

‘Extreme AR37’, ‘Extreme Nil’ and ‘Quartet Nil’ (Table 8-4). 

Endophyte data. Mean paxilline-IRE was influenced by cultivar and treatment, 

and these effects were interactive (F(5,36) = 2.54; P = 0.046), with the average 

concentration of paxilline-IRE significantly higher in plant lines that had not been 

exposed to feeding from adult African black beetle (H. arator) (Table 8-5). The 

exceptions to this were family F23-AR1 and ‘Extreme AR37’. When exposed to 

adult African black beetle (H. arator), half-sibling family F23-AR1 had a 

significantly higher concentration of paxilline-IRE than the other endophyte-

infected lines. When not exposed to adult African black beetle (H. arator), 

‘Extreme AR37’ had significantly lower paxilline-IRE than the other endophyte-

infected lines. ‘Quartet AR1’ had significantly lower paxilline-IRE than F23-AR1 

in unexposed plants and the half-sibling families (F3-AR1, F15-AR1 and F23-AR1) 

were not significantly different from each other. 

Endophyte mycelium mass was affected by both cultivar (F(5,30) = 28.48; P <0.001) 

and treatment (F(1,36) = 6.39; P = 0.016), but there was no evidence of an interaction 

among these factors (Table 8-5). Family F23-AR1 had on average significantly 

higher endophyte mycelium mass than all other endophyte-infected lines (range 

10.15–21.24 mg/g, median = 13.61, mean = 14.37). There was no evidence of 

significant differences between families F3-AR1 and F15-AR1, or between 

‘Quartet AR1’, ‘Extreme AR1’ or ‘Extreme AR37’. However the three endophyte-

infected cultivars (‘Quartet AR1’, ‘Extreme AR1’ and ‘Extreme AR37’) had   
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Table 8-4: Mean number of live tillers from half-sibling families and cultivars, 
with and without adult African black beetle, at seven assessments over 28 weeks. 

 Mean live tiller number per bucket 

Plant type A0 A1 A2 A3 A4 A5 A6 A7* 

Without beetle means 

F3-AR1 224.7 252.4 274.9 277.7 257.4 261.9 307.3 282.1 

F15-AR1 168.1 210.7 227.7 244.3 229.9 224.4 210.7 201.0 

F23-AR1 169.6 184.6 205.4 206.3 198.1 220.0 243.9 250.1 

‘Extreme AR1’ 157.7 168.7 153.7 129.4 124.6 148.6 184.1 179.6 
‘Extreme 
AR37’ 185.3 200.6 204.6 180.3 128.0 137.0 161.0 173.6 

‘Extreme Nil’ 173.9 185.0 195.9 172.9 134.3 148.0 173.9 179.1 

‘Quartet AR1’ 120.1 137.7 145.7 141.9 136.1 151.3 154.1 151.4 

‘Quartet Nil’ 116.3 128.7 133.4 119.7 112.9 137.6 150.0 146.1 

With beetle means 

F3-AR1 218.6 253.3 279.0 264.9 259.3 260.9 298.0 324.1 

F15-AR1 180.0 211.7 245.4 234.3 247.0 230.3 258.7 193.6 

F23-AR1 174.3 201.6 225.7 215.0 226.1 264.4 302.9 324.6 

‘Extreme AR1’ 154.9 192.1 187.3 158.6 142.6 151.3 141.9 116.0 
‘Extreme 
AR37’ 180.3 213.3 223.3 192.1 161.7 168.1 188.6 250.9 

‘Extreme Nil’ 169.3 197.0 189.6 151.0 151.4 144.4 95.6 28.6 

‘Quartet AR1’ 122.7 135.7 147.9 135.6 135.4 152.3 168.4 180.6 

‘Quartet Nil’ 115.7 130.9 128.9 112.3 109.4 119.3 116.7 47.0 

LSD(5%) 

between cultivars 
22.28 29.85 28.47 31.76 35.10 35.40 55.90 62.98 

LSD(5%) 

within cultivars 
20.61 27.42 28.82 32.42 32.34 33.78 55.17 61.82 

Cultivar effect 
F-statistic, F(7,42) 
P-value 

31.74 
<0.001 

24.20 
<0.001 

44.97 
<0.001 

45.83 
<0.001 

33.78 
<0.001 

30.73 
<0.001 

20.15 
<0.001 

22.21 
<0.001 

Treatment effect (without and with beetle) 
F-statistic, F(1,48) 
P-value 

0.00 
1.000 

3.03 
0.088 

4.47 
0.040 

0.04 
0.849 

6.03 
0.018 

1.72 
0.196 

0.03 
0.855 

1.27 
0.266 

Cultivar by Treatment effect 
F-statistic, F(7,48) 
P-value 

0.36 
0.923 

0.45 
0.863 

0.95 
0.478 

1.04 
0.416 

0.71 
0.662 

1.44 
0.211 

3.00 
0.011 

7.48 
<0.001 

A0–A7 = Assessments 0 (week 0, mid-late autumn), 1 (week 4, late autumn–early winter), 
2 (week 8, early winter), 3 (week 12, mid-winter), 4 (week 16 late-winter), 5 (week 20, 
early spring), 6 (week 24 mid-spring), 7 (week 28, late spring). Statistically significant 
evidence (P ≤0.05) is highlighted in bold and italics. Weak evidence (0.05 < P ≤0.01) 
although not statistically significant is highlighted in italics. LSD(5%) = Fisher’s least 

significant difference (LSD) post hoc test at the 5% significance level. 
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Table 8-5: Mean concentrations of paxilline-IRE and endophyte mycelium mass 
(µg/g) in late spring (A7) with and without African black beetle; with summary 
of statistical analyses. 

Family or cultivar 

Paxilline-IRE concentration 
(µg/g) 

 Endophyte mycelium mass 
(mg/g) 

With beetles 
Without 
beetles 

 
With beetles 

Without 
beetles 

F3-AR1 6.64 12.52  15.53 16.08 

F15-AR1 5.56 11.41  14.21 16.42 

F23-AR1 11.33 13.42  20.58 21.90 

‘Extreme AR1’ 5.99 12.11  10.59 12.97 

‘Extreme AR37’ 5.45 6.62  10.60 13.19 

‘Quartet AR1’ 4.64 9.77  9.49 10.80 

LSD(5%) 
between cultivars 

2.892  3.179 

LSD(5%) 
within cultivar 

2.761  3.394 

Cultivar Effect 

F-statistic; P-value F(5,30) = 8.12; P <0.001  F(5,30) = 28.48; P <0.001 

Treatment Effect 

F-statistic; P-value F(1,36) = 61.95; P <0.001  F(1,36) = 6.39; P = 0.016 

Cultivar by Treatment 

F-statistic; P-value F(5,36) = 2.54; P = 0.046  F(5,36) = 0.22; P = 0.950 

Paxiline-IRE = paxilline immunoreactive equivalents. A7 = Assessment 7 (week 28, late 
spring). LSD(5%) = Fisher’s least significant difference (LSD) post hoc test at the 5% 
significance level. Statistically significant evidence and effects are highlighted in bold and 
italics. 

 

significantly lower endophyte mycelium mass than the three half-sibling families 

(F23-AR1, F15-AR1 and F3-AR1). There was a significantly higher overall mean 

endophyte mycelium mass in ryegrass associations not exposed to adult African 

black beetle (H. arator) (mean difference = 1.73 µg/g; Table 8-5). There was no 

evidence of a relationship between paxilline immunoreactivity and endophyte 

mycelium mass (P >0.05). 
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Relationships between feeding damage and endophyte data. In late spring (A7), 

there was strong evidence (F(1,42) = 29.93; P <0.001) of a negative relationship 

between feeding damage and paxilline immunoreactivity (Figure 8-3 ), and that this 

relationship differed between cultivars and half-sibling families (F(5,42) = 2.45; P = 

0.049) (Table 8-6 and Figure 8-3 B–G). These relationships still held when 

endophyte-free cultivars were excluded from the analysis. No evidence was found 

of a relationship between feeding damage and endophyte mycelium mass (P >0.05). 

Table 8-6: Regression analyses between African black beetle feeding damage 
and paxilline immunoreactivity in late spring (A7), omitting endophyte-free 
cultivars. 

Family or cultivar Intercept SE 
(Intercept) 

Slope SE 

(Slope) 

F3-AR1 0.906 0.119 -0.03021 0.01606 

F15-AR1 1.221 0.129 -0.04528 0.02117 

F23-AR1 0.746 0.244 -0.00292 0.02103 

‘Extreme AR1’ 1.552 0.131 -0.09207 0.02003 

‘Extreme AR37’ 0.927 0.175 -0.05663 0.03064 

‘Quartet AR1’ 1.202 0.128 -0.07949 0.02518 

Feeding damage-paxilline relationship F(1,23) = 29.67: P <0.001 

Cultivar interaction (different slopes for each cultivar) F(5,29) = 2.48; P = 0.055 

†Conditional R2 0.68 

A7 = Assessment 7 (week 28, late spring). SE = Standard error. Statistically significant 
evidence and effects are highlighted in bold and italics. †Nakagawa and Schielzeth (2013).  

 

Relationships between dry matter and endophyte data. For herbage and 

pseudostem dry matter there was evidence of a positive relationship with paxilline 

immunoreactivity, and the slope of this relationship was affected by the presence 

of beetles (treatment by paxilline immunoreactivity interaction; F(1,84) = 4.49; P = 

0.037 and F(1,83) = 4.96; P = 0.029 respectively), but there was no evidence that it 

differed between plant-lines The outcome (F(1,68) = 4.14; P = 0.046 and F(1,63) = 

3.00; P = 0.088 for herbage and pesudostem respectively), was similar when the 

analysis was repeated with the endophyte-free plant-lines omitted (intercepts and 

slopes with the endophyte-free plant-lines omitted are reported in Table 8-7. 
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Figure 8-3: Regression analyses of feeding damage and paxilline immunoreactivity 
including the endophyte-free cultivars. 
A) Scatterplot of all data from half-sibling families and cultivars. †Nakagawa and 
Schielzeth (2013). B) Slope of half-sibling family F3-AR1. C) Slope of half-sibling family F15-
AR1. D) Slope of half-sibling family F23-AR1. E) Slope of cultivar ‘Extreme AR1’. F) Slope of 
cultivar ‘Extreme AR37’. G) Slope of cultivar ‘Quartet AR1’. Data points for half-sibling 
families and cultivars are coded by symbol and colour. 

 



 

 

 

3
0
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Table 8-7: Herbage and pseudostem dry matter regression analyses with paxilline immunoreactivity in late spring (A7) with and without African 
black beetle; with endophyte-free cultivars omitted. 

Family or cultivar 

Herbage  Pseudostem 

Intercept SE (Intercept) Slope SE (Slope)  Intercept SE (Intercept) Slope SE (Slope) 

 Without beetles 
F3-AR1 5.475 0.501 0.190 0.062  2.691 0.184 0.026 0.023 

F15-AR1 4.679 0.474 0.190 0.062  1.889 0.173 0.026 0.023 
F23-AR1 5.127 0.529 0.190 0.062  1.934 0.194 0.026 0.023 

‘Extreme AR1’ 4.822 0.490 0.190 0.062  1.770 0.179 0.026 0.023 
‘Extreme AR37’ 5.211 0.465 0.190 0.062  1.785 0.170 0.026 0.023 
‘Quartet AR1’ 4.948 0.450 0.190 0.062  1.790 0.163 0.026 0.023 

 With beetles 
F3-AR1 4.112 0.470 0.376 0.069  2.402 0.171 0.085 0.026 

F15-AR1 3.041 0.498 0.376 0.069  1.776 0.182 0.085 0.026 
F23-AR1 3.256 0.479 0.376 0.069  1.864 0.175 0.085 0.026 

‘Extreme AR1’ 2.633 0.486 0.376 0.069  1.830 0.177 0.085 0.026 
‘Extreme AR37’ 4.553 0.502 0.376 0.069  2.098 0.184 0.085 0.026 
‘Quartet AR1’ 4.031 0.503 0.376 0.069  1.953 0.195 0.085 0.026 

Plant dry matter-paxilline immunoreactivity relationship F(1,69) = 33.86; P <0.001  F(1,69) = 8.87; P = 0.004  

Treatment by beetle interaction 
(different slope without and with African black beetle) 

F(1,68) = 4.14; P <0.046  F(1,68) = 4.14; P = 0.088  

†Conditional R2 0.74  0.50  

A7 = Assessment 7 (week 28, late spring). SE = Standard error. Statistically significant evidence and effects are highlighted in bold and italics. Weak evidence (0.05 < 
P ≤0.01) although not statistically significant is highlighted in italics. †Nakagawa and Schielzeth (2013).  
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Recovered live adults and offspring data. The number of live beetles found at the 

end of the trial differed between cultivars (F(7,42) = 4.06; P = 0.002), with 

significantly fewer beetles recovered from the three half-sibling AR1-infected 

families and ‘Extreme AR37’ than from the endophyte-free plant-lines (Table 8-8). 

The number of beetles recovered from the endophyte-infected plant-lines was 

similar. The number of eggs and larvae recovered also differed between cultivars 

(F(7,42) = 2.27; P = 0.047), with ‘Extreme AR1’ and the three half-sibling families 

(F23-AR1, F15-AR1 and F3-AR1) having significantly fewer offspring recovered 

than the endophyte-free plant types. Because plants were added between 

assessments A6 and A7, regression analyses were not performed for recovered live 

adult African black beetle (H. arator) and number of offspring with herbage dry 

matter, pseudostem dry matter, endophyte mass and paxilline immunoreactivity. 

Table 8-8: Mean number of adult African black beetle recovered alive and mean 
number of offspring recovered per bucket. 

Family or cultivar Mean number of 
beetles recovered 

Mean number of offspring 
recovered (log) 

F3-AR1 2.57 1.21 

F15-AR1 2.29 1.18 

F23-AR1 1.86 1.14 

‘Extreme AR1’ 2.86 0.93 

‘Extreme AR37’ 1.86 1.25 

‘Extreme Nil’ 3.86 2.13 

‘Quartet AR1’ 3.14 1.52 

‘Quartet Nil’ 4.29 2.04 

SEM 0.62 0.41 

LSD(5%) 1.26 0.83 

F-statistic; P-value F(7,42) = 4.06: P = 0.002 F(7,42) = 2.27: P = 0.047 

Effect Cultivar Cultivar 

SEM = standard error of the mean. LSD(5%) = Fisher’s Least Significant Difference (LSD) at 

the 5% significance level. Statistically significant evidence and effects are highlighted in 
bold and italics. 
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8.5 Discussion 

Endophyte-infected ryegrass plants, suitable for agricultural purposes, are plants 

that are robust, have high dry matter production and have high levels of the 

beneficial fungal secondary metabolites to provide plant resistance to biotic factors 

without being harmful to livestock. The novel E. festucae var. lolii strain AR1 was 

developed to provide New Zealand farmers with an endophyte that had no adverse 

effects on livestock but provided resistance to Argentine stem weevil (L. 

bonariensis). The endophyte was not expected to affect African black beetle (H. 

arator) given the absence of ergovaline production. However, moderate effects on 

adults were reported by Popay & Jensen (2001), presenting an opportunity to 

identify the cause of the deterrent effects and if possible select for stronger 

resistance. Previously it had been shown that the effects of AR1 on African black 

beetle (H. arator) damage appeared to be associated with paxilline 

immunoreactivity where in general, high levels of paxilline immunoreactivity 

(detected by ELISA) reflected low levels of feeding damage (Ross et al, 

unpublished 2015, Chapter 7). 

In this current trial a negative relationship between feeding damage and paxilline 

immunoreactivity was established (Table 8-6 and Figure 8-3), with different slopes 

dependent on the host plant-endophtye association (plant-line; cultivar or half-

sibling family and endophyte strain, AR1 or AR37). The different slopes for plant-

lines may explain why relationships were not able to be established in the earlier 

work by Ross et al. (unpublished 2015, Chapter 7). 

The paxilline ELISA recognises paxilline and an array of other simple paxilline-

like indole diterpenes, quantified by paxilline-IRE. These compounds are likely 

intermediates or precursors of the more complex alkaloids. The paxilline-like 

compounds associated with reduced feeding damage from adult African black 

beetle (H. arator) may be acting as bioactives or as marker compounds, and may 

differ between endophyte strains.  

Ross et al. (unpublished 2015, Chapter 7) provided evidence that plant resistance 

to feeding damage from adult African black beetle (H. arator) is dependent on both 

plant-line and endophyte status (endophyte-infected or endophtye-free), with 
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endophyte-infection reducing tiller damage. By late spring all AR1-infected plant-

lines were out performing the endophyte-free lines, with ‘Extreme AR37’, F3-AR1 

and F23-AR1 the most resistant plants. Although feeding damage on endophyte-

infected ryegrass was high, it must be noted that the trial did not reflect a normal 

field situation where beetles have free movement and multiple food sources to 

choose from. However, the results likely reflect how each plant-line would perform 

under high pressure from adult beetles feeding in an outbreak situation. 

Levels of paxilline immunoreactivity differed between plant-lines and in the 

presence of beetles. Levels were higher in plants not exposed to adult African black 

beetle (H. arator). In addition, for damaged plants, the damaged tillers had lower 

levels of paxilline immunoreactivity than the undamaged tillers. Both the reduction 

in paxilline immunoreactivity between unexposed and exposed plants, and between 

undamaged and damaged tillers within a damaged plant, can be explained by the 

disruption of the plant tissue and meristem where hypae and alkaloids are 

concentrated. The negative relationship between feeding damage and paxilline 

immunoreactivity established in this trial was found following exposure to African 

black beetle (H. arator) and is consistent with the suggestion a subset of paxilline-

like alkaloids are associated with feeding damage (Ross et al., unpublished 2015, 

Chapter 7). Both E. festucae var. lolii strains AR1 and AR37 in association with 

perennial ryegrass (L. perenne) do not produce the known African black beetle (H. 

arator) deterrent, ergovaline (Ball et al., 1997). Although they differ in alkaloid 

profiles (Thom et al., 2013), the negative relationship found between feeding 

damage and paxilline immunoreactivity for both strains, suggests they may share 

the same subset of bioactive alkaloids. 

The performance of individual plant-lines used in this current trial for studying 

resistance to adult African black beetle (H. arator) and paxilline immunoreactivity 

production was consistent with that found by Ross et al. (unpublished 2015, 

Chapter 7). This consistency of performance in multiple feeding trials allows 

identification of plant-lines suitable for breeding programs to improve plant 

resistance to adult beetles. Through the various trials, effects of host plant, cultivar 

or family, endophyte and beetle feeding on the AR1-ryegrass-insect relationship 

were examined. The combination of host plant and endophyte was found to affect 
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plant resistance to adult beetles. This is consistent with previous findings that the 

genetic characteristics of both endophyte and host plant are important in levels of 

alkaloid production (Fannin et al., 1990; Christensen et al., 1991; Hill et al., 1991; 

Christensen et al., 1993; Agee & Hill, 1994). In addition, differences between plant-

lines were found for endophyte concentration and this was consistent with reported 

differences in concentrations of endophyte and their endophyte metabolites 

between plant-lines (Breen, 1992; Ball et al., 1995b).  

No evidence of a relationship between paxilline immunoreactivity and endophyte 

mycelium mass was found. In general alkaloid production lags endophyte 

concentration (di Menna et al., 1992; Ball et al., 1995b), and different metabolites 

have production peaks at slightly different times (Prestidge & Gallagher, 1988; Ball 

et al., 1991; di Menna et al., 1992; Ball et al., 1995b). Evidence of relationships 

between endophyte concentration and alkaloid production have been reported for 

some of the known alkaloids (Ball et al., 1995b). For some alkaloids the relationship 

is found throughout the year, for others only at certain times of the year (Ball et al., 

1995a). The latter may explain that although the rank order for levels of paxilline 

immunoreactivity and endophyte mycelium mass was very similar, no relationship 

was found. 

Consistent with the lack of a relationship between paxilline immunoreactivity and 

endophyte concentration, there was also no evidence of a relationship between 

feeding damage and endophyte mass, suggesting that the plant-endophyte 

association is responding to beetle attack. Therefore, the relationship between 

feeding damage and paxilline immunoreactivity is likely a response to insect attack 

(Karban & Baldwin, 1997), and likely includes the production of specific paxilline-

like alkaloids as suggested by Ross et al. (unpublished 2015, Chapter 7).  

Although the paxilline ELISA detects paxilline-like compounds, it cannot measure 

actual amounts of each paxilline-like compound, instead quantitatively measuring 

levels of immunoreactivity as paxilline immunoreactive equivalents. Paxilline 

immunoreactivity levels were significantly higher in plants not exposed than 

exposed to adult African black beetle (H. arator). This observation was still 

unexpected because if the proposed subset of paxilline-like secondary metabolites 

were produced in association with feeding damage, the concentration of paxilline 
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immunoreactivity in plants exposed to beetles was predicted to be higher than plants 

not exposed. Resource availability has an effect on alkaloid production, with high 

resource costs associated with hosting an endophyte and producing alkaloids 

(Rodriguez et al., 2009). The observed result may simply be because unexposed 

plants, having optimal conditions for growth and minimal stress, did not have 

limiting resources for secondary metabolite production including paxilline 

immunoreactivity. Whereas, for exposed plants the supply of resources was reduced, 

such as a lower photosynthetic capability due to tiller damage. Mean endophyte 

mass was also significantly higher in plants not exposed than those exposed to adult 

African black beetle (H. arator), which could also be attributed to resource 

limitations. In addition, in the undamaged plants, paxilline-like compounds not 

associated with feeding damage but with high cross-reactivities in the ELISA, may 

have been produced at higher levels than in damaged plants. Or for damaged plants, 

all paxilline-like alkaloid production was reduced, therefore lowering the level of 

paxilline immunoreactivity. Alternatively, paxilline-like alkaloid production was 

simply down-regulated. 

There is evidence in the literature that shows some beneficial effects of endophytes 

against insect herbivory are induced and that the endophyte mediates the induced 

response by its host grass (Bultman & Ganey, 1995; Bultman et al., 2004; Sullivan 

et al., 2007). The interaction between prior damage and endophyte infection 

suggests that induced plant responses accentuate the effects of the endophytes 

(Karban & Baldwin, 1997). Bultman et al. (2004) reported inducible loline 

production and Sullivan et al. (2007) showed that this increase in loline 

concentration involved the upregulation of genes encoding for loline production 

following damage in endophyte-infected tall fescue (L. arundinaceum). Bultman et 

al. (2004) and Sullivan et al. (2007) also showed that damaged plants containing 

the fungus were more resistant to insects and had negative effects on these insects. 

In comparison, endophyte-free plants had increased susceptibility to insects 

following damage. Patchett et al. (2008) has shown an increase (26%) in total loline 

alkaloids in the roots of meadow fescue exposed to grass grub larvae and a decrease 

(10%) in the concentration in the crown and no difference in the concentration in 

above ground herbage. Patchett et al. (2008) suggest this may be an induced effect 

with alkaloid transport to the region of the plant under attack and propose it is a 
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redistribution of lolines in response to an insect attack instead of an overall increase 

in alkaloid production in the plant.  

Differences were found between plant-lines for herbage dry matter production. 

When beetles were actively feeding (in late autumn–early winter and in early–late 

spring) the dry matter production significantly reduced for all plant-lines. In 

comparison, there were no significant differences in herbage dry matter production 

between plant-lines when beetles were not present. Of the plant-lines studied, 

family F23-AR1 performed the best with regards to dry matter production in the 

presence of actively feeding adult African black beetles (H. arator) (Figure 8-1). 

Under African black beetle (H. arator) pressure, ‘Extreme AR37’ had higher yields 

for dry matter production than ‘Extreme AR1’ and ‘Extreme Nil’. However, 

‘Extreme AR37’ herbage dry matter yields were not significantly higher than the 

two AR1-infected families, F23-AR1 and F15-AR1. Such findings highlight the 

importance and influence of the host plant (cultivar or family) genotype in 

endophyte-ryegrass associations.  

For pseudostem dry matter production in late spring there was evidence of plant-

line and African black beetle (H. arator) influences, with F3-AR1, F15-AR1 and 

the endophyte-free plant-lines having reduced production in the presence of adult 

beetles (Figure 8-2). Plant-lines F3-AR1, F23-AR1 and ‘Extreme AR37’ (although 

not significantly different from each other) had the highest levels of pseudostem 

dry matter production in the presence of beetles than the other plant-lines.  

Live tiller numbers in early spring reflected dry matter production in late spring. 

The ability of endophyte-host plant associations to increase tiller production while 

under African black beetle (H. arator) pressure is an important factor in 

compensating for feeding damage in both herbage and pseudostem dry matter yields.  

A positive relationship was found between paxilline immunoreactivity with both 

herbage and pseudostem dry matter. The slope of this relationship was steeper in 

the presence of beetles. Although we cannot conclude cause and effect, it does 

suggest that changes in the level of paxilline immunoreactivity will have a greater 

influence on plant dry matter production in the presence of actively feeding African 

black beetles (H. arator) than in the absence.  
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The number of live adult African black beetle (H. arator) recovered, a proxy for 

survival, differed between plant-lines, with ‘Extreme AR37’ and the three half-

sibling families having significantly fewer beetles recovered than the other plant-

lines. In agreement with the literature (Popay & Baltus, 2001), there was no 

evidence of difference in recovery between the AR1-infected plant-lines of 

‘Extreme’ and ‘Quartet’ and their respective endophyte-free lines. The results 

provide further evidence that hosting an endophyte is beneficial to the plant and that 

the detrimental effects of the endophyte-plant association to adult beetles are 

influenced by both the endophyte strain and the host-plant.  

The number of African black beetle (H. arator) offspring differed between plant-

lines, with endophyte-free lines recording the highest numbers consistent with the 

literature (Popay & Baltus, 2001; Hume et al., 2007). However, in this current trial 

there was no evidence that the number of offspring differed between plant-lines 

infected with endophyte, although differences have been reported in field trials 

(Thom et al., 2013). In addition fewer offspring were found for both endophyte-

infected ‘Extreme’ lines compared with ‘Extreme Nil’. This is a reflection of the 

greater beetle feeding on endophyte-free plant-lines than on endophyte-infected 

plant-lines, which resulted in a higher fecundity level. These results provide 

evidence that hosting an endophyte is beneficial to the plant by reducing beetle 

oviposition, and in turn reducing larval herbivory. 

Beetles actively feed in autumn, as newly emerged beetles (from pupae) and build-

up fat reserves for the overwintering dormancy period when feeding is intermittent. 

In spring they emerge from their dormant period to feed and reproduce (Todd, 1959; 

Todd, 1964; Bell et al., 2011). This study was conducted from mid-autumn to late 

spring 2012 (New Zealand), incorporating the two periods in the African black 

beetle (H. arator) lifecycle when adult beetles are actively feeding. Over this period 

alkaloid levels are still high when compared with levels in the winter (di Menna et 

al., 1992; Woodburn et al., 1993; Ball et al., 1995b; Easton et al., 1996). 

In summary, levels of paxilline immunoreactivity, endophyte mass and feeding 

damage from adult African black beetle (H. arator) differed between plant-lines. 

After examining more extensively the associations between paxilline 

immunoreactivity and feeding damage from adult beetles plant-line specific 
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negative relationships were determined. These relationships included both AR1- 

and AR37-infected ryegrass associations. Both endophytes do not produce 

ergovaline, known to deter African black beetle (H. arator). There was no evidence 

of relationships between feeding damage and endophyte mass, or between paxilline 

immunoreactivity and endophyte mass. However, a positive relationship was found 

between paxilline immunoreactivity and dry matter production and it appears that 

in the presence of adult African black beetle (H. arator), changes in the level of 

paxilline immunoreactivity are associated with a greater effect on dry matter 

production. Hosting an endophyte in general was beneficial, with reduced feeding 

damage, higher dry matter production, fewer live adult beetles and offspring. The 

AR1-infected half-sibling families and ‘Extreme-AR37’ consistently outperformed 

the AR1-infected cultivar lines and endophyte-free lines. 

Further work is warranted to investigate the negative relationship between feeding 

damage from adult African black beetle (H. arator) and paxilline immunoreactivity 

from E. festucae endophyte-ryegrass associations that produce unknown 

compounds that deter adult beetles and do not cause toxicity to livestock. This 

relationship supports the potential use of the paxilline ELISA as a screening tool 

for asexual E. festucae endophyte ryegrass associations that do not produce the 

known compounds that deter adult beetles. Further investigation of the plant 

response to adult African black beetle (H. arator) feeding would be useful 

knowledge for understanding and identifying the bioactive compounds, or marker 

compounds, associated with increased plant resistance to adult beetles. This 

knowledge would underpin improved screening of plant-lines in a breeding 

program for the selection of endophyte-ryegrass associations with strong resistance 

to African black beetle (H. arator). 
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9 Chapter 9 

Thesis Summary 

9.1 Thesis overview 

The insect pest, African black beetle (Heteronychus arator (Fabricius, 1775)) is of 

considerable economic cost to the New Zealand agricultural industry, in regions 

where the insect is established and regular outbreaks are now occurring. Selection 

for E. festucae endophyte ryegrass associations that do not cause toxicity to 

livestock and with strong resistance to African black beetle (H. arator), would be 

of significant value to farmers in regions where this pest is a problem. The scientific 

research contained within this thesis is an important step in the development of non-

toxic African black beetle (H. arator) resistant ryegrasses. 

Prior to commencing my thesis research, there was a lack of understanding 

regarding the bioactivity of AR1 endophyte in how it provides pasture with 

moderate resistance to African black beetle (H. arator). The commercially 

important AR1 endophyte does not produce the known alkaloid, ergovaline (Tapper 

& Latch, 1999), which deters African black beetle (H. arator) (Ball et al., 1997). 

Earlier work suggested that paxilline-like compounds could be the bioactive 

compound that is providing the resistance, or be a marker linked with the bioactive 

compound (Popay A. J., Fletcher L. R., Briggs L. R., AgResearch, New Zealand; 

unpublished work, 2006; also see Chapter 7). However, this earlier observation was 

drawn from mean responses across several different cultivars, some of which had 

different ploidy levels. As a consequence, it is unclear whether this observation is 

simply an artefact of cultivar differences. My thesis research advances our 

understanding of AR1 bioactivity, providing scientific knowledge of the AR1-

African black beetle (H. arator) relationship using closely related plant-genotypes. 

Research into the resistance properties of AR1 is of importance to the pastoral 

sector as to date there have been no reports of toxicity in livestock from AR1-

infected pastures (Bluett et al., 2005b; Bluett et al., 2005a). Moreover, AR1 does 

not produce any of the alkaloids known to cause mammalian toxicity, such as, 

lolitrem, which induces ryegrass staggers or ergovaline, which disrupts 
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thermoregulation (Tapper & Latch, 1999). My research has contributed to a greater 

understanding of AR1 bioactivity through examining: 1) how different AR1-

ryegrass associations affect plant resistance to adult African black beetle (H. arator); 

2) distribution of paxilline-like compounds in ryegrass; 3) relationships between 

feeding damage and paxilline immunoreactivity; 4) African black beetle (H. arator) 

exposure and plant responses, including paxilline immunoreactivity and dry matter 

production; and 5) the influence of different AR1-ryegrass associations on adult 

African black beetle (H. arator) behaviour, survival and fecundity. 

The overarching aim of my research was to determine if increased concentrations 

of paxilline immunoreactivity were associated with a reduction in feeding damage 

from adult African black beetle (H. arator) in closely related AR1-infected 

perennial ryegrasses (Lolium perenne L.). To address this, a series of laboratory 

trials were performed on ryegrass plants using half-sibling families from a breeding 

line (GA97). These trials substantiated the unpublished work (Popay A. J., Fletcher 

L. R., Briggs L. R., AgResearch, New Zealand; unpublished work, 2006; also see 

Chapter 7), which suggested a relationship between increased levels of paxilline 

immunoreactivity and reduction in feeding damage at the cultivar level. 

Furthermore, my trials extended previous work to investigate the relationship 

between feeding damage and paxilline immunoreactivity within half-sibling 

families. 

I found a negative relationship between feeding damage from African adult African 

black beetle (H. arator) and paxilline immunoreactivity (detected by ELISA) in 

perennial ryegrass (L. perenne) infected with the Epichloë festucae var. lolii (Latch, 

M.J. Chr. & Samuels) C. W. Bacon & Schardl, stat. nov. et comb. nov. strain AR1 

post exposure to beetles. My research has further revealed that the relationship 

between feeding damage and paxilline immunoreactivity is complicated by: 1) 

endophyte concentrations not being simply reflected by paxilline immunoreactivity; 

2) the influence of cultivar on the expression levels of paxilline immunoreactivity; 

3) the effect of African black beetle (H. arator) on expression levels of paxilline 

immunoreactivity; and 4) the paxilline ELISA quantifying the array of paxilline-

like compounds collectively.  
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9.2 Variation and distribution of paxilline in ryegrass plants 

Key findings and implications 

A negative relationship has been determined between feeding damage from African 

adult African black beetle (H. arator) and paxilline immunoreactivity (detected by 

ELISA) in perennial ryegrass (L. perenne) infected with the Epichloë festucae var. 

lolii strain AR1 post exposure to beetles. 

The paxilline immunoreactivity levels in planta were found to be highest in the 

basal part of the plant (undamaged pseudostem > damaged pseudostem) and lowest 

in the herbage section, consistent with the literature (Musgrave, 1984; Gallagher et 

al., 1987), providing the strongest level of protection at the most vulnerable part of 

the plant against insect herbivory (Popay, 2009). For studies on adult African black 

beetle (H. arator) resistance, the pseudostem plant section was the most appropriate 

for sampling. I recommend undamaged pseudostem if the entire plant pseudostem 

is not available. This conclusion has implications for trial design and plant sampling 

in studies for ensuring the most appropriate sample is collected. However, 

pseudostem sampling is more invasive than herbage sampling because tillers are 

removed from the plant. This will have to be considered when designing and 

running trials.  

The variation in feeding damage, and in paxilline immunoreactivity, is large both 

within and among families. This suggests that the identification of half-sibling 

families and plants could be used in breeding programs to increase the production 

levels of paxilline immunoreactivity and thereby increase resistance to African 

black beetle (H. arator).  

Future work 

The high variability observed between plants derived from the same seed lot, and 

even between cloned plants, provides scope for increasing resistance to African 

black beetle (H. arator) through increasing concentrations of paxilline 

immunoreactivity. Data on feeding damage and pseudostem paxilline 

immunoreactivity need to be collected from a vast number of plants within a 
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cultivar or half-sibling family, from multiple trials, in order to fully explore the 

variability and heritable aspects of these two traits. 

To determine if the negative relationship between feeding damage and paxilline 

immunoreactivity can also be found pre-exposure to adult African black beetle (H. 

arator), cloned plants, i.e. a single genotype, would need to be used in trials that 

compare paxilline immunoreactivity levels in plants exposed and not exposed to 

beetles. This research would provide further information on how the paxilline 

ELISA could be adapted for use as a rapid screening tool that ranks African black 

beetle (H. arator) resistance in the AR1-infected ryegrasses, eliminating the need 

to determine resistance on every plant by direct testing with African black beetle 

(H. arator). Insect feeding trials are costly. However, the number needed would be 

vastly reduced in a breeding program that used ELISA-based techniques for the 

initial screening of plants for resistance. 

9.3 Paxilline-like compounds and bioactivity 

Key findings and implications 

My research has suggested the presence of a subset of paxilline-like compounds 

that are associated with plant resistance through reducing or deterring feeding, and 

levels of paxilline immunoreactivity are influenced by adult African black beetle 

(H. arator) feeding. Furthermore, other paxilline-like compounds, which do not 

afford protection against African black beetle (H. arator), may mask the detection 

of the bioactive subset by ELISA. The presence of masking compounds will 

complicate any relationship between feeding damage and paxilline 

immunoreactivity. 

Higher levels of paxilline immunoreactivity in herbage were found in mid-summer 

than in early summer, which was consistent with the published literature showing 

that alkaloid levels increase over the summer months (di Menna et al., 1992; Ball 

et al., 1995). Surprisingly, higher levels of paxilline immunoreactivity were found 

in plants not exposed to adult African black beetle (H. arator). However, the ELISA 

measures levels of immunoreactivity not levels of paxilline-like compunds. It may 

simply be a reflection of the unexposed plants being under minimal stress and 

therefore resources for secondary metabolite production not being as limited, lower 
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production of masking paxilline-like compounds or a down regulation of all 

paxilline-like alkaloid production. Regardless, our understanding of the feeding 

damage and paxilline immunoreactivity relationship, warrants further investigation. 

Moreover, it has important implications in the design of future trials. 

Future work 

To determine if plant response is elicited by African black beetle (H. arator) feeding 

in plants, feeding studies using artificial diets comprising of pseudostem that had 

either been exposed or not exposed to beetle feeding are required. In addition to the 

artificial diet trials, feeding studies using cloned plants that have been previously 

exposed and not exposed to beetle would help determine if the plant response was 

accentuated by African black beetle (H. arator) feeding, and provide information 

on the effect this has on paxilline immunoreactivity in plants. The use of cloned 

plants is importance in ensuring that any genetic differences are controlled for. 

Future research should also seek to understand why higher levels of paxilline 

immunoreactivity were found in plants not exposed to adult African black beetle 

(H. arator) compared to those exposed. Plant studies incorporating different 

feeding pressures from adult African black beetle (H. arator) could be used to 

determine if this finding is related to resource availability for secondary metabolite 

production. Complementary screening studies of both seed and plant by both 

paxilline ELISA and instrumental chemical analyses, such as, LCMS/MS or 

metabolomic analyses are needed to provide a fundamental knowledge on the 

paxilline-like compounds. This should include comparisons of plants exposed and 

not exposed to African black beetle (H. arator). Such information is vital for the 

identification of the bioactive compounds, or linked-markers to the bioactive 

compounds providing resistance to feeding from adult African black beetle (H. 

arator). 
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9.4 African black beetle–plant interactions 

Key findings and implications 

Exposure to adult African black beetle (H. arator) was found to be detrimental to 

plants only when plants were rapidly growing and beetles were actively feeding 

(i.e., in the spring and autumn months). Low levels of feeding from adult African 

black beetle (H. arator) accentuated plant tiller production, whereas high levels of 

feeding were detrimental to plants with reduced plant tiller numbers. A plant’s 

response to herbivory is plastic and varies according to the biotic and abiotic 

conditions (Maschinski & Whitham, 1989). Therefore, herbivory can be 

detrimental, of no consequence, or beneficial, depending on the conditions and 

negative and positive effects are not in conflict but are extremes of the same 

continuum (Maschinski & Whitham, 1989; Whitham et al., 1991). The negative 

effects of high feeding pressure on plants were long lasting, still affecting plants at 

least one month post exposure to beetles, with lower levels of both tiller number 

and paxilline immunoreactivity.  

Live plant tiller numbers in early spring reflected dry matter production in late 

spring. This was consistent with the relationship between feeding damage and 

pseudostem paxilline immunoreactivity found in late spring being dependent on the 

cultivar or half-sibling family. Therefore, live tiller number counts in early spring 

could potentially be used to identify endophyte-ryegrass associations with high dry 

matter production despite being under African black beetle (H. arator) attack.  

Future Work 

Plant studies incorporating different feeding pressures from adult African black 

beetle (H. arator), as well as data collected post exposure, are necessary for 

determining both the level of feeding that is no longer beneficial to plants, and also 

how long plant recovery after detrimental feeding from African black beetle (H. 

arator) takes. This information will be essential for estimating the impact of feeding 

by African black beetle (H. arator). Specifically, are the beetle population levels 

likely to be beneficial or detrimental to pasture production and pasture persistence? 

Information gained from such studies would also allow for improved estimation of 

pasture damage from feeding by adult African black beetle (H. arator). This would 
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aid in the management of pastures that have sustained significant beetle attack, and 

be of obvious economic benefit. 

Long-term trials (≥ 1 year) using cloned plants to investigate how varying levels of 

African black beetle (H. arator) pressure affect endophyte-infected and endophyte-

free grass associations measuring feeding damage, alkaloid levels, herbage 

production, beetle survival and fecundity, would provide important long term 

information about AR1–plant-insect interactions both over the lifecycle of the 

beetle and throughout the different seasons. By providing insights into the long term 

effects of African black beetle (H. arator) on AR1-infected cultivars or families, 

such research could help develop simple diagnostic tools for the monitoring of 

African black beetle (H. arator) populations in pastures, and estimating pasture 

damage.  

9.5 Wider implications and the future 

Results from this research have contributed to a deeper understanding of the 

bioactivity of AR1-endophyte against adult African black beetle (H. arator). With 

AR1 endophyte still the only commercially available endophyte known to have 

never caused toxicity in livestock, effort and research towards breeding AR1-

infected pasture grasses with high resistance to adult African black beetle (H. arator) 

is warranted. As the weather patterns in our regions change, the environment may 

become more favourable to African black beetle (H. arator) survival and 

reproduction, increasing base-line populations and expanding the pastoral farming 

areas under threat from African black beetle (H. arator).  

For some endophyte-infected pastures it is known that environmental conditions 

such as high temperatures correspond with toxicity (Armstrong, 1994). Moreover, 

certain alkaloid concentrations are known to increase with temperature (Easton et 

al., 1996). With global summer conditions becoming hotter and drier, endophyte-

infected pastures may exhibit more frequent incidents of toxicity to livestock. 

Therefore, they may become a less preferred grass option in African black beetle 

(H. arator) prone areas, leaving farmers looking for other non-toxic alternatives. 

In the development of AR1-infected cultivars with high resistance to African black 

beetle (H. arator), researchers have to work with very large numbers of plants to 
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overcome high variability observed between plants derived from the same seed line, 

and even between cloned plants. For significant and meaningful results to be 

obtained data need to be collected from very large numbers of plants. The approach 

taken in this thesis to address this problem was to undertake research to characterise 

the plant property of interest, African black beetle (H. arator) resistance, and to find 

strategies and technologies that could speed up the selection of ‘premium’ plants 

for further development.  

In plant breeding, selection trials are very expensive and time consuming. The 

approach adopted in this thesis, of researching and identifying the bioactive or 

linked-markers (e.g. chemical or molecular) associated with the characteristic of 

interest, could be applied to facilitate the development of cost-effective rapid tests 

for use in plant breeding programs targeting other beneficial characteristics. 
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Appendix I: Chapter 4 Additional Information 

Tables A–C and Figures A–D 

 

Table A: Mean plant tiller number (square root transformed) of the clones from 
individual plants grown from seed (from the 23 half-sibling families). The data 
was analysed unadjusted for initial tiller number (plant size) at start of trial. The 
data were analysed cumulatively (cumulative total tiller number = total tiller 
number at Assessment 2 plus the number of damaged tillers from Assessment 1 
which had been removed).  

Family Plant 

Mean plant tiller number (square root scale, M1) 

A0 A1 A2 Cum A0–A2 

A12061 61/6 4.72 (22.23) 4.78 (22.87) 3.69 (13.63) 5.21 (27.14) 
 61/9 4.86 (23.65) 5.27 (27.79) 4.62 (21.30) 5.06 (25.60) 

A12063 63/4 3.85 (14.85) 3.80 (14.40) 3.72 (13.80) 3.90 (15.21) 
 63/9 4.53 (20.56) 5.11 (26.11) 3.91 (15.31) 5.02 (25.2) 

A12064 64/1 4.25 (18.02) 4.81 (23.16) 4.04 (16.28) 4.69 (22.0) 
 64/6 3.82 (14.55) 3.77 (14.24) 3.40 (11.56) 5.21 (27.14) 
 64/7 5.24 (27.45) 5.72 (32.76) 5.05 (25.47) 4.25 (18.06) 
 64/10 5.18 (26.78) 5.42 (29.40) 5.34 (28.56) 5.32 (28.3) 

A12065 65/1 4.44 (19.69) 5.05 (25.49) 4.15 (17.25) 4.87 (23.72) 
 65/6 3.49 (12.20) 4.03 (16.27) 3.46 (11.98) 4.01 (16.08) 
 65/7 3.91 (15.26) 3.96 (15.71) 3.63 (13.16) 3.82 (14.59) 

A12066 66/7 4.67 (21.79) 5.50 (30.29) 3.57 (12.72) 5.45 (29.7) 
 66/8 3.81 (15.54) 4.25 (18.02) 3.99 (15.94) 4.41 (19.45) 

A12068 68/6 5.01 (25.11) 5.03 (25.28) 4.07 (16.55) 4.97 (24.7) 
 68/8 2.80 (7.84) 2.82 (7.97) 2.92 (8.50) 2.81 (7.9) 

A12069 69/6 4.08 (16.67) 4.68 (21.93) 3.71 (13.77) 4.91 (24.11) 
 69/9 5.45 (29.69) 6.22 (38.69) 4.42 (19.49) 5.5 (30.25) 

A12070 70/5 4.89 (23.88) 5.54 (30.64) 4.84 (23.44) 5.22 (27.25) 
 70/6 3.69 (13.59) 4.06 (16.51) 3.32 (11.05) 3.85 (14.82) 
 70/8 2.82 (7.96) 3.32 (10.99) 2.37 (5.63) 3.28 (10.76) 

A12071 71/3 4.10 (16.83) 4.32 (18.64) 3.51 (12.29) 4.29 (18.4) 
 71/5 3.03 (9.20) 3.12 (9.73) 1.34 (1.79) 2.85 (8.12) 

A12072 72/2 4.77 (22.78) 5.07 (25.72) 4.16 (17.34) 5.04 (25.4) 
 72/9 4.21 (17.74) 4.31 (18.56) 5.13 (26.32) 4.81 (23.14) 

A12073 73/1 4.75 (22.57) 4.95 (24.48) 3.70 (13.71) 4.83 (23.33) 
 73/2 4.55 (20.67) 4.85 (23.54) 4.02 (16.14) 4.81 (23.14) 

A12074 74/1 4.91 (24.06) 5.36 (28.77) 5.05 (25.49) 5.48 (30.03) 
 74/10 5.31 (28.17) 6.52 (42.51) 5.57 (30.99) 6.48 (41.99) 

Table A continued on next page 
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Table A continued 

Family Plant 

Mean plant square root transformed tiller number (M1) 

A0 A1 A2 Cum A0–A2 

A12075 75/6 5.07 (25.65) 6.10 (37.19) 6.11 (37.34) 6.62 (43.82) 

A12077 77/5 4.14 (17.17) 5.22 (27.25) 4.65 (21.66) 5.00 (25.00) 
 77/8 5.10 (25.97) 5.48 (29.99) 4.83 (23.31) 5.54 (30.69) 

A12078 78/1 4.40 (19.36) 5.15 (26.52) 4.57 (20.92) 5.07 (25.70) 
 78/2 3.97 (15.79) 4.25 (18.02) 3.83 (14.70) 4.12 (16.97) 
 78/7 4.00 (15.97) 4.55 (20.73) 4.19 (17.54) 4.51 (20.34) 

A12080 80/2 5.14 (26.45) 5.25 (27.57) 5.09 (25.89) 5.41 (29.27) 
 80/7 4.00 (15.97) 4.29 (18.36) 3.88 (15.05) 4.39 (19.27) 
 80/10 5.14 (26.42) 5.38 (28.91) 5.31 (28.19) 5.52 (30.47) 

A12081 81/1 4.54 (20.64) 5.77 (33.30) 4.90 (24.01) 5.78 (33.41) 
 81/10 4.35 (18.92) 4.30 (18.45) 3.87 (14.97) 4.58 (20.98) 

A12082 82/1 2.15 (4.63) 1.79 (3.20) 1.49 (2.21) 1.52 (2.31) 
 82/4 4.03 (16.22) 4.77 (22.76) 3.40 (11.54) 4.84 (23.43) 

A12083 83/1 3.33 (11.09) 3.70 (13.67) 3.21 (10.28) 3.70 (13.69) 
 83/2 4.62 (21.35) 4.39 (19.29) 5.15 (26.54) 5.19 (26.94) 

A12084 84/1 4.62 (21.34) 4.73 (22.37) 4.36 (19.03) 5.70 (32.49) 
 84/5 3.28 (10.75) 3.60 (12.94) 2.68 (7.20) 5.04 (25.40) 

A12085 85/6 4.79 (22.91) 5.48 (30.02) 4.79 (22.93) 5.39 (29.05) 

A12086 86/2 4.66 (21.68) 5.20 (27.05) 4.84 (23.41) 5.5 (30.25) 
 86/4 5.28 (27.92) 6.16 (37.95) 5.53 (30.59) 6.18 (38.19) 

A12087 87/5 5.70 (32.43) 7.67 (58.75) 6.85 (46.98) 6.74 (45.43) 
 87/10 5.82 (33.91) 7.00 (48.94) 5.38 (28.91) 7.50 (56.25) 

Fisher’s LSD(5%) 1.213 1.654 1.735 1.640 

Plant Effect (Individual PlantsP) 
F-statisticdf 3.5249,77 3.6749,78 3.1249,75 3.8849,80 
P-value <0.001 <0.001 <0.001 <0.001 

Plant Effect (Within FamilyFP) 
Wald-statisticdf 82.8327 66.6027 51.5827 69.8227 

P-value <0.001 <0.001 0.003 <0.001 

A0, A1 and A2 = Assessments 0 (start of trial and treatment phase), 1 (mid-trial), 2 (end of 
trial. Cum = Cumulative. df = Degrees of freedom. LSD(5%) = Least significance difference 
at the 5% significance level. M1 = fixed effect model 1; FP = Family.Plant, P = Plant. Back 
transformed mean values are in brackets. Family lines and plants contaminated with wild-
type endophyte are highlighted in bold font. Statistically significant results are highlighted 
in bold and italic font. Weak evidence of effects (0.05< P ≤1.0) are highlighted in italic font. 
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Table B: Levels of peramine and paxilline ELISA immunoreactivity (raw data) in plant sections for plant clones that had three sections measured; 
herbage, damaged and undamaged pseudostem (subgroup ELISA data).  

Family Plant 

Peramine-IRE (µg/g)  Paxilline-IRE (µg/g) 

Herbage 
Damaged 

pseudostem 
Undamaged 
pseudostem  Herbage 

Damaged 
pseudostem 

Undamaged 
pseudostem 

A12061 61/9 23.82 28.00 39.04  8.91 11.34 23.81 

A12063 63/4 21.35 28.62 43.58  7.59 13.04 19.81 

A12064 64/7 14.14 16.47 19.67  18.27 15.04 27.66 
A12064 64/7 21.75 27.53 36.89  11.70 16.88 19.80 
A12064 64/10 30.99 22.02 20.88  6.73 11.53 11.45 

A12069 69/9 23.78 21.42 34.65  5.79 10.34 21.63 

A12072 72/9 18.45 29.03 23.66  9.73 11.43 15.38 
A12072 72/9 19.14 22.32 24.18  15.56 17.14 27.68 

A12073 73/2 30.20 40.24 42.14  13.45 13.58 23.17 

A12074 74/1 29.89 28.37 22.17  11.19 14.38 13.76 
A12074 74/10 16.86 14.62 23.79  9.25 8.26 7.07 

A12077 77/5 15.95 12.94 19.21  3.74 5.46 7.15 

A12078 78/1 22.35 35.20 35.39  4.78 6.64 7.81 
A12078 78/2 12.94 21.84 27.01  4.69 7.75 9.43 
A12078 78/7 15.55 17.01 21.59  3.65 6.04 9.89 

A12080 80/2 28.42 40.75 48.09  6.63 14.32 15.41 
A12080 80/7     4.59 8.07 12.14 

Table B continued on next page 
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Table B continued 

Family Plant 

Peramine-IRE (µg/g)  Paxilline-IRE (µg/g) 

Herbage 
Damaged 

pseudostem 
Undamaged 
pseudostem  Herbage 

Damaged 
pseudostem 

Undamaged 
pseudostem 

A12080 80/10 48.66 31.17 36.97  13.66 12.62 13.38 

A12081 81/1 14.17 17.80 20.53  4.60 8.27 9.38 
A12081 81/1 22.00 20.79 30.20  6.32 9.78 11.67 
A12081 81/10 15.60 17.02 24.94  2.34 3.37 7.05 

A12083 83/2 15.19 15.93 22.29  4.90 6.64 8.38 
A12083 83/2 23.03 21.53 30.66  6.98 7.38 13.28 

A12086 86/2 17.86 10.85 13.13  7.84 9.09 12.98 
A12086 86/4 20.32 24.58 22.03  10.06 12.14 15.14 
A12086 86/4 24.35 18.41 24.77  23.51 18.07 25.82 

A12087 87/5 26.34 21.74 22.92  6.83 8.87 9.56 
A12087 87/5 20.32 19.80 22.94  8.02 11.37 17.62 
A12087 87/5 26.41 26.71 32.95  9.76 14.44 21.05 
A12087 87/10 14.78 19.09 23.01  6.12 11.88 11.27 
A12087 87/10 25.94 33.81 31.54  7.15 13.50 18.06 

range  12.94–48.66 10.85–40.75 13.13–48.09  2.34–23.51 3.37–18.07 7.05–27.68 

median  21.55 21.79 24.48  7.15 11.37 13.38 

mean  22.02 23.52 28.03  8.53 10.92 15.09 

Peramine- and paxilline-IRE = Peramine and paxilline immunoreactive equivalents Subgroup data = subgroup of peramine or paxilline ELISA data in which individual 
cloned plants had measured levels of peramine or paxilline immunoreactivity for all three plant sections; herbage, damaged and undamaged pseudostem. Family 
lines and plants contaminated with wild-type endophyte are highlighted in bold font.   
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Figure A: Scatterplots (raw data) comparing the levels of peramine (a, c and e) or 
paxilline (b, d and f) immunoreactivity between the three plant sections; herbage, 
damaged and undamaged pseudostem. a and b) Damaged pseudostem vs. undamaged 
pseudostem. c and d) Herbage vs. damaged pseudostem. e and f) Herbage vs. undamaged 
pseudostem. Peramine- or paxilline-IRE = peramine or paxilline immunoreactive 
equivalents. CC = Pearson’s correlation coefficient. 
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Figure B: Scatterplots (subgroup raw data) comparing overall pseudstem levels of 
peramine (a, c and e) and paxilline (b, d and f) immunoreactivity with levels in the three 
plant sections; herbage, damaged and undamaged pseudostem. Plots a–f; a and b) 
herbage, c and d) damaged pseudostem, e and f) undamaged pseudostem. Subgroup data 
= subgroup of peramine or paxilline ELISA data (Appendix I Table B) in which individual 
cloned plants had measured levels of peramine or paxilline immunoreactivity for all three 
plant sections; herbage, damaged and undamaged pseudostem. Overall pseudostem 
levels of peramine or paxilline immunoreactivity were calculated by summing the 
damaged and undamaged pseudostem immunoreactivity levels weighted by the 
proportion of tillers damaged. Peramine- and paxilline-IRE = peramine and paxilline 
immunoreactive equivalents. CC = Pearson’s correlation coefficents. 
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Figure C: Correlation (raw data) of paxilline immunoreactivity vs peramine 
immunoreactivity in the different plant sections. Plots a–d; a) Herbage, b) Damaged 
pseudostem, c) Undamaged pseudostem, d) Overall pseudostem (subgroup data). 
Subgroup data = subgroup of peramine or paxilline ELISA data (Appendix I Table B) in 
which individual cloned plants had measured levels of peramine or paxilline 
immunoreactivity for all three plant sections; herbage, damaged and undamaged 
pseudostem. Overall pseudostem levels of paxilline immunoreactivity were calculated by 
summing the damaged and undamaged pseudostem immunoreactivity levels weighted by 
the proportion of tillers damaged. Peramine- and paxilline-IRE = peramine and paxilline 
immunoreactive equivalents. CC = Pearson’s correlation coefficient. 
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Figure D: Scatterplot (raw data) of paxilline immunoreactivity levels in pre-trial herbage 
versus end of trial herbage. Paxilline-IRE = Paxilline immunoreactive equivalents. CC = 
Pearson’s correlation coefficient. One outlier data point is circled and removal of this 
circled outlier would greatly influence the observable association and correlation 
coefficient and in this case removal resulted in no observable relationship between the two 
variables (changing the correlation coefficient from 0.63 to 0.46). The two data points 
identified by arrows spread the width of the data and may be the outliers, if removed with 
the circled outlier the correlation is strenghtened (CC = 0.76), or if these data points are 
removed instead of the circled data point, the correlation remains similar (CC = 0.64). 
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Table C: Mean plant proportion of all tillers with a damage score of three (logit 
transformed) of the clones from individual plants grown from seed (from the 23 
half-sibling families) at Assessment 2 from feeding by adult African black beetle. 
The data was analysed unadjusted for initial tiller number (plant size) at start of 
trial. 

Family Plant 

Mean proportion of tillers with a 
damage score of three at A2 

(logit scale, M1) 

A12061 61/6 0.25 (0.56) 
A12061 61/9 -0.23 (0.44) 

A12063 63/4 -1.06 (0.26) 
A12063 63/9 0.81 (0.69) 

A12064 64/1 -1.28 (0.22) 
A12064 64/6 0.29 (0.57) 
A12064 64/7 -1.22 (0.23) 
A12064 64/10 -1.07 (0.26) 

A12065 65/1 0.88 (0.71) 
A12065 65/6 1.85 (0.86) 
A12065 65/7 0.18 (0.55) 

A12066 66/7 1.21 (0.77) 
A12066 66/8 -0.63 (0.35) 

A12068 68/6 -1.58 (0.17) 
A12068 68/8 -1.20 (0.23) 

A12069 69/6 -0.74 (0.32) 
A12069 69/9 0.85 (0.70) 

A12070 70/5 -0.80 (0.31) 
A12070 70/6 -0.87 (0.30) 
A12070 70/8 -0.77 (0.32) 

A12071 71/3 -0.02 (0.49) 
A12071 71/5 0.33 (0.58) 

A12072 72/2 -0.57 (0.36) 
A12072 72/9 -0.87 (0.30) 

A12073 73/1 -0.13 (0.47) 
A12073 73/2 -0.41 (0.40) 

A12074 74/1 -1.05 (0.26) 
A12074 74/10 -0.13 (0.47) 

A12075 75/6 1.03 (0.74) 

A12077 77/5 -1.07 (0.26) 
A12077 77/8 -0.70 (0.33) 

A12078 78/1 -0.89 (0.29) 
A12078 78/2 -1.98 (0.12) 
A12078 78/7 -1.65 (0.16) 

Table C continued on next page 
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Table C continued 

Family Plant 

Mean proportion of tillers with a 
damage score of three at A2 

(logit scale, M1) 

A12080 80/2 -0.34 (0.42) 
A12080 80/7 0.27 (0.57) 
A12080 80/10 -0.44 (0.39) 

A12081 81/1 0.51 (0.63) 
A12081 81/10 -0.47 (0.39) 

A12082 82/1 1.14 (0.76) 
A12082 82/4 -0.51 (0.38) 

A12083 83/1 -0.81 (0.31) 
A12083 83/2 -0.69 (0.33) 

A12084 84/1 0.74 (0.68) 
A12084 84/5 -0.76 (0.32) 

A12085 85/6 0.16 (0.54) 
A12086 86/2 -0.04 (0.49) 
A12086 86/4 -1.56 (0.17) 

A12087 87/5 -0.98 (0.27) 
A12087 87/10 -0.01 (0.50) 

Fisher’s LSD(5%) 3.422 

Plant Effect (Individual plants) 
F-statisticdf 1.8549,73 

P-value 0.008 

Plant Effect (Within family) 

Wald-statisticdf 38.6327 

P-value 0.068 

A2 = Assessment 2 (end of treatment phase). df = Degrees of freedom. FP = Family.Plant. 
LSD(5%) = least significance difference at the 5% significance level. M1 = fixed effects 
model 1. P = Plant. Back transformed values are in brackets. Family lines and plants 
contaminated with wild-type endophyte are highlighted in bold font. Statistically 
significant results are highlighted in bold and italic font. Weak evidence of effects (0.05< 
P ≤1.0) are highlighted in italic font. 


