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Abstract

The Hawthorn model [1] is built upon the idea that the Lie algebra so(2, 3) is a

more natural description of the local structure of space-time than the Poincare

Lie algebra, with the former contracting to the latter in the limit of the con-

traction parameter r tending to infinity. This notion is explored in the context

of a 10-dimensional space-time referred to as an ADS manifold. Here we build

on the work of Crump [2] and try to incorporate field equations for gravity

into the model. We derive two apparently different equations describing gravi-

tational phenomena, demonstrate an intimate connection between gravity and

electromagnetism and provide a first estimate as to the value of the contraction

parameter r.
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Chapter 1

Introduction

This thesis seeks to incorporate a description of gravity into the Hawthorn

model [1]. This involves seeking an appropriate form of Einstein’s field equa-

tions such that they arise naturally in the context of a 10-dimensional ADS

manifold. In the process we develop geometric derivations of the 10-dimensional

Ampere-Gauss equation, the 10-dimensional Einstein field equations and also a

new, seemingly independent, equation offering up a new constraint on gravita-

tional phenomena. In deriving these equations we also demonstrate connection

between electromagnetic and gravitational fields and we produce the models

first experimental prediction.

1.1 History of the Hawthorn Model

The Hawthorn model originally arose in an attempt to answer the question

as to whether the local symmetry of space-time is better described by the

Anti-deSitter Lie algebra as opposed to the Poincare Lie algebra. The initial

inspiration stemming from the observation that the Dirac equation is more

conveniently described with this symmetry group. Initial work by Hawthorn

([1]) developed the mathematical formalism of the model emphasising its utility

with regard to the Dirac equation, however issues were run into when attempt-

ing to describe electromagnetism. It was observed that along with Maxwell’s

equations came an extra constraint that implied only trivial EM phenomena
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could exist on the manifold. It was this issue that Crump ([2]) set out to

resolve for his Master’s thesis. Crump was successful in resurrecting electro-

magnetism but this success came at the expense of the assumption regarding

the invariance of the spinor bilinear form sαβ and necessitated the introduc-

tion of bullet scalars. However, once remedied, Crump not only demonstrated

non-trivial electromagnetic phenomena was permissible but in fact that the

Faraday-Gauss equation was a geometric identity of the manifold. The combi-

nation of Hawthorn and Crump’s work is found in [1] and represents the most

up to date version of the model and the starting point of this thesis.

1.2 Thesis Overview

Chapter 2 In this chapter we give outlines of electromagnetism and gravity

including a discussion of attempts to unite the two forces followed by a

brief outline of Weyl’s attempt at geometric unification. This is followed

by a summary of the Dirac equation including its derivation, simple

solutions and interaction terms. Relevant references are [2], [6], [7], [8],

[9], [11], [12], [13], [15], [16], [17], [19], [25], [27], [30], and [31].

Chapter 3 Here we construct a basis for what we call the canonical rep-

resentation of the Lie algebra so(2, 3). We then go on to demonstrate

how the Anti-deSitter (AdS) Lie algebra contracts to the Poincare Lie

algebra in the limit of the contraction parameter r tending to infinity.

The chapter finishes off with discussion of why the AdS Lie algebra is a

better description of the local symmetry of space-time than the Poincare

Lie algebra. Relevant references for this chapter are [1], [2], [3], [4], and

[6].

Chapter 4 In this chapter we concern ourselves with developing the funda-

mental mathematical tools needed to make sense of the idea of local AdS

symmetry. Relevant references are [1] and [2].
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Chapter 5 This chapter follows the previous chapter as narrowing down of

our focus and application of the results of the last chapter to specific low

dimensional representations. Relevant references are [1], [2], and [4].

Chapter 6 Here investigate the properties and characteristics of the model

with regard to the global action: ∇. We study the spinor connection

in depth and introduce the notion that the fundamental forces mani-

fest themselves as curvatures of the manifold. This chapter also gen-

eralises the differential operators of gradient, divergence and curl to 10

dimensions. Important results from this chapter include the geometric

derivation of the Faraday-Gauss equation and the divergence free Ein-

stein tensor plus a non-zero cosmological constant. Relevant references

are [1] and[2].

Chapter 7 This chapter develops the Dirac equation in the context of the

model. It demonstrates that the equation arises simply as the action

of the generalised curl operator on a spinor. The chapter ends with

discussion of the clarity the model affords us when dealing with the Dirac

equation. Namely it allows us to interpret the charge as eigenvalues of the

intrinsic time operator and the velocity fluctuation associated with the

zitterbewegung to be fluctuation of intrinsic velocity. Relevant references

are [1], [2] and [9].

Chapter 8 This chapter demonstrates how electromagnetism fits into the

model. It is essentially a review of the work done in [2]. In it we demon-

strate the initial problems associated with trying to accommodate elec-

tromagnetism and the subsequent resolution of these problems. This

is followed by the demonstration of Crump’s main result found in [2],

namely the geometric derivation of the Faraday-Gauss equations as a

necessary condition of the manifold. The relevant reference is [2].

Chapter 9 This chapter is concerned with the attempt to develop a the-

ory of gravity on the manifold and represents the main contribution of



4

this thesis to the model. In it we attempt to develop equations linking

gravity and electromagnetism from a variational approach. This is fol-

lowed by a geometric proof of the subsequent field equations. Having

done this, the chapter then goes on to try and link the equation relating

to gravity to Einstein’s field equation. However it is determined that

equations relating to Einstein’s field equations with a non-zero cosmo-

logical term already exist in the model. As a result we interpret our

extra gravitational equation as an extra condition on gravity. It then

goes on to develop implications of these equations including constraints

on the unknown divergence-less tensors that arise in the equations. The

final section of this chapter determines a lower bound on the contraction

parameter r. Relevant references for this chapter are [6], [11] and [14].

Chapter 10 This chapter discusses the results of the previous chapter and

lists future research avenues for the model including new questions raised

by this thesis and long standing issues with the model.



Chapter 2

The Classical Forces

The goal of this model is to demonstrate that the physical laws are more

conveniently described with an Anti-deSitter symmetry group. To do this it is

necessary to formulate the laws of physics in this format. Thus, it is worthwhile

to give a review of the physics that we wish to describe in the Hawthorn model

as it is described in standard physics. In this chapter we will be looking at

the classical forces: electromagnetism and gravity and review some attempts

at unifying them. We will also give a brief summary of the Dirac equation.

2.1 Electromagnetism

Electromagnetism, as the name suggests, gives a unified account of the be-

haviour of electric and magnetic fields. Here we follow [2] and [8].
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2.1.1 Maxwell’s Equations

Let ∇ = (∂x, ∂y, ∂z), then a complete description of electromagnetic phenom-

ena in a vacuum is given by Maxwell’s equations

∇ · E =
ρ

ǫ0

(2.1)

∇ · B = 0 (2.2)

∇× E = −∂B

∂t
(2.3)

∇× B = µ0J +
∂E

∂t
(2.4)

Where E is the electric field intensity, B is the magnetic field density, ρ is

the electric charge density, ǫ0 and µ0 the permittivity and permeability of free

space, J is current density and · and × are the standard dot and cross products.

Equations 2.1, 2.3, and 2.4 are called Gauss’, Faraday’s, and Ampere’s laws,

respectively and equation 2.2 tells us that there are no magnetic monopoles.

It can be shown that the current density J and the charge density ρ satisfy

the continuity equation:

∂t(ρ) + ∇ · J = 0 (2.5)

If we consider that J = ρv, then we can rewrite the continuity equation as

∂iJ
i = 0 (2.6)

Where ∂i = (c−1∂t,∇) and J i = (cρ,J).

We can reformulate Maxwell’s equations in a more elegant way if we consider

the identifications:

E = −∇φ − ∂t(A) (2.7)

B = ∇× A (2.8)
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Where φ is called the electric scalar potential and A is called the magnetic

vector potential.

As an aside we note that these potentials are not unique. Considering equa-

tions 2.7 and 2.8 it’s not difficult to realise that letting A → A + ∇χ and

φ → φ− ∂tχ, where χ is some scalar field, results in the same E and B fields.

A transformation of this sort is called a gauge transformation.

Going back to our φ and A, we may define a 4-vector Ai = (c−1φ,A), called a

4-potential. With this 4-potential we can form the electromagnetic field tensor

Fij,

Fij = ∂iAj − ∂jAi

Using the electromagnetic field tensor, Maxwell’s equations reduce to two equa-

tions:

∂iFij = µ0Jj (2.9)

∂iFjk + ∂jFki + ∂kFij = 0 (2.10)

Equation 2.9 is called the Ampere-Gauss equation and equation 2.10 is called

the Faraday-Gauss equation.

2.2 Gravity

In this section we will go over the modern theory gravity, i.e. Einstein’s General

Relativity. We will discuss two derivations: Einstein’s derivation and Hilbert’s

derivation. We will also briefly touch on gauge formulations of gravity.

2.2.1 Einstein’s Equations

Here we give a brief construction of Einstein’s equations in rough accordance

with the path Einstein took towards them. We follow [11].
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In his theory of gravitation, Einstein desired to conflate the presence of a

gravitational field with the curvature of a Riemannian manifold. The mathe-

matical manifestation of this idea being an equation relating the non-flatness of

the metric gij and the source of the gravitational field, the energy-momentum

tensor: τij (with indices running from 0-3). As both the metric and the energy-

momentum tensor are divergence-less, it is tempting to try to equate these

two. This however raises problems when considering empty space and when

attempting reduce down to Newton’s theory. Hence, relating non-flatness in

the metric with energy density requires going through the curvature tensor,

see [12]. As the Riemannian curvature tensor, Rk
itj, is rank 4 and the energy-

momentum tensor rank 2 we may either contract two of the curvature tensor’s

indices or make it proportional to a quadratic form of the energy-momentum

tensor. Keeping in mind that Einstein’s theory needs to collapse to Newton’s

theory in the limiting case it can be seen that the latter of these two possibil-

ities presents difficulties. Thus Einstein made the identification

Rij = κτij

Where Rij is the Ricci tensor and κ is a constant of proportionality given by

κ = −8πG
c2

, where G is Newton’s gravitational constant and c is the speed

of light. This, however, is problematic as the Ricci tensor is not divergence-

less and the energy-momentum tensor is. In order to make the left hand side

divergence-less it must be modified by introducing the term −1
2
gijR, where R

is the curvature scalar. This combination of the Ricci tensor and the Ricci

scalar is called Einstein’s tensor. Taking this modification into consideration,

Einstein’s field equations are:

Rij −
1

2
gijR = κτij (2.11)
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2.2.2 The Hilbert Action

Now we turn to Hilbert’s variational derivation. Here we follow related sec-

tions in [11] and [7].

The derivation of the field equations for gravity using a variational principle

was first done by David Hilbert in 1915, [30]. In his formulation he put for-

ward three axioms from which he expected the field equations to arise. These

axioms and their justifications are given as follows:

Axiom 1. The field equations should be derived from a variational technique

where the components of the metric tensor form the independent vari-

ables of the action integral

Justification: The first part is the underlying assumption of the approach.

The second part however is specific to Hilbert’s approach. The action

need not be varied with respect to components of the metric (we could,

if we wanted, use the connection components), for derivations that forgo

this approach see [14].

Axiom 2. The action functional should be a scalar.

Justification: This follows from the fact that if we want the integral to be a

tensorial quantity the integrand must be a scalar.

Axiom 3. The equations of motion must be differential equations of second

order in gij

Justification: This arises from the fact that the Poisson equation

∇2Φ = 4πGρ

where Φ is the field potential and ρ is the mass density, should result as

limiting case of the equations. As the Poisson equation is second order,

we expect the field equations of gravity to be second order as well.
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From the three axioms, we can conclude three things:

1. The action integral should take the form

I(g) =

∫

Ω4

Ld4x

Where Ω4 is a volume element of space-time on the boundary of which

δgij = 0, and the function L is dependent on gij and derivatives of gij

(gij,k, gij,kl, etc.).

2. For the integral to be a scalar, as d4x is a scalar density of weight 1 L must

be a scalar density of weight -1. The simplest scalar density of weight -1

is
√−g thus L =

√−gL where L is a proper scalar function.

3. As we want the equations of motion to be second order, and the E.L.

equations give equations of motion that are of twice the order of the

highest derivative appearing in L, we would like L to be a function of

gij and gij,k only. It proves difficult to construct a non-trivial scalar just

using gij and gij,k, however it can be noted that if L does contain higher

order derivatives of the metric their contribution to the field equations

may be ignored if they can be collected into a divergence term that

vanishes at the boundary of the volume. We may only do this if L is

linear in these higher order derivatives. So we are looking for a scalar

that is linear in higher order derivative of gij and gij,k, and we may find

that R-the curvature scalar fits the bill.

Therefore the Einstein-Hilbert action is:

IEH =

∫

Ω4

R
√−gd4x

To produce the source free field equation we must vary the action with respect

to the metric and set the whole thing to zero.

δI =

∫

Ω4

δ(R
√−g)d4x = 0
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Examining the variation of the integrand

δ(R
√−g) = δ(R)

√−g + Rδ(
√−g)

= δ(gijRij)
√−g + Rδ(

√−g)

= δ(gij)Rij

√−g + gijδ(Rij)
√−g + Rδ(

√−g) (2.12)

Considering Proposition 7.2 on pg 298 of [7]

a) δgij = −gilgkjδglk

b) δ
√

|g| = 1
2

√

|g|glkδglk

c) δRij = ∇kδΓ
k
ji −∇jδΓ

k
ki

Substituting these into (1) we see

δ(R
√−g) = δ(gij)Rij

√−g + gijδ(Rij)
√−g + Rδ(

√−g)

= −gilgkjδglkRij

√−g + gij(∇kδΓ
k
ji −∇jδΓ

k
ki)

√−g + R
1

2

√−gglkδglk

= (−gilgkjRij +
1

2
glkR)

√−gδglk + gij(∇kδΓ
k
ji −∇jδΓ

k
ki)

√−g

= −(Rlk − 1

2
glkR)

√−gδglk + gij(∇kδΓ
k
ji −∇jδΓ

k
ki)

√−g

The second term on the right is a total divergence hence it does not contribute

to the variation. Substituting this back into the integral we get

δI = −
∫

Ω4

(Rlk − 1

2
glkR)

√−gδglkd
4x = 0

Thus obtaining Einstein’s source free field equation

Glk = Rlk − 1

2
glkR = 0

In the presence of matter this equation is modified thusly:

Glk = Rlk − 1

2
glkR = κτ lk
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Where τ lk is the energy-momentum tensor and κ is the constant of propor-

tionality from before. Thus, once again we have Einstein’s equations.

2.2.3 A Note on the Cosmological Constant

The equations we have derived from both Einstein’s and Hilbert’s approaches

are not the most general formulation. In full generality we must also add an

extra term: glkΛ, where Λ is called the cosmological constant. This arises if

we consider the fact that the addition of a constant, divergence-less tensor

to Einstein’s tensor does not modify the divergence equation. Hence there is

a degree of freedom regarding the addition of a divergence-less constant to

Einstein’s equations. The effect of this constant is to govern the evolution of

the universe (its value distinguishes between an expanding, shrinking or static

universe). It should be noted though that its presence prevents Einstein’s

equations from reducing to Newtonian gravity in the weak field limit unless

it is very small and in fact its absolute value is constrained to have an upper

limit of no more than 10−50cm−2 (p. 145, [11]).

2.2.4 Gravity as a Gauge Theory

Having considered both Einstein’s and Hilbert’s derivations of gravity, it is also

worthwhile to take note of another formulation-that of a gauge formulation.

A gauge formulation is similar to some extent to Hilbert’s derivation, in that

it arises from the invariance of a Lagrangian. Here the Lagrangian is invariant

with respect to a group of transformations that form a semi-simple Lie group.

These transformations become gauge transformations if the elements of the

Lie algebra have a coordinate dependence. The invariance of the Lagrangian

under this type of transformation is a gauge invariance. What follows is a

qualitative assessment closely related to the intro of [25].

After the successful gauge theoretic treatment of nuclear forces by Yang and
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Mills ([15]) it was asked whether gravity would admit such a formulation. It

turns out the answer to this question is yes: gravity may be formulated as a

gauge theory of the Poincare group, the first formulations of which were done

by Utiyama, Sciama and Kibble ([16], [17], and [19], respectively). One devia-

tion from standard GR though, is that to account for spin interactions, torsion

must be non-zero, [17]. Hence gauge theories of gravity require space-time be

a Riemann-Cartan space-time as opposed to just a Riemann space-time. This

however does not lead to any contradictions with what we observe (see [6])

and it has been suggested that a non-zero torsion may account for some of the

phenomena we typically associate with dark matter, [26].

Since the initial attempts at a gauge theory of gravity, this approach has

been an active field of research see for example [23], [24], [35] and need not be

restricted to the Poincare group: [20], [21], [22].

2.3 Attempts at Unification

The goal of physics is ultimately to describe all the forces of nature as facets

of one thing. This was done by Maxwell in 1865 for electricity and magnetism

and later on for electromagnetism and the weak force by Abdus Salam, Sheldon

Glashow and Steven Weinberg in 1968. Prior to the discovery of the nuclear

forces however, there were only the classical forces: gravity and electromag-

netism, and many attempts were (and still are) made to unite the two (see

[27] for a list and description of many of these attempts including. Einstein’s

and Schroedinger’s, and see [28] and [29] for some modern attempts).

The pursuit of a unified theory of gravity and electromagnetism has spawned

many influential models, for example the Kaluza-Klein model (for references

see [2][6][11]) and Weyl’s model (put forward in [31], for rough method and

historical context see [27]). The Kaluza-Klein model introduced the notion
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of a curled up dimension which is famously exploited in String Theory and

Weyl’s model laid much of the groundwork for what would become Gauge

Theory. What follows is a brief synopsis of Weyl’s attempt at unifying gravity

and electromagnetism geometrically.

2.3.1 Weyl’s Model

The first prominent attempt (if not the first attempt) at the geometric unifica-

tion of gravity and electromagnetism was done by the German mathematician,

Hermann Weyl in 1918, [31]. Here we give a brief summary of his strategy,

based off of the review found in [6].

In his model Weyl sought to make an analogy with the typical approach to

electrodynamics in Riemannian space, described by the action:

IV =

∫

b(−aR + αGµνG
µν)d4x

Here b(=
√−g) is a scalar density, a and α are proportionality constants, and

R and Gµν are the Ricci scalar and Electromagnetic field tensor, respectively.

Here the V subscript represents the Riemannian back drop.

Weyl modified this action so that the action did not vary in Riemann space, but

in Weyl space. If we note that a Riemann space is a general affinely-connected

space with the non-metricity condition and zero torsion:

∇xgij = T x
ij = 0

then a Weyl space is similar to a Riemann space except instead of the non-

metricity condition we have the semi-metricity condition:

∇kgij = ψkgij
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Where ψk is a vector field. By letting ψk be the electromagnetic vector poten-

tial, he was able to geometrize the electromagnetic field.

Thus the action in Weyl space is given by:

IW =

∫

d4xb(−R2 + βFµνF
µν)

Where Fµν = ∂µψν − ∂νψµ.

Varying this equation we get:

δIW =

∫

d4x[−2bRδR − δbR2 + βδ(bF 2)] = 0

Now, introducing a scale of length such that R = λ (and λ represents the

cosmological constant) we can re-express the above equation as:

δIW = δ

∫

d4xb(−R +
β

2λ
F 2 +

λ

2
) = 0

If we consider the semi-metricity condition, solving for the connection allows

us to find a relationship between the Weyl curvature scalar and the Riemann

curvature scalar:

RW = RV − 3

2
ψµψ

µ + 3∇µψ
µ

When we substitute this expression back into the Weyl action the last term

can be discarded as a surface term, thus the we get:

IW =

∫

d4xb[−RV +
1

2
βF

2
+ λ(

1

2
+

3

2
ψµψ

µ
)]

Where the bar represents a denominator of
√

λ. The first two terms give the

Riemannian action IV and the remaining terms give a correction due to the

cosmological constant.
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Therefore we can see that Weyl’s theory unites gravity and electricity geo-

metrically.

However, the theory is not without it’s problems. While the theory is a good

approximation to free electrodynamics, when interactions are introduced it

breaks down. For instance, the theory is unable to distinguish between parti-

cles and antiparticles and thus predicts identical behaviour for electrons and

positrons. As a result the theory was scrapped as a unification for gravity and

electromagnetism, however this approach was greatly influential in both the

search for a unified field theory and (as previously mentioned) in the develop-

ment of gauge theories.

2.4 The Dirac Equation

In this section we will develop the Dirac equation as it was derived by Dirac in

1928. This derivation can be found in all good texts on Relativistic Quantum

Mechanics, here we specifically follow [9] a brief but mathematically thorough

dealing may also be found in [13].

2.4.1 The Equation

The Dirac equation originally arose from the desire for a relativistically co-

variant equation that satisfied the time dependent Schroedinger equation with

positive definite probability density. In this pursuit Dirac required a Hamilto-

nian operator with the properties

i~∂tψ = Ĥψ (2.13)

ĤĤ = p̂2c2 + m2c4 (2.14)
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Noting that letting Ĥ =
√

p̂2c2 + m2c4 raises more problems than it solves,

Dirac required the Ĥ to take the form

Ĥ = αip̂ic + βmc2 (2.15)

In order for 2.15 to satisfy 2.14 Dirac determined that α and β must be matrices

satisfying the following conditions

i. αiαk + αkαi = 2δik

ii. αiβ + βαi = 0

iii. α2
i = β2 = 1

Thus finding the desired equation is reduced to finding the smallest dimen-

sion matrices that satisfy the above conditions. Observe that as Ĥ must be

hermitian the matrices αi and β must also be hermitian. Also we note that

from (iii.) we require αi and β to have eigenvalues of ±1 and from (ii.) that

their traces are each zero. As the trace is the sum of the eigenvalues, αi and

β must be even dimensional. It turns out that the smallest dimension of the

matrices necessary to satisfy these conditions is 4, therefore we may find an

explicit form for αi and β:

αi =







0 σi

σi 0






(2.16)

β =







I2 0

0 −I2






(2.17)

Where σi are the 2× 2 Pauli spin matrices and I2 are 2× 2 identity matrices.

Thus the Dirac equation is

(γip̂i − mc)ψ = 0, i = 0, ..., 3 (2.18)
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Where the γ0 = β and γa = βαa (a = 1, 2, 3).

2.4.2 The Solutions and Electromagnetic Interaction

2.4.2.1 Solutions

Here, briefly, we will state the solutions of the Dirac equation for a free elec-

tron at rest. We also endeavour to provide an interpretation to these solutions,

however for brevity these interpretations will merely be stated further justifi-

cation may be found in chapters 3 and 5 of [9].

The Dirac equation for a free electron at rest is

i~γ0∂tψ = mc2ψ (2.19)

Using 2.17 for our representation of β we find four solutions

ψ1 = e−(imc2/~)t



















1

0

0

0



















ψ2 = e−(imc2/~)t



















0

1

0

0



















ψ3 = e(imc2/~)t



















0

0

1

0



















ψ4 = e(imc2/~)t



















0

0

0

1



















Thus the solutions are four component bispinors with positive energy eigen-

values for the first two and negative energy eigenvalues for the second two.

The first two solutions are easily identified as electrons, the negative energy

solutions are not so readily identifiable. The resolution to the problem posed

by these negative energy solutions can be found in the notion of antiparticles.

Hence if we identify the negative energy solutions as positively charged elec-
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trons or, as they are properly known: positrons, then we may resolve the issue

of negative energy.

2.4.2.2 Electromagnetic Interaction

Electromagnetic interaction may be introduced into the Dirac equation by

means of the minimal substitution pi → pi − e
c
Ai, where Ai is a four potential

with components (Φ, Aa). Thus the Dirac equation for a particle interacting

with an electromagnetic field is given by

i~∂tψ =
(

cαa(pa −
e

c
Aa) + βmc2 + eΦ

)

ψ (2.20)



Chapter 3

The Lie Algebra so(2,3)

Physics may be studied by considering the symmetries of space-time. Pre-

relativity physics operated under the assumption that the symmetry group

of space-time was the Galilean group. However, with the advent of special

relativity this assumption had to be reconsidered and the group was extended

to the Poincare group: ISO(1, 3), which collapses to the Galilean group in the

limit of the speed of light approaching infinity. It is of interest to note that the

Poincare group may also be viewed as the limiting case of de-Sitter groups:

SO(1, 4), SO(2, 3), [5]. Here we wish to examine the case when the Poincare

group is the limiting case of SO(2, 3), referred to as the Anti-deSitter group.

What follows is closely related to the relevant sections in [1] and [2].

3.1 The Lie Algebra so(2,3)

Our primary hypothesis is that the local symmetry group of space-time is

SO(2, 3). To explore this notion let us consider a bilinear form

( , ) : R
5 → R (3.1)

operating on vectors x, y ∈ R
5, explicitly:

(x, y) = x0y0 + x1y1 − x2y2 − x3y3 − x4y4 (3.2)
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We may define elements of SO(2, 3) as 5× 5 real matrices which preserve this

bilinear form. Considering the matrix

F =



























1 0 0 0 0

0 1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 −1



























(3.3)

we may rewrite (x, y) as

(x, y) = xT Fy (3.4)

Thus, for a matrix G to be an element of SO(2, 3) it must satisfy the condition

(Gx,Gy) = (x, y)

xT GT FGy = xT Fy

As x, y ∈ R
5 are arbitrary, this implies

GT FG = F (3.5)

Therefore if we wish to establish that a matrix is in the group SO(2, 3) all we

must do is show that it satisfies this relationship. However, as we are dealing

with a matrix Lie group (p5, [3]) we may also study the Lie algebra of the

group, denoted so(2, 3) (this will play a primary role in what’s to come as it

is the Lie algebra that describes local symmetry on the manifold). Define the

matrix exponential as:

eθX =
∞

∑

m=0

(θX)m

m!
(3.6)

Where θ some real number, we say that X is an element of the Lie algebra if

the matrix exponential is in the group for all values of θ. From this we may

recover the general form of elements of the Lie algebra. As 3.6 is true for all
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real values of θ, it is true for small values and we may therefore consider the

group action about a point: G = I + θX. Substituting this expression for G

back into equation 3.5 and keeping only first order terms we get:

GT FG = (I + θX)T F (I + θX)

= F + θ(XT F + FX) (3.7)

This must be equal to F, thus the second term on the right must be zero and

therefore:

XT F = −FX (3.8)

Exploring the guts of this relationship, we let

F =







I2 0

0 −I3






and X =







A B

C D






(3.9)

Where In is an n × n identity matrix and block elements in X have the same

dimensions as their corresponding block elements in F. Thus equation 3.8 may

be rewritten as







AT CT

BT DT













I2 0

0 −I3






= −







I2 0

0 −I3













A B

C D













AT −CT

BT −DT






=







−A −B

C D






(3.10)

From this we may infer

A =







0 a

−a 0







B = CT =







b c d

e f g






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and

D =













0 h i

−h 0 j

−i −j 0













and thus a general element of so(2, 3) has the form:

X =



























0 a b c d

−a 0 e f g

b e 0 h i

c d −h 0 j

d g −i −j 0



























As can be seen this matrix consists of 10 independent components. Thus all

elements of so(2, 3) may generated from a 10 basis of matrices given in Figure

3.1.
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T =



























0 −1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



























X =



























0 0 1 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0



























Y =



























0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0



























Z =



























0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0



























A =



























0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0



























B =



























0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0



























C =



























0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0



























I =



























0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −1

0 0 0 1 0



























J =



























0 0 0 0 0

0 0 0 0 0

0 0 0 0 −1

0 0 0 0 0

0 0 1 0 0



























K =



























0 0 0 0 0

0 0 0 0 0

0 0 0 −1 0

0 0 1 0 0

0 0 0 0 0



























Figure 3.1 Canonical representation of so(2, 3)

This will be referred to henceforth as the natural representation. Considering

these matrices and equation 3.6 we can therefore recover our group elements.

We note here that, the natural representation is not the only representation
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of so(2, 3), or indeed the only representation to feature in this model. Nat-

urally, we can construct another representation by considering the structure

coefficients associated with the commutation relations, we can use these to de-

fine the elements of the adjoint representation. It can be demonstrated, also,

that the natural representation is isomorphic to the canonical representation

of sp(4, R). These are the matrices that preserve a fixed antisymmetric bilin-

ear form on R
4. This representation, it will be demonstrated, is responsible

for spinors in the model. These representations along with one other and the

general theory of representations are examined in Appendix A.

3.2 Anti-deSitter Space-time

As we posit that the local symmetry of space-time is described by the symme-

try group SO(2, 3) it is worth investigating how we may recover the Poincare

regime.

It is in this way that we are led to consider the 4D invariant hypersphere

H4 embedded in R
5. Considering the coordinates λ, t, x, y, z ∈ R

5 and the

quadratic form: λ2 + t2 − x2 − y2 − z2, H4 is the invariant sub-manifold asso-

ciated with:

λ2 + t2 − x2 − y2 − z2 = a2 (3.11)

Where a is the radius of our hypersphere and in keeping with the literature

([1], [2], [6]) will be called the radius of the universe. Now consider an invariant

interval on the manifold:

ds2 = dλ2 + dt2 − dx2 − dy2 − dz2

= dλ2 + ηijx
ixj (3.12)

Here ηij is the Minkowski metric and the indices run over the space-time

coordinates. We can rearrange equation 3.11 to get an expression for λ in



26

terms of the other coordinates:

λ =
√

a2 − ηijxixj (3.13)

As a result it is possible to find an expression for the element dλ in terms of

the other coordinates, doing this we find:

dλ = −ηijx
idxj/λ (3.14)

Using this expression for the element dλ and the previous expression for λ in

the invariant interval we get:

ds2 = ηijdxidxj +
(ηijx

idxj)2

a2 − ηabxaxb
(3.15)

If we consider this interval in the neighbourhood of λ = a, then this interval

takes on the form:

ds2 = gijdxidxj (3.16)

Where gij is the metric given by the expression:

gij = ηij +
xixj

a2
(3.17)

Therefore we can see that an invariant interval on the hypersphere H4 is given

by equation 3.16, which if we let a → ∞ looks like an interval in flat Minkowski

space. Note that H4 is endowed with a natural unit of distance: a, which com-

bined with the natural unit of velocity: c, gives a natural unit of time which

will be denoted: r, and in keeping with Hawthorn and Crump ([1], [2]), will

be called the radius of the universe in seconds. If considered in natural units

these are all set to unity (a = c = r = 1).

Now let’s consider how the elements of SO(2, 3) act on this space. Considering

once again the neighbourhood of the point λ = a we let group element eθT act
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on coordinate vector v = (a, t, x, y, z)T , where θ, t, x, y, z are assumed small.

Explicitly, this is:

eθT v = (I + θT )v

=



























1 −θ 0 0 0

θ 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1





















































a

t

x

y

z



























=



























a − θt

t + θ

x

y

z



























(3.18)

As both θ and t are small this just becomes (a, t + θ, x, y, z)T . Therefore we

can see that T is the transformation that generates translations in time and

repeating this procedure for the other nine matrices we find that X, Y , and

Z are translation operators in x, y, and z coordinates; A, B, and C represent

Lorentz boost operators and I, J , and K are rotation operators.

Using natural units (a = c = r = 1) the Lie algebra basis elements in or-

dinary units are {1
r
T, 1

rc
X, 1

rc
Y, 1

rc
Z, 1

c
A, 1

c
B, 1

c
C, I, J,K} (thus a translation of

one ordinary time unit is equal to a translation of 1
r

natural time units). De-

fined as it is acting on H4, the group SO(2, 3), is called the Anti-deSitter

group. A table of commutation relations for the elements of so(2, 3) is given

in Figure 3.2. Considering this table in ordinary units, we see the translation

generators (T , X, Y , and Z) all have factors of 1
r
. Thus we can see that

their commutators should have factors 1
r2 , therefore in the limit of r → ∞

space-time translations commute and the table reduces to that of the Poincare
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algebra and the AdS group (in the language of [5]) is said to contract to the

Poincare group, and r is termed the contraction parameter.

Thus we can see that in the limit of r → ∞, the AdS group and the Poincare

group are indiscernible. However what we are particularly interested in is the

case where r is large but not, for all practical purposes, infinitely large. In this

regime we would expect phenomena that deviate from the predicted Poincare

model and one of the purposes of this thesis is to predict how these deviations

may manifest themselves in the physical laws. Naturally, the ability to deter-

mine a value for r is a fundamental concern for the model as if it is too big then

it will have no measurable effect in the universe, making the model redundant

and if it’s too small then its effects would be too large making the model just

plain wrong. This condition on r will be called the Goldilocks condition

[39]. This concern will be addressed later on when we explore gravity.

T X Y Z A B C I J K

T 0 A B C -X -Y -Z 0 0 0

X -A 0 -K J -T 0 0 0 Z -Y

Y -B K 0 -I 0 -T 0 -Z 0 X

Z -C -J I 0 0 0 -T Y -X 0

A X T 0 0 0 -K J 0 C -B

B Y 0 T 0 K 0 -I -C 0 A

C Z 0 0 T -J I 0 B -A 0

I 0 0 Z -Y 0 C -B 0 K -J

J 0 -Z 0 X -C 0 A -K 0 I

K 0 Y -X 0 B -A 0 J -I 0

Figure 3.2 Commutation relations for so(2, 3).



29

3.3 Advantages of so(2, 3)

Thus far the majority this work has discussed the properties of the Lie group

SO(2, 3) and its associated Lie algebra so(2, 3) with no real explanation of why

we may want to do this. In this section we will cover some of the advantages

of assuming that the local symmetry of space-time is described by SO(2, 3)

and not ISO(1, 3).

The idea of using SO(2, 3) to describe symmetries in physics is not a new one.

It has long been known that the Poincare group is a limiting case of the de-

Sitter groups [5] and numerous authors have published physical models based

around de Sitter/Anti-deSitter symmetries. In particular it is common to see

the dS/AdS groups mentioned in papers on gauge theories of gravity([20], [21],

[22], [33], [34]) and String Theory/CFT, for example the space AdSm × Sn is

currently popular amongst string theorists (m and n are usually various com-

binations of 5, 4 and 3)([36], [37]).

It’s demonstrated in section 3.2 that if a is very large the AdS metric ap-

proaches the Minkowski metric. Noting that a = rc, this is equivalent to the

same condition on r. Therefore locally for large r the two are indistinguishable,

so in the very least no contradiction arises from the assumption that locally the

universe is described by SO(2, 3) and not ISO(1, 3). It should be noted here

that this is not the case if we assume a global symmetry group of SO(2, 3). In

this model causality violating time-like loops arise and this is in direct conflict

with observation. However we do not take the stance that SO(2, 3) represents

the global symmetry group of the universe we only require that space-time

has local SO(2, 3) symmetry (i.e. the symmetries of space-time are properly

described by the Lie algebra so(2, 3)), so we may avoid the problems inherent

in a typical AdS cosmological model. The notion of describing local symmetry

will be more thoroughly developed in the next chapter.
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Assuming we restrict our investigation to local symmetry, why do we not just

employ Occam’s Razor and stick with the Poincare group? For a start we may

consider the closing remarks of [18] in which the author reviews the attempt

at a unifying gravity and electromagnetism found in the Einstein-Schroedinger

model: ”...if unification is desired as well as geometrization, a new group will

be required.”. In an attempt to show that this ”new group” should be SO(2, 3)

we are led to consider the action of both of these groups on quantum mechan-

ical wave functions.

Experiments in the first half of the last century demonstrated that the rotation

operator in Quantum Mechanics has two actions: an extrinsic action which

has eigenvalues of angular momentum and an intrinsic action with eigenvalues

of spin. This second action was not predicted and came as a surprise. What

makes this equally odd is the fact that this action is not extended to the rest of

the group. This may be seen if we consider T and I, these commute and thus

should be simultaneously observable. However, under the Poincare group T is

non-compact and therefore has a continuous spectrum and we do not observe

any continuous intrinsic quantities that we may associate with eigenvalues of

an intrinsic T operator. Thus we conclude T must not act intrinsically. If we

consider this same problem from the perspective of so(2, 3) we do not hit the

same snag.

In the four dimensional representation of so(2, 3) (see Appendix A) the op-

erator T is compact and therefore has discrete eigenvalues ±1
2
. Again, T

and I commute thus we may hypothesise that they represent simultaneously

observable intrinsic quantities. The question now posed is: what might the

eigenvalues of T represent? If we look to the solutions of the Dirac equation

we recognise that solutions are characterised by discrete spin and charge. This

is highly suggestive of a link between intrinsic energy eigenvalues and charge.

Thus, we are led to the interpretation that intrinsic energy is charge.
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Therefore we may see that by taking so(2, 3) to describe local symmetry we

may resolve the problem of extrinsic/intrinsic action.

On top of this, the Dirac operator arises very naturally when considering

differential operators on the manifold (p.66, [1] and it may be shown that

the Faraday-Gauss equation arises as a geometric property of a manifold with

local so(2, 3) symmetry [2]. It will also be shown in this work that using geo-

metric properties only we may also produce the Ampere-Gauss equation and

Einstein’s equation. Thus we put forward our fundamental assumption:

Assumption. The local symmetry of the universe is described by the group

SO(2, 3).



Chapter 4

The Hawthorn Model

4.1 Mathematical Tool Kit

Here we wish to investigate the notion that so(2, 3) describes the local sym-

metry of space-time. To do this we need to forge some mathematical tools by

which we may make sense of this proposition. The following is closely related

to relevant sections in [1] and [2].

4.1.1 Tensor Derivations and the Covariant Derivative

We start off with a few definitions and propositions, the proofs of which are

relegated to Appendix B.

Definition 4.1 Consider a mapping D on a manifold M, that takes tensors

onto tensors:

D : tensors → tensors

The mapping D is called a tensor derivation if it satisfies the following

properties:

• Linearity

• Leibnitz condition on tensor products

• Commutes with contraction
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Proposition 4.1 The following holds for all tensor derivations:

i) If D and E are tensor derivations then so is [D,E].

ii) Every tensor derivation has a rank (i
j) and maps tensors of rank (k

l ) to

tensors of rank (k+i
l+j ).

iii) If D is a tensor derivation and S any tensor, then S ⊗ D is a tensor

derivation where (S ⊗ D)(T ) = S ⊗ D(T )

We define an ordinary derivation as that which maps scalar functions to

scalars, thus we may think of it as a tensor derivation of rank (00) that acts on

components. We denote this derivation as ai ∂
∂xi .

We can view every tensor derivation of rank (0
0) acting on functions as an

ordinary derivation. Thus we can establish an equivalence between rank (0
0)

tensor derivations and tangent vector fields written with respect to some co-

ordinate system: D(f) = ai ∂
∂xi (f). In order to satisfy this identification all

we must do is show that the two agree in their action on functions. Thus,

by linearity, D − ai ∂
∂xi is also a tensor derivation of rank (0

0) which maps all

functions onto the zero function.

Proposition 4.2 If E is a tensor derivation of rank (0
0) with E(f) = 0 for all

functions f on M, then there exists a tensor Γi
j of rank (1

1) so that

E(Xα1α2...αm

β1β2...βn
) =

∑

s

Γαs

α̂s
Xα1...α̂s...αm

β1β2...βn
−

∑

t

Γβ̂t

βt
Xα1α2...αm

β1...β̂t...βn

Alternatively we may define a tensor derivation of rank (11) that acts on

Xα1α2...αm

β1β2...βn
in the same way as E.

Γ(∗
∗
)(Xα1α2...αm

β1β2...βn
) =

∑

s

Γαs

α̂s
Xα1...α̂s...αm

β1β2...βn
−

∑

t

Γβ̂t

βt
Xα1α2...αm

β1...β̂t...βn
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Thus if we define E to be a tensor derivation of rank (0
0) that maps functions

onto zero we see:

E = D − ai ∂

∂xi
= Γ (∗

∗
)

Thus all rank (0
0) tensor derivations may be written in the form:

D = ai ∂

∂xi
+ Γ (∗

∗
)

If we consider now tensor derivations of rank (m
n ), Dλ1...λm

µ1...µn
, and consider them

contracting with tensor components, we find that by fixing indices λi and µj

each of the operators obtained is a derivation of rank (00). Now consider the

following:

Proposition 4.3 Every tensor derivation of rank (m
n ) takes the form:

Dλ1...λm
µ1...µn

= (aλ1...λm
µ1...µn

)i ∂

∂xi
+ Γλ1...λm

µ1...µn
(∗
∗
)

where

Γλ1...λm
µ1...µn

(∗
∗
) (Tα1α2...αm

β1β2...βn
) =

∑

s

(Γλ1...λm
µ1...µn

)αs

α̂s
Xα1...α̂s...αm

β1β2...βn
−

∑

t

(Γλ1...λm
µ1...µn

)β̂t

βt
Tα1α2...αm

β1...β̂t...βn

Of particular interest are the derivations of rank (01) where at
i = 1t

i. Explicitly:

Di =
∂

∂xi
+ Γi (

∗

∗
)

Derivations of this form are called covariant derivatives, denoted ∇i.

4.1.2 Torsion, Curvature and Bianchi Identities

Consider a manifold M and the commutator of two covariant derivatives as

defined in the previous section:

[∇i,∇j]
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As covariant derivatives are tensor derivations, their commutator bracket is

also a tensor derivation of rank (0
2) and therefore by proposition 4.3 takes on

the form:

[∇i,∇j] = T k
ij

∂

∂xk

+ Kij(
∗

∗
) (4.1)

Applying this to a scalar function f and recalling that tensor derivations act

on scalar functions as ordinary derivations we observe

[∇i,∇j]f = T k
ij

∂f

∂xk

+ Kij(
∗

∗
)f

(

∂

∂xi

+ Γi(
∗

∗
)

)

∂f

∂xj

−
(

∂

∂xj

+ Γj(
∗

∗
)

)

∂f

∂xi

= T k
ij

∂f

∂xk

∂2f

∂xi∂xj

− Γk
ij

∂f

∂xk

− ∂2f

∂xj∂xi

+ Γk
ji

∂f

∂xk

= T k
ij

∂f

∂xk

−Γk
ij

∂f

∂xk

+ Γk
ji

∂f

∂xk

= T k
ij

∂f

∂xk

(4.2)

We thus make the identification

T k
ij = −(Γk

ij − Γk
ji) (4.3)

It can be noted that the tensor on the right is the negative of the usual defini-

tion of the torsion, thus the definition of torsion in the Hawthorn model is the

negative of the usual definition. As it arises naturally this way and doesn’t

cause any problems later on we maintain 4.3 as our definition of the torsion:

Definition 4.2 The torsion, T k
ij, is defined as

T k
ij = −(Γk

ij − Γk
ji)

The structure of Kij(
∗

∗
) may be determined by applying the commutator to a

vector field and ignoring the terms containing partials of the vector field. If
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we do this we get for Kij(
∗

∗
) the expression

Ky
ijx = [∂iΓ

k
jx − ∂jΓ

k
ix] + [Γk

itΓ
t
jx − Γk

jtΓ
t
ix] + T t

ijΓ
k
tx (4.4)

Therefore we see that Kij(
∗

∗
) is essentially the standard Riemann tensor with an

extra torsion term attached to it. Letting the commutator act on a vector field

and associating the extra torsion term from Kij(
∗

∗
) with the partial derivative

results in

[∇i,∇j]vx = T k
ij∂kvx − [∂iΓ

k
jx − ∂jΓ

k
ix]vk − [Γk

itΓ
t
jx − Γk

jtΓ
t
ix]vk − T t

ijΓ
k
txvk

= T k
ij[∂kvx − Γk

txvk] − Rk
ijxvk

= T k
ij∇kvx − Rk

ijxvk (4.5)

Thus 4.5 gives us a much more useful expression for the commutator of two

covariant derivatives:

[∇i,∇j] = T k
ij∇k + Rij(

∗

∗
) (4.6)

As the covariant derivative lies in the Lie algebra of derivations we note that

the commutator of covariant derivatives obeys the Jacobi identity

[[∇i,∇j],∇k] + [[∇j,∇k],∇i] + [[∇k,∇i],∇j] = 0 (4.7)

If we let 4.7 act on a vector field vx and use 4.6 for the commutators we can

separate the terms involving covariant derivatives of vx and terms without

covariant derivatives. Thus we get a statement of the form

(

T s
ijT

t
sk −∇kT

t
ij − Rt

ijk

)

∇t(v
x) +

(

T s
ijR

x
skt −∇kR

x
ijt

)

vt ijk
= 0 (4.8)

Where the notation
ijk
= represents a cyclic permutation over those indices. As

∇v and v are linearly independent and in general non-zero, their coefficients
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must be zero. Thus we get two identities:

Rt
ijk + T t

kxT
x
ij + ∇k(T

t
ij)

ijk
= 0 (4.9)

and

∇k(R
t
ijs) + T x

ijR
t
kxs

ijk
= 0 (4.10)

Which are identifiable as the first and second Bianchi identities, respectively.

4.2 The Fundamental Conjecture

If we consider the manifold M to be a Lie group then the action of the Lie

algebra on the Lie group naturally defines the covariant derivative. In that

respect we can view the torsion as the structure coefficients arising from the

commutator of elements in the Lie algebra and as such they obey the Jacobi

bracket condition:

T y
ixT

x
jk

ijk
= 0 (4.11)

And as the Lie structure should be the same everywhere, we observe global

invariance on the torsion as well:

∇xT
k
ij = 0 (4.12)

These two conditions provide the defining conditions for what will be known

from now on as Local Lie Manifolds.
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Definition 4.3 A Local Lie Manifold is a manifold M together with a covari-

ant derivative ∇k where

1. T t
ixT

x
jk

ijk
= 0

2. ∇k(T
t
ij) = 0

The first part implies that the torsion defines a Lie structure and the second

part tells us that this Lie structure is invariant.

Thus we are interested in manifolds that are locally similar to the group

SO(2, 3) without necessarily having the global structure. We thus come to

the fundamental conjecture of the model

Definition 4.4 An ADS manifold is a local Lie manifold of so(2, 3)

Fundamental Conjecture. Our universe is an ADS manifold.

It is the purpose of this thesis to explore the consequences of this statement.

4.2.1 The Low Hanging Fruit

Given definition 4.4 and our fundamental conjecture it’s worth investigating

some of the implications, briefly (the main body of which is left to subsequent

chapters).

Our first result for an ADS manifold may be obtained if we consider defi-

nition 4.3 applied to the first Bianchi, we see that the terms with torsion drop

out and we get:

Rt
ijk

ijk
= 0 (4.13)

Another consequence that can be observed is that as we now have the torsion

describing the Lie structure on each tangent space, we can also define the
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Killing form of the Lie algebra

kij = T y
ixT

x
jy (4.14)

As so(2, 3) is semi-simple kij is non-degenerate and defines an invariant pseudo-

metric on the manifold. As a result we can observe that an ADS manifold is

endowed with a natural distance scale which the Poincare group lacks. It can

be observed also that this pseudo-metric matches the Minkowski metric (up

to a factor of a scalar) in the space-time dimensions:

kij ∝ diag(−1, 1, 1, 1,−1,−1,−1, 1, 1, 1)

∝ diag(ηab,−I3, I3)

Where a, b = 0 − 3, the remaining components of the metric, we expect to

relate to spin and helicity. Here we will set up the convention that whenever

talking about the space-time coordinates t, x, y and z we will refer to them

as Minkowski coordinates and the remaining six will be referred to as Lorentz

coordinates. Also we observe that each representation may furnish us with

an equally appropriate candidate for the metric, all being equivalent up to a

scalar factor. We will find it most convenient in the future to define our metric

with respect to the spinor representation (which will be introduced shortly),

in which case the scaling factor for our Killing form turns out to be 6, e.g.:

kij = 6gij

Where gij = diag(ηab,−I3, I3) is the metric defined with the spinor represen-

tation.

It is also worth noting that using the Lie algebra so(2, 3) to describe the

local symmetry of the manifold implies that the Hawthorn universe is locally

10-dimensional. The Minkowski coordinates maintain their standard identifi-
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cation, however we need to explain the other six. We may avoid any patho-

logical explanations involving curled up dimensions etc. if we observe that the

other six dimensions are rotation and boost dimensions. Thus if we identify

the manifold with a manifold of inertial frames where an object has a position,

orientation, and boost coordinate, we may avoid a conceptual nightmare. We

therefore amend our fundamental conjecture to include this idea:

re-Fundamental Conjecture. Our universe is a 10-dimensional ADS man-

ifold of inertial frames

4.3 Generalised Tensors

So far our mathematical tools have been focussed on developing objects that

describe characteristics of the manifold (curvature, torsion etc.), these only

deal with the geometry of the manifold. In order to be able to satisfiably

incorporate what we know about physics into the model we must address the

matter of matter on the manifold. This pursuit occupies this section and the

remainder of this chapter.

The way matter is typically dealt with is, if I want to be able describe elec-

trons for example on the manifold in typical space-time, I need to be able to

associate each point of the manifold with the representation sl(2, C). This

essentially means that if we wish to describe particles as elements of certain

representations, then we need to be able to map each point on the manifold

into a vector space that the appropriate representation acts on. This is the

approach we take in the Hawthorn model, but instead of dealing with represen-

tations of the so(1, 3) we need to tailor it for describing local so(2, 3) symmetry.

We therefore need a way of attaching vector spaces at each point on the mani-

fold in a consistent and natural way that preserves our Lie structure. Hawthorn
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([1]) approaches this by developing the notion of X-tensors. These are map-

pings from the manifold into a set of vector spaces denoted X, all of which

may have so(2, 3) represented on them. This approach is a rigorous, ground

up approach. In it Hawthorn ([1]) defines X-tensors and X-tensor derivations

and proves several results associated with them, many of which follow their

tensor analogues from the previous section and then goes on to refine certain

conditions on the mappings. Such a development is discussed in more detail

by Hawthorn and Crump in [1] and [2], we will, however, be eschewing such a

rigorous development in favour of a more elegant and compact route derived

from the main points distilled from the X-tensor approach. This approach

is based on the defining conditions of what Hawthorn ([1]) calls generalised

tensors.

In what follows when dealing with mappings from the manifold to vector

spaces, of these mappings we will only be interested in ones that satisfy three

conditions:

1. Local Action Exists: If we have mappings into a vector space V, then

Tk(
∗

∗
) is defined on V and is a representation.

Ti(
∗

∗
)Tj(

∗

∗
) − Tj(

∗

∗
)Ti(

∗

∗
) = T k

ijTk(
∗

∗
)

2. Global Action Exists: We have a connection Γi(
∗

∗
) which defines parallel

transport of maps into V, and which globally represents the Lie algebra

in the sense that

∇i∇j −∇j∇i = T k
ij∇k + Rij(

∗

∗
)

Where Rij(
∗

∗
) is a point-wise, linear operation on V.
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3. Local and Global Actions Commute: This is equivalent to the state-

ment that the local action is globally invariant

∇m(Tk(
∗

∗
)) = 0

If we take a moment to consider these conditions we can see that these are rea-

sonable conditions to impose. We want to associate our manifold with so(2, 3)

symmetry and we see that conditions 1 and 2 are the manifestations of that

notion in terms of the local action and global action, where we identify the

torsion as the structure constant of the Lie algebra. Condition 3 arises from

considerations of a more physical nature. It can be demonstrated that this

condition implies metric invariance and torsion invariance (the trace form of

the local action defines the metric up to a factor of a scalar and we are able

to rearrange condition 1 for the torsion). We note that metric invariance is a

common fundamental property assumed in theories of gravity. It is commonly

referred to the metric postulate or metricity condition and it is the main con-

dition separating general affinely connected metric spaces, and manifolds that

accommodate theories of gravity, see [14] or [6]. It implies that intervals are

preserved under the global action, which is a reasonable condition to have.

Similarly, invariance of the torsion implies the preservation of the Lie algebra

at each point and is also a defining condition of a Local Lie Manifold. It is

conceivable that we could drop condition 3 and assume the metricity condi-

tion and torsion invariance independently, however, a theory that makes less

assumptions is naturally more agreeable than the alternative, thus we adopt

condition 3.

With these conditions we will now demonstrate how spinors may be put on

the manifold.
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4.3.0.1 Spinors on the Manifold

We will associate spinors with the elements of the representation

sp(4, R) ≃ so(2, 3). Using Greek letters for spinor indices we define the lo-

cal action on a spinor to be Ti(
∗

∗
)vα = Tα

iβvβ, where the set {T β
iα} are basis

elements of the canonical representation of sp(4, R) (see Appendix A). As was

mentioned before, it is with respect to this basis that we wish to define out

metric, hence we make the identification:

T β
iαTα

jβ = gij (4.15)

Which we recall from our discussion of the Killing form is 1
6
kij.

As we’ve defined the local action as basis elements of the representation sp(4, R),

and as this is a representation of the Lie algebra so(2, 3) we can see automat-

ically that the local action satisfies condition 1, where T k
ij is an element of the

adjoint representation. For condition 2, we assume we have a connection defin-

ing parallel transport on the manifold, such that it satisfies condition 2 and

the justification for condition 3 follows from the physical arguments discussed

previously. We therefore adopt the axiom:

∇i(T
β
jα) = 0

Thus, all three conditions are satisfied for the spinor representation and so, by

construction, we may accommodate spinors on the manifold.



Chapter 5

Representations of Low

Dimension

Here we would like to examine a few low dimensional representations that

are pertinent to the model. These are the 1-dimensional, 5-dimensional and

10-dimensional representations. We consider these representations as they

arise from the decomposition of transformations with two spinor indices which

are the primary objects that the model concerns itself with. Other higher

dimensional transformations and their decompositions are dealt with in both

[1] and [2]. When dealing with several representations we will distinguish

between them using index notation where elements of one representation are

represented by one set of characters as indices and another representation with

a different set of characters. Similar treatments may be found in [1] and [2].

5.1 Spinor Transformations

Consider a tensor with two spinor indices, denoted Xβ
α . The indices run from

1-4 and therefore the space of these tensors is 16-dimensional. We may decom-

pose this representation into a direct sum of irreducibles, resulting in 1, 5 and

10 dimensional components. We may define for each of these local irreducibles,

idempotent projections maps: Π, the sum of which is simply the identity map.
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5.1.1 1-Dimensional Component

The 1D component is spanned by {1
2
1β

α}, which behaves as the trivial repre-

sentation under the local action.

Consider the maps

Xβ
α → 1

2
1β

αXα
β = x (5.1)

x → 1

2
1β

α.x = Xβ
α (5.2)

These are the projection maps to and from this component (the factor of 1
2

is

necessary to satisfy idempotency).

Elements of this representation will be called scalars and we can define local

and global actions on them such that these maps are totally invariant. We let

the local action be the trivial action: Ti(
∗

∗
)x = 0 and let the global action be

a standard derivative as defined on scalars: ∇k(x) = ∂k(x).

The idempotent projection map is given by:

Π : Xβ
α → 1

4
1β

αXλ
λ (5.3)

5.1.2 10-Dimensional Component

The 10D component is spanned by tensors of the form T β
iα. Choosing {T β

iα}

as a basis we may define projection and injection mappings to and from this

component

Xβ
α → gkiTα

iβXβ
α = xk (5.4)

xk → T β
kαxk = Xβ

α (5.5)
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We would like to have local and global actions on these mappings such that

they are invariant. We can see though that as we have assumed the T β
iα to be

totally invariant, then it follows that both these mappings inherit that total

invariance.

A 10-dimensional irreducible component associated with these mappings is

called a vector, and will be denoted with Latin indices.

The idempotent map for vectors is:

Π : Xβ
α → gijT β

iαT β′

jα′X
α′

β′ (5.6)

5.1.3 5-Dimensional Component

The 5-dimensional component is spanned by the basis {T β
Aα}. As these map

trivially onto the trivial component and the vector component we have:

T β
Aβ = 0 (5.7)

T β
AαTα

iβ = 0 (5.8)

As with the vector components, we may define a trace form with the basis

{T β
Aα}:

gAB = T β
AαTα

Bβ (5.9)

We also have projection and injection maps to and from this component given

by:

XA → T β
AαXA = Xβ

α (5.10)

Xβ
α → SAα

β Xβ
α = XA (5.11)
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By subtracting the idempotent projection maps of the trivial and vector rep-

resentations from the identity map we can define the idempotent projection

for this representation:

Tα
AβSAβ′

α′ Xα′

β′ = (1α
α′1

β′

β − gijT β
iαT β′

jα′ −
1

4
1α

β1β′

α′)X
α′

β′ (5.12)

We denote the local action on this component by TA
iB, and the equation

Ti(
∗

∗
)T β

Aα = 0 (5.13)

and define a connection ΓB
iA, such that our basis is totally invariant:

∇k(T
β
Aα) = 0 (5.14)

A consequence of this is that the trace form defined with respect to this basis

is totally invariant also.

Elements of this representation are called versors and are denoted with a

capitalised Latin index: xA. If we observe that the 5-dimensional representa-

tion is just the canonical representation of so(2, 3), then we can see that the

form, gAB, is simply the canonical metric.

5.2 Casimir Identities

The operators: gijTi(
∗

∗
)Tj(

∗

∗
), define an operator called the Casimir operator,

(see section 1.3 of [1]). These operators are scalars in every irreducible repre-

sentation and therefore provide us with some useful identities called Casimir
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Identities:

gijT β
iλT

λ
jα =

5

2
.1β

α (5.15)

gijTB
iXTX

jA = 4.1B
A (5.16)

gijT b
ixT

x
ja = 6.1b

a (5.17)

A Casimir identity exists for every irreducible finite dimensional representa-

tion and it should be noted that these identities do not hold on reducible

representations.

5.3 Spinor Bilinear Form and Bullet Scalars

5.3.1 Spinor Bilinear Form

In the previous sections we saw that we could define bilinear forms gij and gAB

on 10D and 5D representations, respectively, via the trace form. We can see

from their definitions that they are both totally invariant. We would like also

to have a totally invariant bilinear form defined for spinors. The canonical

representation of sp(4, R) is characterised by the existence of a locally invari-

ant antisymmetric bilinear form that is unique up to a scalar. Such a form is

defined at each point of the manifold and is here denoted as sαβ.

As we have mentioned, sαβ is unique up to a scalar. Thus if sαβ is one such

bilinear form and f is a scalar field, then tαβ defined:

tαβ = f.sαβ (5.18)

is an equally appropriate bilinear form.

We note that by definition such a bilinear form is locally invariant, what we

would like to examine is whether it may be chosen such that it also possesses
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global invariance. Observe that local invariance on sαβ implies

T λ
iα∇k(sλβ) + T λ

iβ∇k(sαλ) = 0 (5.19)

Thus we can see that for each k, ∇k(sαβ) is also a locally invariant bilinear

form. Hence, we may associate with sαβ a vector Ak, such that

∇k(sαβ) = −Aksαβ (5.20)

This vector Ak is dependent on our choice of sαβ. Now, as global invariance

implies Ak = 0, the question of the total invariance of sαβ is reduced to the

question of whether or not we may satisfy this condition by some choice of

sαβ. Consider tαβ from before and assume f is positive then we have

tαβ = efsαβ

Applying a covariant derivative to this and letting the vector associated with

tαβ be Bk, we get

∇k(tαβ) = (∇k(f) − Ak)tαβ

Bktαβ = (Ak −∇k(f))tαβ (5.21)

Thus we conclude that Ak and Bk are related by

Bk = Ak −∇k(f)

This implies that if we wish to impose global invariance on sαβ, then the vector

Ak must be the gradient of some scalar field

∇k(sαβ) = 0 → Ak = ∇k(f)
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It should be noted that this condition on the vector Ak is not something we

can prove given the assumptions of the model. Consequently, if we wish to

have global invariance for sαβ, then this identification for Ak must be added in

as an additional assumption. We therefore do not assume that sαβ is globally

invariant and in fact, it will be demonstrated later on that such an assumption

would prove to be undesirable if we wish to have non-trivial EM phenomena

on the manifold.

5.3.2 Bullet Scalars

Consider the space {Xαβ}, this space is 16-dimensional and decomposes in to

irreducibles of dimension 1,5 and 10.

We wish to consider elements of the trivial representation thus we pick an

element sαβ
•

, where the bullet index is the ’alphabet’ we will use to denote

an element of the trivial representation. Let s•αβ represent a projection map

onto this component and choose local and global actions such that it is totally

invariant. If we consider the local action on this component we have

T λ
iα(s•λβ) + T λ

iβ(s•αλ) = 0 (5.22)

(As T •

i• = 0). We therefore see that sαβ = s•αβ is a locally invariant symplectic

form.

If we consider now the global action on both of these: from the last section

we saw that ∇k(sαβ) = −Ak.sαβ and we’ve defined s•αβ as globally invariant,

hence ∇k(s
•

αβ) = 0. This implies a non-zero connection associated with the

bullet index: Γ•

k•. If we note that sαβ and s•αβ locally equivalent, this implies

that Γ•

k• = Ak.

We conclude therefore that any quantity with a bullet index undergoes a non-
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trivial parallel transport. As the bullet index is associated with the trivial

representation it suggests the existence of scalar like quantities that behave

locally like scalars but parallel transport non-trivially in contrast to a normal

scalar. Scalars with bullet indices are called bullet scalars.

5.4 Raising and Lowering Indices

Each of the quantities described in the previous sections (vector, versor, spinor)

come in covariant and contravariant forms. We note that the bilinear forms

gij, gij, gAB, and gAB can be used raise and lower vector and versor indices and

that they commute with local and global actions. For spinor indices however

we need to use s•αβ and sαβ
•

and not sαβ and sαβ as the latter are not globally

invariant.

As the symplectic bilinear forms are antisymmetric with respect to the spinor

indices we need to be careful about how we go about raising and lowering

spinor indices as it can introduce a negative sign. Thus we follow the conven-

tion mentioned in [2], we Lower on the left and Raise on the right:

s•αλv
λ = v•

α

vλs
λα
•

= vα
•

Also we see that the raising and lowering operation leaves a bullet behind.



Chapter 6

Global Structure

The previous chapters have furnished us with the mathematical tools necessary

to build the Hawthorn model. We’ve seen that given a transformation with

two spinor indices we can decompose it into contributions from the trivial,

vector and versor representations. We now wish to examine this property with

regards to the global action, ∇, looking specifically at the spinor connection

Γβ
iα. Here we will examine how each of the representations mentioned in the

previous chapter contributes to the model.

6.1 The Connection

We can define change of basis matrices: δi′

j , δα
β′ etc., at every point of the

manifold and denote the new bases with primed indices. If we consider a

change of basis for the spinor connection Γβ
iα, we get

∇iψ
β = ∂iψ

β + Γβ
iαψα = δi′

i δβ
β′∇i′ψ

β′

δi′

i ∂i′(δ
β
β′ψ

β′

) + Γβ
iαψα = δi′

i δβ
β′∂i′ψ

β′

+ δi′

i δβ
β′Γ

β′

i′α′ψ
α′

δi′

i δβ
β′∂i′ψ

β′

+ δi′

i ∂i′(δ
β
β′)ψ

β′

+ Γβ
iαψα = δi′

i δβ
β′∂i′ψ

β′

+ δi′

i δβ
β′Γ

β′

i′α′ψ
α′

(6.1)

We can see that the first term on the left is common to both sides of the

equation thus we can cancel it. Rearranging for Γβ
iα, we can see that the
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spinor connection transforms as

Γβ
iα = δi′

i δβ
β′δ

α′

α Γβ′

i′α′ − δi′

i δβ
α∂i′(δ

β
β′) (6.2)

Hence, the spinor connection is not a tensor. Note that the second term on

the right implies that this is a result of a gauge dependence on the choice of

spinor basis. Thus, if we fix the spinor basis we may treat the connection as a

tensor.

We can treat the connection (for each fixed k) as a linear transformation

on spinor indices defined at each point. Therefore we may decompose it into

contributions of irreducibles:

Γβ
iα = Ai.1

β
α + Gk

i T
β
kα + NA

i T β
Aα (6.3)

The coefficients Ai, Gk
i , and NA

i are the scalar, vector, and versor components

of the connection and are called the connection coefficients. If we consider the

connection transformation rule and use the projection maps onto the scalar,

vector, and versor components individually, then we can resolve the transfor-

mation rules for the connection coefficients:

Ai′ = δi
i′Ai −

1

4
δi
i′δ

α
α′∂i(δ

α′

α )

Gk′

i′ = δi
i′δ

k′

k Gk
i − δi

i′δ
k′

k δµ
α′∂k(δ

α
λ )T λ

tµg
tj

NA′

i′ = δi
i′δ

A′

A NA
i − δi

i′δ
A′

A δµ
α′∂A(δα

λ )T λ
Bµg

AB

Which again we see unless we fix a basis for the spinors, are not tensors either.

Considering the projection maps onto the respective representations, the con-
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nection coefficients are expressible as:

Ai =
1

4
Γα

iα (6.4)

Gk
i = Γβ

iαTα
mβgmk (6.5)

NA
i = Γβ

iαTα
BβgBA (6.6)

We can also find expressions for the vector and versor connections: Γk
ij and

ΓA
iB. Consider the fact that the local spinor action is globally invariant:

∇iT
β
jα = ∂iT

β
jα − Γk

ijT
β
kα − Γσ

iαT β
jσ + Γβ

iσT
σ
jα = 0

Rearranging gives:

Γk
ijT

β
kα = ∂iT

β
jα − Γσ

iαT β
jσ + Γβ

iσT
σ
jα

Γk
ijgkm = ∂iT

β
jαTα

mβ − Γσ
iαT β

jσT
α
mβ + Γβ

iσT
σ
jαTα

mβ

Γt
ij = ∂i(T

β
jα)Tα

mβgmt − Γσ
iαT β

jσT
α
mβgmt + Γβ

iσT
σ
jαTα

mβgmt

Γt
ij = ∂i(T

β
jα)Tα

mβgmt + Γβ
iσ(T σ

jαTα
mβ − T σ

mαTα
jβ)gmt

Γt
ij = ∂i(T

β
jα)Tα

mβgmt + Gs
iT

t
sj (6.7)

In an identical fashion it can be shown:

ΓD
iA = ∂i(T

β
Aα)Tα

CβgCD + Gs
igskg

CDT k
AC (6.8)

It should be pointed out here that unlike the connection of General Relativity,

the vector connection here cannot be symmetric. A symmetric connection

implies a trivial Lie structure at each point which is something we wish to

avoid. In that respect we can consider the vector connection as the sum of a

symmetric component and a non-symmetric component

Γk
ij = Γk

(ij) + Γk
[ij] (6.9)
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Where round braces denote the symmetry of the indices and square braces

denote the antisymmetry. If we consider the definition of the torsion then

we can see that the anti-symmetric component of the connection must be

Γk
[ij] = −1

2
T k

ij.

6.2 The Curvature Tensor

Let’s examine the curvature tensor: Rβ
ijα, defined as

Rβ
ijα = ∂iΓ

β
jα − ∂jΓ

β
iα + Γβ

iλΓ
λ
jα − Γβ

jλΓ
λ
iα

= ∇iΓ
β
jα −∇jΓ

β
iα + Γβ

iλΓ
λ
jα − Γβ

jλΓ
λ
iα − T k

ijΓ
β
kα (6.10)

Proposition 6.1 If we consider the curvature Rβ
ijα to be a set of spinor trans-

formations indexed by i and j, then we may decompose it into contributions of

irreducibles, having an explicit form:

Rβ
ijα = Fij1

β
α + Rk

ijT
β
kα (6.11)

Where

Fij = ∇iAj −∇jAi − T k
ijAk (6.12)

Rk
ij = ∇iG

k
j −∇jG

k
i − Gx

i G
y
jT

k
xy − NA

i NB
j T k

AB − Gk
mTm

ij (6.13)

Proof. First, let M(∗
∗
) be any operator defined on both spinors and bullet

scalars. If M(∗
∗
)(s•αβ) = 0, then

Mβ
α = MkT β

kα + M.1β
α

Where Mk is some vector and M = 1
2
M•

•
. To prove this consider:

M(∗
∗
)s•αβ = M(∗

∗
)(1•)sαβ + 1•M(∗

∗
)sαβ = 0

1•
(

M•

•
sαβ + M(∗

∗
)sαβ

)

= 0 (6.14)
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As 1(∗
∗
)sαβ = −2sαβ, this is equivalent to

1•
(

M(∗
∗
) − 1

2
M•

•
1(∗

∗
)
)

(sαβ) = 0

From this we see that the symplectic form is invariant under this operation,

hence the operation lies in the Lie algebra of sp(4, R). Therefore we see

M(∗
∗
) − 1

2
M•

•
1(∗

∗
) = MkTk(

∗

∗
)

Which rearranges to give our identity.

Now, to prove proposition 6.1 we just need to observe that Rij(
∗

∗
)(s•αβ) = 0, in

which case the curvature may be decomposed as:

Rβ
ijα = Rt

ijT
β
tα + Fij.1

β
α

Where Fij = 1
2
R•

ij• = 1
4
Rα

ijα. Thus the result is proven. To prove equations

6.12 and 6.13, we need simply to decompose the connections in the definition

of the curvature and equate the coefficients of 1β
α and T β

kα with Fij and Rt
ij.

It is important to note that the versor representation makes no contribution

to the curvature. Later on we will interpret this to mean that there is no field

associated with the versor representation. However, that is not to say that it

has no effect. If we note the definition of the reduced curvature tensor we will

see that a quadratic term associated with the versor connection coefficient:

NA
i , contributes to the reduced curvature tensor. We will again see, later on,

that this implies that the versor representation makes a contribution to the

gravitational field.
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Proposition 6.2 The Riemannian curvature tensor, Rt
ijk, is related to the

reduced curvature tensor via the equation:

Rt
ijk = Rs

ijT
t
sk (6.15)

That is, the curvature of the manifold depends only on the reduced curvature

tensor.

Proof. Consider the fact that the local action on spinors is totally invariant,

thus

[∇i,∇j]T
β
kα = (T s

ij∇s + Rij(
∗

∗
))T β

kα = 0

Implies Rij(
∗

∗
)T β

kα = 0. Expanding this expression out, contracting with Tα
mβ,

and rearranging we find

Rt
ijkgtm = Rλ

ijαT β
kλT

α
mβ − Rβ

ijλT
λ
kαTα

mβ

= Rµ
ijνT

x
kmT ν

xµ

= (Fij1
µ
ν + Ry

ijT
µ
yν)T

x
kmT ν

xµ

Expanding this last expression out we find that as the T µ
iν are traceless, the

component of the trivial representation drops out and we are left with

Rt
ijkgtm = Ry

ijT
x
kmgyx

= −Ry
ijT

x
kygmx

= Ry
ijT

t
ykgtm (6.16)

Therefore Rt
ijk = Ry

ijT
t
yk.

2

If we consider also that the versor basis is totally invariant, then using a sim-

ilar proof but replacing vector indices with versor indices where appropriate
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we can produce the result: RB
ijA = Rk

ijT
B
kA (it’s worthwhile to note that typi-

cally when trying to construct gauge theories for gravity for the Anti-deSitter

group, authors use this curvature tensor [21], [22], [35], etc., though they do

not necessarily relate it to a reduced curvature tensor like we have).

It should also be pointed out at this point that the Riemannian curvature

tensor we use: Rt
ijk = Rx

ijT
t
xk, is not the same as the curvature tensor used

in General Relativity. This is in part due to the fact that the vector indices

range from 1-10, but also because our connection is not symmetric like the one

used in GR. Instead, as mentioned before, the vector connection: Γk
ij, is the

sum of a symmetric component and the torsion which is antisymmetric. It is

not difficult to prove that the symmetric component of the connection is the

Christoffel symbol as generated by the metric gij on our 10-D manifold.

Proposition 6.3 The vector connection decomposes into the sum of a sym-

metric component and an antisymmetric component. The symmetric compo-

nent is the Christoffel symbol and the antisymmetric component is the torsion.

Proof. We’ll first prove that the antisymmetric component is the torsion,

consider the decomposed connection:

Γk
ij = Γk

(ij) + Γk
[ij]

By definition the torsion is given by:

T k
ij = −(Γk

ij − Γk
ji)

= −Γk
(ij) − Γk

[ij] + Γk
(ji) + Γk

[ji]

= −2Γk
[ij] (6.17)

Therefore Γk
[ij] = −1

2
T k

ij.

And now to prove that the symmetric component is the Christoffel symbol



59

observe:

∇igjk + ∇jgik −∇kgij = 0

∂igjk − Γs
ijgsk − Γs

ikgjs + ∂jgik − Γs
jigsk − Γs

jkgis − ∂kgij + Γs
kigsj + Γs

kjgis = 0

∂igjk + ∂jgik − ∂kgij − (Γs
ji + Γs

ij)gsk + (Γs
ki − Γs

ik)gjs + (Γs
kj − Γs

jk)gis = 0

∂igjk + ∂jgik − ∂kgij − 2Γs
(ij)gsk + T s

ikgjs + T s
jkgis = 0

∂igjk + ∂jgik − ∂kgij − 2Γs
(ij)gsk = 0

Rearranging, dividing by two and contracting with gkt gives the result

Γt
(ij) =

1

2
gkt(∂igjk + ∂jgik − ∂kgij)

Which is the definition of the Christoffel symbol.

2

Considering this decomposition it is possible to separate the curvature tensor

out into components with torsion dependence and without torsion dependence,

thus giving us a relationship between our curvature tensor and the curvature

tensor of Relativity. Consider the definition of the curvature tensor in light of

our decomposition of the connection:

Rt
ijk = ∂iΓ

t
jk − ∂jΓ

t
ik + Γt

ixΓ
x
jk − Γt

jxΓ
x
ik

= ∂i(Γ
t
(jk) −

1

2
T t

jk) − ∂j(Γ
t
(ik) −

1

2
T t

ik) + (Γt
(ix) −

1

2
T t

ix)(Γ
x
(jk) −

1

2
T x

jk)

−(Γt
(jx) −

1

2
T t

jx)(Γ
x
(ik) −

1

2
T x

ik)

= ∂iΓ
t
(jk) − ∂jΓ

t
(ik) + Γt

(ix)Γ
x
(jk) − Γt

(jx)Γ
x
(ik) + X t

ijk(T )

= R̂t
ijk + X t

ijk(T ) (6.18)

Where R̂t
ijk restricted to the Minkowski coordinates is the curvature tensor of

Relativity and X t
ijk(T ) is the torsion dependent contribution to the curvature
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given by the expression:

X t
ijk =

1

2
(Γt

(jx)T
x
ik − Γt

(ix)T
x
jk) +

1

2
(T t

jxΓ
x
(ik) − T t

ixΓ
x
(jk))

+(∂jT
t
ik − ∂iT

t
jk) +

1

4
T x

ijT
t
xk

=
1

4
T x

ijT
t
xk (6.19)

Equation 6.18 provides a useful expression for comparing results on an ADS

manifold with their Einsteinian analogues. For example we may use this iden-

tity to determine another form of the reduced curvature tensor:

Rx
ijT

t
xk = R̂t

ijk +
1

4
T x

ijT
t
xk

6Rx
ijgxb = R̂t

ijkT
k
bt +

1

4
T x

ijT
t
xkT

k
bt

Ry
ij =

1

6
R̂t

ijkT
k
btg

yb +
1

4
T y

ij (6.20)

6.3 Bianchi Identities, Contractions and

Invariant Operators

Now that we have examined the connection and the curvature and their decom-

position into irreducibles, we now turn our attention to establishing identities

using the decompositions. As the title suggests, these identities will broadly

fall under the categories of Bianchi identities, contractions of the curvature

tensor and invariant operators. Most of what will be stated here will for the

sake of brevity, be stated without proof, for proofs see [1].

6.3.1 Bianchi Identities

Consider the Bianchi identity

Rt
ijk

ijk
= 0
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We can express this in terms of the reduced curvature tensor:

Rs
ijT

t
sk

ijk
= 0 (6.21)

Now consider the second Bianchi with two spinor indices

Rβ
isαT s

jk + ∇i(R
β
jkα)

ijk
= 0

We can decompose the curvature tensor into contributions of irreducibles,

Rβ
ijα = Fij1

β
α + Rs

ijT
β
sα. By linear independence of the basis elements, the

components must each separately satisfy the second Bianchi, hence:

FisT
s
jk + ∇iFjk

ijk
= 0 (6.22)

Rs
imTm

jk + ∇iR
s
jk

ijk
= 0 (6.23)

Considering equation 6.22 we can prove an important result regarding the

behaviour of the field tensor, Fij:

Proposition 6.4 The field tensor satisfies the Faraday-Gauss equation

Proof. Consider the second Bianchi for the field tensor and expand the co-

variant out:

FisT
s
jk + ∇iFjk

ijk
= 0

FisT
s
jk + ∂iFjk − Γx

ijFxk − Γx
ikFjx

ijk
= 0 (6.24)

As this is permuted over i, j, k we can swap these indices around without chang-

ing the identity (provided we maintain the order of the indices). Therefore this

becomes

FisT
s
jk + ∂iFjk + Γx

jkFix − Γx
kjFix

ijk
= 0

FisT
s
jk + ∂iFjk − T x

jkFix
ijk
= 0

∂iFjk
ijk
= 0 (6.25)
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Looking at this last equation, we can see that if we equate the first four com-

ponents of the field tensor with the electromagnetic field tensor then we have

the Faraday-Gauss equation.

2

6.3.2 Contractions of the Curvature

Considering contractions of the reduced curvature tensor, we can define three

quantities:

Curvature vector: Rk = Rx
kx

Ricci tensor: Rij = Rx
iyT

y
jx

Curvature scalar: R = gijRij

Note that the definition of the Ricci tensor implies the relationship:

Rj
ijk = −Rik

With these quantities defined we now consider contractions of the Bianchi

identities (see [1] for proof):

Proposition 6.5

Rij = Rji (6.26)

RsT
s
ij + ∇iRj −∇jRi + ∇k(R

k
ij) = 0 (6.27)

∇k(R) = 2∇t(Rtk) − 6Rk (6.28)

Equation 6.28 turns out to be of prime importance when we consider the link

between gravity and electromagnetism, for this reason we will give its proof

here. The proof of this equation follows from the contraction of 6.23 with
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gixT j
xs, observe:

gixT j
xs(R

s
imTm

jk + Rs
jmTm

ki + Rs
kmTm

ij + ∇iR
s
jk + ∇jR

s
ki + ∇kR

s
ij) = 0

gjxRs
miT

i
xsT

m
jk + −gixRs

mjT
j
xsT

m
ki + Rs

km(gixT j
xsT

m
ij ) −∇x(Rs

kjT
j
xs)

−gij∇j(R
s
kiT

i
xs) + gix∇k(R

s
ijT

j
xs) = 0

2gjxRmxT
m
jk + Rs

km(6.1m
s ) − 2∇xRkx + ∇kR = 0

If we observe that the first term on the left is the product of a term symmetric

in indices x and m (Rmx) and a term antisymmetric in x and m (gjxTm
jk), hence

it must be zero. Thus we are left with

6Rk − 2∇xRkx + ∇kR = 0

Which upon moving all but the ∇kR to the right establishes the identity.

6.3.3 Invariant Operators

A local Lie manifold is equipped with a metric, gij and a local Lie structure,

T k
ij. The metric allows us to define the inner product on the manifold and

the Lie structure allows us to define the cross product. Combining these with

covariant derivatives allows us to generalise differential operators such as the

curl and the divergence to local Lie manifolds of arbitrary dimension. Here we

will define some of these operators for a local ADS manifold and state a few

identities associated with them.

Gradient Operator.

▼(X) = ∇k(X)

Where X is some tensor. The gradient operator is a map from tensors

of rank (n,k
m,l) to tensors of rank (n+1,k

m,l ).

Divergence Operator.

▼• (v) = gij∇i(vj)



64

Where v is some vector field. This is a map from vector fields to scalar

fields.

Curl Operator.

▼✖ (X) = ∇i(Ti(
∗

∗
)(X))

Where X is some tensor. This is a map of tensors of rank (n,k
m,l) to tensors

of rank (n,k
m,l).

We can also construct second order operators like the generalised Laplacian in

the obvious way.

We may associate with these operators certain identities, of which we will

state two here without proof.

Proposition. For any scalar field f and vector field vk

▼✖ (▼f) = −3▼f (6.29)

and

▼• (▼✖ v) = −3▼• v + 6Rkv
k (6.30)

For proof see [1]. These two identities allow us to prove an important result

Proposition 6.6 The curvature vector is zero, Rk = 0

Proof. Consider 6.30 in the event that vk = ▼f . In this circumstance we

may use the result of 6.29,

▼• (▼✖ ▼f) = −3▼• (▼f) + 6Rk▼f

▼• (−3▼f) = −3▼• (▼f) + 6Rk▼f (6.31)

Thus Rk▼f = 0. As ▼f is in general non-zero we must have Rk = 0.

2
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In light of this result proposition 6.5 can be rewritten:

Proposition 6.7

Rk = 0 (6.32)

∇k(R
k
ij) = 0 (6.33)

∇k(R) = 2∇t(Rtk) (6.34)

This proposition allows us to deduce a couple more identities, for example

taking the trace of the reduced curvature tensor in equation 6.20 in light of

proposition 6.7 implies:

R̂t
ijkT

k
btg

jb = 0

The most significant result that follows from this though, is that the 10-

dimensional Einstein tensor is divergence-less:

∇k(R) = 2∇t(Rtk)

1

2
gtk∇t(R) = ∇t(Rtk)

∇t(Rtk −
1

2
gtkR) = 0 (6.35)

This result is significant because if we hope to reproduce Einstein’s theory of

gravity on the ADS manifold it will be much easier if the analogous quantities

on the manifold have the same properties as the quantities in standard General

Relativity.

Once again, however, it must be pointed out that though we call the divergence-

less tensor in the last equation the Einstein tensor, due to the asymmetry of

the connection this is not the same as the Einstein tensor of Relativity, even

when restricted to the Minkowski dimensions. In order to see how this ex-

pression relates to the proper Einstein tensor we must consider equation 6.18.
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Contracting the j and the t in equation 6.18 we get

Rj
ijk = R̂j

ijk + Xj
ijk

−Rik = −R̂ik −
1

4
T x

ijT
j
kx

= R̂ik +
3

2
gik (6.36)

Contracting through with gik we get that the curvature scalar is

R = R̂ + 15 (6.37)

Combining these equations we get the expression:

Rik −
1

2
gikR = R̂ik −

1

2
gikR̂ − 6gik (6.38)

Which, restricted to the Minkowski coordinates reads

Rik −
1

2
gikR = Gik − 6gik

Where Gik is the proper Einstein tensor of Relativity. In 10 dimensions, we’ll

call 6.38 the Einstein-Hawthorn tensor. We observe that this is the 10D

version of Einstein’s tensor with a non-zero cosmological term given by −6gik.

Note that this equation combined with equation 6.35 implies the proper Ein-

stein tensor is divergence free.

At this point it is worthwhile to reflect on this result. Noting that the cur-

vature vector is zero, we observe that the Einstein-Hawthorn tensor follows

simply as a contraction of the Bianchi identity:

Rs
imTm

jk + ∇iR
s
jk

ijk
= 0
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Which itself follows from a decomposition of the equivalent Bianchi identity

for the spinor curvature:

Rβ
isαT s

jk + ∇i(R
β
jkα)

ijk
= 0

If we note that the scalar component of this decomposition gives us the Faraday-

Gauss equation then we observe that the spinor identity has built into it both

the Faraday-Gauss equation and the Einstein-Hawthorn tensor. This result

is of particular importance to the model as it demonstrates fundamental rela-

tionships of electromagnetism and gravity arising as separate components of a

single tensor identity, revealing an intimate connection between the two fields.

6.4 Summary

We have seen in this chapter that we can decompose both the connection and

the curvature into contributions of irreducibles. After subjecting these decom-

positions to the Bianchi identities we have been able to produce identities for

these components.

Subjecting these results to examination it can be shown that the Rieman-

nian curvature of the manifold depends solely on the reduced curvature tensor

and that the scalar contribution to the curvature satisfies the Faraday-Gauss

equation. These observations encourage the association of the forces of nature

with the different representations, such that we hypothesize that electromag-

netism is associated with the trivial representation, gravity is associated with

the vector representation and the remaining forces (that we will refer to as

’Nuclear’) are associated with the versor representation. Upon making these

identifications we also observe that the spinor Bianchi identity encodes impor-

tant information about electromagnetism and gravity, demonstrating a link

between the two forces.
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Making these associations we therefore conclude that the connection coeffi-

cients must relate to the potentials of the field.

Intriguingly, we find that the versor component of the curvature is zero, but

there is a contribution to the curvature associated with the ’Nuclear’ field as

its potential N contributes to the reduced curvature tensor. While this may

seem a bit odd, it is perhaps apt to point out that of the three forces we know

of, the nuclear forces are the only ones that have a finite range. That is to say

that objects with gravitational or electromagnetic fields can be ’felt’ (at least

in theory) by a test particle from any distance, but to feel the nuclear force

you must be within a very short distance of the source. Perhaps the behaviour

of the versor curvature is saying something like this.



Chapter 7

The Dirac Equation

In order to satisfy ourselves that the universe is best described with an ADS

manifold, it is necessary to show that the behaviour of matter in this envi-

ronment matches what is already observed. Hence, our goal is to show that

the equations describing behaviour of the fundamental constituents of matter

survive in this environment. In fact we wish to go further than this: we want

to show that these equations actually arise naturally from the mathematics.

As an example of what we mean, we wish to investigate the Dirac equation

which is the subject of this chapter.

7.1 Dirac’s Equation on an ADS manifold

Having given a very brief run through of the Dirac equation in chapter 2, we

would like now to turn our attention to its formulation in the Hawthorn model

and see how the Dirac equation appears on an ADS manifold.

7.1.1 Hawthorn’s Derivation

In a somewhat backwards fashion, we will start off with a proposed expression

of the Dirac equation on an ADS manifold and then seek to justify the proposi-

tion and identify what conditions need to be met in order for the identification

to be correct. Thus we start off with the a proposition
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Proposition 7.1 The Dirac equation on an ADS manifold is of the form

▼✖ ψ = λψ (7.1)

Where ψ = ψα is a four-vector, ▼✖ is the invariant curl operator and λ is a

constant.

Using the definition of the curl operator, and ignoring curvature for the time

begin this may be expanded out as

(−T∂t + X∂x + Y ∂y + Z∂z + A∂a + B∂b + C∂c − I∂i − J∂j − K∂k)ψ
α = λψα (7.2)

Converting to ordinary units we see

T∂t → rT∂t

(X∂x, Y ∂y, Z∂z) → rc(X∂x, Y ∂y, Z∂z)

(A∂a, B∂b, C∂c) → c(A∂a, B∂b, C∂c)

(I∂i, J∂j, K∂k) → (I∂i, J∂j, K∂k)

If we divide through by rc we get

(−1

c
T∂t + X∂x + Y ∂y + Z∂z + O(

1

r
))ψα =

λ

rc
ψα (7.3)

Which if r → ∞ as we typically assume, then this equation is simply

(−1

c
T∂t + X∂x + Y ∂y + Z∂z)ψ

α =
λ

rc
ψα (7.4)

If we compare this to the orthodox Dirac equation we see if we wish to equate

the two that the (T,X, Y, Z) must be related to the gamma matrices somehow.

In fact, is not difficult to demonstrate that if (T,X, Y, Z) are multiplied by 2i

we do get the gamma matrices found in the Dirac equation. Thus eqn 7.4
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becomes

(−1

c
γ0∂0 + γ1∂1 + γ2∂2 + γ3∂3)ψ

α =
2iλ

rc
(7.5)

Which is the Dirac equation provided

λ =
mc2r

~

7.1.2 Adding Curvature

Initially in Hawthorn’s derivation of the Dirac equation curvature was ignored,

thus the covariant derivative in the curl operator reduced to the partial deriva-

tive. We would now like to reintroduce curvature back into the picture and

examine the resulting equations. Letting ∂ → ∇ we may express 7.1 explicitly

▼✖ ψα = Tα
iσ∇iψσ

= gijTα
iσ(∂jψ

σ + Γσ
jρψ

ρ) (7.6)

If we expand the connection coefficient out, equation 7.6 becomes

gijTα
iσ(∂jψ

σ + Γσ
jρψ

ρ) = gijTα
iσ[∂jψ

σ +

(Aj1
σ
ρ + Gk

j T
σ
kρ + NA

j T σ
Aρ)ψ

ρ] (7.7)

Now equating 7.7 with the right hand side of 7.1 (this time ignoring all but

the scalar component of the curvature) we get

gijTα
iσ(∂j + Aj)ψ

σ = λψα (7.8)

If compare equation 7.8 with the Dirac equation with interaction terms we can

see that the position Aj inhabits in Hawthorn’s Dirac equation is identical to

that of the Electromagnetic interaction term in the standard Dirac equation.

This motivates us to interpret the scalar component of the curvature as the
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Electromagnetic field vector.

Comparing 7.8 and an interaction Dirac equation therefore reinforces our in-

terpretation that the observable forces are the result of the curvature of the

underlying manifold, and we conclude that inclusion of the other curvature

components in the equation should tell us how a Dirac particle interacts with

Gravitational field and a Nuclear field.

7.1.3 Hawthorn’s approach vs. Dirac’s approach

There are several reasons as to why Hawthorn’s approach may be viewed more

favourably than Dirac’s initial derivation. For example, if we consider the pre-

vious section we see that Hawthorn’s approach naturally introduces interaction

terms-there’s no need to make any minimal coupling substitutions, interactions

are a consequence of the mathematics. Also by virtue of being built from ten-

sorial quantities, it follows almost trivially that the equation is invariant with

respect to the group transformations (contrasting this with the standard Dirac

equation, [9] set aside a whole chapter to demonstrate this fact).

Perhaps though, the most significant advantage the Hawthorn approach has

over the Dirac approach is that all the quantities in the Hawthorn’s derivation

are known quantities with distinct physical interpretations. We consider the

matrices T, X, Y, and Z and observe that they represent intrinsic translations

in time and space. Therefore their eigenvalues should represent intrinsic energy

and momentum, which relate to normal energy and momentum in a similar

fashion as spin to angular momentum.

One of the immediate results of being able to directly and unambiguously

pin physical interpretations on the matrices T,X,Y, and Z arises when we con-

sider the operator (γ0)
−1γi. If we consider the correspondence between these

gamma matrices and the matrices T, X, Y, and Z we can see this is essentially
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the operator T−1X. The orthodox approach tells us that this combination of

gamma matrices corresponds to the velocity operator acting on spinors, the

eigenvalues of which take on the values ±c. This is somewhat problematic as

it asserts that the velocity of a massive fermion like an electron to be either +c

or -c (this is the issue at the heart of the alleged phenomenon called the Zit-

terbewegung, an excellent in depth discussion about this may found in chapter

6 of [2]). The obvious problem with this is that this interpretation appears to

be in violation of the special principle of relativity.

If we consider now again the equivalent combination of T and X from the

Hawthorn model, it is clear that this operator should have eigenvalues of ±1

in natural units which correspond to ±c in ordinary units. The difference

comes in that though we also interpret this combination as a velocity opera-

tor, as T and X in this circumstance represent intrinsic quantities then this

operator is intrinsic velocity. Using this interpretation we find that we can

avoid a confrontation with SR, as intrinsic velocity has no relation to extrinsic

velocity, in the same way that spin is independent of angular momentum.

The Hawthorn model also provides us with a compelling account of charge.

Observe that operators T and I form a Cartan sub-algebra. As a result if

we consider them in a quantum mechanical setting we would expect them to

correlate to simultaneous observables, I corresponding to spin and T to some

form of intrinsic energy. As mentioned earlier for the Poincare group this is a

problem as T is non-compact thus has a continuous spectrum that cannot be

reconciled with an intrinsic property as there are no known continuous intrinsic

properties. In the Hawthorn model however, T is compact thus we should be

able to associate it with a discrete intrinsic property simultaneously observable

with spin. If we consider this in the context of the Dirac equation, we note

that solutions to the Dirac equation are characterised by two properties with

two distinct states: charge and spin. As spin is described by the eigenvalues
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of the I matrix, we therefore associate charge with the eigenvalues of the T

matrix. Thus we are led to identify charge with intrinsic energy. The link

between an intrinsic time operator and charge seems very natural if we con-

sider Feynmann’s interpretation of the positron as begin a negatively charged

electron travelling backwards in time, [32].

Clearly, the Hawthorn model has much to offer with the regards to the Dirac

equation and indeed the physics becomes much more transparent when we

take this approach.



Chapter 8

Electromagnetism

In this section we investigate Crump’s ([2]) contribution to the Hawthorn

model, namely, the Faraday-Gauss equations. We will examine the initial for-

mulation, the problems inherent in it, the solution and its implications for the

model as a whole. The work on electromagnetism provided the motivation for

introducing bullet scalars and the modification of the invariant bilinear form

sαβ. For that reason initially we revert back to the assumption ∇isαβ = 0,

and work up to the introduction of bullet scalars. As a result this section does

contain repetitions of previously derived results. The following may be found

in chapters 7 and 8 of [2].

8.1 Initial Attempt

As previously stated the Hawthorn model asserts that the fundamental forces

on the manifold may be associated with the curvature of the manifold. Decom-

posing the 16-dimensional connection Γβ
iα into irreducibles we associate each

representation with a force:

Γβ
iα = Ai1

β
α + Gk

i T
β
iα + NA

i T β
Aα

Thus, we associate electromagnetism with the 1D representation i.e. we iden-

tify Ai with our electromagnetic potential. This potential contrasts with that
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of classical theory in that it is a 10-potential as opposed to the standard 4-

potential of classical E.M.-theory. We assume however that in the Minkowski

dimensions Ai is identical to that of the standard E.M. potential and we leave

the other six dimensions unidentified assuming that their contribution is of the

order 1
r
. The relationship between the potential and field tensor is maintained,

thus Fij in the Hawthorn model is the same as that of classical theory with

two variations:

1. We replace the partial with covariant derivatives

∂iAj − ∂jAi → ∇iAj −∇iAj

2. Indices run from 1-10

The first difference is a standard redefinition required to make the field equa-

tions tensor equations, and the second difference follows from the fact that A

is a 10-vector. It is worthwhile to note that a consequence of the first condition

is

Fij = ∇iAj −∇jAi = ∂iAj − ∂jAi + T k
ijAk

That is, that there is now a torsion term in the field tensor that is not there

in the classical theory. This arises from the fact that we do not assume the

symmetry of the Γk
ij’s.

Though we have redefined the electromagnetic field tensor, we still require

that it is consistent with the standard field tensor in the Minkowski coordi-

nates as r → ∞. This consistency can be shown by considering the fact that

the torsion in the Minkowski coordinates disappears as r → ∞.

This motivates the definition of the extended Maxwell equations

Fij = ∇iAj −∇jAi (8.1)
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∇iFij = Jk (8.2)

∇iFjk + ∇jFki + ∇kFij = 0 (8.3)

∇iJ
i = 0 (8.4)

∇iA
i = 0 (8.5)

Thus we see that equation 8.1 is the definition of the field tensor, equations 8.2-

8.3 are the Ampere-Gauss and Faraday-Gauss equations, respectively, and

equations 8.4 and 8.5 are the continuity equation and the gauge condition on

the potential A.

While these extensions seem appropriate, the next section will demonstrate

that, due to fundamental assumptions about the behaviour of the symplectic

bilinear form sαβ prohibit the existence of non-trivial electromagnetic phenom-

ena on an ADS manifold.

8.1.1 The Problem

Having defined the quantities with which to develop electromagnetism with,

we will now show that the theory in this form is a non-starter. It will be proven

that the invariance of sαβ implies that Fij as defined classically must always

be zero, thus prohibiting any non-trivial E.M. phenomenon on the manifold in

the limiting case of r → ∞.

Theorem 8.1 Fij = ∂iAj − ∂jAi = 0, always.
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Proof. Consider the identity ∇k(sαβ) = 0, this implies:

∂ksαβ = Γλ
kαsλβ + Γλ

kβsαλ

= (Ak1
λ
α + Gm

k T λ
mα + NA

k T λ
Aα)sλα + (Ak1

λ
β + Gm

k T λ
mβ + NA

k T λ
Aβ)sαλ

Collecting like terms and simplifying results in

∂ksαβ = 2Aksαβ + 2NA
k T λ

Aαsλβ

Which upon contraction with sαβ gives

∂k(sαβ)sαβ = 8Ak (8.6)

Considering Proposition 7.1 of [2] and following a similar method as above it

may be shown that:

∂k(s
αβ)sαβ = −8Ak (8.7)

Next consider the combination 8(∂iAj −∂jAi) in light of equations 8.6 and 8.7:

8(∂iAj − ∂jAi) = ∂i(∂j(sαβ)sαβ) − ∂j(∂i(s
αβ)sαβ)

= ∂j(sαβ)∂i(s
αβ) − ∂i(sαβ)∂j(s

αβ) (8.8)

Making use of the identity

∂k(s
αλ) = −sαµ∂k(sβµ)sβλ

Equation 8.8 becomes:

8(∂iAj − ∂jAi) = −∂j(sαβ)sαµ∂i(sλµ)sλβ + ∂i(sαβ)sαµ∂j(sλµ)sλβ
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Relabelling the dummy indices it may be shown that the right hand side is the

opposite of itself and hence 0. Thus ∂iAj = ∂jAi, finishing the proof.

2

8.1.2 The Fix

We have seen therefore that the first major result of Crump’s work was to

show that classical electromagnetism is forbidden on an ADS manifold given

Hawthorn’s initial assumptions. In order to fix this problem it is necessary to

revise some of the assumptions in the foundation of the model.

In order to determine the condition or conditions that leads to a trivial elec-

tromagnetic field tensor it is necessary to examine the proof that demonstrates

this. The only explicit assumption made was of the global invariance of the

form sαβ, and as mentioned in the first paragraph of 8.1.1, it is this assumption

that the proof hangs on. Therefore the logical step would be to modify the

assumption that sαβ is globally invariant, this however, is not an assumption

to be abandoned lightly.

We may identify sαβ as an intertwining map of representations. The global

invariance of sαβ therefore implies the equivalence of components in different

representations. If we consider the equations

xΣ = xα1α2...αnsΣ
α1α2...αn

xΣ = xα1α2...αn
sα1α2...αn

Σ

and their covariant derivatives

∇k(x
Σ) = ∇k(x

α1α2...αn)sΣ
α1α2...αn

+ xα1α2...αn∇k(s
Σ
α1α2...αn

)

∇k(xΣ) = ∇k(xα1α2...αn
)sα1α2...αn

Σ + xα1α2...αn∇k(s
α1α2...αn

Σ )
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For the group structure and correspondence between representations to be

preserved under parallel transport we require that ∇k(s
Σ
α1α2...αn

) = 0 and

∇k(s
α1α2...αn

Σ ) = 0.

Thus, we are adamant that sα1α2...αn

Σ be globally invariant, this leaves us with

very little wiggle room regarding the issue of electromagnetism. However, it

can be observed that there is a subtle assumption made about the decompo-

sition of the space Xαβ, namely that we have associated the 1-dimensional

trivial component with scalars. It will be shown that in order rectify our sit-

uation we must abandon this assumption.

Denote this new non-scalar representation with a bullet index, •. Thus the

components of s become s•αβ. Enforcing the condition that s•αβ be globally

invariant, we see

∇k(s
•

αβ) = ∂k(s
•

αβ) + Γ•

k•s
•

αβ − Γλ
kαs•λβ − Γλ

kβs•αλ = 0 (8.9)

Thus, equating the components s•αβ = sαβ we can see the original assumption

of ∇k(sαβ) = 0, implied Γ•

k• = 0. Therefore if we don’t assume Γ•

k• = 0, sαβ is

not globally invariant hence the proof of a trivial electromagnetic field tensor

is not valid and we escape the problem we encountered initially.

Thus in order to allow for non-trivial electromagnetic phenomena on the man-

ifold the 1-dimensional irreducible representation of the space of two compo-

nent spinors must be identified with scalar-like quantities that are not globally

invariant and denoted with a bullet index, •.

8.2 Maxwell’s Equations on the Manifold

Having determined the conditions necessary to allow electromagnetic field on

the manifold, Crump examined the implications of the extended Maxwell’s
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equations as they are stated in 8.1 (eqns. 8.1-8.5), and most importantly was

able to prove that the Faraday-Gauss equation is a natural consequence of the

Bianchi identities and hence a necessary quality of the manifold.

Following [2], section 8.3, we denote the vector with components Ai as A,

thus A = (φ,A,P,M), where φ is a scalar and A, P, and M are 3-vectors.

Likewise we denote the vector with components Ji as J , where J = (ρ,J, ~J, J̇).

8.2.1 The Source Equation

Considering equation 8.2 and expanding out the covariant derivatives we get

∇jFjk = gij(∂i∂jAk − ∂i∂kAj − Γl
ij∂lAk − Γl

ik∂jAl

+Γl
ik∂lAj + Γl

ij∂kAl + T p
jk∂iAp − T p

ikΓ
l
ipAl) (8.10)

Imposing the flat space condition Γk
ij = −1

2
T k

ij, equation 8.10 reduces to

∇jFjk = gij(∂i∂jAk − ∂i∂kAj + 2T l
ik∂jAl) + 3Ak (8.11)

Therefore 8.2 can be rewritten as

gij(∂i∂jAk − ∂i∂kAj + 2T l
ik∂jAl) + 3Ak = Jk (8.12)

The only free index is k thus we may fix a value for k and investigate the

resulting equation. Henceforth we’ll just look at the case k = 0. Also we will

take advantage of Proposition 8.3 of [2] (p. 76) and up until now we have

been using natural units, we wish now to convert back into ordinary units.

Conversion factors for natural units to ordinary units may be found on p.77

of [2]. Taking all of this into account eqn. 8.12 becomes

r3c2∇ · ∇φ + rc2~∇ · ~∇φ − r∇̇ · ∇̇φ − r3c2∇ · ∂TA − rc2~∇ · ∂TP

+r∇̇ · ∂TM − 2rc2∇ · P + 2rc2~∇ · A + 3rφ = rρ (8.13)
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Here ∇, ~∇, and ∇̇ = (∂X , ∂Y , ∂Z), (∂A, ∂B, ∂C), and (∂I , ∂J , ∂K), respectively.

Dividing through by r3c2 and assuming r → ∞ all terms on the left with a

coefficient 1
r

can be set to zero. We may also introduce constants which allow

us to adjust the units of the components of A and J , φ → kφφ, A → kAA

etc.thus eqn. 8.13 becomes

kφ∇ · ∇φ − kA∇ · ∂TA =
kρρ

c2r2
(8.14)

If we assume kA = −kφ and kρ = kAr2c2

ǫ0
, then the equation becomes

∇ · E =
ρ

ǫ0

Which is Gauss’ Equation.

Following similar procedure eqn. 8.12 also produces the Ampere-Maxwell

equation

kA∂TE − kAc2∇× B =
kJ

r2
J (8.15)

Where kJ = −kAµ0r
2c2 ⇒ −kρ

c
.

As expected the extended Maxwell’s equations also produce extra equations,

for the source equation these are

kP c(−∂2
T + c2∇2)P − 2kAcE =

k ~Jc

r2
~J (8.16)

kM(−∂2
T + c2∇2)M − 2kAcB =

kJ̇

r2
J̇ (8.17)

It will be noted that the E and B terms drop out if the ratio of their k

coefficients is proportional to r.
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8.2.2 The Faraday-Gauss Equation

Here we will present Crump’s most important result, namely the geometric

necessity of the Faraday-Gauss equation. The first step will be to show that

it is more desirable to define the electromagnetic field tensor as ∂iAj − ∂jAi.

Once this is done it will be shown that the Faraday-Gauss equation follows

from a straight forward application of the Bianchi identity.

Consider the tensor: Rβ
ijα. Expanding this out according to its definition

we see:

Rβ
ijα = ∂iΓ

β
jα − ∂jΓ

β
iα + Γβ

iσΓσ
jα − Γβ

jσΓσ
iα

If we now contract the Greek indices the result is

Rα
ijα = ∂iΓ

α
jα − ∂jΓ

α
iα (8.18)

Recalling that Ak is defined as Ak = 1
4
Γα

kα, 8.18 becomes

Rα
ijα = 4(∂i(Aj) − ∂j(Ai))

Thus if we redefine the field tensor as Fij = ∂i(Aj) − ∂j(Ai), then it arises as

a natural consequence of the curvature.

Consider now the Bianchi identity

T l
ijR

β
lkα −∇k(R

β
ijα)

ijk
= 0

This is cycled over the Latin indices, leaving the Greek indices unperturbed.

Thus the relationship holds even if we contract the Greek indices which we

now choose to do:

T l
ijR

α
lkα −∇k(R

α
ijα)

ijk
= 0
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If we now express Rα
ijα in terms of Ai, expanding the covariant derivative and

simplifying results in

−∂k(∂iAj − ∂jAi)
ijk
= 0 (8.19)

Which we may observe is the Faraday-Gauss equation.

Thus it is proven that if Fij is defined as ∂iAj − ∂jAi then the Faraday-Gauss

equation is necessarily true on the manifold.

8.2.3 Consequences and Conclusions

8.2.3.1 Redefinition

The previous result is an amazing conclusion and it strongly motivates us to

redefine the electromagnetic field tensor. If we use this definition in the source

equations we find that it amounts to losing a factor of two out the front of the

E and B in equations 8.16 and 8.17. Hence, we find no reason not to make

this identification. Thus we redefine the electromagnetic field tensor as

Fij = ∂iAj − ∂jAi (8.20)

8.2.3.2 Conclusion

The end result of Crump’s investigation was that in order to accommodate

non-trivial EM phenomena on the manifold we must introduce quantities that

behave locally like scalars but behave non-trivially under parallel transport.

Crump demonstrated that if we consent to this, non-trivial EM phenomena is

allowed and in fact the Faraday-Gauss equation follows as a geometric property

of the ADS manifold. However, that does not completely wrap up electromag-

netism. For starters the source equation is simply postulated. While it can

be shown that its consequences on the manifold do comport with what we

already know about the electromagnetic force, merely showing there is no con-
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tradiction is not enough. In order to satisfy the fundamental hypothesis about

of the model it is necessary to justify all the forces and their field equations

geometrically.

Also the quantities P, M, ~J, and J̇ still require interpretations. That being

said, we know that to fully describe the behaviour of charge carrying particles

it is necessary to include spin interactions in the calculations. It is therefore

postulated that ~J and J̇ are somehow related to spin-density and it is predicted

that the components of P and M are responsible for the fields that exert forces

on particles possessing spin. In the limit of large r, these effects are expected

to be small.



Chapter 9

Exploring Gravity and

Electromagnetism

In this chapter we seek to incorporate the field equations for gravity into

the model. General Relativity builds a model for gravity by relating cur-

vature of the manifold to gravitational fields. As we have the appropriate

10-dimensional analogues of the components of Einstein’s equations (bar the

energy-momentum tensor) it is possible to simply recreate the equation and

then go on to demonstrate it is a permissible relationship in the model. How-

ever, to simply impose the equations on the manifold would be contravariant to

the philosophy of the model-they must be justified and what’s more, will hope-

fully demonstrate a link with electromagnetism. Hence, our goal is twofold: we

wish to demonstrate the equations for gravity arise naturally from the math-

ematics of the model and we seek to investigate the connection between the

subsequent equations for gravity and the equations for electromagnetism. Our

aim is to use a variational approach to suggest the form of such equations, the

advantage of this approach is it allows us to build the EM/gravity link into

our derivation of gravity.
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9.1 Lagrangian Formalism

Of all the mathematical tools at the disposal of one who wants to study physical

systems, one of most useful is that of the variational principle. The basic notion

of this principle is there exists an action functional which exhibits explicit

dependence on certain quantities, yet is invariant with respect to variation of

these quantities. Theories developed from this principle may be found in all

fields of physics.

9.1.1 General Theory

Development of the general theory of variational principles may be found to

varying degrees in practically all graduate level texts on physics and mathe-

matical principles of physics. Here we follow the general example set in [6],

[14], and [10].

9.1.1.1 Invariance of the Action

Consider a field φ(x). Let us define its form variation (called functional vari-

ation in [14]) as:

δ0φ(x) = φ′(x) − φ(x)

We distinguish this from its total variation:

δφ = φ′(x′) − φ(x)

We may establish a relationship between the total and form variation by ex-

panding the first term on the right out as a first order Taylor series

δφ = φ′(x) + δxi∂iφ(x) − φ(x)

= φ′(x) − φ(x) + δxi∂iφ(x)

= δ0φ + δxi∂iφ(x)
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Consider now an action integral over a general n-dimensional space-time re-

gion Ω,

I(Ω) =

∫

Ω

L(φ, ∂kφ; x)dnx

We impose the condition that this integral is invariant under the space-time

transformation: x′ = x + ǫ(x).

δI =

∫

Ω′

L(φ′, ∂′

kφ
′; x′)dnx′ −

∫

Ω

L(φ, ∂kφ; x)dnx

If we observe that to first order dnx′ = (1 + ∂aǫ
a)dnx, then this becomes

δI =

∫

Ω

L(φ′, ∂′

kφ
′; x′)(1 + ∂aǫ

a)dnx −
∫

Ω

L(φ, ∂kφ; x)dnx

=

∫

Ω

δL + L(φ′, ∂′

kφ
′; x′)∂aǫ

adnx

And if we just consider the integrand and keep only first order terms we get

δL + L(φ′, ∂′

kφ
′; x′)∂aǫ

a = δL + δL∂aǫ
a + L∂aǫ

a

= δ0L + ǫa∂aL + (∂aǫ
a)L

For the variation of our integral to be zero we require that

δ0L + ∂a(ǫ
aL) = 0

9.1.1.2 Conserved Currents

We have established now, conditions on the Lagrangian that must be satisfied

for the variation of the action integral to be zero. In its initial form this con-

dition is not of much use to us, however it may be reworked to give something

more useful.
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Let’s examine the first term: δ0L.

δ0L = L(φ + δ0φ, ∂kφ + δ0∂kφ; x) − L(φ, ∂kφ; x)

=
∂L
∂φ

δ0φ +
∂L
∂φ,k

δ0φ,k

=

(

∂L
∂φ

− ∂k

[

∂L
∂φ,k

])

δ0φ + ∂k

(

∂L
∂kφ

δ0φ

)

Substituting this back into the our original constraint equation we find

(

∂L
∂φ

− ∂k

[

∂L
∂φ,k

])

δ0φ + ∂k

(

∂L
∂kφ

δ0φ + ǫkL
)

= 0 (9.1)

The first term in brackets describes a system of equations called the Euler-

Lagrange equations and by setting them equal to zero we may derive equations

of motion for the system with the Lagrangian L. The second term in brackets

is commonly denoted Jk and if the the first term is zero, Jk is conserved. In

the event that we specify a symmetry group for the transformations on space-

time Jk represents the currents conserved under those transformations. For

example if we specify the Poincare group as the group describing the symmetry

transformations of space-time then

Jk =
1

2
ωνλMµ

νλ − ενT µ
ν

Where Mµ
νλ is the angular momentum tensor and T µ

ν is the energy-momentum

tensor. The currents defined by these tensors are invariant under rotations

and translations respectively.

9.1.2 The Hawthorn Action

As we saw in the previous section there are three ingredients required in order

to concoct a variational approach: an invariant volume element, a scalar ac-

tion, and an independent variable (or variables) by which to vary our action

with respect to.
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From [14] we see that an invariant volume element for a d-dimensional man-

ifold is given by:
√

|g|ddx. As for our scalar action, we are looking for some

scalar term which under the variation of some variable or variables produces

physically meaningful equations regarding electromagnetism and gravity. It’s

worth mentioning the omission of ’nuclear’ fields from the previous sentence:

as we postulate that the fundamental forces are realisable as curvatures on the

manifold and we observe that the curvature tensor Rβ
ijα has no versor terms

(hence no explicit ’nuclear’ terms), we assume that the electromagnetism and

gravity are more naturally unifiable. Therefore we ignore ’nuclear’ fields for

the most part and simply focus on linking EM and gravity.

It’s known that the Ampere-Gauss equation can be derived by varying the

Lagrangian: −1
4
FijF

ij with respect to Ai and ∂jAi. If we consider the term:

Rβ
ijαRα

rxβgrigrx, we can see it separates out into components:

Rβ
ijαRα

rxβgrigrx = FijF
ij + Rk

ijR
y
rxg

rigjxgyk (9.2)

Which, as the second term on the right is independent of the scalar connection

coefficient, we see under variation of Ai and ∂jAi should give the Ampere-

Gauss equation up to a constant factor. We therefore adopt Rβ
ijαRα

rxβgrigrx as

our Lagrangian and as A and ∂A are connection coefficients we generalise this

to Γ and ∂Γ. Thus we have:

L(Γ, ∂Γ) = Rβ
ijαRα

rxβgrigrx

We may now state the action that we wish to extremize with respect to the

field strengths:

S[Γ, ∂Γ] =

∫

(FijF
ij + Rk

ijR
y
rxg

rigxjgky)
√

|g|d10x (9.3)
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By constructing our variational approach as a generalisation of the approach

applied to classical electromagnetism, we expect that it will still obey the

Euler-Lagrange equations of motion:

∂L
∂Γ

=
∂

∂xµ

∂L
∂(∂Γ/∂xµ)

If we let Γ and ∂Γ be A and ∂A then we get the Ampere-Gauss equation.

Therefore, the analogous equation for gravity should be given by letting Γ = Gt
s

and ∂Γ = ∂pG
t
s. Then the Euler-Lagrange equations become:

∂L
∂Gt

s

=
∂

∂xp

∂L
∂(∂Gt

s/∂xp)
(9.4)

If we start with the left hand side we get:

∂L
∂Gt

s

=

[

∂Rk
ij

∂Gt
s

Ry
rx + Rk

ij

∂Ry
rx

∂Gt
s

]

girgjxgyk (9.5)

Recalling the definition of the reduced curvature tensor we get

∂Rk
ij

∂Gt
s

= (1s
iG

p
j − 1s

jG
p
i )T

k
tp (9.6)

and therefore

∂L
∂Gt

s

= 2Rk
ij(g

sigxj − gxigsj)Gp
xT

y
tpgyk

= 4Rsx
y Gp

xT
y
tp

Proceeding on to the right hand side, using Leibnitz’ rule and the definition

of the reduced curvature tensor we get

∂L
∂[∂pGt

s]
= [(1p

i 1
s
j − 1p

j1
s
i )1

k
t R

y
rx + Rk

ij(1
p
r1

s
x − 1p

x1
s
r)1

y
t ]g

irgjxggy

= 4Rps
t (9.7)
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where

Rps
t = Rk

ijg
ipgjsgkt

and
∂Rk

ij

∂[∂pGt
s]

= (1p
i 1

s
j − 1p

j1
s
i )1

k
t

thus

∂p

(

∂L
∂(∂pGt

s)

)

= 4∂pR
ps
t (9.8)

Plugging these results in to our E-L equations we get

∂pR
ps
t − Rps

y Gx
pT

y
xt = 0 (9.9)

Which by analogy with the Ampere-Gauss equation we are inclined to inter-

pret as our source free field equations for gravity.

It doesn’t take long however to find something unsatisfactory about this ex-

pression though: this is not a tensorial expression

δa′

s δt
b′(∂pR

ps
t − Rps

y Gx
pT

y
xt) = δa′

s δt
b′∂pR

ps
t − Rpa′

y Gx
pT

y
xb′

6= ∂pR
pa′

b′ − Rpa′

y Gx
pT

y
xb′

As the deltas do not commute with the partial derivative. This is a concern

as we require our equations of motion to be tensor equations.

In order to resolve this issue let’s turn to the Dirac equation.

9.1.3 The Dirac Lagrangian

In the Hawthorn model the Dirac equation appears as:

gijTα
iσ∇jψ

σ = λψα
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and its Lagrangian is:

L(ψ, ∂ψ) = s•αβψβgijTα
iσ∇jψ

σ − λs•αβψβψα

If we equate s•αβψβ with the adjoint field and note the antisymmetry of s•αβ we

can see that this is the standard Lagrangian for the Dirac equation.

If our variational technique is correct then we should be able to reproduce

the Dirac equation from it. An immediate problem arises in that as s•αβ is

antisymmetric the last term is zero, this means that we will be unable to re-

produce the Dirac equation unless we attach to our Lagrangian a field whose

variation is equal to lambda, however this is an ad hoc solution and does not

naturally arise from the mathematics. Another solution presents itself from

the standard treatment. In the standard approach to variation of the Dirac

Lagrangian the adjoint field and the field are treated as independent fields and

this allows for the derivation of the equations of motion from the Lagrangian.

We will take this approach but go a step further and instead of only nominally

having the adjoint be independent we will actually let it be an independent

field: φ. In this way we prevent our lambda term from disappearing. Thus

our Dirac Lagrangian becomes:

L(ψ, ∂ψ, φ, ∂φ) = s•αβφβgijTα
iσ∇jψ

σ − λs•αβφβψα

If we calculate our Euler Lagrange equations from this we find:

∂s(s
•

αβφβgisTα
iν) = s•αβφβgijTα

iσΓσ
jν − λs•νβφβ

Here again we run into the problem of non-covariance due to a partial and

connection coefficient. Due to the fact that our Lagrangian is the standard

Dirac Lagrangian, we assume there is an error in our variational technique. The

connection coefficient arises from expanding our covariant derivative out and



94

differentiating wrt ψ, if instead we assume our covariant derivatives and not

the partial derivatives form an independent field we circumvent that problem.

This in fact is consistent with the approach taken in the Hawthorn model

where we replace the partial derivative in the standard Dirac equation with

a covariant derivative and we assume the connection terms provide coupling

terms to external fields. This, however, still leaves the partial derivative to deal

with. If we take note that what we want is to reproduce our Dirac equation

from the Lagrangian and that when we make the switch from ∂ψ → ∇ψ we

get the correct right hand side we note we may get the correct left hand side

if we replace the partial derivative in the last step with a covariant derivative:

∂s

(

∂L
∂[∇sψν ]

)

→ ∇s

(

∂L
∂[∇sψν ]

)

Thus our equation now becomes:

∇s(s
•

αβφβgisTα
iν) = −λs•νβφβ

As all the contents of the bracket with exception to φβ are zero under the

covariant derivative this becomes:

s•αβgisTα
iν∇sφ

β = −λs•νβφβ

Which can be written as:

gisTα
iν∇s(s

•

αβφβ) = −λs•νβφβ

or

s•ναgisTα
iβ∇sφ

β = s•ναλφα

Which is our Dirac equation for s•αβφβ and φβ contracted with s•να.

Therefore, in order to reproduce the Dirac equation using a variational ap-
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proach we need to use modified Euler-Lagrange equations:

∂L
∂ψµ

= ∇s

(

∂L
∂[∇sψµ]

)

.

Having now fixed our variational approach with respect to the Dirac La-

grangian we wish to apply this ’fix’ to our previous situation.

9.1.3.1 A Note on Gauge Theories

It is worth noting at this point the parallels between what we’ve done here

and gauge theories.

In a gauge theory it is assumed that the Lagrangian is invariant under a

set of transformations, which have an explicit coordinate dependence. Thus

if partial derivatives are used in the equations of motion then the resulting

equations are not tensorial (transformation matrices don’t commute with the

partial). The solution for this is to introduce a new derivative called the co-

variant derivative which does commute with the transformation matrices. This

is done by adding to the partial derivative compensating fields or gauge fields

(which inhabit the same position as the connection components in a typical

covariant derivative) that counter the coordinate dependence in the transfor-

mation matrices. Therefore by replacing all partial derivatives by covariant

derivatives in the equations of motion, the tensorial nature of the equations is

restored.

This is identical to what we have done here, except we already had the so

called compensating fields: they arise as the connections coefficients that sat-

isfy the relationship:

∇xT
α
iβ = 0

In that respect, we can view the condition that the global and local actions

commute as a gauge condition.
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It can therefore be argued that what we are doing with the variational ap-

proach is trying construct a gauge theory for gravity based off of the Anti-

deSitter symmetry group.

For general theory regarding gauge invariant formulations consult [6] and [25].

Construction of gauge theories for gravity based off of the Poincare group are

done by [16] and [19], for the Anti-deSitter group, [20], [21], and [22].

9.1.4 Redoing the Equations of Motion

Previously we only concerned ourselves with the finding the gravitational field

equations, here we aim for more generality and we will only pull the specific

forces out at the end. Recalling our original Lagrangian:

L = Rβ
ijαRα

rxβgrigjx

Our field equations should follow from the modified Euler Lagrange equations:

∂L
∂ψ

= ∇k

[

∂L
∂(∇kψ)

]

We identify Γ and ∇Γ as the fields we wish to vary. Thus the left hand side

becomes:

∂L
∂Γσ

sρ

=
∂Rβ

ijα

∂Γσ
sρ

Rα
rxβgirgjx + Rβ

ijα

∂Rα
rxβ

∂Γσ
sρ

girgjx

= 4Rβ
ijσΓρ

rαgirgjs + 4Rρ
ijαΓα

rσg
isgjx − 2Rρ

ijσT
s
rxg

irgjx (9.10)

and the right hand side:

∂L
∂(∇tΓσ

sρ)
=

∂Rβ
ijα

∂(∇tΓσ
sρ)

Rα
rxβgirgjx + Rβ

ijα

∂Rα
rxβ

∂(∇tΓσ
sρ)

girgjx

= 4gtigjsRρ
ijσ (9.11)
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After some index shuffling and contracting out the gjs we get the equations of

motion as

Rα
itσΓρ

rαgir − Rρ
itαΓα

rσg
ir +

1

2
Rρ

ijσT
j
rtg

ir = ∇i(Rρ
ijσ) (9.12)

We note that every object with Greek indices may be decomposed into contri-

butions of irreducibles. Doing this will allow us to determine the contributions

from the various fields (EM, gravity and ’nuclear’). Thus we wish to separate

out the different components. Recalling that Rβ
ijα = Fij1

β
α + Rk

ijT
β
kα, the left

hand side becomes

= (Fit1
α
σ + Rk

itT
α
kσ)Γρ

rαgir − (Fit1
ρ
α + Rk

itT
ρ
kα)Γα

rσg
ir +

1

2
(Fij1

ρ
σ + Rk

ijT
ρ
kσ)T j

rtg
ir

= Rk
it(T

α
kσΓρ

rα − T ρ
kαΓα

rσ)gir +
1

2
(Fij1

ρ
σ + Rk

ijT
ρ
kσ)T j

rtg
ir (9.13)

Decomposing Γ we get

= girRk
itG

p
rT

s
pkT

ρ
sσ − girRk

itN
A
r TB

kAT ρ
Bσ +

1

2
(Fij1

ρ
σ + Rk

ijT
ρ
kσ)T j

rtg
ir

Considering also,

∇iRρ
itσ = ∇iFit1

ρ
σ + ∇iRk

itT
ρ
kσ

We may therefore equate coefficients of the basis elements 1ρ
σ, T

ρ
kσ, and T ρ

Bσ.

This gives us three equations:

Electromagnetic Component.

∇iFit =
1

2
FijT

j
rtg

ir

Gravitational Component.

∇iRk
it = gir(Rs

itG
p
rT

k
ps +

1

2
Rk

ijT
j
rt)
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’Nuclear’ Component

0 = girNA
r RB

itA

Firstly and foremost we can observe that these equations are not tensorial:

the presence of the connection coefficients in the gravitational and ’nuclear’

components have a coordinate dependence. If we were to examine how these

equations transform we’d see that this is because we are still using a coordinate

dependent spinor basis {eα(x)}. If we fix the spinor basis (so that it is not

dependent on the coordinate basis of the manifold) then these equations are

tensorial, however this results in a constraint on the validity of the equations

that we don’t really want.

This coordinate dependence in the field equations should not actually come as

a surprise. By varying with respect to a non-covariant quantity (the connec-

tion), we introduced a coordinate dependence into the equations of motion.

In order to tackle this coordinate dependence we would have to go back and

include a term accounting for the coordinate dependence i.e. we should use

L = L(Γ,∇Γ, x) not L = L(Γ,∇Γ).

However, instead of going back and modifying our technique, we have reason to

believe that the approach has succeeded (recalling we were only using to to sug-

gest potential field equations). For instance, introduction of x-variation term

into the variation of the Lagrangian shouldn’t greatly modify the equations of

motion as they arise as coefficients of the variation of the field variable (which

in this case would be δ0Γ, see eqn (8.1) for context). Also if we consult [19], in

section 2 the author constructs equations of motion from a Lagrangian that is

quadratic in field strengths and finds that in order to get a conserved current

it is necessary to add terms that are essentially identical to the non-covariant

terms in the equations of motion given above-the result being conserved cur-

rents but non-covariant equations of motion.
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Therefore we take the equations suggested by the our variational approach

and seek to establish them geometrically.

9.2 Geometric Proof of the Field Equations

Having developed field equations from our variational approach, it would be

nice if we could solidify the relationships with derivations solely based on the

manifold’s properties. It is this that will be attempted here.

Proposition 9.1 The curvature tensor satisfies the relationship:

∇iRβ
ijα =

1

2
girTm

rj R
β
imα + Kβ

jα

Where Kβ
jα is some divergence-less quantity. Furthermore, this equation may

be decomposed into scalar contributions and vector contributions:

∇iFij =
1

2
girFimTm

rj + Cj

∇iRx
ij =

1

2
Rx

imTm
rj + Dx

j

Proof. Consider the curvature tensor: Rβ
ijα, and the identity

girgmj[∇m,∇r]R
β
ijα = girgmj(∇m∇r −∇r∇m)Rβ

ijα

= girgmj∇m∇rR
β
ijα + girgmj∇r∇mRβ

jiα

= ∇j∇iRβ
ijα + ∇i∇jRβ

jiα

= 2∇j∇iRβ
ijα (9.14)

As this is the commutator of two covariant derivatives it also must be equal

to: girgmj(T k
mr∇k + Rmr(

∗

∗
))Rβ

ijα

2∇j∇iRβ
ijα = girgmj(T k

mr∇k + Rmr(
∗

∗
))Rβ

ijα (9.15)
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Examining the term: Rmr(
∗

∗
)Rβ

ijα

Rmr(
∗

∗
)Rβ

ijα = Rβ
mrσR

σ
ijα − Rσ

mrαRβ
ijσ − Rs

mriR
β
sjα − Rs

mrjR
β
isα (9.16)

Using the fact that Rβ
ijα = Fij1

β
α + Rt

ijT
β
tα, we see the first term

Rβ
mrσR

σ
ijα = (Fmr1

β
σ + Rt

mrT
β
tσ)(Fij1

σ
α + Rx

ijT
σ
xα)

= FmrFij1
β
α + FmrR

x
ijT

β
xα + FijR

t
mrT

β
tα

+Rt
mrR

x
ijT

σ
xαT β

tσ (9.17)

Similarly for the second term we find

Rσ
mrαRβ

ijσ = FmrFij1
β
α + FmrR

x
ijT

β
xα + FijR

t
mrT

β
tα

+Rt
mrR

x
ijT

σ
tαT β

xσ (9.18)

As the first two terms in (9.16) = (9.17) − (9.18) we see the only term left is

Rt
mrR

x
ij(T

σ
xαT β

tσ − T σ
tαT β

xσ) = Rt
mrR

x
ijT

p
xtT

β
pα (9.19)

Substituting this result into (9.16) we get

Rmr(
∗

∗
)Rβ

ijα = Rt
mrR

x
ijT

p
xtT

β
pα − Rs

mriR
β
sjα − Rs

mrjR
β
isα (9.20)

Further simplification may be found by considering 9.20 in the context of 9.15,

we contract 9.20 with gir and gmj:

girgmjRmr(
∗

∗
)Rβ

ijα = girgmj
(

Rt
mrR

x
ijT

p
xtT

β
pα − Rs

mriR
β
sjα

−Rs
mrjR

β
isα

)

(9.21)

The first term is (ignoring T β
pα)

girgmjRt
mrR

x
ijT

p
xt = girgmjRt

mrR
p
ijt (9.22)
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Equivalently

girgmjRt
mrR

x
ijT

p
xt = −girgmjRt

mrT
p
txR

x
ij

= −girgmjRp
mrxR

x
ij

= −girgmjRp
jixR

x
rm

= −girgmjRp
ijxR

x
mr (9.23)

Relabelling x → t we can see that as (9.22) and (9.23) are equivalent, the term

girgmjRt
mrR

x
ijT

p
xt must equal zero.

Examining the last two terms in (9.21) we see that

girgmjRs
mriR

β
sjα = −girgmjRs

mrjR
β
siα

= girgmjRs
mrjR

β
isα (9.24)

Thus the last two terms are in fact the same term, however upon further

investigations we see that

girgmjRs
mrjR

β
isα = girgmjRn

mrT
s
njR

β
isα

= −girgsjRn
mrT

m
njR

β
isα

= girgsjRn
rmTm

njR
β
isα

= girgsjRrjR
β
isα

= RisRβ
isα (9.25)

As the Ricci tensor is symmetric and the Curvature tensor is antisymmetric

wrt to (i,s) this must also be zero.

Therefore we conclude that

girgmjRmr(
∗

∗
)Rβ

ijα = 0 (9.26)



102

The consequence of this is that equation (9.15) becomes

2∇j∇iRβ
ijα = girgmjT k

mr∇kR
β
ijα (9.27)

Thus we enter the final step in the proof of the field equations, note the left

hand side of (9.27):

girgmjT k
mr∇kR

β
ijα = −girgmkT j

mr∇kR
β
ijα

= −girT j
mr∇mRβ

ijα

= −girTm
jr∇jRβ

imα

= ∇j(girTm
rj R

β
imα) (9.28)

Substituting this into (9.27) and taking all terms to the left we get

∇j(∇iRβ
ijα − 1

2
girTm

rj R
β
imα) = 0

Therefore

∇iRβ
ijα =

1

2
girTm

rj R
β
imα + Kβ

jα (9.29)

Where Kβ
jα is some divergence-less quantity. Using the fact that Rβ

ijα = Fij1
β
α+

Rx
ijT

β
xα and equating coefficients of 1β

α and T β
xα we get

∇iFij =
1

2
girFimTm

rj + Cj (9.30)

∇iRx
ij =

1

2
girRx

imTm
rj + Dx

j (9.31)

Where Cj and Dx
j are divergence-less quantities defined as

Cj =
1

4
Kα

jα (9.32)

Dx
j = Kβ

jαTα
mβgmx (9.33)
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2

As Fij is interpreted as the electromagnetic field tensor we can see that equa-

tion 9.30 is a modified version of the Ampere-Gauss equation. Analogously, we

have interpreted the reduced curvature tensor to be some sort of field tensor

for the gravitational field. Accordingly, we are inclined to view equation 9.31

as a potential source equation for gravity. While the divergence-less tensors

associated with each equation lack any definitive physical interpretation, the

way they arise and their position in the equations, especially with regards to

the Ampere-Gauss equation, is highly suggestive of source terms and we do

assume that they are related to the matter content of the manifold.

9.3 Examining the Field Equations

Having proven the relationships put forward in the proposition stated at the

beginning of section 9.2, we now wish to see how they comport with what is

currently known about the two forces.

9.3.1 Examining the Electromagnetic Equation

Our first task is to make sure the modified Ampere-Gauss equation is con-

sistent with classical electromagnetism. To do this we must show that the

divergence of our field tensor is (or in the limit of r → ∞, approximately) a

divergence-less quantity and that it satisfies the source free equation for the

trivial field situations.

Consider the equation we have for our supposed EM source equation, ignoring

Ct for the time being:

∇iFit =
1

2
FijT

j
rtg

ir

To start, let’s decompose the tensors into their Minkowski and Lorentz coordi-

nate components. We will use Latin indices for the Minkowski coordinates and



104

upper case Greek letters for the Lorentz coordinates. As t can be a coordinate

of our choosing we denote it with a prime so as not to confuse it with the

Minkowski coordinates. Thus the equation becomes:

∇iFit′ + ∇ΣFΣt′ =
1

2
(FijT

j
rt′g

ir + FΥjT
j
rt′g

Υr + FiΩTΩ
rt′g

ir + FΥΩTΩ
rt′g

Υr

+FΥΩTΩ
Λt′g

ΥΛ + FΥjT
j
Λt′g

ΥΛ + FiΩTΩ
Λt′g

iΛ) (9.34)

The metric is symmetric and diagonalised, hence the off diagonal components

are always zero and we may therefore drop any terms with a metric that

combines Latin and Greek indices:

∇iFit′ + ∇ΣFΣt′ =
1

2
(FijT

j
rt′g

ir + FiΩTΩ
rt′g

ir + FΥΩTΩ
Λt′g

ΥΛ + FΥjT
j
Λt′g

ΥΛ)

Now, observe that as t′ is free we essentially have a statement of 10 different

equations, one for each value of t′. We note that classical electromagnetism

only concerns itself with the Minkowski dimensions, hence we only need to

seek agreement in these coordinates. For this reason we choose to only con-

sider the equations where t′ is a Minkowski coordinate. If we also note that

the components of the torsion are the structure coefficients for commutation

relations we can use this to remove a few more terms. The torsion restricted

to Minkowski coordinates for the commutation of two space-time transforma-

tions is zero, thus the first term is zero, and the torsion restricted to to the

Lorentz coordinates for the commutation of a boost or rotation and a space-

time transformation is zero hence the third term is zero as well. Thus we are

left with:

∇iFit′ + ∇ΣFΣt′ =
1

2
(FiΩTΩ

rt′g
ir + FΥjT

j
Λt′g

ΥΛ)

Now if we take the limit of r → ∞, then we also see from the commutation

table that the term TΩ
rt′ = 0 as the table collapses to that of the Poincare Lie
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algebra. Thus we are left with:

∇iFit′ + ∇ΣFΣt′ =
1

2
FΥjT

j
Λt′g

ΥΛ

To get rid of the second and third term we note that the for the metric gij in

ordinary units as r → ∞, the Minkowski components approach zero, but for

the metric gij it’s the Lorentz components that become insignificant, hence in

the limit of large r the third term is zero. As to the second term we assume

the Minkowski components of Ai are independent of the Lorentz coordinates

and we recall from the beginning of chapter 8 that we assume the Lorentz

components make contributions of the order 1
r
, and therefore may be discarded

in the limit of large r. Thus we have (assuming Ct′ is zero):

∇iFit′ = 0

There is actually another way to demonstrate this result, which is perhaps

more elegant and satisfying from the perspective of the model as it relies on

the operator identities that are particular to the model. Consider the definition

of the field tensor, using tensor quantities:

1

2
girFimTm

rj =
1

2
gir(∇iAm −∇mAi − T k

imAk)T
m
rj

=
1

2
gir(Tm

rj∇iAm − Tm
rj∇mAi − Tm

rj T
k
imAk)

=
1

2
(girTm

rj∇iAm + gmrT i
rj∇mAi + gikTm

rj T
r
imAk)

= Tm
rj∇rAm − 3Aj (9.35)

We note also that the invariant curl operator is defined as ▼✖ = ∇iTi(
∗

∗
).

Looking at the first term of 9.34 it is tempting to identify it as the curl of Aj.

If the action of the curl operator on a contravariant vector is

∇i(Ti(
∗

∗
)vk) = T k

ij∇ivj
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Its action on a covariant vector is

∇i(Ti(
∗

∗
)vk) = −T j

ik∇ivj

So we can see that the first term is in fact the negative of the curl of Aj.

Consider, now, equation 6.29:

▼✖ (▼f) = −3▼f

Thus if we let ▼f = vk we see this is expressed explicitly as

T k
ij∇ivj = −3vk

We wish to rewrite this for a covariant vector field

T k
ij∇ivj = T k

ij∇i(gxjvx)

= gxjT k
ij∇i(vx)

= −gkjT x
ij∇i(vx)

= gkj(▼✖ v)j (9.36)

Thus for a covariant vector field the relationship is the same (provided vk is

the gradient of a scalar field)

▼✖ vk = −T j
ik∇ivj = −3vk

The relevance of this to 9.34 is that if we rearrange this equation we get

T j
ik∇ivj − 3vk = 0

Which upon replacing vx with Ax we see is the right-hand side of 9.34.

Thus we have the condition that if the electromagnetic potential Ai is the
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gradient of a scalar field then equation 9.34 is identically zero. It should be

noted that we have encountered this possibility before, it turns out this is

equivalent to the condition that the bilinear form sαβ is totally invariant. It

was this condition that Crump proved implied the existence of only trivial EM

phenomena, [2]. As a result we note that Ai = ▼f is the zero field condition.

So, by identity the expression:

∇iFit = 0

is true.

Interestingly, the equivalence

1

2
girFimTm

rj = (▼✖ A)j − 3Aj

Allows us to make one more observation. If we now consider equation 6.30

recalling that the curvature vector Rk = 0, we see

▼• (
1

2
girFimTm

rj ) = ▼• (▼✖ A) − 3▼• A

For which the right hand side, by the identity, is zero. The implication of this

being that

▼• (∇iFij) = ▼• (
1

2
girFimTm

rj )

▼• (∇iFij) = 0

Thus this equation implies

∇iFij = C ′

j

Where C ′

j is a new divergence-less quantity given by:

C ′

j =
1

2
girFimTm

rj + Cj
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If we identify Cj the current density vector then we view this one as a modified

charge density vector, and we note that using our approximation technique

from before that the difference between the two drops to zero as r → ∞ and

we are left with

∇iFij = Cj

Which in the event that Cj = 0, is the source free case.

Thus we have been able to show that the divergence of our field tensor is,

itself, equal to a divergence-less vector quantity and that in the event of there

being no real EM phenomena (Aj = ∇jf), is zero. In doing so we have shown

that the modified Ampere-Gauss equation is consistent with the Ampere-Gauss

equation for curved space [11].

To complete our examination we would like to show that in flat space this

result gives us the usual form of the Ampere-Gauss equation. To do this

consider the modified AG equation, and expand the covariant derivative:

∇iFij =
1

2
girFimTm

rj + Cj

∂iFij − gitΓs
tiFsj − gitΓs

tjFis =
1

2
girFimTm

rj + Cj

∂iFij − gitΓs
(ti)Fsj − gitΓs

(tj)Fis +
1

2
gitFisT

s
tj =

1

2
girFimTm

rj + Cj

∂iFij − gitΓs
(ti)Fsj − gitΓs

(tj)Fis = Cj

Observing that our flat space condition is that the Christoffel symbols are zero

(Γk
(ij) = 0), we get our result:

∂iFij = Cj

Which considering our interpretation of Cj as the current density vector, is

the classical flat space form of the Ampere-Gauss equation.
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9.3.2 Examining Gravity

Having determined that the identity proven in 9.2 gives us equations for elec-

tromagnetism consistent with the Ampere-Gauss equation, we would now like

to switch our attention to the gravitational component, which will be referred

to as the Ampere-Gauss-Hawthorn equation (or AGH for short) and see

how it constrains the curvature of the manifold and hence the gravitational

force.

Consider equation 9.31

∇iRx
ij −

1

2
girRx

imTm
rj = Dx

j

As mentioned before, by analogy with equation 9.30 we would expect this

equation to represent the source equation for gravity, where the tensor Dx
j is

tentatively proposed to represent the energy-momentum tensor. However, if we

make this identification then to successfully argue our case we must show that

this equation reduces to Einstein’s equation-if not identically then at least in

the limit of large r. This immediately presents a problem in that equation 9.31

is a differential equation with covariant derivatives of the reduced curvature

tensor and Einstein’s equation is not. On top of this we make the observation

that we already have equations consistent with Einstein’s field equations, ob-

serve: we know from the Bianchi identities that the 10-dimensional Einstein

tensor is divergence-less

∇i(Rij −
1

2
gijR) = 0

Which if we ”undo” the covariant derivative leaves the right hand side arbitrary

provided it’s divergence-less, hence:

Rij −
1

2
gijR = Eij (9.37)
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Where ∇iEij = 0. We will call these the Einstein-Hawthorn field equations.

Using equation 6.18 to rewrite this we get:

R̂ij −
1

2
gijR̂ − 6gij = Eij (9.38)

Thus the Einstein-Hawthorn field equations are consistent with Einstein’s field

equations provided Eij = κτij, where τij is the energy-momentum tensor of

relativity and κ is a constant of proportionality. However, this is the degree of

freedom that motivated Einstein to introduce the cosmological constant NOT

the energy-momentum tensor. There are two reasons though, that prevent us

from making that identification:

a) The accepted form of the cosmological term is: Λgij. We note that this is

totally invariant, which is a condition we cannot guarantee for Eij

b) We already have an appropriate candidate for the cosmological term aris-

ing naturally from the correspondence between the Einstein-Hawthorn

tensor and the Einstein tensor.

Thus, in the event that we take Eij to be the energy-momentum tensor, then it

would appear that we have two source terms related to gravitational phenom-

ena. Thus we either have equivalent but aesthetically different formulations of

the same phenomena, or we have independent equations describing indepen-

dent phenomena caused by independent sources. Which it is, it is not clear,

we therefore hold off on any physical interpretations as of yet and look only

for what may be distilled from the mathematics.

9.3.2.1 Corollaries and Limiting Cases

Here we will explore a few identities and approximations that we may make

using the Einstein-Hawthorn field equations and the AGH equations. To start

we will give an equivalent expressions for the AGH equation:
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Corollary 9.2 An equivalent form of the AGH equation is given by:

1

6
gxbT k

bt∇iR̂t
ijk −

1

12
girgxbR̂t

imkT
k
btT

m
rj − 3

4
1x

j = Dx
j (9.39)

Recalling that the hat denotes the curvature constructed from the symmetric

part of the vector connection.

Proof. Substitute the expression given for the Riemannian curvature tensor

from equation 6.18 into equation 9.31 and simplify.

2

We can produce another relationship regarding the curvature and the tensor

Dx
j by contracting equation 9.31 with the torsion.

Corollary 9.3 If Rs
ijk is the Riemannian curvature tensor and Dx

j is the

divergence-less tensor from before, then together they satisfy the following equa-

tion:

gir(∇rR
s
ijk + Rs

kmiT
m
jr ) = Dx

j T
s
xk (9.40)

Proof. If we take our initial equation 9.31 and contract with the torsion tensor

T s
xk:

∇iRx
ijT

s
xk =

1

2
girRx

imTm
rj T

s
xk + Dx

j T
s
xk

∇iRs
ijk =

1

2
gir(Rx

imT s
xk)T

m
rj + Dx

j T
s
xk

=
1

2
girRs

imkT
m
rj + Dx

j T
s
xk

= −1

2
gir(Rs

mki + Rs
kim)Tm

rj + Dx
j T

s
xk

=
1

2
gir(Rs

kmi − Rs
kim)Tm

rj + Dx
j T

s
xk

=
1

2
(girRs

kmiT
m
rj + gmrRs

kimT i
rj) + Dx

j T
s
xk

= girRs
kmiT

m
rj + Dx

j T
s
xk (9.41)
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Rearranging this gives

gir(∇rR
s
ijk + Rs

kmiT
m
jr ) = Dx

j T
s
xk (9.42)

Thus completing the proof.

2

We next consider our first constraint on the tensor Dx
j .

Corollary 9.4 The divergence-less tensor Dx
j must satisfy the differential equa-

tion:

gis∇iD + Dx
j T

j
sx = 0 (9.43)

where D = trace(Dx
j ).

Proof. Letting x = j in equation 9.31 we see

∇iRj
ij −

1

2
girRj

imTm
rj = Dj

j

∇iRi −
1

2
girRir = D

−1

2
R = D

∴ R = −2D (9.44)

Again, considering equation 9.31, but now contracted through by T j
sx

∇iRx
ijT

j
sx −

1

2
girRx

imTm
rj T

j
sx = Dx

j T
j
sx

∇iRis −
1

2
girRx

imTm
rj T

j
sx = Dx

j T
j
sx (9.45)

Examining the second term and considering the first Bianchi:

Rx
imT j

sx = −Rx
msT

j
ix − Rx

siT
j
mx
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Substituting this back into the second term we see

1

2
gir(−Rx

msT
j
ix − Rx

siT
j
mx)T

m
rj = −1

2
girRx

msT
j
ixT

m
rj − 1

2
girRx

siT
j
mxT

m
rj

= −1

2
gmrRx

ms(6gxr) +
1

2
girRx

si(6gxr)

= 3(−1m
x Rx

ms + 1i
xR

x
si)

= 3(Rs + Rs)

= 0 (9.46)

Therefore equation 9.45 reduces to

∇iRis = Dx
j T

j
sx (9.47)

Thus we have equations relating the curvature scalar to the trace of Dx
j (equa-

tion 9.44) and the divergence of the Ricci tensor to Dx
j T

j
sx (equation 9.47),

we note also that as the 10-dimensional Einstein tensor is divergence-less then

we also have an equation relating the divergence of the Ricci tensor to the

divergence of the curvature scalar:

∇iRis =
1

2
gis∇iR

Substituting the right hand side of this equation in for the divergence of the

Ricci tensor in equation 9.47 and using the expression for R in terms of D we

get

1

2
gis∇i(−2D) = Dx

j T
j
sx

Therefore, rearranging we see:

gis∇iD + Dx
j T

j
sx = 0



114

Thus concluding the proof of the proposition.

2

Now we turn our attention to the case where space is empty. We use the

empty space condition put forward in [2]: Γk
ij = −1

2
T k

ij. We arrive at this

condition simply by boiling off all but the necessary parts of the connection.

As our minimum requirement is that at each point the Lie algebra structure

is preserved, the torsion must be non-zero. As the antisymmetric component

of the connection is −1
2
T k

ij, this is the only component we can’t set to zero.

Thus we have our ”empty space” condition. This assumption is strengthened

by noting that the symmetric component of the connection is the Christoffel

symbol.

Proposition 9.5 In the absence of matter (empty space), the divergence-less

tensor Dx
j satisfies the equation:

Dx
j = −3

4
1x

j (9.48)

Proof. Consider the empty space condition Γk
ij = −1

2
T k

ij. Under this condition

the curvature tensor takes on the form: Rs
ijk = 1

4
T x

ijT
s
xk. With this result in

mind consider now the third line of the proof of the previous proposition:

∇iRs
ijk =

1

2
girRs

imkT
m
rj + Dx

j T
s
xk

∇i(
1

4
T x

ijT
s
xk) =

1

2
gir(

1

4
T x

imT s
xk)T

m
rj + Dx

j T
s
xk

0 =
1

8
gir(T x

imTm
rj )T s

xk + Dx
j T

s
xk

= (
1

8
gir(T x

imTm
rj ) + Dx

j )T s
xk (9.49)

As the {T s
xk} are linearly independent and using a Casimir identity this implies:

Dx
j = −1

8
gir(T x

imTm
rj )

= −1

8
(6.1x

j )

= −3

4
1x

j (9.50)
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2

This result may also be achieved by setting R̂t
ijk = 0 in equation 9.38, which

we observe from the definition of the curvature tensor is equivalent to the

empty space condition. This same technique can be used to relate the reduced

curvature tensor to torsion in empty space.

Proposition 9.6 The empty space condition implies the relationship:

Rs
ij =

1

4
T s

ij (9.51)

Proof. Consider again the empty space condition: Rs
ijk = 1

4
T x

ijT
s
xk. Observe

that the left hand side of this expression can factorised into the reduced cur-

vature tensor and a torsion:

Rs
ijk =

1

4
T x

ijT
s
xk

Rt
ijT

s
tk =

1

4
T x

ijT
s
xk (9.52)

Rearranging this last expression we get

(Rx
ij −

1

4
T x

ij)T
s
xk = 0 (9.53)

As {T s
xk} form a linearly independent basis of the adjoint representation, the

coefficient Rx
ij − 1

4
T x

ij, must be identically zero. Therefore we can see that in

empty space the reduced curvature tensor is simply: Rx
ij = 1

4
T x

ij.

2

Having derived a few corollaries and investigated a few approximations we

would now like to try and establish a relationship between the divergence-less

constants Dx
j and Eij.

Proposition 9.7 If D = trace(Dx
j ) and E = trace(Eij), then D = 1

8
E.

Proof. Consider the Einstein-Hawthorn equation:

Rij −
1

2
gijR = Eij
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Taking the trace of this we get

−4R = E (9.54)

But R = −2D, therefore

8D = E (9.55)

Dividing through by 8 completes the proof.

2

We also note that if we consider the identity given by equation 9.48, we can

assign numerical values to R, D, and E.

Corollary 9.8 Using the empty space condition and considering equations

9.44, 9.48, and 9.55, we can determine explicit values for D, R, and E:

D = −15

2
, R = 15, and E = −60

Proof. Equation 9.48 tells us that in empty space the divergence-less tensor

satisfies the relationship:

Dx
j = −3

4
1x

j

Letting x = j we see this expression becomes

D = −3

4
× 10

= −15

2
(9.56)

Equation 9.44 tells us R = −2D, therefore

R = 15 (9.57)

And, as D and E are related via equation 9.55, E satisfies:

E = −60 (9.58)
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Completing the the proof.

2

Proposition 9.9 It may be shown that the tensors Ers and Dx
j satisfy the

equation:

gir(ErsR
s
ij + Rs

jxrR
x
is) = ∇x(D

x
j − 1x

j D) (9.59)

Proof. Consider the covariant derivative of the Einstein-Hawthorn equation

contracted with the upper index:

∇x∇iRx
ij + ∇x(

1

2
girRx

imTm
jr ) = ∇xD

x
j (9.60)

As ∇xR
x
ij = 0 this reduces to:

gir∇x∇rR
x
ij = ∇xD

x
j (9.61)

Again, as ∇xR
x
ij = 0, the term on the left is equal to the commutator of ∇r

and ∇x acting on Rx
ij thus we see

∇x∇rR
x
ij = ∇xD

x
j

girT k
xr∇kR

x
ij + girRxr(

∗

∗
)Rx

ij = ∇xD
x
j

−grk∇kR
x
ijT

i
xr + girRxr(

∗

∗
)Rx

ij = ∇xD
x
j

−∇rRrj + girRxr(
∗

∗
)Rx

ij = ∇xD
x
j (9.62)

We have from a previous identity that −∇iRij = Dx
s T

s
xj and similarly as Dx

j

satisfies equation 9.43 we have that

∇iRij = −gij∇iD
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Substituting this into equation 9.62 and rearranging we get:

girRxr(
∗

∗
)Rx

ij = ∇x(D
x
j − 1x

j D) (9.63)

Expanding out the left hand side we see

gir(Rx
xrsR

s
ij − Rs

xriR
x
sj − Rs

xrjR
x
si) = gir(RrsR

s
ij − Rs

xriR
x
sj − Rs

xrjR
x
si)

= girRrsR
s
ij + gisRm

xrT
r
miR

x
sj

−girRs
xrjR

x
is

= gir(Rs
rjx + Rs

jxr)R
x
is (9.64)

Observe

girRs
rjxR

x
is = girRm

rjT
s
mxR

x
is = girRimRm

rj

Therefore putting it all together the equation becomes

girRrsR
s
ij + girRs

jxrR
x
is = ∇x(D

x
j − 1x

j D) (9.65)

If we observe that Rij = Eij + 1
2
gijR then we get:

gir(Ers +
1

2
grsR)Rs

ij + girRs
jxrR

x
is = ∇x(D

x
j − 1x

j D)

gir(ErsR
s
ij + Rs

jxrR
x
is) = ∇x(D

x
j − 1x

j D) (9.66)

Proving the proposition.

2

This equation is decidedly ugly. However it does achieve something: it gives us

an equation that relates Eij with Dx
j . The importance of this is that we would

like to identify Eij as the energy-momentum tensor of relativity, however due

to its relation to Cj, we expect Dx
j to be some sort of gravitational source

term. Therefore if both of them represent sources in some form then there

should be some sort of equivalence between them. This equation does provide
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this relationship to some extent, it is far from clear what sort of relationship it

implies, though. Most importantly, it fails to tell us whether the AGH equa-

tion and the Einstein-Hawthorn equation describe the same phenomena and

are therefore equivalent expressions or if they are indeed independent.

In fact, this last equation is a fairly good metaphor for this section in that

while the relationship is true and presumably (hopefully) highlights something

meaningful, we have yet to draw any solid conclusion from it. So while we have

expanded on our initial discoveries and derived several corollaries, we are still,

largely, in the same position we were in at the beginning of the section. The

most salient issue we’d like to clear up is what exactly the AGH equation is

implying. While our Ampere-Gauss equation and Einstein-Hawthorn equation

are essentially variations on the classical theme, the AGH equation is unique

to this model. In order to understand the role the AGH equation plays we

need an in-depth investigation into its implications.

9.3.2.2 Determining a Value for r

Having considered the some corollaries and approximations, we now wish to

turn our attention to the Einstein-Hawthorn equation:

R̂ij −
1

2
gijR̂ − 6gij = Eij

We observe that if Eij = κτij, then this is equivalent to Einstein’s field equa-

tions with a cosmological constant: Λgij = −6gij. The significance of this

equation is it gives a very exact value for Λ, namely Λ = −6 and as [Λ] = m−2

this is 6 natural inverse units of length squared. Recalling that a natural unit

of length is r seconds times c metres per second, if we recall also that there is

an experimental bound on the upper limit of the absolute value of the cosmo-

logical constant, Λ ≤ 10−46m−2 in ordinary units, then we now have a means

of determining a bound on the value of r. Consider the value of Λ in natural
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units and convert back to ordinary units:

|6| = |Λ|
6

r2c2
= 10−46 (9.67)

Rearranging for r we get

r =

√

2

3
1030 (9.68)

This gives an approximate value of r = 8.2 × 1015 seconds. If we convert this

to years, we find this corresponds to an r of approximately 26 million years.

As this was determined using an upper bound for Λ, this figure represents a

lower bound for r. It should be noted that we should not confuse r with the

actual global radius of the universe. As we see that r is associated with the Lie

algebra we note therefore that it is a local quantity. Specifically, r is a measure

of the extent to which spatial translations commute, it is not a prediction of

the age or size of the universe. With that in mind we are therefore not obliged

to try and reconcile our r value with the current measured value of the age

of the universe, which is 13.772 ± 0.059 billion years (thus, several orders of

magnitude larger than our r value)[38].

Thus we have finally been able to determine a potential lower bound for our pa-

rameter r. The importance of this figure is that it gives us a clue as to distance

scales over which observed behaviour would start to deviate from the Poincare

paradigm and thus whether it satisfies our previously mentioned Goldilocks

condition. As galactic diameters range between 3,000-300,000 light-years, we

see that these are approx. .001r − .01r, thus we would expect there to be a

small, but potentially measurable effect in galactic dynamics corresponding to

an r value of approx. 26 million years. Therefore we have the model’s first

experimental prediction:

Prediction. There should be, corresponding to an r value of 26 million years,
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aberrations in the dynamics of galaxies, both gravitationally and electromag-

netically, that remain unobserved or undiagnosed in the current cosmological

model. We expect these discrepancies to be more pronounced in larger galaxies.

The obvious omission is what exactly these effects are thus the prediction

is somewhat vague. Note the inclusion of the electromagnetic component, it is

necessary to include this as we recall our classical electrodynamics approxima-

tion is only valid in regions where r can be assumed infinitely large, obviously

we can see that this is not the case in galactic dynamics. Its vagueness, how-

ever should not detract from its significance as, by being the first prediction

about observable behaviour, it represents the point at which the model passes

from a mathematical framework into a genuine scientific theory.



Chapter 10

Conclusion

10.1 Discussion of Results

As was hoped we have been able to demonstrate a natural geometric origin to

the equations governing gravity, with the derivation highlighting an intimate

connection between electromagnetism and gravity. It was proven that within

the identities:

Rβ
isαT s

jk + ∇i(R
β
ijα)

ijk
= 0

∇iRβ
ijα − 1

2
girRβ

imαTm
rj = Kβ

jα

is encoded the governing equations for electromagnetism and gravity, arising

in pairs giving one EM equation and one gravity equation each. The first

identity gives us the Faraday-Gauss equation and the Einstein field equation

with a non-zero cosmological constant (Einstein-Hawthorn equation) and the

second equation gives us the Ampere-Gauss equation and the Ampere-Gauss-

Hawthorn equation.

Using the cosmological constant predicted in the Einstein-Hawthorn equation

we were able to give the first estimate as to the value of r. Its value was de-

termined to be 6 in natural units, which given the experimental bound on the

cosmological constant allowed us to determine a lower bound for r: approxi-
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mately 26 million years. Determining this lower bound allowed us to predict

the distance scale over which the effects of this model translate to measurable

deviations from the Poincare regime. Thus it is believed that the effects of

this model should show themselves at a galactic level.

10.2 Future Research Avenues

10.2.1 Extension of the Thesis

As to future interests regarding the work done in this thesis, it is still necessary

to analyse the implications of the Einstein-Hawthorn and the AGH equations

in depth and hopefully produce a clearer picture of how they relate to each

other. It is also hoped that future investigations will be helpful in produc-

ing constraints on the divergence-less tensors Cj, D
x
j and Eij, providing more

insight into their nature.

10.2.2 Long Standing Issues

There are also a few long standing issues that need still to be addressed.

Boost and Rotation Dimensions. In light of the similarities of our equa-

tions for gravity and electromagnetism to their classical analogues, the

need for a definitive interpretation of the components in the boost and

rotation dimensions is emphasized.

Versor Representation. Almost all of the working has been possible with-

out considering the nature of the versor component of the connection.

For a complete picture of what the model is saying we need to better

understand the role that the versors play. While we would like to asso-

ciate the versor components with the remaining strong and weak forces,

it can be observed that one barrier preventing such an association is the

problem of describing quarks and neutrinos with the model. If one refers

to the weight diagrams in [1], we notice that there is no representation
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that allows for the distribution of charges into thirds that is necessary

for the quark formalism. This is a problem that must be addressed.

Bullet Scalars. In order to allow for non-trivial EM fields we must introduce

scalar fields that parallel transport non-trivially. It is not known if fields

like this exist or what sort of physical significance they have.

Quantization. The theory laid out here is a classical theory, ultimately it

will require quantization.



Appendix A

Representations of the Lie

Algebra so(2, 3)

A.1 Representations of the Lie Algebra so(2,3)

In this section we look into the various representations of the Lie algebra

so(2, 3). Before giving a general description it is worthwhile to go over a few

examples that are of particular importance to the model.

A.1.1 The Adjoint Representation

Let g denote the Lie algebra and define the adjoint mapping as

ad : g→ gl(g)

Which explicitly acts on a element of the algebra as

adX(Y ) = [X,Y ]

It may be shown that this operation preserves the Lie bracket, and thus de-

fines a Lie homomorphism (p.55, [3])(and in the case that the Lie algebra is

semi-simple, an isomorphism). We see, then, that the adjoint mapping is the

representation of the algebra when acting on the 10D space spanned by the
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natural representation.

Matrices of this representation may be generated by considering a coordinate

vector in g (t, x, y, z, a, b, c, i, j, k)T and the commutation relations between el-

ements of g:

adT : X → A

therefore if X and A are represented by vectors

X = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0)T and A = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0)T

respectively, then (adT )52 = 1. Thus the matrix for adT is

adT =



























































0 0 0 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0 0 0

0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 −1 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0



























































Repeating this process for matrices X through K produces the rest of the

adjoint representation.

A.1.2 The Lie Algebra sp(4, R)

Consider a skew-symmetric bilinear form B acting on u, v ∈ R
4

B[u, v] =
2

∑

k=1

ukvn+k − un+kvk
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Let

Ω =



















0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0



















We then pick a basis such that B[u, v] may be rewritten as:

B[u, v] = uT Ωv

We define the matrix group Sp(4, R) as the set of 4× 4 matrices that preserve

this bilinear form. Thus if M ∈ Sp(4, R), then M satisfies

B[Mu,Mv] = B[u, v]

As u, v ∈ R
4 are arbitrary, this implies: MT ΩM = Ω. This in turn implies

the relationship Y T Ω = −ΩY for an element Y of the Lie algebra. We may

therefore proceed as in the case of the canonical representation and determine a

basis for the associated Lie algebra, sp(4, R). This basis is given in Figure A.1.
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T = 1
2



















0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0



















X = 1
2



















0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0



















Y = 1
2



















1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1



















Z = 1
2



















0 0 −1 0

0 0 0 1

−1 0 0 0

0 1 0 0



















A = 1
2



















0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0



















B = −1
2



















0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0



















C = 1
2



















−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1



















I = 1
2



















0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0



















J = 1
2



















0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0



















K = 1
2



















0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0



















Figure A.1 Representation of sp(4, R) ≃ so(2, 3)

If we consider the commutators of these matrices we find that they are identical

to that of so(2, 3), hence so(2, 3) and sp(4, R) are isomorphic.

A.1.3 Ω-Symmetric Representation

We may also construct a representation of sp(4, R) by considering the matrices

P that satisfy the relationship P T Ω = ΩP . Matrices with this property will

be called Ω-symmetric and a quick proof can show that if P is Ω-symmetric

and M ∈ sp(4, R) then [M,P ] is Ω-symmetric as well.
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Proof.

[M,P ]Ω = PMΩ − PMΩ

= MΩP T + PΩMT

= −ΩMP T T + ΩP T MT

= Ω[M,P ]T 2

It is easy to show that this action preserves the Lie bracket. Therefore if we

define a map φ, mapping M ∈ sp(4, R) to φ(M) such that its action on an

element P ∈ Ω-symmetric matrices is equivalent to the adjoin action, i.e.

φ(M)P = [M,P ]

It may be seen that the matrices φ(M) form a representation of sp(4, R) acting

on the vector space of Ω-symmetric matrices.

We may determine the basis of the Ω-symmetric matrices as follows

Ω =







0 I2

−I2 0






and P =







A B

C D







Ω-symmetry of P therefore implies







−CT AT

−DT BT






=







C D

−A −B







This implies that

C =







0 c

−c 0






, A = DT =







a d

±d e






andB =







0 b

−b 0






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Hence, a general Ω-symmetric matrix has the form

P =



















a d 0 b

±d e −b 0

0 c a d

−c 0 ±d e



















There are 6 independent components thus we may find 6 linearly independent

basis elements, these are given in Figure A.2.

1 = 1
2



















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



















Pλ = 1
2



















0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0



















Pt = 1
2



















0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0



















Px = 1
2



















−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1



















Py = 1
2



















0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0



















Pz = 1
2



















0 −1 0 0

−1 0 0 0

0 0 0 −1

0 0 −1 0



















Figure A.2 Basis for the 6D representation

Thus this representation of sp(4, R) is 6-dimensional. However it is not an ir-

reducible representation as it can be shown that the adjoint action of sp(4, R)

on this basis leaves the subspace spanned by 1 invariant. Therefore the 6D

representation may be decomposed into an irreducible 1D representation and

an irreducible 5D representation, which under the action of sp(4, R) give the

trivial representation and the natural representation, respectively.
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A.2 Representation Theory of so(2, 3)

Having presented a few examples of representations of so(2, 3), we will now

give a brief overview of representation theory and its application to so(2, 3).

What follows may be found in more depth in [1] and general theory regarding

representations may be found in [3] and [4].

Our goal is to state the Theorem of the Highest Weight and discuss its appli-

cation to so(2, 3), but before we do that we must clear up some terminology.

We start off with a few definitions.

Definition A.1 If g is a complex semi-simple Lie algebra, then a Cartan sub-

algebra of g is a maximally commutative complex sub-algebra h of g such that

for all H ∈ h, adH is diagonalisable.

As all elements of a Cartan sub-algebra (CSA) commute they preserve each

others eigenspaces, this motivates the definition of weights and weight vectors:

Definition A.2 If π is a representation of g on a vector space V with CSA h,

and if v ∈ V satisfies:

π(Hi)v = λiv, ∀H ∈ h and λi ∈ C

then v is called a weight vector. The ordered set (λ1, ..., λn) such that:

π(H1)v = λ1v

...

π(Hn)v = λnv

is called a weight.

Thus we can see that weight vectors and weights are simply eigenvectors and

eigenvalues of the CSA. In the event that the representation is the adjoint rep-

resentation then we have a special name for the weights and weight vectors:
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in this representation weights are called roots and weight vectors are called

root vectors.

For so(2, 3) specifically, it is simple (this is easily checked by examining the

table of commutation relations) therefore we may look for a CSA.

To find the CSA we need to look for the largest commutative sub-algebra. This

is easily achieved by considering the table of commutators. We observe that

time translations commute with rotations, as do those of spatial translations

and Lorentz boosts bar {X,A}, {Y,B} and {Z,C}. For ease of interpretation

of eigenvalues, we choose to work with the time translations and rotations.

Thus we pick {T,I} to work with. If we go about solving their characteristic

polynomials we find they are diagonalisable over the complex numbers (and

are therefore compact operators). According to the corollary on page 30 of

[4](preservation of Jordan decomposition, specific case: xn = 0), this rela-

tionship holds in any finite dimensional complex representation, i.e. they are

commutative and diagonalisable in every representation.

Let so(2, 3) be represented on V, and let v ∈ V be some non-zero vector

such that

T (v) = qv (A.1)

I(v) = sv (A.2)

Where q, s ∈ C. According to our previous definitions the pair (q, s) is a weight

and v is a weight vector. We may classify weights in terms of being higher

or lower such that the highest weight is that for which q0 is the maximum

eigenvalue of T and s0 is the maximum eigenvalue of I that can be coupled

with q0. Now we may state the Theorem of the Highest Weight as found in

[3].
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Theorem A.1 (Theorem of the Highest Weight) If L is a complex semi-

simple Lie algebra, then:

1. Every irreducible representation has a highest weight.

2. Two irreducible representations with the same highest weight are equiva-

lent.

We can see therefore, that every irreducible representation of so(2, 3) can be

classified according to its highest weight, with each weight furnishing us with a

distinct irreducible representation. Weights may be represented pictorially in

weight diagrams and each irreducible representation has unique set of weights.

This is done for so(2, 3) in [1] on page 18. It can be shown that so(2, 3) has IRs

of dimension 1, 4, 5, and 10, these correspond to the trivial, canonical sp(4, R),

canonical so(2, 3), and the adjoint representations respectively. Further rep-

resentations may be constructed by taking direct sums or tensor products

of these representations, though they will not necessarily be irreducible. All

finite dimensional representations will be decomposable into direct sums of

irreducible representations.



Appendix B

Proofs of Tensor Properties

In this appendix we will give the proofs of the propositions mentioned in section

4.1.

B.1 Tensor Derivations

Proposition B.1 The following holds for all tensor derivations:

i) If D and E are tensor derivations then so is [D,E].

ii) Every tensor derivation has a rank (i
j) and maps tensors of rank (k

l ) to

tensors of rank (k+i
l+j ).

iii) If D is a tensor derivation and S any tensor, then S ⊗ D is a tensor

derivation where (S ⊗ D)(T ) = S ⊗ D(T )

Proof.

For i). we must show that the commutator bracket of two tensor derivations

satisfies linearity, the Leibnitz condition on tensor products and commutes

with contraction:

Let a be some scalar, X and Y tensors and D and E are tensor derivations
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Linearity.

[D,E]aX = DE(aX) − ED(aX)

= D(aE(X)) − E(aD(X))

= aD(E(X)) − aE(D(X))

= a[D,E]X

[D,E](X + Y ) = DE(X + Y ) − ED(X + Y )

= D(E(X) + E(Y )) − E(D(X) + D(Y ))

= DE(X) + DE(Y ) − ED(X) − ED(Y )

= [D,E](X) + [D,E](Y )

Leibnitz.

[D,E](XY ) = DE(XY ) − ED(XY )

= D(E(X)Y + XE(Y )) − E(D(X)Y + XD(Y ))

= D(E(X))Y + E(X)D(Y ) + D(X)E(Y ) + XD(E(Y ))

−E(D(X))Y − D(X)E(Y ) − E(X)D(Y ) − XE(D(Y ))

= (DE(X) − ED(X))Y + X(DE(Y ) − ED(Y ))

= [D,E](X)Y + X[D,E](Y )

Commutation with contraction.

As D and E are tensor derivations, they individually conserve contraction.

Therefore any combination of the two will preserve the contraction, hence the

commutator bracket will also preserve it. Thus [D, E] commutes with contrac-

tion.

Thus, i) is proven.
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For ii), let f be a function on the manifold, and consider it a tensor of rank

zero. Consider the tensor derivation D, which maps tensors of rank zero to

tensors D(f) of rank (i
j). Let T be a tensor of rank (k

l ). Consider the action

of D on the product fT:

D(fT ) = D(f)T + fD(T )

We note that D(f)T has rank (i+k
j+l ) thus so does the second term. But f is

rank zero therefore D(T) must have rank (i+k
j+l ). We conclude that a tensor

derivation maps tensors of rank (k
l ) to tensors of rank (i+k

j+l ), thus we associate

(i
j) with the tensor derivation and call it the rank of the tensor derivation.

Thus ii) is proven.

iii). follows from the definition. Note

(S ⊗ D)(T ) = S ⊗ D(T )

Therefore if T can be written as a tensor product XY, we see the above equiv-

alent to

S ⊗ D(T ) = S ⊗ D(XY )

= (S ⊗ D(X))Y + X(S ⊗ D(Y ))

Thus iii) is proven.

2

Proposition B.2 If E is a tensor derivation of rank (0
0) with E(f) = 0 for
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all functions f on M, then there exists a tensor Γi
j of rank (1

1) so that

E(Xα1α2...αm

β1β2...βn
) =

∑

s

Γαs

α̂s
Xα1...α̂s...αm

β1β2...βn
−

∑

t

Γβ̂t

βt
Xα1α2...αm

β1...β̂t...βn

Proof. Let v be a vector field and f be a scalar field. The action of E on fv

is given by E(fv) = E(f)v + fE(v). Hence it acts linearly on a vector field

and thus is equivalent to contraction with a tensor of rank {1, 1}.

Now, if we consider the vector fields {ei}, that form a basis of the tangent

space at each point, then v may be written v = viei. Considering the action

of E on v, we obtain E(v) = E(vi)ei + viE(ei) = viΓj
iej. Letting coordinates

describe tensors we write: E(vi) = Γi
tv

t.

Considering this action on the product uiv
i we find

E(uiv
i) = E(ui)v

i + uiE(vi)

0 = E(ui)v
i + uiΓ

i
tv

t

As v is arbitrary we can conclude that E(ui) = −Γt
iut.

This argument may be extended inductively to tensors of arbitrary rank, thus

proving the original proposition.

2

Proposition B.3 Every tensor derivation of rank (m
n ) takes the form:

Dλ1...λm
µ1...µn

= (aλ1...λm
µ1...µn

)i ∂

∂xi
+ Γλ1...λm

µ1...µn
(∗
∗
)

where

Γλ1...λm
µ1...µn

(∗
∗
) (Tα1α2...αm

β1β2...βn
) =

∑

s

(Γλ1...λm
µ1...µn

)αs

α̂s
Xα1...α̂s...αm

β1β2...βn
−

∑

t

(Γλ1...λm
µ1...µn

)β̂t

βt
Tα1α2...αm

β1...β̂t...βn
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This is proven in by observing that the components of Dλ1...λm
µ1...µn

are all deriva-

tions of rank (0
0).

2
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