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Abstract 

Aligned short harakeke fibre (New Zealand flax) mats were produced using dynamic sheet forming, 

impregnated with epoxy resin, then pressed and cured on a compression moulder to manufacture composite 

materials. These composites were found to have significantly higher tensile properties than planar random 

oriented short fibre composites; the tensile strength (136 MPa) obtained for the composites is higher than any 

seen in the literature to date for short natural fibre composites. Fibre orientation was not affected by fibre 

content despite the higher processing pressure required and fibre orientation factors obtained from Modified 

Rule of Mixtures equations for Young’s modulus and tensile strength were found to be similar.  

Keywords: A. Polymer-matrix composites (PMCs); B. Mechanical properties; D. Mechanical testing; E. 

Compression moulding. 
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1. Introduction 

Fibre orientation is an important parameter that affects the mechanical properties of composites including 

natural short fibre reinforced composites.  Even basic models for composite strength support that alignment is a 

major factor determining mechanical properties, through the use of an orientation factor, including the following 

Modified Rule of Mixtures for composite strength [1]: 

σc = k1k2σfVf + σm(1-Vf)         (1) 

where k1 is an orientation factor; σ and V are average tensile strength and volume fraction, respectively; 

subscripts c, f and m denotes composite, fibre and matrix, respectively; k2 is the length efficiency factor 

(incorporating to interfacial strength).  

Reinforcing fibres aligned parallel to the direction of the applied load provide the greatest composite strength. 

Long natural fibre can be easily aligned by hand combing [2, 3] or hand carding machines [4, 5]. Alternatively, 

intermediate processing can also be conducted such as that carried out for textile fibre including spinning to 

produce continuous material that can then be directionally controlled during composite manufacture, although 

this requires substantial infrastructure. It is more difficult to control alignment of short fibres, however, some 

degree of alignment can occur in processes involving material flow such as extrusion and injection moulding, 

although fibre can also be damaged during such processes. Production of aligned short natural fibre mats that 

could be used in compression moulding with both thermoplastic and thermosetting matrices to make composites 

sets a challenge.  

In this work, dynamic sheet forming, a technique normally used to make paper sheets, was used to prepare 

aligned short harakeke mats. Tensile properties of epoxy matrix composites made from these mats using 

compression moulding were evaluated and compared with randomly oriented short harakeke fibre-epoxy 

composites. Orientation of fibres in composites was also quantitatively estimated.  

2. Experimental 

2.1 Materials 

Long fibre bundles extracted mechanically from leaves of harakeke plants were obtained from the Templeton 

Flax Mill, Riverton, New Zealand and then were alkali treated at elevated temperatures for pulp which would be 

used as reinforcement in this work. The matrix was a low viscosity epoxy system comprised of Nuplex resin 

R180 and Nuplex standard hardener H180 (mixing ratio 5:1 by weight). 
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2.2 Methods 

2.2.1 Fibre pulping 

Harakeke fibre bundles were initially granulated using a mesh with holes diameter of 4 mm and then pulped 

using a laboratory scale pulp digester to remove unwanted fibre components and to break down fibre bundles 

into finer bundles and even single fibres (individual cells). Pulping conditions were similar to those published 

previously for harakeke fibre [6, 7]; fibre (70 g) and 2% NaOH solution with ratio of 1: 8 by weight were placed 

in a stainless steel canister. Canisters were then heated in a digester with a set programme so that the 

temperature was elevated from ambient to 170oC over 90 min and then held for 40 min. The pulp was cooled 

and thoroughly washed with water, then dried in an oven at 80oC for 24 hours. A pulp yield of 51% was 

determined from the weight of oven-dried pulp and raw fibre. Dried pulp was stored in air tight bags for later 

use.  

2.2.2 Fibre characterisation 

Fibre length and diameter were measured using Kajaani Fibrelab electronic sequential fibre analyser. Two 

samples of approximately 6000 fibres were analysed and a mean fibre length, diameter and fibre length 

distribution were reported. A few long and (or) coarse fibres which could block the analyser were removed from 

the sample using tweezers so actual fibre length and diameter could be slightly higher than from those analysed, 

however, due to the huge number of fibres measured, the difference was assumed negligible.  

Density of pulped harakeke fibre was measured based on ASTM D3800-99 which was described in the previous 

report [8]. Five rolls of pulped harakeke fibre mats weighing about 1 g were oven dried at 60o C for 72 hours 

and then placed in a vacuum oven at room temperature for 5 minutes to remove trapped air between fibre cells 

before testing. An average density was obtained. 

Thirty single pulped harakeke fibres were tensile tested based on ASTM C 1557-03. The method was described 

in detail in a previous research [8] with a system compliance value of 0.3136 was applied to obtain Young’s 

modulus of fibres. Average fibre tensile strength and Young’s modulus were calculated. 

2.2.3 Preparation of fibre mats 

Aligned harakeke pulped fibre mats were produced using an automatic dynamic sheet former (DSF) 

manufactured by Canpa, Canada. The main parts of the machine include a rotating centrifugal drum with 

screening fabric (called wire) on the inside surface of the drum and a travelling nozzle (Fig. 1). Water is 

introduced through the nozzle to build up a water wall on the wire which functions as a fibre cushion. The 
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thickness of the water wall can be set depending on the amount of fibre desired. During operation, the traversing 

nozzle sprays a flow of water and fibres (called stock) onto the wire to build up a fibre layer until the required 

thickness is obtained. Then the water is removed and a wet fibre web is formed on the wire. In this work, 40g of 

pulped harakeke fibre diluted in 20 litre of water was prepared to make a fibre web. The web was oven-dried at 

80oC for 24 hours and then cut into fibre mats (Fig. 2) with a size of 22 x 15 cm to fit in a compression mould. 

Planar random oriented harakeke pulped fibre mats were formed by hand. For this, a suspension of fibre in 

water was poured onto a screen with very fine holes such that fibres were deposited on the screen surface to 

form a wet fibre mat whilst the water ran through the screen.  The mat was press-dried with paper towels and 

then removed and oven-dried at 80oC for 24 hours. Dried fibre mats were cut to a size of 15 x 15 cm. A fibre 

mat weight of 105 g/m2 was determined. Mats were stored in sealed bags for use later. 

2.2.4 Fibre mat tensile testing 

The tensile testing of fibre mats was based on the Tappi standard T 404 cm-92. Ten strips of 15 x 2 cm for each 

direction, longitudinal and transverse, were cut from fibre mats and conditioned at 23o ± 3o C and 50% ± 5% 

relative humidity for at least 40 hours. Strips were then tensile tested using Instron-4204 universal testing 

machine fitted with a 10 N load cell at a crosshead speed of 1 mm/min. Breaking load was recorded and tensile 

strength was calculated by dividing the breaking load by the width of the tested specimen. Average longitudinal 

tensile strength (LTS) and transverse tensile strength (TTS) of ten specimens were reported. The fraction of 

TTS/LTS varies from 0 to 1, indicating the degree of fibre orientation in the paper, such that when fibres in the 

paper are randomly oriented, TTS/LTS equals 1; conversely, when fibres are unidirectionally oriented, the ratio 

is close to 0.   

2.2.5 Composite fabrication 

Aligned or randomly oriented short fibre mats reinforced epoxy composites were manufactured using 

compression moulding. Processes of resin impregnation, curing and post-curing  were was described previously 

[8]. Compression pressures of 0.5, 2.0, 3.7, 7.0 and 9.0 MPa were used for fibre contents 12, 27, 33, 46 and 52 

wt%, respectively.  
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2.2.6 Composite evaluation 

The density measurement of composites was based on ASTM 792-00. Distilled water was used as an immersion 

fluid. Densities of five composite specimens were measured and the average density was obtained. 

Composite tensile testing was based on ASTM D 3039 which was described in detail in the previous work [8]. 

Five rectangular specimens with nominal dimensions of 150 x 15 x 3 mm was tested on an Instron-4204 

universal testing machine fitted with a 50 kN load cell at a crosshead speed of 5 mm/min. Mean values of tensile 

strength and Young’s modulus of composites were reported. 

2.2.7 Microscopy 

Fibre surfaces and tensile fracture surfaces of composites were investigated using a Hitachi S4100 field 

emission scanning electron microscope (FESEM) operated at 5 kV. All samples were mounted on aluminium 

stubs using carbon tape and then sputter coated with platinum to make them conductive prior to observation.  

3. Results and discussion 

3.1 Fibre morphology 

The SEM image (Fig. 2) shows that not all fibres were separated into single fibres and there were some fibre 

bundles remaining due to the low concentration of NaOH solution used for fibre pulping. Closer observation 

(Fig. 3) showed wrinkled fibre surfaces which might enhance the fibre-matrix bonding supporting removal of 

non-cellulose such as wax, pectin and lignin to reveal surface substructure of the fibre [9]. Fig. 3a shows kink 

banks [10], naturally occurring fibre defects marked by arrows. However, the number of kink bands observed on 

pulped harakeke fibres was very small compared to the numbers that have seen in other work on flax fibre [10-

13] and hemp fibre [14]. These are believed to be due to the change of microfibril angle relative to the fibre axis 

at the defect region leading to the change of crystalline orientation [14] and act as a region of weakness  in the 

fibre. At the side of the kink bands, cracks on the surface were observed (Fig. 3b). These defects weaken fibres 

and could affect the mechanical properties of composites. 

3.2 Fibre physical and mechanical properties 

The average length and diameter obtained using a Kajaani Fibrelab analyser and density, tensile strength and 

Young’s modulus of pulped harakeke fibres are presented in Table 1. The density of 1.52 g/cm3 was higher than 

that of untreated harakeke fibre bundles reported in the previous research (1.27 g/cm3) [8]. This is likely to be 

due to non-fibrous materials such as vascular bundles, sheath cells, cuticles and non-cellulose materials such as 

lignin, pectin and wax being removed during pulping process. Lumen area fraction in harakeke fibre is 
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significant and it should be considered when calculating tensile strength and Young’s modulus of fibre [8]. 

Corrected values for tensile strength and Young’s modulus were obtained by dividing measured values by a 

correcting factor of 0.59 to take account of a lumen area fraction of 41% [8] 

3.3 Fibre mat assessment 

Fig. 4 shows a fibre mat made using DSF with even fibre distribution and some degree of orientation could be 

observed. Fibre orientation was further assessed through tensile testing of mats in both longitudinal and 

transverse directions. The ratio between transverse tensile strength (TTS) and longitudinal tensile strength (LTS) 

of DSF made mats can vary from 0.1 to 0.9 and as previously mentioned, the lower the TTS/LTS ratio the 

higher the degree of fibre orientation. A ratio of 0.30 was found in this work indicating good fibre alignment in 

the fibre mats.  

3.4 Evaluation of aligned short fibre composites 

The alignment of fibres was also confirmed by SEM micrographs of tensile fracture surfaces of composites (Fig. 

5); more fibre ends appear on the images of longitudinal tensile tested sample while more fibre imprints present 

on transverse tensile one. 

Longitudinal tensile properties of composites with fibre contents of 12, 27, 32, 46 and 52 wt% are shown in Fig. 

6 and 7 along with transverse and randomly oriented fibre composites with fibre contents of 12 wt% and 46 

wt%, respectively. It can be seen that aligned harakeke fibre mats improved tensile strength and Young’s 

modulus of the matrix even at a low fibre content of 12 wt% with increases of 35% and 19%, respectively. Both 

composite tensile strength and Young’s modulus increased with fibre content up to 46 wt%. Further addition of 

fibres did not improve composite tensile strength or Young’s modulus. The longitudinal tensile strength (LTS) 

of the composites containing 12 wt% fibre was 1.5 times higher than the transverse (TTS) giving a TTS/LTS 

ratio of 0.69 indicating that fibres were much more aligned on the longitudinal direction, a value higher than that 

for fibre mat due to the presence of a continuous phase (epoxy resin).  

The tensile strength at 46 wt% fibre content of aligned short fibre composite (136 MPa) was 78.5% higher than 

that of randomly oriented fibre composite (76.2 MPa) and the increase of Young’s moduli was 44.6 % (10.5 

GPa compared to 7.26 GPa) supporting the improvement brought about by fibre orientation on tensile properties 

of short fibre composites. The maximum tensile strength and Young’s modulus of 136 MPa and 10.5 GPa, 

respectively at fibre content of 46 wt% for longitudinal tensile tested samples are higher than any reported in the 

literature to date for natural fibre composites excluding those where hand-layup or a continuous fibre form has 
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been produced and furthermore, these values overlap with those achieved using these procedures. So improved 

alignment here has more than compensated for the shorter length used, which also gives potential for use with 

waste fibre. Good bonding between pulped harakeke fibres and the matrix and fewer defects compared to bast 

fibres which were discussed in Section 3.1 are likely to have contributed to the tensile properties of pulped 

harakeke fibre-epoxy composites. However, the main reason appears to be due to fibre alignment as discussed 

above. 

3.5 Determining fibre orientation factors 

Given that fibre orientation is influential on performance, it is valuable to be able to assess the degree of 

orientation. Confusion arises in the literature regarding the use of orientation factors. Although different values 

are found from composite strength and stiffness with their respective modified Rule of Mixtures equations [15, 

16], orientation factors used to predict strength and stiffness are sometimes assumed to be the same [17]. In this 

work, orientation factors are evaluated for strength and stiffness separately.  

3.5.1 Fibre orientation factor for Young’s modulus. 

Young’s modulus of aligned short harakeke fibre - epoxy composites taking account of composite porosity can 

be estimated using the modified Rule of Mixtures: 

Ec = ηoηlEfVf + VmEm          (2) 

with  

Vm = 1- Vf  - Vp           (3) 

Vf  = Wf(ρc/ρf)          (4) 

where ρ, E, W and V are density, Young’s modulus, weight fraction and volume fraction, respectively; 

subscripts c, f, m and p denote composite, fibre, matrix and porosity, respectively; ηo and ηl are orientation 

efficiency factor and length efficiency factor, respectively. Values from the literature include ηo = 1 for 

unidirectional composites, ηo = 0.5 for bidirectional, balanced (0/90o), ηo = 0.375 for 2D random and ηo = 0.2 

for 3D random [18, 19].  

Porosity of composites was found to be a function of fibre content [8, 20]. In this work, the porosity was 

modelled as a linear function of fibre volume fraction using linear regression modelling as shown in Fig. 8  : 

Vp = 0.2031Vf – 0.0028         (5) 

Substituting Vp from Eq. (5) into Eq. (2), leads to: 

Ec = ηoηlEfVf + (1.0028- 1.2031Vf)Em       (6) 

or 
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Ec = (ηoηlEf – 1.2031Em)Vf + 1.0028Em       (7) 

The fibre length efficiency factor (ηl) can be calculated using the shear lag model originally developed by Cox 

[21]: 

ηl = 1- tanh(βL/2)/( βL/2)          (8) 

where βL/2 = (2L/d) ���/����( 
��)        (9) 

where L is fibre length, d is fibre diameter, Gm is shear modulus of matrix, Vf is fibre volume fraction, k is a 

constant dependant on geometrical packing pattern of fibres [22], equal to 0.907 and 0.785 for hexagonal and 

square packing respectively.  

Assuming k = 0.785, Gm = Em/2(1+ν) = 1.117 GPa with Poisson’s ratio of epoxy ν = 0.35 [23] , Young’s 

modulus of the matrix, Em = 3.91 GPa (Fig. 6), L = 1.97 mm and D =15.67 µm (Table 1), the fibre length factors 

ηl for different fibre contents were calculated and shown in Table 2. 

Using linear regression parameters shown in Fig. 9 and comparing with Eq. (7), it can be seen that 

ηoηlEf – 1.2031Em = 17.31                   (10) 

Substituting Ef = 47.6 GPa (Table 1), Em = 3.91 GPa [8]  and ηl = 0.99 (Table 2) into Eq. (10) gives ηo = 0.467 

which corresponds to an average orientation angle α = 34o considering ηo = cos4(α) [16, 18].  

3.5.2 Fibre orientation factor for tensile strength calculation. 

The orientation factor for tensile strength can be estimated using the Bowyer-Bader method [24] that was 

developed from Kelly-Tyson’s [25]. In the Bowyer-Bader model, it can be assumed that at any composite stress 

there is a critical fibre length (Lε) such that at the centre of the fibre, the strain of the matrix and fibre are the 

same and the spectrum of fibre lengths in the composite can be considered to be divided into subcritical 

subfractions (denoted Li) and supercritical subfractions (denoted Lj) and their volume fractions are Vi and Vj, 

respectively. The tensile stress on a composite can be estimated according to Eq. (11). 

σc = k1X+k1Y + Z          (11) 

where X, Y and Z are the contributions of subcritical fibres, supercritical fibre and matrix respectively. They are 

expanded in following equations: 

X = ∑ �����
�   with Li < Lε          (12) 

Y = ∑����(1 − �����/4�� �)�� with Lj > Lε       (13) 

Z = σmVm           (14) 
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where τ is interfacial shear strength between fibre and matrix; d is fibre diameter; Vm was calculated as in Eq. 

(3), and  

Lε = (Efεcd)/(2τ)           (15) 

Values of composite strains at two levels ε1 and ε2 are chosen so that ε2 = 2ε1. The composite stresses σc1 and σc2 

and matrix stresses σm1 and σm2 corresponding to ε1 and ε2 are determined from stress-strain curves of 

composites and matrix, respectively. With these data, the ratio R can be determined. 

R = (σc1 – Z1)/( σc2 – Z2)          (16) 

To calculate k1 a value of τ need to be assumed and the corresponding Lε1 and Lε2 calculated using Eq.(15). 

Values of X and Y can then be determined using assumed values of Lε1, Lε2 and τ and fibre length distribution. 

With these assumed values, the ratio R’ can be calculated, such that 

R’ = (X1+Y1)/(X2+Y2)          (17) 

The value of τ can then be adjusted until R = R’. This figure can be assumed to be correct and k1 determined by 

applying this value to Eq. (11). 

The experimental data and fibre length distribution used in the Bowyer-Bader model are presented in Table 3 

and Fig. 10, respectively. Orientation factors and IFSS values are reported in Table 4.  It can be seen that values 

of fibre orientation factors for aligned fibre composites at different fibre contents were similar indicating 

constant orientation despite higher pressure being applied at higher fibre contents. The mean value of orientation 

factor of 0.505 obtained for aligned fibre composites is significantly higher than that obtained for injection 

moulded natural fibre composites using the same method of determination [16, 26].  It is also much higher than 

that for randomly oriented fibre composite (0.312) found in this work which supports that DSF can produce 

fibre mats with good fibre alignment. The value of orientation factor for tensile strength (0.505) is higher than 

that for Young’s modulus (0.467). However, when comparing their fibre orientation angles, the difference was 

very small; 33o for tensile strength and 34o for Young’s modulus, although it is possible that orientation at 

fracture where strength is assessed is slightly higher than at lower strain where Young’s modulus is assessed.  

4. Conclusion 

Dynamic sheet forming has been shown to be a potential technique to produce aligned short natural fibre mats 

for composite production using compression moulding. Aligned short harakeke fibre-epoxy composites were 

produced with this technique with high tensile strength and Young’s modulus of 136 MPa and 10.5 GPa, 

respectively. Fibre orientation factors were also estimated with values of 0.505 and 0.467 relating to average 
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fibre orientation angles of 34o and 33o from values of composite tensile strength and Young’s modulus, 

respectively.  
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Table 1: Average physical and mechanical properties of pulped harakeke fibre. 

  
Length 
(mm) 

Diameter 
(µ) 

Density  
(g/cm3) 

Tensile 
strength  
(MPa) 

Young's 
modulus  
(GPa) 

Corrected 
strength 
(MPa) 

Corected 
Young's 
modulus 
(GPa) 

Mean 1.97 15.67 1.52 756 28.1 1281 47.6 

SD 0.03 244 15.6 414 26.4 
 

 

Table 2: Physical properties of pulped harakeke fibre composites. 

wt% Wf ρc (g/cm3) Vf ρct (g/cm3) Vp ηl 

12.3 0.123 1.175 0.095 1.192 0.015 0.9892 

26.7 0.267 1.189 0.209 1.234 0.036 0.9914 

33.4 0.334 1.184 0.260 1.252 0.054 0.9922 

46.3 0.463 1.22 0.372 1.293 0.056 0.9936 

52 0.520 1.182 0.404 1.304 0.094 0.9939 
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Table 3: Input data for Bowyer-Bader model. 

Fibre content wt% 12 27 33 46 52 46 RO*  

Vf 0.095 0.209 0.260 0.372 0.404 0.389 

ε1(%) 0.70 0.79 0.80 0.79 0.84 0.71 

ε2.(%) 1.40 1.57 1.61 1.57 1.68 1.42 

εmax(%) 2.10 2.36 2.41 2.36 2.52 2.13 

σc1(MPa) 29.3 42.8 45.6 68.0 65.3 64.0 

σc2(MPa) 49.6 69.6 73.7 109.0 103.0 101.0 

σcmax(MPa) 66.20 87.2 100 136 137 76.2 

σm2(MPa) 19.90 21.5 21.5 21.5 21.5 19.2 

σm2(MPa) 36.50 38.8 38.8 38.8 38.8 35.5 

σmmax(MPa) 46.5 47.7 48.0 47.7 48 45.8 

Ef(GPa) 47.60 47.60 47.60 47.60 47.60 47.60 

d (µm) 15.67 15.67 15.67 15.67 15.67 15.67 
 

* RO = Randomly oriented 
 
Table 4: Fibre orientation factors and interfacial shear strengths. 

Fibre content wt% 12 26 33 46 52 46 RO*  

Orientation factor k1 0.505 0.483 0.489 0.531 0.517 0.312 

Orientation angle (o) 33 34 33 31 32 42 

IFSS (MPa) 3.26 3.14 3.17 3.37 3.23 2.47 
 

* RO = Randomly oriented 
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Fig.1. Centrifugal drum and nozzle of a DSF.  

 

Fig. 2. SEM image of a fibre mat made from pulped harakeke using DSF. 
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Fig. 3. SEM images of single fibres in a pulped harakeke fibre mat: (a) Single fibres with kink bands marked by 

arrows and (b) single fibres including an expanded image of a kink band with cracks. 

 

 

 

 

 

 

 

 

Fig.4. Macrograph of an aligned fibre mat (size of 22 x 15 cm) made from pulped harakeke fibre using DSF.  
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Fig. 5. SEM images of fracture surface of composites: (a) longitudinal tensile sample and (b) transverse tensile 

sample.  

 

Fig. 6. Tensile strength of pulped harakeke fibre composite as a function of fibre content. 
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Fig. 7. Young’s modulus of pulped harakeke fibre composites as a function of fibre content. 

 

 

Fig. 8. Porosity as a function of fibre volume fraction. 
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Fig. 9. Young’s modulus as a function of fibre volume fraction including regression equation and R-square 

value. 

 

Fig. 10 Fibre length distribution. 
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