
Accurate Low-Cost Expanded-Scale Analog Voltmeter with Novel
Charge/Discharge Indication for Monitoring Single Lithium-Ion Cells

Jonathan Scott
School of Engineering

The University of Waikato
Hamilton, New Zealand

Email: jonathanscott@ieee.org

Abstract—This manuscript presents a very low-cost circuit
using a PIC12F683 microcontroller and an LM285 bandgap
voltage reference that provides an expanded-scale to an analog
panel meter suitable for monitoring a single Lithium-ion battery.
Charge or discharge of the cell is indicated by periodic twitches of
the needle to the left or the right. The design is especially suitable
for small devices subject to intermittant use or that recharge by
power-harvesting. The design is open-source, with circuit, board
layout, and source code provided.

I. INTRODUCTION

When a rechargeable battery in a small appliance is used
regularly and delivers power such as to be exhausted in a few
hours, the user is generally satisfied to be given some warning
of low remaining capacity, and to have equipment shut down
when the battery is judged to be “flat”. Where the equipment
runs for longer periods, and especially where it is subject to
uncertain current drain or periodic partial recharging from the
likes of small solar cells, the user desires some indication of
the state of the power reserve.

Much research appears in the literature on methods for
determining state-of-charge (SoC) in general by means of
Coulomb counting, terminal voltage, and battery impedance,
or a combination, for example see [1] and [2]. Nevertheless,
in the case of low-duty batteries, the EMF is the most reliable
approach. If you want to know what your battery is doing, you
are best to look at the terminal voltage, assuming you are not
using large currents. The two cited references assume this as
their way of finding the “true” state-of-charge against which
to measure various alternative methods.

For low-duty applications, terminal voltage is close to the
open-circuit EMF. In the case of lead-acid batteries, open-
circuit EMF varies roughly linearly with SoC, in the region
where it is best to operate the battery. For Lithium-ion cells,
the function is not so simple. It is roughly linear with small
slope from 20% to 50%, but below 20% the voltage falls
increasingly rapidly, and above 50% the voltage rises rather
more steeply with capacity. When this characteristic is viewed
in real time on a meter, it is reasonably easy to develop a
feel for the cell SoC. In “first-world temperatures”, meaning
twenty-something degrees Celcius, starting at about 4.2V for
“fully charged” the battery falls down towards about 3.7–3.8V
around half charge, and then falls slowly towards 3.6V at
something like 20%. Cell voltage falls quite quickly below
20%, and healthy usage suggests you stay above 3.4 or 3.5V,

although manufacturers keen to maximise their vital statistics
will cite “flat” voltages as low as 2.75V, or even lower.

Again for low-duty application, it is reassuring to know if
you are gaining or losing SoC. Are the solar cells delivering
more power than you are using? In other words, something
like a center-zero meter provides useful information. Older
readers will recall the days when cars, whose electrics were
not as reliable as today, featured a center-zero ammeter on the
dashboard or in the instrument cluster, occasionally with non-
linear scales, so a driver would know if the battery was gaining
or losing, and could resolve larger and smaller rates. [3]

The design in this manuscript achieves an indication of
current flow by periodically deflecting the meter needle to the
left for discharge or right for charge. These small deflections
or “twitches” vary in intensity and give a quick visual hint of
gains or losses, larger or smaller.

II. HARDWARE

A low-cost 8-bit microcontroller is teamed with a low-cost
bandgap reference. The circuit runs on the output voltage
from a single lithium cell. This prototype was tested with a
variety of 18650-type cells. The microcontroller drives a panel
meter using its pulse-width modulation (PWM) output. It also
measures its 2.5V reference voltage, and the voltage across
a resistor in series with the panel meter, so the micro can
determine the current in the meter in spite of varying supply
voltage. All battery current is drawn through a small resistor
in parallel with two back-to-back Schottky diodes, and the
meter measures the voltage dropped across this combination
too. It is provided with an LED that indicates when the circuit
boots correctly, and confirms when the button is pressed.
There is a momentary-contact press button to allow the current
measurement to calibrate zero. This last is only needed if
you want milliamp precision in the charge indication, and the
circuit will function well even without a zero calibration of
the current measurement.

The power consumption of prototypes was about 750µA
with a 100µA meter movement. Versions with a 1mA meter
have larger current draw, dominated by the meter movement
itself.

Figure 1 shows the reprinted scale of the meter with suitable
colour codes for use with a single cell.

Figure 2 depicts the circuit of the meter.

Fig. 1. Reprinted face of the panel meter to provide the expanded scale.
Colour regions on the scale indicate typical operating regions for a cell. The
scale is “pessimistic” to the extent that some capacity remains at the lower
end of the green bar.

Fig. 2. Circuit diagram of the expanded-scale meter.

Figure 3 provides the layout of components on a prototype
circuit board. The board is designed to be bolted directly
to the back of an analog meter housing. To that end it has
pads spaced 600mil and 1000mil. It is equally possible if less
elegant to solder the meter to the board with flying leads.
Figure 4 shows a meter installed between a battery and a small
commercial charger circuit.

Fig. 3. Single-sided PCB layout for the circuit. Note that pads are provided
for meters with 0.6-inch and 1.0-inch spacing of the terminal posts. Bottom-
side copper is in dark blue, screen-print overlay in green, pads in grey.

Fig. 4. Photograph of the PCB attached to the terminals of an analog moving-
coil panel meter.

III. FIRMWARE

The PIC12F683 carries out the following functions:
• On cold boot it flashes the LED and slowly swipes the

meter movement from 0 to 100% PWM output and back
down, before starting to read voltage;

• Locks out operation if compiled with unacceptable meter
FSD and meter current sense resistor value combination
(flashes forever);

• Filters the readings so that needle movements are slow
and smooth;

• Measures the 2.50V bandgap voltage as a fraction of
supply voltage;

• Calculates the supply voltage from the bandgap reading;
• Measures the voltage on the other side of the diode-

resistor shunt;
• Estimates the battery current from the shunt voltage

reading;
• Stores a corrected current zero point if the button is

pressed (LED acknowledges);
• Drives the panel meter with a PWM signal;
• Measures the peak current flowing in the meter in the

PWM mark intervals;
• Calculates the PWM duty cycle to obtain the required

reading on the panel meter despite variable supply;
• Keeps time and periodically changes the PWM drive for

65ms to momentarily deflect the meter needle right or
left to reflect charge or discharge respectively;

• Turns on the LED in a fast series of flashes in case of
overvoltage.

The needle “ticks” serve to suggest charge or discharge by
moving the needle with varying intensity in small motions
to the left (discharge) or right (charge). These twitches occur
about every 2 seconds and last a couple of hundred millisec-
onds including the meter needle settling back. The intensity of
the twitch reflects the current in a roughly logarithmic scale,
with a few mA producing a small tick, and currents upward
of a few hundred mA providing quite a sharp tick.

Around 65% of the program and 55% of the data memory
is used. The project was compiled with the HiTech Standard
commercial compiler, version 9.3.

IV. PRECISION

The LM285-2.5 is specified with an accuracy of ±1.5%
over temperature and current. In practice, in this application,
in domestic temperature setting, it will have error closer to
±0.5% error. Prototypes had a reference voltage between
2.489V and 2.507, or less than four-tenths of one percent error.

The selection of the meter-current sense resistor, R10, and
its precision, will both affect reading accuracy. The resistor
R10 was measured with an Agilent U1242B DMM and the
code loaded with the exact value, refer to the “#define RM”
line near the top of the code, reproduced below. The message
is that the meter error can be dominated by this source of error
if the resistor is not a precision type or the value individually
customised. The meter FSD current will also affect accuracy.
This may be a risk with cheaper meters. The code also requires
a nominal or individually-measured number for the FSD value,
in microamps.

Although the PIC supports 10-bit PWM, only 8 bits were
used, and this leads to a potential reading error of around
0.5% of scale or a bit more than 0.1% of voltage owing to the
expanded scale. This error is additional to that from the correct
selection and coding of R10 value, and the meter movement
Full-Scale Deflection (FSD) value. This error is less than the
error inherent in many analog panel meters, and in most cases
a good eye is required to read off a value with 1% precision
anyway. In summary, the user could implement 10-bit PWM
and 10-bit arithmetic calculation, but this is likely only be
perceptible if the meter is a high-quality “four inch” meter
rather than the “two-inch” type normally encountered.

V. MEASURED RESULTS

A prototype was tested with “nominal” resistor and FSD
current values in the code. The meter display was compared to
a precision bench DMM. The meter was mechanically zeroed
before the application of power, and its orientation with respect
to gravity held vertical and constant.1 It read about 3.495V
with 3.501V applied (-0.2%), 3.78V with 3.801V applied (-
0.4%), 4.08V with 4.100V applied (-0.5%), and 4.28V with
4.305V applied (-0.6%). This error cannot be fully explained
by the rounding error anticipated from the arithmetic and the
voltage reference precision, and was attributed to the meter
movement and resistor tolerance. Adjustment of the meter FSD
and RM values in code corrects out enough of this error for
manual reading precision to be the limit.

ACKNOWLEDGEMENT

The author wishes to thank Benson Chang for help with
CAD, component selection, and PCB fabrication.

1A 100µA Shinohara Japanese movement with a 1% rated linearity was
used in the first prototype. Movement from vertical to horizontal position
caused a 2% shift in the zero set, and might affect meter linearity as well.

REFERENCES

[1] Martin Coleman, Chi Kwan Lee, Chunbo Zhu, and William Gerard
Hurley, “State-of-Charge Determination From EMF Voltage Estimation:
Using Impedance, Terminal Voltage, and Current for Lead-Acid and
Lithium-Ion Batteries”, IEEE Transactions on industrial electronics,
VOL. 54, NO. 5, October 2007.

[2] Hung-Cheng Chen, Shuo-Rong Chou, Hong-Chou Chen, Shing-Lih Wu,
and Liang-Rui Chen, “Fast Estimation of State of Charge for Lithium-
ion Battery”, IEEE International Symposium on Computer, Consumer
and Control, 2014, pp284–287.

[3] Jonathan Scott, “Expanded scale vehicle ammeter”, Electronics Today
International, May 1981, pp33–36.

[4] PICC STD ANSI C Compiler, Hi-Tech Software (now Microchip Tech-
nology), Australia, 2009.

/*
;Filename: Main.c
;Author: JBS
;Date: Feb 2016
;Description: C program for a Monitoring meter for an Li-ion battery using a PIC12F683
; Modified for nonlinear scale
;
;**
; Channels are: GP0/AN0 pin7 - Vref 2.500V
; GP1/AN1 pin6 - meter current analog input
; GP2/PWM pin5 - meter PWM drive
; GP3 pin4 - PButton
; GP4/AN3 pin3 - I sense input
; GP5 pin2 - LED drive
;**
*/

#include <pic.h>
#include <stdlib.h>

__CONFIG(INTIO & WDTDIS & MCLRDIS & BOREN & UNPROTECT & PWRTEN);

#define LED GPIO5 // Output with LED to Gnd
// GPIO4 // AN3 - I sense AN3=(10/11)*1024 + Ibat*10/Vlsb
#define PB GPIO3 // PushButton (active low)
// PWM GPIO2 // PWM
// Isense GPIO1 // AN1 - meter current sense
// Imeter GPIO0 // AN0 - 2.500 Vref

#define SELECTMETER CHS0=1;CHS1=0
#define SELECTVREF CHS0=0;CHS1=0
#define SELECTISENSE CHS0=1;CHS1=1

// *** THESE VALUES MUST BE SET FOR THE HARDWARE ***
// 100uA Shinohara meter with 22k sense resistor
//#define METERSCALEUA 100 // current in microamps for FSD on panel meter
//#define RM 22115 // value of resistor sensing meter current

// $2 "1mA" meter from aliexpress with "2k2"
//#define METERSCALEUA 1050 // current in microamps for FSD on panel meter
//#define RM 2157 // value of resistor sensing meter current
#define METERSCALEUA 939 // current in microamps for FSD on panel meter
#define RM 2163 // value of resistor sensing meter current
// 100uA Shinohara meter with 18k sense resistor
//#define METERSCALEUA 100 // current in microamps for FSD on panel meter
//#define RM 17690 // value of resistor sensing meter current

__EEPROM_DATA(0xA3,0x03,0x00,0x00,0x00,0x00,0x00,0x00); // Visens0 (default=931 = 0x03A3)
__EEPROM_DATA(’J’,’B’,’S’,’-’,’2’,’0’,’1’,’6’); // copyright sig
__EEPROM_DATA(0x00,0x00,0x00,’V’,’1’,’.’,’0’,’2’); // version
#define VISENS0 0x00 // where divider reading for zero load current lives in EEPROM

//Function Prototypes
unsigned char NVReadByte(unsigned char);
void NVWriteByte(unsigned char, unsigned char);
void interrupt Isr(void);
void NVReadShort(unsigned char, volatile unsigned short int *);
void NVWriteShort(unsigned char, volatile unsigned short int *);

//Global Variable Declarations
unsigned short int pTMR1 @ 0x0E; // to address TMR1 as an integer
unsigned char delay65ms; // delay counter
short unsigned int Vref=628; // ADC reading of 2.500V ref input (default is for ideal r values)
short unsigned int Vrm=809; // ADC reading of voltage across resistor in series with meter (FSD, 4V)
short unsigned int Visens; // ADC reading from sense of voltage on other side of diodes
short unsigned int Visens0; // Visens for zero current flowing
signed long int Vs_mV; // supply voltage (battery voltage) in millivolts
unsigned short int Im_max_uA; // meter current when PWM ON, in uA
bit storeRequest; // request to store new zero-current value in EEPROM
bit bootDone; // running flag
bit lockout; // flag is impossible values present at compile
bit loop; // reboot flag, clear to stop infinite loop

void interrupt Isr(void)

{
signed short int display; // temp var
static unsigned char clicks; // count 65ms ISRs for timekeeping
static unsigned char pbcnt=0; // button debounce
unsigned short int fsd; // the PWM value for FSD on meter at this supply voltage & meter series resistance
unsigned char nudge; // temp var
signed long int ltmp; // temp var

if(TMR2IF){
GODONE=1; // trigger ADC to read meter sense voltage
TMR2IF=0; // clear flag
while(GODONE){;} // wait until ADC complete
if(CCPR1L>8){ // if PWM is driving high for a decent period

if(ADRESL+256*ADRESH>Vrm){Vrm+=1;} // allow Vrm to slew towards measured value...
if(ADRESL+256*ADRESH<Vrm){Vrm-=1;} // to slow response to changes which will be gradual

}
clicks++; // count 65ms periods
if(delay65ms)delay65ms-=1; // delay counter
SELECTISENSE; // point ADC at current sense input
for(display=0;display<20;display+=1){ // allow long time for multiplexer to settle

asm("nop;");} // ...we are not in a hurry
GODONE=1; // trigger ADC
while(GODONE){;} // wait until ADC complete
Visens = ADRESL+256*ADRESH; // get value
SELECTVREF; // point ADC at 2.500 V ref
for(display=0;display<20;display+=1){ // multiplexer settle time

asm("nop;");} // again wait as we are not in a hurry
GODONE=1; // trigger ADC
while(GODONE){;} // wait until ADC complete
if(ADRESL+256*ADRESH>Vref){Vref+=1;} // filter by slewing slowly
if(ADRESL+256*ADRESH<Vref){Vref-=1;} // positive and negative
SELECTMETER; // point ADC to meter for next time

Vs_mV = (2500L*1024L)/Vref; // Vref=2500mV, so now we have supply voltage in mV
Im_max_uA = (125L*Vrm*Vs_mV)/128L/RM; // Current in meter at 100% PWM in uA = 1e6*((Vrm/1024)*(Vs_mV/1000))/RM
fsd = 256L*METERSCALEUA/Im_max_uA; // PWM value for exact FSD (needle at end of scale)

if(!bootDone){return;} // no write to meter if still booting

if(Vs_mV>3500){ // 0.1V/div, 2nd to 10th divisions, 3.5 to 4.3V
display = 200 + (Vs_mV-3500); // display ranges 200 upwards at 100mV/div, fsd=1000=4300mV

}else{
display = 10*(Vs_mV-3000)/25; // display ranges 200 downwards at 250mV/div

}

display = (long)display*(fsd)/1000L; // convert 0-1000 range to value required in PWM, 0-fsd
if(display<0) {CCPR1L=0;} // keep value in range 0 to...
else if(display>255) {CCPR1L=255;} // 255
else CCPR1L=display; // write to meter the value clipped to 255

if(clicks>38){ // 2.5 sec period expired, apply a "tick"
clicks=0; // reset timing counter
display=0; // clear signal, default value
nudge=2; // amount to make visible twitch in needle (can change with meter needle movement
if(Visens>Visens0+1)display+=nudge; // if above this threshold, increase size of "twitch" or "nudge"
if(Visens+1<Visens0)display-=nudge; // or if the opposite polarity
if(Visens>Visens0+10)display+=nudge; // and so on...
if(Visens+10<Visens0)display-=nudge;
if(Visens>Visens0+20)display+=nudge;
if(Visens+20<Visens0)display-=nudge;
if(Visens>Visens0+40)display+=nudge;
if(Visens+40<Visens0)display-=nudge;
if(Visens>Visens0+55)display+=nudge;
if(Visens+55<Visens0)display-=nudge;
if(Visens>Visens0+70)display+=nudge;
if(Visens+70<Visens0)display-=nudge;
if(Visens>Visens0+85)display+=nudge;
if(Visens+85<Visens0)display-=nudge;
if(Visens>Visens0+100)display+=nudge;
if(Visens+100<Visens0)display-=nudge;
if(Visens>Visens0+115)display+=nudge;
if(Visens+115<Visens0)display-=nudge;
if(Visens>Visens0+130)display+=nudge;
if(Visens+130<Visens0)display-=nudge;

display=CCPR1L+display; // nudge needle to indicate charge/discharge
if(display<0) {display=0;} // keep value in range 0 to...
if(display>255) {display=255;} // 255
CCPR1L = display; // write back summed value

}

// check for button pushes
if(PB==0){ // button pressed (if fitted)

if(++pbcnt>10){ // pressed for 650ms, debounced and not a casual bump
LED=1; // show push registered
if(pbcnt>154){ // 10 secpnd push

loop=0; // reboot
}

}
}else{

if(pbcnt>=10) storeRequest=1; // request update as PB released from a long push
pbcnt=0; // clear counter

}

if(Vs_mV>4300) { // overvoltage!
if(clicks&0x01==1){LED=1;}else{LED=0;} // flash LED rapidly (plus draw some current!)

}

return;
}
// should never get here
while(1){LED=1;asm("nop;");asm("nop;");LED=0;asm("nop;");} // lock up with fash flashes, for debugging
return; // GIE = 1 - enable global ints - done in RETFIE

}

//***
//Main() - Main Routine
//***
void main()
{

short unsigned int VforFSD;

OSCCON = 0b01100001; //Internal osc, 4MHz
VRCON = 0; //Turn Off Voltage Reference Peripheral
CMCON1 = 0x07; //Turn Off Comparator Peripheral
TRISIO = 0b00010011; //Set GP0, GP1 and GP4 as input
ANSEL = 0b01011011; //16 prescale (4us TAD), AN0, AN1 & AN3 enabled
ADCON0 = 0b10001101; //Right-justified(10b),Vddref,ch3,enabled
OPTION = 0b00000100; //T0CS=0, PSA=0, PS0=PS1=0, PS2=1 (prescale 1us/32 on T0)
T1CON = 0x00; //disable TMR1, int osc, 1:1 prescale
PIR1 = 0x00; //clear all peripheral int flags
PIE1 = 0x02; //only T2 interrupt enabled
INTCON = 0b01000000; //GIE=0, PEIE=1, T0IE=INTE=GPIE=T0IF=INTF=GPIF=0
PR2 = 0xFF; //8-bit PWM
T2CON = 0b01111111; //T2 on, prescale 16, postscale 16 (62.5kHz, 4ms period, INTs every 65ms)
CCP1CON = 0b00001100; //PWM on, active HI
CCPR1L=0; // start at zero

NVReadShort(VISENS0, &Visens0); // read zero-current sense value from EEPROM
VforFSD=(((long unsigned int)(METERSCALEUA))*(RM+1000)/1000L); // voltage in mV needed to get METERSCALEUA across RM
lockout=0; // clear flag
if(VforFSD>4000){ // impossible RM and METERSCALEUA values, can’t get FSD

lockout=1; // prevent full boot
}
if(VforFSD<1400){ // impossible RM and METERSCALEUA values, can’t get resolution

lockout=1; // prevent full boot
}
GIE=1; // enable ISR (probably done when EEPROM read anyway)
delay65ms=48; // 3 secs
while(delay65ms){ // flash

if(lockout && delay65ms<2){delay65ms+=16;} // never complete boot
if(delay65ms&0x01){LED=0;}else{LED=1;} // flash LED to show cold boot

}LED=1; // Leave LED on
delay65ms=64; // 4 sec
while(delay65ms){CCPR1L=256-delay65ms*4;} // sweep meter up
delay65ms=64; // 4 sec
while(delay65ms){CCPR1L=delay65ms*4-1;} // sweep meter down
LED=0; // LED off, boot done

loop=1;
while(loop){ // keep looping unless flag clears to reboot

bootDone=1; // set flag to say boot done, OK to update meter
if(storeRequest){ // request to save Iscale to EEPROM

storeRequest=0; // clear flag
Visens0=Visens; // update zero value
NVWriteShort(VISENS0,&Visens0); // store in EEPROM
LED=0; // clear LED showing it done

}
// end of perpetual loop
}

}

//***
//Functions
//***

//***
//NonVolatile memory reads and writes
//***
unsigned char NVReadByte (unsigned char nvrbadr)
{

EEADR = nvrbadr;
RD = 1; /* Part of EECON1. */
return (EEDATA);

}
void NVWriteByte (unsigned char nvwbadr, unsigned char nvwbdat)
{

GIE = 0; // disable ints globally
do {

EEADR = nvwbadr; // load EEPROM desired write address
EEDATA = nvwbdat; // load EEPROM data byte to be written
WREN = 1; // enable writes
WRERR = 0; // clear error bit
EECON2 = 0x55; // start HW sequence
EECON2 = 0xaa; // middle HW step
WR = 1; // initiate HW write
while (WR) // until WRite completed...

; // do nothing
WREN = 0; // disable further writes
EEIF = 0; // clear error int flag (not used)

} while (WRERR); // confirm no errors and data good
GIE = 1; // re-enable ints globally
return;

}

void NVReadShort(unsigned char adr, volatile unsigned short int *i)
{

EEADR = adr;
RD = 1;
((unsigned char)i)=EEDATA;
EEADR = adr+1;
RD = 1;
((unsigned char)i+1)=EEDATA;
return;

}
void NVWriteShort(unsigned char adr, volatile unsigned short int *i)
{

NVWriteByte(adr, *((unsigned char*)i));
NVWriteByte(adr+1, *((unsigned char*)i+1));
return;

}

