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Abstract 

 

There has been a significant increase in the use of antimicrobial copper sprays on 

kiwifruit orchards in the Western Bay of Plenty (WBOP) since the first outbreak 

of the bacterial vine disease Pseudomonas syringae pv. actinidiae (Psa-V) in 

2010. Studies have revealed that an accumulation of copper in soil may adversely 

affect soil microorganisms, which are pivotal in essential soil functions such as 

nutrient assimilation. 

The aim of this study was to determine whether or not the use of copper sprays on 

WBOP kiwifruit orchards has had detrimental effects on soil microorganisms and 

if this has resulted in changes to the structure of soil microbiological 

communities. 

Soil was sampled from ten WBOP kiwifruit orchards with varying levels of 

copper but with similar physicochemical properties. These included five sets of 

two adjacent orchards, of which one was organic and the other conventional, and 

for which data was available on soil copper levels for 2011.  

DNA extracted from each soil was amplified with PCR and sequenced using Ion 

Torrent Sequencing technology. The resulting bacterial and archaeal sequences 

were binned into operational taxonomic units (OTUs) and the phylogeny of each 

was determined using the Ribosomal Database Project (RDP) Classifier. Soils 

were also analysed for a number of physicochemical properties including total, 

bioavailable and free ionic copper. 

Non-metric Multidimensional Scaling (NMDS) and Multi-Response Permutation 

Procedures (MRPP) were used to examine dissimilarities between microbial 

communities in relation to soil copper levels, management practices and other 

physicochemical variables. Indicator species analyses were conducted on OTU 

abundance data to determine if particular OTUs were indicative of soils with the 

lowest and highest copper levels. Community data were also compared using a 

number of measures of diversity. Differences in physicochemical parameters 

between soils were analysed for significance using ANOVA and t-tests. 

Results revealed that levels of total copper in soils have increased since 2011, 

with significant differences measured between each pair of orchards. Significant 
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differences in soil microbial communities were also revealed, with pH identified 

as the main driver of community composition within and between orchards and 

differences between orchards were also largely explained by management 

practices. Relative abundances of Archaea were significantly higher in 

conventional orchards and in soils with the highest levels of copper. However, 

overall community dissimilarities were not found to be related to soil copper 

levels. Indicator species analysis revealed that soils with < 30 mg kg
-1

 of total 

copper had a greater abundance of Actinobacteria, whilst soils with > 60 mg kg
-1

 

had a higher representation of Chlamydiae, Chloroflexi, and Thaumarchaeota.  

The conclusions of this research are that current copper levels in the study orchard 

soils have not significantly influenced soil microbial community composition and 

associated functions. However, the high number of influential variables 

confounded attempts at identifying differences due to copper alone. In addition, 

the lack of knowledge on the specific functions of individual taxa, make it very 

difficult to reveal the long-term implications of even subtle differences in 

community composition as a result of copper use. 
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1 Introduction 

 Background to study 1.1

The bacterial disease of kiwifruit Pseudomonas syringae pv. actinidiae (Psa-V) 

was first positively identified in New Zealand in a Te Puke kiwifruit orchard in 

November 2010. Since then Kiwifruit Vine Health (KVH), the organisation whose 

directive is to minimise the impact of Psa-V on the NZ kiwifruit industry, have 

recommended spray applications of various copper formulations which have been 

shown to be effective at controlling the disease (Vanneste et al., 2011). Prior to 

the Psa-V outbreak the use of copper was limited with some orchardists applying 

a copper sulphate spray in the autumn to promote leaf drop and as a protectant 

after pruning. However, since 2011 the rate of copper spray applications has 

increased dramatically. As evidenced by Zespri spray diaries a number of 

kiwifruit orchards in the Te Puke region have received up to and exceeding 20 

copper sprays a year as part of a Psa-V management regime. However, many of 

these newer copper formulations such as copper oxide, copper hydroxide and 

copper oxychloride contain fewer soluble copper ions than copper sulphate and 

are therefore effective at much lower concentrations (Mistry, 2012). ‘Bio-Gro’ 

orchardists growing for the organic market are currently permitted to use 6 kg ha
-1

 

year
-1

 of copper (Cu), 3 kg more than the maximum allowed prior to Psa-V and 

2 kg less than the 8 kg ha
-1

 year
-1

 currently permitted for conventional growers. 

There are currently no alternatives for copper approved for organic orchards, 

however many organic growers have opted not use copper sprays out of concerns 

around potential detrimental effects to soil and the wider environment. 

The antimicrobial properties of copper make it a very effective bactericide and 

fungicide and it has traditionally been applied to various crops for controlling 

plant diseases. Bordeaux mixture, which is a mixture of copper sulphate and lime, 

has been used for the control of fungal diseases in grapes and other crops since 

1885 (Alloway, 2013). However, it is now widely accepted that significant 

contamination of agricultural soils can occur as a result of long-term use. 

Numerous scientific studies have been carried out on copper contaminated soils 

worldwide. Some studies have identified horticultural soils with levels exceeding 

1,000 mg Cu kg
-1 

and up to 3,000 mg Cu kg
-1

 as was found in a >100 year old 

Brazilian vineyard (Alloway, 2013). Typical background soil copper 
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concentrations range between 2 and 50 mg Cu kg
-1 

(Alloway, 2013). In the 

Champagne region of France where Bordeaux mixture is widely used, a single 

application to a vineyard will add 3 - 5 kg Cu ha
-1

 and between three and ten 

applications may be made in a year (Alloway, 2013). A study by Besnard et al. 

(1999) found 100 - 1500 mg Cu kg
-1

 in Champagne vineyard soils compared with 

5 - 30 mg Cu kg
-1

 in nearby arable soils.  

Guinto et al. (2012) revealed a small but significant increase in copper levels in 

twelve kiwifruit orchard topsoils in the Western Bay of Plenty over a three year 

period between 2009 and 2012. Average copper concentrations increased from 

35mg kg
-1

 to 39mg kg
-1

 over that time. A more recent study was carried out to 

determine how much soil copper levels in Te Puke orchards have increased 

between 2010 and 2014 since the increased use of protectant copper sprays (Dean 

& Miller, 2015). It was found that levels of copper in soil increased in response to 

increasing levels of copper applied, with the largest increase in a conventionally 

managed orchard (11 mg Cu kg
-1

 soil yr
-1

) with a mean increase of 6.3 mg kg
-1

 

soil year
-1

. The concentration of copper in soil for one orchard had already 

reached the NZWWA (2003) guideline limit of 100 mg kg
-1

, up from 55 mg kg
-1

 

in 2010. Copper inputs ranged from 0.8 to 4.3 kg ha
-1

 yr
-1

 with an average of 1.8 

kg ha
-1

 yr
-1

, although these values may not account for copper sulphate 

applications which are used to promote leaf fall rather than to protect against Psa-

V.  

High rates of copper application to conventionally managed kiwifruit orchards in 

New Zealand have in some cases caused phytotoxic effects to vines as well as 

fruit staining (Max & Clark, 2012; Parker & Scarrow, 2011). As the tolerance to 

copper is much less for microbes than plants due to less well-developed 

homeostatic defence mechanisms (Alloway, 2008), it is likely that the adverse 

effects to soil microorganisms will be significant. 

 

 The Soil Environment 1.2

Soil is a complex ecosystem consisting of a physical matrix of soil particles and 

organic matter which contains a large diverse biomass which both influences and 

is subject to complex biogeochemical processes. This biologically, chemically, 
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and physically diverse environment forms the foundation of terrestrial ecosystems 

(Dominati et al., 2010). In recent years the links between biotic and abiotic soil 

components, which together greatly influence ecosystem functioning, have been 

more widely recognised (Naveed et al., 2014). 

 

1.2.1 Physical and Chemical properties 

The physical structure of soil is made up of a mineral fraction comprising 

weathered parent material of different size fractions, organic matter, water and 

gases. The mineral fractions are classed as sand silt or clay depending on the size 

of the individual particles and the size of these particles determines the relative 

surface area of each soil fraction (Table 1.1).  

 

Table 1.1:  Particle size, number and surface area per gram of and silt and clay, 

assuming spherical particles and maximum diameter within each size range (From 

Atlas and Bartha, 1997). 

Soil component Diameter (mm) No. particles/g Surface area (cm2/g) 

Sand 0.05 - 2.00 90 11 

Silt 0.002 - 0.05 5.78 x 106 454 

Clay ≤ 0.002 9.03 x 1010 8,000,000 

 

The texture of a soil may be classified according to the relative percentage of each 

size class. The United States Department of Agriculture (USDA) soil textural 

triangle is commonly used as a guide to determine soil texture (Figure 1.1). Soil 

texture influences plant rooting, water holding capacity, and the water to air ratio 

inside soil aggregates which may provide habitat for soil dwelling organisms 

(Fortuna, 2012) (Figure 1.2). Soil aggregates are formed as mineral particles, 

organic matter and root hairs are bound together by fungal hyphae and 

polysaccharides. Metals such as iron (Fe) and aluminium (Al) also stabilise soil 

aggregates through the formation of organic complexes (Amezketa, 1999). As fine 

root hairs are often present within soil aggregates, these aggregates form part of 

the rhizosphere, the zone influenced by plant roots (Sylvia et al., 2005). A single 

soil aggregate had been likened to an entire functioning ecosystem (Beare et al., 

1997, Coleman et al., 2004). 
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Figure 1.1:  USDA Soil Textural Triangle (Soil Survey staff, USDA, 1975) 

  

 

 

Figure 1.2:  A soil aggregate or ped is a naturally formed assemblage of sand, silt, clay, 
organic matter, root hairs, microorganisms and their secretions, and resulting pores. 
(From: Fortuna, 2012)  

 

1.2.2 Microorganisms in Soil 

It has been estimated that a gram of soil may harbour over one billion individual 

microorganisms (Torsvik & Øvreås, 2002). The bacteria, archaea, fungi, protozoa 

and algae make up 90% of the total soil biomass (Liesack et al., 1997). In terms of 
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biomass, abundance, and function, bacteria/archaea and fungi are the most 

important microorganisms (Richards, 1994; Wollum, 1999). 

 

 Microbial interactions and functions 1.2.2.1

A number of interactions between microorganisms and other biota take place in 

soil. These can be broadly categorised as microorganism-microorganism, 

microorganism-plant and microorganism-‘other’ organism interactions (van Elsas 

et al., 2007). Interactions between microorganisms and soil invertebrates include 

direct predator-prey associations, and indirect associations which result in 

competition for resources and habitat formation and modification (Scheu et al., 

2005). Microfauna such as amoebae, nematodes and protozoa predate bacteria and 

fungi and this balances growth and distribution whilst facilitating nutrient cycling 

through the release of ammonium (NH4
+
) (Clarholm, 1994; Irshad et al., 2011). 

Earthworms maintain soil structure and break down organic matter which also 

promotes the activity of microorganisms (Naveed et al., 2014). 

Specific plant functional groups have been shown to greatly influence the 

abundance, composition and microbially driven processes of soil microorganisms. 

For example legumes which are associated with the nitrogen-fixing bacteria 

Rhizobia, and grasses which have a high root biomass and comparatively high 

amount of root exudates (Strecker et al., 2015; Roscher et al., 2012; Eisenhauer 

et al., 2010). The distribution of plant pathogens is also dependent on the presence 

of the host species. Plants therefore partially drive selective pressures on 

microbial communities, influencing community composition and diversity (Atlas 

& Bartha, 1997).  

The ability of a soil to support plant growth is largely dependent on 

microorganisms which play a key role in decomposition and mineralisation 

processes (Loreau et al., 2001; Blaine-Metting, 1993). These processes drive 

nutrient cycling and therefore greatly influence soil fertility and subsequent plant 

growth. Plants also influence soil microbial communities by modifying light and 

temperature aboveground, and belowground within the rhizosphere where organic 

carbon from plant material and root exudates provide nutrients and alter soil pH 

(Atlas & Bartha, 1997). Higher plant diversity is also associated with higher 

microbial biomass (Zak et al, 2003; Eisenhauer et al., 2010). This is because a 
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greater diversity of plants provides a wider range of biochemical compounds 

which may be utilised by microorganisms (Grayston et al., 1998) and there is less 

temporal variability in carbon supply (Milcu et al., 2010). Different plant species 

growing in the same soil may therefore support distinct microbial communities in 

the rhizosphere (Ibekwe & Kennedy, 1998; Marschner et al., 2001). These 

communities may also be similar when plants are grown in different soil types 

(Grayston et al., 1998; Miethling et al., 2000).  

Microorganisms are responsible for catalysing a wide range of physiological 

processes in soil. Geochemical cycling is driven by microorganisms in which they 

derive metabolic energy. These processes result in nutrient assimilation, 

contaminant detoxification and the maintenance of conditions favourable to other 

biota (Madsen, 2005) (Figure 1.2). 

 

Table 1.2:  Examples of physiological processes catalysed by microorganisms in soil. 

Modified from Madsen (2005) 

Process Nature of Process 

Carbon cycle  

C respiration Oxidation of organic C to CO2 

Cellulose decomposition Depolymerization, respiration 

Aerobic CH4 oxidation CH4 becomes CO2 

Nitrogen cycle  

N2 fixation N2 gas becomes NH3 

NH4 + oxidation NH3 becomes NO2 – , NO3 – 

Denitrification NO3 – is used as an electron acceptor and converted to N2 
gas 

Biodegradation  

Synthetic organic 
compounds 

Decomposition, CO2 formation 

Petroleum hydrocarbons Decomposition, CO2 formation 

Fuel additives (MTBE) Decomposition, CO2 formation 

Nitroaromatics Decomposition, CO2 formation 

Pharmaceuticals, 
personal care products 

Decomposition 

Chlorinated solvents Compounds are dechlorinated through respiration in 
anaerobic habitats 

Other elements  

H2 oxidation H2 is oxidized to H+, electrons reduce other substances 

 



7 

 

Soil bacteria which benefit plant health are often referred to as plant growth 

promoting rhizobacteria (PGPR) and are involved in: synthesis of plant available 

compounds, facilitation of nutrient uptake from soil, and minimising or preventing 

plant diseases (Hayat et al., 2010). These organisms may be either symbiotic such 

as Rhizobium spp., or Azorhizobium spp. or free-living such as Azospirillum spp., 

Klebsiella spp. and Pseudomonas spp., all of which are involved in nitrogen-

fixing (Hayat et al., 2010). Strains belonging to the genus of Azospirilum, 

Azotobacter, Klebsiella, Bacillus, Beijerinckia, Burkholderia, Enterobacter, 

Erwinia, Flavobacterium, Microbacterium, Pseudomonas, Rhizobium and 

Serratia have been reported as having a pivotal role in phosphate solubilisation 

(Sturz & Nowak, 2000; Sudhakar et al., 2000; Mehnaz & Lazarovits, 2006). 

Many of these PGPRs have been used for some time to inoculate soils in order to 

enhance the nitrogen and phosphorous status (Bhattacharyya & Jha, 2012). As 

more plant-available nutrients are retained in the soil due to PGPR processes, 

there is less need for fertiliser applications (Hayat et al., 2010). A field study on 

the use of Bacillus vietnamiensis as an inoculant in rice plants resulted in greatly 

increased yield and a saving of 25 - 30 kg ha
-1

 of nitrogen fertiliser (Van et al., 

2000). 

Many soil bacteria produce antifungal and antibacterial compounds, plant growth 

regulators, and siderophores which are high affinity iron chelating compounds 

(Pandey & Kumar, 1989).  

A number of rhizobacteria produce compounds that are toxic to a wide range of 

pathogenic organisms including some insects (e.g., cotton aphids), viruses (e.g., 

tomato mottle virus), and fungi (e.g., Fusarium) (Banerjee et al., 2006). Many of 

these strains have been commercialised and are widely utilised in agriculture 

where either plants or soil are inoculated with the bacteria. Examples of these 

include Bacilus subtilus, B. amyloliquefaciens Paenibacillus spp. Pseudomonas 

fluorescens, Enterobacteriaceae, Azotobacter, and Azospirillum (Hayat et al., 

2010). 

Certain types of rhizobacteria synthesise phytohormones, which are often referred 

to as plant growth regulators (PGRs), which although present in extremely low 

concentrations, have the ability to influence and regulate plant physiological 

processes (Dobbelaere et al., 2003). These PGRs have been classified into five 
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groups: auxins, gibberellins, cytokinins, ethylene and abscisic acid (Zahir et al., 

2004).  

Contaminant degrading bacteria are also of particular interest in the field of 

bioremediation. Specific bacteria such as Ralstonia metallidurans are able to 

tolerate high levels of metals in soil and are therefore used to remediate metal 

contaminated sites (Goris et al., 2001). Others such as Streptomycetes 

acidiscabies E13 and Pseudomonas tolaasii ACC23 produce siderophores which 

may protect plants against the inhibitory effects of nickel and cadmium 

respectively (Dimkpa et al., 2008; Dell’Amico et al., 2008). 

 

 Diversity and distribution 1.2.2.2

Bacteria exhibit very high levels of local phylogenetic diversity where a single 

soil sample may contain tens of thousands of different phylotypes (Fierer, 2008). 

Schloss & Handelsman (2006) estimated that single gram of Alaskan soil would 

reveal over 480,000 unique bacteria based on more than 3% divergence in 16S 

rRNA gene sequences. Noguez et al, (2005) likened the distribution of bacteria in 

a 1g sample to that of vertebrates over one continent.  

Diversity is a term used to describe the richness and evenness of a population. 

Whittaker (1972) proposed three kinds of diversity: Alpha – the number of species 

per plot; Beta – a ratio of total number of species to the average number of 

species; and Gamma – the total number of species across sites (McCune & Grace, 

2002). In microbiology alpha diversity or richness is a measure of the total 

number of species in a given sample. In microbiological terms this relates to 

individual operational taxonomic units (OTUs). Evenness is a measure of the 

proportional abundances of OTUs in a sample. Microbial communities in soil tend 

to exhibit high levels of richness and evenness (Fierer, 2008). When the 

cumulative number of unique OTUs are plotted with sample size, a rarefaction 

curve is produced (Figure 1.3). The degree of linearity of the curve is proportional 

to the evenness of the sample population. If a curve is linear it also indicates that a 

sample contains a large number of rare OTUs and to elucidate the entire 

microbiome in terms of species richness would require a large sampling effort 

(Fierer, 2008). 
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Figure 1.3: Example of a rarefaction curve where the number of unique OTUs observed 

is proportional to the number of clones sequenced 

 

The Dutch microbiologist Baas Becking was one of the first scientists to attempt 

to explain the distribution of microorganisms over a large spatial scale. The often 

quoted phrase “everything is everywhere, but the environment selects” was coined 

by Baas Becking in 1934 as he presumed that there are no limitations to the 

dispersal of microorganisms and that their distribution is solely determined by 

environmental factors. The inspiration for Baas Becking’s work came from the 

work of Martinus Beijerinck, the first professor of microbiology at Delft 

University in The Netherlands (de Wit & Bouvier, 2006). 

It wasn’t until the advent of modern sophisticated microbiological and molecular 

techniques in the mid-1990s that the biogeography of microorganisms began to be 

investigated in more detail. Techniques such as DNA fingerprinting were 

developed from earlier pioneering work by Carl Woese, who advanced the field of 

phylogenetic taxonomy in the 1970s by targeting 16S ribosomal RNA (rRNA). In 

the 1980s and 90s Norm Pace and colleagues at the University of Colorado used 

PCR to explore rRNA gene sequences and developed techniques by which to 

extract DNA directly from environmental samples (Pace et al., 1985, 1991). The 

amount of information gained from the use of 16srRNA techniques and genetic 

sequencing to reveal specific microorganisms from environmental samples has 

allowed the construction of comprehensive gene libraries. DeLong, along with 

Pace and colleagues, worked with marine samples and developed techniques 

using oligonucleotide probes which enabled the identification of different 
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phylogenetic groups without the need for culturing (DeLong et al., 1989). The 

genetic information gained from these studies led to the construction of gene 

libraries initially based on marine microorganisms (DeLong et al., 1993). There 

are now comprehensive and increasingly expanding gene libraries which allow for 

the comparison of different organisms sampled from the environment. It is the 

comparison of specific microbial taxa obtained from environmental samples that 

is enabling a better understanding of diversity and allowing the study of microbial 

biogeography to advance. The advancement in sequencing techniques has also 

allowed greater resolution of environmental samples and the identification of 

previously unknown rare taxa, referred to as the “rare biosphere” (Sogin et al., 

2006).  

A study by Fierer and Jackson (2006) focussed on the concept of the 

biogeography of soil bacterial communities. This was possibly the first attempt at 

determining how entire soil bacterial communities are structured across large 

spatial scales. This was made possible by advances in DNA fingerprinting 

methods that allowed a high throughput of samples without the need for culturing. 

Soil bacterial diversity and richness and overall community composition was 

found to vary across ecosystem types and by far the best predictor of this variation 

was found to be pH (Figure 1.4). Unlike the previous studies on extremophiles, 

the conclusions of this study were that soil microbial biogeography is primarily 

controlled by environmental factors and is largely independent of geographic 

distance. They also suggested that microbial biogeography differs fundamentally 

from that of “macro” organisms for that reason. 

A later study by Chu et al. (2010) on the diversity of soil bacteria in the Arctic 

also concluded that in terms of soil bacterial communities, the environmental 

variable pH is an important predictor of community-level differences. They also 

suggested that microbial biogeography differs fundamentally from that of 

macroorganisms and cannot be predicted by latitudinal gradients where genetic 

similarities correlate with geographic proximity to neighbouring areas, as is the 

case with macroorganisms. 
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Figure 1.4:  NMDS plot of soil bacterial communities overlaid with general ecosystem 

type and soil pH (From Fierer and Jackson, 2006) 

 

Further evidence to support earlier suggestions that temporal factors play an 

important role in the distribution of microorganisms was provided in a paper by 

Bahl et al. (2011). In that study, cyanobacteria were sampled from soils of 19 hot 

and cold deserts around the globe. It was found that regionally distinct 

populations were present and that there was strong selection for hot or cold 

deserts. However, global distributions were limited by barriers to long-distance 

dispersal and predated the onset of contemporary aridity, indicating that regional 

genepools have been maintained over geological timescales. 

A comprehensive study of British soils by Griffiths et al. (2011) identified distinct 

soil biomes each with microbial communities whose composition were influenced 

by a number of environmental variables including soil chemistry (especially pH), 

aboveground features and climatic variables. There was also a strong relationship 

between community dissimilarity and environmental dissimilarity and distance 

(Figure 1.5).  
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Figure 1.5:  Relationships between community, spatial and environmental distances. 

The mean variance in community (filled circles) and environmental (open circles) 

dissimilarities with space (From: Griffiths et al., 2011). 

 

They also found that bacterial and plant communities were closely related, 

indicating that processes governing the biogeographic patterns of each may not be 

dissimilar (Figure 1.6).  

 

Figure 1.6:  Multivariate regression tree summarizing community-environment 

relationships. Vegetation classification accounts for much of the 50% of the variability 

in genotypes that can be explained by environmental factors. (From: Griffiths et al., 

2011). 
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The findings of this study were somewhat mirrored by the results of a study of 

biogeographic patterns of soil archaea in flooded and non-flooded Chinese paddy 

field soils (Zheng et al., 2013). The conclusions of this study were that both 

environmental and spatial variables such as pH, sampling depth, and 

latitude/longitude were the main drivers of archaeal distribution and that these 

drivers may be similar to those that influence macroorganism communities. 

 

1.2.3 Copper in the Environment 

 Biogeochemistry 1.2.3.1

Copper is a naturally occurring trace metal in soil and the background 

concentration in uncontaminated soil is generally related to the geology of the 

parent material, with levels ranging between 1 to 140 mg Cu kg
-1

 worldwide 

(Gadd, 2005; Romić et al., 2014). It is also a trace element that is essential in a 

number of biochemical processes in living organisms (Hooda, 2010).  

Copper may be present in soil in a number of chemical forms. The principle forms 

of copper are the cuprous (Cu
+
) and cupric (Cu

2+
) cations although the Cu

+
 ion is 

unstable in typical agricultural soils and will readily oxidise to the more stable 

Cu
2+

 ion (Cornelis, 2005). Copper will bind with varying affinities to soil 

constituents generally in the following order: Mn oxides > organic matter > Fe 

oxides > clay minerals (Alloway, 2013). 

Copper speciation and subsequent bioavailability and toxicity is influenced by a 

number of environmental and biotic factors which govern a range of chemical 

processes including redox reactions, complexation, dissolution/precipitation, and 

adsorption/desorption including those that are microbially mediated (Romić et al., 

2014; Gadd, 2005). In most soils precipitation of Cu is limited and concentration 

is mainly controlled by sorption processes (Alloway, 2013). The mobility of 

copper in soil depends on the metal retention capacity of the soil which is a factor 

of the surface electrochemical properties of aluminosilicates, oxides, clay particles 

and organic matter. These mineral components will form complexes with copper 

and limit mobility and bioavailability in soil solution (Evangelou, 1998). The 

most important sink for copper in soil is organic matter with which it forms very 

strong, stable complexes and thus restricts the mobility, bioavailability and 
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toxicity of the cupric ion (Cu
2+

) (McBride, 1994). Organic matter greatly 

influences the cation exchange capacity (CEC) of a soil due to the large number of 

negatively charged organic substances such as proteins, sugars and humic matter 

(Hooda, 2010). The Cu
2+ 

ion is also bound more tightly to organic matter than any 

other divalent transition metal. In soil pore water Cu
2+

 binds to dissolved organic 

matter (DOM) (Alloway, 2013). The stability constants (log K) for divalent 

cations in soil with varying pH are shown below. Where the higher the number, 

the more stable the metal-organic complex. 

pH 3.5 – Cu (5.8) > Fe (5.1) > Ni (3.5) > Pb (3.1) > Co (2.2) > Ca (2.0) > Zn (1.7) 

> Mn (1.5) > Mg (1.2) 

pH 5 - Cu (8.7) > Pb (6.1) Fe (5.8) > Ni (4.1) > Mn (3.8)> Co (3.7) > Ca (2.9) > 

Zn (2.3) > Mg (2.1)  

(From: Stevenson & Ardakani, 1972). 

It is evident from the above sequences that the greater the pH of a soil, the more 

stable the metal ion complexes are. Therefore, changes to the pH of a soil will 

likely influence the bioavailablity of Cu
2+

 to soil biota. A positive correlation 

between pH and retention of copper in soil has been found in a number of studies 

(Tyler & McBride, 1982; Gupta & Aten, 1993) as has the decrease in the 

bioavailability of copper with an increase in organic matter and CEC (Lejon et al., 

2008; McBride, 1981; Vulkan et al., 2000; Weng et al., 2002). Other studies have 

shown a decrease in plant tissue Cu concentrations with an increase in soil pH 

(Alva et al., 1993; Lexmond, 1980). 

At the root/soil interface or rhizosphere, biochemical processes can greatly 

influence the speciation of copper in soil. Root-induced alkalisation of the soil 

may prevent copper exposure to the plant by reducing copper solubility and 

promoting the complexation of the Cu
2+

 ion (Bravin et al., 2012; Youssef & 

Chino, 1989). Root exudates may also directly bind free cupric ions, thereby 

reducing the bioavailability of copper to the plant (Bruus Pedersen et al., 2000). 

The mobility of copper through the soil profile and potential leaching into deeper 

horizons and groundwater is dependent on the dissolved metal concentration in 

soil solution. This is dependent on solid-liquid partitioning and is usually 

quantified as the ratio of copper in the solid phase to that in the soil solution phase 
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and quantified as Kd. The free Cu
2+

 ion is considered to be that which is 

bioavailable, and its concentration in soil solution is dependent on the total metal 

pool in soil, Kd and speciation in solution (Alloway, 2013). The total metal 

loading and degree of saturation of sorption sites will also determine the amount 

of free copper in soil solution, and subsequent mobility. More pervious, coarser 

textured soils will also allow for greater migration of copper down the soil profile 

(Hooda, 2010). Although copper is readily adsorbed to organic matter in soil, 

mobility can be enhanced by an increase in the amount of dissolved organic 

matter (DOM) in soil solution. For example, an increase in DOM as a result of 

biosolids application to soil has been shown to increase copper mobility 

(Ashworth & Alloway, 2007; Heemsbergen et al., 2009). Plant growth will also 

result in a reduction in the activity of the free Cu
2+ 

in soil solution due to 

complexation with dissolved organic carbon (Degryse et al., 2009; Römkens 

et al., 1999). Other land management practices that affect the organic matter status 

or pH of a soil will also influence the mobility and bioavailability of copper. 

 

1.2.4 Copper toxicity 

 Effects on plants 1.2.4.1

Plants utilise copper in the production of key enzymes and proteins, which are 

involved in carbohydrate metabolism, reproduction, cell wall metabolism and 

water relations (Marschner, 1995). However, at high enough concentrations 

copper may become phytotoxic. This may come about through exposure to and 

uptake of copper through plant roots (Alva et al., 1999) or from cuticular 

penetration of copper deposits into plant tissues (Orbović et al., 2007). Although 

uptake by plants is controlled by complex homeostatic mechanisms, which 

minimise detrimental effects (Clemens, 2001) and therefore direct toxicity to 

mature horticultural crops via soil exposure is relatively rare (Merrington et al., 

2002).  

Elevated soil copper concentrations have also been shown to detrimentally affect 

plant/mycorrhizal associations thereby indirectly affecting the health of the plant 

by disrupting nutrient pathways (Georieva et al., 2002).  
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 Effects on microbial functions 1.2.4.2

Some bacterial groups, including Pseudomonas and some species of symbiotic 

N2-fixing Rhizobium are particularly sensitive indicators of copper pollution (Berg 

et al., 2012; Alloway, 2010; Giller, 1998). McBride et al. (1981) found that 

copper in grape vineyard soils reduced the rate of ammonification, a process 

mediated by bacteria. The activity of soil microorganisms is particularly relevant 

at the soil/root interface, the rhizosphere. It is here that interactions between plant 

roots, microorganisms and soil constituents take place (Bowen and Rovira, 1999). 

Changes in the microbial community composition in the rhizosphere will affect 

the overall function of the entire soil biotic community and soil rhizosphere/plant 

interactions by disrupting key biogeochemical processes such as the degradation 

of organic matter and nutrient assimilation (Kunhikrishnan, 2011). A study by 

Kandeler et al. (1996) concluded that heavy metal pollution severely decreases the 

functional diversity of soil microbial communities and impairs specific pathways 

of nutrient cycling. The enzymes arylsulfatase and phosphatase which are 

involved in sulphur and phosphorous cycling were particularly affected. 

Microorganisms also have the ability to degrade pesticides and herbicides such as 

atrazine (Dewey et al., 2012), glyphosate (Kim et al., 2011) and DDT (Gaw et al., 

2006) and detrimental effects to these specific organisms may disrupt the 

associated beneficial processes. 

In addition to the loss of beneficial functional traits, the microbial balance may 

also be altered in favour of pests and disease-causing organisms (Berg et al., 

2010).  

 

 Effects to microbial communities in soil 1.2.4.3

Significant changes in the microbial community structure in soils can arise as a 

result of copper contamination and associated toxicity to microorganisms. Altered 

composition of microbial communities as a result of long-term copper inputs to 

growing systems has been highlighted in a number of papers where copper-

tolerant strains dominate (Berg et al., 2012; Mertens et al., 2010; Viti et al., 2008; 

Zhou et al., 2011). The phenomenon of pollution- induced community tolerance 

(PICT) arises where microbial communities exposed to a toxic chemical select for 
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microbes resistant to that chemical (Wakelin et al., 2014). Navel et al. (2010) 

observed variations in microbial communities which were significantly correlated 

with the concentration of copper in soil and also with compost amendments. The 

soils with the most bioavailable copper had an enrichment of Actinobacteria. 

These results concurred with those of Lejon et al. (2008) in which organic matter 

status was shown to control the effects of copper on microbial communities. That 

particular study looked at the impact of copper in soil with variable organic status 

on soil microbial communities. The results showed that copper contamination 

resulted in shifts in bacterial-ARISA profiles. The bands in the region 350 to 450 

bp were cloned and sequenced and the data showed that 57% of these clones 

belonged to Actinobacteria, 27% to Gemmatimonadetes, 13% to Proteobacteria, 

and 3% to the Fibrobacteres class. In a study carried out on copper-polluted citrus 

groves in Florida, sequencing of partial 16S rRNA gene fragments revealed that 

the more polluted soils were dominated by γ-Proteobacteria, Acidobacteria, 

Firmicutes, and β-Proteobacteria (Zhou et al., 2011).  

Naveed et al. (2014) highlighted a loss of soil biodiversity and functions along a 

Cu gradient, where bacterial richness and diversity as well as dehydrogenase 

activity decreased sharply at levels above 175 mg kg
-1

 soil.  

Of particular relevance and significance in terms of human health, researchers 

have found that soil copper exposure results in PICT with co-selection for 

antibiotic resistant bacteria. In some cases this has resulted in environmental 

reservoirs of bacteria resistant to clinically important antibiotics such as 

vancomycin, which are used to treat multi-resistant staphylococcal infections 

(MRSA) (Berg et al., 2010; Fernández-Calviño & Bååth, 2013). 

Copper has not only been shown to be highly toxic to microorganisms (hence its 

bactericidal properties) but also to other soil fauna such as earthworms and 

springtails (e.g., Berg et al., 2012; de Boer et al., 2012; Dewey et al., 2012; Giller 

et al., 1998; Merrington et al., 2002; Zhou et al., 2011). As a number of 

interactions take place between microorganisms and macro- and mesofauna in 

soil, toxicity to these organisms can result in effects on microbial community 

structure and functioning (Scheu et al., 2002). The use of foliar copper sprays has 

also shown to negatively impact non-target beneficial organisms in the canopy 

such as ladybirds (Lo & Blank, 1992a&b).  
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A large number of studies have revealed that effects on plant, and soil health in 

terms of macro-, meso- and microbiota correlate well with bioavailable copper 

(i.e., easily extractable and free ionic Cu
2+

) but not necessarily with total copper 

(e.g., Merrington et al., 2002; Sauvé et al., 1996). A number of factors are known 

to control copper speciation, bioavailability, distribution and impact on soil 

communities. The most influential being soil organic status, pH and soil texture 

(Brun et al., 1998; Lejon et al., 2008; Navel, 2010). 

Although the toxicity of copper to soil microorganisms has been well 

documented, much of the supporting evidence has arisen from laboratory studies 

or greenhouse and field trials where soils have been spiked. Many authors now 

acknowledge that further studies of toxicity need to be carried out in situ in ‘real-

world’ conditions. 

 

 Regulatory guidelines 1.3

Various guidelines have been prepared for a range of soil contaminants which set 

upper limits based on risks to human health and ecological receptors. Although 

New Zealand does not currently have one set of guidelines for ‘safe’ or 

‘acceptable’ levels of copper in agricultural soils the Guidelines for the Safe 

Application of Biosolids to Land (2003) are the most generally cited which give 

an upper limit of total copper in soil of 100 mg kg
-1

 (NZWWA, 2003) and this 

value is based on the level in soil deemed to have the lowest observed effect on 

ecological receptors. The Health and Environmental Guidelines for Selected 

Timber Treatment Chemicals (Ministry for the Environment & Ministry of 

Health, 1997) give a limit of 40 mg kg
-1

 (total copper) and this is considered the 

lowest value that achieves protection of human and plant health, although the 

value derived specifically for the protection of plant health is 130 mg kg
-1

. 

Another set of guidelines have been developed for Australia and New Zealand 

which are based on the critical load of copper in soil deemed to be toxic, which is  

> 60 mg Cu kg
-1

  (ANZECC, 1992). In the Netherlands the soil target value for 

copper has been set at 36 mg kg
-1

 based on the ‘‘assumption of negligible risks to 

the ecosystem’’ and where mandatory remediation is required if levels exceed 190 

mg kg
-1

 (Ministry of Housing, Spatial Planning and Environment, 2000). In fact 

the use of copper in horticultural production systems has been banned in the 
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Netherlands (Mackie et al., 2012). The values derived for copper limits in these 

guidelines generally relate to agricultural soils and the protection of plant and 

human health. In terms of soil biota however it has been shown that earthworms 

and microorganisms are much less tolerant of elevated copper levels (Mackie et 

al., 2013; Naveed et al., 2014; Van Zwieten, 2004). In which case, key ecological 

functions such as aeration and nutrient assimilation may become compromised 

before any direct effects to plants are observed. 

There is much debate around the relevance of total copper values in the 

identification of risk to ecological receptors as the relationship between total 

copper and bioavailable is not necessarily linear. The bioavailable fraction is 

considered to be that which is able to directly come into contact with and cause 

effect to biological entities. However, total copper values are a measure of the 

total pool of copper in soil which may be easily monitored over time and directly 

relate to total agrichemical inputs.  

 

 Review of methods 1.4

There are a number of environmental and edaphic factors that will influence the 

presence and distribution of microbes in soil. In order to determine the potential 

effects of copper on bacterial/archaeal communities, a range of these determining 

factors need to be measured and evaluated for each sampling site. A sampling 

plan designed to minimise the variability of these factors between sites will allow 

for better comparisons of microbial communities which may be altered due to 

copper inputs. An overview and explanation of the theory behind the methods 

used in this study to measure a range of these variables are outlined below. 

 

1.4.1 Soil sampling  

The uppermost 0-10 cm zone of the soil profile is considered the most 

‘biologically active’ and is where the majority of microbially mediated organic 

matter breakdown and nutrient mineralisation occurs (Murphy, 2014). It is also 

the zone in which most of the total load of copper in soil occurs where it has a 

strong affinity for organic matter. It is for this reason that this zone is most often 
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sampled in studies pertaining to the impacts of copper on microbial communities 

and processes. 

The location in an orchard from which a soil sample is taken is also important. 

Kiwifruit orchards are subject to frequent vehicular movements in the alleyways 

between vine rows which may lead to localised soil compaction. Many vine rows 

have applications of herbicides, fertilisers and other organic amendments such as 

compost. It is therefore preferable to sample these locations separately so that 

these variables may be considered independently. 

 

1.4.2 Physical and chemical analyses 

 Temperature 1.4.2.1

The distribution and activity of soil microorganisms is largely mediated by soil 

temperature which changes seasonally and in response to edaphic factors such as 

ground cover and soil type (Standing and Killham, 2007). The biochemical 

activity of Mesophylic microbial communities tends to double with every 10ºC 

rise in temperature between 0ºC and 30ºC /35ºC and this is referred to as the Q10 

relationship (Standing and Killham, 2007). Therefore seasonal and diurnal 

temperature fluctuations will mediate microbial processes.  

 

 Particle Size, bulk density, porosity and water-filled pore space 1.4.2.2

The bulk density (BD) of a soil gives an indication of the degree of compaction 

and porosity. A soil with a high BD value will have reduced aeration and capacity 

for water and nutrient movement. Porosity is portion of the soil volume occupied 

by pore spaces. Studies have shown that organic orchard soils tend to have a 

lower bulk density than conventionally managed orchard soils with 

correspondingly higher levels of organic matter (Swezey et al., 1998; Glover et 

al., 2000). Soil compaction can also arise when there is a decline in bioturbation 

associated with a decline in the activities of earthworms and plant roots (Naveed 

et al., 2014).  

Bacteria exist in water-filled micropores (< 10 µm) and their spatial distribution is 

dependent on the movement of water in soil (Naveed et al., 2014). This in turn is 
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controlled by the bulk density and particle size distribution (Chau et al., 2011). It 

has been found that although smaller particle size fractions of soil may harbour a 

higher number of bacteria, coarser textured soils may have higher species 

diversity and richness due to more numerous micro-habitats in isolated water 

films (Chau et al., 2011). Water filled pore space (WFPS) is the relative 

proportion of water to total pore space and has been found to be a good indicator 

of aerobic microbial activity where maximum respiration rates have been found to 

occur at a WFPS of 60% (Linn & Doran, 1984; Huang et al., 1995).  

 

 Soil Moisture 1.4.2.3

Soil moisture content is a determining factor in the aeration-dependent activity of 

soil microorganisms (Skopp et al., 1990). A low soil moisture content may also 

restrict substrate supply to microorganisms resulting in reduced activity (Stark and 

Firestone, 1995) and cause spatial isolation of microorganisms thus influencing 

microbial distribution (Treves et al., 2003). Water is a transport medium for 

dissolved ions, nutrients, gases and heat and microorganisms themselves 

(Standing & Killham, 2007). The water content of a soil expressed as a percentage 

of the water holding capacity (WHC) may be used to determine if conditions are 

favourable for aerobic microbial activity where 50% to 70% WHC are considered 

optimal (Atlas & Bartha, 1997).  

 

 Organic Matter 1.4.2.4

Soil organic matter (SOM) provides the substrate and energy source for 

heterotrophic soil microorganisms (Standing & Killham, 2007). The SOM content 

of soil will therefore directly influence the microbial community composition of 

the soil. SOM is also one of the most reactive soil constituents with copper where 

it forms strong complexes in soil (Lejon et al., 2008; Dumestre et al., 1999; 

Singh, 1971). Therefore the amount of organic matter in soil will partly determine 

its bioavailability.  
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Brockett et al. (2012) found that soil moisture and organic matter were most 

closely related to microbial communities in a study across seven biogeoclimatic 

zones in western Canada. 

 

 Soil pH and EC 1.4.2.5

Soil pH has been shown to be one of the most important influencing factors in the 

spatial distribution of microorganisms in soil (Fierer & Jackson, 2006; Griffiths et 

al., 2011). It not only affects microorganisms and enzymatic processes directly, 

but also by influencing the dissociation and solubility of molecules which may 

have indirect effects (Atlas & Bartha, 1997). The pH of a soil will strongly 

influence the mobility and bioavailability of copper by influencing adsorption and 

desorption processes (Lopez-Periago et al., 2008; Sauvé et al., 1995; Cavallaro & 

McBride, 1980). pH in particular has been shown to have the largest influence on 

metal toxicity to soil microorganisms (Kunito et al., 1999; Giller et al., 1998). The 

relationship between CaCl2 extractable copper (CuCaCl2) and total extractable 

copper (CuT) is also strongly influenced by soil pH (Fan et al., 2011; Brun et al., 

1998).  

Electrical conductivity (EC) may be used as a measure of the level of soluble salts 

in a soil. Soluble salts (e.g., Na, K, Ca, Mg, NH4, Cl, HCO3, SO4
2-

), may increase 

in soils due to drought, saline irrigation water or accumulation from long-term 

fertiliser inputs (Jones, 2001). This may lead to effects on plant growth, soil 

microbial biomass, microbial processes such as litter decomposition, nitrification 

and denitrification and enzyme activities (Skopp et al., 1990; Rietz & Haynes, 

2003; Wichern et al., 2006).  

The use of a salt solution such as CaCl2 or potassium chloride (KCl) may be used 

in preference to water for measurements of pH, as it will counteract the effect of 

soil salinity and allow for accuracy and consistency in values, especially in sandy 

soils or soils with a low cation exchange capacity (CEC) (Jones, 2001). 
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 Active Carbon 1.4.2.6

The permanganate oxidizable carbon (POXC) method (Weil, 2003) has been 

shown to be a good measure of the labile soil C pool and to be strongly correlated 

with particulate organic C (POC), microbial biomass C (MBC), and soil organic C 

(SOC) but with a greater sensitivity to changes in environmental or management 

variation (Culman et al., 2012). This method is also a relatively rapid and 

inexpensive means by which to assess changes in the labile soil C pool. 

 

 Copper 1.4.2.7

Total copper (CuT) is a measure of the entire recoverable fraction of copper in soil 

including strongly bound and complexed as well as labile and biologically 

available forms. The total fraction of copper in a soil may not all be bioavailable, 

however it is a useful and easily comparable measure by which to monitor 

changes in the amount of copper in soils over time. Particularly in the assessment 

of the potential hazard to soils as well as by providing a measure by which to 

compare a soil with quality standards (Romić et al., 2014). For the sites sampled 

in this study, values of CuT can also be compared with previous data from other 

studies (e.g., Benge, 2011) to determine any increases over time. 

The soluble and potentially biologically available fraction of copper in soil has 

been determined in numerous studies by the use of weak extractants such as 

EDTA, NH4OAc, DTPA, and CaCl2. A number of studies have shown good 

correlations between CaCl2 extractable copper (CuCaCl2) and biological effects 

such as reduced enzyme activity (Dewey et al., 2012; Wang et al., 2009), plant 

effects (Brun et al., 1998), soil C mineralisation rate (Wang et al., 2009) and 

microbial biomass C (Merrington et al., 2002). This unbuffered salt solution also 

has a comparable ionic strength (0.3M) to the total salt concentration of many 

soils, therefore the concentration of copper in soil extracts will correlate with 

differences in soil pH (Jones, 2001). CuCaCl2 has also been significantly correlated 

with other soil properties such as organic matter content, cation exchange capacity 

(CEC) and carbonate content (Romić et al., 2014). 
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Divalent free copper (Cu
2+

) has been shown in recent years to be a better predictor 

of direct toxicity to soil microorganisms, invertebrates and plants than other 

measures such as CuT and CuCaCl2 (Zhou et al., 2011). A number of studies have 

shown that copper toxicity to microorganisms is a direct function of free Cu
2+

 

concentration (Menkissoglu, 1991; Cabral, 1994; Dumestre, 1999; Vulkan et al., 

2000; Hasman et al., 2009) although other studies have found that some copper 

complexes may also cause effect to certain bacteria (Brandt et al., 2006; 

Maderova et al., 2011; McLean et al., 2013). The measurement of Cu
2+

 in soil 

solution may be carried out in a number of ways including the use of a Cu
2+

 

specific electrode, diffusive gradients in thin films (DGT) and whole cell 

biosensors or determined using chemical speciation models such as the 

Windermere Humic Aqueous Model (WHAM) or free ion activity model (FIAM). 

 

1.4.3 Microbial analyses 

There are a wide range of microbiological, biochemical and genetic approaches to 

studying microbial communities in soil. These range from traditional direct 

culturing methods that identify individual taxa through to metagenomics which 

have enabled the characterisation of the taxonomic structure of microbial 

communities and the identification of functional genes, and metaproteomics and 

metatranscriptomics which can reveal the functions actually expressed by these 

communities in situ. Other techniques for assessing the overall effect of 

perturbations to microbial communities may involve the measurement of 

biochemical parameters such as enzymes and phospholipid fatty acids (PLFAs). 

 

 Enzyme analysis 1.4.3.1

Dehydrogenases are a good measure of soil microbial activity (Taylor et al., 2002; 

Mills et al., 2006) as they are a key component of intact cells and provide a direct 

measure of the total oxidative activities of microorganisms in the initial stages of 

organic matter breakdown (Dick, 1997). They have also been shown to be good 

indicators of copper contamination in soil (Wyszkowska et al., 2005; Jeyakumar, 

2010). For these reasons they have been used as a measure of ecotoxicology in a 
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number of studies. The method of Casida et al. (1965) is based on the theory that 

the reduction of 2,3,5-triphenyltetrazolium chloride to the red-coloured triphenyl 

formazan takes place within microbial cells during respiration. This end product 

can be measured spectrophotometrically and it provides an indirect measure of 

metabolically active microbes in soil (Praveen & Tarafdar, 2003). 

 

 Community analysis 1.4.3.2

Many studies have found a direct correlation between metal contaminants in soils 

and microbial community structure e.g., (Frostegård et al., 2011; Wakelin et al., 

2014; Li et al., 2015). The 16S ribosomal rRNA gene (16S rRNA) is highly 

conserved between different species of bacteria and archaea (Weisburg et al., 

1991) and therefore phylogenetic studies that target this gene are often used to 

elucidate microbial communities in environmental samples (Coenye & 

Vandamme, 2003). Also, bacteria have been found to be more sensitive to metal 

contamination than fungi (Doelman, 1985; Hiroki, 1992). For this reason, 

techniques that specifically target the 16S rRNA gene may be used to provide a 

useful indication of changes to soil microbial communities in response to metal 

inputs. 

A study by Smit et al. (2006) found distinct differences in microbial community 

structure between copper contaminated and non-contaminated soils by using a 

high throughput DNA fingerprinting method. The diversity was also found to be 

lower in the contaminated soil. Ribosomal RNA intergenic spacer analysis (RISA) 

has been used successfully in a number of studies to compare soil microbial 

communities subject to different environmental perturbations (Ranjard et al., 

2001). Other biochemical and molecular methods such as PLFA, denaturing 

gradient gel electrophoresis (DGGE) fingerprint analysis and terminal restriction 

fragment length polymorphisms (T-RFLPs) of PCR-amplified 16S ribosomal 

DNA have been widely used to detect changes in microbial community 

composition in soils contaminated with metals (Frey et al., 2006; Lejon et al., 

2008; Wang et al., 2008; Mackie et al., 2013; Li et al., 2015).  
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 Next generation sequencing 1.4.3.3

Metagenomics is a culture-independent genomic analysis that has enabled the 

characterisation of the taxonomic structure of entire microbial communities. 

Recent metagenomic techniques involving high throughput sequencing have been 

used for both microbial community structure and function analyses. These 

techniques which target the 16S rRNA gene allow the determination of the 

complete DNA sequence of a multitude of individual operational taxonomic unit 

(OTU) genomes concurrently. Next generation sequencing, whilst providing more 

definitive taxonomic classification than other techniques, is much less time-

consuming and labour intensive and in recent years has also become much more 

cost-effective. Ion Torrent sequencing (ITS) uses semi-conductor technology in 

which the addition of individual nucleotides during DNA synthesis are registered 

by the release of hydrogen ions. Individual reads are then assigned to specific taxa 

(Salipante et al., 2014).   

 

 Functional profiling of microbial communities 1.4.3.4

In order to realise the potential implications of changes in microbial communities, 

the specific functions of certain groups or individual OTUs needs to be 

determined. Phylogenetic profiling using 16S rRNA marker genes has enabled the 

elucidation of microbial communities and the identification of individual bacteria 

or archaea. However, these techniques cannot predict the metabolic and functional 

capabilities of individual microbial taxa and communities (Langille et al., 2013). 

Deep metagenomic sequencing of microbial communities can produce metabolic 

and functional profiles of a large number of individual OTUs in entire 

communities, however the cost of these analyses are generally prohibitive 

(Langille et al., 2013). Predictive functional profiling of microbial communities 

can now be carried out by using a computational approach which compares 16S 

rRNA marker gene sequences with a database of reference genomes for which 

functional capabilities are known. The software programme phylogenetic 

investigation of communities by reconstruction of unobserved states (PICRUSt) 

has demonstrated that phylogeny and function  are sufficiently linked to allow the 

prediction of function from phylogenetic data (Langille et al., 2013). 
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 Study Aims and Objectives 1.5

The overall aim of this study was to determine whether or not the use of copper 

sprays on kiwifruit orchards has had detrimental effects on soil microorganisms 

and if this has resulted in changes to the structure of soil microbiological 

communities and therefore what the implications of this may be in terms of long-

term orchard sustainability. 

Specific objectives were as follows: 

1. To determine if soil copper levels have increased as a result of the 

increased use of copper sprays as an orchard management tool in response 

to Psa-V. 

2. To identify potential differences in soil microbial communities between 

conventionally and organically managed orchards. 

3. To identify potential differences in soil microbial communities between 

orchards that use or do not use copper sprays. 

4. To elucidate the entire soil microbiome for each orchard block in order to 

determine if copper sprays may result in changes to microbial 

communities. 

5. To identify if specific groups of bacteria or archaea are over- or under-

represented in soils receiving inputs of copper. 

6. To determine if copper may reduce the abundance of certain groups of 

bacteria or archaea associated with specific beneficial functional traits. 

7. To identify which fraction of copper (total, CaCl2-extractable or Cu
2+

) is 

most closely associated with effects to soil microbiological communities. 

 

 Hypothesis  1.6

The use of copper sprays in Western Bay of Plenty kiwifruit orchards has resulted 

in compositional changes in soil microbial communities which may have negative 

implications for long-term sustainable production. 
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 Study Sites 1.7

Ten kiwifruit orchards within the Te Puke region in the Western Bay of Plenty 

were selected for the study. Five groups of two adjacent orchards – one organic 

and one conventional – were chosen based on location, soil type and kiwifruit 

variety (Figure 1.7). The location of orchard blocks and orchard images are 

displayed in Appendix A. 

 

 

Figure 1.7:  Locations of orchard study sites 

 

Soils from these orchards had been analysed in 2011 for a range of soil physical 

and chemical parameters, including metals, by the Agricultural Research Group 

on Sustainability (ARGOS). The study was carried out prior to the spread of    

Psa-V across the region and the subsequent widespread use of protective copper 

sprays. Based on this data, only orchards growing the Hayward (green) variety of 

fruit were selected as soil copper levels were found to be higher in these orchards. 

It would also potentially limit the variability of soil characteristics due to different 

management practices for green and gold varieties. 

  

N 
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2 Methods 

2.1 Field Procedure and Sampling  

2.1.1 Sampling design 

Three blocks within each orchard were selected so that the ages of vines in each 

block were all similar (20 to 30 years). Each block included 20 sampling sites - 10 

within vine rows and 10 adjacent inter-row/alleyway. Within rows and alleyways 

were sampled separately so as to determine the potential effects on microbial 

communities of herbicides, organic amendments, plant root exudates, soil 

compaction etc. in addition to copper applications. The sampling sites were 

selected so as to cover and be representative of the entire block whilst omitting 

edges and areas with young or missing vines as this could potentially lead to 

greater variability in physical and biological soil characteristics. Sampling was 

carried out on a systematic basis across each block in that sample sites were 

located at regular intervals. 

Each within row sampling site was located 40 cm from the base of a vine and the 

adjacent alleyway site located at right angles to the within row site and between 

vehicle tracks.  

 

2.1.2 Data collection 

A pre-designed field data sheet was used to record measurements and 

observations at each site (Appendix B). The location, of each block and individual 

sampling site was marked with a hand-held global positioning system (GPS) and 

photographed for future reference e.g., (Figure 2.1). GPS was also used to 

determine the aspect and altitude of each block. 
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Figure 2.1:  Typical photograph of a sampling site showing vegetation cover within the 

vine row and alleyway 

 

Measurements of soil temperature were made with a soil temperature probe 

(EMGA, P300W) at three locations within each block. 

A brief description of vegetative cover was made for each block which included 

the percentage cover and dominant species present. The presence/absence of 

herbicide strips or use of organic amendments was also noted and a brief 

qualitative list of soil macrofauna present at the time of sampling was compiled.  

 

2.1.3 Soil sampling 

At each sampling site the top layer of vegetation was scraped away and a garden 

trowel was used to sub-sample the top 10cm of soil. The soil was then placed into 

a sterile, zip lock plastic bag labelled with the date, orchard name, block identifier, 

and position. Each bag would ultimately contain a composite of each of the 10 

vine row or alleyway sub-samples. In order to prevent cross-contamination the 

trowel was sterilised with 70% ethanol and air-dried between sampling. 

Immediately after sampling each block, the composite soil samples were placed 

on ice in a cool box. 
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Ten undisturbed soil cores (10 cm depth) were also sampled randomly from each 

of three vine rows and three inter row sites across each block for bulk density 

measurements. These were extracted with a Daiki corer (Daiki Rika Kogyo Co., 

Ltd., Japan). 

 

2.1.4 Soil preparation 

After transportation to the laboratory, composite soil samples were immediately 

homogenised and sieved through a 2 mm sieve which was sterilised with 70% 

ethanol and dried prior to and after sieving each sample. A small sub-sample from 

each composite sample was transferred into a 30 ml sterile plastic vial and stored 

frozen at -20ºC for subsequent DNA extraction and sequencing. A portion of each 

composite sample was air dried at 32 ºC in a drying cabinet and the remainder 

stored at 4 ºC. Soils to be analysed for ‘total’ and CaCl2-extractable copper were 

oven-dried in a Binder forced convection drying oven and ground with a mortar 

and pestle to ensure homogeneity. 

 

 Physical and chemical analyses 2.2

2.2.1 Bulk density and porosity 

Soil cores were dried for 24 hrs at 105 ºC and weighed. The bulk density of each 

soil core was determined by dividing the oven-dry soil weight (g) by the volume 

of the core (100 cm
3
). 

Soil porosity was calculated as follows: 

Porosity % = 100 – (bulk density / particle density x 100)  

Where particle density = oven dry soil wt (g) / volume of soil (100 cm
3
). 

 

2.2.2 Particle size  

The Bouyoucous hydrometer method (Bouyoucous, 1962 & Gee & Bauder, 1986) 

was used to determine the particle size of each composite soil sample. Briefly, 
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50 - 100 g of soil was pre-treated with H2O2 to remove organic matter and then 

dispersed in 10% sodium hexametaphosphate solution and left to settle overnight. 

The soil solution was then transferred to a soil dispersion cup and mixed for 1 min 

with a mechanical mixer. The mixture was then transferred to a 1000 ml 

sedimentation cylinder and soil particles were brought into suspension with a 

plunger and again left to settle. Readings were taken from a hydrometer 

suspended in solution after 40 sec and 2 hr time intervals to determine the settling 

times of clay and silt from which % sand was also determined. The calculated 

percentage of sand, silt and clay was then used to classify the soil based on the 

USDA textural triangle. 

 

2.2.3 Soil moisture and water-filled pore space 

Soil moisture was determined by calculating the difference between field-moist 

and oven-dry (105ºC) soil as follows: 

Soil moisture = field moist soil wt (g) – oven dry soil wt (g)   x 100 

field moist soil wt (g) 

Water-filled pore space was calculated as follows: 

WFPS = 100 x (gravimetric moisture content (g g
-1

) x bulk density)  

particle density (=2.65 g cm
2
) 

    

2.2.4 Organic matter and active carbon 

The Loss on Ignition (LOI) method was used to determine soil organic matter 

(SOM). Approximately 5 g of oven dry soil was accurately weighed into a pre-

weighed crucible and placed into a microwave furnace (CEM Phoenix) set at 

375 ºC for 3 hrs. SOM was calculated as follows: 

SOM = oven dry soil wt (g) – soil wt after ignition (g) x 100 

oven dry soil wt (g) 

 

The permanganate oxidizable carbon method based on Weil et al. (2003) was 

used to determine the active or biologically available carbon content of each soil.  
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2.5 g of air-dry soil was weighed into polypropylene 50-mL screw-top centrifuge 

tubes. To each tube, 18 mL of deionized water and 2 ml of 0.2 M Potassium 

permanganate stock solution were added and tubes were shaken for 2 min at 

240 rpm on an orbital shaker. Tubes were removed from the shaker and left to 

settle for exactly 10 min. After 10 min, 0.5 mL of the supernatant was transferred 

into a second 50-mL centrifuge tube and mixed with 49.5 mL of deionized water. 

Sample absorbance was read with a UV/vis spectrophotometer with the 

wavelength set at 550 nm. Permanganate oxidizable C was determined by the 

following formula: 

POXC (mg kg soil) = [0.02 mol L
-1

 – (a+b * ABS)] * (9000 mg C mol
-1

)(0.02 L 

solution wt
-1

) 

Where: 0.02 mol L
-1 

= concentration of the initial KMnO4 solution 

a = intercept and b = slope of the standard curve 

ABS = absorbance of the unknown soil sample 

9000 mg = amount of C oxidized by 1 mole of MnO4 changing from Mn
7+

 

to Mn
4+

 

0.02 L = volume of KMnO4 solution reacted, and  

wt = mass of soil (kg) 

 

2.2.5 Soil pH and EC 

Soil pH and EC were determined with a stainless steel electrode and meter (IQ 

Scientific Instruments). EC and pH(water) measurements were taken in a 1:5 

mixture of air-dry soil and deionised (DI) water that had been shaken for 2 hrs on 

an orbital shaker. pH(CaCl2) measurements were measured following the same 

procedure but in a 1 : 2.5 mixture of air-dry soil and 0.01 M CaCl2.  

Both electrodes were calibrated with buffers of known pH and EC values prior to 

measurements. 
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2.2.6 Copper  

 Total Cu 2.2.6.1

For Cu(T) analysis pre-dried and ground soils were extracted for 30 mins at 95ºC 

with aqua regia (1 g soil in 4 ml 50% HNO3 and 10 ml 20% HCL) and made up 

to 100 ml with DI water. 40ml of sample was centrifuged at 4,000 rpm and a 

20 ml aliquot diluted 1:5 for chloride ion adjustment and filtered with a 0.45 

micron cellulose filter into a 15ml Falcon tube. Samples were acidified with conc. 

HNO3 (2 % by vol.) and stored at 4 ºC until analysis. Total copper and other 

metals (Li
7
, B

10
, Na

23
, Mg

24
, Al

27
, S

34
, K

39
, Ca

43
, V

51
, Cr

52
, Fe

54
, Mn

55
, Co

59
, Ni

60
, 

Cu
65

, Zn
68

, As
75

, Se
82

, Sr
88

, Ag
109

, Cd
111

, In
115

, Ba
137

, Tl
205

, Pb
207

, Bi
209

 and U
238

) 

were determined by inductively coupled plasma mass spectrometry (ICP-MS) 

ELAN® DRC II (Perkin Elmer Inc., Münster, Germany). The ICP analysis was 

carried out by technical staff at the University of Waikato. 

 CaCl2-extractable Cu 2.2.6.2

For Cu(CaCl2) analysis oven-dried and ground soils were extracted by shaking 5 g 

soil in 50 ml 0.01 M CaCl2 for 2 hrs on an orbital shaker. Extracts were then 

filtered through a 0.45 micron cellulose filter into a 15 ml Falcon tube, acidified 

with conc. HNO3 (2 % by vol.) and stored at 4 ºC until analysis. Cu(CaCl2) and other 

metals were determined by ICP-MS as above.  

 Cu
2+ 

ions 2.2.6.3

Free Cu
2+

 ions were determined in soil solution extracts with a cupric ion selective 

electrode (CuISE) (Orion Cupric ionplus® Sure-Flow® Solid State Combination 

9629BNWP) coupled with a benchtop pH/Ion meter (2100 - Eutech Instruments) 

according to the methods of Sauvé et al., 1995, Avdeef et al., 1995 and Luo, 

2004. Extracts were obtained by shaking 10 g of oven-dry soil in 20 ml 0.01 M 

CaCl2 in 50ml polypropylene screw-top centrifuge tubes laid horizontally on an 

orbital shaker set at 200 rpm for 16 hours. Samples were then centrifuged for 10 

minutes at 2,500 rpm and the supernatant filtered through Whatman No.1 filter 

paper prior to Cu
2+

 determination. 

The copper ISE used in Cu
2+

 analysis was polished with aluminium oxide powder, 

soaked for 10 min in 0.025 M H2SO4 and rinsed thoroughly in DI water each day 
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prior to analysis (as recommended by Blaedel and Dinwiddie, 1975) and soaked 

in DI water when not in use. The ISE outer filling solution was changed regularly. 

Approximately 10ml of sample was transferred into a polystyrene sample cup to 

which 100 µl 10 ml
-1

 of KNO3 ionic strength adjustor (ISA) was added. The 

sample cup with magnetic stirrer was placed on a magnetic stirrer plate and set to 

stir gently at a constant rate. The magnetic plate was insulated with a cardboard 

mat so as to prevent potential heat transfer due to friction. The Cu ISE was then 

placed into the solution and a paper bag placed over the sample and ISE to obtain 

constant, reduced lighting conditions. Once the millivolt reading was stable (< 0.3 

mV min
-1

) readings were recorded. As temperature influences the release of Cu
2+

 

in solution, solutions were measured at the same temperature as calibration 

standard solutions. 

ISE calibration standards were made by first preparing a standard stock solution 

comprising 10.272 g KNO3, 2.203 ml ethylenediamine (EN) and 2.420 g 

Cu(NO3)2.3H2O made up to 1 L with DI water. The stock solution was then 

apportioned to five 200 ml glass bottles and the pH of each solution adjusted with 

10% HNO3 or 1 M KOH to achieve nominal pH values of 4, 5, 6, 7 and 9. 

The actual pH of each standard solution was measured with a calibrated glass pH 

electrode (Metrohm) at the time of Cu ISE measurement. Calculations of pCu
2+

 

for each standard were made by entering the pH values into stoichiometric 

equations obtained from Luo (2004) which are based on stability constants for EN 

taken from Avdeef et al. (1983) (Appendix D). A standard calibration curve was 

plotted by entering the calculated pCu
2+

 value against the electrode potential 

reading (mV) for each standard. A new standard calibration curve was made for 

each set of measurements. Calibration curves were considered to be acceptable 

when the slope of the calibration was within 95% of the theoretical Nernst value 

of -29.58 at 25 ºC. Values of pCu
2+ 

for samples were obtained by using the 

regression equation produced for each calibration curve. Calculations of Cu
2+

 (mg 

kg
-1

 soil) for each sample were made based on the formula pCu
2+ 

= - log [Cu
2+

] 

and the weight of soil. 
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2.2.7 Dehydrogenase 

Dehydrogenase was measured in each soil sample according to the method of 

Casida et al. (1964). 15 g of air-dried soil was thoroughly mixed with 0.35 g of 

CaCO3 and 6 g of this mixture was weighed into 50 ml polypropylene centrifuge 

tubes in duplicate. 1 ml of 3% aqueous triphenyltetrazolium chloride (TTC) and 

3.5 ml of DI water were added to each tube and mixed. A blank was included with 

each sample set (i.e., 1 ml of 3% aqueous TTC and 4 ml of DI water). Samples 

were incubated in the dark at 37° for 24 hours. After 24 hours 10 ml of methanol 

was added to each tube and shaken for 1 min at 300 rpm on an orbital shaker in 

the dark. The suspension was filtered through 150 mm filter paper into a 50 ml 

centrifuge tube ensuring the complete removal of the entire triphenylformazan 

(TPF) product from the filter paper. The filtrate was then diluted to 40 ml with 

methanol. The colour intensity was measured with a spectrophotometer set at 485 

nm and a 1 cm cuvette with the blank sample used to zero the spectrophotometer. 

The amount of TPF produced was calculated using the standard equations from 

Pepper & Gerba (2004) where:   

 

 x (µg ml
-1

) = A - 0.00629  DHA (µg TPF g
-1

 soil) = x  * (40 ml) 

              0.0415      6 g 

 

 Microbial community analyses 2.3

2.3.1 DNA extraction and preparation 

DNA was extracted with the PowerSoil
®
 DNA Isolation Kit (MoBio Laboratories, 

Carlsbad, CA, USA) according to manufacturer instructions. The extraction 

procedure is detailed in Appendix E. Extracted DNA was quantified and checked 

for purity using a NanoDrop® ND-1000 UV-Vis spectrophotometer (NanoDrop 

Technologies, Wilmington, DE, USA). DNA was stored frozen at -20ºC until 

further use. 

Due to the high concentration of DNA recovered from soil as indicated by UV-

Vis spectroscopy, extracts were diluted 1:5 with sterile Milli-Q water before 

quantification with a Qubit® fluorometer (Invitrogen by Life Technologies) prior 

to PCR. This assay is highly selective for double-stranded DNA (dsDNA). 2 L 
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of template DNA was added to 98 L of dilution buffer in 500 l thin-walled PCR 

tubes, and dsDNA concentration was measured relative to Qubit® DNA standards 

(one high and one low). 

 

2.3.2 PCR amplification  

The V4 region of the bacterial 16S rRNA gene was amplified with reverse primer 

806r and barcoded forward primer 515f with the following sequences: 

Forward:  

A adaptor + library key + IonXpress barcode + Barcode adaptor + 515f primer 

(5’CCATCTCATCCCTGCGTGTCTCCGACTCAGXXXXXXXXXXGATGTGCCAGC

MGCCGCGGTAA ‘3) 

Reverse:  

P1 + 806r primer  

(5’CCACTACGCCTCCGCTTTCCTCTCTATGGGCAGTCGGTGATGGACTA

CHVGGGTWTCTAAT ‘3) 

These primers have been shown to target a wide diversity of bacteria without 

strong bias towards particular groups (Bates et al., 2011). Each PCR reaction 

mixture contained 2 µL of template DNA (1 ng total), 11.88 μL UV-sterilized 

MilliQ water, 1 μL bovine serum albumin (BSA) (0.4 mM), 3 μL dNTPs (2 mM), 

3 μL 10 X buffer, 3 μL MgCl2 (50 mM), 0.12 μL Platinum® Taq DNA 

Polymerase (Life Technologies) (5 U µl
-1

) and 0.5 μL of each primer (10 mM). 

The PCR master mix was treated with ethidium monoazide (EMA) at a ratio of 

1:100 prior to the addition of Taq, forward primers and template DNA. This step 

was performed so as to prevent the amplification of potential contaminant dsDNA 

present in the master mix reagents (Rueckert and Morgan, 2007). 

Thermocycling conditions were set at 94ºC for 3 min for the initial denaturation 

followed by 30 cycles of 45 seconds at 94ºC, 1 min at 50ºC and 1.5 min at 72ºC 

for denaturation, annealing and extension/elongation, with a final elongation 

phase at 72ºC for 10 min. Samples were then held at 4ºC indefinitely. PCR 

reactions were run in triplicate and PCR products were later pooled. 
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2.3.3 Amplicon visualisation 

Gel electrophoresis was used to visualise and analyse the quality and yield of PCR 

products. Agarose gel (0.3 g) was prepared in 1 X TAE buffer solution (40 mM 

Tris, 20 mM acetic acid, and 1mM EDTA) with 1 µL of SYBR® Safe DNA gel 

stain (Life Technologies). The gel chamber was filled with 1 X TAE buffer 

solution and 5 µL of PCR product and negative/positive controls were mixed with 

2.5 X loading dye and loaded into wells. A 1 kb ladder was loaded into the first 

and last well. The gel was run for 30 min at 60V. Preparation of gel and sample 

runs were undertaken in reduced lighting conditions. Gels were visualised under 

UV light on an Alpha Innotech AlphaImager Imaging System and the size of 

DNA fragments were estimated by comparison with molecular weight markers in 

the 1 kb ladder. 

 

2.3.4 Amplicon clean-up and preparation for sequencing 

PCR amplicons were cleaned with Solid Phase Reversible Immobilization (SPRI) 

paramagnetic bead-based technology. SPRI
®

select was used with left-side size 

selection to exclude fragments below the size range for target amplicons of 380–

410 base pairs whilst at the same time removing primer dimers. 30 µL of PCR 

product was mixed with 21 µL of SPRI
®
select and placed on a magnetic rack to 

allow the target DNA to bind to the magnetic beads and to separate from solution. 

The supernatant containing contaminants and excluded fragments was extracted, 

and DNA bound to SPRI beads was washed with 85% ethanol, dried and eluted 

with 20 µl 1 X TE (10mM Tris and 1mM EDTA). SPRI beads were removed from 

the eluent containing DNA on a magnetic rack and eluted DNA transferred into a 

new tube. SPRI-cleaned PCR products were quantitated with a Qubit® dsDNA 

High Sensitivity assay kit, and DNA was diluted to 300 pg µL
-1

 with 1 X TE 

based on Qubit concentration values. A final equimolar library was prepared by 

pooling 5 µl of each of the 300 pg µL
-1

 products into one tube which was then 

diluted to 26 pM with 1 X TE (1.22 ng of DNA in 200 µL). 
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2.3.5 Ion Torrent sequencing 

Sequencing of prepared DNA was carried out at the Waikato DNA Sequencing 

Unit using the Ion Torrent PGM Sequencer following manufacturer protocols. 

 

2.3.6 Data processing 

Sequence processing and the generation of an OTU abundance table were carried 

out by Dr Charles Lee using Waikato DNA Sequencing Unit’s standardised 

protocols for 16S rRNA gene PCR amplicons developed for Ion Torrent PGM. 

Briefly, sequence data were quality-trimmed based on length and homopolymer 

counts using Mothur 1.17.0. (Schloss et al., 2009). The resulting high quality 

sequences were dereplicated, ranked by abundance, binned into operational 

taxonomic units (OTUs), and checked for PCR chimeras using UPARSE (Edgar 

2013). The abundance of each OTU in all samples was calculated and stored in an 

Excel spreadsheet for downstream analyses. Representative sequences of each 

OTU were analysed using the Ribosomal Database Project (RDP) Classifier to 

analyse and determine phylogeny to provide automatic taxonomic assignments. 

Classification at each taxonomic level was assigned a percentage confidence 

score, where a higher number indicates a higher level of certainty that the 

taxonomic assignment is accurate.  

OTU abundance data were converted into presence/absence as well as percentage 

relative abundance values based on the total number of sequence reads in each 

sample. Abundant and rare OTUs in the relative abundance OTU dataset were 

then segregated based on threshold selection criteria of ≥ 0.1% and ≤ 0.1% 

abundance across all site samples, respectively.  The rare OTU dataset was 

analysed separately as is thought that rare species may be better indicators of 

ecosystem stress than more common species (Poos and Jackson, 2012) and are 

also considered to be essential for understanding changes in community 

composition over time (Shade et al., 2014). Comparisons of OTU relative 

abundance across sites at the phylum level were based on a ≥ 70% confidence in 

classification at that level. OTUs for which classification at the phylum level was 

less than 70% confident were re-classified as ‘other’.  Rare species (defined as 
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occurring in < 5% of samples as recommended by McCune and Grace [2002]) 

were excluded from each of the four datasets prior to multivariate analyses.  

 

 Statistical analyses 2.4

2.4.1 Physiochemical data 

Statistical analyses were carried out with the software programmes Statistica 64 

version 12 by Statsoft Inc. Data were log (x + 1) transformed prior to analyses 

where necessary to compress high values and spread low values into a range 

within the same order of magnitude. Statistically significant differences between 

sampling sites in terms of physical and chemical parameters were determined by 

one-way ANOVA and paired t-tests. In order to satisfy the assumptions of 

ANOVA normality and homoscedasticity of the data were checked with the 

Shapiro-Wilk and Brown-Forsythe tests respectively prior to analyses. Non-

parametric data were analysed with the Kruskal-Wallis test. 

 

2.4.2 Microbial community data 

The statistical programme PC-ORD Multivariate Analysis of Ecological Data (v6, 

McCune & Mefford, 1999) was used to analyse community data. This software 

has been specifically designed for multivariate analyses of ecological 

communities. 

In order to visualise groupings of sites based on community composition using 

presence/absence and relative abundance data, non-metric multidimensional 

scaling (NMDS) joint plots (Kruskal, 1964; Mather, 1976) were constructed based 

on dissimilarity matrices. Prior to analysis, data for sites O3B1VR and O7B1VR 

were removed from each dataset based on the observation that these sites had 

significantly lower values for OTU richness and total sequence reads, which was 

probably more related to DNA quality than field conditions. The community data 

matrix (primary matrix) was constructed using Sørensen (Bray Curtis) distance 

measures. The Sørensen distance measurement is widely used as it consistently 

distinguishes between ecologically distinct groups (McCune and Grace, 2002). 
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Relative Euclidean distance measures were used to construct the secondary matrix 

of environmental variables. Because ranked distances are used in NMDS, 

assumptions of normality or linearity among variables are not required (McCune 

& Grace, 2002). The final ordinations were constructed based on 250 runs each of 

real and randomised data using a random starting configuration. Ordinations were 

preferentially constructed in 2 dimensions for ease of visualisation and 

interpretation. However, 3 dimensional plots were constructed where 

recommended due to high stress values if differentiation between groups could be 

easily visualised. The final stress and instability of ordinations were based on the 

Monte Carlo test using 250 randomised runs. Stress values reported in PC-ORD 

are percentage values (i.e., 100 times that which are usually reported). The Monte 

Carlo test was used to determine if NMDS had extracted stronger axes than 

expected by chance (McCune & Grace, 2002). Points on the ordination were 

overlaid with categorical variables as grouping variables (orchard, position, 

management and herbicide use). A coefficient of determination (r
2
) was used to 

represent the quality of data reduction and an indication of how the variance 

represented was distributed among the primary axes. Environmental variables 

were plotted as vectors on the joint plots if r
2 

values were greater than 0.4.  

Multi-response permutation procedures (MRPP) were used to test the hypothesis 

of no difference between groups based on Sørensen (Bray Curtis) distance 

measures. MRPP does not require the assumption of multivariate normality or 

homogeneity of variances and has therefore been recommended for community 

data (McCune & Grace, 2002). Groups were defined by orchard, soil CuT, and 

CuCaCl2 concentration range, position, management type and herbicide use. Pair-

wise post hoc tests were performed to distinguish groups where there was more 

than one group for each variable (i.e. orchard and CuT). In MRPP a test statistic 

(T) is used to describe the separation between groups where the more negative the 

number, the stronger the separation. The p value is used to evaluate the likelihood 

of an observed difference being due to chance where the value is calculated as the 

proportion of randomized runs with stress ≤ observed stress. The effect size that is 

independent of sample size is provided by the chance-corrected within-group 

agreement value (A). This value describes within group homogeneity compared to 

the random expectation. The value of A determines the degree of heterogeneity 

within groups. An A value of 0 indicates that heterogeneity within groups is that 
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expected by chance and a value of 1 indicates that all items within groups are 

identical. Values above 0.1 indicate a relatively high degree of separation and 

above 0.3, very high (McCune & Grace, 2002).  

A series of scatterplots were constructed to identify relationships between OTU 

richness, diversity, total number of rRNA sequence reads and measured 

environmental variables. One way ANOVA and t-tests were used to determine the 

significance of differences between orchards and sites grouped by similar 

physicochemical properties. 

Indicator species analyses (Dufrêne & Legendre, 1997) was then performed as it 

is able to determine the strength of association between individual OTUs and 

environmental variables and to detect and describe the value of different OTUs in 

indicating particular environmental conditions (McCune & Grace, 2002). 

Indicator values were used to determine the degree to which a particular OTU is 

associated with a particular group where a maximum value of 100 for a particular 

OTU corresponds to perfect indication for that group. Monte Carlo tests based on 

1,000 randomisations were conducted on each observed indicator value (IV) to 

obtain p-values which would determine the significance of differences between 

groups. 

 

 Quality Control 2.5

2.5.1 Sampling, soil preparation and storage 

All equipment used in the collection of soil samples was sterilised with 70% 

ethanol prior to sampling and between samples to prevent cross-contamination. 

New, sterile vials were used for the storage of soil reserved for DNA extraction 

and sequencing. Samples for DNA extraction and sequencing were stored at -20ºC 

and those for enzyme analysis were stored for less than a week at 4ºC. 
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2.5.2 Analytical 

 Physical and Chemical 2.5.2.1

Only analytical grade reagents and Type 2 deionised (DI) water were used in the 

preparation of reagents used for analysis. Weighing balances and pipettes had 

been calibrated and glassware such as volumetric flasks were of type A. All 

glassware had been washed in laboratory grade detergent (Decon™) and rinsed 

thoroughly in DI water. Samples sent for ICP-MS analysis were stored in new 

Falcon tubes. Standard protocols for chemical and physical soil analyses were 

followed. All samples were run in duplicate. 

 

 Microbiological 2.5.2.2

Standard PC1 and PC2 protocols were followed during DNA extraction, PCR and 

sample preparation. All sample and reagent containment tubes, pipettes and tips 

were ethanol and UV sterilised prior to use. PCR cabinets, bio-containment 

cabinets, centrifuges and all other equipment were cleaned with ethanol and UV 

sterilised prior and after use. Reagents and Type 1 Milli-Q water used in the 

preparation of master mixes and dilution of samples were also UV sterilised. All 

laboratory equipment had been calibrated and standards with known values were 

used to calibrate DNA quantification units. Samples for PCR were run in triplicate 

and later pooled for analysis. 
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3 Results 

 Field Data  3.1

3.1.1 Vegetation cover 

The vegetation cover in orchards varied considerably between conventional and 

organic orchards and this was mostly due to the use of herbicides in the vine rows 

of the conventional orchards (Figure 3.1, Table 3.1, Appendix C). The organic 

orchards had a very high percentage cover of vegetation (95%) although in 

orchard 4 there was evidence that a coconut-based organic moss spray had been 

used and the percentage vegetation cover was less (75 - 90%). 

 

  

Figure 3.1:  Vegetation cover typical of orchards under organic (left) and conventional 
(right) management regimes (note the herbicide strip at right) 

 

The floral composition and overall diversity of the orchards were similar 

although, the survey of flora present was brief and not exhaustive (Table 3.2). A 

number of orchards had a much higher prevalence of nitrogen-fixing species such 

as clover and oxalis. 

 



 

 

 

 

Table 3.1:  Physical and biotic observations and measurements for each sampling site. 

Orchard Type Blk. 
# 

Mean soil 
temp. (°C) 

Altitude 
(masl) 

Herbicide 
strip? 

% veg. cover 
   vr          aw 

Macrofauna present in or on soil 

1 Organic 1 17.1 113 no 95 95 Numerous earthworms, springtails, amphipods, spiders, field crickets, centipedes, slugs 

  2 17.8 102 no 95 95 Numerous earthworms, springtails, ants, native bees 

  3 17.4 102 no 95 95 Numerous earthworms, springtails, amphipods, native earwig, centipedes, slugs, 
leafhoppers 

2 Conv. 1 16.1 78 yes 20 45 A few earthworms and some beetle larvae 

  2 16.5 84 yes 15 20 Beetle larvae, a few earthworms (only in alleyways) 

 Conv. 3 16.7 87 yes 20 40 Very few earthworms 

3 Conv. 1 16.1 187 yes 10 95 Earthworms, Symphyla sp., scarab beetles, beetle larvae, amphipods, spiders, ants, slugs 

  2 16.7 189 yes 20 95 Earthworms, Symphyla sp., scarab beetles, beetle larvae, amphipods, spiders, ants, slugs 

  3 16.1 197 yes 10 95 Earthworms, Symphyla sp., scarab beetles, beetle larvae, amphipods, spiders, ants, slugs 

4 Organic 1 16.4 196 no* 90 90 A few earthworms 

  2 16.1 195 no* 85 85 A few earthworms 

  3 16.2 192 no* 75 75 Nothing obvious 

5 Conv. 1 16.3 192 yes 10 65 Very few. Scarab beetles, Symphyla, few earthworms (more abundant in alleyways) 

  2 16.2 190 yes 10 65 Very few. Beetle larvae and earthworms 

  3 16.8 189 yes 10 65 Very little, occasional earthworm 

6 Organic 1 16.4 177 no 95 90 Very few, Symphyla, amphipods, tiny centipede,  

  2 16.2 184 no 95 95 Amphipods, beetle larvae, millipedes, juvenile earthworms, leaf hoppers 

  3 16.6 186 no 95 95 Amphipods, adult & juvenile earthworms, springtails, numerous millipedes in vine rows 

7 Conv. 1 17.1 62 yes 15 75 Very few, occasional earthworm, Symphyla and beetle larvae, more earthworms in 
alleyways 

  2 17.4 62 yes 15 75 A few earthworms in alleyways only 

  3 17.3 60 yes 5 50 A few earthworms in alleyways only 

8 Organic 1 19.1 66 no 95 95 Lots, large and juvenile earthworms, amphipods, Symphyla, centipedes, beetle larvae, slugs, 
earwigs, springtails, mites, leaf hoppers spiders 

  2 19.2 64 no 95 95 As block 1 but much less numerous 

  3 19.4 66 no 95 95 As block 1 but less numerous 

9 Conv. 1 16.5 28 yes** 85 90 A few beetle larvae, earthworms, centipedes 

  2 16.4 37 yes** 85 85 A few beetle larvae, slugs and centipedes. Earthworms mostly in alleyways 

  3 16.3 36 yes** 65 80 As blocks 1 and 2 

10 Organic 1 16.9 30 no 95 95 Numerous amphipods, earthworms, springtails, millipedes, leafhoppers, spiders 

  2 17.0 30 no 95 95 As block 1 

  3 17.0 30 no 95 85 As block 1 

*  Organic moss spray (coconut-based).  **  Only around vines

4
5
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Table 3.2:  Description of flora present in each orchard 

Orchard Type Groundcover composition 

1 Organic Dense sward of long grass with some buttercup, dock, oxalis 
and sheep sorrel. 

2 Conv. Sparse cover of grass, creeping mallow, black nightshade, 
fleabane, wild strawberry, dock, sedges, Euphorbia sp., lawn 
daisy and fumitory predominantly in alleyways. 

3 Conv. Buttercup, grass, dock, wild strawberry and oxalis in alleyways 
with only Tradescantia and Euphorbia sp. in vinerows. 

4 Organic Grass, buttercup, clover, field daisy, sedges, dock, chickweed 
throughout. 

5 Conv. Grass, Tradescantia (Blk 1 only), dock, oxalis, and violets mostly 
in alleyways with liverwort in rows. 

6 Organic Grass, buttercup, dock, violets, foxgloves, geranium, mint and 
clover with sedges and arum lilies around vines. 

7 Conv. Grass in alleyways, Euphorbia sp. in vine rows 

8 Organic Dense sward of grass, clover, buttercup, dock, creeping mallow, 
Euphorbia sp., chickweed and oxalis.  

9 Conv. Dense sward of grass, sedges, wild strawberry, black 
nightshade, dock, creeping mallow and chickweed in non-
sprayed areas. 

10 Organic Grass, buttercup, dock, arum lilies, Japanese honeysuckle 

 

 

3.1.2 Soil Macrofauna 

A qualitative summary of the macro- and mesofauna identified in each orchard 

block is presented in Table 3.1. Overall the organic orchards seemed to have a 

greater number of species and individual taxa than the conventional orchards, 

although for orchard 4 (organic) presence and visual abundance was low while 

orchard 3 (conventional) presence and visual abundance was relatively high. The 

presence and visual abundance of each taxon was noticeably reduced in soils 

where total copper levels exceeded 50 mg kg
-1

. In these soils the only taxa 

identified were earthworms, beetles, and Symphyla sp. with an absence of 

springtails, chilopods, molluscs and amphipods. 
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 Soil Physicochemical Properties  3.2

Values for a range of measured physicochemical parameters are presented in 

Table 3.3 and Appendix G. 

 

3.2.1 Soil Organic Matter and Active Carbon 

Overall the organic orchard soils had significantly higher levels of organic matter 

than the conventionally-managed orchards (p < 0.001) (Figure 3.2, Table 3.3). 

Orchards 1 and 6 had the highest levels (𝑥̅ = 17%) and orchard 9 had the lowest (𝑥̅ 

= 9%). On average the vine rows had significantly lower organic matter than the 

alleyways (p < 0.001), with the exception of orchards 1 and 6. 

 

 

Figure 3.2:  Mean % organic matter (loss on ignition) for each orchard. Error bars 

denote ± SD. 



 

Table 3.3:  Summary of physical and chemical soil properties for each orchard (values are mean values for three blocks) 

Orchard Management 
regime 

Bulk 
Density  
(g cm-3) 

WFPS pH 
H2O 

pH 
CaCl2 

EC %  
Moisture 

% OM 
(LOI) 

DHA  
(µg TPF g-1 
soil 24 hr-1) 

Active C 
(mg kg-1) 

CuT 

(mg kg-1) 
Cu CaCl2 

(mg kg-1) 
pCu2+ 

1 Organic 0.66 52 6.55 6.38 121 34.64 16.92 225 1070 21 0.09 < 19 

2 Conventional 0.75 54 6.88 6.66 143 28.88 12.83 157 843 68 0.25 15.2 

3 Conventional 0.74 55 6.41 6.24 165 30.19 14.30 151 844 43 0.17 17.6 

4 Organic 0.73 57 6.40 5.97 124 32.18 14.15 205 755 60 0.19 18.0 

5 Conventional 0.76 51 6.34 6.15 126 28.24 12.21 107 789 48 0.14 17.7 

6 Organic 0.65 48 6.28 6.03 147 32.09 17.48 205 1065 29 0.11 16.9 

7 Conventional 0.78 54 6.16 5.74 140 27.22 11.38 106 740 59 0.18 17.2 

8 Organic 0.73 46 6.62 6.34 118 24.99 12.55 202 924 42 0.56 < 19 

9 Conventional 0.85 61 6.73 6.33 122 26.82 8.73 149 691 23 0.17 < 19 

10 Organic 0.74 57 6.84 6.50 139 32.39 13.47 166 855 31 0.16 < 19 

4
8
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The levels of biologically active carbon, measured as permanganate-oxidisable 

carbon (POXC) are also higher in soils from organic orchards (Figure 3.3) and are 

well correlated with that of organic matter measured as % loss on ignition (R
2
 = 

0.556) (Figure 3.4).  

A relationship between levels of organic matter and POXC, and the three different 

measures of copper in soil could not be established through correlation analysis. 

 

 

Figure 3.3:  Mean permanganate-oxidisable carbon (POXC) for each orchard. Error bars 

denote ± SD. 

 

Figure 3.4:  Relationship between organic matter (LOI) and biologically active carbon 

(POXC). 
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3.2.2 Bulk Density and Porosity 

The bulk density and porosity of the study orchard soils were very similar, 

ranging between 0.66 - 0.90 g cm
-3

 and 66 - 77% respectively (Figure 3.5) 

Although, on average the bulk density was significantly lower (p < 0.05) and the 

porosity significantly higher (p < 0.05) in the organic orchards. The soils within 

vine rows of the conventionally managed orchards were significantly more 

compacted than the alleyways (p < 0.05), whereas in two of the organic orchards 

the alleyways were more compacted than the vine rows. Overall, the bulk density 

and porosity values for the top 10 cm of soil in all orchards indicate well-aerated 

soils with high levels of organic matter. For these orchards there is a very good 

correlation between bulk density and organic matter in the soil (Figure 3.7). This 

may explain the lower bulk density values for the organic orchard soils which also 

have higher levels of organic matter.  

 

 

Figure 3.5:  Mean bulk density of each orchard soil. Error bars denote ± SD. 
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Figure 3.6: Mean porosity of each orchard soil. Error bars denote ± SD. 

 

 

Figure 3.7:  Relationship between soil bulk density and organic matter for 10 orchards. 

 

3.2.3 Soil moisture and water-filled pore space 

Soil moisture values for each site ranged from 21.6% to 36.3%. Orchard 8 had the 

driest soils (𝑥̅ = 25% soil moisture) and orchard 1 the wettest (𝑥̅ = 32% soil 

moisture). The water-filled pore space (WFPS) of soils ranged between 39% for 

the vine rows of block 2 within orchard 6 and 70% for the alleyways of block 3 in 

orchard 9 (Figure 3.8). Forty-eight of the soil samples (80%) had a WFPS value 
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within 10% of the optimum value of 60%. All of the soil samples from orchard 8 

had a less than optimal range of 42% – 48%.  

 

 

Figure 3.8: Mean water-filled pore space of orchard soils. Error bars denote ± SD. 

3.2.4 Particle size and soil texture 

The texture of all of the soils in the study were classified as either loams or sandy 

loams (Appendix F). The proportion of clay minerals in each soil were very 

similar in the range of 6 – 15%. Orchard 4 soils (loam) had the least percentage 

sand (41 - 49%) while those of orchard 9 (sandy loam) were the sandiest (60 – 

62%). 

 

3.2.5 Soil pH and EC 

Most of the soils had a pHwater within the optimum range for kiwifruit soils of 

6.2 – 6.5 (Rahman et al., 2011) (Figure 3.9). Orchard 7 soils had the lowest pH 

values (pHwater = 6.16, pHCaCl2 = 5.74) and orchard 2 the highest (pHwater = 6.88, 

pHCaCl2 = 6.66). The pH readings of soils extracted with water were consistently 

higher than readings from CaCl2 extracts. Correlation analyses did not reveal any 

relationship between the pH of soils and total CaCl2-extractable or pCu
2+

. There 

were however significant differences in pH between paired orchards, although 

differences were not related to the overall management practices employed. 
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Figure 3.9:  Mean pH of orchard soils. Error bars denote ± SD. 

 

The EC values for all soils were all within a similar range and relatively low 

(Figure 3.10). At these levels the soils are considered non-saline and in which 

microbial processes such as respiration, decomposition and nitrification are not 

adversely affected (Smith & Doran, 1996). The vine rows of blocks 2 and 3 within 

orchard 8 had the lowest EC values of 86 µs cm
-1

 and the highest values were 

measured in soil from the alleyway of block 3 in orchard 7 (197 µs cm
-1

). 

 

 

Figure 3.10: Mean electrical conductivity (EC) of orchards soils. Error bars denote ± SD. 
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3.2.6 Copper 

Levels of total recoverable copper in study orchard soils appear to have increased 

since 2011 (Figure 3.11 & Table 3.4). Although, 2011 values are for the top 0 - 15 

cm of soil and may therefore be slightly less than that would be expected for the 

top   0 - 10 cm. There was however only a slight difference in 2011 and 2014 

values for orchards 1 and 8 for which no copper was applied. The levels of copper 

in orchard 8 (𝑥̅ = 42.33) are relatively high considering copper is no longer used 

and may be the result of past land use. This value exceeds the soil target value of 

40 mg kg
-1

 as stated in the Health and Environmental Guidelines for Selected 

Timber Treatment Chemicals (1997). 

 

 

Figure 3.11:  Total copper in orchard soils 2011 and 2014. Figures for 2014 are the 

mean concentration for vine rows and alleyways across three blocks. Error bars 

denote ± SD. Only mean data is available for 9 orchards sampled in 2011. 

 

Six of the ten orchards in the study have soil copper levels exceeding the Health 

and Environmental Guidelines for Selected Timber Treatment Chemicals for total 

copper in soil. The highest mean level of copper was found in orchard 2 

(68 mg kg
-1

) in which the vine row of block 2 had a concentration of 91 mg kg
-1

. 

This is a conventionally managed orchard in which copper has been applied 
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frequently (according to spray diary records) and the level of copper is well in 

excess of the ANZECC (1992) Guidelines and Health and Environmental 

Guidelines for Selected Timber Treatment Chemicals (1997) of 60 and 40 mg kg
-1

 

respectively and close to the NZWWA (2003) guideline target value of 

100 mg kg
-1

. The alleyway sample from block 3 of orchard 4 had a concentration 

of 70 mg kg
-1

 CuT even though this orchard is subject to an organic management 

regime, albeit one that includes copper sprays (Table 3.4).  

 

Table 3.4:  Copper levels in study orchard soils 2014 (vr = vine row, aw = alleyway). 

Lower pCu2+ values indicate higher free Cu2+ activity in soil solution where pCu2+ = - log 

[Cu2+]. 

Orchard Management 
Regime 

Copper 
applied 

Blk 
# 

CuT 

(mg kg-1) 
 

CuCaCl2   

(mg kg-1) 
 

pCu2+ 

vr aw vr aw vr aw 

1 Organic No 1 23 22 0.09 0.10 < 19 < 19 

2 22 20 0.08 0.07 < 19 < 19 

3 20 20 0.10 0.11 < 19 < 19 

2 Conventional Yes 1 71 70 0.27 0.32 16.0 15.3 

   2 91 77 0.26 0.26 16.3 15.4 

   3 44 55 0.43 0.44 14.7 13.5 

3 Conventional Yes 1 44 53 0.19 0.22 17.7 17.0 

   2 37 44 0.17 0.20 18.0 < 19 

   3 33 47 0.11 0.16 17.8 < 19 

4 Organic Yes 1 67 58 0.18 0.18 < 19 < 19 

   2 58 56 0.20 0.20 18.1 18.0 

   3 51 70 0.19 0.19 18.1 17.7 

5 Conventional Yes 1 57 39 0.22 0.11 17.7 17.5 

   2 51 40 0.12 0.12 < 19 18.0 

   3 68 33 0.15 0.11 < 19 < 19 

6 Organic Yes 1 30 27 0.12 0.10 16.7 17.2 

   2 35 27 0.09 0.09 15.8 17.5 

   3 29 29 0.18 0.13 17.0 17.1 

7 Conventional Yes 1 73 47 0.16 015 17.6 17.3 

   2 71 46 0.18 0.17 16.5 17.9 

   3 71 46 0.21 0.20 17.2 16.8 

8 Organic No 1 44 41 0.16 0.62 < 19 < 19 

   2 50 30 0.95 0.50 < 19 < 19 

   3 53 38 0.51 0.66 < 19 < 19 

9 Conventional Yes 1 19 24 0.19 0.24 < 19 < 19 

   2 24 25 0.17 0.15 < 19 < 19 

   3 23 25 0.07 0.19 < 19 < 19 

10 Organic Yes 1 35 29 0.20 0.25 < 19 < 19 

   2 33 27 0.17 0.18 < 19 < 19 

   3 35 27 0.10 0.08 < 19 < 19 
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Mean soil CuT values for each pair of conventional and organic orchards were 

significantly different as determined by pair-wise t-tests (p < 0.05). Soil sampled 

within vine rows generally had a higher mean concentration of CuT but a lower 

concentration of CuCaCl2 cf. alleyways (Figure 3.12 & Figure 3.13). 

 

 

Figure 3.12: Total recoverable copper levels in vine rows and alleyways for each study 

orchard. Error bars denote means ± SD of three blocks per orchard. 

 

 

Figure 3.13:  CaCl2-extractable copper levels in vine rows and alleyways for each study 

orchard. Bars denote means ± SD of three blocks per orchard. 

organic conv.           conv          organic          conv.         organic          conv.         organic          conv.         organic 

organic conv.           conv          organic         conv.        organic          conv.         organic          conv.        organic 
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The soils with the highest levels of CuCaCl2 were sampled from the organically 

managed orchard 8, in which copper sprays have not been used for some time and 

in which compost amendments are frequently applied. The soils within this 

orchard, compared to the adjacent conventional orchard 7 are lower in CuT but 

higher in CuCaCl2. More consistent results were observed for orchard 2 where both 

CuT and CuCaCl2 in soils are significantly higher (p < 0.05) than those in the 

adjacent organic orchard 1. For all other orchards, differences in the levels of 

CuCaCl2 were much less pronounced and insignificant.  

Levels of free cupric ions in soil solution were very low for all orchards (Table 

3.4). The pCu
2+

 values for soil samples from four orchards and seven sites within 

another three orchards were below the range of calibration of the cupric ISE and 

could not be determined. The highest free Cu
2+ 

levels were identified in soils from 

orchard 2 (pCu
2+ 

= 13.5 – 16.3) although these values do not correlate with CuT or 

CuCaCl2. The vine row of block 2 in orchard 2 had the highest CuT value of 90 mg 

kg
-1

 with a pCu
2+

 value of 16.3, whereas block 3 had the highest Cu
2+ 

level 

(pCu
2+

 = 13.5), with a CuT value of 44 mg kg
-1

. 

There is a tenuous relationship between CuT and CuCaCl2 for these orchard soils 

(Figure 3.14). This indicates that the bioavailability of copper to soil organisms 

may be dependent on a range of biogeochemical factors which may differ 

according to location. When results were analysed by location within the orchards 

(i.e., vine rows or alleyways) the relationship became slightly more linear (Figure 

3.15). There was little or no relationship between CuT and CuCaCl2 for orchard 8 and 

data for this orchard was excluded from these correlation analyses.  

 

Figure 3.14:  Scatterplot showing overall relationship between CuT and CuCaCl2 for each 

block and location across 9 orchards 
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Figure 3.15:  Scatterplots showing relationship between CuT and CuCaCl2 for each block 

by location across 9 orchards (A = alleyways, B = vine rows) 

 

The level of CuCaCl2 ranged from 0.2% to 2% of the value of CuT. However, 

correlation analyses of levels of bioavailable (CuCaCl2) copper as a percentage of 

total copper (CuT) and the variables pH, organic matter (LOI) or POXC did not 

reveal any obvious relationships. There was also no relationship between pCu
2+

 

and pH values for each orchard where pCu
2+ 

was within a measurable range. 

 

3.2.7 Dehydrogenase 

Overall there was significantly more dehydrogenase activity (DHA) in the organic 

orchard soils compared with the conventional orchard soils (p < 0.001) (Figure 

3.16). In the conventionally managed orchards, levels of DHA were lower in the 

vine rows (p = 0.005), whereas for organic orchards, the differences between 

orchard positions were neither consistent nor statistically significant.  

Correlation analyses of log (x+1) transformed data showed little or no relationship 

between dehydrogenase levels and CuT or CuCaCl2 across all orchards, irrespective 

of management regime or position within the orchard. 

 

A B 



59 

 

 

Figure 3.16:  Differences in dehydrogenase activity between orchards. Bars denote 

means ± SD of three blocks per orchard. 

 

 Microbial community analyses 3.3

3.3.1 PCR 

Good DNA yields were obtained from the Powersoil
®

 DNA extractions as 

quantified by Nanodrop
®

. Sample concentrations ranged between 39 ng µL
-1

 and 

138 ng µL
-1

 and the 260/280 ratio for each sample was in the range of 1.8 - 2.0 

which indicated a high level of purity. Gel electrophoresis revealed prominent 

visible bands for each sample (Appendix H), although some smearing and primer 

dimers were also evident. The initial dilution of sample 13 (orchard 3, block 1, 

vine row) did not amplify and was re-run with a fresh dilution, which did amplify. 

Qubit quantification of DNA in pooled PCR products after SPRI cleaning, storage 

and immediately prior to sequencing, revealed DNA concentrations ranging from 

0.631 ng µL
-1

 to 45.2 ng µL
-1

 (Appendix H). 
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3.3.2 Diversity 

Sequencing generated a total of 11,583 unique rRNA gene sequences from 60 

samples. Across all sites 41 distinct phyla, 94 classes, 156 orders, 53 families and 

832 genera were represented. Species area (rarefaction) curves (Figure 3.17) 

indicated that sample sizes were adequate for the purposes of capturing all OTUs 

present across all sampling locations. 

 

 

Figure 3.17: Rarefaction curves of total number of OTUs by number of samples (black 

line) and average Sorensen distance by number of samples (blue line). 

 

The sample from the alleyways of block 1 in orchard 5 displayed the highest total 

OTU richness with a total of 7,772 OTUs and also the highest abundance of 

individual OTUs with a total of 182,973 rRNA gene sequences (Table 3.5). This 

orchard is subject to a conventional management regime. The two samples from 

the vine rows of blocks 1 in orchards 3 and 7 had the lowest OTU richness with 

840 and 1,185 OTUs and an overall abundance of 1,674 and 2,704 sequences 

respectively. However, it is possible that the DNA in these particular samples may 

have degraded over time. Therefore, data for these two sample sites were 

excluded from subsequent analyses. 
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Table 3.5:  Numbers of individual OTUs and rRNA gene sequences identified in each 

soil. (vr = vine row, aw = alleyway). 

Orchard Management 
Regime 

Copper 
applied 

Blk 
# 

No. OTUs No. rRNA gene 
sequences 

vr aw vr aw 

1 Organic No 1 3,685 3,475 27,581 21,581 

2 3,160 3,363 17,820 22,077 

3 3,822 3,326 23,961 20,496 

2 Conventional Yes 1 3,970 3,759 24,335 20,046 

   2 4,424 4,001 35,066 25,969 

   3 3,691 3,612 19,655 20,088 

3 Conventional Yes 1 840 3,498 1,674 22,157 

   2 3,582 3,704 19,922 20,413 

   3 6,361 3,105 117,163 16,686 

4 Organic Yes 1 3,785 3,516 24,782 21,664 

   2 3,152 3,766 16,860 24,995 

   3 3,855 3,214 25,076 18,612 

5 Conventional Yes 1 4,014 7,772 30,293 182,973 

   2 4,121 4,109 28,341 27,877 

   3 3,893 3,910 23,506 28,230 

6 Organic Yes 1 6,238 3,854 128,684 28,187 

   2 3,438 7,146 20,925 157,112 

   3 3,745 3,120 23,426 16,396 

7 Conventional Yes 1 1,185 2,851 2,704 14,216 

   2 3,333 3,179 17,260 19,337 

   3 3,375 3,446 21,564 21,602 

8 Organic No 1 3,785 3,397 28,296 21,165 

   2 3,037 3,907 16,086 26,562 

   3 3,569 3,663 25,261 23,905 

9 Conventional Yes 1 4,326 4,025 30,824 28,668 

   2 3,861 3,762 26,280 22,016 

   3 3,912 4,625 25,011 42,513 

10 Organic Yes 1 2,863 2,659 16,444 13,204 

   2 3,843 3,445 26,818 21,982 

   3 4,116 4,198 38,829 38,134 

 

There was a high degree of similarity in measures of phylotype diversity and 

evenness between sample sites with Shannon’s diversity scores (H’) ranging from 

6.88 to 7.45 (Figure 3.18) and Pielou’s evenness scores ranging from 0.82 to 0.88. 

For nine out of ten orchards OTU diversity was on average higher in the soils 

sampled from vinerows, although the differences between vine rows and alleyway 

sites were not statistically significant. There was a high degree of variance in 

OTU diversity for vine row sites in orchard 5, ranging from 2863 to 7772. 
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Figure 3.18:  Shannon’s diversity measures (H’) for samples from vine rows and 

alleyways within each orchard grouped by management. Bars denote means ± SD of 

three blocks per orchard. 

 

Correlation analyses did not reveal relationships between OTU richness and total 

number of rRNA sequences per sample and all other physicochemical parameters 

including CuT and CuCaCl2 (data not shown). Neither were there relationships 

between individual phylotype diversity (Shannon’s H’) or Pielou’s evenness 

scores (J) and all other physicochemical parameters, including copper levels and 

pH. However, when sites were grouped by soil CuT levels (Table 3.6) overall 

differences between Shannon’s diversity indices as determined by t-tests were 

highly significant (p < 0.001). Although, the high degree of significance was 

mainly attributed to a greater phylotype diversity within group 4. In addition, 

differences in means between groups 1 and 5 with the lowest and highest CuT 

levels respectively were not significant (7.085 cf. 7.082; p < 0.09). This result 

together with the results of correlation analyses may indicate that the differences 

between these groups are due to variables other than CuT alone. Results of one-

way ANOVA determined no significant differences in species richness, Shannon 

diversity and Pielou’s evenness between orchards or between sites grouped 

according to the total concentration of copper in the soil (data not shown). 

However, conventional orchards had close to significantly higher species richness 

scores than organic orchards as determined by t-tests (3,676 cf. 4,075; p = 0.055).  

organic conventional 

vine row alleyway 
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Table 3.6: Groups to which orchard sites were assigned based on soil CuT concentration 

Group CuT (mg kg-1) Sites 

1 0 - 30 O1 B1 AW, O1 B1 VR, O1 B2 AW, O1 B2 VR, O1 B3 AW, O1 B3 VR, , 
O6 B1 AW, O6 B1 VR, O6 B2 AW, O6 B3 AW, O6 B3 VR, O8 B2 AW, 
O9 B1 AW, O9 B1 VR, O9 B2 AW, O9 B2 VR, O9 B3 AW, O9 B3 VR 
O10 B1 AW, O10 B2 AW, O10 B3 AW 

2 30 – 40 O3 B2 VR, O3 B3 VR, O5 B1 AW, O5 B3 AW, O6 B2 VR, O8 B3 AW, 
O10 B1 VR, O10 B2 VR, O10 B3 VR 

3 40 – 50 O2 B3 VR, O3 B1 VR, O3 B2 AW, O3 B3 AW, O5 B2 AW, O7 B1 AW, 
O7 B2 AW, O7 B3 AW, O8 B1 AW, O8 B1 VR, O8 B2 VR 

4 50 – 60 O2 B3 AW, O3 B1 AW, O4 B1 AW, O4 B2 AW, O4 B2 VR, O4 B3 VR, 
O5 B1 VR, O5 B2 VR, O8 B3 VR 

5 > 60 O2 B1 AW, O2 B1 VR, O2 B2 AW, O2 B2 VR, O4 B1 VR , O4 B3 AW, 
O5 B3 VR, O7 B1 VR, O7 B2 VR, O7 B3 VR 

 

3.3.3 Community composition 

Bacterial OTUs were by far the most dominant across all samples corresponding 

to 98.7% of the total unique rRNA gene sequences. Of these, the most abundant 

individual OTU is from the genus Nitrospira which occurs in all sites ranging 

from 0.45% to 2.84% (𝑥̅ = 1.69%) of the relative percentage abundance in all 

samples. The next most abundant individual OTUs are from the genus Bacillales 

and Rhodoplanes, averaging 0.91% relative abundance in each site sample. There 

were no significant differences in the relative abundance of these three most 

abundant OTUs between sites grouped by total soil copper levels (Figure 3.19). 

 

 

Figure 3.19:  Mean percentage relative abundance of the 3 most abundant taxa in soils 

grouped according to total soil copper levels. Error bars denote ± SD. 
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Archaeal sequences accounted for 1.3% of the total unique rRNA gene sequences. 

Of these the most abundant OTUs are from the phylum Thaumarchaeota. Most of 

these were identified with 100% confidence as belonging to the families of 

Nitrososphaera and Nitrosopumilus. Nitrososphaera was present in all site 

samples, although there was a significantly higher mean percentage relative 

abundance of these taxa for conventional orchards, (1.0% cf. 0.4% for organic 

orchards, p < 0.01) and also for sites with the highest levels of CuT (0.9% for 

group 5 cf. 0.5% for group 1, p < 0.05). Nitrosopumilus was only identified in 50 

out of 60 samples. The ten samples in which Nitrosopumilus was absent were all 

from organic orchards, including all samples from orchard 8. There was a greater 

mean percentage relative abundance of Nitrosopumilus in conventional orchards 

(1.1% for conventional cf. 0.4% for organic, p < 0.01). There was however no 

difference in percentage relative abundance of these taxa between sites grouped 

by levels of soil CuT.  

In terms of the total number of OTUs within the domain Archaea, conventional 

orchards had a significantly higher mean percentage relative abundance than 

organic orchards (1.8% cf. 0.8%, p < 0.01). Samples from soils with the highest 

levels of CuT (> 60 mg kg
-1

) also had a significantly higher mean percentage 

relative abundance of archaeal sequences compared with samples from sites with 

the lowest levels of CuT (1.7% cf. 1.1%, p < 0.01). 

The most dominant phyla in terms of relative abundance based on a ≥ 70% 

certainty threshold are the Proteobacteria, which account for on average 30% of 

the total, followed by Actinobacteria (15%), Bacterioidetes (11%), and 

Acidobacteria (9%) (Figure 3.20). In terms of the relative abundances of each 

phyla, all sites were reasonably comparable. However the relative abundance of 

Actinobacteria ranged fairly widely from 5% to 24% (𝑥̅ = 30%). OTUs within the 

phylum Firmucutes also ranged fairly widely across sites with a relative 

abundance of 0.5% to 8% (𝑥̅ = 2%). The wide range in values for Proteobacteria 

(18% - 42%; 𝑥̅ = 30%) were mostly due to the distinct profiles of sites O3 B1 VR 

and O10 B1 VR which have a relative under- and over-abundance of OTUs within 

this phylum. Within each class of the Proteobacteria the α-Proteobacteria and 𝛿-

Proteobacteria are the most represented making up 33% and 32% of the total 

number of individual OTUs. In terms of the relative abundance of individual gene 
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sequences, the α-Proteobacteria are the most numerous making up 42% of the 

total, followed by ß-Proteobacteria (25%) γ-Proteobacteria and 𝛿-Proteobacteria 

(18% & 16% respectively). 

A comparison of the mean percentage relative abundance of OTUs grouped on the 

basis of lowest (group 1) or highest (group 5) soil copper levels revealed 

significant differences between the phyla Chlamydiae, Chloroflexi, Actinobacteria 

and Thaumarchaeota (Table 3.7). The differences however, although significant, 

were subtle. 

 

Table 3.7:  Significant differences in percentage relative abundance of phyla observed 

for sites grouped by total soil copper levels.  

Phylum mean  % relative  abundance % difference p value 

Group 1 
0-30 mg kg-1 

Group 5 
> 60 mg kg-1 

Chlamydiae 1.96 3.15 1.20 0.0006 

Chloroflexi 0.66 0.91 0.25 0.003 

Actinobacteria 17.49 15.11 2.38 0.02 

Thaumarchaeota 0.66 1.15 0.49 0.03 

 

There were no statistically significant differences between groups 1 and 5 in terms 

of the relative abundances of either Pseudomonas or Rhizobiales which have been 

shown to be particularly sensitive indicators of copper pollution (Berg et al., 

2012; Alloway, 2010; Giller, 1998). 



 

 

 

Figure 3.20:  Relative % abundance of each phyla at each sample site (O = Orchard, B = orchard block, AW = alleyway, VR = vine row). Classification is 

based on a ≥ 70% degree of certainty in assignment at the phylum level. Phyla grouped as ‘other’ include Aquificae, Armatimonadetes, BRC1, candidate 

division WPS-1 and 2, Candidatus Saccharibacteria, cyanobacteria/chloroplast, Diapherotrites, Euryarchaeota, Hydrogenedentes, Microgenomates, 

Pacearchaeota, Parcubacteria, Parcubacteria and Woesearchaeota. 

6
6
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3.3.4 Non-metric multidimensional scaling (NMDS) 

A total of 1,151 OTUs that occurred in fewer than 5% of sites were removed from 

the primary matrix prior to analyses. Sites O3 B1 VR and O7 B1 VR were also 

omitted from analyses as they were significant outliers due to the comparatively 

low species richness and total number of sequences which may have been due to 

DNA degradation. NMDS of community dissimilarity between orchards based on 

presence/absence data for all OTUs resulted in a 2 dimensional ordination with a 

stress value of 21.48 (p = 0.004) (Figure 3.21). A 3 dimensional solution was 

recommended (stress = 13.54) however, this would have been more difficult to 

report.  

 

 

Figure 3.21: NMDS ordination of bacterial communities within each sampling site 

based on presence/absence data and grouped by orchard. Distance between points is 

proportional to dissimilarity. Stress = 21.48. Vectors for environmental variables are 

shown at r2 > 0.4 

(r
2
 =

 0
.3

0
) 

(r2 = 0.37) 
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The paired orchards 1 and 2, and 7 and 8 are highly distinct, indicating a high 

degree of dissimilarity in bacterial community composition between these 

orchards. Orchards 9 and 10 also form distinct clusters but to a lesser degree and 

there is much higher dissimilarity between individual sites within orchard 10. The 

dissimilarity of sites between orchards 1 and 2, and 9 and 10 can be mostly 

attributed to OTU richness. Whereas the pHCaCl2 and pHwater vectors (r
2
 = 0.545 

and 0.416), which show higher levels of influence in site separation explain the 

dissimilarity between orchards 9 and 10. All other explanatory variables had r
2
 

values below the cut-off threshold of 0.4 including all forms of copper for which 

r
2
 values were below 0.1.  

The NMDS ordination based on % relative abundance data for all OTUs, which is 

more indicative of actual dissimilarity between bacterial communities at each site, 

highlighted distinct groups that were more aligned with pH than OTU richness 

(Figure 3.22). 

 

 

Figure 3.22:  NMDS ordination of bacterial communities within each sampling site 

based on % relative abundance data and grouped by orchard. Distance between points 

is proportional to dissimilarity. Stress = 21.27. Vectors for environmental variables are 

shown at r2 > 0.4. 

 

(r
2
 =

 0
.2

3
3

) 

(r2 = 0.454) 
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This ordination again revealed that the bacterial community assemblages within 

the paired orchards 1 and 2, 7 and 8, and 9 and 10 are distinct. For orchards 7 and 

8, and 9 and 10 the differences are again mostly correlated with pH (r
2
 = 0.601 

and 0.445). However, the dissimilarity between communities within orchards 1 

and 2 is more aligned with axis 2 with a weak correlation with cadmium (r
2
 = 

0.323). CuT was only very weakly correlated with community dissimilarity along 

Axis 2 (r
2
 = 0.237) and there was no correlation with CuCaCl2. 

NMDS of community dissimilarity between all sites based on % relative 

abundance data of all OTUs for each of 5 groups according to soil CuT 

concentration did not reveal distinct clusters (Figure 3.23). Sites were assigned to 

one of the following groups: 

1 = 0-30, 2 = 30-40, 3 = 40-50, 4 = 50-60, 5 > 60 mg CuT kg
-1 

 

 

Figure 3.23:  NMDS ordination of bacterial communities within each sampling site 

based on % relative abundance data and grouped by CuT concentration. Distance 

between points is proportional to dissimilarity. Stress = 21.32. Vectors for 

environmental variables are shown at r2 > 0.4. 

 

(r
2
 =

 0
.2

1
5

) 

(r2 = 0.471) 

0) 
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pH (water and CaCl2 – extractable) was again the main explanatory variable for 

site separation with this ordination (r
2
 = 0.41 and 0.55 respectively) although sites 

grouped by CuT were not aligned with this variable.  

NMDS of alleyway sites revealed separation between clusters grouped by CuT, 

with sites with the highest (group 5) and lowest (group 1) levels of total copper 

forming distinct clusters (Figure 3.24). There was also reasonable separation 

between groups 4 & 5 (> 50 mg CuT kg
-1

) and 1 & 2 (0 - 40 mg CuT kg
-1

). 

Again, pH (water and CaCl2 – extractable) was shown to be the environmental 

parameter that is most strongly correlated with community separation (r
2
 = 0.772 

and 0.682 respectively). Total copper was only weakly correlated (r
2
 = 0.247), 

with a range of other soil parameters seemingly having a higher degree of 

influence over site separation. 

 

 

Figure 3.24:  NMDS ordination of bacterial communities within alleyway sites based on 

% relative abundance data and grouped by CuT concentration. Distance between 

points is proportional to dissimilarity. Stress = 17.41. Vectors for environmental 

variables are shown at r2 > 0.24. 

 

(r
2
 =

 0
.3

4
0
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(r2 = 0.432) 
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The 3D NMDS ordination based on % relative abundance data for all OTUs and 

grouped by management practice, revealed highly distinct clusters (Figure 3.25).  

 

 

Figure 3.25:  NMDS of % relative abundance data grouped by management practice 

(red squares = conventional; green squares = organic). Stress = 12.41. Explanatory 

vectors shown at r2 > 0.4. 

 

The explanatory variables organic matter (% LOI), % porosity, bulk density and 

% moisture mostly accounted for the divisions between groups along axis 3 

(r
2
 = 0.57, 0.51, 0.52 and 0.42 respectively) with pH mostly accounting for the 

dissimilarity along axis 1. The strong negative correlation between higher organic 

matter and porosity with a lower bulk density as determined previously is 

evidenced here and indicates that these factors, along with pH and moisture 

influence bacterial community composition across these study sites. The 3D 

NMDS plot of sites grouped by herbicide use showed a good degree of separation 

between treatments (Figure 3.26). Again, the groupings are aligned with the 

explanatory variables organic matter, porosity and bulk density along Axis 3 and 

pH along Axis 1. 

(r2 = 0.473) 

0) 

(r2 = 0.214) 

0) 

(r2 = 0.183) 

0) 
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Figure 3.26:  NMDS of % relative abundance data grouped by glyphosate use (red 

squares = glyphosate; green squares = none). Stress = 12.41. Explanatory vectors 

shown at r2 > 0.5. 

 

NMDS of both rare and abundant OTUs constituting < 0.1% and > 0.1% relative 

abundance across all samples revealed very similar cluster patterns to ordinations 

based on total relative abundance for all OTUs when grouped by management, 

herbicide use, position, and levels of copper. However, differences were observed 

between ordinations of rare OTUs and total OTUs when grouped by orchard. 

Much greater separation of sites between paired orchards was observed for the 

ordination of rare OTUs (Figure 3.27). The main explanatory variables for which 

r
2
 values were above 0.4, in addition to pHCaCl2 (0.47) and pHwater (0.43), included 

calcium (0.5), organic matter (0.5), and bulk density (0.41). There was a very low 

degree of dissimilarity between rare OTUs in samples sites in orchards 2 and 5 

compared with other orchards. For orchard 5 the degree of dissimilarity is similar 

to that revealed in the NMDS of total OTUs. However, upon comparison of these 

two ordinations, it appears that rare OTUs in orchard 7 must be less dissimilar 

across sampling sites than abundant OTUs. In contrast, the degree of dissimilarity 

of between rare OTUs in orchard 1 sampling sites is greater than that for abundant 

species.  

 

 

 

(r2 = 0.183) 

0) 

(r2 = 0.473) 

0) 

(r2 = 0.214) 

0) 
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Figure 3.27:  NMDS ordination of bacterial communities within each sampling site 

based on % relative abundance data of rare OTUs and grouped by orchard. Distance 

between points is proportional to dissimilarity. Stress = 23.65. Vectors for 

environmental variables are shown at r2 > 0.4. 

 

3.3.5 Multi-response permutation procedures (MRPP) 

MRPP using relative abundance data for all OTUs revealed a very highly 

significant degree of separation between all orchards (T = -20.97, A = 0.724, 

p = 0). The A value indicates that there is a very high degree of OTU similarity 

within groups. Pair-wise MRPP analysis of sites between adjacent, paired 

orchards (Table 3.8) indicated that bacterial communities were all highly 

dissimilar (p = < 0.01). Interestingly, MRPP revealed significant differences in 

bacterial communities between the paired orchards 5 and 6, and 3 and 4 for which 

NMDS did not reveal distinct clusters. 

 

 

(r2 = 0.291) 

0) 
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Table 3.8:  MRPP pairwise comparisons of paired orchards based on OTU relative 

abundance data for all OTUs. 

Orchards compared Test stat. (T) A p 

1 and 2 -6.54 0.43 0.0004 

3 and 4 -4.36 0.30 0.0011 

5 and 6 -5.14 0.31 0.0006 

7 and 8 -5.14 0.37 0.0019 

9 and 10 -6.57 0.38 0.0005 

 

The degree of dissimilarity between sites grouped by CuT was tested with MRPP 

pair-wise comparisons which identified significant differences between groups 1 

and 5 (p = 0.002), 1 and 4 (p = 0.005), and 1 and 3 (p = 0.04) (Table 3.9). The test 

(T) statistic for each pairwise comparison indicated a reasonably low degree of 

dissimilarity between groups and the low A values indicated a high level of 

heterogeneity within groups. However it is apparent that group 1 which 

encompasses sites with the lowest levels of CuT are the most distinct in terms of 

OTU community assemblages.  

 

Table 3.9:  MRPP pairwise comparisons of sites grouped by CuT and based on OTU 

relative abundance data. 

CuT groups compared Test stat. (T) A p 

1 and 5 -4.20 0.095 0.002 

1 and 4 -3.54 0.077 0.005 

1 and 3 -2.08 0.041 0.038 

 

Pairwise comparisons of alleyway sites only and grouped by CuT only revealed 

significant community dissimilarity between groups 2 and 5 (p = 0.04, A = 0.21) 

although the degree of separation was not very strong (T = -1.92). Dissimilarities 

in community composition between all other alleyway sites grouped by this 

variable were not significant.  

When groups were compared according to management practice, the degree of 

dissimilarity between groups was very high (T = -14.733, A = 0.16, p = 0), as 

indicated by the NMDS ordination. However, the degree of similarity within 

management groups was much lower due to the high degree of separation between 

sites within each grouping category. MRPP of sites grouped by glyphosate use 

showed significant group dissimilarity (p < 0.0001) as indicated by the T statistic 
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(-8.32), although A (0.09) was very close to zero indicating heterogeneity within 

groups is almost that expected by chance. 

MRPP using relative abundance data for rare OTUs again revealed a very similar 

and degree of separation between all orchards (T = -20.67, A = 0.694, p = 0) and 

also between paired orchards as revealed by pair-wise MRPP analysis (Table 

3.10). 

 

Table 3.10:  MRPP pairwise comparisons of paired orchards based on OTU relative 

abundance data for rare OTUs. 

Orchards compared Test stat. (T) A p 

1 and 2 -6.62 0.44 0.0004 

3 and 4 -4.88 0.26 0.0009 

5 and 6 -6.00 0.26 0.0003 

7 and 8 -5.53 0.41 0.001 

9 and 10 -6.11 0.30 0.0003 

 

MRRP of rare OTU relative abundance data again revealed significant 

differentiation between sites grouped by levels of CuT in soil (Table 3.11).  

 

Table 3.11:  MRPP pairwise comparisons of sites grouped by CuT and based on OTU 

relative abundance data for rare OTUs. 

CuT groups compared Test stat. (T) A p 

1 and 5 -3.45 0.07 0.005 

1 and 4 -2.24 0.05 0.03 

1 and 3 -2.65 0.05 0.01 

 

The degree of dissimilarity between OTU assemblages of rare species between 

group 1 and groups 3, 4 and 5 was very comparable with that observed for all 

OTU relative abundance data. Also, the degree of dissimilarity of rare OTUs 

based on pair-wise comparisons of all other groups was again, not significant. 

 

3.3.6 Indicator species analysis 
 

Indicator species analysis of sites grouped by soil copper levels (Table 3.6) 

revealed 743 significant indicator OTUs. Significant (p < 0.05) observed 

maximum indicator (IVmax) values ranged from 19% to 63%, where a value of 
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100% implies a perfect indication for an individual OTU that is always and 

exclusively associated with a particular group. Of the 743 indicator OTUs, the 

degree of confidence in phylum affiliation for 243 taxa was less than 70% and 

these were subsequently grouped as ‘other’. Of the 743 indicator OTUs, 196 

(26%) were affiliated to group 5 (> 60 mg CuT kg
-1

). A total of 67 OTUs out of 

196 were classified as ‘other’ based on a low degree of confidence in phylum 

classification. Of the 129 indicator OTUs in group 5 for which the degree of 

confidence in phylum affiliation was > 70%, 34 (27%) belonged to the 

Proteobacteria, of which the Delta Alpha and Gammaproteobacteria were evenly 

distributed (Figure 3.28).  

 

 

Figure 3.28:  Phylum-level affiliations (> 70% confidence) of indicator OTUs associated 

with orchard sites exceeding > 60 mg CuT kg-1 soil. 

 

The next most abundant taxa were affiliated with Chlamydiae (20%), 

Bacteroidetes (12%) and Actinobacteria (12%). The two indicator OTUs with the 

highest indicator values (> 50%) in group 5 were identified as belonging to the 

phylum Acidobacteria within the order Gp10 and the species Propionibacterineae 

nocardioidaceae. 
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A total of 96 indicator OTUs were affiliated with group 1 (0 - 30 mg CuT kg
-1

). Of 

these, 26 (27%) were classified as ‘other’ due to a low degree of confidence in 

phylum classification. Of the 70 indicator OTUs in group 1 for which the degree 

of confidence in phylum affiliation was > 70%, 29 (43%) belonged to the 

Actinobacteria. Proteobacteria were the next most represented phyla of which 

Alphaproteobacteria made up 12% of the total followed by 

Gammaproteobacteria (6%) and Deltaproteobacteria (3%). A number of other 

taxa were affiliated with Bacteroidetes (13%) and Planktomycetes (10%) (Figure 

3.29). 

 

Figure 3.29:  Phylum-level affiliations (> 70% confidence) of indicator OTUs associated 

with orchard sites with 0 - 30 mg CuT kg-1 soil. 

 

The OTU with the highest observed indicator value (46%) for group 1 was 

Pseudofulvimonas, a member of the order Xanthomonadales within the 

Gammaproteobacteria class. The other two OTUs with indicator values above 

40% were affiliated with the Actinobacteria, one of which was classified as the 

species Gaiella. A total of 26 individual OTUs within the order Chlamydiales 

have a significant degree of association with group 5, compared with only one in 

group 1 and these are mostly affiliated to the families Parachlamidiaceae and 

Simkaniaceae. 

Indicator OTUs found in group 5 sites but not in group 1 sites include those 

within the phyla Nitrospirae, Thaumarchaeota, Cyanobacteria, Candidate 

division WPS-2, Verrucomicrobia, Gemmatimonadetes, and Chloroflexi.  
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4 Discussion 

 Soil physicochemical properties 4.1

Soil copper levels did not necessarily relate to the total amount and frequency of 

copper applied since 2012. Orchard 8 had relatively high levels of total copper 

and also the highest levels of CaCl2-extractable copper. This is regardless of the 

fact that copper has not been applied to this orchard for a number of years and 

applications of compost and other bio-amendments are made frequently. 

Although, the pH of soils in this orchard are much higher than soils in the adjacent 

conventional orchard which are relatively low, and this may explain the much 

lower pCu
2+

 measurements even though the CaCl2-extractable copper levels were 

the highest measured. Due to very low pCu
2+

 in soil extracts and technical 

difficulties in obtaining accurate data, significant differences in pCu
2+

 across all 

sites and subsequent effects on bacterial community composition could not be 

determined. Other methods by which to determine levels of free ionic copper in 

soil solution may have provided more useful information. The technique of 

diffusive gradients in thin films (DGT) may have been a more appropriate method 

to use as it provides an in situ measure of bioavailable copper that is potentially 

toxic to microorganisms (Davison & Zhang, 1994). Differences in community 

composition and other measures of diversity and activity could potentially have 

been ascribed to Cu
2+

 in soil solution if more accurate data on this most 

bioavailable form of copper had been obtained. 

Dehydrogenase activity (DHA) was found to be significantly lower in the 

conventional orchards where levels of activity in soils from vine rows were also 

consistently lower than in soils from alleyways. Vine rows within the 

conventionally managed orchards are subject to frequent glyphosate applications, 

unlike the organic orchards. Glyphosate applications to soil have been shown to 

reduce dehydrogenase activity by up to 48% (Wolińska & Stępniewska, 2012; 

Zabaloy et al., 2008). Higher levels of organic matter in soil, as measured for the 

organic orchards in this study, have also been shown to significantly enhance 

DHA in soil (Fließbach et al., 2007). A study by Sebiomo et al. (2013) attributed 

a reduction in DHA to a resulting reduction in organic matter as a result of 

herbicide use rather than direct toxicity. This is because DHA is a product of the 

oxidation of organic matter by microorganisms (Dick, 1997). This could in part 
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explain the marked differences between conventional and organic orchards and 

also vine rows, which receive glyphosate applications, and alleyways, which do 

not. The lack of correlation between measured soil copper levels and DHA may 

have been due to the large number of variables which made it difficult to observe 

a direct cause and effect. It may also be that levels of copper in soil were below 

that which would result in a reduction in DHA, especially the most bioavailable 

free ionic form. 

The soil particle sizes of all orchards were similar with clay minerals comprising 

between 6 and 15% of the total. Organic orchards tended to have higher levels of 

soil organic matter, labile carbon and porosity, whilst conventional orchard soils 

generally had a higher bulk density, which was most likely attributed to the lower 

soil organic matter and possibly reduced bioturbation associated with a decline in 

the activities of earthworms and plant roots (Naveed et al., 2014). The findings of 

this study concur with those of Swezey et al. (1998) & Glover et al.(2000) who 

found that organic orchard soils tend to have a lower bulk density than 

conventionally managed orchard soils with correspondingly higher levels of 

organic matter. The correspondingly higher levels of aeration and capacity for 

water and nutrient movement in organic orchard soils may explain much of the 

differences in enzyme activity and bacterial community composition.  

 

 Bacterial OTU richness and diversity  4.2

There were no significant differences in species richness, Shannon’s diversity and 

Pielou’s evenness scores between orchards or between sites grouped according to 

the total concentration of copper in the soil. The observed differences in OTU 

richness between organic and conventional orchards could potentially be related 

to differences in management practices such as compost and biological 

amendments or the presence and diversity of plant, fungal or invertebrate species. 

Studies have shown that the bacterial community composition of soils is largely 

influenced by groundcover and organic amendments (Bonilla et al., 2012; Piao 

et al., 2008; Yao et al., 2005). Above-ground variables such as groundcover may 

also influence below-ground bacterial communities in a number of ways. 

Communities within orchard soils to which herbicide applications are made were 

shown to be distinct from those that had a cover of vegetation. The response of 
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communities to this treatment may be a direct response to toxicity or indirectly in 

response to a number of variables including a reduction in symbiotic plant host 

species, and a subsequent change in organic matter, soil compaction and aeration, 

temperature, moisture and light levels.  

 

 Community composition 4.3

The community composition of bacterial OTUs sequenced from each site at the 

level of phylum were not obviously dissimilar. The relative abundances of OTUs 

within each phylum for all sites were within a similar range and there were no 

significant differences in the most abundant individual taxa between sites grouped 

according to total soil copper levels. However, at the level of phylum significant 

differences between sites were observed for the phyla Chlamydiae, Chloroflexi, 

Actinobacteria and Thaumarchaeota, with a higher representation of Chlamydiae, 

Chloroflexi, and Thaumarchaeota in sites with the highest levels of copper 

compared with those with the lowest levels. Conversely, the relative abundances 

of OTUs within the phylum Actinobacteria were significantly greater in soils with 

the lowest levels of copper. 

An OTU within the genus Nitrospira was the most abundant taxa identified in all 

site samples with no difference in relative abundance between sites with the 

lowest and highest levels of CuT or between organic or conventional orchards. 

These bacteria play a key role in the nitrogen cycle in the process of oxidation of 

nitrite to nitrate (Koch et al., 2015). A completely nitrifying bacterium from the 

genus Nitrospira for which the genome encodes pathways for ammonia and nitrite 

oxidation, has also recently been cultured (Daims et al., 2015). This suggests that 

Nitrospira may be a key component in the biogeochemical cycling of nitrogen. 

The relative abundances of OTUs within the domain Archaea, although only 

comprising 1.3% of the total, were significantly higher in conventional orchards 

and also in orchards with the highest levels of CuT. OTU sequences from the 

families Nitrososphaera and Nitrosopumilus were the most dominant archaea 

found. These archaea have been shown to be chemolithoautotrophic ammonia-

oxidizers which may play a significant role in nitrogen and carbon cycling 

(Zhalnina et al., 2014). There is an indication from the results of this study that 



81 

 

these archaea may be less sensitive to soil conditions typical of conventional 

orchards and better able to adapt to an increase in soil copper than bacteria, and 

perhaps fill a niche normally occupied by more copper-sensitive bacterial taxa. 

The essential process of nitrogen assimilation would, however remain unaltered. 

Kandler & König (1998) concluded that the membranes of archaea are less 

permeable to ions that those of bacteria and are adapted well to extreme 

conditions. A study by Chao-Rong and Qi-Chun (2011) found that there was no 

response of archaeal communities to copper pollution and concluded that they are 

perhaps more tolerant than bacteria and fungi. A study carried out by Mertens et 

al. (2010) concluded that the structure of ammonia-oxidising bacterial and 

archaeal soil communities changed in response to long-term copper 

contamination. However, the changes were associated with increased tolerance of 

specific taxa and not an overall loss of functional stability.  

This study revealed no significant differences in the relative abundances of 

Pseudomonas or Rhizobiales between soils with the highest and lowest levels of 

CuT, even though these taxa have been shown to be particularly sensitive 

indicators of copper pollution (Berg et al., 2012; Alloway, 2010; Giller, 1998).  

 

 NMDS and MRPP  4.4

NMDS and MRPP revealed significant differences in bacterial communities 

between paired orchards. Each pair of orchards included one conventionally-

managed and one organic. Soil copper levels were generally higher in the 

conventional orchards with the exception of orchard 9 for which levels were lower 

than the adjacent organic orchard in which copper was frequently applied.  

NMDS of OTU relative abundance data clustered by different grouping variables 

revealed that pH was most strongly aligned with cluster separation. pH(CaCl2) was 

always a stronger predictor than pH(water). This is most likely due to the fact that 

the weak CaCl2 extractant simulates salts normally present in soil water, and 

therefore enables a very good estimation of soil pH in situ (Kissel & Vendrell, 

2004). These findings are in agreement with numerous studies that have shown 

pH to be the main driving factor in the spatial distribution of bacterial 

communities (e.g., Fierer & Jackson, 2006; Griffiths et al., 2011). The differences 
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in pH between paired orchards are most likely to be attributed to orchard 

management practices rather than natural variation as there is little spatial 

separation between each. 

When MRPP was performed on relative abundance data for all OTUs and rare 

OTUs grouped by soil copper levels (CuT), dissimilarities between groups 1 

(CuT = 0–30 mg kg
-1

) and 5 (CuT = >60 mg kg
-1

) were significant. Significant 

differences between group 1 and groups 3 (40–50 mg kg
-1

) and 4 (50–60 mg kg
-1

)
 

were also revealed. However, MRPP of relative abundance data for all OTUs 

from alleyway sites and grouped by CuT, only revealed significant differences 

between groups 2 and 5 and not groups 1 and 5. Alleyway sites are not subject to 

management practices that are unique to conventional and organic orchards, such 

as compost amendments and herbicide and other chemical and biological 

applications. The lack of dissimilarity in bacterial OTU assemblages between 

alleyway sites with the highest and lowest levels of total copper may indicate that 

the significant differences observed between all sites within groups 1 and 5 may 

be due to variables other than copper alone. NMDS vectors, aside from pH for 

which r
2
 values were higher than that for CuT (r

2
 = 0.247), included those 

associated with calcium, cadmium, cobalt and nickel. 

NMDS and MRRP of rare OTU abundance data was comparable with that 

performed on total abundance data. This indicates that the contributions of 

abundant and rare OTUs to differences between communities are similar. 

MRPP of OTU assemblages for sites grouped by either conventional or organic 

management practices revealed two significantly distinct clusters. Although pH 

was again the environmental variable that explained much of the difference in 

OTU relative abundance between sites, dissimilarity between sites was mostly 

attributed to organic matter (% LOI), % porosity, bulk density and % moisture. 

Sites grouped by herbicide use within vine rows also revealed distinct clusters and 

again, the same variables indicated in community dissimilarity in organic and 

conventional orchards aligned with group separation. These findings concur with 

those of Brockett et al. (2012) where organic matter and soil moisture were found 

to closely correlate with microbial community composition across seven 

biogeoclimatic zones in western Canada. 
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The degree of variability between sites in terms of groundcover and also 

management practices such as foliar sprays and organic or bio-amendments have 

confounded attempts at determining the specific effects of copper. As these 

variables could not be quantified it was not possible to determine which if any 

were potentially influential in altering soil bacterial community composition. 

 

 Indicator species 4.5

Study soils with the lowest levels of total copper (0 – 30 mg kg
-1

) had a higher 

prevalence of bacterial OTUs within the phylum Actinobacteria compared with 

the soils exceeding 60 mg kg
-1

. These findings are contrary to a number of studies 

including those of Navel et al. (2010) and Lejon et al. (2008) who found that 

Actinobacteria enrichment in soil correlated with bioavailable copper. Although, 

these findings do concur with those of de Boer et al. (2012) and Naveed et al. 

(2014), where long-term copper contamination was shown to adversely affect 

Actinobacteria communities. Although those two studies had contrasting results 

for Gammaproteobacteria, with each revealing either a positive or negative 

correlation with soil copper concentrations. In the present study, 

Gammaproteobacteria did not seem to be adversely affected by increasing soil 

copper levels. In agreement with the present study, Naveed et al. (2014) also 

found that the relative abundances of Chlamydiae, Gemmatimonadetes, and 

Nitrospirae increased with increasing soil copper concentrations. The results of 

this study revealed that indicator OTUs from the phylum Nitrospirae were 

associated with soils with the highest levels of copper but were not indicative of 

soils with the lowest levels of copper. Archaeal OTUs within the Phylum 

Thaumarchaeota were also indicators of the highest levels of soil copper as to be 

expected based on previous community analyses of these taxa. 

In a study carried out on copper-polluted citrus groves in Florida, sequencing of 

partial 16S rRNA gene fragments revealed that the more polluted soils were 

dominated by Gammaproteobacteria, Acidobacteria, Firmicutes, and 

Betaproteobacteria (Zhou et al., 2011). The authors suggested that these taxa may 

have greater tolerances to environmental stresses, although the levels of copper in 

the study soils were mostly within the range of 160-250 mg kg
-1

, much higher 

than levels measured in this study (< 91 mg kg
-1

). 
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5 Conclusions 

 

Although the results of this study revealed distinct soil bacterial communities 

within each of the study orchards, the differences between sites cannot be 

attributed to soil copper levels as the sole determining factor. Other factors 

including the overall management practices employed and the application of 

herbicides to vine rows showed a high degree of influence on the bacterial 

community composition of orchard soils. 

The composition of bacterial communities across all sites was mostly influenced 

by soil pH. These results support the conclusions of previous studies that this 

variable is one of the most important influencing factors in the spatial distribution 

of microorganisms in soil. pH has also been shown to be a strong predictor of 

metal toxicity to soil microbes, where a lower soil pH may lead to a higher 

bioavailable fraction of metals in soil (Lopez-Periago et al., 2008; Sauvé et al., 

1995; Cavallaro & McBride, 1980). However, this study found no relationship 

between bioavailable (CaCl2-extractable & pCu
2+

) copper and bacterial 

community composition, although free ionic copper (pCu
2+

) which has been 

shown to be the form most toxic to microorganisms could not be measured 

accurately as levels in soil extracts were very low (pCu
2+

 = 13 to < 19).  

Although soil copper levels in a number of orchards were relatively high, direct 

and obvious effects on bacterial diversity and community composition were not 

observed. There are a number of potential explanations why this is the case. 

Sorption of copper is regulated by many soil components including clay minerals, 

organic content and humic substances, as well as CEC and pH (Morley and Gadd, 

1995). It has also been postulated that because bacteria are often present in 

biofilms, or trapped within microaggregates, they may be somewhat protected 

from exposure to toxic metals, including free ionic forms in pore water (Almås 

et al., 2005; Giller, 2009). 

All of the conventional orchards, which generally had higher levels of soil copper, 

were also subject to frequent glyphosate and other agrichemical applications. 

Complex interactions between different agrichemicals take place in the soil 

environment (Renner et al., 2003; Vijver et al., 2012) and glyphosate has been 

shown to act as a chelating agent with divalent and trivalent cations and this has 
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been shown to  significantly reduce the bioavailability of copper to soil organisms 

(Zhou et al., 2012 & 2013). Studies in which earthworms were exposed to either 

copper-spiked soil or a combination of copper and glyphosate revealed that the 

application of glyphosate significantly reduced weight loss and the uptake of 

copper (Zhou et al., 2013). Various other agrichemicals, such as pesticides, 

fungicides, surfactants, and plant growth regulators may therefore potentially 

interact with copper, and this will have implications in terms of toxicity to 

microorganisms. 

The differing variables between each pair of orchards were multiple and 

dissimilarities in bacterial communities were likely to be due to a combination of 

factors rather than a singular variable such as soil copper level. Also one variable 

may have an indirect effect on another e.g., copper applications may result in a 

decrease in soil pH and community effects may be due to the prevalence of 

bacteria which favour a particular pH range rather than direct copper toxicity.  

The levels of total copper in these study soils are relatively low compared with 

those reported in the literature in a number of studies that have been carried out on 

the effects to microbial communities in soil. In a number of those studies where 

free Cu
2+ 

ions or CuCaCl2 were shown to be toxic to, and influence the microbial 

community composition of soils, the levels of total copper in soil were also high 

(> 100 mg kg
-1

) (e.g., Naveed et al., 2014, Berg et al., 2012, Zhou et al., 2011). 

Dean & Miller (2015) found that levels of free Cu
2+ 

in a number of soils that had 

been spiked with increasing concentrations of copper in the previous year 

increased significantly once CuT concentrations reached 200 mg kg
-1

. Levels of 

Cu
2+ 

were within a very similar range for soils with less than 100 mg kg
-1

 of CuT.  

These soils were sampled from a similar location to the soils in this study with 

very similar physicochemical properties. This indicates that the levels of total 

copper in these study orchard soils were below that which would cause noticeable 

effects on microbial communities. 

This study did however reveal positive effects of copper on archaeal communities, 

where soils with the highest levels of CuT had significantly higher abundances of 

archaeal OTUs compared with soils with low CuT. A number of these OTUs have 

been shown to be associated with nitrogen assimilation. It is therefore possible 

that individual OTUs that perform a particular function, if reduced in number by 

copper pollution, may be substituted by less sensitive species or strains that 
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perform the same function. Where assessments of copper toxicity to microbes 

involve measuring parameters such as microbial biomass C or mineralisable N, 

these changes in community composition may be overlooked.  Subtle effects on 

community composition could also be overlooked when assessing sequencing 

data if differentiation between OTUs to the level of species or strain is not 

possible.  

The levels of copper in the study orchard soils were at relatively low levels in 

2014. However, copper sprays are still recognised and recommended as one of the 

most effective measures at reducing the spread of Psa-V. If these sprays continue 

to be used at current rates, and due to the cumulative nature of copper, soil copper 

levels may increase to a point in the future at which adverse effects to microbial 

functioning will be observed. Detrimental effects to soil microorganisms could 

alter the balance in favour of copper tolerant species which may compromise 

essential soil processes such as nutrient cycling and disease suppression. There are 

still significant gaps in knowledge about the specific functions of bacteria and 

archaea, and without this knowledge it is difficult to assess the real implications of 

copper pollution on soil health. However, as indicated by Barea, et al. (1997), the 

maintenance of an active and diverse soil microbial community is key to 

maintaining soil quality and soil quality should be key to maintaining sustainable 

kiwifruit production systems. 
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Orchard Name:________________________________________KPIN:__________________ Conv./Org.:___________ Date:____________________

Block:_______________________Rep #: _________ Approx. vine age:________________

Time:_______________________Altitude(m.a.s.l.):___________Aspect:_________________ Block photo #_____________

GPS & photo # (x10):□

1) 2) 3) 4) 5)

6) 7) 8) 9) 10)

Soil Temp (°C):____________________________________

Herbicide strip?______________

% groundcover:______________Dominant species:____________________________________________________________________________

Organic ammendments?________________________________________________________________

Litter depth (cm):___________ Earthworms/other fauna?_____________________________________________________________________

Copper used?________________Form of copper?___________________________________

Sample checklist (√)

Vinerow Alleyway

BD samples (x3) □ Comp. Sample? □ BD sample (x3)? □ Comp. Sample? □
Comp. micro sample? □ Comp. micro sample? □

Notes:
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Appendix C:  Site images – block and groundcover 

views 
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Appendix D: Calculation of pCu
2+

 for 

ethylenediamine metal ion buffers 

 

(Excerpt from Luo, 2004) 

 

The pCu for ethylenediamine-Cu(II) solutions was calculated as follows. In the 

experiments described in Chapter 2, the Cu
2+

 buffer solutions had a total 

ethylenediamine concentration [en]T = 0.0303 mol L
-1

 and a total Cu(II) 

concentration of [Cu]T = 0.0100 mol L
-1

. Under these conditions, with a 

stoichiometric excess of en over Cu(II), most of the Cu(II) is present as the 

Cu(en)2
2+

 complex. We calculate the concentration of en not bound by Cu(II), 

denoted [en]’ as follows: 

[en]’  = [en]T –2[Cu]T 

The concentration of free en at any given pH can be calculated from this value by 

considering the following acid-base equilibria of en  

H
+
 + en Hen

+
                    

H
+
 + Hen

+
 H2en

2+
               

Thus 

[en]’ = [en] + [Hen
+
] + [H2en

2+
] 

 = [en] (1+ K1H [H
+
] + K1H K2H [H

+
]2)    

        (1) 

which allows calculation of [en] for a given pH. 

Finally, the concentration of free Cu
2+

 can be obtained by considering the 

formation reactions for its en complexes 

Cu
2+

 + en Cu(en)
2+

                         

Cu(en)
2+

 + en  Cu(en)2
2+

                    

Thus: 

[Cu]T = [Cu
2+

] + [Cu(en)
2+

] + [Cu(en)2
2+

] 

=  [Cu
2+

] (1+ K1[en] + K1 K2 [en]2)  (2) 

 

Substituting [en] obtained from equation (1) into equation (2) allows calculation 

of [Cu
2+

] and thus pCu = -log ([Cu
2+

]) for each solution. It is necessary, having 

obtained the result, to check the initial assumption that the Cu(en)2
2+

 complex 

dominates over Cu(en)
2+

. 
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Appendix E:  MoBio PowerLyzer® PowerSoil®  

DNA Isolation Kit method 

 

1. 0.5 g of soil was added to each PowerBead tube which contained a buffer 

to disperse soil particles and begin dissolving humic acids whilst 

protecting nucleic acids from degradation. 

2. Samples were gently vortexed and Solution C1 containing SDS and other 

disruption agents was added to each tube. 

3. Tubes were placed horizontally on a Vortex-Genie® with 24-tube adaptor 

and shaken at maximum speed for 10 minutes to lyse the sample DNA. 

4. Tubes were centrifuged at 10,000 x g for 30 seconds at room temperature. 

5. The supernatant containing sample DNA was transferred to 2 mL 

collection tubes and 250 L of Solution C2 Inhibitor Removal 

Technology® (IRT) was added to each tube. This solution contains a 

reagent which precipitates non-DNA organic and inorganic material 

including humic substances, cell debris, and proteins.  Samples were then 

vortexed for 5 seconds and then incubated at 4C for 5 minutes. 

6. Tubes were centrifuged for 1 min at 10,000 x g. 

7. 600 L of supernatant containing cleaned DNA was transferred into 2 mL 

collection tubes and 200 L of Solution C3 IRT was added to remove 

additional non-DNA organic and inorganic material and samples were 

then briefly vortexed and incubated at 4C for 5 minutes. 

8. Tubes were centrifuged for 1 min at 10,000 x g. 

9. 700 L of supernatant was transferred into 2 mL collection tubes and 1.2 

mL of Solution C4, a high concentration salt solution, was added to each 

tube.  

10. 640 L of supernatant was loaded onto a spin filter with silica membrane 

and centrifuged at 10,000 x g for 1 minute at room temperature. Flow 

through was discarded. This step was repeated twice. This step allowed for 

DNA to selectively bind to the silica membrane in the spin filter in the 

presence of a high salt concentration.  

11. 500 L of Solution C5, an ethanol-based wash solution, was added to 

tubes with spin filters to remove residual salt, humic acid, and other 
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contaminants, whilst allowing DNA to stay bound to the silica membrane. 

Tubes were centrifuged at 10,000 x g for 30 seconds at room temperature.  

12. Flow through was discarded and tubes were centrifuged at room 

temperature for 1 minute at 10,000 x g to completely remove the wash 

solution. 

13. Spin filters were placed in 2 mL collection tubes and eluted with 100 L 

of Solution C6 (10 mM Tris) which was added to the centre of the filter 

membrane. 

14. Tubes were centrifuged at room temperature for 30 seconds at 10,000 x g 

and spin filters discarded. 
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Appendix F: Particle sizes of orchard soils 

 

 

 

Orchard % Clay % Silt % Sand texture

1 9 43 49 loam

1 7 35 58 sandy loam

1 6 33 62 sandy loam

2 6 42 53 sandy loam

2 7 40 53 sandy loam

2 9 41 50 loam

3 9 36 56 sandy loam

3 6 40 55 sandy loam

3 7 41 53 sandy loam

4 15 45 41 loam

4 9 42 49 loam

4 12 41 47 loam

5 10 40 50 loam

5 9 37 54 sandy loam

5 9 38 53 sandy loam

6 10 38 52 loam

6 11 39 50 loam

6 8 40 52 sandy loam

7 10 35 55 sandy loam

7 13 36 51 loam

7 10 37 53 sandy loam

8 11 40 49 loam

8 7 37 56 sandy loam

8 8 38 54 sandy loam

9 9 29 62 sandy loam

9 10 30 60 sandy loam

9 10 29 61 sandy loam

10 11 37 52 loam

10 7 40 53 sandy loam

10 10 41 49 loam



 

 

Orchard management Block Position

CuT 2014 

(mg/kg)

CuCaCl2  

(mg/kg) pCu2+ pH water pH CaCl2 EC (dS m-1)

DHA (µg TFP g-1 

soil 24 hr-1) % moisture POXC (mg/kg) % porosity BD wfps (%) % OM (LOI)

1 Organic 1 vine row 23.00 0.09 <19 6.48 6.49 0.16 272.36 35.26 1228.22 76.71 0.62 50.78 17.43

1 Organic 1 alleyway 22.00 0.10 <19 6.58 6.35 0.12 261.19 34.17 1102.53 75.20 0.66 53.02 16.92

1 Organic 2 vine row 21.50 0.08 <19 6.57 6.35 0.11 306.41 34.85 1160.40 73.79 0.69 55.27 17.00

1 Organic 2 alleyway 20.00 0.07 <19 6.66 6.41 0.11 169.36 34.86 982.68 73.99 0.69 56.95 17.18

1 Organic 3 vine row 19.50 0.10 <19 6.53 6.34 0.11 177.42 34.39 972.61 75.13 0.66 51.70 16.52

1 Organic 3 alleyway 20.00 0.11 <19 6.50 6.37 0.12 165.39 34.34 972.63 76.44 0.62 45.34 16.47

2 Conventional 1 vine row 71.00 0.27 15.96 6.82 6.65 0.12 150.02 27.84 722.08 71.51 0.75 50.89 12.47

2 Conventional 1 alleyway 69.50 0.32 15.32 6.80 6.62 0.16 190.68 30.99 868.76 72.11 0.74 54.28 14.81

2 Conventional 2 vine row 90.50 0.26 16.29 6.84 6.61 0.12 140.76 26.80 869.18 70.69 0.78 50.80 12.14

2 Conventional 2 alleyway 77.00 0.26 15.36 6.80 6.63 0.16 169.53 28.79 883.70 72.09 0.74 54.09 12.35

2 Conventional 3 vine row 44.00 0.17 14.73 7.12 6.67 0.11 125.62 25.68 775.53 69.78 0.80 52.69 10.49

2 Conventional 3 alleyway 54.50 0.21 13.51 6.94 6.77 0.19 163.81 33.16 939.78 73.96 0.69 59.08 14.71

3 Conventional 1 vine row 44.00 0.19 17.69 6.38 6.29 0.15 143.34 27.26 774.46 69.92 0.80 54.09 12.82

3 Conventional 1 alleyway 52.50 0.22 17.00 6.47 6.29 0.17 184.93 30.55 1094.18 73.21 0.71 54.94 15.73

3 Conventional 2 vine row 36.50 0.17 18.04 6.37 6.18 0.15 154.15 28.14 661.68 71.90 0.74 52.65 12.11

3 Conventional 2 alleyway 43.50 0.20 <19 6.37 6.37 0.19 150.51 32.85 1021.12 70.94 0.77 63.10 16.51

3 Conventional 3 vine row 32.50 0.11 17.75 6.50 6.01 0.16 123.92 30.29 642.32 72.04 0.74 57.14 12.17

3 Conventional 3 alleyway 47.00 0.16 <19 6.39 6.28 0.17 147.41 32.03 869.72 74.70 0.67 51.03 16.48

4 Organic 1 vine row 67.00 0.18 <19 6.44 6.29 0.11 199.83 29.19 519.59 70.01 0.79 57.73 11.90

4 Organic 1 alleyway 57.50 0.18 <19 6.41 6.31 0.14 270.27 31.62 759.91 72.80 0.72 51.11 14.09

4 Organic 2 vine row 57.50 0.20 18.07 6.55 5.84 0.14 158.94 32.65 666.64 71.90 0.74 59.00 13.17

4 Organic 2 alleyway 56.00 0.20 18.02 6.40 5.78 0.14 217.09 34.36 781.48 73.55 0.70 57.71 15.94

4 Organic 3 vine row 51.00 0.19 18.07 6.41 5.81 0.11 177.67 31.74 703.75 71.16 0.76 56.44 13.21

4 Organic 3 alleyway 70.00 0.19 17.73 6.22 5.79 0.11 207.61 33.54 1101.25 74.95 0.66 59.04 16.60

5 Conventional 1 vine row 57.00 0.22 17.65 6.25 6.08 0.11 95.92 26.10 756.84 70.42 0.78 53.28 11.12

5 Conventional 1 alleyway 38.50 0.11 17.54 6.37 6.19 0.14 119.01 29.04 781.12 70.03 0.79 52.22 11.99

5 Conventional 2 vine row 51.00 0.12 <19 6.35 6.23 0.13 93.25 26.07 852.80 70.21 0.79 49.63 11.60

5 Conventional 2 alleyway 40.00 0.12 18.01 6.34 6.14 0.14 115.75 30.76 892.99 72.61 0.73 52.82 12.57

5 Conventional 3 vine row 67.50 0.15 <19 6.33 6.14 0.12 97.97 26.33 754.45 71.84 0.75 45.98 11.89

5 Conventional 3 alleyway 32.50 0.11 <19 6.40 6.16 0.12 120.55 31.16 693.34 72.98 0.72 52.91 14.10
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Orchard management Block Position

CuT 2014 

(mg/kg)

CuCaCl2  

(mg/kg) pCu2+ pH water pH CaCl2 EC (dS m-1)

DHA (µg TFP g-1 

soil 24 hr-1) % moisture POXC (mg/kg) % porosity BD wfps (%) % OM (LOI)

6 Organic 1 vine row 29.50 0.11 16.71 6.28 6.10 0.17 264.67 30.15 1063.77 74.68 0.67 43.82 17.66

6 Organic 1 alleyway 26.50 0.10 17.17 6.31 6.05 0.15 150.09 30.23 941.35 73.17 0.71 50.31 15.69

6 Organic 2 vine row 35.00 0.09 15.82 6.24 6.03 0.17 169.58 36.29 1443.12 80.16 0.53 38.66 20.88

6 Organic 2 alleyway 26.50 0.09 17.48 6.37 6.00 0.14 233.52 32.68 1071.54 75.02 0.66 52.01 17.57

6 Organic 3 vine row 28.50 0.18 16.96 6.20 6.00 0.17 182.93 30.94 933.79 75.77 0.64 50.46 16.31

6 Organic 3 alleyway 29.00 0.13 17.06 6.27 5.98 0.09 231.88 32.23 936.77 73.66 0.70 50.11 16.76

7 Conventional 1 vine row 73.00 0.16 17.59 6.25 5.82 0.11 95.01 25.26 770.70 69.11 0.82 48.15 10.05

7 Conventional 1 alleyway 47.00 0.15 17.30 6.03 5.72 0.17 108.61 28.39 684.32 71.96 0.74 56.55 11.91

7 Conventional 2 vine row 70.50 0.18 16.48 6.10 5.75 0.12 70.00 26.79 669.65 68.63 0.83 60.45 10.16

7 Conventional 2 alleyway 45.50 0.17 17.87 6.02 5.66 0.15 105.05 28.65 659.78 71.96 0.74 51.84 12.55

7 Conventional 3 vine row 70.50 0.21 17.21 6.41 5.71 0.09 94.69 24.70 775.96 70.43 0.78 47.48 10.35

7 Conventional 3 alleyway 45.50 0.20 16.80 6.16 5.75 0.20 160.29 29.50 879.56 70.37 0.79 56.87 13.25

8 Organic 1 vine row 43.50 0.16 <19 6.64 6.40 0.10 171.95 24.98 787.87 72.76 0.72 45.16 11.85

8 Organic 1 alleyway 40.50 0.62 <19 6.61 6.46 0.19 209.27 26.16 882.61 72.99 0.72 44.63 14.74

8 Organic 2 vine row 49.50 0.95 <19 6.81 6.46 0.09 174.47 24.78 818.05 72.91 0.72 48.37 10.86

8 Organic 2 alleyway 29.50 0.50 <19 6.60 6.16 0.13 213.76 22.73 1024.52 72.97 0.72 41.80 13.04

8 Organic 3 vine row 53.00 0.51 <19 6.59 6.31 0.09 211.89 26.30 872.85 71.25 0.76 46.39 11.29

8 Organic 3 alleyway 38.00 0.66 <19 6.52 6.27 0.12 232.99 25.01 1156.92 71.81 0.75 47.71 13.51

9 Conventional 1 vine row 18.50 0.19 <19 6.82 6.51 0.09 97.34 21.58 579.56 64.64 0.94 54.81 6.14

9 Conventional 1 alleyway 24.00 0.24 <19 6.83 6.47 0.13 181.37 29.74 857.95 70.23 0.79 63.04 10.39

9 Conventional 2 vine row 23.50 0.17 <19 6.82 6.42 0.11 105.66 25.97 658.11 68.89 0.82 59.84 8.17

9 Conventional 2 alleyway 24.50 0.15 <19 6.65 6.30 0.14 222.95 30.47 726.96 70.17 0.79 59.49 10.94

9 Conventional 3 vine row 23.00 0.07 <19 6.61 6.15 0.13 114.55 23.73 589.02 64.66 0.94 57.90 7.01

9 Conventional 3 alleyway 24.50 0.19 <19 6.64 6.16 0.13 172.89 29.45 736.69 69.13 0.82 69.61 9.76

10 Organic 1 vine row 34.50 0.20 <19 6.81 6.56 0.13 190.93 31.72 830.06 72.92 0.72 55.09 12.92

10 Organic 1 alleyway 29.00 0.25 <19 6.78 6.39 0.12 181.07 31.33 864.47 71.36 0.76 53.31 13.05

10 Organic 2 vine row 32.50 0.17 <19 6.83 6.60 0.14 115.06 32.78 821.44 73.23 0.71 52.78 12.74

10 Organic 2 alleyway 27.00 0.18 <19 6.78 6.46 0.14 164.80 30.43 894.37 71.75 0.75 52.73 14.08

10 Organic 3 vine row 34.50 0.10 <19 7.02 6.59 0.14 209.13 33.48 912.21 72.00 0.74 62.88 13.64

10 Organic 3 alleyway 26.50 0.08 <19 6.80 6.43 0.16 134.77 34.57 805.12 71.45 0.76 63.02 14.40

1
2
1
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Appendix H:  Qubit quantification values and gel 

electrophoresis images 

 

Orchard Management 
Regime 

Blk 
# 

vine row alleyway 

Gel band 
# 

DNA conc.  
(ng/µl) 

Gel band # DNA conc.  
(ng/µl) 

1 Organic 1 1 38.5 2 31.3 

2 3 45.2 4 35.2 

3 5 39.4 6 35.8 

2 Conventional 1 7 26.9 8 38.8 

  2 9 33.6 10 25.8 

  3 11 27.1 12 2.8 

3 Conventional 1 13 1.02 14 30.9 

  2 15 25.8 16 17.8 

  3 17 0.6 18 21.8 

4 Organic 1 19 16.9 20 27.6 

  2 21 27.8 22 16.8 

  3 23 20.7 24 10.2 

5 Conventional 1 25 26.8 26 27.7 

  2 27 16.1 28 25.3 

  3 29 13.1 30 17.4 

6 Organic 1 31 10.8 32 22.4 

  2 33 16.3 34 16.9 

  3 35 11.4 36 11.9 

7 Conventional 1 37 3.1 38 11.9 

  2 39 9.5 40 11.8 

  3 41 30.6 42 12.1 

8 Organic 1 43 12.2 44 11.6 

  2 45 9.4 46 12.2 

  3 47 8.7 48 8.3 

9 Conventional 1 49 14.5 50 15.3 

  2 51 20.8 52 14.8 

  3 53 26.0 54 29.8 

10 Organic 1 55 17.1 56 15.9 

  2 57 10.4 58 21.8 

  3 59 19.0 60 14.4 
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Samples 2 – 11    Samples 12 - 21 

 

Samples 22 – 34 and 1 repeat   Samples 35 – 46 and 13 repeat 

 

Samples 47 - 60 


