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Abstract

This thesis investigates the measurement of predictor performance as applied

to foreign exchange speculation. It outlines the development of key ideas and

techniques over the course of the last 120 years, and examines the datasets and

metrics used within a representative sample of the academic corpus. In this

examination two problems are identified: first, there is a lack of consistency in

the datasets used to test researchers’ algorithms; and second, a large variety of

metrics are used, most of which are either inappropriate for or inappropriately

applied to FOREX speculation. To address these issues, this thesis presents

two solutions: a Python library, Hokohoko, which provides a consistent dataset

and interface for testing FOREX prediction algorithms; and a new metric,

Speculative Accuracy, which it argues provides a more appropriate measure of

usefulness with regards to speculation. Hokohoko is then used to test a series of

hypotheses regarding the usefulness of various metrics, alongside Speculative

Accuracy.
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x

Format conventions used within this thesis.

Capitalised A reference to a class, or named item.

italics Italics are used for emphasis, or to indicate the
introduction of a new concept, or for named
software.

bold Used to highlight important points.

monospace Indicates code.

lowercase capitals Items in lowercase capitals are properties related to
the foreign exchange market.



Trading Terms

ask The current price that traders are asking for their currency. This is the

value that a Position is bought for.

balance The amount of currency a trading account nominally holds.

bid The current price that traders are offering to buy the currency. This is

the value that a Position is sold for.

broker A company that allows smaller traders access to the foreign exchange

market.

candlestick A type of chart used to show currency movements. It consists of

two vertical bars overlaid, one thick and one thin, whose top and bottom

indicate different exchange rate values.

close The exchange rate for a given Symbol, at the end of a fixed interval, or

epoch, of time.

equity The amount of currency a trading account holds at a given instant.

high The highest exchange rate observed for a given Symbol, within a specific

interval of time.

leverage A multiplicative factor applied to trades, magnifying profit, losses

and trading costs.

liquidity provider A large institute that trades on the exchange rate itself,

on behalf of businesses, etc. A common example is banks and payment

service providers, such as credit card companies.



xii

low The lowest exchange rate observed for a given Symbol, within a specific

interval of time.

margin The ratio of a trading account’s equity available compared to equity

used.

open The exchange rate for a given Symbol, at the start of a fixed interval of

time.

Order A request to trade, with conditions attached. Some of these

conditions include an acceptable exchange rate range to begin trading,

the Symbol to trade in, and the volume to trade. It can also include

extra information, such as take_profit and stop_loss conditions..

Position An active trade. The value of a Position changes with exchange rate

movements, and the aim of trading is to have Positions that increase in

value. buy Positions increase in value as the exchange rate increases,

and sell Positions increase in value as the exchange rate decreases.

spread The difference between ask and bid rates for a Symbol.

stop_loss An exchange rate programmed into a Position which, if achieved,

will cause the Position to close automatically, accepting the losses

incurred. The losses are applied to the trading account’s balance.

Symbol A trading currency pair, made up of a base currency and a target

currency. E.g., AUDNZD has the base AUD and the target NZD. When

designated ‘Symbol’ within the text, this refers to the currency pair, and

‘symbol’ refers to the relevant variable in an Order or Position.

take_profit An exchange rate programmed into a Position which, if achieved,

will cause the Position to close automatically, realising the profits made.

These profits are applied to the trading account’s balance.



xiii

tick An instantaneous exchange rate movement. Not fixed to any particular

time-scale, a tick occurs when the ask or bid rates of a Symbol change.

trader A person or entity who trades on the foreign exchange market.



xiv

Mathematical Symbols

yt A point y of the exchange rate series Y at time t.

δyt The first-order difference between the point yt and its predecessor
yt−1.

ŷ The predicted value.

µ The mean value.

n,N The number of events within a time series.

ϵt The error value at t.

E(ŷ, y) An error function that calculates ϵ from ŷ and y.

P(x) The probability of x within a sample.

σ The standard deviation.

ψ A set of variables.

ξ, ζ Random noise belonging to a distribution.

ρ Pearson’s Correlation Coefficient.

ρ̄ Indicates the mean correlation for a series of results.



Chapter 1

Introduction

Since floating in 1971, the Foreign Exchange (FOREX) market has grown to

become the world’s largest trading platform. With a daily turnover of USD 6.9

trillion, it is estimated that speculation makes up over 99 percent of trading

activities (Borio, Claessens, Mojon, Shin, & Wooldridge, 2020; Global Policy

Forum, 2013). To speculate in FOREX, a trader guesses or predicts future

exchange rate movements and attempts to profiteer through buying and selling

currency pairs (Symbols). Profits made can be magnified through the use of

leverage. However, this magnification applies to losses and trading costs also,

making accurate prediction an essential element of FOREX speculation.

In response to the need for accurate prediction, many different algorithms

have been developed over the years to model and/or predict exchange rate

movements. However, within the voluminous body of FOREX literature, scant

attention has been paid to the algorithms’ relative predictive performance, and

even less to the validity of any metrics used. This thesis aims to redress this

lack of attention, and thus considers the issue of benchmarking predictors for

the purpose of FOREX speculation.

Analysis of a representative subset of the FOREX corpus reveals two

main shortcomings within the literature. First, there are as many different

datasets used for benchmarking as there are papers, rendering direct

comparison between papers impossible. Second, there is a wide variety of
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different metrics used, most of which are either inapplicable or

inappropriately applied to FOREX speculation, having little correlation with

speculative results. These issues combined render the sum total of the

speculative results presented within the FOREX corpus largely meaningless.

Based on the hypothesis that a suitable metric will show significant

correlation with speculative results, and that a suitable benchmark will

enable easily comparable results, this thesis proposes two novel solutions to

combat the generally meaningless results pervading the FOREX corpus:

1. An open-source library, Hokohoko, which provides an API and dataset

for consistent benchmarking of FOREX predictors.

2. A new metric, Speculative Accuracy, which is designed specifically for

application to FOREX speculation.

These solutions are subjected to a thorough experimental evaluation, with this

thesis proceeding as follows:

Chapter 2 describes the operation of the FOREX market from the view of

a trader and outlines the major issues affecting predictability and

profitability. Chapter 3 presents a short history of FOREX modeling and

prediction, discussing the development of several key ideas and techniques.

Chapter 4 analyses the metrics used within a representative subset of the

FOREX corpus. Chapter 5 introduces the Hokohoko library and Chapter 6

describes the Speculative Accuracy metric. Chapter 7 explains the

methodology used to test the suitability of Speculative Accuracy for FOREX

speculation, with Chapter 8 presenting the results and discussion thereof.

And finally, Chapter 9 concludes with a summary of the work undertaken

and suggestions towards future research.



Chapter 2

Foreign Exchange Speculation

Trader Broker Liquidity Provider

Exchange: Tokyo

Exchange: London

Figure 2.1: A condensed structure of the FOREX market, from a trader’s
perspective. Each node could be considered representative of many entities, e.g.,
millions of traders, thousands of brokers and liquidity providers, and a handful of
exchanges around the world.

As shown in Fig. 2.1, the FOREX market is made up of multiple layers

of participants, each of which has its own role. At the heart of the FOREX

market is a network of central currency exchanges, which are responsible for

matching trade requests, and are located around the world in different time

zones. Individual traders, however, do not access these exchanges directly.

Instead, traders hold accounts with brokers, who in turn access the market

through liquidity providers. Liquidity providers are large companies, such as

banks and payment service providers, who make the actual trades on the

FOREX market—typically in the order of millions of dollars. Brokers are

much smaller companies that allow access to the market for clients who do

not otherwise possess the required wherewithal for participation. Global trade
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Figure 2.2: Example outcomes for different exchange rate movements. In (a), if
the Position opened was a buy Position, it will have made a profit at close. On
the other hand, if it was a sell Position, it will close at a loss. In (b), the scenario
is reversed: a sell Position will have made a profit, whereas a buy will realise a
loss.

also happens through the FOREX market, however, these transactions happen

directly through the liquidity providers and make up a tiny fraction of FOREX

trading.

To speculate in FOREX, a trader guesses or predicts future exchange rate

movements, and places buy or sell Orders through their broker, as they

deem appropriate. Orders can be placed with a number of conditions, and

these conditions determine how the Order will be processed by the FOREX

market. At the most basic level, an Order consists of six values: the symbol to

trade, the direction to trade in (either buy or sell), the volume to be traded,

and optional open, take_profit and stop_loss values. If specified, open

indicates the exchange rate at which the Order will become an active Position,

otherwise it will activate immediately at the current rate. take_profit and

stop_loss specify exchange rates at which the Position will automatically

close, otherwise the Position will remain active until closed manually. On close,

a Position implicitly becomes an Order in the opposite direction, activating

immediately. As shown in Fig. 2.2, for a buy Position a profit is made when

the exchange rate for the Symbol is higher at close than open, and a loss

realised if the exchange rate is lower at close than open. For a sell Position

the conditions are reversed, with a profit made if close is lower than open
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buy
Orders

sell
Orders

ask

bid

Figure 2.3: The FOREX market as two Orders stacks, for a given Symbol. Whilst
the stacks overlap, only the Positions on the ‘correct’ side of the price are activated,
with the others remaining dormant until the exchange rate reaches them.

and a loss realised if close is higher than open.

Within the FOREX market, Orders are placed into a queue with other

Orders of the same direction and rate and fulfilled once they reach the front

of the queue (see Fig. 2.3). The exchange rate per-Symbol consists of two

values: the ask and bid rates. The ask rate is what traders are requesting for

their Positions and is the value at which buy Orders are fulfilled; and the bid

rate is what traders are offering to buy Positions for and the value at which

sell Orders are fulfilled. The difference between bid and ask is known as the

spread, and a Position needs to move further than the spread in order to make

a profit.

Like all speculation, trading in FOREX is risky. If the market were ‘fair’,

it would be possible to make money by the use of analysis and appropriate

take_profit and stop_loss conditions. However, the market is not fair,

and there are extra factors a trader needs to take into account besides just

exchange rate movements (Mandelbrot, 1963b; Engel & Hamilton, 1990).

First, placing a trade invokes a series of costs. As well as the spread, there

is no guarantee that a Position will open or close at the specified exchange rate.

Instead, it will open or close at the nearest available rate, with the difference

between the requested and the actual rate called slippage. Every day a Position
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is held, it accumulates small, interest-based swap fees. The brokers themselves

also usually charge a small commission, typically based on the traded volume.

All these costs reduce a trader’s profits and therefore need to be considered

when placing an Order.

Second, the FOREX market has proven difficult to regulate, and

unscrupulous parties have found ways to manipulate the system. Examples

of such manipulation include insider trading, price fixing and triggering.

Insider trading is when a party has access to information not yet public, such

as a pending policy change, or not public at all, such as a liquidity provider’s

internal Order stack. Price fixing occurs when large trading parties collude,

in order to maximise their own profits, at the expense of the rest of the

market. And triggering happens when a trading party becomes large enough

for its own trading to cause market swings, and they then manipulate the

market by issuing false trades and then trading on the reaction. Over the

years, a number of parties have been investigated and disciplined for such

actions, with jail terms and billions of dollars in fines handed out (BBC,

2015; Chee & Ridley, 2019).

And third, the behaviour of the FOREX market is a complex interaction

of the trading forces between principalities, and as such the fiscal policies of

different governing bodies can have significant effects on exchange rate

movements. An example of this occurred on January 15, 2015, when the

Swiss government decided to ‘unpeg’ the Swiss franc from the Euro. Without

warning, the EURCHF exchange rate lost almost twenty percent of its value,

causing massive losses for hedge funds around the world (“Swiss Franc”,

n.d.). Another example is found in the behaviour of the central banks, who

have at times intervened in the market in an attempt to maintain the

relative value of their currency (Mussa, 1979; LeBaron, 1999; Cheung &

Chinn, 2001).

Whilst these issues of costs, manipulation and interference are properties

of the FOREX market itself, there is a fourth issue directly under the trader’s
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control: leverage. Leverage is where liquidity providers allow traders to use

only a portion of their own equity for a trade, with the remainder made up

by the liquidity provider. For example, a liquidity provider may provide a

1:100 leverage rate, which means a trader can place a trade for USD1000,

whilst using only USD10 of their own equity. Leverage magnifies all aspects

of trading: profits, losses and costs. It thus enables potentially greater profits

to be made by the trader. In the process, leverage also magnifies the effect

exchange rate movements have on a trader’s operating margin.

The margin is the ratio between how much equity a trader has risked versus

how much equity they hold, and is calculated:

margin =
account equity

equity used (2.1)

Margin is affected by a traders open Positions, with profitable Positions

increasing the margin and losing Positions decreasing it. If a trader’s margin

drops too low the consequences can be dire. First, their liquidity provider

may prevent the trader from placing new trades, severely restricting their

ability to ‘trade out’ of their predicament. Then, if the margin reduces

further, they may simply start to foreclose the trader’s Positions until the

trader’s margin is above the desired minimum level again, forcing the trader

to accept whatever losses this incurs. If a trader’s account reaches zero

margin, the account is rendered defunct and all trades are then closed. In

some scenarios, a trader may even end up with a bill for any excess losses

made by the liquidity provider due to their trading. Whilst a trader can close

their own trades or inject extra money into their trading account to maintain

margin, by far the best approach is to have minimal losing Positions in the

first place.

The issues of costs, manipulation, interference and leverage all play an

important role in the profitability of FOREX trading. Costs need to be

minimised, risks needs to be assessed and mitigated, and margin needs to be
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managed in order to maximise profitability. Therefore, it is essential that a

trader be able to predict market movements as accurately as possible. Given

the importance of accurate prediction, the sheer size of the market, and the

massive number of participants, it comes as no surprise that the last century

has seen a staggering amount of work published on the topics of modeling

and predicting FOREX movements.



Chapter 3

Background: Foreign Exchange

Prediction and Modeling

Since Bachelier’s original work on speculative analysis in 1900, Théorie de la

Spéculation, the world has witnessed the birth of the computer, key fields

such as Econophysics and Chaos Theory, and the floating exchange

rate (Bachelier, 1900; May, 2006). Thousands of papers have been published

by academics, government agencies and private businesses, seeking to

understand the FOREX market, its composition, behaviour, movements,

volatility and inherent risks. Some are motivated by a quest for

understanding, perhaps to influence policy or add to the body of knowledge,

whilst others are interested more in applications for investments, such as

predicting future price movements and volatility, and both groups are prolific

publishers. Since the collection of related work is so vast, this chapter

concentrates on the development of a few key ideas and their application to

the field of FOREX speculation. These developments are followed in

somewhat chronological order, though they were often developed in parallel

with each other, and not all contributions have equal merit. Of particular

interest will be the development of the economic theory, the Efficient Market

Hypothesis and its presence in the FOREX literature.
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3.1 Statistical Properties

Widely regarded as the first application of mathematics in finance, Bachelier’s

work was based on the assumption that stock market price changes followed

a Gaussian distribution and were therefore predictable through probability

theory. Stating:

“The influences which determine the movements of the [financial
markets] are innumerable. Events past, present or even anticipated
often showing no apparent connection with its fluctuations, yet
have repercussions on its course. Beside fluctuations from, as it
were, natural causes, artificial causes are also involved. ... The
determination of these fluctuations is subject to an infinite number
of factors: it is therefore impossible to expect a mathematically
exact forecast.” (Bachelier (1900), trans. May (2006))

Bachelier went on to state that while Probability Theory will never be able to

predict the market exactly, it may well be possible to study the state of the

market at any given instant. Bachelier then proposed that, for fixed periods

or epochs of time t, the probability of an observed price yt can be calculated:

P(yt) =

t∑
i=1

1, if yi−1 ≤ yt ≤ yi
0, otherwise

t
(3.1)

and the probability of a price change for n epochs, δyt,n:

P(δyt,n) =

t∑
i=n

1, if yi − yi−n ≥ yt − yt−n

0, otherwise
t− n

(3.2)

Bachelier then proposed that the future price at epoch n could be predicted,

by calculating ŷt+n = yt + δy, from:

P(yt+n) = max
([

P(yt + δy)P(δy)
]max(δyi,n) for i=n,...,t

δy=min(δyi,n) for i=n,...,t

)
(3.3)
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However, Bachelier provided no empirical research to support the theory, and

the work was largely ignored for the first half of the twentieth century.

As the twentieth century moved on, it was discovered that Bachelier’s

assumption regarding the Gaussian distribution of price changes was

incorrect. Analysis of the markets revealed the distribution to be leptokurtic,

or fat-tailed, and of near-infinite variance.
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(b) Paretian Distribution.

Figure 3.1: Gaussian and Paretian Distributions. (a) shows a Gaussian distribution,
with mean µ = 0 and standard deviation σ = 1, while (b) shows a Paretian
distribution, with location δ = 0, scale γ = 1, skewness β = 0.75 and characteristic
exponent α = 0.5.

Mandelbrot picked up on this in the early 1960’s and, considering price

changes symptomatic of random variables with infinite variance, suggested

that the markets may hold to a Paretian rather than Gaussian

distribution (Mandelbrot, 1963a, 1963b). Unlike a Gaussian distribution,

which is defined by mean µ and standard deviation σ, a stable Paretian

distribution has four parameters: location δ, scale γ, skewness β and

characteristic exponent or height of tail α, as in Fig. 3.1 (Fama, 1965b).

This description of the market helped to explain its unpredictability, with

causal structural features more likely to be hidden by noise in a Paretian

model than a Gaussian model, and Paretian noise appearing to generate

patterns that trigger price movements. Mandelbrot also noted that the most

important feature of a Paretian distribution is its tail and that Fourier

analysis of such systems will always reveal some sort of ‘path’, even though
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there really is not one present. This means that there is no causal link

between the detected frequencies and the price movements—they are instead

artifacts of sample selection. Mandelbrot went on to state that, if market

rates follow a Paretian distribution, then market movements will be more

influenced by noise than systemic causes, and thus questioned the use of

technical analysis (analysis of past patterns) by speculators. Quoting Keynes,

“are the patterns just historical curve-fitting and description, or
are they inductive claims towards the future with reference to the
past?” (Keynes, 1936)

Mandelbrot then suggested that using ln(δyt) instead of δyt will transform the

distribution from Paretian to Gaussian.

3.2 Efficient Market Hypothesis

At the same time, mathematicians were not the only ones pondering the nature

of the world’s financial markets. Following empirical analysis of Mandelbrot’s

work and building on thirty years of economic theory, Fama summed up the

research of both in three heavily influential papers published between 1965 and

1970 (Fama, 1965b, 1965a, 1970), outlining the Efficient Market Hypothesis

(EMH) and described it thus:

• The market is vast, with a buyer for every seller, and vice-versa.

• The market is made up of many intelligent participants in competition

with each other.

• Market knowledge is reflected by participant behaviour, and the

current price is an accurate estimation of the true price. However,

there is always uncertainty as to the exact price, and so competition

between participants causes the value to follow a Random Walk (RW),

defined as

yt = yt−1 + ξ (3.4)
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where yt is the current value, yt−1 is the previous and ξ is Independent

and Identically Distributed (IID) random noise. Independence means

that there is no serial correlation present. Identically distributed means

that it is time-invariant—that is, the shape of the distribution does not

change over the series.

• If there is a systematic discrepancy between current and intrinsic value

it will be found and nullified, returning the market to random walk.

• New information typically causes an overreaction but will return to

random walk. The length and timing of this overreaction are also

random.

• Market uncertainty is distributed through transaction costs, keeping the

market efficient.

Therefore,

• Past prices hold zero information and thus are unable to assist in the

prediction of future movements.

• Price changes are independent and hold to some probability distribution,

such as Gaussian, Paretian, etc.

• A simple buy-and-hold trading strategy will be just as good as more

sophisticated techniques, especially once development costs are

considered.

• Fundamental analysis (seeking to understand price movements through

economic factors such as supply-and-demand, interest rates, policy

effects, etc.) is still useful; however, the more fundamental analysts

there are, the more efficient the market will be.

• Due to the ‘triggering’ nature of the market distribution, it will often

experience major shifts, and is thus risky to trade in. Because of the rapid

rate of these changes, excessive slippage may prevent loss prevention

measures such as stop_loss from being effective.
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Fama continues on to state that if the EMH and Random Walk model are an

accurate depiction of reality, then technical analysis is entirely without merit.

However, the market is not necessarily unpredictable—it is just that any gains

made through correct predictions will be offset by transaction costs.

3.3 Auto-Regression

In 1970, Box and Jenkins published the first edition of their now well-known

book Time Series Analysis: Forecasting and Control (Box & Jenkins, 1970).

This book made a significant impact in the field of time series prediction, with

its key feature being a clear exposition of the Auto-Regressive Moving Average

(ARMA) model. This model was Whittle’s extension of Yule’s original Auto-

regressive (AR) model and is effectively a linear aggregate of random shocks

around a fixed mean (Yule, 1927; Whittle, 1951). The ARMA model is defined

as:

yt = c+ ϵt +

p∑
i=1

ϕiyt−i −
q∑

i=1

θiϵt−i (3.5)

where c is a constant, ϵt, ϵt−1, ... are IID white noise error terms of mean zero,

and ϕ1, ..., ϕp and θ1, ..., θq are parameters such that the model is stationary,

i.e., its stochastic properties, such as µ and σ, do not change over time. The

terms p and q refer to the number of auto-regressive and moving average terms

included in the model respectively. Intuitively, p is how many lagged terms

from yt to yt−p are included in the model, weighted by ϕ; and q is how many

terms are included in the moving average model, which is a linear regression of

observed error terms from yt to yt−q, weighted by θ. Box and Jenkins detailed

an iterative procedure for choosing the correct parameters ϕ and θ. Later in

1976 they added an integrating process, creating the ARIMA(p,d,q) model,

which replaces yi in Eq. 3.5 with the d-th first-order difference of yi − yi−1 in

order to ensure the first-order differential of the model was stationary.

Despite their popularity, these early auto-regressive models were found

deficient when applied to foreign exchange movements. In their two papers
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comparing the exchange rate movements of the 1970’s with an assortment of

available models, Meese and Rogoff found that none of the linear AR models

could improve upon the Random Walk model (Meese & Rogoff, 1983a, 1983b).

3.4 Conditional Heteroscedasticity

Not everyone was convinced by Mandelbrot’s Paretian model either. In the

early 1970’s, Clark proposed that instead of Paretian, the distribution of

values may actually be subordinate—that is, the values themselves may be

re-ordered, or directed by, another stochastic process (Clark, 1973). Clark

showed that if the data was reorganised by traded volume then subsamples

would be lognormal (that is, ln(δy) normally distributed, where δy is the

first-order differences of y), with greatly reduced kurtosis, and the resulting

distribution would be closer to the data than the equivalent Paretian

distribution.
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(a) A Student-t Distribution, with three
populations.
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(b) A Heteroscedastic Distribution, with
µ = 0, 0.8 ≤ σ ≤ 1.6.

Figure 3.2: Student-t and Heteroscedastic Distributions. The Student-t
distribution has three underlying distributions, with the same mean but different
variances. The heteroscedastic distribution, however, moves from one variance to
another over time, whilst maintaining a constant mean.

Similarly, Blattberg and Gonedes investigated the possibility that the

leptokurtic nature of the markets indicated a Student-t distribution (a

continuous mixture of normal distributions with different scales), rather than
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Gaussian distribution (Blattberg & Gonedes, 1974). A special case of this is

heteroscedasticity, where the variance of a time-series is not

consistent (White, 1980). Fig. 3.2 shows example Student-t and

heteroscedastic distributions.

Continuing on with heteroscedasticity, in 1982 Engle developed an

Auto-Regressive Conditional Heteroscedastic (ARCH) model for time series

prediction, defined formally as:

yt|ψt−1 ∼ N (xtβ, ht) ,

ht = h (ϵt−1, ..., ϵt−p, α) ,

ϵt = yt − xtβ,

(3.6)

where xtβ is the mean of yt, which is a linear combination of endogenous and

exogenous variables included in the set ψt−1, with α and β vectors of unknown

parameters (Engle, 1982). Intuitively, ψt−1 is the set of all data available at

time t, including an auto-regressed variance htα around xtβ. Engle proved that

α and β could be calculated independently, and proposed using an iterative

approach of estimating β first with either Ordinary Least Squares (OLS) or

Maximum Likelihood Estimate (MLE), using the resulting residuals to estimate

α, then iteratively refining α and β by repeating these steps until the model

reaches the desired level of conformity. Once the ARCH parameters have been

estimated, the one-step-ahead prediction ŷt+1 can be made using ψt.

Engle noted that ARCH was intended to solve the problem of a standard

regression with a fixed mean that might potentially be missing some

exogenous variables, misspecified or experience structural change over

time—such as FOREX prices. However, whilst ARCH is useful for these

scenarios, it would be better to fix the problems. Engle showed how the

LaGrange Multiplier could be used to test for ARCH effects within a time

series.

A few years later, Bollerslev introduced the GARCH model, which is the

ARCH model generalized to allow varying mean as well as
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variance (Bollerslev, 1986, 1987). Noting that ARCH had an arbitrary

declining structure, Bollerslev posited that GARCH was to ARCH as ARMA

was to AR, and was able to show that a simple GARCH(1,1) model

outperformed an ARCH(8) model. The difference between ARCH and

GARCH is a modified function for ht,

ht = α0 +

q∑
i=1

αiy
2
t−i +

p∑
i=1

βiht−i (3.7)

where p, αi ≥ 0, and q, α0, βi > 0. Due to the lagged conditional variances

that enter into a GARCH(p, q) function, it could be considered a kind of

adaptive learning mechanism; however, a generalized test for GARCH was not

considered feasible.

Engle and Bollerslev worked together for a number of years on the ARCH

family, alongside other mathematicians, with a number of variations (such as

Exponential-ARCH/GARCH, ARCH/GARCH-M, etc.) proposed and tested.

Despite the advances made, ARCH/GARCH models struggled to sufficiently

model the leptokurtosis in FOREX movements (Bollerslev, Chou, & Kroner,

1992). Hsieh suggested that ARCH may be too rigid in its approach to

heteroscedasticity, and that a more flexible treatment may be

required (Hsieh, 1991).

3.5 Nonlinearity

Around the same time that conditional heteroscedasticity was being

investigated, researchers were also starting to question the use of linear

models for FOREX prediction. Tong and Lim suggested that if a nonlinear

model was adopted, then one-step-ahead predictions should be possible,

though they acknowledged the model should only be considered superior if

overall predictions were more accurate than the linear model (Tong & Lim,

1980). Discussing causes of nonlinearity in a time series, they suggested that

any models developed would likely need to include exogenous data and would
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therefore need to be generalisable to the multi-variate case. Due to the

presence of oscillators and fractional cycles, a nonlinear system would not

necessarily require continuous input. Expanding Tong’s linear Threshold

Auto-Regression (TAR) model, they then introduced a number of non-linear

models: the Self-Exciting TAR (SETAR), Closed-Loop TAR (TARSC) and

Open-Loop TAR (TARSO) models.

For all the variations proposed, not all of the included peer-reviews were

convinced by Tong and Lim’s arguments, with several finding inconclusive

evidence of predictive superiority. Other researchers were also unable to

improve upon the linear methods in this fashion, with Scheinkman and

LeBaron noting that the evidence for non-linearity would appear to

contradict the EMH, but no nonlinear method had been shown to

outperform it out-of-sample (Scheinkman & LeBaron, 1989). In their

analysis of ten exchange rates over fourteen years, Diebold and Nason were

unable to find any nonlinearities exploitable for improved prediction (Diebold

& Nason, 1989). And Meese and Rose came to the conclusion that:

“We do not deny that non-linear effects are important in
understanding even moments of exchange rate processes.
However, we do conclude that incorporating nonlinearities into
existing structural models of exchange rate determination does
not at present appear to be a research strategy which is likely to
improve dramatically our ability to understand how exchange
rates are determined.” (Meese & Rose, 1991)

Hsieh noted that empirical evidence suggests exchange rates are linearly

uncorrelated, but may be non-linearly dependent, and thus not IID. Instead,

exchange rate changes are nonlinear stochastic functions of their own past,

depending upon third-order moments, which is consistent with conditional

heteroscedasticity (Hsieh, 1989a). Hsieh does suggest, however, that the

observed nonlinear dependence may be because exchange rate changes are

deterministic processes that look random (Hsieh, 1989b). In other words,

perhaps the nonlinearities are chaotic rather than structural.
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3.6 Chaos Theory

Whilst hints towards it had been present in the works of Cantor, Poincaré

and other early mathematicians (Rosser, 2008), it is generally agreed that

Chaos Theory was birthed in Lorenz’s 1963 paper, Deterministic Nonperiodic

Flow (Lorenz, 1963). Seeking to adapt a simplification of Saltzman’s thermal

equations for computation, Lorenz observed that instead of converging to a

consistent periodic cycle, the model exhibited aperiodic cycles of

unpredictable length. Discussing these results, Lorenz introduced the concept

of the unstable trajectory, where the path followed by a system through its

phase space depends on the system’s current state, and was thus able to

show that such a system exhibits a Sensitive Dependence to Initial

Conditions (SDIC). A system is considered chaotic if it exhibits both SDIC

and topological transitivity, which is where trajectories eventually overlap

themselves within phase space, increasing topological density (DeVaney,

1992). Lorenz notes that, unless all governing variables are known exactly,

long term prediction of a chaotic system is impossible. A visual

representation of Lorenz’s example, the famous ‘butterfly’, is shown in

Fig. 3.3.

Researchers were not slow to apply Chaos Theory to financial time series.

In analysis of the markets, Mandelbrot was able to show that they exhibit

Fractional Brownian Motion (fBm), evidenced by the fact that Fourier

analysis revealed the fundamental frequencies to be proportionate to the

sample size (Mandelbrot & Ness, 1968; Mandelbrot, 1972). Mussa picked up

on this, stating that while there is evidence that exchange rates may be

Paretian, that same evidence could also be used to suggest that the market

was anticipating some form of future exogenous input (Mussa, 1979). There

is also evidence that the exchange rates followed moving average trends,

though at a period of one month or more, ninety percent of the exchange

rate movements were unexpected, and no theory so far proposed had been

able to sufficiently explain the foreign exchange market. Granger and
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Figure 3.3: Visualization of Lorenz’s System

Joyeaux showed how to apply fractional differencing to ARMA models, in

order to induce long-term memory (G. Granger & Joyeux, 1980). Parallel

and independent to Granger and Joyeaux, Hosking was doing the same for

ARIMA models (Hosking, 1981). However, it was not until the work of

Packard et al. and Takens that significant applications became possible.

In 1980, Packard et al. showed that time-variant data could be used

instead of multiple dimensions to measure the chaotic properties of

data (Packard, Crutchfield, Farmer, & Shaw, 1980). This allows the

‘reconstruction’ of exogenous events through analysis of only a single time

series (such as FOREX movements). Their method involved the development

of a return map, either using time-differenced or derivative values to

construct a series of vectors of the desired dimensionality N , e.g.:

Y t ={yt, yt−τ , yt−2τ , ..., yt−Nτ}, or

{y′t, y′′t , ..., y(N)}
(3.8)

which can be used to calculate the Lyapunov exponent (a measure of
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trajectory divergence) of the system, through an iterative process. However,

this is only possible if τ ≪ I/Λ, where I is the degree of accuracy and Λ is

the sum of all positive exponents. Takens added that the maximum

embedding dimension m that could be calculated is defined by m > 2DA,

where DA is the dimension of the system’s attractor. Thus, if one can

calculate the embedding dimension, the maximum number of dimensions

required to map the system can be estimated. This allows an estimation of

the Hausdorff Dimension (DH), as DH ≤ DA, and provides a measure of a

system’s chaos, even if the exogenous variables themselves are not

available (Takens, 1981).

Another metric, the Hurst Exponent (H), can also be calculated from the

Hausdorff dimension: for a self-affine system H = N + 1 − DH . A Hurst

exponent of 0.5 indicates Brownian motion, with lower values indicating

increased noise and higher values indicating increased periodicity.

Grassberger and Procaccia noted, however, that Packard et al.’s method

of computation is particularly difficult for higher-order chaos (DH > 2) and

introduce their own measure, the Correlation Integral (CI), defined as:

C(Y , γ) ≡ lim
N→∞

1

N2

N∑
i,j=1

θ(γ − ||Yi − Yj||) (3.9)

where Y is a long time series of N points with fixed time increment τ , γ is a

threshold distance and θ is the Heaviside function

H = d
dx
max{x, 0} (Grassberger & Procaccia, 1983a). They argue that,

because the Correlation Integral takes not only the attractor’s shape, but

also its regional influence into account, which the Hausdorff dimension does

not, the Correlation Integral is a more relevant measure. As a bonus, it is

significantly easier to calculate.

For small γ, C(γ) ≈ γv, where v is the correlation exponent. Generally

speaking, if v < N , the system contains deterministic chaos, whereas if

v = N , either the system is random noise, or more dimensions are required.
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If the system contains deterministic chaos, the implication is that with

enough historical data points, predictions may be inferred from past

behaviour (Grassberger & Procaccia, 1983b).

When considered for application to FOREX prediction, it is necessary to

account for the fact that exchange rate movements are extremely noisy, with

some currency pairs having a full range of only a few hundred discrete values

and thus a low signal-to-noise ratio. Wolf et al. noted that there are two

categories of noise within experimental data: statistical and

catastrophic (Wolf, Swift, Swinney, & Vastano, 1985). Statistical noise

includes problems such as jitter and quantization error. Catastrophic noise is

either from too low an embedding dimension or from too little data relative

to the complexity of the attractor. In order to minimize statistical noise, it is

necessary to ensure successive points are sufficiently greater than the noise

level apart (as noted by Packard et al.). Preprocessing the exchange rate

data can also help, though this introduces its own rounding errors and its use

therefore may be moot. These same issues occur in the processing of the

data, where computer rounding errors potentially have a long-term

impact (Eckmann, Kamphorst, & Ruelle, 1987).

Another issue is the dearth of available data to analyse. Whilst the

attractor does not have to fully evolve within the observed system, a

significant number of points are required to detect it. Hsieh noted that

physical scientists typically use 100,000 or more data points to detect low

dimensional chaotic systems, but financial economists have substantially

fewer points available—the largest datasets at the time consisted of

approximately 5,000 daily observations. In this scenario, an embedding

dimension of 10 only allowed for 500 non-overlapping histories and, due to

phase space volume increasing exponentially with dimension, it is difficult to

argue that 500 points ‘fill up’ a 10-dimensional space (Hsieh, 1991).

In 1987, Farmer and Sidorowich introduced the k-Nearest Neighbour (kNN)

algorithm to predict chaotic time series, with application to systems that lack
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‘first principles’, such as financial time series (Farmer & Siderowich, 1987).

For a given time series Y , with interval τ and t observations:

1. Find k states that minimize ||yt − yi||, i ∈ 1, ..., t− 1; that is, find the k

states closest in phase space to yt and assign to a set ψk.

2. Build a map from each identified state, yi ∈ ψk, to its successor, yi+1.

3. Calculate the interpolation of the first-order differences in the mapping,

P .

4. Predict yt+1 = yt + P .

They note that, while the kNN may be useful for predicting time series, it could

also be used to quickly test for the presence of chaos. Specifically, should the

algorithm exhibit any measure of success, that could be taken as a positive

indication of low-level chaos. Given the right data structures, this algorithm

is fast and highly parallelisable.

By 1989, two distinct groups had emerged in exchange rate prediction

studies—those that used stochastic nonlinear time series and those that used

deterministic chaotic time series (Diebold & Nason, 1989)—and thus the stage

was set for the introduction of Artificial Neural Networks (ANNs) into FOREX

prediction.

3.7 Neural Networks

Despite having been invented almost forty years prior, ANNs had largely

been ignored by FOREX researchers. This was, in part, due to Minsky and

Papert’s pessimistic appraisal of their performance versus complexity, and

the lack of available processing power (Rosenblatt, 1958; Minksy & Papert,

1969; Rumelhart, Hinton, & Williams, 1986). However, with the advent of

Chaos Theory and increasing CPU power, researchers again began to look at

them as an option, especially since early networks were non-parametric and

capable of deriving rules from data without prior analysis.
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Figure 3.4: A Simple ANN

At the heart of an ANN is the neuron, which is effectively a function that

transforms a series of input values into an output value. The transform is

called an activation function, and can include threshold, linear, quasi-linear or

squashing, gating or sigma-pi functions (Williams, 1986). A commonly used

neuron is the perceptron, which calculates the sum of weighted inputs and

activates its output if a certain threshold is met (Rosenblatt, 1958).

A basic ANN is made up of one or more neurons, arranged in some way

between an input and an output. A common approach, the Multi-Layered

Perceptron (MLP), is shown in Fig. 3.4. In their 1986 book Parallel Distributed

Processing: Explorations in the Microstructure of Cognition, Rumelhart and

McClelland et al. presented the then state-of-the-art in ANNs, focusing on

how neural networks learned to solve problems (Rumelhart & McClelland,

1986). In this book, Rumelhart, Hinton and Williams noted three training

methods already proposed: competitive learning, pre-calculated values, or the

development of a learning procedure capable of learning the internal state, such

as Bolzmann machines (Rumelhart et al., 1986). However, instead of taking

these approaches, they chose a new route: the development of a generalized

delta rule that applied only to local computations. They called their ANN a

Layered Feed-Forward network, and it used differentiable nonlinear activation
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functions. Because the activation functions were differentiable, the output of

the machine could be compared to the expected value and the error back-

propagated through the network to update the network weights. The efficacy

of the back-propagation is controlled by a parameter known as the learning

rate, and ANNs may need to be trained repeatedly on the same input/output

data in order to ‘learn’ the appropriate weightings.

Mathematically, if an ANN is defined as:

Π(a, b, c) = [Ia,Hb,Oc], {a, b, c ∈ N} (3.10)

with a inputs I, a hidden layer H with b neurons, and an output layer O

with b inputs and c outputs,then the forward-propagation algorithms could be

defined thus:

H i = Γ

(
a∑

i=1

I iwi

)
,

Oi = Γ

(
b∑

i=1

H iwi

) (3.11)

where wi represents each neurons internal weighting, and Γ the activation

function. If the network’s output error is then defined as

ϵ = O − Y (3.12)

the error correction algorithms could be defined thus:

wi = wi + αΓ′

(
c∑

i=1

ϵwOi

)
(3.13)

where α is the learning rate, Γ′ the derivative of the activation function Γ, and

wO the weights from the output layer.

Whilst immediately obvious that the activation function needs to be

differentiable, Rumelhart et al. also recommended that the activation
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function be nonlinear and used the logistic activation function

Γ(L) =
1

1 + e

−


n∑

i=1

wiLi + θi


(3.14)

for layer L, where θ is a bias akin to a threshold. They recommend the weight

w should initially be randomized and note that adjusting the learning rate

α requires some experimentation. If the learning rate is too high the system

becomes unstable, but if set too low the system will take a long time to converge

to a stable solution. In order to combat excessive oscillation, they suggested

that the back-propagation algorithm could include a weighted regression of

previous errors.

Following this significant contribution, they then pointed towards two

future topics of interest, Recurrent Neural Networks (rNN) and Sigma-Pi

units. Giles and Maxwell suggested that ANNs may benefit from the

addition of pre-programmed neurons that contain a priori information about

the problem the network is set to solve (Giles & Maxwell, 1987).

Acknowledging the potential of ANNs to solve so-called fuzzy problems,

Lippman tested six different ANNs on a set of classification tasks, with

seemingly decent results. However, despite no known applications outside of

research, early results demonstrated ANNs’ performance capability in

massively parallel environments (Lippmann, 1987).

Despite their success in other areas, such as speech and handwriting

recognition, image classification, etc., ANNs failed to find favour amongst

FOREX researchers of the 1990’s. Several authors used Chaos theory and

data-driven learning algorithms in attempts to predict FOREX movements,

however, most concluded that ANNs were inferior to Random Walk. The

authors who suggested otherwise were typically found to have invalidated

their testing through either sample tampering or snooping (White, 2000).

One reason for these failures was that optimizing ANNs required a lot of trial

and error (Kaastra & Boyd, 1996). Walczak noted there is a balance, with



27

too much data being just as detrimental to ANN performance as not

enough (Walczak, 2001). And Zhang and Hu were able to demonstrate that

ANNs’ performance improved with increasing input nodes, however they

were still unable to outperform the Random Walk model (Zhang & Hu,

1998).

Another reason for this failure may have been that there was conflicting

evidence as to whether the FOREX market was indeed chaotic. Researchers

were able to show increasing levels of chaos in simulated markets, as participant

ratios changed between fundamentalists, technical analysts and trend followers.

However, whilst there was evidence that these ratios were changing in the real

FOREX market, a survey of 90’s literature covering chaos in the FOREX

market shows no concrete evidence of chaos (Jeanne & Masson, 2000; Ausloos,

2000; Farmer & Joshi, 2002). According to Barnett and Serletis:

“A survey of ’90s papers reveals conflicting evidence of chaos,
some evidence of non-linearity, and [no evidence movements are]
IID. However, the tests used were not suitable to the task. The
alternative theory, that market movements are caused by
‘Random Shocks’ seems implausible, yet it is more readily
accepted than chaos. The problem is simply that testing for
chaos within the wider scope of the economy is beyond our
current capabilities, and testing for chaos within the financial
time series proven inconclusive.” (Barnett & Serletis, 2000)

Despite the disappointing results, researchers remained optimistic about the

future of FOREX prediction, with the emergence of several new approaches,

such as Wavelet Decomposition, Particle Swarm Optimisation (PSO) and

Support Vector Regression (SVR) being incorporated into future research,

along with the rise of hybrid predictors.

3.8 Wavelet Decomposition

Developed independently in the fields of pure mathematics, physics and

engineering, the wavelet transform (Eq. 3.15) is a tool that cuts data,
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functions or operators into different frequency components, much like the

windowed Fourier transform (Daubechies, 1992). Unlike the windowed

Fourier transform, however, wavelets have a time-width relative to their

frequency spectrum—that is, the higher the frequency, the wider the

bandwidth of the wavelet. Wavelets are thus more ‘zoomable’ than Fourier

windows and as a result are better able to analyse short-lived phenomena.

Twav
m,n (f) = a

−m/2
0

∫
dt Y ψ(a−m

0 t− nb0) (3.15)

In application to FOREX prediction, this means short-term events like

reactions, spikes and corrections may be better specified as a wavelet input

rather than the raw time series or its derivatives. This is particularly

applicable if the market contains short self-similar movements, where a group

of participants are all using the same algorithm or trading strategy.

Several researchers have used wavelet decomposition either to show the

multifractal nature of exchange rates, or as part of their predictor input

(Arnéodo, Muzy, & Sornette, 1998; Kantelhardt et al., 2002; Pal, Rao, &

Manimaran, 2014; Stošić, Stošić, Stošić, & Stanley, 2015; Shin & Han, 2000;

Bekiros & Marcellino, 2013; Bagheri, Peyhani, & Akbari, 2014). Recently,

He, Chen and Tso used a modernised version, Variational Mode

Decomposition (VMD) to outperform an ARMA model (He, Chen, & Tso,

2018).

3.9 Particle Swarm Optimization

Introduced in 1995 by Kennedy and Eberhart, PSO was born out of the

synthesis of swarm theory, genetic algorithms and evolutionary

programming, and was designed to optimize continuous nonlinear functions

with special application to neural network weights (Kennedy & Eberhart,

1995). According to them, a particle swarm should be multidimensional and

collision-free, with each particle representing a location x and velocity v.
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The swarm trends towards an attractor Λ, but allows for the introduction of

a new attractor L, and should exhibit the following properties:

1. The population should be able to carry out simple time and space, or

proximity, computations.

2. The population should be able to respond to quality factors.

3. The population response should exhibit diversity, not committing itself

to an excessively narrow outcome.

4. The population should exhibit stability and adaptability, not being too

quick to change yet not averse to it either.

A simple form of PSO is given for each particle,

vp = vq + 2ξ(pbest − x) + 2ζ(Λ− x) (3.16)

where vp is the particle’s velocity, vq its previous velocity, pbest the particle’s

best known location, Λ the swarm’s best known location, and ξ and ζ random

values between 0 and 1. For application to neural network optimisations, the

swarm has as many dimensions as it has network weights, with the number of

particles determined by external computational requirements.

Perhaps due to the significant computational requirements of a large

swarm, PSO was not applied to FOREX prediction until recently, with

examples found in the works of Sermpinis, Theofilatos, Karathanasopoulos,

Georgopoulos, and Dunis (2013), Bagheri et al. (2014), Ravi, Pradeepkumar,

and Deb (2017), Pradeepkumar and Ravi (2017) and Hajizadeh, Mahootchi,

Esfahanipour, and Kh (2019).

3.10 Support Vectors

Also in 1995, Cortes and Vapnik introduced the Support Vector Network

(SVN) (Cortes & Vapnik, 1995). In an SVN, the input vectors are mapped

into a high-dimensional space Z through a predefined non-linear mapping or
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Figure 3.5: Support Vector Example. Whilst there are many data points within
the dataset, only the boundary values between the sets are required to calculate
the separating hyperplane.

kernel. Then, within this space, a linear decision boundary x is calculated

such that there is maximum separation between classifications. That is, for a

set of labelled training patterns

(y1,x1), ..., (yℓ,xℓ), yi ∈ {−1, 1} (3.17)

there exists w and b such that

w · xi + b ≥ 1 if yi = 1

w · xi + b ≤ −1 if yi = −1
(3.18)

with the optimal hyperplane w0 + b0 = 0 being that which maximises the

distance between inputs, whilst minimizing incorrect classification or loss

function. For the calculation of this boundary, it is not necessary to use the

full dataset, but only the subset along the boundaries, or support vectors (see

Fig. 3.5). However, finding the optimal subset of support vectors and their

hyperplane is an NP-hard problem. Aimed at classification, this model was
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extended to include Support Vector Regression (SVR) the following year,

with the family of models called Support Vector Machines (SVMs) (Drucker,

Burges, Kaufman, Smola, & Vapnik, 1996).

First applied in other financial time series prediction with promising results

(e.g., Tay and Cao (2001), Kamruzzaman and Sarker (2004), Kim (2003) and

Lu, Lee, and Chiu (2009)), SVMs were found to out-perform neural networks

for FOREX prediction and are often used as part of hybrid predictors (Ince &

Trafalis, 2006; Yu, Wang, & Lai, 2009; Huang, Chuang, Wu, & Lai, 2010).

3.11 Hybrid Predictors

Aside from immediately after the 2008 global financial crisis, every year since

the turn of the millennium saw more FOREX predictors published than the

previous year. A large number of these predictors are hybrids that combine

various predictive techniques already discussed in different ways. Giles,

Lawrence, and Tsoi (2001) used grammatical inference to develop automata

for use as input to their ANN. Nag and Mitra (2002) used evolutionary

programming to evolve a population of ANNs. Chen and Leung (2004) used

Bayesian Vector Autoregression (BVAR) for input into their RNN. Yu, Lai,

and Wang (2008) wrapped two Radial Basis Function Neural Networks

(RBF-NN) around a Generalized Variance (GVAR) minimization function.

Majhi, Panda, and Sahoo (2009) chained, or cascaded, simple

single-hidden-node ANNs together, using a shared error function to update

all the ANNs simultaneously. Khashei, Bijari, and Ardali (2009) used a fuzzy

regression to de-noise the input time series into their neural network, and Ni

and Yin (2009) combined Self-Organising Maps (SOM), SVR and technical

indicators to predict FOREX movements.

Obviously, developing hybrid predictors for FOREX prediction is a

verdant area of research, with the aforementioned examples but a handful

out of hundreds. Therefore the question has to be asked, why are there so
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many different-yet-similar papers being published? The reason for this may

lie in the Efficient Market Hypothesis and Chaos Theory.

3.12 Market Efficiency and Chaotic Behaviour

According to the Efficient Market Hypothesis, all currently available

information is eventually reflected in the current exchange rates. This

information includes knowledge of prediction techniques—once a predictor is

published or otherwise widely used, it is subsumed into the competitive

market, with the intelligent participants anticipating its use and thereby

nullifying its effectiveness. At the same time, Chaos Theory suggests that the

widespread use of common prediction patterns may cause multifractal

behaviour through self-similar feedback loops. As a result, the market will

appear predictable for indeterminate periods of time, during which new

predictors and methods may be developed that appear to promise excess

returns. Again, however, these new methods themselves are subsumed into

the market, and the merry-go-round that is the hope for excess profits

continues. For those participants that find a particular method profitable for

a time, this is always done with the implicit acceptance of the possibility for

catastrophic losses in the future. Whilst not all researchers agree with this

view, the evidence of historical analysis would seem to support it.

Analysing the exchange rates of the 1920s, 1930s and 1970s, Mussa

concluded the the best predictor was the current price, “and that is not a

good predictor at all” (Mussa, 1979). In 1986, Sweeney published a popular

article, Beating the Foreign Exchange Market, making the claim it was easy

to make excessive returns through speculation and providing a vague and

incomplete algorithm for others to use (Sweeney, 1986). However, that same

year saw Frankel and Froot argue that the US dollar was on a ‘bubble path’,

with a feedback loop of ever-increasing prices being caused by short-term

speculation, such as Sweeney’s (Frankel & Froot, 1986). They noted that
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there was a startling difference between short and long-term positions taken

by market participants and predicted a significant correction in the near

future. The advent of Black Monday on 19 October, 1987 saw this prediction

correct, and long-term fundamentalists were thus vindicated in their

assessment of short-term speculation.

Since then, positions for and against both the EMH and chaotic market

theories have oscillated back and forth in the academic corpus. As has already

been noted, most early researchers struggled to beat Random Walk, including

Meese and Rogoff (1983a), Alexander and Thomas (1987) and Diebold and

Nason (1989). Engel and Hamilton offered hope in the early 90s, when they

argued that predictions were possible in the long term (three plus years) (Engel

& Hamilton, 1990), and Brock, Lakonishok, and LeBaron (1992) suggested

short-term profitability might be possible through the use of simple trading

rules—though Levich and Thomas showed that such rules tended to decline in

profitability after a while (Levich & Thomas, 1993). Bollerslev et al. (1992)

presented the Information Processing Hypothesis: that exchange rate changes

cascade through others, though Engel and Hamilton did not find multivariate

analysis helpful for prediction. Meese and Rose found that accounting for

conditional heteroscedasticity brought no notable improvement over Random

Walk, and Hsieh found the same with chaos-based auto-regressions (Meese

& Rose, 1991; Hsieh, 1991). And in the late 1990s, Allen and Karjalainen

also were unable to beat Random Walk with their genetic algorithm (Allen &

Karjalainen, 1999). It should be noted that long-term predictability is not at

odds with the EMH, as defined by Fama, though many researchers failed to

appreciate that.

In 2000, Yao and Tan published their paper, A Case Study on using

Neural Networks to Perform Technical Forecasting of FOREX, in which they

claimed the Random Walk model was outmoded and irrelevant due to a

chaotic market implying non-efficiency (Yao & Tan, 2000). At the same time,

they also claimed their out-of-sample ANN outperformed an in-sample
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ARIMA, on the basis of profits made. Despite a number of critical issues, it

has since become the most cited paper in neural networks and foreign

exchange, for a rather strange reason: a later researcher misquoted it as

beating Random Walk, and the academic community has run with that since.

Since then, several others have also claimed to have beaten Random

Walk: Leung, Che, and Daouk (2000), with a General Regression Neural

Network (GRNN); Clarida, Sarno, Taylor, and Valente (2003), with a linear

Vector Equilibrium Correction Model (VECM) targeting a modified, Risk

Neutral Random Walk; Sermpinis et al. (2013), with their adaptive RBF-PSO

network; and Shen, Chao, and Zhao (2015), who used a Deep Belief Network

(DBN). At the same time, others have also failed to beat Random Walk:

Kilian and Taylor (2003), with their ESTAR algorithm, and Mendes,

Godinho, and Dias (2012), who could only beat it sans trading costs, are

notable examples. However, positive claims should be treated with some

skepticism: Rossi noted in 2013 that most papers who claimed to beat

Random Walk actually beat random with drift (RWD), and the simple

Random Walk remained the toughest benchmark to beat (Rossi, 2013).

Despite years of intense scrutiny, there is still a notable lack of empirical

evidence for improved FOREX prediction. There is also a notable lack of

evidence that the predictors published work outside of their research scope.

However, there is evidence that managed risk may enable short term profits,

at the risk of courting disaster. In the absence of evidence otherwise, it is not

unreasonable to conclude that the FOREX market is indeed efficient.

3.13 Concluding Remarks

In the 120 years since Bachelier, thousands of papers have been published in

the area of financial time-series prediction. This chapter has covered the

transition from simple, stochastic models to the state-of-the-art in machine

learning, as applied to FOREX speculation—such as autoregression, neural
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Figure 3.6: A timeline of the development of technologies used in FOREX
prediction. 1 Deep Learning’s roots can be found in the work of Ivakhnenko
(1966), who developed the Group Method of Data Handling (GMDH) algorithm
to calculate an extremely high-order regression-type polynomial (Farlow, 1981).
However, it was not until 2006 that it was applied to FOREX prediction (by Hinton,
Osindero, and Teh (2006); and more recently with a renewed interest from 2015
onwards. However, whilst the published results look good, close examination of
the published papers for FOREX reveals them to be lacking in academic rigour—
the methods used for benchmarking are heavily biased towards the deep-learning
algorithms.

networks, support vector machines and hybrid predictors (see Fig. 3.6).

Other technologies also exist in the literature, such as genetic algorithms,

reinforcement learning, fuzzy logic and deep learning, but have not been

explored here due to their relative paucity in the FOREX literature.

Research targeted at Stock Market prediction has also been left out-of-scope,

except for key background elements, despite the obvious correlation. And

whilst not all of the research mentioned was intended for FOREX

speculation, it has all been influential in shaping the current state of

research.

Given the plethora of predictive technologies available and the continuing

impact of Chaos theory and the EMH, the question naturally arises—which

predictor is the best? To answer that, another question needs to be asked:

how are predictors compared? Is there an objective measure, and if so, is this

evidenced in the literature? What does it mean when a researcher claims they

have ‘beaten’ another method, such as Random Walk, anyway? These latter
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questions are the primary concern of this thesis, and its investigation of them

is presented in the next chapter.



Chapter 4

Measuring Foreign Exchange

Predictions: Common Metrics

A targeted search on Google Scholar reveals in excess of 24,000 papers

published in the area of financial time-series prediction. In order to obtain a

representative subset of this vast array of literature, the following selection

procedure was used:

1. The search results were first restricted to peer-reviewed articles

available in the Scopus database, for the search terms “(forex OR

‘foreign exchange’) AND (‘machine learning’ OR ‘artificial intelligence’

OR ‘time series’)”, with just over 4,000 abstracts, plus references,

acquired.

2. All abstracts were read, with false hits removed, leaving approximately

2,500 relevant papers.

3. All references were then collated and counted, in order to capture

papers not available in the Scopus database, building a second list of

cited references.

4. Papers within each list were given a score based on citations-per-year,

with a bias towards more recent papers. Papers without citations were

removed from the Scopus list. This process left 944 main articles and

566 referenced works.
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5. The 100 highest-scoring and available works from each list were then

obtained.

Due to overlap between lists, this processes yielded a total of 177 articles for

analysis, of which 59 were background theory and 118 presented new predictors

or models. This chapter focuses on the analysis of this representative subset

of the FOREX corpus (hereafter referred to as just the corpus), and looks

at how the researchers involved measured the predictive performance of their

proposed model or algorithm.

4.1 Datasets

Within the corpus, over forty different Symbols were used for analysis, across

different time periods and with varying frequencies. Fig. 4.1 shows the relative

frequency per-Symbol, and Fig. 4.2 shows the amount of overlap between time

periods used for papers whose dataset included daily GBPUSD values. It

is readily apparent from a visual inspection that there is limited correlation

between the time periods selected, and numerical analysis confirms this:

Suppose that for any given two time periods, A and B, the overlap O is

defined:

O = max
(
0,

min(Aend, Bend)−max(Astart, Bstart)

max(Aend, Bend)−min(Astart, Bstart)

)
(4.1)

Analysis of the time periods used for daily GBPUSD predictions (Fig. 4.2)

reveals only two papers with datasets overlapping by more than

80%—Pradeepkumar and Ravi (2017) and Ravi et al. (2017)—with the

obvious link being the same authors in the same year. Since there is no

correlation between the datasets used for daily GBPUSD, the single most

common data format, it is not unreasonable to suggest that extrapolation to

the wider corpus is likely to find the same situation. As a result, direct

comparison between published results, and therefore predictors, would seem

to be next to impossible without re-implementation of the proposed

algorithms. However, this might not necessarily be the case.
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If the metrics reported by researchers were largely cohesive, and presented

across a broad range of scenarios, for the same purposes, comparison might

still be possible. Along with defining the EMH, Fama also gave advice as to

how speculative performance should be measured:

“For a [predictor] to be judged successful, it must demonstrate
consistent ability to outperform the market, over a long time.
Otherwise it is no more that a statistic. ... A simple, yet effective
test to measure the effectiveness of a [predictor] is this: whenever
a position is recommended, also take the position in another
similarly risked asset. Over many iterations, it will become clear
if the [predictor] is effective” (Fama, 1965b).

In this manner, a predictor’s worth can be tested by comparison with datasets

different to that which it was developed for. This could be used for two different

purposes: first, if the predictor performs consistently across multiple datasets

then this would validate the generality of the proposed algorithm; second, if

it performs well, out-of-sample, for the given dataset, but poorly in others,

this provides a measure of confidence that the algorithm successfully identified

unique features specific to the chosen dataset. Also, if the ‘similarly risked’

asset was the same dataset but for a different time period, this would give a

measure of consistency, or an assurance of performance.

There are, then, a number of ways in which this could be tested

pragmatically:

1. Split the dataset into a number of equally sized, potentially overlapping,

smaller time-series, and test for consistency within performance metrics,

via either statistical analysis of multiple runs, or cross-validation between

the time series.

2. Construct one or more randomized sequences from the first-order

differences of the time series (known as bootstrapping), and test for

significance (Efron, 1982). This significance could be via a confidence

interval, t-statistic, or some other ranking means.



41

3. Take the approaches of (1) and (2), but instead of using the same Symbol,

test with a similarly distributed Symbol; i.e., if predicting USDCAD,

compare with USDCHF (or some other Symbol with similar stochastic

properties).

In fact, all these methods have been used within the corpus, although to

varying effect. Only a few researchers utilised (1) with any level of statistical

significance: Yao and Tan (2000) used 12 offset, overlapping time periods

within the same Symbols; Giles et al. (2001) used 30; and Kampouridis and

Otero (2017) used 255. A handful of researchers utilised (2), mostly to show

via confidence interval that extracted features existed solely in the primary

dataset. And while most researchers ran their predictors on more than one

Symbol, it was not uncommon to find different periods used for each Symbol,

and no study used the other Symbols as a control, like (3) suggests. Bar the

previously noted papers, none of the research within the corpus presented

more than a snapshot performance of their predictor. There is therefore no

evidence provided that the performance of each predictor was anything other

than luck, or as Fama called it, ‘a statistic’. Given that nearly all researchers

claimed that their predictor performed better than their chosen benchmarks,

the question needs to be asked: are the reported results bona fide, or are they

the result of a cherry-picked dataset?

4.2 Metrics

Assuming, however, that the datasets are not selected for favourable

performance, and that the sample results provided really are indicative of

predictor performance, perhaps it is still possible to compare predictors by

the metrics given? Unfortunately, systematic analysis of the corpus indicates

that such an approach is also impossible, for two reasons.

First, in the 118 papers surveyed, over forty different metrics were used

(see Table 4.1). Examination of the equations provided revealed some
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Metric Shorthand Percentage Year
Mean Absolute Error MAE 19.5% 1983
Root Mean Squared Error RMSE 19.5% 1983
Directional Correctness DC 16.1% 1995
Mean Squared Error MSE 15.3% 1989
Mean Absolute Percentage Error MAPE 14.4% 1996
Absolute Profits P 8.5% 1997
Diebold-Mariano Test DM 7.6% 1995
Theil’s U TU 7.6% 1996
Normalised Mean Squared Error NMSE 6.8% 1996
Sharpe Ratio ShR 6.8% 1996
Brock-Dechert-Scheinkman Test BDS 5.8% 1987
Annualised Return AR 5.1% 1996
Less than 5%: Box-Pierce Q, Correlation Coefficient, χ2, Compounded Return,
Drawdown, Directional Symmetry, Friedman’s Test, F-measure, Generalised
Least Squares, Granger-Newbold, Hit Rate, Heteroscedastic Mean Absolute
Error, Heteroscedastic Root Mean Squared Error, Ljung-Box Test, Mean
Error, Mean Squared Error Ratio, Maximum Absolute Error, Ordinary Least
Squares, Profit Factor, Pesaran-Timmermann Test, R2, Risk Measure, Return
on Investment, Signal-to-noise Ratio, Sortino Ratio, Stirling Ratio, Tukey-HSD
and Variance.

Table 4.1: Relative frequency of the metrics used by the corpus by which predictor
accuracy was measured. Year is when the metric was first encountered within the
sample corpus, not when invented. Due to the sheer number of metrics, Shorthand
does not necessarily match what is used in the relevant papers, with priority for
conflicting shorthands given to the more popular metrics and alternatives provided
for the others.

researchers using the same methods by different names. This became

problematic when a researcher published results using a metric for which

there are multiple variants, but did not state which variant they used. Whilst

it may be possible to convert between some metrics for the purposes of

comparison, in general this is not the case, and comparison between papers

by metric becomes intuitive rather than observed.

Second, the vast majority of the metrics used were unsuitable for FOREX

prediction, being mostly borrowed from other disciplines and then applied

inappropriately. It is important to note at this point the difference between

time series and FOREX prediction, particularly for speculation, that until now

has not been explicated:

Time series prediction is the prediction of the value of a time series at a
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Figure 4.3: Examples of optional truncation and their effect on profitability.
In (a), if a buy Position were opened at t = 6 and closed at t = 14, it would realise
a loss. However, with a take_profit set, indicated by the green dashed line, the
Position would have already closed at t = 7, for a profit. As a result, the time period is
truncated (as indicated by the grayed out background) and the remainder of the time
period is of no interest for that Position.
In (b), the effect of a stop_loss is shown. Whilst a buy Position that opened at
t = 19 and closed at t = 26 would realise a loss, the use of a stop_loss, indicated by
the red dotted line, ensures a smaller loss is made when the stop_loss is triggered at
t = 19. Like the take_profit in (a), this truncates interest in the remainder of the
time period.

specific future point in time. This can include FOREX time series—however for

the purposes of speculation, this definition is insufficient. The reason for this

deficiency is perhaps not obvious at first, but basically, speculation introduces

the concept of optional truncation through the application of take_profit

and stop_loss values (see Fig. 4.3). These truncation values allow for a

range of values to be considered correct, and none of the synthetic metrics

used within the corpus make allowance for this. Whilst it could be argued

that profit-based metrics do take these into account, they come with their own

set of problems, as will be shown later. In order to better understand what

this means, it is necessary to consider what exactly is being measured?

4.2.1 What is Being Measured?

At the smallest time unit available in FOREX, the tick, FOREX time series

consist of two values: the bid and ask prices (Fig. 4.4a). However, ticks follow

exchange rate movements, and thus have no consistent timing. It is therefore



44

common for FOREX movements to be represented as an aggregate time series,

commonly referred to as a candlestick (Fig. 4.4b). In this format, the FOREX

time series now consists of a number of values: open, high, low, close and

volume, per-Symbol.

0 10 20 30
1.6885

1.6890

1.6895

1.6900

1.6905

t→

ex
ch

an
ge

ra
te

Bid
Ask

(a) Per-tick FOREX prices.
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t→
(b) Candlestick of FOREX prices.

Figure 4.4: Graphical representations of FOREX prices. (a) shows the per-tick
data, which happens at irregular intervals, while (b) shows how the tick data is
aggregated into regularly-spaced candlesticks, for the same data. The thick portion
of the candlestick represents the movement between open to close, and the thin
high and low. If the price increases from open to close, the candlestick is
green, otherwise it is red. Each successive candlestick starts roughly where the
previous candlestick closed.

open is the exchange rate for the symbol at the start of the candlestick,

high and low are the highest and lowest exchange rates within the

candlestick, and close is the exchange rate at the end. These are typically

the ask prices, and the spread is no longer represented. However a new

value, volume, is also available, which is the relative volume of the symbol

traded within the candlestick’s time period. This time period can be any

consistent time period, measured in minutes. Within the corpus, the mode

was daily observations, or 1440 minute time periods—though the daily start

times reported varied from paper to paper.

Logically then, it could be argued that for the purposes of speculation, any

prediction that is realised between the low and high values of the predicted

period is therefore correct—especially if the prediction is used to inform a

take_profit and thus truncate interest in the remainder of the period. In
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the same vein, the prediction of an appropriate stop_loss value could be

construed as a forecast of the risk required to achieve a profit. However,

within the corpus, this distinction is never made. In fact, only three papers

referenced candlestick properties, and none made use of them, either as input

or for assessment.

Whilst several papers were devoted to long-term modeling, where these

values are considered ‘noise’, the vast majority of papers were targeting

speculation—especially indicated by those papers that reported predictive

performance via profitability. It is therefore surprising to find such a large

feature of FOREX speculation missing from the corpus, and it is through

this lens that this chapter proceeds to analyse the various metrics used by

the corpus.

The metrics used within the corpus fall roughly into four categories:

statistical, directional, comparative and profit-based.

4.2.2 Metric Family: Statistical

The statistical family of metrics is the largest and most represented in the

corpus, and is listed in Table 4.2. These metrics are typically based on some

form of error calculation, i.e., ϵ = E(y, ŷ), with the smaller the reported

value, the more accurate the predictor considered—for example, Mean

Absolute Error (MAE) and Root Mean Squared Error (RMSE). Due to a

number of known issues with these metrics, particularly related to the effect

of outliers, it is typical within the corpus to report an assortment of

statistical metrics. Nevertheless, for the purpose of FOREX speculation,

these metrics have all been applied incorrectly.

The major problem with these metrics is their dependence on a single

‘correct’ value for comparison. But what should that ‘correct’ value be? As

has been noted earlier, none of the papers paid any attention to the nature

of FOREX speculation, or specifically considered what was being predicted.

Nowhere is this more evident than in the statistical metrics used, where the
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Table 4.2: Statistical metrics used within the surveyed corpus.
Metric Equation References
Given

ϵt = yt − ŷt, ȳ =
1

N

N∑
i=1

yi, P(yi) is probability of yi in Y

then

ME 1

N

N∑
i=1

ϵi Meese and Rogoff, 1983a.

MAE 1

N

N∑
i=1

|ϵi|

Meese and Rogoff, 1983a; Zhang and Hu, 1998;
Andersen, Bollerslev, and Lange, 1999; Leung, Che, and
Daouk, 2000; Tay and Cao, 2001; Kamruzzaman and
Sarker, 2004; Clarida, Sarno, Taylor, and Valente, 2003;
Ince and Trafalis, 2006; Panda and Narasimhan, 2007;
Khashei, Hejazi, and Bijari, 2008; Sarno and Valente,
2009; Huang, Chuang, Wu, and Lai, 2010; Lin, Chiu,
and Lin, 2012; Sermpinis, Dunis, Laws, and Stasinakis,
2012; C. Evans, Pappas, and Xhafa, 2013; Sermpinis,
Theofilatos, Karathanasopoulos, Georgopoulos, and
Dunis, 2013; Rossi, 2013; Shen, Chao, and Zhao, 2015;
Peng, Albuquirqui, de Sá, Padula, and Montenegro,
2018; Bui, Vu, and Dinh, 2018; Das, Bisoi, and Dash,
2018; Dash, 2018; Hajizadeh, Mahootchi, Esfahanipour,
and Kh, 2019.

MSE 1

N

N∑
i=1

ϵ2i

Engel and Hamilton, 1990; Kuan and Liu, 1995;
Gençay, 1999; Nag and Mitra, 2002; Ince and Trafalis,
2006; Khashei, Bijari, and Ardali, 2009; Leu, Lee, and
Jou, 2009; Huang, Chuang, Wu, and Lai, 2010; Rossi,
2013; Sermpinis, Stasinakis, Theofilatos, and
Karathanasopoulos, 2015; Pradeepkumar and Ravi,
2017; Ravi, Pradeepkumar, and Deb, 2017; Bui, Vu,
and Dinh, 2018; Dash, 2018; He, Chen, and Tso, 2018;
Hann and Steurer, 1996.

RMSE
√

MSE

Meese and Rogoff, 1983a; Hsieh, 1989b, 1991; Zhang
and Hu, 1998; Andersen, Bollerslev, and Lange, 1999;
Sarantis, 1999; Leung, Che, and Daouk, 2000; Clarida,
Sarno, Taylor, and Valente, 2003; Manzan and
Westerhoff, 2007; Panda and Narasimhan, 2007; Sarno
and Valente, 2009; Huang, Chuang, Wu, and Lai, 2010;
Sermpinis, Dunis, Laws, and Stasinakis, 2012; Lin,
Chiu, and Lin, 2012; Sermpinis, Theofilatos,
Karathanasopoulos, Georgopoulos, and Dunis, 2013;
Rossi, 2013; Rout, Majhi, Majhi, and Panda, 2014;
Sermpinis, Stasinakis, Theofilatos, and
Karathanasopoulos, 2015; Shen, Chao, and Zhao, 2015;
Peng, Albuquirqui, de Sá, Padula, and Montenegro,
2018; Das, Bisoi, and Dash, 2018; Dash, 2018;
Hajizadeh, Mahootchi, Esfahanipour, and Kh, 2019.
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Metric Equation References

MSPE 100

N

N∑
i=1

(
ϵi
yi
)2

Diebold and Nason, 1989; Gençay, 1999;
Arifovic and Gençay, 2001.

RMSPE
√

MSPE Kodogiannis and Lolis, 2002

MAPE 100

N

N∑
i=1

|ϵt|
yt

Diebold and Nason, 1989; Levich and
Thomas, 1993; Kaastra and Boyd, 1996;
Zhang and Hu, 1998; Kodogiannis and
Lolis, 2002; Nag and Mitra, 2002; Panda
and Narasimhan, 2007; Majhi, Panda, and
Sahoo, 2009; Sermpinis, Dunis, Laws, and
Stasinakis, 2012; Lin, Chiu, and Lin, 2012;
Sermpinis, Theofilatos, Karathanasopoulos,
Georgopoulos, and Dunis, 2013; Rout,
Majhi, Majhi, and Panda, 2014; Shen,
Chao, and Zhao, 2015; Galeshchuk and
Mukherjee, 2017; Das, Bisoi, and Dash,
2018; Dash, 2018; Hajizadeh, Mahootchi,
Esfahanipour, and Kh, 2019.

NMSE

N∑
i=1

ϵ2t

N∑
i=1

(yt − yt)2

Tenti, 1996; Lisi and Schiavo, 1999; Yao
and Tan, 2000; Tay and Cao, 2001;
Kamruzzaman and Sarker, 2004; Yu, Wang,
and Lai, 2005; Yu, Lai, and Wang, 2008;
Ghazali, Hussain, and Liatsis, 2011.

R2 1− NMSE
Andersen and Bollerslev, 1998; Andersen,
Bollerslev, and Lange, 1999; Nag and Mitra,
2002; M. Evans and Lyons, 2002; Chen and
Leung, 2004.

χ2

N∑
i=1

y2i
NP(yi)

−N Nelson, 1991; Meese and Rose, 1991

SNR 10 log10

Nmax(Y )2

N∑
i=1

ϵ2i

Ghazali, Hussain, and Liatsis, 2011.

Other statistical metrics used include OLS Engle, 1982; Meese and Rogoff,
1983a; Bollerslev, 1986; Meese and Rose, 1991, GLS Meese and Rogoff, 1983b
log-loss, heteroscedastic MAE & RMSE, Andersen, Bollerslev, and Lange, 1999,
MaxAE Nag and Mitra, 2002 and Variance Shen, Chao, and Zhao, 2015.

close value has been used exclusively for comparative purposes. However,

the close value is merely the last observed value of the time period, with

low ≤ close ≤ high, and has no correlation to the potential profitability,

at least in the context of most of the published research (see Fig. 4.5). In

these longer time periods, the use of take_profit and stop_loss values

allow speculators to realise performance not allowed by exclusive use of close
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values by predictors. It is worth noting that, as the interval of interest shortens,

the significance, and therefore correlation to profitability, of the close value

increases—however, nearly all researchers use ultra-low frequency intervals.

As such, the use of the close value, within the FOREX corpus related to

speculation, is without merit.
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Figure 4.5: Irrelevance of close values. In (a), close is less than open, but
maximum profitability is at t = 8, in the opposite direction. In (b), whilst the
direction of close is now correct, it is considerably lower in value than the
maximum profitability achieved at t = 22.

4.2.3 Metric Family: Directional

In a similar fashion, this same charge could be leveled against the next family,

directional metrics. Whilst there are a number of names given to the various

directional metrics, analysis of the equations provided revealed there was, in

fact, only a single metric, correct direction. Correct direction is defined:

CD(ŷt) =1, if (ŷt − yt−1)(yt − yt−1) ≥ 0

0, otherwise
(4.2)

and has been referred to by several names, as in Table 4.3. It has also been

broken into parts, as in Table 4.4, with these parts also sometimes rearranged

to form a new metric, as in Table 4.5.

Much like the statistical metrics, however, these metrics all rely on a single
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Table 4.3: Names used for Directional Correctness with the corpus.

Name References
Directional Symmetry Tay and Cao (2001), Kamruzzaman and Sarker

(2004), Leu, Lee, and Jou (2009).
Directional Accuracy Panda and Narasimhan (2007), Shen, Chao, and Zhao

(2015), Nassirtoussi, Aghabozorgi, Wah, and Ngo
(2015), Galeshchuk and Mukherjee (2017).

Dstat Yu, Wang, and Lai (2005), Yu, Lai, and Wang (2008),
Yu, Wang, and Lai (2009), Pradeepkumar and Ravi
(2017), Ravi, Pradeepkumar, and Deb (2017).

Hit Rate Kim (2003), Bagheri, Peyhani, and Akbari (2014),
Das, Bisoi, and Dash (2018).

Sign Kuan and Liu (1995), Diebold and Mariano (1995),
Hann and Steurer (1996), Gençay (1999), Arifovic and
Gençay (2001), Panda and Narasimhan (2007).

Table 4.4: Parts used from Directional Correctness within the corpus.

Name References
Direction Change Correct Giles, Lawrence, and Tsoi (2001), Walczak (2001),

Ghazali, Hussain, and Liatsis (2011).
per-Direction Kamruzzaman and Sarker (2004), Lin, Chiu, and

Lin (2012).

Table 4.5: Combined Directional Statistics

Metric Equation References

Pesaran-
Timmermann
Test

PT =
P(CC)− P(CD)

σ2(CC)− σ2(CD)
Pesaran and Timmermann
(1992), Sermpinis,
Theofilatos,
Karathanasopoulos,
Georgopoulos, and Dunis
(2013), Sermpinis,
Stasinakis, Theofilatos, and
Karathanasopoulos (2015).

F-measure FM =
2TP

2TP + FP + FN Patel, Shah, Thakkar, and
Kotecha (2015), Das, Bisoi,
and Dash (2018).

TP, TN, FP and FN are the True Positive, True Negative, False Positive and
False Negative percentages, respectively. P(CC) is the percentage of correct
changes predicted and P(CD) is the percentage of correct direction predicted.



50

value and so all were used with close. Therefore, just as the statistical results

reported have little bearing on overall profitability, the same can be said for

directional statistics.

Another issue with directional metrics is that FOREX movements within

any given time period are likely to be bi-directional (that is, they can obtain

values both above and below open before attaining their close value).

Analysis of seven years of per-day data across fifty currency pairs (see

Section 5.1) shows that almost 98% of daily FOREX rates are bi-directional.

Combined with the use of take_profit values, this means that it is

generally possible to make profitable predictions in both directions, and thus

limiting prediction results to a single direction is incorrect.

Alongside this is the issue of the inequality operator in Eq. 4.2. Whilst

some researchers report greater-than, the equation given here is the more

commonly listed, and slightly dishonest, greater-than-or-equal. The difference

is subtle—greater-than-or-equal includes all periods of non-movement as

correct, regardless of the researcher’s prediction. This has the effect of

inflating the result slightly (e.g., it would report an extra two percent

accuracy for the dataset provided by Hokohoko, multiplied to four percent

when referenced by parts). And this hints to the third issue: researchers

reporting favourable statistics.

Reporting by direction gives researchers some nice, large numbers to

report. Generally speaking, long-term directional predictions are not

particularly difficult—currency pairs are usually either trending or oscillating

slowly. In these scenarios, even predicting just a single direction at all times

will produce a favourable result—especially if no-change is included as

correct—as long as the prediction matches the trend. Given most researchers

are reporting results for fairly large time scales and long intervals, directional

statistics relate to their ability to predict the direction of heavily filtered,

ultralow-frequency data—something that the simple linear-regression

indicator already does fairly well. It should be noted that easy-to-predict is a
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relative term, and does not necessarily mean easily profitable, as it usually

implies increased costs as per the EMH.

Overall, due to directional statistics having no correlation with profitability,

and their often conflated values, they are a poor measure of a predictor’s

performance, if the goal is profitable speculation.

4.2.4 Metric Family: Comparative

Another way that researchers measure the effectiveness of their predictors is

by way of comparison with either another predictor, or the time series itself.

Because of their major application to other predictor’s time series, this thesis

calls them the comparative family, and defines them as separate from the

statistical metrics, though they are closely related. Within the corpus, this

family of metrics is made up of Pearson’s Correlation Coefficient, Friedman’s

Test, Theil’s U, the Ljung-Box-Pierce Q, Granger-Newbold’s test for

causality, Brock-Dechert-Scheinkman’s test for deterministic chaos, and the

Diebold-Mariano test.

4.2.4.1 Pearson’s Correlation Coefficient

Developed by Pearson in the late 1800’s, the Pearson Correlation Coefficient

is a measure of the linear correlation between two time series, A and B. It is

defined as

ρ(A,B) =

N∑
i=1

((Ai − Ā)(Bi − B̄))√√√√ N∑
i=1

(Ai − Ā)2
N∑
i=1

(Bi − B̄)2

(4.3)

and has a range of [−1, 1], with 0 indicating no linear correlation, and 1, −1

positive and negative correlation, respectively. It was used in the corpus by

Panda and Narasimhan (2007), C. Evans, Pappas, and Xhafa (2013) and

Shen et al. (2015) to measure the correlation between different predictors’

outputs against future data, with the predictor having the highest score
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declared the best. Reported results ranged from 0.66 to 0.88, indicating a

measure of correlation, with the control Random Walk ranging from 0.27 to

0.65.

4.2.4.2 Friedman’s Test

Introduced in 1937, Friedman’s test is intended for use to determine which

out of multiple factors has the most effect on a dependent variable. It can

be applied to the comparison of predictors by giving each predictor a rank,

per-time period t, and calculated:

FR =
12

NK(K + 1)

K∑
j=1

(
N∑
i=1

Rij

)2

− 3N(K + 1) (4.4)

where K is the number of ranks (or predictors), N the length of the time

series, and R a vector of all ranks by predictor and time (Friedman, 1937).

Friedman’s test was used by Das, Bisoi, and Dash (2018), both on its own and

as input into Tukey’s Honestly Significant Difference (HSD) test, for statistical

differencing between means. Their application ranked |ϵij|, and that subjects

this technique to the same critique as the other metrics: it is dependent on a

single ‘best’ value, with close used.

4.2.4.3 Theil’s U Metric

Dating from 1958 and 1966 respectively, there are two versions of Theil’s U

metric. The first, U1, is a measure of predictive accuracy:

U1 =

√√√√ N∑
i=1

(Ai −Bi)
2

√√√√ N∑
i=1

A2
i

(4.5)
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Table 4.6: Papers using Theil’s U-Metric

Version Papers
U1 Leung, Che, and Daouk (2000), Dash (2018).
U2 Sermpinis, Dunis, Laws, and Stasinakis (2012), Sermpinis, Laws,

Karathanasopoulos, and Dunis (2012), Sermpinis, Theofilatos,
Karathanasopoulos, Georgopoulos, and Dunis (2013),
Pradeepkumar and Ravi (2017), Ravi, Pradeepkumar, and Deb
(2017).

unknown Hann and Steurer (1996).

and the second, U2, is a measure of the quality of predictions:

U2 =

√√√√ 1

N

N∑
i=1

(Ai −Bi)
2

√√√√ 1

N

N∑
i=1

A2
i +

√√√√ 1

N

N∑
i=1

B2
i

(4.6)

with A and B representing the time series being compared (Theil, Cramer,

Moerman, & Russchen, 1958; Theil, 1966). For both these metrics, the closer

the value is to 0, the closer the two time series match. U2 is a correction of

U1, which gives an upper bound of 1, whereas U1 is unbounded positively

(though such an error would be catastrophic and is highly unlikely). These

metrics were typically applied against the researchers’ definition of Random

Walk, with examples from the corpus given in Table 4.6.

4.2.4.4 Box-Pierce and Ljung-Box

In 1970, Box and Pierce noted a need for fitness tests in the newly developed

ARMA and ARIMA models (Box & Pierce, 1970). To address this issue they

posited that, if a model were an accurate estimate of a time series, the

residuals (or errors) would consist of purely white noise. However, if the fit

was lacking, there may be further complexities present, signalled by the

presence of autocorrelations within the residuals. They therefore developed a
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test for the presence of autocorrelations within residuals, defined:

QBP = N

h∑
k=1


N∑
i=1

ϵiϵi−k

N∑
i=1

ϵ2i


2

(4.7)

where h is the number of lags being tested. Theoretically, the smaller QBP , the

better the fit of the model, though they recommend caution in interpretation.

Indeed, over the next few years, it was found through application that the test

sometimes yielded suspiciously low values. To remedy this, Ljung and Box

published a modification in 1978, with a changed variance estimate, yielding:

QLBP = N(N + 2)
h∑

k=1


N∑
i=1

ϵiϵi−k

N∑
i=1

ϵ2i


2

N − k
(4.8)

which is sometimes referred to as the Ljung-Box-Jenkins test (Ljung & Box,

1978). Bollerslev et al. (1992) used it to show a simple GARCH(1, 1) model

outperformed a more complex ARCH(12) model; Levich and Thomas (1993)

applied the tests directly to FOREX data, as a test for autocorrelation; and

Bera and Higgins (1993) used it to determine the AR component for their

ARCH and GARCH models. Diebold (1986, 1988) found that, in the presence

of conditional heteroscedasticity, these metrics are largely invalidated, and

recommended using ARCH-corrected standard errors, though only Bera and

Higgins (1993) make note of doing so.

Silvapulle and Evans (1998) tested several variants and, finding Diebold’s

error-prone in the presence of unexplained disturbances, recommended the use

of modifications suggested by Wooldridge (1991): changing the underlying

error function to utilise a conditional mean. Like all of the error-based metrics

so far, the Ljung-Box-Pierce Q assumes a single correct value per prediction.
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4.2.4.5 Granger-Newbold

Based on early definitions of causality by Granger in 1969, the

Granger-Newbold test is designed to test for causality between two related

variables with respect to a third (C. Granger, 1969; G. Granger & Joyeux,

1980). Given two error-series e1 and e2 related to the same predicted series,

if
xt =e1t + e2t

zt =e1t − e2t
(4.9)

then regressing

xt = βzt + ϵ (4.10)

where β is a coefficient and ϵt bias, provides a metric by which to compare

the two time series errors (Mariano, 2000). Assuming that the error loss is

quadratic, the forecast errors have zero mean and follow a Gaussian

distribution, and are serially uncorrelated: if β is 0 then the predictions are

close to one another. If β is significantly different from 0, then they are

different. This needs to be tempered by analysis of ϵ, however. If ϵ is

non-zero, then either x or z is biased, and the test assumptions are

invalidated (Hann & Steurer, 1996).

Several variants of this test for causality have been published by Granger

and others, in an effort to address its limited application to single-step-ahead

predictions and reliance on quadratic error-loss functions. Granger noted that

it can be argued that variance is not the proper criterion to use as a measure

of closeness of a predictor to the true value—but it is easy to use (C. Granger,

1969). It is often hard to detect causality, as data that appears instantly

caused may in fact be undersampled, and purely deterministic series cannot

be said to have any causal influences other than themselves. Therefore, this

method is not really suited for chaotic time series.

Within the corpus, Meese and Rogoff (1983a) used it as a metric to compare

different exchange rate models of the 1970s; Hann and Steurer (1996) used
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it to test for significant difference between the predictions of two models at

specific time periods; and Lisi and Schiavo (1999) used it to test the statistical

significance of their predictions.

Another, less-used variant is of the form

MGN(x, z) =
ρ̂(x, z)√

1− (ρ̂(x, z))2

N − 1

ρ̂(x, z) =
xTz√

(xTx)(zTz)

(4.11)

Like all the statistical metrics, this method relies on an error function

dependent on a single ‘correct’ result, and within the corpus its use is restricted

to close values.

4.2.4.6 Brock-Dechert-Scheinkman Test

In 1987 Brock, Dechert and Scheinkman proposed a non-linear test analogous

to the linear Ljung-Box-Pierce Q test, stating that linear time series

methods, such as spectral analysis and autocovariance functions, may not be

able to observationally distinguish between deterministic and random

systems (Brock, Dechert, & Scheinkman, 1987). They suggested that, if the

correlation dimension of a time series is low, and the estimated largest

Lyapunov exponent is positive, the residuals from a misspecified model for a

chaotic time series will have the same correlation dimension and Lyapunov

exponent as the time series itself. Therefore, a test for chaos, applied to the

residuals, should be useful to verify the accuracy of the model. They

proposed that, analogous to LBP-Q, if a model fits the data then the

resulting residuals will be white noise only, and presented a test for nonlinear

residuals based on the earlier work of Wolf et al., Grassberger et al. and

Takens:

BDS(Υm, γ) =

√
N(C(Υm, γ)− P(C(Υ1, γ))

m)

σ(
√
N(C(Υm, γ)− P(C(Υ1, γ))m))

(4.12)
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Υm is the m-embedded time series drawn from Y , N the length of Υm, γ a

specified error, C the correlation integral (see Eq. 3.9), σ the standard deviation

function and P(C(Υ1, γ)) the probability of the 1-dimensional error.

They also noted, however, that if the noise in the time series is large enough

relative to the variation of Y t across the attractor Λ, then the structure will

be obscured, and the Lyapunov exponents potentially undefined. Therefore,

they proposed a smoothing process first be applied to reduce noise, which

theoretically should not have any effect on the detection of low-dimensional

chaos. This test can then be applied as a goodness-of-fit test to any model built

on IID errors (Brock et al., 1987; Brock, Scheinkman, Dechert, & LeBaron,

n.d.).

Since publication, the BDS test has become the most popular test for

low-dimensional chaos, with Hsieh (1989b) using it to attempt to distinguish

between different types of nonlinearity; Scheinkman and LeBaron (1989)

using it to compare nonlinear models with ARCH models; Bollerslev et al.

(1992) using it to compare ARCH and GARCH models; and Hann and

Steurer (1996) using it to compare nonlinear and linear models. In

particular, Hann and Steurer (1996) supposed that, if the residuals are

nonlinear, then the use of a neural network for prediction may be beneficial.

However, they found no evidence of nonlinearity, and thus concluded that

the use of nonlinear methods will provide no extra performance. Barnett and

Serletis (2000) also noted that the BDS test is actually a measure of

whiteness, and all other interpretations are therefore indirect and insufficient

in-and-of-themselves to draw any conclusions regarding chaos, linearity and

nonlinearity.

Despite its relative popularity, the BDS test has been shown to be weak

against smaller sample sizes, especially those found in financial time series,

with the LaGrange multiplier providing more consistent performance (Brock

et al., 1992; Lee, White, & Granger, 1993). However, whilst often used to

optimise models, the LaGrange Multiplier has not been used as a performance
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metric within the corpus, whereas the BDS has.

4.2.4.7 Diebold-Mariano Test

In 1995, Diebold and Mariano noted that there was generally a rather casual

attitude towards the application of metrics within the economic

corpus (Diebold & Mariano, 1995). They noted that point estimates are

usually sampled, without any attempt to assess their uncertainty, and that

the economic loss associated with a forecast may be poorly related to the

usual statistical metrics. They therefore proposed a test for the null

hypothesis that there is no difference between two competing forecast time

series.

Given an error function E(y, ŷ), the DM statistic between two series ŵ, x̂,

with respect to y is defined:

dt =E(yt, ŵt)− E(yt, x̂t)

d̄ =
1

N

N∑
i=1

dt

ω̂d̄ =γ0 + 2
N∑
i=1

γi, γi = cov(di, dN−i)

DM =
d̄√
ω̂d̄

N

(4.13)

A strongly negative score indicates the first predictor superior to the second, a

strongly positive score vice-versa, and a close to zero score identical. This test

has significant advantages over the other proposed metrics, as it is applicable

to a wide range of loss functions, with the loss functions not needing to be

quadratic, symmetric or even continuous. The error distributions can be non-

zero-mean, non-Gaussian and contemporaneously or serially correlated.

Within the corpus, the DM test is used in two different ways: as a

comparison between two competing time series predictions; or to generate a

statistical measure within a bootstrap environment. Examples of the former
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Table 4.7: Works using Diebold-Mariano for bootstrap analysis of predictor
performance.

Gençay (1999)
Clarida, Sarno, Taylor, and Valente (2003)
Kilian and Taylor (2003)
Manzan and Westerhoff (2007)
Sarno and Valente (2009)
Sermpinis, Dunis, Laws, and Stasinakis (2012)
Sermpinis, Laws, Karathanasopoulos, and Dunis (2012)
Bekiros and Marcellino (2013)
Rossi (2013)
Sermpinis, Theofilatos, Karathanasopoulos, Georgopoulos, and Dunis (2013)
Sermpinis, Stasinakis, Theofilatos, and Karathanasopoulos (2015)
Pradeepkumar and Ravi (2017)
Ravi, Pradeepkumar, and Deb (2017)
Peng, Albuquirqui, de Sá, Padula, and Montenegro (2018)

can be found in the work of Jongen, Verschoor, Wolff, and Zwinkels (2012),

Das et al. (2018) and Hajizadeh et al. (2019), who all used Absolute Error as

their error function. The latter can be seen in the papers listed in Table 4.7.

However, the choice of error function was largely the same across these

papers, with most using MAE, MSE, or RMSE—only Pradeepkumar and Ravi

(2017) extended the selection to include Directional Correctness and Theil’s

U2. So whilst the use of the DM test may provide a measure of statistical

significance, the trend within the literature of relying on error functions that

depend solely on close continued, and the overall results are thus fairly useless

as a measure of speculative performance. As Rossi (2013) noted, “the choice

of metric matters, and a lot!”.

4.2.5 Metric Family: Profit-based

There is, however, a family of metrics that do not depend on an error

function. Reporting results by profitability comes rather late in the corpus,

as most researchers prior to 1990 were mathematicians and economists,

nearly all of whom rejected profits as a measure a priori. Computer

scientists, however, have shown no such reticence; and as the balance of
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researchers in FOREX prediction has shifted away from mathematicians and

economists towards computer scientists, the propensity for profit-based

reporting that proliferates ‘popular’ literature has filtered into the academic

corpus. Much like the other metric families, a number of different

profit-based metrics have been used over the years. Within the selected

corpus, researchers have used raw profits, the Sharpe ratio, compounded

returns, the Stirling ratio, risk measure, annualised return, drawdown, profit

factor, and the Sortino ratio to measure the effectiveness of their

predictor/algorithm.

4.2.5.1 Profits

Whilst the first metric referenced in the corpus, raw profits were not generally

reported as a metric until the turn of the millennium. The main reason for

this was the implicit understanding that profits were dependent on more than

just the predictor. A well-known effect of the EMH in the markets is that, in

a rising market, everyone does well (Sharpe, 1966). Therefore external causes

unrelated to the predictor may help its performance, depending on the Symbol

and time period used. Profits gained may also be a measure of the trading

strategy applied—how much risk is used, leverage required, margin maintained,

costs managed, etc. The former issue could be countered by using multiple

time-periods for testing, as suggested by Fama, however the latter cannot.

The best that can be done in this situation is the publication of all account

settings used, which allows transparency but not comparability. Nevertheless,

with the advent of easy-to-use, freely available trading software with back-

testing algorithms (such as the MetaTrader and cTrader platforms), it has

become significantly easier for researchers to report the raw profits directly

from their trading software.

Profits are sometimes also reported as Return On Investment (ROI). This



61

is the percentage increase in equity, defined:

ROI = equityfinal
equityinitial

(4.14)

Examples of reporting raw profits can be found in Yao and Tan (2000),

Walczak (2001), Dempster and Jones (2001), Dempster, Payne, Romahi, and

Thompson (2001), Park and Irwin (2007), Hirabayashi, Aranha, and Iba (2009)

and Ozturk, Toroslu, and Fidan (2016). Examples of ROI can be found in

Dymova, Sevastjanov, and Kaczmarek (2016) and de Almeida, Neves, and

Horta (2018).

4.2.5.2 Sharpe Ratio

In 1966, following the work of Fama and Markowitz, Sharpe was interested

in the problem of predicting mutual fund performance. In order to do this, a

way of measuring their performance and relating profits to risk was required.

Sharpe therefore expanded upon the T-metric proposed earlier by Treynor

(1965), and developed what is now known as the Sharpe ratio, defined:

RSharpe =
A−B√
(A−B)2

(4.15)

where A is the actual return, and B the risk-free return—such as investing in

fixed-term bonds, etc. (Sharpe, 1966, 1994). Whilst the original examples were

based on the yearly returns made by mutual funds, Sharpe’s formula has been

used by researchers in other econometric fields, such as FOREX speculation.

Most researchers, however, have not used it as a comparison, instead setting

B to 0 or no investment, with only C. Evans et al. (2013) using it to make

comparison between an alternative investment. This application results in a

modified equation:

RSharpe =
A

σ(A)
(4.16)
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which is found in the work of Hann and Steurer (1996), Neely, Weller, and

Dittmar (1997), LeBaron (1999), Dunis, Laws, and Sermpinis (2011) and

Korczak and Hernes (2017).

4.2.5.3 Compounded Return

Another method of measuring profits is the compounded return, calculated

iteratively as:
CR(0) =1

CR(y, i) =CR(y, i− 1)
yi − yi−1

yi
− cyi

profitCR =kCR(y,N)

(4.17)

where CR(y,N) is the compounded return, k leverage and cyi the trading

costs associated with the trade yi. This formula has the advantage that it can

be calculated quickly, and is often simplified further by the removal of trading

costs. In the corpus, Allen and Karjalainen (1999) generated their compounded

returns with fees. However, Ausloos (2000) and Jordà and Taylor (2011) did

not.

4.2.5.4 Annualised Return

Similar to the compounded returned is the Annualised Return, or the

percentage of profits returned on a per-annum basis. This is calculated

relative to the period and frequency of prediction:

AR = equityinitial

(
equityfinal
equityinitial

) f
N (4.18)

where f is the amount of N events in a year, e.g. 365 for daily, and N the

observed events. Within the corpus, only one paper that reported annualised

return, C. Evans et al. (2013), used an out-of-sample period shorter than

one year. The others, Hann and Steurer (1996), Neely et al. (1997), Yu,

Wang, and Lai (2005), Ghazali, Hussain, and Liatsis (2011) and Sermpinis,

Dunis, Laws, and Stasinakis (2012), Sermpinis, Stasinakis, Theofilatos, and
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Karathanasopoulos (2015), all used periods substantially longer.

4.2.5.5 Drawdown

Alongside profits, several researchers also reported some variety of risk

measurement. Given its bearing on the validity of reported results, Maximum

Drawdown is often used. This is an important statistic for FOREX

speculators, because this metric relates to the viability of an account.

Closely related to Eq. 2.1, where margin is calculated with respect to the

account equity, drawdown is defined:

drawdown = balance− equity (4.19)

Recall that, if the account’s margin reduces to a certain level, a trader’s ability

to control their account is reduced—sometimes to the point of forced closure

of trades, which is almost always calamitous for the account. Therefore, it is

of utmost importance to maximise margin by minimizing drawdown, and thus,

knowing the drawdown of an algorithm, regardless of its temporal locality, can

be useful for estimating the minimum buy-in for a predictor. On the other

hand, without knowing when the conditions under which maximum drawdown

occurred, it might not be that helpful.

In the corpus, Ghazali et al. (2011) showed that their Dynamic Ridge

Polynomial Neural Network had less drawdown than their competitors, as

did Bakhach, Tsang, and Jalalian (2016) with their Backlash Agent.

Sermpinis, Dunis, et al. (2012) showed that better predictors tended to have

lower drawdowns; and de Almeida et al. (2018) considered themselves forced

to use drawdown as a metric, noting that this was due to a lack of

transparency in Sermpinis, Dunis, et al., whom they wanted to compare their

results with.
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4.2.5.6 Stirling Ratio

Another application of the drawdown and profits is found in the Stirling ratio,

defined as

RStirling =
profit

maximum drawdown (4.20)

with the intention being to report a comparable value. A number of definitions

of the Stirling ratio have been given, but this general formula is the most used

in the corpus, being used by Hryshko and Downs (2004) and Mendes et al.

(2012). The bottom value, maximum drawdown, is sometimes modified to

allow for an acceptable level of risk, as in Dempster and Jones (2001), and an

annualized version of it also exists (“Sterling ratio”, n.d.).

4.2.5.7 Profit Factor

Another ratio, proposed by Bakhach, Tsang, Ng, and Chinthalapati (2016) is

the Profit Factor, which is calculated as

PF(r) =

N∑
i=1

ri, where ri > 0

N∑
i=1

ri, where ri < 0

(4.21)

with r being the series of returns—or in words, gross profits divided by gross

losses. A value of 1 signifies breaking even, with less being a losing strategy,

and more a profitable strategy. Their idea was that this metric would measure

the amount of profit per unit of risk.

4.2.5.8 Sortino Ratio

Also referenced by Dempster and Jones (2001), and Bakhach, Tsang, Ng, and

Chinthalapati (2016) was the Sortino Ratio. This is a measure of risk similar

to the Sharpe ratio, but only calculated against returns that are less than a

targeted rate of return, rT , and therefore dependent on the downside risk. It
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is defined

RSortino =

N∑
i=1

ri − rT√√√√√√
N∑
i=1

θ(ri − rT )(ri − rT )2

N

(4.22)

where θ is the Heaviside function. Sortino and Forsey (1996), however,

recommended the use of a continuous function instead, to allow for a range of

possibly correct values. This recommendation was not followed in the corpus.

4.2.5.9 Problems with Profit-based Metrics

Given the variety of profit-related metrics, it is difficult to compare their

respective predictors. As well as being entirely related to the dataset the

results are drawn from, profits are also affected by more than just the

predictor accuracy. Trading strategy plays a big part in the performance of a

predictor, and whilst it is true that a better predictor should perform better

with the same strategy, the reality is that there is no set trading strategy

used within the corpus. In fact, it is usual to find a trading strategy defined

alongside a predictor, and the separation of the predictor’s performance from

the trading strategies is impossible. There is also the issue of trading costs,

with some researchers reporting results with costs and others without. And

there is no evidence any of the researchers took exogenous exchange rates

into account—that is, in a multi-Symbol scenario, adjusting the values back

to a base currency—either for prediction or assessment. Therefore, despite

the ease with which profit-based metrics may be perceived, there is no

comparability between them, and their use as a metric is more hype than

substance.



66

4.3 (Not So) Tough Benchmarks

Given Rossi’s assertion that the Random Walk is still the toughest benchmark

to beat, it is not surprising that it is often given as one of the benchmarks in

the corpus (27 percent of papers use it). Giles et al. (2001) noted that,

“If equal performance is obtained on the random walk data as
compared to the real data then no significant predictability has
been found.”

There is, however, some confusion in the corpus as to its specific application:

some used no price change to represent Random Walk, whilst others used the

same first order change. As has already been noted, researchers have reported

mixed results across the board for Random Walk, and so its validity as a

benchmark remains intact.

There are other issues besides mere choice of benchmark in the corpus as

well. The 2000 paper from Yao and Tan provides several examples of these:

• Their data sets were tiny. Although they used twelve overlapping time

periods, each out-of-sample sequence contained only twenty-six points.

They also used weekly samples, whereas even then the mode was daily,

and much higher frequency data was available. (In their defense, they

did acknowledge this).

• Despite most prior literature showing ANNs significantly inferior to

Random Walk, they did not make this comparison. They claimed this

was because the market was chaotic, but their Hurst interpretation was

a little overzealous, with values in [0.532, 0.555] for their given Symbols.

Whilst the case could be made for extremely weak chaos, it would be

fragile indeed, given how close these values are to Brownian motion.

• Another issue was the ‘ARIMA’ methods they claimed to use. They

were, in fact, ARMAs, and unoptimised—they tested only ARMA(1,1)

and ARMA(2,2).
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• They presented their results as profits only, however, as has been noted

already, these depend on more than just their predictor’s accuracy.

• They only presented the results of their best optimised predictor. This

is a form of data-snooping, as in reality the optimal settings would not

be known in advance. By the criteria set by White, this renders their

results invalid (White, 2000).

Surprisingly, despite the frequency with which this work is cited, no one seems

to have picked up on these issues. As was noted earlier in Chapter 2, this

paper has often been referenced through another, and it seems likely from the

evidence that most citing authors haven’t actually read the paper. It could

also be argued that Yao and Tan appeared to say what researchers wanted to

hear—“The Random Walk has been beaten by ANNs”—and this then explains

its heavy citation. Nevertheless, after Yao and Tan there was an explosion of

research into using ANNs for FOREX prediction. However, many papers still

suffer the same issues.

4.4 Summary

This chapter has looked at the metrics used by a representative sample of

papers in the area of FOREX prediction, with a particular emphasis on

prediction for speculation. In the 118 papers surveyed, over forty different

Symbols were used, with nearly every paper using different datasets, along

with different time frames and sample frequencies. There were also over forty

different metrics used, and no consistent or standard benchmark. Analysis of

these metrics showed little comparability between them, and so the

conclusion can be drawn:

Of the surveyed papers, nearly all recently published papers are

incomparable with one another, rendering their effective

contribution to the application of machine learning to foreign

exchange speculation questionable.
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To repeat Rossi’s assertion, “the main conclusion that emerges from the

literature is that the choice of evaluation method matters, and a lot!”. Looking

at the metrics in depth, there was an obvious dependence on an underlying

error function. The most common error functions used were Absolute Error

|ϵ| and Squared Error ϵ2, but both these and all other error functions were

shown unsuitable for FOREX speculation, due to their dependence on a single

‘correct’ value. At the same time, profit-based metrics were also investigated,

however, they too were found to be incomparable due to the interference of

external factors, such as trading strategy and costs. This leads to a second

conclusion:

Of the surveyed papers, those that calculated statistical metrics

exclusively focused on close values, despite the limited applicability

to speculation. Those that reported profit-based metrics were

inconsistent, incomparable and heavily biased. On the whole, all

these papers’ reported results regarding the prediction of foreign

exchange movements for speculation are effectively meaningless.

It is thus the aim of this thesis to address these conclusions, and so two

potential remedies are presented in the next two chapters.



Chapter 5

Addressing Incomparable

Datasets: Introducing Hokohoko

In order to address the problem of incomparable datasets and time periods, this

thesis presents a newly-developed Python 3 library, Hokohoko1. Hokohoko is

intended for use by researchers in FOREX speculation, providing a consistent

framework to test prediction algorithms, backed by a large dataset of historical

FOREX rates. As detailed throughout this chapter, Hokohoko:

• Features an algorithm that breaks the dataset up into multiple

overlapping sets, and can execute predictors on them in parallel.

• Is easy-to-use and cross-platform.

• Is implemented in Python 3, allowing integration with common machine

learning libraries such as Keras, TensorFlow and PyTorch.

• Is intended for release into PyPI, with minimal dependencies (NumPy

and SciPy).

• Can be invoked from the command line or imported into a project.

• Offers an API similar to real-world trading software.
1Hokohoko means “to trade, barter, exchange, sell, buy, export, alternate” in Te Reo Māori.

The name was determined in conjunction with Associate Professor Te Taka Keegan, Associate
Dean Māori of Wananga Putaiao, Te Wananga o Waikato (Division of Health, Engineering,
Computing and Science, University of Waikato).
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• Offers a number of baseline predictors to compare with, such as ARMA,

ARCH and Random Walk.

• Provides standardised parameters drawn from the FOREX corpus.

• Includes a number of metrics, including this thesis’ second proposal, the

Speculative Accuracy metric (see Chapter 6).

• Includes a simulator function to allow comparison of metrics with

profitability, with the correlation providing a measure of usefulness for

speculation.

• Includes a fully-deterministic Random Number Generator (RNG) to

provide repeatable results.

• Is open-source, with the source code hosted on GitHub and

documentation online. Documentation is co-located in code, and

extractable via Sphinx.

• Is unit tested, with test definitions co-located in code via annotations,

and a utility included to generate new test cases from new annotations.

This chapter explores a number of key issues related to Hokohoko and its

implementation.

5.1 Data

Hokohoko comes with a data file containing seven years of historical per-minute

values for fifty Symbols, from 7 July 2012 to 7 July 2019 (see Table 5.1),

sourced from the cTrader platform. Extra care was taken in the collection of

this data to ensure contiguity, with any Symbols not available from the source

for the full time-frame removed from the dataset. The data was acquired as

per-minute, per-Symbol Bars:
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Bar[symbol] =



timestamp
open
high
low
close
volume


(5.1)

Within the data file, each row represents a single minute, and is made up of

all the per-Symbol Bars for that minute. Duplicate minutes, where every

value except timestamp was identical, were deleted in order to remove

weekend and holiday data from the dataset. The data was also examined for

corruption from the source, with one solitary impossible (negative) value

being replaced by an interpolated one. As a result, the dataset contains just

over 2.6 million minutes of contiguous FOREX history, with approximately

130 million individual candlesticks. The resulting data file is 2.6GB, which is

too large to be included in the library, and so is made available as a separate

download. Instructions for download are included in the online

documentation.

Base Target
AUD CAD, CHF, JPY, NZD, USD
CAD CHF, JPY
CHF JPY
EUR AUD, CAD, CHF, GBP, HKD, JPY, MXN, NOK, PLN, SEK, TRY,

USD, ZAR
GBP AUD, CAD, CHF, JPY, NOK, NZD, SGD, USP
NZD CAD, CHF, JPY, SGD, USD
SGD JPY
USD CAD, CHF, CZK, DKK, HKD, JPY, MXN, NOK, PLN, SEK, SGD,

TRY, ZAR
XAG USD
XAU USD

Table 5.1: Symbols available in Hokohoko’s dataset, from 7 July 2012 to 7 July
2019. Symbol names are the concatenation of Base and Target, e.g. AUDNZD is
the Australian Dollar-New Zealand Dollar exchange rate.

Due to this separation from the library, it is therefore possible to release

updated datasets, with the requirement for researchers to state which dataset
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they used. For example, a second dataset termed ‘Dataset2’ could potentially

be released containing data up to 7 July 2020, or extra Symbols, etc.

5.2 Parallel Execution
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Figure 5.1: An illustration of six overlapping two-year Periods, drawn from
Hokohoko’s dataset. Hokohoko’s default setting is 256 Periods.

Given the size of the dataset in Hokohoko, it is relatively easy to generate

many overlapping multivariate time series, allowing for parallel processing of

different Periods, as in Fig. 5.1. By default, Hokohoko splits the data up

into a number of these Periods, and executes separate instances of the desired

predictor on each Period. Each Period is provided with either the full array, or

a user-specified subset, of the available Symbols. While running, each parallel

execution is in its own isolated memory space, and the predictor is triggered

by Hokohoko at specific intervals, simulating the OnBar() function available

in popular trading platforms. There are a number of configurable parameters

(see Section 5.7) that control this behaviour, but it is intended that, for the

purposes of benchmarking, the default values are used. A high-level overview

of operations is given in Fig. 5.2.
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1. Initialize
Hokohoko

2(a). Execute
Predictor in its

own process
(Period 1)

2(b,c,...).
Parallel

processes
(Periods 2,3,...)

3. Call
predictor.OnStart()

4. Call
predictor.OnBar()

In test
period?

5. Evaluate
predictions

Finished
yet?Continue

6. Analyse
results

7. Finished,
print results

yes

no

yes

no

Figure 5.2: Flowchart of Hokohoko Execution.
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Initialization

Hokohoko relies on three entities to function: a Data class, Predictor class, and

one or more Assessor classes. On initialization, it first loads the Data class

and its associated data file in order to find out what Symbols are available.

If a subset of Symbols is requested, Hokohoko calculates which Symbols are

needed to perform simulation of the subset. It also calculates the start and end

dates, from the dataset, for each Period to use. Periods are equal-sized but

offset, so the same periods do not exist at different levels of parallelism—that

is to say, the Periods in a two-Period run are not a subset of those used in a

four-Period run. Finally, it checks that it can spawn the requested Assessor(s),

which wait(s) to process results. The full message sequence for a run can be

seen in Fig. 5.3.

Spawn Process

Once the settings for all the Periods have been calculated, Hokohoko creates a

process pool and queues a new instance of the Predictor for each Period. Whilst

expensive on RAM, this is necessary to avoid Python’s Global Interpreter

Lock (GIL). For CPU-bound processes, such as Hokohoko, the GIL effectively

reduces multi-threaded performance to that of a single thread, and so it is

necessary to use separate Python processes. Upon process spawn, each Period

then loads its specific data from the data source, initialises the local predictor

and calls the Predictor’s OnStart() method.

OnStart()

The OnStart() method allows the Predictor to configure some initial values by

passing in the last close values prior to the Period’s start. If the Predictor

requires some form of persistent state, such as network weights, etc., these

should be declared in the Predictor’s __init__() method and initialized here.

Hokohoko’s deterministic Random Number Generator (RNG) is configured
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Hokohoko Data Period[s] Predictor Assessor[s]

Run

GetLength

CalculatePeriods Init

Enter

GetData

Init,Enter

GetData

OnStart

GetData

OnBar

Predict!

GetData

Evaluate

OnStop

Assess

End

Repeat as necessary

Figure 5.3: Message sequences during Hokohoko’s execution. Each vertical line
represents a major class within Hokohoko.
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prior to OnStart() being called.

OnBar()

Once the Predictor has been started, Hokohoko then begins to provide it with

a stream of data. Iterating through the per-minute data within the dataset, it

triggers the Predictor’s OnBar() method at set intervals, passing in the latest

Bar (an array of per-Symbol candlesticks for the previous interval). This is

calculated as:

Bar[symbol_id] =



m1,open

max([mi,high]
N
i=1)

min([mi,low]
N
i=1)

mN,close
N∑
i=1

mi,volume


(5.2)

with N being the number of minutes in the interval. Upon returning from

OnBar(), Hokohoko then evaluates the predictions made by the Predictor.

Predictions are made within OnBar by generating Order objects, which

can be placed into the internal Orders queue via self.place_order() or

self.place_orders(). An Order is defined as:

Order =


symbol_id
direction
open_bid
take_profit
stop_loss

 (5.3)

with open_bid, take_profit and stop_loss being optional. Hokohoko

uses take_profit as the prediction, and stop_loss as risk management.

Generally, open_bid should be left as None, but ambitious researchers may

try to min-max their predictions by ascribing an opening value. When the

open_bid is set to None, a Position is opened immediately, at the start of

the Bar. Otherwise, with a prescribed open_bid, an Order will be placed,
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which will not activate until the exchange rate achieves or transitions past the

open_bid. Orders that are not activated are discarded at the end of the Bar.

In the same token, take_profit and stop_loss can also be set to None,

with the prediction then being restricted to just the direction change over the

next interval. Trade direction can be any value of buy, sell, dont_buy or

dont_sell—with the latter provided to indicate intentionally not trading.

Evaluation

In Hokohoko’s framework, predictors are not aware of future data, so they can

only make predictions on a case-by-case basis. They are provided no indication

as to whether they are in training or testing, and therefore should return a

prediction for each and every Bar. However, only predictions made after the

internal test-point will be evaluated.

After the Predictor returns control to Hokohoko, at the end of OnBar(),

Hokohoko checks to see if it is in the testing period. If it is, Hokohoko checks

that every requested Symbol has both buy and sell directions specified,

replacing any missing directions with dont_buy or dont_sell as

appropriate, before iterating through the next Bar.

During the iteration process, Hokohoko runs the simulator algorithm on

any Orders present. Orders that have specified None for their open_bid are

immediately converted into Positions, otherwise they are left in the Orders

queue until the open_bid is met. Similarly, Positions are closed either when

their take_profit or stop_loss is met, or the Bar ends. Hokohoko then

returns to OnBar() (Section 5.2) until the Period concludes. Whilst Hokohoko

does not explicitly inform the Predictor on the outcomes of any predictions

made, the history is available through self.account—otherwise it is up to

the Predictor to keep track of its own predictions.
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Analysis

Once all parallel Periods have finished processing, the results are passed into

the waiting Assessor(s), as an array of Accounts. A Hokohoko Account keeps

a record of each Period’s per-minute balance and equity, as well as a history

of all the predictions made and their outcomes. Predictions are stored in the

history as Positions, with each Position having the structure:

Position {

Order order; // The Position's creating Order.

Bar future; // A Bar containing the future Bar.

Status status; // A Status of what happened.

long open_time; // The time the Position opened.

long close_time; // The time the Position closed.

float open_rate; // The exchange rate at opening.

float close_rate; // The exchange rate at closing.

float held_value; // Internal, based on exogeneous rate.

float initial_value; // Internal, " " " "

float final_value; // Internal, " " " "

}

Depending on the selected assessor, the results will be analysed per-Period,

per-Symbol and overall. future is the Bar over which the Position was

evaluated. Status can be any of the values pending, open, closed,

closed_take_profit or closed_stop_loss. A pending Position was

an Order that never activated; an open Position was an Order that activated

but did not close; a closed Position closed at the end of the future Bar; and

closed_take_profit and closed_stop_loss are Positions that closed

during the future Bar, for the stated reason.

5.3 Simulation

In order to provide fair comparisons, Hokohoko’s simulator operates as follows:
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• All Periods start with a balance of USD0.

• The Account is at a 1:1 leverage.

• Orders can be placed in any Symbol the predictor registered (the default

is all available Symbols).

• All placed Orders are for USD1000. This is the reason why Symbols

that cannot be converted are not able to be simulated—every Symbol

included in Hokohoko’s dataset can be converted to USD, but if the

account’s base currency is changed, that might not be possible.

• Position values are calculated every minute, with respect to both the

currency rate and exogenous rate if required. The current equity is:

equity = balance +
N∑
i=1

(Pi,held − Pi,initial) (5.4)

where P represents all currently open Positions, and Pi,held − Pi,initial is

the i-th Position’s profitability for the moment. Basically, equity is the

balance plus the sum of all open Positions’ current profits, which may

be positive or negative.

• Whenever a Position is closed, its profit is added to the balance.

• The simulator is cost-less: there are no trading costs, such as commission,

swap fees or spread.

• The simulator includes slippage, as a function of the dataset—some

successive Bars’ open differs from their predecessor’s close value; if a

Position that is calculated through an exogenous exchange rate closes

to a take_profit or stop_loss condition, whilst the primary

exchange rate is known exactly, the exogenous exchange rate is not,

and so the exogenous rate is calculated as an average of the candlestick

values for the minute in which the Position closed.



80

Because the Period accounts all start at zero, margin level is not tracked,

and the simulator will not close a malfunctioning account (that is, an

account that runs out of margin/equity). This has advantages over using

back-testing from trading software in that it is not required to keep the

account at a minimum level for operation. It also highlights again the issue

with most profit-based metrics, as it is plainly obvious in this scenario that

post-selection of a favourable starting balance enables a range of possible

values per-metric.

The other important issue to note here is that there are no compounding

returns in this model. All the returns are additive, which is a) necessary for

multi-currency and b) more akin to reality. The Predictor also has no say

over other account conditions, such as margins, leverage or costs. As such,

predictive performance is divorced from trading strategy.

5.4 Availability

Hokohoko has been designed from the outset with the intention of

open-sourcing. The source code is in a GitHub repository2 and includes unit

testing and scripts to generate documentation and distribution files.

The documentation is written in the source code’s docstrings, and a

script is included that extracts the documentation for external compilation

with Sphinx. It is intended that, once released, the documentation will be

available at hokohoko.readthedocs.io3.

It is intended that Hokohoko will also be available in PyPI, the Python

Package Index. The scripts to do this have also been included in the source

and have been tested on test.pypi.org. As has already been mentioned, the

data file for Hokohoko is too large to be included in the distribution, so it is

hosted alongside the documentation. Instructions on how to obtain the data

file can be found in the documentation.
2https://github.com/nc-bradley/Hokohoko
3In the meantime, it is available at https://bebecom.co.nz/hokohoko/.
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Hokohoko has been tested on Python 3.6-3.8, on Debian, Ubuntu and

Windows 10.

5.5 Quality Assurance

Hokohoko went through a number of iterations during development. There

were three main goals kept in sight over these iterations: the software must

be maintainable; it must be tested; and it must be documented. Given it is

written in Python, every attempt was made to keep it as Pythonic as possible.

Maintainability meant keeping the code simple and easy to read, as often

as possible. An annotation class was added, which enabled the definition

of unit tests within the code body, and Sphinx documentation styles were

applied to the docstrings. This design pattern is used so as to facilitate easy

understanding of a module or function—the docstrings describe the class or

function’s purpose and the unit tests prescribe the desired behaviour. In this

manner, all relevant information as to a class or function’s design is co-located

with its code.

5.6 Invocation

Hokohoko can be imported as a module:

import hokohoko

from hokohoko.entities import Config, Predictor

class MyPredictor(Predictor):

...

config = Config(

predictor=”MyPredictor None”,

assessors=["hokohoko.assessors.Accuracy"]

)
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hokohoko.run(config)

Or invoked via the command-line:

python -m hokohoko.Hokohoko \

-P "hokohoko.predictors.SameAsLast --direction EXACT_SAME" \

-A "hokohoko.assessors.Accuracy ---show-results True"

5.7 Parameters

Hokohoko’s behaviour can be controlled through a number of parameters:

predictor_class: A string containing the fully-qualified Predictor

name and its arguments. Argument syntax is defined

by the Predictor.

assessors: A list of strings containing the fully-qualified

Assessor names and their arguments, one string per-

Assessor.

data_class: The Data class to be loaded. This will not typically

need to be changed.

data_parameters: The parameters for the data class. If using

Hokohoko’s data file, these will not need to be

changed.

data_subset: A comma-separated list of Symbols to restrict

analysis to. This can be helpful for reducing

development time by loading only a single Symbol

instead of all those contained in the data file.

period_count: How many Periods to load. This should only be

adjusted for developmental purposes—a benchmark

should leave this on the default setting.

process_count: How many processes are allowed to be run in parallel

at the same time. This should be adjusted depending

on the user’s desired CPU/RAM load.
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past_minutes: This is the frequency at which OnBar() will be called.

Default is 1440, or one day.

hold_minutes: How many minutes the evaluation function is allowed

to look ahead to check predictions. Ideally, this will

match past_minutes, but flexibility is allowed.

load_limit: Sets the maximum amount of minutes to load from

the data file. This can be useful during development

to speed up load times, otherwise this should be left

at None.

training_minutes: How many minutes of data is used for the training

set. This defaults to 18 months and should only be

adjusted for development purposes.

test_minutes: How many minutes of data is used for the test

set. This defaults to 6 months and should only be

adjusted for development purposes.

debug: Sets self.debug within the Predictor and also

provides extra information during processing.

profiling: Enables Python’s profiling tool and logs the

performance metrics per-Period, which can be useful

for finding bottlenecks.

Hokohoko’s documentation provides more information about these

parameters, and the default values can be found in hokohoko/defaults.py.

5.8 Included Predictors

Hokohoko currently includes interpretations of some landmark predictors: a

simplified form of Bachelier’s Gaussian-based predictor; a predictor based on

Yule’s AR model; a simple 6-3-1 neural network similar to Yao and Tan’s; as

well as some simpler applications, such as DoNothing, SameAsLast, and

Random. Provision has also been made for the inclusion of Box and Jenkin’s
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ARMA and ARIMA models, Engle’s ARCH and Bollerslev’s GARCH;

however, their implementation is as-of-yet incomplete. Where possible, every

effort has been made to use external libraries and thus not reinvent the

wheel, however these remain for future work, as noted in Table 5.2.

Table 5.2: Predictors Included in Hokohoko

Predictor Description

DoNothing Always says dont_buy, dont_sell.

RandomWalk Predicts the same movement as the previous Bar.

Static Makes static predictions, e.g. take_profit =

Bar[close] + 0.01.

Random Opens a single Position in a random direction and a

dont_x in the other. Due to the fully deterministic

RNG of Hokohoko, this will produce identical results with

identical configuration.

SameAsLast Predicts the same movement (open, high, low and

close) as the previous Bar. Also includes options to invert,

offset or invert and offset the Bar values.

Bachelier1900 This is a simplified version of Bachelier’s predictor. It keeps

track of P(yt) and P(yt−yt−1) and calculates the maximum

likely value as its prediction.

Yule1927 A traditional AR model.

YaoTan2000 A simple FF-NN using the same 6-3-1 structure as reported

by Yao and Tan (2000).

Planned It is intended that additional predictors will be added to

Hokohoko in the future. Already planned for inclusion

include implementations of ARMA-, ARIMA-, ARCH- and

GARCH-based predictors.

As well as providing the above predictors, Hokohoko provides an easily
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extensible framework by which researchers can ‘plug-in’ their own predictors.

The base hokohoko.entities.Predictor class can be inherited from, and

the following methods overridden:

__enter__()

__exit__(exc_type: Any, exc_val: Any, exc_tb: Any)

on_start(bars: Iterable[hokohoko.entities.Bar])

on_bar(bars: Iterable[hokohoko.entities.Bar])

on_stop()

Optionally, __init__() can also be overridden to set up frameworks for

persistent state. As designed, state will not be shared between Periods

without the researcher explicitly putting in external structures to do so, so

testing the veracity of a researcher’s predictor should be fairly easy.

The Orders structure and deterministic RNG can be accessed through

self, as Predictor inherits from Random. It reseeds itself every Bar to

maintain a consistent RNG per-Bar per-Period.

5.9 Included Assessors

In its current state, Hokohoko includes two Assessors. The first is

AccountViewer, which provides insight into the behaviour of the predictor

during its runs—particularly its profitability, via a minute-by-minute history

of balance and equity. The second is this thesis’ proposed metric Speculative

Accuracy, which will be covered next.



Chapter 6

Addressing Inappropriate Metrics:

Introducing Speculative Accuracy

In Chapter 4, it was noted that most of the statistical and comparative

metrics used by researchers within the corpus failed to take into account what

they were predicting. In particular, for application to FOREX speculation,

the values being predicted are a bi-directional range, moving both up and

down within the same Bar, yet every researcher based their metric on a single

value, close. This reliance on a single value exacerbated the problem of

incomparable metrics, as the close value was stated to have little relevance

to the actual profitability of a predictor for the longer prediction periods

used by researchers, and therefore has limited usefulness. Consideration of

these two problems and their effects gives rise to the question: what

constitutes an ideal metric, for the purposes of FOREX speculation?

6.1 The Ideal Metric

In order to provide results that are comparable and meaningful, the ideal

metric should:

1. Require standardised conditions for researchers to test their algorithms

against.
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2. Report a single, easily comparable result, with minimal interpretation

needed.

3. Be agnostic towards account conditions and trading strategies.

4. Take into account all available information appropriately, reflecting the

fact that FOREX movements are represented by a bi-directional range.

5. Correlate to actual performance—that is, it must be useful. In

application to FOREX speculation, this means a higher score should

equate to greater profitability.

6. Set a high, preferably unobtainable, standard.

7. Be easy to obtain and use.

If (1), (2) and (3) are met, then the result can be used to compare predictor

performance in otherwise unrelated papers, without the need for researchers

to acquire and/or implement other researchers’ predictors. If (4) and (5) are

met, then practitioners can be confident of the applicability of the metric to

real trading. If (6) is met, then there remains within the metric future scope

for improvement, until such time as no improvement can be made. And if (7)

is met, it should encourage uptake within the research community, so that the

community may all benefit from (1)-(6). In order to meet these requirements,

Hokohoko introduces a new metric, Speculative Accuracy.

6.2 Speculative Accuracy: A New Metric

If, for a given prediction, the result R is:

R =


max_profit ∈ R≥0,
max_loss ∈ R≤0,
actual_profit ∈ R,
taken ∈ {0, 1}

 (6.1)
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then a new metric, Speculative Accuracy, can be defined as follows:

SA(R) =



actual_profit
max_profit , if max_profit > 0,

else: 1.0, if max_profit = 0 ∧ taken = 0,

else: −actual_profit
max_loss , if max_loss < 0,

else: 0.0

(6.2)

The logic behind this metric is that, for any given future period of time, the

conditions of a taken Position may be met, and thus the prediction is correct.

However, it is only maximally correct if the predicted take_profit value

matches the maximum observed high/low, as appropriate for the prediction’s

direction for the forecast time period. Therefore, the predictor’s performance

is defined as the ratio of actual to maximum results. Under these conditions it

is possible for a stop_loss condition to prevent the realisation of profit, but

this will reduce the magnitude of any potential loss and raise the average score.

The stop_loss is the maximum drawdown, or risk, forecast as required to

allow the realisation of the prediction (or take_profit). Thus, obtaining

a reasonable score requires a balancing act between correctly predicting the

take_profit and stop_loss values in order to both maximise profit and

minimise risk. Examples of this are shown in Fig. 6.1.

It is noted, however, that Eq. 6.2 is

• Unbounded to the negative, with incorrect predictions heavily

penalised. That is, either the prediction was incorrect; or a stop_loss

was activated before the prediction could be realised, indicating

insufficient drawdown allowance.

• Highly optimistic, such that making a loss for a tiny potential profit is

heavily penalised.

• Heavily skewed for correct dont_buy and dont_sell predictions.

This is not a major issue, as these predictions are only correct for just

over 2% of the provided dataset, and the result is logically correct.
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Figure 6.1: Results metrics used by Speculative Accuracy. In these figures, open
and close relate to the opening and closing of a Bar, or candlestick. (a) shows
a buy Position that closed at a profit, whereas (b) shows a sell Position that
closed at a loss. Both examples show how the values max_profit, max_loss
and actual_profit are calculated. In (a), max_profit equates to the
difference between high and open, and max_loss the difference between low
and open, for a buy Position. These are reversed for sell Positions, as in (b).
In these examples, taken = 1, as the Positions were buy and sell, respectively.
Whilst each of (a) and (b) only correlate to a single Position in these examples, in
Hokohoko both directions would be calculated for each Bar.

• Not the absolute maximum profit possible, allowing scores above 100%.

In order to achieve a score above 100%, the Predictor needs to specify

an open_bid in the opposite direction to the prediction.

For example, say a Predictor specified an open_bid 0.01 below the

current exchange rate for a buy Order, and then a take_profit for

0.01 above the current exchange rate. If the exchange rate dropped low

enough to activate the Position and then rose enough to close it at the

take_profit, within the Bar, it would realise a movement of 0.02.

Suppose the difference between high and open (or the max_profit)

for this Bar was only 0.015 pips, however. In this scenario, the Predictor

would receive a Speculative Accuracy score of 133% ( 0.02
0.015

).

This is a very risky and difficult prediction to make. But, if a

researcher’s Predictor can predict the dips and rises that allow for

profits greater than max_profit, a higher score can be justified.
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Under normal circumstances, where a Predictor uses an open_bid of

None, and even in the presence of slippage, this is not possible—as

max_profit is then calculated from the same open value as the

Position.

Of these, only the heavy bias for a loss from a tiny potential profit is a real

issue. This can be alleviated, however, if a normalised version of the first clause

were considered; such that, if a per-Period-per-Symbol weight W is defined:

WR =
max_profitR

max([RP,S.max_profit]N1 )
(6.3)

where RP,S is the set of results for a specific Period P and Symbol S, and

N the number of results within the Period. Then a new metric, Weighted

Speculative Accuracy, is defined thus:

WSA(R) =



W
actual_profit

max_profit , if max_profit > 0,

else: 1.0, if max_profit = 0 ∧ taken = 0,

else: −actual_profit
max_loss , if max_loss < 0,

else: 0.0

(6.4)

This weighting has the effect of normalising all Periods, because

max(max_loss) = −max(max_profit)

for any given RP,S, and reduces the impact of both massively negative and

highly positive scores associated with predictions in low profitability intervals.

The weighting is only applied to the first equation, when max_profit is

positive, as the other equations are already within the range [−1, 1].

Other normalisation methods are possible also, such as hyperbolic tangent

or symmetric log transformations.
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6.3 Examples

Example 1: Profit possible, profit made
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buy close
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If:

R


max_profit

max_loss
actual_profit

taken

 =


0.02
−0.02
0.01
1.00


then:

SA(R) = 0.5

In this case, the result is 50% because, whilst correct, the prediction only

resulted in half the possible profit. This score has a range of [0,∞]. However,

getting a score above 1 is difficult, as noted earlier.

Example 2: Profit possible, loss made
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If:

R


max_profit

max_loss
actual_profit

taken

 =


0.02
−0.02
−0.01
1.00


then:

SA(R) = −0.5

In this case, the result is -50%, because the loss made equalled half the

potential profit. There are three possible causes for this: either there was no

take_profit; or it was set too high; or the stop_loss triggered before

the take_profit, and was thus too low. This score has a range of [−∞, 0].
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Example 3: No profit possible, loss made
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If:

R


max_profit

max_loss
actual_profit

taken

 =


0.00
−0.02
−0.01
1.00


then:

SA(R) = −0.5

In this case, no profit was possible but a position was taken nonetheless. The

score is negative, to reflect the fact that it was a loss, but the result is only

-50%, as the loss made was half of the potential loss. In this scenario, there

is no way of linking the loss to potential profitability, and so the score has a

range of [−1, 0].

It is notable that this is the same score as in Example 2, though for a

different reason. In Example 2, the score of -50% indicated that the prediction

was half the size of the correct value, in the wrong direction. In this example,

the score is half the size of the maximum possible loss, as profit was impossible

for the direction used. The first case is a penalizing score for getting an

incorrect prediction, the second is a reward for not losing as much as might

have been lost.
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Example 4: No profit possible, position not taken
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If:

R


max_profit

max_loss
actual_profit

taken

 =


0.00
−0.02
0.00
0.00


then:

SA(R) = 1.0

In this case, no profit was possible and no position taken. Because this is the

logically correct result, it is given a score of 100%. This score is always given

when no action (dont_buy or dont_sell) was taken, and no profit was

possible (max_profit = 0).

Example 5: No exchange rate movement, position taken
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If:

R


max_profit

max_loss
actual_profit

taken

 =


0.00
0.00
0.00
1.00


then:

SA(R) = 0.0

In this case, a prediction was made that resulted in neither a profit nor loss,

but was not the correct dont_buy or dont_sell. The logically correct

result here is given as 0%, which is better than making a loss, but worse than

making a profit. In real-world trading, such a score is highly unlikely due to

the presence of trading costs.



94

Example 6: A heavily biased loss
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R
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max_profit

max_loss
actual_profit

taken

 =


0.001
−0.050
−0.045
1.000


then:

SA(R) = −45

Due to the heavy loss made during the given period, with a tiny profit possible,

the score obtained is a hefty -4500%. However, suppose that the highest

possible profit for the Period and Symbol was 0.1. Then, according to Eq. 6.3

W = 0.001
0.1

, and using Eq. 6.4 gives a score of SA(R) = −45%. This is still not

a good score, however it no longer skews the result distribution quite so much

as the unweighted score does. Fig. 6.2 shows the effect of normalisation on

the score distribution.
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Figure 6.2: The effect of normalisation on randomly distributed speculative
accuracy results. (a) is the distribution of raw Speculative Accuracy scores. Note
the long tail to the negative—these are caused by significant losses in the presence
of minute possible profits. (b) is the same scores, normalised by the maximum
possible profit. The data was 8192 max_profit and max_loss values with
actual_profit between them, randomly generated with a 3% chance of not
taking a Position.



95

6.4 Hokohoko and Speculative Accuracy?

Combined, Hokohoko and Speculative Accuracy meet the requirements for an

ideal benchmark, as listed in Section 6.1. Hokohoko meets requirements (1),

(3) and (7) by being a standardised benchmark, providing a fixed trading

strategy and being readily available. Speculative Accuracy meets

requirements (2), (4), (5) and (6) by reporting a single comparable result

that takes into account the bi-directional future of FOREX speculation,

setting a high standard of comparison with near-maximum profitability, and

correlating to actual performance.

This metric can be used either on its own, or as an error function in a

comparative metric, such as Diebold-Mariano’s. In Hokohoko’s current

implementation, the mean is reported per-Period, per-Symbol and overall.

The raw results are also made available by passing “--show-results True”

to the assessor, so that researchers may perform their own statistical analysis.

The remainder of this thesis investigates the usefulness, or correlation

with profitability, of Speculative Accuracy and other common metrics, using

Hokohoko.



Chapter 7

Experiment Methodology

This thesis has made a number of claims regarding the metrics used to measure

the efficacy of various predictors for the purpose of FOREX speculation:

1. Due to the exclusive use of close values in the underlying error

functions, the statistical metrics used produce results that have no

correlation to profitability.

2. Directional metrics based on close also have little correlation to

profitability.

3. Papers that target speculation, as indicated by reporting of profitability,

are incomparable due to inconsistencies in account settings, time periods

and dataset selection.

In response to these issues, this thesis has offered two solutions:

1. The library Hokohoko has been developed to provide a consistent

framework for benchmarking FOREX predictions, including an account

settings- and trading strategy-agnostic simulator.

2. A new metric, Speculative Accuracy, has been developed and is argued

to be more useful for FOREX prediction. For the purposes of

benchmarking for speculation, usefulness is defined as correlating to

profitability—that is, a useful benchmark will be able to provide a
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relative measure of the profitability of a prediction algorithm when

applied to FOREX speculation.

It is hypothesized that Speculative Accuracy provides a better measure of a

predictor’s performance, in the context of FOREX speculation, than those

metrics commonly used in the FOREX corpus.

This chapter thus details experiments run to test this hypothesis, using

Hokohoko, with the usefulness of Speculative Accuracy and various other

metrics investigated. It is structured as follows: first, the Predictors utilised

are explained in detail, followed by the metrics tested. Then the aims of the

experiments are laid out, followed by the experiment methodologies. The

results are presented and discussed in the next chapter.

7.1 Predictors

A number of simple predictors are included in Hokohoko (see Table 5.2), and

these were used for the experiments.

Random Walk

For the purposes of these experiments, the Random Walk prediction is defined:

ŷ = yt + δyt

= yt + (yt − yt−1)

= 2yt − yt−1

(7.1)

or, the first order difference of the next Bar will be the same as the current

Bar. If ŷ > yt,close, then a buy Order is generated; if ŷ < yt,close, then a sell

Order is generated; otherwise no Orders are placed. In placing the Order, the

take_profit is set to ŷ, with no stop_loss specified.
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Random

The Random predictor uses Hokohoko’s inbuilt deterministic RNG to generate

a value ŷ in [0,1]. If ŷ ≥ 0.51, it generates a buy Order; if ŷ ≤ 0.49, it generates

a sell Order. Unlike the other predictors in Hokohoko, it does not specify

either take_profit or stop_loss values. Consequently, it makes a profit

if the guessed direction is correct, and a loss otherwise. The interval between

(0.49, 0.51) allows the predictor a 2 percent chance of making no prediction,

matching the observed non-movement rate in Hokohoko’s dataset.

Autoregression

Hokohoko’s AR predictor keeps track of the Bars’ high and low values in two

windowed queues. It uses statsmodels.tsa.ar_model.AR to fit the data to

AR models, and then uses these models to make 1-step-ahead predictions for

each of high and low, ŷhigh and ŷlow, respectively. Based on the predicted

values, it then chooses actions to take: if ŷhigh > yt, it places a buy Order

with take_profit set to ŷhigh; if ŷlow < yt, it places a sell Order with

take_profit set to ŷlow. In both scenarios, stop_loss is set to None.

Static

The Static Predictor is not really a predictor, but a trading strategy. All it

does is place an Order each way, buy and sell, with a take_profit set

at ±0.01 as appropriate. In the interests of keeping the comparison with the

other Predictors fair, stop_loss was left as None.

Artificial Neural Network

The ANN used in these experiments is a 6-3-1 Feed-Forward Neural Network

loosely based on Yao and Tan (2000) and Nielsen (2015). Like Yao et al.,

the network was given moving averages of the past values, of lengths 5, 10,

20, 60, and 120 each, plus the last observed value, as input. As the predictor
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progressed through its run, the already observed data was split into a training

and a validation set, with a 7:2 split. In this application, the selected activation

function was the hyperbolic tangent tanh(ϵ), with the derivative 1− tanh(ϵ)2

used for back-propagation. The ANN used Root Mean Squared Error to test

for convergence and up to 1000 training runs per-Bar. Early exit was allowed

if the standard deviation of the RMSEs for a moving window dropped below

a certain threshold. The weights and biases were initialized from a Gaussian

distribution with µ = 0 and σ = 1. The ANN retrained every Bar, using

the previous weights and biases as the starting point for training. Within

the validation sets, the ANN achieved an average Correct Direction score of

67%, and a RMSE of 0.00053. No efforts were made to optimise the hyper-

parameters, other than testing for convergence.

SameAsLast

Hokohoko’s SameAsLast predictor is a variation on Random Walk which, based

on a configuration flag, places buy and sell Orders as appropriate. The

flag, direction, can have one of four values: EXACT_SAME, EXACT_OPPOSITE,

OFFSET_SAME and OFFSET_OPPOSITE. The first, EXACT_SAME specifies that the

next Bar will be identical to the last. For a prediction, this means that the

high and low values are predicted to be the same. The OPPOSITE flag signifies

the predictions should be inverted around the open value. The OFFSET flag

instructs the shifting of the high and low relative values from the open

value to the close value, with OFFSET_OPPOSITE indicating both a shift and

inversion. Based on the predicted high and low, SameAsLast opens buy

and sell Orders as appropriate, or dont_buy and dont_sell otherwise.

Whilst ordinarily a stop_loss value would be set, for the experiments here

this was set to None.
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Bachelier

Based on the earliest known paper on mathematical analysis of market

movements, the Bachelier Predictor included in Hokohoko keeps track of

two sets of probabilities: the probability of a given y, Py, and the first order

differences δy, Pδy. In order to make a prediction, it searches through both

probabilities, seeking to maximise P(ŷ) = Py(yt + δy)Pδy(δy), where

ŷ = yt + δy. If there are multiple ŷ with equal probability, it averages the

values. Once it has identified the exchange rate with maximum probability,

this value is set as the take_profit, and a buy or sell Order is placed

depending on the relative position of the take_profit with the close

value of the previous Bar.

7.2 Metrics

Twenty metrics were tested in the experiments, including Correct Direction,

F-measure, Error-based variants and 6 variants of Speculative Accuracy.

Profits-per-Position

In order to assess the applicability of a metric, the experiments compared

each metric’s score with the Profit-per-Position (P3). Three variants of P3

were used: Realised Profits, which is the profits simulated by Hokohoko using

GBPUSD; Maximum Profits, which were the highest possible profit for the

particular Bar for GBPUSD; and EURGBP, which were the realised profits in

the presence of an exogenous exchange rate, in this case back to USD from

EUR. Despite this thesis’ critique of profits as a metric, it is appropriate to

use them in this scenario, for the following reasons:

1. The primary goal of these experiments is to measure the usefulness of a

given metric. Usefulness is determined by a metric’s ability to

differentiate between different predictors’ profitability.
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2. Many of the arguments against the use of profits do not apply in this

scenario. Hokohoko provides consistent trading account settings for all

the experiments, and a consistent trading strategy.

3. Hokohoko provides the ability to test across multiple time periods, so

there is no data selection-bias.

Table 7.1 details the definition of each metric, within the experiments.

Table 7.1: Metrics used in Experiments

Metric Description

Observed Direction This is the actual direction the exchange rate moved.

It is defined:

OD =


1, if close > open

0, if close = open

−1, if close < open

Correct Direction Measures if the predicted direction was correct.

CD =


1, if close > open ∧ direction = buy

1, if close < open ∧ direction = sell

0, otherwise

F-measure Unlike all the other metrics, this one requires full runs.

Therefore it was calculated each Period and compared

with the sum of all the profits for the Period. Its

definition can be found in Table 4.5.

ϵclose The standard error function ŷ − y. In this case, the

error is based on the close rate of the future Bar.

|ϵclose| Absolute Error for the close rate.

ϵ2close Squared Error for the close rate.
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Metric Description
ϵclose

δy
This is the Percentage Error of the standard error

for close rate. In this case, the percentage is

calculated relative to the first-order movement. The

reason for this is that, due to the relatively tiny

movements exchange rates make to their value, basing

a percentage on absolute values is effectively just

rescaled (and slightly distorted) standard errors.
|ϵclose|
δy

Absolute Percentage Error for the close rate.(
ϵclose

δy

)2

Squared Percentage Error for the close rate.

ϵh/l This is the standard error function, except based on

high for buy Positions, and low for sell Positions.

|ϵh/l| Absolute Error for the appropriate close or high

rate.

ϵ2h/l Squared Error for the appropriate close or high rate.
ϵh/l

δy
Percentage Error based on the appropriate high or

low rate.
|ϵh/l|
δy

Absolute Percentage Error for the appropriate high

or low rate.(
ϵh/l

δy

)2

Square Percentage Error for the appropriate high or

low rate.

SA Speculative Accuracy, as defined in Eq. 6.2.

SA-1 This is a variant of Speculative Accuracy, where taken

Positions with no profit possible are given a score of

-1.
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Metric Description

symlog10(SA) In order to address the long tail of Speculative

Accuracy, this is a variant that uses a base-10

symmetric log outside of [-1,1] to condense the SA

score:

symlog10(SA) =


−log10(−SA) if SA < −1

SA if − 1 ≤ SA ≤ 1

log10(SA) if SA > 1

(7.2)

symloge(SA) As symlog10(SA), but with base e.
tanh(SA)
tanh(1) This is a variant that normalises Speculative Accuracy

using the tanh function. In order to normalise such

that (-1,1) remains (-1,1), the result is divided by

tanh(1), with a new range of (-1.31,1.31) possible.

WSA Weighted Speculative Accuracy, as defined in Eq. 6.4.

7.3 Experiment Aims

The primary aim of these experiments is to measure the usefulness of various

metrics for application to FOREX speculation, via exploration of the following

questions:

1. Is there any correlation between the observed direction of an exchange

rate movement and realised profit for a given Bar, where realised profit

is the equity change in the Position over the course of the Bar.

2. Is there any correlation between the observed direction of an exchange

rate movement and maximum profitability for a given Bar, for the

trading direction specified by the Order.
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3. Is there any correlation between the metrics listed in Table 7.1 and

realised profit.

4. Is there any correlation between the metrics listed in Table 7.1 and

maximum profitability.

A smaller, secondary aim is to investigate the influence of metric choice on

predictor ranking—that is, ordering predictors by performance.

7.4 Experiment: Correlation of Metrics to Profit-

per-Position

In order to test the usefulness of the metrics, a new Assessor containing all

of the metrics was written (see Appendix B) and run against the RandomWalk

predictor:

python -m hokohoko.Hokohoko

-P "hokohoko.assessors.RandomWalk"

-A "hokohoko.assessors.Experiments"

-n 512

[-S "GBPUSD"] # Run 1, single Symbol with Account currency.

[-S "EURGBP"] # Run 2, single Symbol with exogenous currency.

Two Symbols were used because Hokohoko’s simulator converts the traded

currency back to its internal Account’s base currency, USD. This conversion

invokes an exogenous exchange rate, which none of the tested metrics take into

account. The experiments with EURGBP therefore reveal the comparative

strength of metric correlation for application to multi-currency accounts. This

experiment was run with 512 overlapping Periods and the results were collated

on a per-Position basis. With each run consisting of a test period of 183 days,

this gives up to 187,392 Positions to test. Because several of the predictors only

make predictions in a single direction, dont_buy and dont_sell Positions

were ignored in the metric testing.
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The results are presented graphically in Chapter 8 as score versus profit for

each of the conditions being tested, with the overall result for each test being

Pearson’s Correlation Coefficient, as calculated by numpy.corrcoeff.

Hypotheses

This thesis has claimed that there is little correlation between direction or

close values and maximum profitability, particularly at longer intervals.

Therefore, the expected results for the daily Bars provided by Hokohoko are

as follows:

1. It is expected that there will be limited correlation between observed

direction and maximum profitability.

2. It is expected that there will be positive correlation between Correct

Direction and reported profits, as a positive profit value likely

originates from a correct direction prediction. In the presence of

exogenous Symbols, as provided by Hokohoko, this may be obfuscated

somewhat. However, positive correlation is still expected.

3. It is expected there will be little to no correlation between Correct

Direction and maximum profitability.

4. Being based on Correct Direction, it is expected that there will be

observable correlation between F-measure and realised profit, but little

to none between F-measure and maximum profitability.

5. There will be little to no correlation between close-based error metrics

and realised profit.

6. There will be little to no correlation between close-based error metrics

and maximum profit.

7. There will be little to no correlation between high/low-based error

metrics and realised profit.
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8. There will be positive correlation between high/low-based error

metrics and maximum profit.

9. As it was designed for this task, it is expected that all variants of

Speculative Accuracy will show strong correlation with realised profits.

10. It is also expected that all variants will show strong correlation with

maximum profits.

11. Weighted Speculative Accuracy is expected to have the highest

correlation, as the weighting makes its results linear, per-Period.

7.5 Experiment: Ranking of Predictors by Metric

In this experiment, Hokohoko was run with the Predictors in Section 7.1,

with the scores collated per-Predictor-per-metric and ranked. Rankings were

calculated by mean µ for the metrics that had positive correlation (such as

Directional Correctness, F-measure and Speculative Accuracy), and absolute

mean |µ| for the error-based metrics.

Expected Results

For the metrics that have no correlation to profits, it is expected that the

observed rankings will show no clear pattern, in themselves or against

simulated profits. For the metrics modified to use high and low, it is

expected that some consistency in rankings will be observable. For

Speculative Accuracy, it is expected that the rankings will most closely

match simulated profits, and therefore, usefulness.

This chapter has outlined the experiments used to test the various metrics

and Predictors included in Hokohoko. The results of these experiments are

presented and discussed in the next chapter.



Chapter 8

Results and Discussion

This chapter contains the results and discussion for the experiments outlined

in the previous chapter:

For Experiment 1, the results are presented in graphical form, with each

graph consisting of 2,500 randomly selected Position/profit samples from the

generated results. From the full results, comprising approximately 93,000

Position/profit samples, the correlations between each metric’s score, realised

profit and maximum profit was calculated and are listed in Table 8.1. The

metrics are then ranked by absolute average correlation |ρ̄| in Table 8.2, then

discussed.

For Experiment 2, the rankings of each tested Predictor versus metric scores

are presented in Tables 8.3 and 8.4, then discussed.

Finally, this chapter ends with a discussion of the observed results, with a

particular interest in validating or refuting the various hypotheses tested.
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8.1 Results: Correlation of Metrics with Profits
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Figure 8.1: Correlation of direction-based metrics, with respects to realised and
maximum profit for GBPUSD, and realised profit for EURGBP. For Observed and
Correct Direction, realised and maximum profits are per-Position; for F-measure,
they are the sum per-Period. The orange, green and black sets in the F-measure
figures are Periods 142-269, which span the 2016 Brexit referendum.

8.1.1 Performance of Directional Metrics for Random Walk

Predictions in Hokohoko

It was hypothesised that there would be little to no correlation between the

observed direction of exchange rate movements and profitability, and this is

confirmed in Fig. 8.1, with both Symbols’ correlation coefficients close to 0

for both realised and maximum profits. It was also hypothesised that there

would be a clear correlation between Correct Direction and realised profits,

with weaker correlation for the exogenous case, and this also was confirmed.

However, there is only a small difference between ρ̄ for realised and

maximum profits, suggesting the hypothesis of little to no correlation
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between Correct Direction and maximum profitability incorrect—at least for

the daily intervals used in this experiment. Even so, this might not be

entirely true, as examination of the F-measure correlation reveals:

Due to its reliance on Correct Direction, correlation is also observed in

the F-measure metric for realised profits and GBPUSD. And while the

reported ρ̄ for maximum profits appears weaker, it is apparent that there are

two distinct clusters of profitability, which have been highlighted. The

cluster with higher maximum profits consists of Periods 142-269, which

spanned the 2016 Brexit referendum, and its accompanying market volatility

is reflected in increased potential profits. This is only noticeable in the

F-measure results because they consist of summation per-Symbol-per-Period,

whereas the other metrics’ profits are per-individual prediction. With the

Brexit cluster accounting for 25% of the tested Periods, this shows how

F-measure, and thus Correct Direction, lacks correlation with maximum

profits. As the variance in potential profitability increases, the correlation

with Correct Direction and F-measure decreases. Therefore, the hypothesis

of little to no correlation between Correct Direction and maximum profits is

confirmed, in the general case.
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Figure 8.2: Correlation of close-based metrics, with respects to realised and
maximum profit for GBPUSD, and realised profit for EURGBP.
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8.1.2 Performance of close-based Error Metrics for Random

Walk Predictions in Hokohoko

In Fig. 8.2, it can be seen that ϵclose trends towards profitability as it

approaches 0, from both directions, for both realised and maximum profits.

This is not reflected in the correlation coefficient, however, with ρ̄ < 0.02, as

the distribution is the sum of two trends. By rectifying ϵclose, |ϵclose| and

ϵ2close merge these two trends together, and it is thus apparent that all three

metrics are correlated to the realised profits. However, they show little

correlation with maximum profits.

For the percentage error metrics, the situation is slightly more complex.

Whilst there is correlation present, it is split into parts across the spectrum

of possible scores, with significant overlap between profits and losses above
ϵclose
δy

= 1. This overlap reflects the fact that trades which conclude below

close may still be profitable. In this case, rectification does not help, with

both absolute and squared methods increasing the overlap to almost the entire

spectrum of results and annihilating any correlation that might have been

present.

It was hypothesised that there would be little to no correlation between

close-based error metrics and either realised or maximum profits. That has

been confirmed for the percentage-based error functions, as well as ϵclose.

However, both |ϵclose| and ϵ2close exhibited correlation with realised profits,

suggesting that this hypothesis is only partially correct.
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Figure 8.3: Correlation of high/low-based metrics, with respects to realised and
maximum profit for GBPUSD, and realised profit for EURGBP.
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8.1.3 Performance of high/low-based Error Metrics for

Random Walk Predictions in Hokohoko

While Fig. 8.3 shows clear correlation between ϵh/l, |ϵh/l| and ϵ2h/l, with respect

to maximum profits, this level of correlation does not extend to the realised

profits. Only ϵh/l shows any level of correlation, and that is only because of

the high correlation above 0. However, ϵh/l is always profitable above 0, as this

occurs when take_profit is set too high. In trading, such positions would

not do as well as the prediction would suggest, as they would be left to conclude

at either close or a value set by a trading strategy, such as a trailing stop

loss. Therefore, the apparent correlation between ϵh/l is deceptive, as there is

no useful correlation.

Much like ϵclose, the percentage metric ϵh/l
|h/l−open| consists of two trends

converging at 0. As such, rectification via either absolute or square functions

reveal that weak correlation is present; however, it is reduced due to the fact

that losses are fairly evenly distributed across scores, for both realised and

maximum profits, again hindering the usefulness of the apparent correlation.

It was hypothesised that there would be little to no correlation between

high/low-based error metrics and realised profits, but some correlation would

exist with maximum profit, and the evidence would indicate this to be true.
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Figure 8.4: Correlation of various Speculative Accuracy metrics, with respects to
realised and maximum profit for GBPUSD, and realised profit for EURGBP.
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8.1.4 Performance of Speculative Accuracy Variants for

Random Walk in Hokohoko.

In Fig. 8.4, the two basic forms of Speculative Accuracy exhibit weak

correlation with both realised and maximum profits, whilst the four

normalised variants exhibit strong correlation. The difference is due to the

excessively long tail to the negative for the basic versions. The normalised

versions show increasing correlation the closer to linear they become, based

on the aggressiveness of the normalisation function. Weighted Speculative

Accuracy is shown to be exceptionally strongly correlated, and therefore

warrants further examination:

In actuality, WSA is strongly correlated because WSA is basically the

realised profits themselves. Simplification of the mathematics, per-prediction,

yields:

WSA =
max_profit

max([max_profiti]Ni=1)

actual_profit
max_profit

Essentially, WSA becomes the realised profit scaled by the maximum profit

seen for the Period and Symbol, with slight variance caused by slippage. As

a result, the maximum score of WSA is not 1, as intended, but rather the

average of all max_profits for the Period and Symbol. In order to rectify

this, it would perhaps be better to scale by the mean of max_profits instead,

giving a perfect average score of 1. Regardless, it is incorrect to claim WSA a

metric, as presented here, when it is really just normalised profits.

Speculative Accuracy and its variants were expected to show strong

correlation with realised profits, and significant correlation with maximum

profit. This expectation was partially confirmed, with the three normalised

Speculative Accuracy metrics showing the strongest correlation with realised

profits. These variants also exhibited correlation with maximum profits.

However, all were outperformed by Correct Direction, ϵh/l, |ϵh/l| and

ϵ2h/l—although Correct Direction could be removed from consideration, as

per discussion in 8.1.1. Whilst Weighted Speculative Accuracy was indeed
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shown to have the strongest correlation, as expected, its design has been

shown to be fundamentally flawed. The simpler versions of Speculative

Accuracy also exhibited correlation with realised profits, however, they also

were outperformed by the other metrics.
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Correlation Between Metrics and Realised Profits

Realised Profits Maximum Profits EURGBP
Metric ρ̄ σ ρ̄ σ ρ̄ σ
Observed
Direction

-0.0202 0.0771 -0.0283 0.0701 -0.0149 0.1320

Correct Direction 0.6184 0.0495 0.5643 0.0948 0.3021 0.0654
F-measure 0.5170 0.3578 0.1477
ϵclose 0.0179 0.1511 -0.0065 0.1009 -0.0327 0.1633
|ϵclose| -0.6193 0.1591 -0.1150 0.1523 -0.3256 0.0885
ϵ2close -0.5589 0.2288 -0.0885 0.1613 -0.2914 0.1290
ϵclose

δyt
-0.0582 0.0526 -0.0380 0.0551 -0.0318 0.0714

|ϵclose|
δyt

-0.0055 0.0361 -0.0885 0.0588 -0.0063 0.0634(
ϵclose

δyt

)2

0.0121 0.0293 -0.0379 0.0439 0.0075 0.0648

ϵh/l 0.4022 0.1015 0.6923 0.1116 0.1884 0.1344
|ϵh/l| -0.0227 0.1029 0.5088 0.1560 -0.0613 0.1143
ϵ2h/l 0.0006 0.1102 0.4990 0.1809 -0.0579 0.1235

ϵh/l

|h/l− open| 0.0021 0.1041 0.0013 0.0732 -0.0062 0.1077∣∣∣∣ ϵh/l

h/l− open

∣∣∣∣ -0.2825 0.1084 -0.2154 0.0767 -0.1343 0.0922(
ϵh/l

h/l− open

)2

-0.1668 0.0872 -0.1309 0.0489 -0.0818 0.0905

SA 0.3994 0.1334 0.2226 0.0773 0.2098 0.1175
SA-1 0.3995 0.1334 0.2227 0.0774 0.2098 0.1175
symlog10(SA) 0.8539 0.0581 0.4685 0.0931 0.4254 0.0707
symloge(SA) 0.8282 0.0592 0.4636 0.0887 0.4128 0.0743
tanh(SA)
tanh(1) 0.8384 0.0599 0.4552 0.0947 0.4184 0.0666

Norm. Profits 0.9650 0.0792 0.5523 0.1108 0.4824 0.0932

Table 8.1: Correlation between metrics and realised profits. ρ̄ is the average of the
Pearson Correlation Coefficient for the 512 parallel Periods run by Hokohoko, with
σ being the standard deviation. At the bottom of the table is Normalised Profits,
replacing WSA. F-measure does not have standard deviations as ∥ ρ ∥= 1 for it.
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Ranking of Metrics by Correlation

GBPUSD EURGBP Average
Real. Profit Max. Profit Real. Profit Rank

Normalised Profits 1 3 1 1.7
symlog10(SA) 2 6 2 3.3
Correct Direction 6 2 6 4.7
tanh(SA)
tanh(1) 3 8 3 4.7

symloge(SA) 4 7 4 5.0
ϵh/l 9 1 10 6.7
|ϵclose| 5 14 5 8.0
F-measure 8 9 11 9.3
SA-1 10 10 8 9.3
ϵ2close 7 15 7 9.7
SA 11 11 8 10.0
|ϵh/l| 15 4 14 11.0
|ϵh/l|

|h/l− open| 12 12 12 12.0(
ϵh/l

|h/l− open|

)2

13 13 13 13.0
ϵ2h/l 21 5 15 13.7
ϵclose
δyt

14 17 17 16.0
Observed Direction 16 19 18 17.7
ϵclose 17 20 16 17.7
|ϵclose|
δyt

19 15 20 18.0(
ϵclose
δyt

)2

18 18 19 18.3
ϵh/l

|h/l− open| 20 21 21 20.7

Table 8.2: Metrics ordered by average rank, in application to Random Walk and
realised and maximum profits. Ranks were calculated using |ρ̄| from Table 8.1.
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8.1.5 Ranking Metrics by Correlation

Table 8.1 shows the mean and standard deviations of all the tested metrics’

correlation with realised and maximum profits and Table 8.2 shows the

metrics ranked in average order of correlation across the three scenarios:

GBPUSD realised profits, GBPUSD maximum profits and EURGBP realised

profits. The rankings are based on the predictor’s relative ranking within

each of the three scenarios. In these tables, Normalised Profits refers to the

results previously attributed to WSA.

While there is generally a reduction in the mean correlation between

metric and realised profit between GBPUSD and EURGBP (48.8% for

reductions), the ordering of the metrics’ performance is fairly stable. If

results below 50% are considered more random than structural, only eight

metrics show promising performance in the GBPUSD Periods—three

variants of Speculative Accuracy, |ϵclose|, ϵ2close, Correct Direction and

F-measure, in addition to the renamed Normalised Profits. Ignoring

Normalised Profits for the time being, symlog10(SA), symloge(SA) and

tanh(SA) all outperform the next best, Correct Direction and |ϵclose| by over

40%, with Correct Direction and |ϵclose| having the same correlation, but in

different directions. Therefore, if usefulness for speculation is considered by

correlation with profitability, these metrics all show usefulness, with the

Speculative Accuracy variants more useful than the others.

By the same logic, several of the metrics show no measure of usefulness at

all. These are all the metrics that exhibit symmetry around either one or both

axes, such as ϵclose, its percentage variants and all of the high/low-based

error metrics. This strongly indicates that these metrics should not be used

for assessing predictor performance with regard to speculation.

Interestingly, when compared with maximum profit, Table 8.1 shows

some significant changes to the ranking of metrics. Correct Direction remains

largely unchanged; however, the close-based error metrics cease to possess

any information at all, whilst the high/low error metrics come to the fore.
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This is not a surprise, though |ϵh/l| and ϵ2h/l are on the cusp of being

informative, with the three Speculative Accuracy metrics not quite close

enough for consideration.

It should be noted that there are three possible applications for these

metrics, which is not necessarily obvious, but helps to explain the range of

correlation values in the results. These applications are benchmarking,

optimisation and model-checking. The distinction between these applications

can be seen in the rankings held by different metrics. First, the metrics that

exhibit strong correlation to observed results, such as the Speculative

Accuracy family, are most suited for performance assessment. Second, the

metrics that exhibit strong correlation to the desired results (in this case,

maximum profitability), such as ϵh/l, are most suited to optimisation. And

third, the metrics that exhibit clear symmetry, such as ϵclose, are most suited

to model-checking. Whilst metrics can fit more than one category, it is

important to verify their usefulness for the given task.

At this stage, it is appropriate to revisit Normalised Profits. This thesis

has argued at length against using profits as a metric, largely based on the

way they are misused within the academic corpus. However, when using

Hokohoko the arguments about trading strategies, account settings and

balance tampering no longer apply, as Hokohoko provides a consistent testing

environment. In this regard, the best metric for measuring the performance

of FOREX predictions, if the aim is speculation, would be Normalised

Profits—if consistency of simulation regimes is assured, such as through

Hokohoko—closely followed by the normalised Speculative Accuracy metrics.
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Ranking of Predictors by Metric for GBPUSD
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RP

Correct Direction 2 4 9 8 10 6 3 7 5 1 2.6
F-measure 2 6 9 8 10 5 3 7 4 1 2.9
ϵclose 1 5 2 6 3 8 10 4 9 7 4.8
|ϵclose| 5 2 8 9 3 4 10 7 6 1 3.2
ϵ2close 4 1 8 9 3 5 10 6 7 2 3.3
ϵclose
δyt

10 1 6 7 5 4 2 9 3 8 3.6
|ϵclose|
δyt

7 1 8 9 3 4 10 6 5 2 3.2(
ϵclose
δyt

)2

7 1 8 9 3 4 10 5 6 2 3.3
ϵh/l 4 10 5 6 8 2 9 3 1 7 4.3
|ϵh/l| 3 9 7 8 1 2 10 5 4 6 4.8
ϵ2h/l 4 5 9 2 1 6 10 7 8 3 3.6

ϵh/l
|h/l− open| 1 9 3 6 5 7 10 2 8 4 4.8
|ϵh/l|

|h/l− open| 3 8 7 9 2 6 10 4 5 1 4.4(
ϵh/l

|h/l− open|

)2

3 9 7 8 2 6 10 5 4 1 4.3
SA 2 8 6 9 7 5 10 4 3 1 3.8
SA-1 2 8 6 9 7 5 10 4 3 1 3.8
symlog10(SA) 3 10 7 9 2 6 8 5 4 1 4.5
symloge(SA) 3 10 7 9 2 6 8 4 5 1 4.6
tanh(SA)
tanh(1) 6 10 7 9 2 5 8 3 4 1 4.6

Norm. Profits 5 2 9 4 8 7 10 3 6 1 2.2
Avg. Ranking 3.9 6.0 6.9 7.7 4.4 5.2 8.6 5.0 5.0 2.6
Realised Profit 6 1 9 3 10 5 7 8 4 2

Table 8.3: Ranking different Predictors by metric. The rankings are calculated by
ρ̄ for linear metrics, and |ρ̄| for error-based metrics.
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Ranking of Predictors by Metric for EURGBP

RW Ra
nd

om

A
R

St
at

ic

A
N

N

SA
L_

ES

SA
L_

EO

SA
L_

O
S

SA
L_

O
O

B
ac

he
lie

r

SE
w

/
RP

Correct Direction 1 5 2 8 3 6 9 4 7 10 2.8
F-measure 1 6 2 7 8 4 9 3 5 10 2.2
ϵclose 1 5 4 6 10 3 9 2 8 7 3.1
|ϵclose| 4 2 8 10 3 5 9 6 7 1 4.4
ϵ2close 4 2 8 10 3 5 9 6 7 1 4.4
ϵclose
δyt

10 1 8 6 2 5 3 9 4 7 5.2
|ϵclose|
δyt

4 1 8 10 3 5 9 6 7 2 4.4(
ϵclose
δyt

)2

4 1 8 10 3 5 9 7 6 2 4.5
ϵh/l 4 9 5 10 6 3 8 2 1 7 1.6
|ϵh/l| 2 8 6 10 1 3 9 5 4 7 2.7
ϵ2h/l 2 4 8 9 5 3 10 6 7 1 4.1

ϵh/l
|h/l− open| 4 6 5 10 9 1 8 3 7 2 3.2
|ϵh/l|

|h/l− open| 6 8 7 10 2 3 9 5 4 1 3.3(
ϵh/l

|h/l− open|

)2

5 7 6 9 2 3 10 4 8 1 3.5
SA 3 10 7 9 2 6 8 4 5 1 3.1
SA-1 3 10 7 9 2 6 8 4 5 1 3.1
symlog10(SA) 4 10 7 9 2 6 8 3 5 1 3.1
symloge(SA) 4 10 7 9 2 6 8 3 5 1 3.1
tanh(SA)
tanh(1) 4 10 7 9 2 6 8 3 5 1 3.1

Norm. Profits 4 8 1 7 3 6 9 2 5 10 1.8
Avg. Ranking 3.7 6.2 6.1 8.9 3.7 4.5 8.5 4.4 5.6 3.7
Realised Profit 4 10 1 9 6 5 8 2 3 7

Table 8.4: Ranking different Predictors by metric. The rankings are calculated by
ρ̄ for linear metrics, and |ρ̄| for error-based metrics.
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8.2 Results: Ranking of Predictors by Metric

In Tables 8.3 and 8.4, each tested Predictor is ranked, per-metric, against all

the other Predictors. Using the metrics already tested in Experiment 1, most

of the tested predictors failed to significantly outperform either Random

Walk or each other. However, there were two predictors that did manage to

outperform Random Walk—Bachelier’s for GBPUSD, and the 6-3-1 Artificial

Neural Network with Moving Average inputs. These results are not

immediately obvious, however, with some of the other predictors’ relative

rankings masking their performance.

First, SameAsLastexact_opposite performs poorly nearly universally, except for
ϵclose
δyt

. Second, the Random predictor also has skewed results in the

close-based errors, as it is heavily skewed for correct directions (due to no

take_profit). Removing these two predictors from the statistics reveals

Bachelier’s to be better than Random Walk. In the GBPUSD scenario, the

Bachelier predictor outperformed nearly all the other predictors, including

Random Walk. This superior performance is also evidenced in its average

realised profit also, with the second-highest average profits. In the EURGBP

scenario, both Bachelier and the ANN outperformed Random Walk, with the

Bachelier predictor slightly ahead of the ANN.

Despite the apparently ‘good’ performances of some of the predictors, this

does not mean that the predictors were profitable. In fact, in GBPUSD only

the Bachelier and Random predictors recorded a profit, while half the

predictors were profitable in EURGBP. However, in all cases, the average

profits were dwarfed by the standard deviation, with the Z-scores for

break-even in the range [-0.017, 0.012] indicating no real profitability present

(full results are in Appendix C). Crucially, if trading costs had been

included, only the AR in EURGBP would have broken even, making 1.5c

per-USD1000 trade—roughly a 0.4% return per annum on daily trades.

According to the EMH, this is the expected result—if a predictor is a priori

unable to beat the Random Walk predictor then that implies its predictive
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performance should be the same as Random Walk, i.e. 50%, as a lower

performance level would imply improved performance by taking an opposite

prediction. This leads to the conclusion that random performances imply

random rankings, and this makes it impossible to demonstrate the efficacy of

metrics using real exchange rate data.

Besides this impossibility, there is another issue with this experiment. It

is possible that the lack of clarity in rankings could be attributed to the

predictors’ poor performance—the predictors tested were either toys, or

out-dated. If a Predictor cannot out-predict Random Walk, then its results

are effectively random. Without better predictors, the only way to measure

the efficacy of metrics is by synthetic measures, as in Experiment 1.

8.3 Hypotheses Evaluation

So far, this chapter has presented the results of the experiments run to test

the usefulness of various metrics, including Speculative Accuracy, for FOREX

speculation using Hokohoko. These experiments covered four scenarios: the

correlation of various metrics in relation to realised and maximum profits for

GBPUSD, and realised profits for EURGBP; and the relative performance of

different predictors under various metrics. Alongside the experiments, several

hypotheses were proposed, which need verification:

For Experiment 1:

1. It was expected that there would be limited correlation between

observed direction, and maximum profitability. This was confirmed,

with no evidence of correlation with either realised or maximum profits

measured.

2. It was expected that there would be a positive correlation between

Correct Direction and realised profits. This also was confirmed, with

Correct Direction ranking on average second-equal for correlation,
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across all three tested scenarios.

3. It was expected that interference from an exogenous Symbol would

obscure, but not remove, this correlation. This too was confirmed, with

the correlation approximately halved in the EURGBP tests.

4. It was expected that there would be little correlation between Correct

Direction and maximum profit. However, Correct Direction was only

beaten by ϵh/l, in Table 8.1.

5. It was expected that there would be positive correlation between

F-measure and realised profits, but not maximum profit. This was

confirmed.

6. It was expected that there would be little to no correlation between

close-based metrics and either realised or maximum profits. In fact,

this was only mostly true, with Absolute close Error and Squared

close Error showing correlation to realised profits, in the GBPUSD

case. However, it was confirmed in all other instances of the

close-based Error metrics.

7. It was expected that there would be little to no correlation between

high/low-based metrics and realised profit, but some correlation would

exist with maximum profit. This was confirmed, with only the non-

percentage high/low-Error metrics showing correlation with maximum

profits.

8. Speculative Accuracy and its variants were expected to show strong

correlation with realised profits, and significant correlation with

maximum profit. This was partially confirmed, with the three

normalised versions of Speculative Accuracy showing the strongest

correlation with realised profits. However, whilst they showed

significant correlation with maximum profits, other metrics were shown

to have higher correlation, particularly ϵh/l.
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For Experiment 2:

1. It was expected that the metrics with low correlation to profits would

have no clear pattern. This was indeed the case, however, it cannot be

attributed to a property of the metrics themselves. Rather, the lack of a

clear pattern was inherent in the data itself, and so the veracity of this

expectation remains unknown.

2. It was expected that the high/low-based metrics would exhibit some

consistency in rankings. This also was not the case, again due to the

inability of predictors to consistently beat Random Walk.

3. It was expected that Speculative Accuracy would most closely match

realised profit. Again, this was not verified, due to the inability for

reported profits to differentiate between predictors.

8.4 Conclusion

The experiments conducted in this thesis were intended to serve three purposes:

First, they were intended to verify certain hypotheses regarding the usefulness

of different metrics. Second, they were intended to show how various metrics

could be applied, through Hokohoko, to test the efficacy of various FOREX

predictors. And third, they were intended to show the use of Hokohoko by

application.

Of the hypotheses tested, most proved likely to be true—but not all.

Notably, Correct Direction was shown to have higher correlation with

maximum profits than expected, for the daily interval. Similarly, the

rectified ϵclose metrics, |ϵclose| and ϵ2close were shown to have higher

correlation with realised profits than expected. These are probably related,

and warrant further exploration. Across the board, the percentage-type

metrics were shown to have no correlation with either realised or maximum

profits. And the normalised Speculative Accuracy metrics (symlog10(SA),
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symloge(SA) and tanh(SA)) were shown to have very strong correlation with

realised profits but less with maximum profits.

In addition, the proposal to weight Speculative Accuracy was shown to be

flawed, with weighting based on maximum observed profits

per-Symbol-per-Period effectively transforming the metric to rescaled profits.

For the purposes of speculation, these ‘Normalised Profits’ were shown to be

most useful, however, the argument is tautological. Nevertheless, it must be

acknowledged that, if a predictor is to be ranked by its profitability, it makes

sense to rescale profits between Periods and Symbols, such as dividing

realised profits by the average profits for its Period and Symbol.

Attempts were also made to rank a variety of Predictors, available out-of-

the-box in Hokohoko, by various metrics. Had this experiment been successful,

such ranking ability would imply the negation of the EMH. However, while

some predictors appeared to rank consistently above others, the margins of

error were too high for any meaningful conclusions to be drawn. As a result,

this experiment was unable to either rank predictors or disprove the EMH,

which is not surprising given the dominance of the EMH over the last fifty

years.

Searching by ‘FOREX’ or ‘foreign exchange’ in PyPI returned 86 results,

most of which were wrappers to trading APIs, and none were deemed suitable

for the task of investigating metrics. Therefore, Hokohoko was written and

used for the experiments, providing a consistent interface and consistent test

conditions, under which the hypotheses were tested. These experiments thus

also showed the application of the Hokohoko framework, and how it will enable

future challenges to the EMH to be quickly and extensively tested.



Chapter 9

Conclusion

This thesis has investigated the measurement of predictor performance as

applied to foreign exchange speculation. It outlined the development of key

ideas and techniques over the course of the last 120 years, and examined the

datasets and metrics used within a representative sample of the academic

corpus. In this examination two problems were identified: first, there was a

lack of consistency in the datasets used to test researchers’ algorithms; and

second, a large variety of metrics were used, most of which were either

inappropriate for or inappropriately applied to FOREX speculation. This

thesis then presented two solutions to these issues: a Python library,

Hokohoko, which provided a consistent dataset and interface for testing

FOREX prediction algorithms; and a new metric, Speculative Accuracy,

which it argued provides a more appropriate measure of usefulness with

regards to speculation. Hokohoko was then used to test a series of hypotheses

regarding the usefulness of various metrics, alongside Speculative Accuracy.

From these experiments a number of conclusions can be drawn:

• It was shown that there was no correlation between the observed

direction of foreign exchange rate movements and the maximum

profitability for the given epoch.

• None of the tested predictors were able to conclusively ‘beat’ Random

Walk. This suggests that the FOREX market is indeed efficient, and
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therefore correct prediction of future FOREX market movements is

difficult.

• For the purposes of assessing prediction performance for speculation,

Normalised Profits provides the best measure of usefulness, with

normalised Speculative Accuracy metrics, such as tanh(SA), coming a

close second.

• Correct Direction was shown to have less correlation with realised profits

than Speculative Accuracy. However, its correlation was higher than

expected, which tempers this thesis’ critique of papers using it.

• ϵhigh/low was shown to have the highest correlation with maximum

profits, suggesting it would be the best metric by which to train

predictors.

• ϵclose-based metrics were shown to have less correlation with realised

profits than either the normalised Speculative Accuracy metrics or

Correct Direction. They were also shown to have less correlation with

maximum profitability than ϵhigh/low. This strongly suggests that they

should not be used in application to FOREX speculation.

• None of the percentage-type metrics were shown to have any significant

correlation with either realised or maximum profitability. This strongly

suggests that they also should not be used for FOREX speculation.

Alongside these conclusions, this thesis also points towards a number of future

research opportunities:

• The analysis of the academic research was based on a subset of the

FOREX corpus, focusing on the most cited works. It is possible that

some significant contributions were missed, therefore future research

could expand upon this selection, particularly by increasing the

number of more recent works included.
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• This thesis used 512 overlapping Periods in the generation of its results.

It would be interesting for future research to investigate how the number

of Periods used affects the stability of the observed results.

• This thesis used two Symbols, GBPUSD and EURGBP, in drawing its

conclusions. Hokohoko provides the ability to test predictors across 50

different Symbols, and so this research could be expanded upon by using

all available Symbols.

• For the experiments, take_profit was set, but stop_loss was left

as None. Given the inability of all the tested predictors to outperform

Random Walk, this suggests that risk management may be more

important in FOREX speculation than predictor accuracy. Therefore,

there is scope for future research to investigate the relationship between

stop_losses, take_profits and realised or maximum profits.

• The experimental results in this thesis indicate that there is greater

than hypothesised correlation between Correct Direction and ϵclose with

regards to maximum profitability at the fixed interval of 1,440 minutes.

Future research could investigate the effect of differing interval lengths

on observed correlations.

• A number of comparative metrics were described in Chapter 4,

Measuring Foreign Exchange Predictions: Common Metrics. Future

work could expand upon this thesis by also testing those metrics’

correlation with realised and maximum profits.

• Another future project could be the addition of bootstrap testing to the

Hokohoko framework.

• Finally, Hokohoko was designed with the intention of being made open

source, and thus being available for other researchers to test their own

predictors. Therefore, future research could include a comparative study

which tests the most recently published predictors using Hokohoko.



Appendix A

Predictor Code Listing:

Example.py

"""

==========

Example.py

==========

This file is to show how a researcher may use the Hokohoko |

library. It assumes there is a file data.npz in the current

directory. Details on how to obtain the data file can be found in

Hokohoko's documentation.

Author: Neil Bradley

License: MIT License

"""

import multiprocessing as mp

import sys

from typing import List, Optional

from hokohoko import Hokohoko

from hokohoko.entities

import Bar, Config, Direction , Order, Predictor
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class Example(Predictor):

"""

This is an example Predictor. It makes a single random

prediction per Bar. It demonstrates:

1. How to inherit Predictor and override the appropriate

methods.

2. How to use self.random() to access fully -deterministic RNG.

3. How to access self.Account.

"""

def __init__(

self,

lock: mp.Lock,

parameters: Optional[str] = None,

debug: Optional[bool] = False

) -> None:

"""

Initialises the Predictor , saving the given parameters for

use in on_start. It provides the following instance

objects for use:

:param lock: An lock which is shared between all

concurrent Predictor processes.

Intended use is for shared access to

external resources , etc. Stored in

self.lock, and provided for custom

Predictors which might need access to

shared external resources.

:type lock: multiprocessing.Lock

:param parameters: User-customisable parameters , which

get stored in self.parameters.

:type parameters: str, optional

:param debug: Pass-through debug flag.

:type debug: bool, optional



133

Note that it is not strictly necessary to override , this

is just to show how to add your own data structures in.

"""

super().__init__(lock, parameters , debug)

self.exclamation = "I inherited Predictor!"

def __enter__(self) -> Predictor:

"""

Simple demonstration of overriding __enter__.

:returns: As per Python `with` specification , self.

:rtype: hokohoko.entities.Predictor

"""

print(self.exclamation)

return self

def __exit__(self, exc_type, exc_val, exc_tb):

"""

This has to be overridden , but does nothing in this

example (there are no resources to be released).

"""

pass

def on_start(self, bars: List[Bar]) -> None:

"""

Has to be overridden , the base class raises a

NotImplementedError otherwise.

:param bars: The list of Bars containing the opening

values for each currency pair. If set,

only the requested subset is provided.

:type bars: List[hokohoko.entities.Bar]

"""
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print(f"This is an example Bar: {bars[0]}")

def on_bar(self, bars: List[Bar]) -> None:

"""

This implementation picks a random direction for each

symbol. Predictors provide access to a deterministic RNG

source (themselves), so all random calls should be

self.random(), self.randint(), etc.

:param bars: The latest bar in the data. This is an

array of the selected currencies.

:type bars: List[hokohoko.entities.Bar]

"""

orders = []

for b in bars:

if self.random() > 0.5:

direction = Direction.BUY

take_profit = None

stop_loss = b.close - 0.001

else:

direction = Direction.SELL

take_profit = None

stop_loss = b.close + 0.001

orders.append(Order(

symbol_id=b.symbol_id ,

direction=direction ,

open_bid=None,

take_profit=None,

stop_loss=None

))

self.place_orders(orders)
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if __name__ == "__main__":

conf = Config(

predictor_class="Example",

assessors=[

"hokohoko.assessors.Accuracy --show-results True",

"hokohoko.assessors.AccountViewer"

],

data_parameters="data.npz",

data_subset="EURGBP",

period_count=32,

process_count=8

)

Hokohoko.run(conf)

sys.exit()



Appendix B

Assessor Code Listing

from collections import defaultdict

from typing import Iterable

import numpy as np

from hokohoko.entities import Assessor, Direction , Status

from hokohoko.assessors import Accuracy

from hokohoko.utils import convert_id_to_symbol

class Experiment5(Assessor):

"""

This assessor was used for Experiment 1 in Neil Bradley's

thesis. The aim of this experiment is to determine

the correlation between Directional metrics and Profits.

"""

def analyse(self, period_results: Iterable) -> None:

table = {}

print("# Period,Symbol,CD,"

"c_e,c_ae,c_e2,c_pe,c_ape,c_spe,"

"hl_e,hl_ae,hl_e2,hl_pe,hl_ape,hl_spe,"

"sa0,sa1,sa_10,sa_e,sa_tanh,wsa,"

"r_profit ,m_profit"
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)

for pr in period_results:

period, account = pr.get()

# 1. Find the weights per-Symbol within the run. (For

WSA)

maxes = defaultdict(float)

for h_id, history in account.history.items():

max_profit , max_loss , actual_profit = Accuracy.

calculate_rate_changes(history)

maxes[history.order.symbol_id] = max(maxes[history

.order.symbol_id], max_profit)

# 2. Now cycle through , printing out the stats.

for h_id, history in account.history.items():

key = (period, history.order.symbol_id)

if key not in table.keys():

table[key] = {}

for s in [

"CD","tp","tn","fp","fn",

"c_e", "c_ae", "c_e2", "c_pe", "c_ape", "

c_spe",

"hl_e", "hl_ae", "hl_e2", "hl_pe", "hl_ape

", "hl_spe",

"sa0", "sa1", "sa_10", "sa_e", "sa_tanh",

"sa_w",

"r_profit", "m_profit"

]:

table[key][s] = []

# Skip non-predictions.

if history.order.direction in(Direction.DONT_BUY ,

Direction.DONT_SELL):

continue
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max_profit , max_loss , actual_profit = Accuracy.

calculate_rate_changes(history)

# Correct Direction

if (

history.future.close > history.future.open and

history.order.direction == Direction.BUY

or

history.future.close < history.future.open and

history.order.direction == Direction.SELL

):

correct_direction = 1

else:

correct_direction = 0

# FM

if correct_direction == 1:

tp = 1

tn = 2

fp = 0

fn = 0

else:

tp = 0

tn = 1

fp = 1

fn = 1

# CLOSE

if history.order.take_profit is None or history.

order.direction in (Direction.DONT_BUY ,

Direction.DONT_SELL):

c_e = history.future.close - history.future.

open

else:

c_e = history.future.close - history.order.

take_profit
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c_pe = c_e / (history.future.close - history.

future.open)

c_ae = abs(c_e)

c_e2 = c_e * c_e

c_ape = abs(c_pe)

c_spe = c_pe * c_pe

# HIGH/LOW

if history.order.direction == Direction.BUY:

if history.order.take_profit is None:

hl_e = history.future.high - history.

future.close

else:

hl_e = history.future.high - history.order

.take_profit

hl_pe = hl_e / (history.future.high - history.

future.open)

elif history.order.direction == Direction.SELL:

if history.order.take_profit is None:

hl_e = history.future.close - history.

future.low

else:

hl_e = history.order.take_profit - history

.future.low

hl_pe = hl_e / (history.future.low - history.

future.open)

elif history.order.direction == Direction.DONT_BUY

:

hl_e = history.future.high - history.future.

open

hl_pe = hl_e / (history.future.high - history.

future.open)

else:

hl_e = history.future.open - history.future.

low

hl_pe = hl_e / (history.future.low - history.
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future.open)

hl_ae = abs(hl_e)

hl_e2 = hl_e * hl_e

hl_ape = abs(hl_pe)

hl_spe = hl_pe * hl_pe

# SA Variants

max_profit , max_loss , actual_profit = Accuracy.

calculate_rate_changes(history)

sa0 = Accuracy.calculate_accuracy(max_profit ,

max_loss , actual_profit , history.status)

sa1 = Accuracy.calculate_accuracy(max_profit ,

max_loss , actual_profit , history.status, 1)

sa_10 = Accuracy.calculate_accuracy(max_profit ,

max_loss , actual_profit , history.status, 2)

sa_e = Accuracy.calculate_accuracy(max_profit ,

max_loss , actual_profit , history.status, 3)

sa_tanh = Accuracy.calculate_accuracy(max_profit ,

max_loss , actual_profit , history.status, 4)

sa_w = Accuracy.calculate_accuracy(

max_profit , max_loss , actual_profit , history.

status, 5,

maxes[history.order.symbol_id] if maxes[

history.order.symbol_id] != 0 else 1

)

# Record Values

table[key]["CD"].append(correct_direction)

table[key]["tp"].append(tp)

table[key]["tn"].append(tn)

table[key]["fp"].append(fp)

table[key]["fn"].append(fn)

table[key]["c_e"].append(c_e)

table[key]["c_ae"].append(c_ae)

table[key]["c_e2"].append(c_e2)

table[key]["c_pe"].append(c_pe)
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table[key]["c_ape"].append(c_ape)

table[key]["c_spe"].append(c_spe)

table[key]["hl_e"].append(hl_e)

table[key]["hl_ae"].append(hl_ae)

table[key]["hl_e2"].append(hl_e2)

table[key]["hl_pe"].append(hl_pe)

table[key]["hl_ape"].append(hl_ape)

table[key]["hl_spe"].append(hl_spe)

table[key]["sa0"].append(sa0)

table[key]["sa1"].append(sa1)

table[key]["sa_10"].append(sa_10)

table[key]["sa_e"].append(sa_e)

table[key]["sa_tanh"].append(sa_tanh)

table[key]["sa_w"].append(sa_w)

table[key]["r_profit"].append(history.final_value

- history.initial_value)

table[key]["m_profit"].append(max_profit / history

.future.open)

print(

f'{period},{convert_id_to_symbol(history.order

.symbol_id)},'

f'{correct_direction},'

f'{c_e:.4g},{c_ae:.4g},{c_e2:.4g},{c_pe:.4g},{

c_ape:.4g},{c_spe:.4g},'

f'{hl_e:.4g},{hl_ae:.4g},{hl_e2:.4g},{hl_pe:.4

g},{hl_ape:.4g},{hl_spe:.4g},'

f'{sa0:.4g},'

f'{sa1:.4g},'

f'{sa_10:.4g},'

f'{sa_e:.4g},'

f'{sa_tanh:.4g},'

f'{sa_w:.4g},'

f'{table[key]["r_profit"][-1]:.4g},'

f'{table[key]["m_profit"][-1]*1000:.4g}'

)
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# 3. Now to put together the other statistics.

r_periods = {}

print("##### FM Stats:")

print("# Period,FM,r_profits ,m_profits")

for key in table.keys():

line = table[key]

if key[0] not in r_periods:

r_periods[key[0]] = {

"FM": [],

"r_profits": [],

"m_profits": []

}

fm = 2 * np.mean(line["tp"]) / (2 * np.mean(line["tp"

]) + np.mean(line["fp"]) + np.mean(line["fn"]))

# Here, we need the data to graph FM against.

print(

f'{key[0]},'

f'{fm:.4g},'

f'{np.sum(line["r_profit"]):.4g},'

f'{np.sum(line["m_profit"])*1000:.4g}'

)



Appendix C

Results Tables for Experiment 2

Table C.1: Correct Direction Rankings

GBPUSD Mean Median SD Rank(Mean) Rank(Median)
RW 0.5029 1.0000 0.5000 2 1
Random 0.5007 1.0000 0.5000 4 1
Yule1927 0.4990 0.0000 0.5000 9 7
Static 0.5000 0.0000 0.5000 8 7
YaoTan2000 0.4924 0.0000 0.4999 10 7
SAL_ES 0.5003 1.0000 0.5000 6 1
SAL_EO 0.5016 1.0000 0.5000 3 1
SAL_OS 0.5000 0.0000 0.5000 7 7
SAL_OO 0.5004 1.0000 0.5000 5 1
Bachelier1900 0.5172 1.0000 0.4997 1 1

EURGBP Mean Median SD Rank(Mean) Rank(Median)
RW 0.5031 1.0000 0.5000 1 1
Random 0.4998 0.0000 0.5000 5 4
Yule1927 0.5022 1.0000 0.5000 2 1
Static 0.4993 0.0000 0.5000 8 4
YaoTan2000 0.5007 1.0000 0.5000 3 1
SAL_ES 0.4998 0.0000 0.5000 6 4
SAL_EO 0.4980 0.0000 0.5000 9 4
SAL_OS 0.4999 0.0000 0.5000 4 4
SAL_OO 0.4997 0.0000 0.5000 7 4
Bachelier1900 0.4859 0.0000 0.4998 10 4
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Table C.2: F-measure Rankings

GBPUSD Mean Median SD Rank(Mean) Rank(Median)
RW 0.5740 0.5741 0.0293 2 2
Random 0.5717 0.5741 0.0382 6 2
Yule1927 0.5704 0.5707 0.0077 9 9
Static 0.5714 0.5714 0.0013 8 6
YaoTan2000 0.5636 0.5634 0.0317 10 10
SAL_ES 0.5717 0.5714 0.0018 5 6
SAL_EO 0.5729 0.5735 0.0173 3 4
SAL_OS 0.5714 0.5714 0.0020 7 6
SAL_OO 0.5718 0.5728 0.0022 4 5
Bachelier1900 0.5888 0.5948 0.0493 1 1

EURGBP Mean Median SD Rank(Mean) Rank(Median)
RW 0.5740 0.5741 0.0358 1 1
Random 0.5709 0.5714 0.0366 6 3
Yule1927 0.5736 0.5729 0.0075 2 2
Static 0.5707 0.5714 0.0014 7 3
YaoTan2000 0.5701 0.5664 0.0513 8 9
SAL_ES 0.5712 0.5714 0.0019 4 3
SAL_EO 0.5694 0.5694 0.0205 9 8
SAL_OS 0.5714 0.5714 0.0020 3 3
SAL_OO 0.5711 0.5714 0.0023 5 3
Bachelier1900 0.5557 0.5553 0.0461 10 10

Table C.3: Errorclose Rankings

GBPUSD Mean Median SD |Mean| |Median| Rank(|Mean|) Rank(|Median|)
RW 0.0000 0.0000 0.0119 0.0000 0.0000 1 1
Random -0.0002 -0.0002 0.0085 0.0002 0.0002 5 7
Yule1927 0.0000 0.0001 0.0131 0.0000 0.0001 2 5
Static -0.0002 -0.0001 0.0131 0.0002 0.0001 6 3
YaoTan2000 0.0000 0.0001 0.0094 0.0000 0.0001 3 2
SAL_ES -0.0003 -0.0002 0.0123 0.0003 0.0002 8 9
SAL_EO -0.0007 -0.0004 0.0198 0.0007 0.0004 10 10
SAL_OS -0.0001 -0.0001 0.0124 0.0001 0.0001 4 4
SAL_OO -0.0004 -0.0002 0.0125 0.0004 0.0002 9 8
Bachelier1900 -0.0003 -0.0002 0.0087 0.0003 0.0002 7 6

EURGBP Mean Median SD |Mean| |Median| Rank(|Mean|) Rank(|Median|)
RW 0.0000 0.0001 0.0064 0.0000 0.0001 1 6
Random 0.0001 0.0000 0.0046 0.0001 0.0000 5 4
Yule1927 -0.0001 0.0000 0.0072 0.0001 0.0000 4 3
Static 0.0001 0.0003 0.0110 0.0001 0.0003 6 9
YaoTan2000 -0.0006 -0.0007 0.0050 0.0006 0.0007 10 10
SAL_ES 0.0001 0.0000 0.0067 0.0001 0.0000 3 2
SAL_EO 0.0004 0.0002 0.0109 0.0004 0.0002 9 8
SAL_OS 0.0000 0.0000 0.0068 0.0000 0.0000 2 5
SAL_OO 0.0002 0.0001 0.0069 0.0002 0.0001 8 7
Bachelier1900 0.0002 0.0000 0.0044 0.0002 0.0000 7 1
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Table C.4: Absolute Errorclose Rankings

GBPUSD Mean Median SD |Mean| |Median| Rank(|Mean|) Rank(|Median|)
RW 0.0086 0.0068 0.0082 0.0086 0.0068 5 7
Random 0.0059 0.0046 0.0061 0.0059 0.0046 2 2
Yule1927 0.0091 0.0071 0.0094 0.0091 0.0071 8 8
Static 0.0109 0.0101 0.0074 0.0109 0.0101 9 9
YaoTan2000 0.0066 0.0051 0.0067 0.0066 0.0051 3 3
SAL_ES 0.0086 0.0067 0.0088 0.0086 0.0067 4 4
SAL_EO 0.0137 0.0106 0.0144 0.0137 0.0106 10 10
SAL_OS 0.0087 0.0067 0.0089 0.0087 0.0067 7 6
SAL_OO 0.0086 0.0067 0.0091 0.0086 0.0067 6 5
Bachelier1900 0.0059 0.0045 0.0064 0.0059 0.0045 1 1

EURGBP Mean Median SD |Mean| |Median| Rank(|Mean|) Rank(|Median|)
RW 0.0048 0.0037 0.0043 0.0048 0.0037 4 4
Random 0.0033 0.0026 0.0031 0.0033 0.0026 2 1
Yule1927 0.0051 0.0040 0.0050 0.0051 0.0040 8 8
Static 0.0101 0.0100 0.0043 0.0101 0.0100 10 10
YaoTan2000 0.0037 0.0029 0.0034 0.0037 0.0029 3 3
SAL_ES 0.0049 0.0038 0.0046 0.0049 0.0038 5 5
SAL_EO 0.0077 0.0061 0.0077 0.0077 0.0061 9 9
SAL_OS 0.0049 0.0038 0.0047 0.0049 0.0038 6 6
SAL_OO 0.0049 0.0039 0.0049 0.0049 0.0039 7 7
Bachelier1900 0.0033 0.0026 0.0030 0.0033 0.0026 1 1

Table C.5: Squared Errorclose Rankings

GBPUSD Mean Median SD |Mean| |Median| Rank(|Mean|) Rank(|Median|)
RW 1.00E-04 4.58E-05 7.00E-04 1.00E-04 4.58E-05 4 7
Random 7.26E-05 2.09E-05 4.52E-04 7.26E-05 2.09E-05 1 2
Yule1927 1.72E-04 4.99E-05 9.33E-04 1.72E-04 4.99E-05 8 8
Static 1.73E-04 1.03E-04 4.90E-04 1.73E-04 1.03E-04 9 9
YaoTan2000 8.76E-05 2.61E-05 4.72E-04 8.76E-05 2.61E-05 3 3
SAL_ES 1.50E-04 4.44E-05 8.45E-04 1.50E-04 4.44E-05 5 4
SAL_EO 3.94E-04 1.13E-04 2.71E-03 3.94E-04 1.13E-04 10 10
SAL_OS 1.53E-04 4.53E-05 7.85E-04 1.53E-04 4.53E-05 6 6
SAL_OO 1.58E-04 4.49E-05 1.04E-03 1.58E-04 4.49E-05 7 5
Bachelier1900 7.52E-05 2.01E-05 4.90E-04 7.52E-05 2.01E-05 2 1

EURGBP Mean Median SD |Mean| |Median| Rank(|Mean|) Rank(|Median|)
RW 4.09E-05 1.36E-05 1.07E-04 4.09E-05 1.36E-05 4 4
Random 2.10E-05 6.76E-06 7.51E-05 2.10E-05 6.76E-06 2 1
Yule1927 5.16E-05 1.64E-05 2.33E-04 5.16E-05 1.64E-05 8 8
Static 1.21E-04 1.00E-04 1.19E-04 1.21E-04 1.00E-04 10 10
YaoTan2000 2.50E-05 8.24E-06 8.00E-05 2.50E-05 8.24E-06 3 3
SAL_ES 4.52E-05 1.44E-05 1.84E-04 4.52E-05 1.44E-05 5 5
SAL_EO 1.18E-04 3.72E-05 5.67E-04 1.18E-04 3.72E-05 9 9
SAL_OS 4.63E-05 1.45E-05 2.09E-04 4.63E-05 1.45E-05 6 6
SAL_OO 4.82E-05 1.50E-05 2.66E-04 4.82E-05 1.50E-05 7 7
Bachelier1900 1.98E-05 6.76E-06 5.27E-05 1.98E-05 6.76E-06 1 1
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Table C.6: Percentage Errorclose Rankings

GBPUSD Mean Median SD |Mean| |Median| Rank(|Mean|) Rank(|Median|)
RW 1.2540 0.9886 39.3365 1.2540 0.9886 10 3
Random -0.4993 0.0000 0.5000 0.4993 0.0000 1 1
Yule1927 0.9371 1.0030 41.0665 0.9371 1.0030 6 9
Static 0.9959 0.8935 48.5536 0.9959 0.8935 7 2
YaoTan2000 0.9227 1.0090 15.6134 0.9227 1.0090 5 10
SAL_ES 0.8774 0.9944 37.2635 0.8774 0.9944 4 5
SAL_EO 0.5881 0.9891 78.5276 0.5881 0.9891 2 4
SAL_OS 1.1392 0.9986 38.2080 1.1392 0.9986 9 8
SAL_OO 0.8492 0.9974 38.3648 0.8492 0.9974 3 7
Bachelier1900 0.9962 0.9966 2.7324 0.9962 0.9966 8 6

EURGBP Mean Median SD |Mean| |Median| Rank(|Mean|) Rank(|Median|)
RW 1.0571 0.9885 25.5249 1.0571 0.9885 10 3
Random -0.5002 -1.0000 0.5000 0.5002 1.0000 1 8
Yule1927 1.0246 0.9812 29.2827 1.0246 0.9812 8 2
Static 0.9999 0.8027 58.1124 0.9999 0.8027 6 1
YaoTan2000 0.8671 0.9974 11.8158 0.8671 0.9974 2 5
SAL_ES 0.9746 0.9956 25.8203 0.9746 0.9956 5 4
SAL_EO 0.9063 1.0090 52.7497 0.9063 1.0090 3 10
SAL_OS 1.0317 0.9975 27.0312 1.0317 0.9975 9 6
SAL_OO 0.9658 0.9999 27.0207 0.9658 0.9999 4 7
Bachelier1900 1.0008 1.0020 2.8463 1.0008 1.0020 7 9

Table C.7: Absolute Percentage Errorclose Rankings

GBPUSD Mean Median SD |Mean| |Median| Rank(|Mean|) Rank(|Median|)
RW 5.6489 1.4210 38.9489 5.6489 1.4210 7 5
Random 0.4993 0.0000 0.5000 0.4993 0.0000 1 1
Yule1927 6.0440 1.5600 40.6301 6.0440 1.5600 8 8
Static 9.0508 2.4740 47.7130 9.0508 2.4740 9 10
YaoTan2000 2.7042 1.1020 15.4051 2.7042 1.1020 3 3
SAL_ES 5.5065 1.4510 36.8648 5.5065 1.4510 4 7
SAL_EO 10.7590 2.2280 77.7893 10.7590 2.2280 10 9
SAL_OS 5.5315 1.4130 37.8227 5.5315 1.4130 6 4
SAL_OO 5.5306 1.4240 37.9736 5.5306 1.4240 5 6
Bachelier1900 1.2341 1.0000 2.6335 1.2341 1.0000 2 2

EURGBP Mean Median SD |Mean| |Median| Rank(|Mean|) Rank(|Median|)
RW 4.8015 1.3960 25.0915 4.8015 1.3960 4 4
Random 0.5002 1.0000 0.5000 0.5002 1.0000 1 1
Yule1927 5.5419 1.5980 28.7717 5.5419 1.5980 8 8
Static 13.9706 4.0460 56.4169 13.9706 4.0460 10 10
YaoTan2000 2.4328 1.0910 11.5951 2.4328 1.0910 3 3
SAL_ES 4.9361 1.4750 25.3629 4.9361 1.4750 5 7
SAL_EO 9.3999 2.2760 51.9133 9.3999 2.2760 9 9
SAL_OS 4.9481 1.4290 26.5945 4.9481 1.4290 6 5
SAL_OO 4.9551 1.4500 26.5800 4.9551 1.4500 7 6
Bachelier1900 1.2563 1.0060 2.7431 1.2563 1.0060 2 2
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Table C.8: Squared Percentage Errorclose Rankings
GBPUSD Mean Median SD |Mean| |Median| Rank(|Mean|) Rank(|Median|)
RW 1,548.9600 2.0190 50,816.7300 1,548.9600 2.0190 7 5
Random 0.4993 0.0000 0.5000 0.4993 0.0000 1 1
Yule1927 1,687.3475 2.4320 60,312.2251 1,687.3475 2.4320 8 8
Static 2,358.0039 6.1200 40,765.1809 2,358.0039 6.1200 9 10
YaoTan2000 244.6292 1.2130 7,777.1655 244.6292 1.2130 3 3
SAL_ES 1,389.2622 2.1050 45,910.9165 1,389.2622 2.1050 4 7
SAL_EO 6,166.6787 4.9660 206,230.4594 6,166.6787 4.9660 10 9
SAL_OS 1,461.1516 1.9970 50,645.5558 1,461.1516 1.9970 5 4
SAL_OO 1,472.5458 2.0260 51,009.1962 1,472.5458 2.0260 6 6
Bachelier1900 8.4583 1.0000 210.1639 8.4583 1.0000 2 2

EURGBP Mean Median SD |Mean| |Median| Rank(|Mean|) Rank(|Median|)
RW 652.6592 1.9480 15,978.0661 652.6592 1.9480 4 4
Random 0.5002 1.0000 0.5000 0.5002 1.0000 1 1
Yule1927 858.5050 2.5530 22,649.4242 858.5050 2.5530 8 8
Static 3,377.1715 16.3700 46,276.8506 3,377.1715 16.3700 10 10
YaoTan2000 140.3675 1.1900 4,009.3983 140.3675 1.1900 3 3
SAL_ES 667.6850 2.1750 16,832.2668 667.6850 2.1750 5 7
SAL_EO 2,783.4095 5.1800 70,787.3584 2,783.4095 5.1800 9 9
SAL_OS 731.7236 2.0410 19,831.1263 731.7236 2.0410 7 5
SAL_OO 731.0164 2.1040 19,778.7327 731.0164 2.1040 6 6
Bachelier1900 9.1025 1.0110 245.5842 9.1025 1.0110 2 2

Table C.9: Errorhigh/low Rankings

GBPUSD Mean Median SD |Mean| |Median| Rank(|Mean|) Rank(|Median|)
RW 0.0001 0.0000 0.0083 0.0001 0.0000 4 2
Random 0.0060 0.0046 0.0062 0.0060 0.0046 10 10
Yule1927 -0.0008 -0.0007 0.0092 0.0008 0.0007 5 5
Static 0.0034 0.0023 0.0071 0.0034 0.0023 6 6
YaoTan2000 0.0054 0.0040 0.0073 0.0054 0.0040 8 7
SAL_ES 0.0000 -0.0002 0.0088 0.0000 0.0002 2 4
SAL_EO -0.0060 -0.0042 0.0142 0.0060 0.0042 9 9
SAL_OS 0.0000 0.0000 0.0091 0.0000 0.0000 3 1
SAL_OO 0.0000 0.0000 0.0092 0.0000 0.0000 1 3
Bachelier1900 0.0054 0.0041 0.0061 0.0054 0.0041 7 8

EURGBP Mean Median SD |Mean| |Median| Rank(|Mean|) Rank(|Median|)
RW 0.0001 0.0001 0.0045 0.0001 0.0001 4 3
Random 0.0035 0.0027 0.0035 0.0035 0.0027 9 9
Yule1927 -0.0004 -0.0004 0.0051 0.0004 0.0004 5 5
Static -0.0065 -0.0073 0.0038 0.0065 0.0073 10 10
YaoTan2000 0.0022 0.0015 0.0046 0.0022 0.0015 6 6
SAL_ES 0.0000 -0.0001 0.0049 0.0000 0.0001 3 4
SAL_EO -0.0033 -0.0024 0.0076 0.0033 0.0024 8 8
SAL_OS 0.0000 0.0000 0.0051 0.0000 0.0000 2 1
SAL_OO 0.0000 0.0000 0.0051 0.0000 0.0000 1 2
Bachelier1900 0.0030 0.0023 0.0030 0.0030 0.0023 7 7
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Table C.10: Absolute Errorhigh/low Rankings

GBPUSD Mean Median SD |Mean| |Median| Rank(|Mean|) Rank(|Median|)
RW 0.0053 0.0039 0.0064 0.0053 0.0039 3 5
Random 0.0060 0.0046 0.0062 0.0060 0.0046 9 8
Yule1927 0.0055 0.0039 0.0074 0.0055 0.0039 7 6
Static 0.0059 0.0059 0.0052 0.0059 0.0059 8 9
YaoTan2000 0.0045 0.0030 0.0064 0.0045 0.0030 1 1
SAL_ES 0.0053 0.0037 0.0070 0.0053 0.0037 2 2
SAL_EO 0.0093 0.0064 0.0123 0.0093 0.0064 10 10
SAL_OS 0.0054 0.0038 0.0073 0.0054 0.0038 5 3
SAL_OO 0.0054 0.0038 0.0074 0.0054 0.0038 4 3
Bachelier1900 0.0055 0.0041 0.0060 0.0055 0.0041 6 7

EURGBP Mean Median SD |Mean| |Median| Rank(|Mean|) Rank(|Median|)
RW 0.0030 0.0021 0.0035 0.0030 0.0021 2 3
Random 0.0035 0.0027 0.0035 0.0035 0.0027 8 8
Yule1927 0.0031 0.0022 0.0041 0.0031 0.0022 6 5
Static 0.0069 0.0074 0.0031 0.0069 0.0074 10 10
YaoTan2000 0.0028 0.0018 0.0042 0.0028 0.0018 1 1
SAL_ES 0.0030 0.0021 0.0039 0.0030 0.0021 3 2
SAL_EO 0.0052 0.0036 0.0065 0.0052 0.0036 9 9
SAL_OS 0.0031 0.0022 0.0040 0.0031 0.0022 5 4
SAL_OO 0.0030 0.0022 0.0041 0.0030 0.0022 4 6
Bachelier1900 0.0031 0.0023 0.0029 0.0031 0.0023 7 7

Table C.11: Squared Errorhigh/low Rankings

GBPUSD Mean Median SD |Mean| |Median| Rank(|Mean|) Rank(|Median|)
RW 6.89E-05 1.50E-05 5.64E-04 6.89E-05 1.50E-05 4 5
Random 7.49E-05 2.15E-05 4.95E-04 7.49E-05 2.15E-05 5 8
Yule1927 8.59E-05 1.53E-05 7.52E-04 8.59E-05 1.53E-05 9 6
Static 6.19E-05 3.53E-05 6.01E-04 6.19E-05 3.53E-05 2 9
YaoTan2000 6.19E-05 8.88E-06 7.21E-04 6.19E-05 8.88E-06 1 1
SAL_ES 7.70E-05 1.39E-05 7.14E-04 7.70E-05 1.39E-05 6 2
SAL_EO 2.38E-04 4.07E-05 2.02E-03 2.38E-04 4.07E-05 10 10
SAL_OS 8.21E-05 1.48E-05 7.92E-04 8.21E-05 1.48E-05 7 3
SAL_OO 8.39E-05 1.48E-05 8.36E-04 8.39E-05 1.48E-05 8 3
Bachelier1900 6.56E-05 1.71E-05 5.22E-04 6.56E-05 1.71E-05 3 7

EURGBP Mean Median SD |Mean| |Median| Rank(|Mean|) Rank(|Median|)
RW 2.07E-05 4.49E-06 1.82E-04 2.07E-05 4.49E-06 2 3
Random 2.40E-05 7.24E-06 1.46E-04 2.40E-05 7.24E-06 4 8
Yule1927 2.67E-05 4.74E-06 2.52E-04 2.67E-05 4.74E-06 8 5
Static 5.68E-05 5.43E-05 1.65E-04 5.68E-05 5.43E-05 9 10
YaoTan2000 2.56E-05 3.20E-06 2.95E-04 2.56E-05 3.20E-06 5 1
SAL_ES 2.37E-05 4.33E-06 2.23E-04 2.37E-05 4.33E-06 3 2
SAL_EO 6.95E-05 1.31E-05 4.54E-04 6.95E-05 1.31E-05 10 9
SAL_OS 2.56E-05 4.62E-06 2.51E-04 2.56E-05 4.62E-06 6 4
SAL_OO 2.64E-05 4.75E-06 2.71E-04 2.64E-05 4.75E-06 7 6
Bachelier1900 1.79E-05 5.43E-06 3.80E-05 1.79E-05 5.43E-06 1 7
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Table C.12: Percentage Errorhigh/low Rankings

GBPUSD Mean Median SD |Mean| |Median| Rank(|Mean|) Rank(|Median|)
RW 0.0172 0.0164 33.6777 0.0172 0.0164 1 5
Random 0.2821 0.0000 48.7025 0.2821 0.0000 9 1
Yule1927 -0.0280 0.0308 42.2894 0.0280 0.0308 3 8
Static -0.0739 -0.0089 47.4691 0.0739 0.0089 6 3
YaoTan2000 0.0727 -0.0249 15.8859 0.0727 0.0249 5 6
SAL_ES -0.2030 -0.0253 36.5699 0.2030 0.0253 7 7
SAL_EO -0.7300 -0.0352 70.7985 0.7300 0.0352 10 9
SAL_OS 0.0189 0.0063 35.7991 0.0189 0.0063 2 2
SAL_OO -0.2641 -0.0141 35.1154 0.2641 0.0141 8 4
Bachelier1900 0.0514 0.5136 4.8078 0.0514 0.5136 4 10

EURGBP Mean Median SD |Mean| |Median| Rank(|Mean|) Rank(|Median|)
RW -0.0637 0.0278 26.3006 0.0637 0.0278 4 6
Random -0.1995 0.0000 29.2183 0.1995 0.0000 6 1
Yule1927 -0.1211 -0.0244 29.1325 0.1211 0.0244 5 4
Static 0.4907 0.0483 52.7903 0.4907 0.0483 10 8
YaoTan2000 -0.3095 0.3533 7.7128 0.3095 0.3533 9 10
SAL_ES -0.0227 0.0029 25.4163 0.0227 0.0029 1 2
SAL_EO 0.2905 0.0275 57.5226 0.2905 0.0275 8 5
SAL_OS -0.0611 0.0070 25.5001 0.0611 0.0070 3 3
SAL_OO 0.2380 0.0356 30.0826 0.2380 0.0356 7 7
Bachelier1900 0.0549 0.2000 2.3533 0.0549 0.2000 2 9

Table C.13: Absolute Percentage Errorhigh/low Rankings

GBPUSD Mean Median SD |Mean| |Median| Rank(|Mean|) Rank(|Median|)
RW 4.1623 0.7547 33.4195 4.1623 0.7547 3 6
Random 6.5221 0.9905 48.2646 6.5221 0.9905 8 8
Yule1927 5.0022 0.7402 41.9925 5.0022 0.7402 7 2
Static 7.5076 1.1670 46.8717 7.5076 1.1670 9 10
YaoTan2000 2.1156 0.7426 15.7445 2.1156 0.7426 2 3
SAL_ES 4.3967 0.7214 36.3052 4.3967 0.7214 6 1
SAL_EO 8.9642 1.0310 70.2325 8.9642 1.0310 10 9
SAL_OS 4.3401 0.7427 35.5351 4.3401 0.7427 4 4
SAL_OO 4.3701 0.7525 34.8434 4.3701 0.7525 5 5
Bachelier1900 1.0643 0.9371 4.6888 1.0643 0.9371 1 7

EURGBP Mean Median SD |Mean| |Median| Rank(|Mean|) Rank(|Median|)
RW 3.7068 0.7429 26.0382 3.7068 0.7429 6 4
Random 5.3057 0.9932 28.7332 5.3057 0.9932 8 8
Yule1927 3.8548 0.7267 28.8766 3.8548 0.7267 7 2
Static 11.2824 2.7540 51.5729 11.2824 2.7540 10 10
YaoTan2000 1.5178 0.7496 7.5683 1.5178 0.7496 2 6
SAL_ES 3.3990 0.7192 25.1880 3.3990 0.7192 3 1
SAL_EO 6.9816 1.0020 57.0981 6.9816 1.0020 9 9
SAL_OS 3.6787 0.7337 25.2334 3.6787 0.7337 5 3
SAL_OO 3.5581 0.7457 29.8724 3.5581 0.7457 4 5
Bachelier1900 1.0245 0.9397 2.1193 1.0245 0.9397 1 7
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Table C.14: Squared Percentage Errorhigh/low Rankings
GBPUSD Mean Median SD |Mean| |Median| Rank(|Mean|) Rank(|Median|)
RW 1,134.2079 0.5696 50,463.1681 1,134.2079 0.5696 3 6
Random 2,371.9171 0.9812 87,332.3657 2,371.9171 0.9812 9 8
Yule1927 1,788.4704 0.5478 64,009.4300 1,788.4704 0.5478 7 2
Static 2,253.2070 1.3610 40,900.9738 2,253.2070 1.3610 8 10
YaoTan2000 252.3706 0.5514 7,161.3698 252.3706 0.5514 2 3
SAL_ES 1,337.4032 0.5205 43,297.2318 1,337.4032 0.5205 6 1
SAL_EO 5,013.1543 1.0630 147,999.1779 5,013.1543 1.0630 10 9
SAL_OS 1,281.5799 0.5517 57,543.2245 1,281.5799 0.5517 5 4
SAL_OO 1,233.1040 0.5663 38,775.0841 1,233.1040 0.5663 4 5
Bachelier1900 23.1185 0.8782 1,386.1664 23.1185 0.8782 1 7

EURGBP Mean Median SD |Mean| |Median| Rank(|Mean|) Rank(|Median|)
RW 691.7366 0.5519 24,420.6707 691.7366 0.5519 5 4
Random 853.7514 0.9865 21,837.8995 853.7514 0.9865 7 8
Yule1927 848.7073 0.5280 79,348.5200 848.7073 0.5280 6 2
Static 2,786.7089 7.5830 42,497.7066 2,786.7089 7.5830 9 10
YaoTan2000 59.5818 0.5619 1,505.1834 59.5818 0.5619 2 6
SAL_ES 645.9464 0.5172 72,231.2094 645.9464 0.5172 3 1
SAL_EO 3,309.0520 1.0040 400,183.1173 3,309.0520 1.0040 10 9
SAL_OS 650.2529 0.5383 24,155.2589 650.2529 0.5383 4 3
SAL_OO 905.0018 0.5560 127,367.6878 905.0018 0.5560 8 5
Bachelier1900 5.5403 0.8830 107.8698 5.5403 0.8830 1 7

Table C.15: Speculative Accuracy Results

GBPUSD Mean Median SD Rank(Mean) Rank(Median)
RW -4.9823 0.1808 46.7639 2 6
Random -5.4203 0.0041 47.2621 8 10
Yule1927 -5.3350 0.1963 49.2195 6 2
Static -5.4924 0.0372 48.0993 9 9
YaoTan2000 -5.4096 0.1834 54.3293 7 5
SAL_ES -5.2780 0.2127 48.3546 5 1
SAL_EO -5.6870 0.1466 50.0570 10 7
SAL_OS -5.2604 0.1951 48.4494 4 3
SAL_OO -5.2342 0.1875 48.3087 3 4
Bachelier1900 -3.4028 0.0561 38.0326 1 8

EURGBP Mean Median SD Rank(Mean) Rank(Median)
RW -3.8681 0.1923 27.4897 3 4
Random -4.2246 0.0026 28.0373 10 10
Yule1927 -3.9649 0.2120 29.5461 7 1
Static -4.1669 0.0040 28.7982 9 9
YaoTan2000 -3.4694 0.1828 30.5779 2 6
SAL_ES -3.9533 0.2047 29.1606 6 2
SAL_EO -4.1208 0.1402 29.6785 8 7
SAL_OS -3.8825 0.2029 29.1087 4 3
SAL_OO -3.9007 0.1860 28.9130 5 5
Bachelier1900 -2.8164 0.0537 49.5507 1 8
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Table C.16: Speculative Accuracy-1 Results

GBPUSD Mean Median SD Rank(Mean) Rank(Median)
RW -4.9836 0.1808 46.7638 2 6
Random -5.4214 0.0041 47.2620 8 10
Yule1927 -5.3361 0.1963 49.2194 6 2
Static -5.4936 0.0372 48.0991 9 9
YaoTan2000 -5.4107 0.1834 54.3292 7 5
SAL_ES -5.2792 0.2127 48.3545 5 1
SAL_EO -5.6882 0.1466 50.0569 10 7
SAL_OS -5.2616 0.1951 48.4493 4 3
SAL_OO -5.2354 0.1875 48.3086 3 4
Bachelier1900 -3.4035 0.0561 38.0326 1 8

EURGBP Mean Median SD Rank(Mean) Rank(Median)
RW -3.8692 0.1923 27.4895 3 4
Random -4.2256 0.0026 28.0372 10 10
Yule1927 -3.9658 0.2120 29.5460 7 1
Static -4.1679 0.0040 28.7981 9 9
YaoTan2000 -3.4704 0.1828 30.5778 2 6
SAL_ES -3.9543 0.2047 29.1605 6 2
SAL_EO -4.1218 0.1402 29.6784 8 7
SAL_OS -3.8835 0.2029 29.1086 4 3
SAL_OO -3.9017 0.1860 28.9129 5 5
Bachelier1900 -2.8177 0.0537 49.5506 1 8
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Table C.17: Symlog10(Speculative Accuracy) Results

GBPUSD Mean Median SD Rank(Mean) Rank(Median)
RW -0.2137 0.1808 1.0218 3 6
Random -0.3349 0.0041 1.0912 10 10
Yule1927 -0.2417 0.1963 1.0527 7 2
Static -0.3253 0.0372 1.0962 9 9
YaoTan2000 -0.1222 0.1834 0.9508 2 5
SAL_ES -0.2198 0.2127 1.0420 6 1
SAL_EO -0.2761 0.1466 1.0695 8 7
SAL_OS -0.2144 0.1951 1.0328 5 3
SAL_OO -0.2143 0.1875 1.0329 4 4
Bachelier1900 -0.0011 0.0561 0.6018 1 8

EURGBP Mean Median SD Rank(Mean) Rank(Median)
RW -0.1933 0.1923 1.0148 4 4
Random -0.3291 0.0026 1.0744 10 10
Yule1927 -0.2131 0.2120 1.0363 7 1
Static -0.3263 0.0040 1.0762 9 9
YaoTan2000 -0.0876 0.1828 0.8992 2 6
SAL_ES -0.2094 0.2047 1.0251 6 2
SAL_EO -0.2674 0.1402 1.0459 8 7
SAL_OS -0.1859 0.2029 1.0165 3 3
SAL_OO -0.2033 0.1860 1.0166 5 5
Bachelier1900 0.0078 0.0537 0.5685 1 8
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Table C.18: Symloge(Speculative Accuracy) Results

GBPUSD Mean Median SD Rank(Mean) Rank(Median)
RW -0.4719 0.1808 1.5399 3 6
Random -0.6346 0.0041 1.6077 10 10
Yule1927 -0.5167 0.1963 1.5772 7 2
Static -0.6252 0.0372 1.6152 9 9
YaoTan2000 -0.3467 0.1834 1.4780 2 5
SAL_ES -0.4888 0.2127 1.5692 6 1
SAL_EO -0.5619 0.1466 1.5989 8 7
SAL_OS -0.4774 0.1951 1.5574 4 3
SAL_OO -0.4777 0.1875 1.5571 5 4
Bachelier1900 -0.0921 0.0561 1.0052 1 8

EURGBP Mean Median SD Rank(Mean) Rank(Median)
RW -0.4441 0.1923 1.5158 4 4
Random -0.6188 0.0026 1.5720 10 10
Yule1927 -0.4726 0.2120 1.5352 7 1
Static -0.6154 0.0040 1.5718 9 9
YaoTan2000 -0.2858 0.1828 1.3812 2 6
SAL_ES -0.4666 0.2047 1.5278 6 2
SAL_EO -0.5382 0.1402 1.5462 8 7
SAL_OS -0.4345 0.2029 1.5155 3 3
SAL_OO -0.4552 0.1860 1.5161 5 5
Bachelier1900 -0.0719 0.0537 0.9387 1 8
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Table C.19: tanh(Speculative Accuracy) Results

GBPUSD Mean Median SD Rank(Mean) Rank(Median)
RW -0.0484 0.2348 0.8239 6 6
Random -0.1689 0.0053 0.9068 10 10
Yule1927 -0.0705 0.2544 0.8558 7 2
Static -0.1572 0.0488 0.9107 9 9
YaoTan2000 0.0396 0.2381 0.7292 2 5
SAL_ES -0.0470 0.2752 0.8410 5 1
SAL_EO -0.1050 0.1911 0.8722 8 7
SAL_OS -0.0458 0.2530 0.8315 3 3
SAL_OO -0.0458 0.2433 0.8320 4 4
Bachelier1900 0.0811 0.0736 0.4062 1 8

EURGBP Mean Median SD Rank(Mean) Rank(Median)
RW -0.0326 0.2495 0.8261 4 4
Random -0.1704 0.0034 0.9006 10 10
Yule1927 -0.0510 0.2743 0.8537 7 1
Static -0.1682 0.0053 0.9035 9 9
YaoTan2000 0.0599 0.2373 0.7031 2 6
SAL_ES -0.0463 0.2651 0.8383 6 2
SAL_EO -0.1074 0.1829 0.8659 8 7
SAL_OS -0.0258 0.2628 0.8297 3 3
SAL_OO -0.0435 0.2414 0.8304 5 5
Bachelier1900 0.0821 0.0705 0.3941 1 8



155

Table C.20: Weighted Speculative Accuracy

GBPUSD Mean Median SD Rank(Mean) Rank(Median)
RW -0.0020 0.0191 0.1680 5 6
Random -0.0015 0.0003 0.2160 2 10
Yule1927 -0.0027 0.0208 0.1767 9 2
Static -0.0019 0.0027 0.2047 4 9
YaoTan2000 -0.0021 0.0204 0.1355 8 3
SAL_ES -0.0020 0.0225 0.1710 7 1
SAL_EO -0.0031 0.0145 0.1923 10 7
SAL_OS -0.0016 0.0197 0.1705 3 5
SAL_OO -0.0020 0.0198 0.1706 6 4
Bachelier1900 0.0001 0.0059 0.0745 1 8

EURGBP Mean Median SD Rank(Mean) Rank(Median)
RW 0.0013 0.0208 0.1690 4 6
Random -0.0007 0.0001 0.2136 8 10
Yule1927 0.0028 0.0235 0.1741 1 2
Static -0.0006 0.0003 0.2123 7 9
YaoTan2000 0.0016 0.0218 0.1289 3 4
SAL_ES -0.0002 0.0235 0.1689 6 1
SAL_EO -0.0010 0.0143 0.1863 9 7
SAL_OS 0.0026 0.0227 0.1675 2 3
SAL_OO 0.0004 0.0212 0.1674 5 5
Bachelier1900 -0.0011 0.0057 0.0742 10 8
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