
Multi-label Classification using Ensembles of Pruned Sets

Jesse Read, Bernhard Pfahringer, Geoff Holmes
Department of Computer Science

University of Waikato
Hamilton, New Zealand

jmr30,bernhard,geoff@cs.waikato.ac.nz

Abstract

This paper presents a Pruned Sets method (PS) for multi-
label classification. It is centred on the concept of treating
sets of labels as single labels. This allows the classifica-
tion process to inherently take into account correlations be-
tween labels. By pruning these sets, PS focuses only on
the most important correlations, which reduces complexity
and improves accuracy. By combining pruned sets in an
ensemble scheme (EPS), new label sets can be formed to
adapt to irregular or complex data. The results from exper-
imental evaluation on a variety of multi-label datasets show
that [E]PS can achieve better performance and train much
faster than other multi-label methods.

1 Introduction

The traditional data mining task of single-label clas-
sification, also known as multi-class classification, as-
signs each instance d a single label l from a previ-
ously known finite set of labels L. A single-label
dataset D is composed of n instance-classification ex-
amples (d0, l0), (d1, l1), · · · , (dn, ln). In a multi-label
classification task, each instance is assigned a sub-
set of labels S ⊆ L. A multi-label dataset D is
therefore composed of n instance-classification examples
(d0, S0), (d1, S1), · · · , (dn, Sn). The multi-label problem
is receiving increased attention and is relevant to many do-
mains such as text classification [7, 4, 5], scene classifica-
tion [8] and genomics [12, 10, 8].

All multi-label problems can be transformed into one
or more single-label problems via some problem transfor-
mation (PT) [8]. In this fashion, any kind of single-label
classifier can be used: single-label classifications are made
and then transformed back into a multi-label representation.
There are many reliable single-label classifiers, all of which
can be employed under a PT method for multi-label classi-
fication. Some of the most successful PT approaches have

worked with Support Vector Machines (SVMs) [4], Naive
Bayes [6] and k Nearest Neighbor [12].

It is also possible to modify an existing single-label al-
gorithm for the purpose of multi-label classification. Much
of the literature is focussed on modifications to decision
trees [10] and AdaBoost [7]. Essentially, these modifica-
tions simply employ some form of PT method internally
and can often be generalised to any single-label classi-
fier. Hence all solutions to multi-label classification involve
some form of PT method.

There are essentially three fundamental PT methods[8].
They will be referred to in this paper as the Binary Method
(BM), the Ranking Method (RM) and the Combination
Method (CM).

The most widely used approach, the Binary Method
(BM) [4, 12], learns |L| binary classifiers B0, · · · , B|L|.
Each classifier Bj is responsible for predicting the 0/1 as-
sociation for each label lj ∈ L.

Another commonly employed method, the Ranking
Method (RM) [7], relies on a single-label classifier giving
a probability distribution over all labels. The probabilities
define a ranking for the labels. A threshold is used to deter-
mine the final subset of labels from this ranking.

Both BM and RM suffer from the label independence
assumption, and fail to take advantage of any relationships
between labels. This means they both may compose label
sets whose elements would never co-occur in practise or un-
usually sized sets. Performance suffers accordingly.

The Combination Method (CM) [9] creates a single-label
problem simply by treating each instance’s label set Si as
an atomic label l′i. For example, the multi-label set {a, c, d}
would become a single label acd. Hence the set of all dis-
tinct multi-label sets is transformed into a set of possible
single labels L′ to be considered by the single-label classi-
fier.

CM overcomes the label independence problem, but suf-
fers when labelling is very variable and many label combi-
nations are unique or found infrequently in the dataset. This
produces an overwhelming and imbalanced selection for the

2008 Eighth IEEE International Conference on Data Mining

1550-4786/08 $25.00 © 2008 IEEE

DOI 10.1109/ICDM.2008.74

995

2008 Eighth IEEE International Conference on Data Mining

1550-4786/08 $25.00 © 2008 IEEE

DOI 10.1109/ICDM.2008.74

995

single-label classifier. A second crucial disadvantage is that
CM can only classify examples with label sets found in the
training set and thus new combinations cannot be formed.

An ensemble method for multi-label classification was
recently pioneered by Tsoumakas and Vlahavas in a sys-
tem called RAKEL (RAndom K-labEL subsets) [9]. For
m iterations of the training data, RAKEL draws a random
subset of size k from all labels L and trains a CM classifier
using these labels. The authors use SVMs as the internal
single-label classifier. A voting process using a threshold
t determines the final classification set. Using appropriate
values of m, k and t, RAKEL improves on BM and CM.

The following section presents the PS method. PS is
a new method for multi-label classification that addresses
the limitations of existing methods. It is designed to be
fast and to feature low error rates over a wide range of
multi-labelling scenarios. In later sections, PS is empiri-
cally evaluated and compared with the existing methods just
described.

2 Pruning Sets

The motivation behind PS is to capitalise on the most im-
portant label relationships within a multi-label dataset. By
pruning away infrequently occurring label sets, much un-
necessary and detrimental complexity is avoided. A post-
pruning step breaks up the pruned sets into more frequently
occurring subsets, and is able to reintroduce pruned in-
stances into the data, ensuring minimal information loss.
The pruning operation is controlled by a parameter p which
determines how often a label combination must occur for it
not to be pruned. The PS method consists of the following
phases:

Initialisation: D is the multi-label training set. A new
empty training set D′ is created to hold the final pruned
training set. An empty set L′ is also created to store la-
bel sets with counts of their occurrences in D.

Phase 1. Consider each label set Si from each training ex-
ample (di, Si) ∈ D. If (Si, c) can be found in L′ for
any count of c, then c is incremented by 1, otherwise a
new pair (Si, 1) is added to L′.

Phase 2. The pruning parameter p is now considered.
Pruning is done via exclusion from the set D′. Only
training examples (di, Si) ∈ D where (Si, c) ∈ L′ for
c > p are added directly to D′. The rejected (pruned)
examples are passed on to Phase 3.

Phase 3. Training examples which were rejected by the
pruning parameter at Phase 2 can be reintroduced,
along with information about their label relation-
ships. This is done by decomposing each Si

(from each rejected example (di, Si)) into subsets
si0, si1, · · · , sin where each (sij , c) ∈ L′ for c >
p. These subsets are used to form new examples:
(di, si0), (di, si1), · · · , (di, sin) which may then be
added to D′. This is discussed below.

Phase 4. Finally a single-label representation is formed
from D′ using a training procedure like the one used
for CM. This preserves the core label relationships in
the form of combinations within data upon which any
single-label classifier can be employed.

In Phase 3, pruned instances are reintroduced into the
training in the form of new examples with smaller and more
commonly found label sets. This preserves the example and
information about its label set, however it is not beneficial to
make new examples from every possible label subset. Aside
from the obvious increased size of the training set, the aver-
age number of labels per instance becomes lower which can
in turn cause too few labels to be predicted at classification
time.

Hence a strategy is necessary to balance the trade off be-
tween preserving information and adding too many exam-
ples with smaller label sets. We present two such strategies
for selecting label subsets to add. Each strategy has a pa-
rameter b. Recalling that in Phase 3, that for each Si ∈ D
we generate every subset sij ⊂ Si where (sij , c) ∈ L′ and
c > p. The strategies are (A): to rank these subsets firstly
by the number of labels they contain and secondly by count
c, then keep the top b ranked subsets — or — (B): to keep
all subsets of size greater than b.

2.1 Ensembles of Pruned Sets

PS, as described so far, functions as a standalone method
and in many domains improves over the other methods.
However, it can not yet create new multi-label sets which
have not been seen in the training data. This presents a prob-
lem when working with datasets where labelling is particu-
larly irregular or complex. A general and flexible method is
to combine the results of several classifiers in an ensemble.

We propose an ensemble of PS (EPS). PS is particularly
suited to an ensemble due to its fast build times and, ad-
ditionally, the ensemble counters any over-fitting effects of
the pruning process and allows the creation of new label sets
at classification time.

The build phase of EPS is straightforward. Over m iter-
ations, a subset of the training set (we use 63%) is sampled
and a PS classifier with relevant parameters is trained upon
this subset (for a total of m classifiers).

The voting classification scheme, detailed in Figure 1,
is unique to the multi-label domain. Under a threshold t,
different multi-label predictions are combined into a final
prediction. This final label set prediction may not have been

996996

CLASSIFY(test instance d,classifiers C0···m,threshold t)
1 v ← (0, 0, 0, · · · , 0) � vector of size |L|
2 for i← 0 to m
3 do
4 w ← Ci.classify(d)
5 v ← w + v
6 for j ← 0 to |L|
7 do Y [j]← (v[j] > t) ? 1 : 0
8 return Y

Figure 1. The classification phase of EPS.

known to any of the individual PS models, allowing greater
classification potential.

3 Experimental Evaluation

In this section the performance of PS is demonstrated
in an empirical comparison against the three base problem
transformation methods as well as the RAKEL algorithm
mentioned in Section 1. First we will outline some multi-
label evaluation measures, and present a collection of multi-
label datasets. Then the experimental process is detailed,
and the results presented and discussed.

3.1 Evaluation Measures

A multi-label classifier will produce a label subset Yi ⊆
L as a classification for an instance di, which can be com-
pared to the true classification Si ⊆ L to evaluate perfor-
mance.

Measuring accuracy by evaluating each label separately
(|L| × |D| binary problems) can be overly lenient consider-
ing that usually almost all labels are irrelevant for any given
example. On the other hand, evaluating accuracy based on
the proportion of correctly labelled examples (where an ex-
ample is correct only when its label set is an exact match)
can be overly harsh.

We use the accuracy measure defined in [8]. Given a
classified multi-label test set D:

Acc(D) =
1
|D|

|D|∑

i=1

|Si ∩ Yi|
|Si ∪ Yi|

We also consider the F1 measure common to information
retrieval. Where pi and ri are the precision and recall of the
predicted labels Yi from the true labels Si for each instance
di ∈ D:

F1(D) =
1
|D|

|D|∑

i=1

2× pi × ri

pi + ri

Table 1. A collection of multi-label datasets.
|D| |L| LCard(D) PDist(D)

Scene 2407 6 1.07 0.006
Medical 978 45 1.25 0.096

Yeast 2417 14 4.24 0.082
Enron 1702 53 3.38 0.442

Reuters 6000 103 1.46 0.147

We also use Hamming loss [8]; the symmetrical differ-
ence between Yi and Si averaged over all test examples:

Hloss(D) = 1− 1
|D|

|D|∑

i=1

|Si ⊕ Yi|
|L|

3.2 Datasets

For these experiments we have collected a variety of
datasets from different domains. Table 1 displays their as-
sociated statistics. Label Cardinality [8] is a standard mea-
sure of “multi-labelled-ness”; the average number of labels
relevant to each instance; defined for a dataset D as:

LCard(D) =
∑|D|

i=1 |Si|
|D|

We present also a measure for the Proportion of Distinct
label combinations. This measure quantifies the number of
distinct label subsets relative to the total number of exam-
ples. It is useful for judging the complexity or “regularity”
of a labelling scheme. For D:

PDist(D) =
|{S|∃(d, S) ∈ D}|

|D|
The Medical dataset [2] is composed of documents with

a free-text summary of patient symptom histories and prog-
noses which are used to predict insurance codes. The Yeast
data [9] relates to protein classification. Scene [9] relates to
the classification of still scenes. Enron is a subset of the En-
ron email corpus [1] labelled by [3]. Reuters is a subset of
the Reuters RCV1 dataset [5]. The text datasets (Medical,
Enron, and Reuters) were all parsed into word frequency
vectors that can be obtained by request from the authors.

3.3 Experimental Setup

All experiments presented in this paper were carried out
using the WEKA [11] framework. In every case SVMs are
employed as the single-label classifier. Each method is eval-
uated by 5× 2 fold cross validation (CV) on each dataset.

For consistency, the number of iterations (m) is set to 10
for all ensemble methods. All other parameters are tuned

997997

on the training data using internal 5 fold CV, as are the
thresholds. Parameters are tuned first and then thresholds
secondly in the fashion described below.

EPS finds its optimal parameters using a standalone PS
model. RAKEL, which needs a threshold to run, is given
the initial value of 0.5 (as suggested by its authors) which it
later adjusts as described below.

During tuning, the values of the parameters were sam-
pled in order of the theoretical complexity they added to
each algorithm. For example RAKEL’s k parameter was
incremented from 2 (the minimum value), whereas the p
parameter for PS was decremented from 5 (higher values
are not likely to improve accuracy). The internal CV for
trialling each parameter value was aborted if it took longer
than one hour.

As detailed in the RAKEL paper, increments of parame-
ter values of k were 2 when |L| > 14, and 1 otherwise. The
PS method requires a strategy parameter s, denoted by Ab

for strategy A and Bb for strategy B. Values of 1, 2, 3 for
parameter b are examined in both cases.

Once parameter values have been selected, thresholds
are adjusted. This is also done using 5× CV but, in this
case, each fold is tested in a two stage process: the first
stage finds and assigns the best threshold t to the nearest
0.1, and the second stage finds and assigns the best value
to the nearest 0.01 within the range t ± 0.05. The average
taken over the five folds produces the final value of t.

It is worth noting that the optimal parameters and thresh-
olds chosen for all algorithms generally tended to be opti-
mal, or close to optimal, within the range of values they
were able to test.

All experiments were carried out on AMD Athlon(tm)
64 CPUs at 2 GHz with 1 gigabyte of memory.

3.4 Results

Tables 2, 3 and 4 show the full evaluation results in-
cluding means and standard deviations averaged over all
rounds. Arrows show significance according to a paired t-
test against the CM method which is most relevant to [E]PS
and RAKEL.

The most frequent parameter configurations and the av-
erage thresholds discovered by the tuning phases are pre-
sented in Table 6.

The average build times are displayed (in seconds) in Ta-
ble 5. These times represent only the time taken to build the
complete model for the test data only and do not include the
internal parameter and threshold tuning.

In order to fully examine the complexity of the parameter
ranges, all the methods were also timed on a 50/50 train/test
split of the Reuters dataset. This dataset was chosen specif-
ically due to its high |D| and |L|. In this scenario [E]PS and
RAKEL were left to try the full range of values for their re-

spective p and k parameters. The methods either completed
or ran out of memory (denoted by DNF). A range of results
from this experiment is displayed in Table 7.

4 Discussion

Both PS and EPS improve consistently on the standard
methods across all measures of evaluation. The improve-
ment is most pronounced on the Yeast and Enron datasets
which have a relatively high label cardinality and are there-
fore likely to contain more multi-label relationships.

As expected, PS performs best in an ensemble scheme
(EPS), which allows the formation of new label sets and also
helps prevent against over-fitting. In terms of F1 measure
(Table 3) EPS is statistically superior to CM on all datasets
except Medical (where the difference is insignificant). It
also performs better than state-of-the-art RAKEL.

Standalone PS still performs very competitively overall
and the times in Table 5 indicate its advantages for fast clas-
sification, even when compared to the naive methods BM
and RM.

An interesting feature of standalone PS is that it performs
relatively better in terms of accuracy than in F1 measure (al-
though not always statistically significant). This is because
PS always prunes away and divides up the most infrequently
occurring label sets which also tend to contain the most la-
bels. At classification time, this translates into high preci-
sion at the cost of recall and hence the sub-optimal F1 statis-
tic. However, in many real world scenarios, a consistent em-
phasis on precision and accuracy is more important than an
optimum trade-off between precision and recall. This trend
is avoided under an ensemble scheme where new combina-
tions are formed and precision and recall can be governed
by the threshold.

The complexity of RAKEL is one of its main disadvan-
tages. Although in some cases its average final build times
shown in Table 5 are less than those for EPS, this is mis-
leading. Unlike EPS, which can tune parameters on a single
model (of PS), RAKEL’s full ensemble must be built to trial
each parameter setting for each fold of internal CV. Param-
eter tuning for RAKEL is therefore much more expensive
and is often terminated prematurely according to the condi-
tions outlined in Section 3.3. In other words, it is computa-
tionally expensive and sometimes infeasible for multi-label
methods like RAKEL to discover optimal values for their
parameters.

In Table 7 RAKEL runs out of memory when K = 62
after taking about 6 hours when K = 61. PS completes
with its most time-expensive p value (1) in about 4 minutes
and takes only six times longer in EPS’s ensemble scheme.
RAKEL is computationally limited to a smaller parameter
range and this explains its poor accuracy and F1 measure
on Reuters.

998998

Table 2. Accuracy.

D CM BM RM PS EPS RAKEL
Scene 71.81±1.22 58.28±0.92↘ 71.72±0.98 71.93±1.08 73.80±0.95 71.58±0.89
Yeast 51.98±0.93 49.64±0.88↘ 51.95±0.62 52.82±1.30 55.03±0.93↗ 54.49±0.98↗
Medical 74.71±1.32 73.00±1.08 72.71±1.56 74.63±1.51 74.45±2.28 72.55±2.32
Enron 41.02±1.08 38.64±1.05 27.22±0.31↘ 42.15±0.81 44.09±0.90↗ 42.98±0.63
Reuters 49.17±0.67 31.91±0.76↘ 49.08±0.59 49.83±0.59 49.80±0.59 31.80±0.29↘

↗,↘ statistically significant improvement or degradation

Table 3. F1 measure.

D CM BM RM PS EPS RAKEL
Scene 0.729±0.01 0.671±0.01↘ 0.724±0.01 0.730±0.01 0.752±0.01↗ 0.735±0.01
Medical 0.767±0.01 0.791±0.01↗ 0.743±0.01 0.766±0.02 0.764±0.02 0.784±0.01
Yeast 0.633±0.01 0.630±0.01 0.649±0.01↗ 0.643±0.01 0.665±0.01↗ 0.664±0.01↗
Enron 0.502±0.01 0.504±0.01 0.335±0.00↘ 0.520±0.01 0.543±0.01↗ 0.543±0.01↗
Reuters 0.482±0.01 0.421±0.01↘ 0.485±0.00 0.496±0.00 0.499±0.01↗ 0.418±0.00↘

↗,↘ statistically significant improvement or degradation

Table 4. Hamming loss.

D CM BM RM PS EPS RAKEL
Scene 0.096±0.004 0.111±0.003↘ 0.095±0.003 0.095±0.004 0.090±0.003 0.098±0.004
Medical 0.012±0.001 0.011±0.000 0.013±0.001 0.012±0.001 0.013±0.001 0.012±0.001
Yeast 0.213±0.005 0.202±0.005↗ 0.212±0.009 0.209±0.007 0.211±0.005 0.217±0.008
Enron 0.057±0.001 0.060±0.001 0.055±0.001↗ 0.055±0.001 0.058±0.001 0.057±0.001
Reuters 0.013±0.000 0.011±0.000↗ 0.012±0.000↗ 0.012±0.001 0.013±0.001 0.012±0.000↗

↗,↘ statistically significant improvement or degradation (N.B. lower is better)

Table 5. Build time.

D CM BM RM PS EPS RAKEL
Scene 9.8 10.4 3.7 3.8 18.3 9.2
Medical 36.4 7.7 11.9 9.7 51.2 3.4
Yeast 187.8 11.1 34.0 29.8 172.6 64.8
Enron 1565.8 50.9 84.7 59.5 246.1 465.3
Reuters 1379.1 51.7 72.5 176.2 911.9 110.8

Table 6. Parameters and thresholds.

D RM PS EPS RAKEL
t p, s p, s, t k, t
Scene 0.30 4,A2 4,A2,0.37 4,0.30
Medical 0.10 1,A2 1,A2,0.30 8,0.19
Yeast 0.09 2,B2.5 3,B3,0.07 5,0.20
Enron 0.10 1,B2 1,B2,0.08 10,0.09
Reuters 0.10 1,A3 1,A3,0.21 16,0.06

N.B. BM and CM do not require parameters

Table 7. Build time (s) for Reuters.
CM 1379
BM 123
RM 505

p = 5 4 3 2 1
PS 41 58 80 135 246
EPS 194 277 408 719 1,553

k = 2 25 50 61* 102
RAKEL 10 350 3,627 22,337 DNF

*k = 61 is the largest value to complete

Table 8. Approximation of memory use.
BM |L| × |D|
RM |D| × LCard(D)
CM |D|
PS PF (D, p) + DF (D, s)
EPS (PF (⊂ D, p) + DF (⊂ D, s))×m
RAKEL |D| × k ×m

999999

Although it may be argued that RAKEL would perform
better with greater computing resources, under such a sce-
nario EPS could also easily increase its number of itera-
tions. Adding iterations adds at most linear complexity
whereas, in Table 7, we clearly see that RAKEL’s build
time increases by a factor of approximately ten each time
k is doubled.

As an aside, we further discover from the results that
PS’s strategy parameter s appears predictable. Table
6 shows that strategy A is selected consistently where
LCard(D) is low, and B when high (refer also to Table
1).

Although in theory the asymptotic complexity bounds
of PS and EPS are not reduced over those of CM or
RAKEL, the practical difference cannot be underestimated.
Multi-labelled data invariably feature label distributions
conducive to the efficient operation of PS, as multi-label
schemes are consistently dominated by a small minority
of core label relationships. This assumption can be made
despite the exponential number of combinations which are
theoretically possible with an increasing label set L. This
explains why PS performs fast despite a theoretical worst-
case performance similar to other methods.

Memory use is examined in Table 8. It is approximated
by the number of instances generated during the transfor-
mation of a training set D with L possible labels (irre-
spective of any internal single-label classifier). All val-
ues are “hard” except the P runing Function PF (D, p)
and Decomposition Function DF (D, s) (corresponding to
Phases 2 and 3 in Section 2) which depend on the distri-
bution of the data in D (and the p and s parameters, re-
spectively). It is guaranteed that PF (D, p) < |D| and that
DF (D, s) < |D| × LCard(D), and also that the com-
plexity of PF is inversely proportional to the complexity
of DF . Also, according to the argument concerning the use
of PS in practise presented above, PS tends towards loga-
rithmic complexity with respect to p. So we observe that
PS is efficient in terms of memory as well as speed.

Hence the improvements PS offers are not simply incre-
mental. The error reduction over other methods is often sta-
tistically significant, and its performance scales favourably
across a range of multi-label datasets from different do-
mains including large datasets with thousands of examples
and with over a hundred labels.

5 Conclusions and Future Work

This paper introduced a new method for multi-label clas-
sification which uses a pruning procedure to focus on core
relationships within multi-label sets. This procedure re-
duces the complexity and potential for error associated with
dealing with a large number of infrequent sets.

While fully functional as a standalone method, PS is par-
ticularly suited to ensembles due to its fast operation and be-
cause the randomisation inherent to ensembles counteracts
any over-fitting introduced by the pruning phase. Hence PS
was also run within an ensemble scheme (EPS) for further
reductions to the error rate.

Empirical statistical evaluation shows that the methods
presented in this paper are often superior alternatives to
other multi-label methods over a range of multi-labelled
datasets. In many cases the improvements were statistically
significant and build times were frequently and consider-
ably reduced. The computational and memory complexity
were analysed both practically and theoretically. The PS
methods can be applied effectively and efficiently to many
multi-label classification tasks including large and complex
multi-label datasets.

References

[1] CALO project: Enron email dataset. URL: http://
www-2.cs.cmu.edu/∼enron/.

[2] Computational medical center: Medical NLP challenge.
URL: http://www.computationalmedicine.
org/challenge/index.php.

[3] UC Berkeley enron email analysis project: UC Berkeley en-
ron email analysis. URL: http://bailando.sims.
berkeley.edu/enron email.html.

[4] S. Godbole and S. Sarawagi. Discriminative methods for
multi-labeled classification. In 8th Pacific-Asia Conference
on Knowledge Discovery and Data Mining, 2004.

[5] D. Lewis, Y. Yang, T. Rose, and F. Li. RCV1: A New Bench-
mark Collection for Text Categorization Research. The Jour-
nal of Machine Learning Research, 5:361–397, 2004.

[6] A. K. McCallum. Multi-label text classification with a mix-
ture model trained by EM. In Association for the Advance-
ment of Artificial Intelligence workshop on text learning,
1999.

[7] R. E. Schapire and Y. Singer. Boostexter: A boosting-
based system for text categorization. Machine Learning,
39(2/3):135–168, 2000.

[8] G. Tsoumakas and I. Katakis. Multi label classification: An
overview. International Journal of Data Warehousing and
Mining, 3(3), 2007.

[9] G. Tsoumakas and I. Vlahavas. Random k-labelsets: An
ensemble method for multilabel classification. In Proceed-
ings of the 18th European Conference on Machine Learning
(ECML 2007), 2007.

[10] C. Vens, J. Struyf, L. Schietgat, S. Džeroski, and H. Block-
eel. Decision trees for hierarchical multi-label classification.
Machine Learning, 73(2):185–214, 2008.

[11] I. H. Witten and E. Frank. Data Mining: Practical ma-
chine learning tools and techniques. Morgan Kaufmann,
San Francisco, second edition, 2005.

[12] M.-L. Zhang and Z.-H. Zhou. A k-nearest neighbor based al-
gorithm for multi-label classification. volume 2, pages 718–
721. The IEEE Computational Intelligence Society, 2005.

10001000

