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Abstract 

 

 Titanium and titanium alloys are commonly used in applications such as 

aerospace and biomedical due to their excellent mechanical properties as well as 

biocompatibility. However, reduction of the cost in titanium alloys is still sought 

after aiming to expand the use of titanium to other consumer industries. By alloying 

β-stabilizer elements with titanium, superior mechanical properties can be obtained. 

 

Novel ternary α + β Ti-xCu-xNb, Ti-xMn-xNb, Ti-xFe-xNb, Ti-xFe-xCu and Ti-

xFe-xMn (x = 0.5, 1, 2, 3.5 and 5 in wt%) alloys were designed aiming to have 

enhanced mechanical properties compared to unalloyed titanium at lower cost. In 

this study, the alloys were fabricated via powder metallurgy (i.e. cold press and 

vacuum sintering) to lower the production costs. The microstructure and phase 

identification of the sintered alloys were performed using optical microscopy, 

scanning electron microscopy and X-ray diffraction. Mechanical properties were 

analysed through tensile testing and the Rockwell hardness test. 

 

Experimental results showed that the mechanical properties (tensile and hardness) 

of all sintered ternary titanium alloys, proportionally increase with the amount of 

alloying elements added, nevertheless, ductility decreases. 

 

High tensile properties were observed for the Ti-5Fe-5Cu alloy (due to the 

formation of the Ti2Cu phase, the strong β-stabilizer effects of Fe as well as a 

refined microstructure), in comparison to all the sintered ternary titanium alloys. 

Ti-5Fe-5Mn showed the highest hardness compared to all the sintered ternary 

titanium alloys, owing to the strong β-stabilizer effects of Fe and Mn (strong solid-

solution strengthening effect), and an equiaxed microstructure. Cu and Nb as 

alloying elements added to Ti show high ductility compared to Fe and Mn, because 

of that the Ti-xCu-xNb alloy system showed higher elongations than the other alloy 

systems at the same total amount of alloying elements. It is worth mentioning that 

Ti-5Fe-5Cu was the only alloy to show comparable UTS and YS with Ti-6Al-4V, 

and Ti-5Fe-5Mn showed higher hardness compared to Ti-6Al-4V. 
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Chapter 1 

Introduction and Literature Review 

1.1 Introduction 

In 1791 William Gregor, British reverend, mineralogist and chemist was the 

first to discover titanium (Ti) [1]. He examined the magnetic sand from the local 

river, Helford, in the Menachan Valley in Cornwall, England, and isolated “black 

sand” known as “ilmenite” (FeTiO3). The iron (Fe) was removed from the sand with 

a magnet, by treating the sand with hydrochloric acid he produced the impure oxide 

of a new element which he named “mechanite” after the location. Four years later, 

Martin Heinrich Klaproth, Berlin chemist isolated Ti oxide from a Hungarian 

mineral known as “rutile” (TiO2) [1]. The story of the Greek mythological children 

of Uranos and Gia, the titans, provided Martin the inspiration for naming Ti. 

 

It took more than 100 years to produce pure Ti. In 1932 Wilhelm Justin Kroll 

produced significant quantities of Ti by combining Ti tetrachloride (TiCl4) with 

calcium [1]. Kroll demonstrated that Ti could be extracted commercially by 

reducing TiCl4 by changing the reducing agent from calcium to magnesium. In 

today’s world, this is still the most widely used method and it’s known as the “Kroll 

process”. After World War II, Ti and Ti-based alloys were considered key materials 

for aircraft engines [1]. Ti and Ti alloys have widespread use in applications such 

as aerospace, chemical and biomedical. Ti has been hard to process since the metal 

is never found in a pure state and is found rarely in high concentrations [1]. It is 

very expensive, approximately being four times that of stainless steel and 

comparable to that of superalloys [2]. 

 

Ti is the ninth most-abundant element on the planet and the fourth most-abundant 

structural metal, where mineral sources of Ti are rutile, ilmenite, and leucoxene, an 

alteration product of ilmenite [2]. Ti is classed as a light nonferrous metal. Ti alloys 

primarily stand out due to two properties: high specific strength and excellent 

corrosion resistance. The high specific strength of Ti is limited by its oxidation 

behaviour at elevated temperatures giving a disadvantage, consequently 

conventional Ti alloys are used only up to temperatures slightly above 500 °C well 

below the melting point of Ti (1668 °C) [1]. 
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Commercially pure Ti (CP-Ti) or unalloyed Ti is alpha (α) in structure. Ti can 

crystallize in various crystal structures; however, each modification is only stable 

within particular temperature ranges [1]. The complete transformation from one 

into another crystal structure is called the allotropic transformation; the respective 

transformation temperature is called the beta (β) transus temperature [1]. Ti 

crystalizes at low temperatures in a modified hexagonal close packed (hcp) 

structure denoted as α Ti and the body-centered cubic (bcc) structure is stable at 

high temperatures and is denoted as β Ti [1]. The β transus temperature of Ti is 882 

± 2 °C and is defined as the lowest equilibrium temperature at which the material 

is 100% β [2]. The β transus temperature is very important because processing and 

heat treatments are often carried out with reference to some incremental 

temperature above or below the β transus [2]. The atomic unit cells of the hcp α Ti 

and bcc β Ti are shown in Figure 1-1. Elements alloyed to Ti produce a range of 

possible microstructures and alter the mechanical properties. 

 

 

Figure 1-1 Crystal structure of hcp α Ti and bcc β Ti phases [1]. 

 

1.1.1 Ti alloys 

The alloying elements added to Ti are classified as neutral, α-stabilizers or 

β-stabilizers (Figure 1-2). The α-stabilizing elements extend the α-phase field to 

higher temperatures, while the β-stabilizing elements shift the β-phase field to lower 

temperatures, and neural elements have minor influence on the β transus 

temperature [1]. 
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Figure 1-2 Influence of alloying elements on the phase diagrams of Ti alloys [1]. 

 

When extending the α-phase field to higher temperatures, the α-stabilizers develop 

a two-phase α + β field (Figure 1-3), and β-stabilizing elements are subdivided into 

β-isomorphous and β-eutectoid elements (Figure 1-2) [1]. 

 

 

Figure 1-3 Pseudo-binary Ti phase diagram with different Ti alloys [2]. 

 

Effects of alloying elements 

α-stabilizers such as aluminium (Al), oxygen (O) and nitrogen (N), raise the 

β transus temperature at which the α-phase is stable (favouring the α crystal 

structure) and β-stabilizers such as vanadium (V) and molybdenum (Mo), lower the 
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β transus temperature at which the β-phase is stable [2]. The interstitial elements O 

and N, are generally present as impurities, which contribute to interstitial hardening 

and different amounts of O are used to provide specific range of strength levels in 

numerous grades of CP-Ti [3]. β-isomorphous and β-eutectoid elements both 

stabilize the β crystal structure. The β-isomorphous group comprises of elements 

that are miscible in Ti, in contrast β-eutectoid elements have limited solubility in Ti 

and decrease the transformation temperature [2]. β-isomorphous elements do not 

form intermetallic compounds with Ti, whereas β-eutectoid elements do [2]. 

Intermetallic compounds are generally brittle with high melting point. β-eutectoid 

elements are typically added to alloys in combination with one or more β-

isomorphous elements to stabilize the β-phase and impede formation of 

intermetallic compounds that can occur during service at elevated temperatures [2]. 

However β-eutectoid elements are used in β-rich α + β alloys or in β alloys because 

they are strong β-stabilizers and improve hardenability and response to heat 

treatment [2]. Neutral elements such as tin (Sn) and zirconium (Zr) are often alloyed 

to Ti. These elements have substantial solid solubility in α and β phases, they are 

useful as strengthening agents as they do not strongly promote phase stability, 

however the transformation rates are delayed. 

 

Alloy design 

 Ti alloys can be designed using the Molybdenum Equivalent (MoE) 

approach, which is defined by the following equation: 

 

MoE = 1.0 Mo + 0.67 V + 0.44 W + 0.28 Nb + 0.22 Ta + 2.9 Fe + 1.6 Cr             

+ 1.25 Ni + 1.70 Mn + 1.70 Co – 1.0 Al (wt%), 

 

and is generally used to indicate the β stability for a given Ti alloy composition [3-

5]. The equation consists of β-stabilizing elements, α-stabilizing elements and 

neutral elements contained in a Ti alloy on the β-phase stability [5]. Mo is used as 

an arbitrarily chosen standard and normalises other elements to an equivalent Mo 

value [5]. Ti alloys with MoE value of 0 ≤ MoE < 5 are α + β, alloys with 5 ≤ MoE 

< 10 are near-β, and alloys with MoE ≥ 10 are metastable β (a MoE value of 10 is 

essential to stabilize the β-phase during quenching) and will avoid the formation of 

martensite as these alloys contain enough β-stabilizing elements to avoid cooling 
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through the martensite start line (MS) (Figure 1-3) [4; 5]. For example, a Ti alloy 

such as Ti-4.5Al-3V-2Mo-2Fe (near-β alloy) will have the following MoE value: 

 

 MoE = (1.0 x 2) Mo + (0.67 x 3) V + (2.9 x 2) Fe – (1.0 x 4.5) Al 

MoE = 5.3 

 

Types of Ti alloys 

 Ti alloys are classified as α, α + β and β alloys, with further subdivision into 

near-α and metastable β alloys (Figure 1-3) [1]. When small amounts of β-

stabilizing elements are added to α alloys they are termed near-α alloys. The α + β 

alloys are the most widely used alloy group, at room temperature these alloys have 

a β volume fraction of about 5 to 40% [1]. If the β-stabilizing elements is increased 

to a level where β no longer transforms to martensite upon fast quenching, the alloys 

are still in the two-phase field and the class of metastable β alloys is reached [1]. 

 

α alloys are often alloyed with Al and Sn and are preferred for high temperature 

applications because of their superior creep characteristics [6]. The alloyed Al is in 

high volumes that contributes to oxidation resistance at high temperatures (α + β 

alloys also contain high amounts of Al as the principal element to stabilize the α-

phase) [2]. α alloys have excellent corrosion resistance and good weldability. 

Strength and toughness are satisfactory, whereas forgeability is inferior to that of 

the other Ti alloy types [6]. α alloys are single phase alloys that cannot be heat 

treated to improve strength or mechanical properties [2; 6]. 

 

Near-α alloys comprises of both α and β phases, which contains small amounts of 

β-stabilizing elements (≤ 2 wt%) [3; 6]. Near-α alloys are ideal for high temperature 

applications (upper operating temperature is limited to about 500-550° C) since they 

combine the excellent creep behaviour of α alloys with the strength of α + β alloys 

[1]. The properties and fabrication characteristics are similar to those of the α alloys, 

apart from that a greater variety of microstructures and mechanical properties are 

feasible for near-α alloys [3]. 

 

α + β alloys consists of α-stabilizing and β-stabilizing elements. α + β alloys are 

widely used because of their good combinations of strength, toughness and 

formability. Ti-6Al-4V is the most popular α + β Ti alloy used around the world for 
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many applications; aerospace being the prime consumer. The alloy was developed 

in the early 1950s in the United States at the Illinois Institute of Technology and is 

one of the first alloys to be made [1]. The good balance of properties and intensively 

developed/tested Ti-6Al-4V alloy makes it very successful [1]. The strength of α + 

β alloys can be improved and controlled by heat treatments. 

 

β alloys are defined as “those containing enough total alloying elements that enable 

the β-phase to be retained in either a metastable or stable condition after cooling to 

room temperature during heat treatment” [3]. β alloys are useful where very high 

tensile strengths are required and have good combinations of strength, toughness, 

and fatigue resistance. The main advantages of β alloys is their high hardenability, 

excellent forgeability and good cold formability in the solution-treated condition 

and can be hardened to adequately high strength levels [2]. The applications of β 

alloys are limited by their relatively high specific weight, modest weldability, high 

density, poor oxidation behaviour, and complex microstructure [1]. 

 

Microstructure development in Ti alloys 

The common phases present in sintered Ti alloys are α, β, martensite phases 

(α' and α'') and ω. The ω and martensite phases are metastable phases and the β-

phase is stable at room temperature provided that there is high enough β-stabilisers 

to decrease the β→α transformation temperature to below room temperature [7]. 

 

The morphology of the α-phase can exist as near equiaxed, lamellar (lath) or 

acicular depending on the alloy chemistry, processing pathway, and thermal 

chemistry. Therefore the α-phase can be formed from the ω phase (discussed later 

on) via ageing (Figure 1-4) [7]. 

 

As previously mentioned, the β-phase is generally stable at room temperature 

provided that there are adequate β-stabilizing elements. The two groups of β-

stabilizers being β-isomorphous and β-eutectoid will have different phase 

arrangements owing to the different β-stabilizer groups. 
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Figure 1-4 SEM micrograph of powder metallurgy Ti and Ti alloy consisting of the 

α-phase: a) CP-Ti, and b) Ti-6Al-4V [7]. 

 

α' and α'' are two common phases of martensite in Ti alloys, α' has an hcp crystal 

structure while α'' has an orthorhombic structured phase [7]. The α' phase is present 

in alloys with a lower β concentration in contrast to α'' which is present in alloys 

with higher β concentration. In terms of morphology the α' phase can exist as an 

acicular or lath/lamellar morphology (Figure 1-5) while α'' generally tends to show 

an acicular morphology [7]. 

 

 

Figure 1-5 SEM micrograph of Ti-6Al-4V alloy consisting of the martensite phase 

(α') [7]. 

 

The ω phase has an hcp crystal structure and is categorized into athermal ω (formed 

during quenching) and isothermal ω (formed during aging/heat treatment) [7]. 

Athermal ω is “believed to be a product of martensite transformation, or due to a 

displacement/shear mechanism from a crystallographic point of view” and 

isothermal ω can be observed in sintered powder metallurgy (PM) Ti alloys [7]. 

Ageing at relatively lower temperatures with slow cooling rates satisfies sintering 

a) b) 
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(i.e. to provide an ageing like affect) hence forming isothermal ω in PM Ti alloys  

[7]. The ω phase is relatively present as fine particles in Ti alloys. 

 

1.1.2 Processing of Ti alloys via PM 

PM defined by Froes is “the production, processing, and consolidation of fine 

particles to make a solid metal” [8]. Advantages of PM over other processing 

methods such as casting are its compatibility of producing near net shape parts, 

complex geometry, and reduced processing steps. The main goal of PM Ti has been 

reducing manufacturing costs and materials savings as well as producing 

mechanical properties equivalent to cast and wrought ingot metallurgy. There are 

two PM approaches being the prealloyed (PA) and the blended elemental (BE) 

methods. The PA approach involves the use of prealloyed powder which has been 

produced by melting, either by the plasma rotating electrode process or by gas 

atomization, followed by hot consolidation (i.e. hot isostatic pressing (HIP)) [9; 10]. 

The PA powder generally is spherical in shape. In the BE approach CP-Ti (or Ti 

hydride powder) and alloying elements (or master alloys) are blended together 

followed by pressing and sintering. A density very close to 100% can be achieved 

if Ti hydride powder is used. The BE approach is cost effective compared to PA 

especially if any secondary pressing step i.e. HIP is avoided [9]. The processing 

steps for PM are powder production, mixing, pressing and sintering. 

 

Mixing 

 Prepared metal powders consisting of CP-Ti and alloying elements are 

mixed together to obtain a homogenous mixture. Additives such as lubricants or 

binders are added if required. 

 

Pressing 

 Mixed metal powder blends are pressed in a precision die (i.e. shape of the 

product) at a pressure in the range of 100 to 1000 MPa depending on the powder 

morphology. Pressing the metal powder may be done at room temperature or by 

cold isostatic press (CIP). The density of the pressed sample at room temperature is 

relatively low and can be increased by HIP. Once the metal powder is pressed into 

the desired shape it is now in the green state, the strength of the sample is only 

sufficient for handling purposes and must be sintered. Generally, CP-Ti and Ti 
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alloys are pressed around 600 MPa and will achieve a green density greater than 

80%. 

 

Sintering 

 During sintering parts are heated (in a protective atmosphere furnace) below 

the melting point of the metal to metallurgically bond the individual particles 

together, which further densifies the part and increases individual strength. The 

sintered part is cooled down in the furnace, this prevents oxidation, thermal shock 

and controls carbon content. Typical atmosphere gases used for sintering are 

hydrogen, inert or vacuum. The structure and porosity obtained in the sintered 

sample depends on the sintering conditions such as temperature, time and 

processing [11]. The porosity cannot be eliminated completely because voids are 

present from pressing (pores cannot be closed by pressing) and gases evolve during 

sintering [11]. Density values greater than 99% can be achieved by sintering 

provided that pressing was done under appropriate conditions (i.e. correct pressure 

and temperature ranges). Sintering CP-Ti and BE powder of a typical Ti alloy, is 

normally done at a temperature of 1200°C or higher to both facilitate densification 

and allow for sufficient homogenisation of the alloying elements [12]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

10 

1.2 Literature Review 

 CP-Ti has been used in many applications, however it possess disadvantages 

such as bacterial infections after implantation, and is considered to be more difficult 

to process because of its high melting temperature and increased chemical reactivity 

at high temperature [13; 14]. Ti-6Al-4V, the most widely used alloy, also possess 

disadvantages when implanted, studies have shown that the release of Al and V ions 

from the alloy may cause long term health problems, such as peripheral neuropathy, 

osteomalacia and alzheimer diseases [15; 16]. It has been reported that CP-Ti and 

Ti-6Al-4V alloys both have a low wear resistance and high Young’s modulus 

(which is 4 to 10 times higher than that of the human bone (10~35 GPa)), long term 

studies suggest that insufficient load transfer from the artificial implant to adjacent 

remodelling bone may result in bone resorption and at last cause loosening of the 

prosthetic device [15].  This is known as the stress shielding effect, which is “a 

direct result of the stiffness mismatch between implant material and surrounding 

natural bone” [15]. To overcome these problems it is best to design α + β or β-type 

Ti-based alloys, as alloying Ti with other β-stabilizing elements will reduce the 

fusion temperature, provide superior mechanical properties and excellent 

biocompatibility [13]. 

 

Binary Ti-Cu, Ti-Nb, Ti-Mn and Ti-Fe alloys have been studied to an extent, 

however literature reports where two elements (Cu and Nb, Mn and Nb, Fe and Nb, 

Fe and Cu, Fe and Mn) added to Ti have not been reported (very limited). In this 

literature review, ternary Ti-Cu-Nb, Ti-Mn-Nb, Ti-Fe-Nb, Ti-Fe-Cu and Ti-Fe-Mn 

alloys are studied, alongside their binary alloy systems. 

 

1.2.1 Ternary Ti-Cu-Nb alloys 

 In this section binary Ti-Cu and Ti-Nb alloys are first discussed followed 

by the ternary Ti-Cu-Nb alloys. 

 

1.2.1.1 Ti-Cu alloys 

 Ti-Cu alloys have vastly been used in biomedical devices such as dental 

implants, hip replacements, and bone substitutes [13; 14; 17-24]. Copper (Cu) as a 

β–stabilizing element, alloyed to Ti produces strong antibacterial properties, 
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excellent biocompatibility, improved corrosion resistance as well as mechanical 

properties, along with a low friction coefficient and high wear resistance [14; 17; 

19-21; 23]. The addition of Cu to Ti lowers the melting point of the alloy, thus 

increases thermal conductivity which improves the burn resistance and the 

machinability of the alloy [18]. Cu being a eutectoid element forms a eutectoid alloy 

(αTi + Ti2Cu) at a Cu concentration of 7 wt% [13]. In a study by Alshammari et al. 

[14] reported that a Ti-Cu alloy with 5 wt% Cu was sufficient enough to form the 

intermetallic (Ti2Cu) phase as shown in Figure 1-6 (confirmed in X-ray diffraction 

(XRD) results). 

 

 

Figure 1-6 XRD patterns of sintered Ti-Cu alloys [14]. 

 

It has been reported in many studies that a Cu concentration of 5 wt% in Ti-Cu 

alloys has strong antibacterial activity against bacterial infections such as 

Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) [14; 21-24]. The 

Ti2Cu phase is responsible for providing high antibacterial rates greater than 90% 

(in comparison with CP-Ti), as the antibacterial property is ascribed to the release 

of Cu+2
 ions from the Ti2Cu compounds formed in Ti-Cu alloys [19]. A small 

amount of Cu can improve the grindability of Ti-Cu alloys [23]. 

 

The effects of increasing Cu concentration in Ti-Cu alloys 

 The addition of Cu to Ti leads to a lower corrosion resistance compared to 

CP-Ti, because of the higher repassivation ability [14]. The mechanical and 

antibacterial properties of Ti-Cu alloys improve with the addition of Cu, because 

Cu provides a solid-solution strengthening effect even at lower concentrations such 

as 0.5 wt%. The Ti2Cu phase is also responsible for improving the mechanical 
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properties of Ti-Cu alloys (similar to the antibacterial properties). The addition of 

Cu increases the volume fraction of the Ti2Cu phase, thus a higher amount of Ti2Cu 

phase will increase the resistance to plastic deformation, which improves the 

mechanical properties such as strength (ultimate tensile strength (UTS), yield 

strength (YS)), and hardness of Ti-Cu alloys [14; 18]. Ductility tends to deteriorate 

as the Cu concentration increases due to the fine Ti2Cu particles present [14; 20; 

22]. 

 

Since Cu is a β-stabilizer in Ti, its addition to Ti (if fabricated via PM) leads to the 

formation of the typical α + β lamellar structure, this is because the β-phase remains 

stable upon slow cooling from the sintering temperature [14]. As shown in Figure 

1-7, the increase in Cu from 0.5 to 5 wt% causes the β-phase to increase while the 

thickness of the β lamellae decreases. The fine α + β lamellar microstructure of the 

Ti-5Cu alloy gives better mechanical properties compared to the Ti-0.5Cu alloy 

(discussed later on). From Figure 1-6 (XRD results) it can be seen that the β-phase 

(β-phase peak) increases with the addition of Cu in Ti. Generally PM Ti alloys with 

β-stabilizing elements will consist of α + β lamellar microstructures. 

 

  

 

Figure 1-7 OM of sintered Ti-xCu alloys: a) Ti-0.5Cu, b) Ti-2.5Cu, and c) Ti-5Cu 

[14]. 
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Processing of Ti-Cu alloys 

 Alshammari et al. [14] fabricated Ti-xCu (x = 0.5, 2.5 and 5% all in wt% 

unless specified) alloys (Ti and Cu powders with 99.4% and 99.7% purity 

respectively) by PM (cold press and vacuum sintering), followed by a subsequent 

conventional β forging step (to further seal the residual porosity left and improve 

the mechanical properties). Zhang et al. [23] prepared Ti-xCu (x = 5 and 10%) 

alloys (with high purity Ti and Cu powder (99.99%)), which were ball milled for 3-

6 hours followed by hot pressure sintering (samples with a diameter of 40 mm) 

under vacuum condition (at 30 MPa and 850 – 1050 °C for 120 minutes and left to 

cool inside the furnace), samples labelled as Ti-5Cu(S) and Ti-10Cu(S) (where S 

represents sintering). After sintering the samples were subjected to extrusion at a 

rate of 10 mm/s at 800 °C into cylindrical bars (samples with a diameter of 16 mm), 

samples labelled as Ti-5Cu(E) and Ti-10Cu(E) (where E represents extrusion). In 

another study by Zhang et al. [21], Ti-5Cu(S) and Ti-10Cu(S) alloys similar to the 

ones described above, were prepared via ball milling for 0.5 hour, then hot pressure 

sintered under vacuum condition (in argon at 0.093 MPa and 800 °C for 60 minutes). 

Liu et al. [24] also hot pressure sintered Ti-xCu (x = 2, 5, 10 and 25%) alloys (with 

high purity Ti and Cu powder (99.99%)) under vacuum condition similar to Zhang 

et al. [23] method. 

 

Zhang et al. [21] also looked at producing Ti-Cu alloys by an ingot casting method. 

In this method CP-Ti and Cu (with high purity CP-Ti and Cu powder (99.99%)) 

were used to prepare Ti-5Cu(I) and Ti-10Cu(I) alloys in a vacuum non-consumable 

furnace, the samples were remelted at least six times to obtain homogenous 

compositions. The alloys were vacuum sealed in a crystal tube and heat treated at 

different temperatures, labelled as Ti-5Cu(T4) and Ti-5Cu(T6), Ti-10Cu(T4) and 

Ti-10Cu(T6) (in the T4 treatment the alloys were heat treated at 900 °C for 2 hours 

and quenched in water, in the T6 treatment the alloys were treated the same as T4 

with a further step of heating the alloy after quenching to 400 °C for 12 hours). 

Kikuchi et al. [13] produced Ti-xCu (x = 0.5, 1, 2, 5 and 10%) alloys, which were 

fabricated in an argon-arc melting furnace. Each alloy was produced by melting Ti 

sponge (99.8% purity) and oxygen-free Cu (Cu: 99.99%, 0: 0.0005%) into 30 g 

buttons, the samples were remelted and cast into a magnesia mold at 200 °C in a 

centrifugal casting machine. A similar method was observed in another study by 

Zhang et al. [22], where Ti-xCu (x = 2, 3 and 4%) alloys were fabricated using high 
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purity (99.99%) Ti and Cu powders. After casting, the alloys were subjected to a 

solid-solution heat treatment (T4) at 900 °C for 3 hours, followed by an ageing 

treatment (T6) at 400 °C for 12 hours. Yi et al. [17] also had a similar method where 

Ti-xCu (x = 2, 5, 7 and 10%) alloys were fabricated. After casting the samples were 

heat treated at 950 °C for 3 hours in vacuum furnace, followed by cooling inside 

the furnace to room temperature. Wang et al. [20] annealed heat treated Ti-xCu (x 

= 3, 5 and 7%) alloys prepared by arc-melting high purity (99.9%) Ti and Cu 

powders. The alloys were annealed at 740 °C, 830 °C and 910 °C for 1 hour, 

followed by air cooling. 

 

Properties of Ti-Cu alloys 

 Ti-Cu alloys have superior properties compared to CP-Ti. The density of 

sintered Ti-Cu alloys tends to be higher than CP-Ti, however due to pores present 

in the material it is unlikely that a density of 100% is achievable, a density greater 

than 99% has been achieved using hot working [14; 23]. The elongation of sintered 

Ti-Cu alloys tends to decrease as the Cu concentration increases, as shown in Figure 

1-8. As previously mentioned the Ti2Cu phase is responsible for the decrease in 

ductility, since Ti2Cu is a hard metal interphase it tends to show brittle behaviour 

[18]. 

 

  

Figure 1-8 Stress vs stain curves of Ti-xCu alloys: a) sintered and b) β forged [14]. 

 

Ti-Cu alloys have higher UTS and YS properties than CP-Ti. A Ti-Cu alloy with 

just 0.5 wt% Cu (fabricated by PM [14]) has an UTS of 555 ± 8 MPa and YS of 

467 ± 16 MPa (as shown in Figure 1-8a), which is higher than the UTS (235 MPa) 

and YS (140 MPa) of CP-Ti (with high purity Ti powder (99.98%)) [1]. The tensile 

properties of Ti-Cu alloys can be improved by hot working. The study by 

Alshammari et al. [14] looked at β forging sintered Ti-Cu alloys where UTS and 
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YS for the β forged Ti-0.5Cu alloy was 650 ± 26 MPa and 602 ± 26 MPa 

respectively, showing an increase of 95 MPa in UTS and 135 MPa in YS from the 

sintered Ti-0.5Cu alloy (as shown in Figure 1-8) [14]. Similar results were observed 

in a study by Zhang et al.  [23], where extruded Ti-Cu alloys had higher UTS and 

YS properties than sintered Ti-Cu alloys (as referenced in [23]). In two other studies 

by Zhang et al. [21; 22], heat treatment options (T4) and (T6) further improved the 

UTS and YS properties of sintered Ti-Cu alloys. 

 

The hardness of Ti-Cu alloys is higher than CP-Ti (100 Vickers Hardness (HV)), 

generally hardness of Ti-Cu alloys are in the range of 150-400 HV depending on 

the Cu concentration [1]. The hardness of Ti-Cu alloys can be improved by hot 

working treatments similar to the ones mentioned above for UTS and YS. 

 

1.2.1.2 Ti-Nb alloys 

 Ti-Nb alloys have attracted great attention in biomedical devices such as 

dental implants [15; 16; 25-27]. The alloys stand out due to their low Young’s 

modulus, superior biocompatibility, corrosion resistance as well as mechanical 

properties. Niobium (Nb) as a (isomorphous) β-stabilizing element, alloyed to Ti is 

beneficial in lowering the Young’s modulus of the alloy and is less cytotoxic/non-

toxic compared to other elements [16; 27]. A lower Nb concentration in Ti-Nb 

alloys is reported to exhibit the shape memory phenomenon, which is employed in 

dentistry for orthodontic wires [25; 27]. Nb is a rare expensive metal with a very 

high melting point, thus it is best to design Ti-Nb alloys with a low Nb concentration 

to benefit cost savings and reduce manufacturing steps (i.e. to avoid operating at 

very high temperatures) [16]. Ti-Nb alloys with a concentration up to 4 wt%, consist 

of an α-phase at 400 °C and from 4 – 56 wt%, they consist of an α + β microstructure 

as per the Ti-Nb binary equilibrium phase diagram [16; 25]. 

 

The effects of increasing Nb concentration in Ti-Nb alloys 

 The addition of Nb to Ti improves the corrosion resistance, biocompatibility 

and mechanical properties of Ti-Nb alloys. With increasing Nb concentration in Ti-

Nb alloys, the β transus temperature decreases [27]. Small additions of Nb improve 

the tensile properties of Ti-Nb alloys, as Nb provides a solid-solution strengthening 

effect. The hardness of Ti-Nb alloys increases with increasing Nb concentration, 
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however the ductility decreases (ductility of Ti alloys with β-stabilizers decreases 

with increasing β-stabilizer content). 

 

Processing of Ti-Nb alloys 

 Lee et al. [15] fabricated Ti-xNb (x = 5, 10, 15, 17.5, 20, 22.5, 25, 27.5, 30 

and 35%) alloys (with high purity Ti and Nb powder (99.9%)), by using a 

commercial arc-melting vacuum-pressure type casting system. The casting process 

consists of an “upper melting chamber and lower casting chamber, connected by a 

central hole. A casting ring is set at the top of it and a Cu crucible lies on top of it. 

The alloy ingot is placed at the centre of the crucible” as mentioned in [15]. The 

alloys were melted three times to obtain homogenous compositions. The same 

method was used by Xu et al.  [26], where Ti-xNb (x = 5, 10, 15 and 20%) alloys 

(with high purity Ti: 99.4% and Nb: 99.9% powder) were prepared. A similar 

method was used by Kikuchi et al. [25], where Ti-xNb (x = 2, 5, 10, 15, 20, 25 and 

30%) alloys (Ti powder: >99.8% grade S-90 and Nb powder: >99.9%) were 

prepared in an argon-arc melting furnace. The alloys were remelted and cast into a 

magnesia-based mold using a dental casting machine. Han et al. [27] also used a 

similar technique, where Ti-xNb (x = 5, 10, 15 and 20%) alloys were prepared by 

arc-melting the alloys using high purity argon gas. After the remelting process, the 

samples were heat treated using a tube furnace under argon atmosphere (99.9999%) 

for 4 hours at 150 °C. The samples were then cooled to 600 °C at 10 °C/min and air 

cooled to room temperature. 

 

Other manufacturing methods have been used to produce Ti-Nb alloys, however 

the alloys studied are β-type Ti-Nb alloys with Nb concentrations greater than 10 

wt%. Zhao et al. [28] produced Ti-xNb (x = 10, 16 and 22%) alloys (Ti powder 

particle size: <45 μm and Nb powder particle size: <110 μm), by metal injection 

molding (MIM) process. In a study by Yilmaz et al. [29], Ti-xNb (x = 16, 28, 40%) 

alloys (Ti powder particle size: 32.95 μm and Nb powder particle size: 30.15 μm) 

were prepared by powder injection molding (PIM) process. Kalita et al. [30] 

fabricated Ti-xNb (x = 14, 20 and 26%) alloys (with high purity Ti: 99.9% and Nb: 

99.8% powder), by spark plasma sintering. After the sintering process, the alloys 

were subjected to annealing heat treatment at 1250 °C for 24 hours. 
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Properties of Ti-Nb alloys 

 The elongation of Ti-Nb alloys generally decreases (same as Ti-Cu alloys) 

as the Nb concentration increases, due to the volume fraction of the β-phase 

increasing (as shown in Figure 1-9). Sintered Ti-Nb alloys have porosity present in 

the material, this porosity results in the alloys having a density less than 100%, and 

with increasing Nb concentration the density of the alloy decreases further [28; 29]. 

The sintered density of Ti-Nb alloys is higher than the sintered density of CP-Ti. 

Similar to Ti-Cu alloys, the ductility of Ti-Nb alloys can be improved with the 

addition of hot working treatments. 

 

 

Figure 1-9 Tensile strengths, YS and elongations of Ti-Nb alloys [25].  

 

Tensile properties of Ti-Nb alloys are superior than CP-Ti. A Ti-Nb alloy with just 

2 wt% Nb has an UTS of 380 MPa and YS of 300 MPa (as shown in Figure 1-9) 

[25]. With 5 wt% Nb added to Ti, the alloy has an UTS of 536 MPa and YS of 407 

MPa [16].  

 

The hardness of Ti-Nb alloys is significantly greater than CP-Ti. With 2 and 5 wt% 

Nb added to Ti, it gives a hardness of 135 HV [25] and 319 HV [26] respectively. 

Hot working treatments can further improve the tensile and hardness properties of 

Ti-Nb alloys (similar to Ti-Cu alloys). 
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1.2.1.3 Ternary Ti-Cu-Nb alloys 

Literature is very limited on Ti-Cu-Nb alloys, where there is no reported 

ternary Ti-Cu-Nb equilibrium phase diagram suggesting that work should be done 

in this field. 

 

The addition of Nb to Ti-Cu alloys  

 In a study by Takahashi et al. [31], Ti-6Nb-4Cu, Ti-18Nb-2Cu and Ti-

24Nb-1Cu alloys (Ti sponge: >99.8% grade S-90, Nb: >99.9% and Cu: >99.99%) 

were produced via casting, the alloy ingots were cast into testing specimens in a 

magnesia mold using a dental casting machine. The motivation of this study was 

based on previously studied binary Ti-5Cu and Ti-30Nb alloys, which demonstrated 

superior strengths (twice than that of CP-Ti) due to the formation of Ti2Cu and ω 

phases in Ti-5Cu and Ti-30Nb alloys, respectively. The grindability of Ti improves 

with the addition of alloying elements, including a third element may exhibit good 

grindability over a wide range of grinding speeds, thus making machinability easier 

[31]. It has been reported that the Cu-Nb system is an immiscible system, due to the 

solid-solubility limit of Nb in Cu (α solid-solution) is about 0.15% and the limit of 

Cu in Nb (β solid-solution) is about 0.8% [31]. The elongation for all Ti-Nb-Cu 

alloys was around 4%, which was lower than both binary Ti-5Cu (6%) and Ti-30Nb 

(10%) alloys (as shown in Figure 1-10).  

 

 

Figure 1-10 Tensile strengths, YS and elongations of the Ti-Nb-Cu alloys [31]. 
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Experimental results showed that all Ti-Nb-Cu alloys exhibited higher tensile 

strengths (>750 MPa) than Ti-5Cu (~695 MPa) and Ti-30Nb (~640 MPa) alloys (as 

shown in Figure 1-10). The ternary solid-solution strengthening was very effective 

in improving strength, compared to binary solid-solution strengthening [31]. No 

significant differences were observed in YS of the ternary and binary alloys, the 

highest YS was reported for the Ti-6Nb-4Cu alloy (572 MPa). The hardness of the 

Ti-24Nb-1Cu (340 HV) alloy was the highest among the ternary alloys, however it 

was lower than binary Ti-30Nb (~380 MPa) and higher than Ti-5Cu (~280 MPa) 

alloys. The Ti-6Nb-4Cu alloy exhibited the lowest hardness (~260 HV) among the 

alloys. 

 

Other ternary Ti alloys with Cu    

New ternary Ti-xMn-yCu alloys (purity of Ti, Cu and Mn powder is 99.4%, 

99.7% and 99.0% respectively) were designed by Alqattan et al. [32] and 

manufactured via PM (i.e. cold uniaxial pressing plus vacuum sintering). Two sets 

of samples were designed the first being Cu-dominant i.e. one with Mn/Cu ratio of 

1:3, which consisted of the following compositions of Ti-xMn-yCu (x = 0.2, 0.4, 

0.8 and 1.6% & y = 0.6, 1.2, 2.4 and 4.8%) and the second being Mn-dominant 

(discussed later in section 1.2.2.2). With the addition of Cu to the Ti-xMn-yCu alloy, 

the tensile properties and hardness of the alloys increased significantly. The highest 

reported UTS and YS (was for the Ti-0.8Mn-4.8Cu alloy) was 692 MPa and 567 

MPa respectively. Meanwhile the elongation of all the Cu-dominant Ti-xMn-yCu 

alloys was fairly constant (16.4 ± 2.3%). Hardness of the Ti-0.8Mn-4.8Cu alloy was 

the highest (60 Rockwell Hardness (HRA)). The presence of the Ti2Cu phase was 

detected by XRD (as shown in Figure 1-11) at 2.4 wt% Cu (Ti-0.8Mn-2.4Cu), this 

lead to precipitation strengthening, hence increasing the strength of the Cu-

dominant ternary Ti-xMn-yCu alloys [32]. The microstructure of Ti-xMn-yCu 

alloys consisted of α + β lamellar structure, with increasing Cu concentration the 

thickness of the β lamellae decreased resulting in a finer microstructure for Ti-

1.6Mn-4.8Cu alloy. 
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Figure 1-11 XRD patterns of Cu-dominant ternary Ti-xMn-yCu alloys [32].  

 

Sato et al. [33] looked at constructing a Ti-Nb-Cu phase diagram that could 

potentially be used to develop new Ti alloys with superior machinability and 

mechanical properties. The study comprised of fifteen experimental Ti-Nb-Cu 

alloys with compositions of Ti-(5-30)Nb-(2-20)Cu (Ti sponge: >99.8% grade S-90, 

Nb: >99.9% and Cu: >99.99%), which were designed and fabricated via casting. 

The alloy ingots were each cast into testing specimens in a magnesia mold using an 

argon gas-pressure dental casting machine. The phase diagrams constructed in this 

study were under conditions applicable for dental casting. XRD results were used 

to construct the Ti-Nb-Ti2Cu pseudo-ternary phase diagram. 

 

Other Ti-Cu-Nb alloys 

Other ternary Ti-Cu-Nb alloys have been manufactured, however these 

alloys have concentrations greater than 10 wt% which primarily are β-type alloys. 

Mutlu [34] produced precipitation hardenable metastable β-type Ti-30Nb-10Cu 

alloy specimens via PM. The specimens were sintered, quenched and aged in a 

single-step process to enhance the mechanical properties. In previous studies by the 

same author, the corrosion behaviour/potential of β-type Ti-Nb-Cu alloys 

manufactured via PM was analysed. Two of the studies [35; 36] produced metal 

foams, while the other didn’t [37]. The use of metal foams exhibits a structure 

similar to cancellous bone, the main advantage is their ability to provide anchorage 
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for the surrounding tissue via ingrowth of tissue into their pores (as previously 

mentioned biomedical implants suffer from mismatch of their Young’s Modulus 

with the human bone) [35; 36]. 

 

1.2.2 Ternary Ti-Mn-Nb alloys 

 In this section binary Ti-Mn alloys are first discussed followed by the 

ternary Ti-Mn-Nb alloys. Binary Ti-Nb alloys have already been discussed in 

section 1.2.1.2. 

 

1.2.2.1 Ti-Mn alloys 

 Ti-Mn alloys are highly employed in biomedical devices, Manganese (Mn) 

is a strong β-stabilizing element, when alloyed to Ti it increases the mechanical 

properties as well as the biocompatibility. Mn is widely chosen because of its lower 

cost/cytotoxicity, strong solid-solution strengthening effects and higher availability 

compared to other alloying elements [38-42]. The melting point of Mn (1246 °C) is 

lower than that of Ti, thus alloying with Ti will lower the fusion temperature of the 

alloy [42]. 

 

The effects of increasing Mn concentration in Ti-Mn alloys 

 The addition of Mn to Ti significantly increases the mechanical properties 

and hardness of Ti-Mn alloys [38]. The strong solid-solution strengthening effect 

of Mn is responsible for the superior mechanical properties of Ti-Mn alloys, 

compared to other alloying elements. However, with increasing Mn concentration 

in Ti-Mn alloys, ductility decreases dramatically (as shown in Figure 1-12). 

 

  

Figure 1-12 Stress vs strain curves of sintered and β forged Ti-Mn alloys [38]. 
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An alternative method to improve the ductility of Ti-Mn alloys is by adding a third 

alloying element. Mo is considered to be an effective alloying element as Santos et 

al. [39; 41], have concluded that adding Mo increases the ductility of Ti-Mn-Mo 

alloys by promoting mechanical twinning. It is reported that a Mn concentration 

higher than 18 wt% should be avoided in biomedical applications, due to the risk 

of Mn intoxication [38]. 

 

Processing of Ti-Mn alloys 

 Alshammari et al. [38] produced two sets of Ti-xMn (x = 1, 5 and 10%) 

alloys (pure Ti and Mn powder with 99.4% and 99.0% purity respectively) via PM, 

one set was as-sintered (cold press and vacuum sintered), while the other was 

subject to β forging. The study by Gouda et al.  [40], looked at producing Ti-xMn 

(x = 4.75, 10.3, 13.1 and 15.3%) alloys by MIM, the samples were in the as-sintered 

condition. The samples were subjected to solution treatment under vacuum 

(1000 °C) for 1 hour followed by quenching in iced water, the solution treated 

samples were further subjected to aging at 400, 500 and 560 °C for 0.5 and 3 hours 

under vacuum. Santos et al. [39] also looked at MIM Ti-Mn alloys with Mo as a 

third element, four sintered samples of Ti-(5-6)Mn-(3-4)Mo were fabricated. 

 

Kim et al. [42] fabricated Ti-xMn (x = 5, 10, 15 and 20%) alloys (Ti sponge: 99.9% 

and Mn ingot: 99.95%) by casting. The samples were remelted seven times and heat 

treated using the tube furnace under argon atmosphere for 4 hours, at a temperature 

lower than the respective solidus temperatures (150 °C). They were cooled in the 

furnace at 10 °C/min down to 600 °C and later air cooled.  

 

In another study by Santos et al. [41] the same four Ti-(5-6)Mn-(3-4)Mo alloys 

were prepared via cold crucible levitation melted (CCLM) method. In this method 

CP-Ti (grade 1) chips, Mn flakes and Mo wires (with high purity powder: >99.9%) 

were used. The CCLM process was experimentally performed in a high purity argon 

atmosphere, the alloy ingots were remelted followed by ice-water quenching. After 

the CCLM process the alloys were subjected to hot rolling and hot forging, both at 

900 ºC and later air-cooled. 
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Properties of Ti-Mn alloys 

The density of sintered Ti-Mn alloys decreases with increasing Mn 

concentration. A Ti-Mn alloy with 1 wt% Mn has a relative density of 94.4%, and 

with 10 wt% Mn has a relative density of 90.9% [38]. The density of sintered Ti-

Mn alloys can be improved by hot working treatments. Ti-Mn alloys have shown 

very low ductility, which can be improved by adding a third element such as Mo to 

Ti-Mn [39; 41]. As previously mentioned adding Mo to Ti-Mn promotes 

mechanical twinning which is responsible for the increased ductility, hence it 

increases the mechanical properties. The Ti-5Mn-3Mo alloy fabricated by CCLM 

[41] had the highest elongation of 18% compared to 2% and 3%, for the Ti-5Mn-

3Mo (fabricated by MIM [39]) and Ti-5Mn (fabricated by PM [38]) alloys 

respectively. The low elongation in the Ti-5Mn-3Mo alloy (fabricated by MIM [39]) 

is attributed to the high O content, and the presence of pores and carbides, thus they 

tend to decrease the ductility of the alloy. 

 

Ti-Mn-Mo alloys (fabricated by MIM [39] and CCLM [41]) have shown superior 

mechanical properties compared to sintered Ti-Mn alloys. The Ti-5Mn-3Mo alloy 

(prepared by MIM [39]) had an UTS of 1036 MPa and YS of 980 MPa, which 

reportedly was higher than the sintered Ti-5Mn alloy [38], which had an UTS of 

800 MPa and YS of 716 MPa (as shown in Figure 1-12). The highest UTS and YS 

was reported for the Ti-5Mn-3Mo produced by MIM, compared to the Ti-5Mn-

3Mo alloy fabricated by CCLM (UTS: 920 MPa and YS: 855 MPa [41]). The 

hardness of sintered Ti-Mn alloys is higher than CP-Ti (100 HV), with just 1 wt% 

of Mn added to Ti, it poses a hardness of 180 HV and increases to 245 HV (Ti-5Mn) 

[38]. By adding Mo to Ti-Mn alloys, it increases the hardness of the alloy. The Ti-

5Mn-3Mo alloy had a hardness of 372 HV (fabricated via CCLM [41]) which 

reportedly was the highest compared to the sintered Ti-5Mn alloy and Ti-5Mn-3Mo 

alloy fabricated via MIM (331 HV [39]). 

 

1.2.2.2 Ternary Ti-Mn-Nb alloys 

The addition of Mn to Ti-Nb alloys 

 Chen et al. [43] prepared Ti-16Nb-xMn (x = 0, 1, 3, 5, 7 and 9%) alloys 

(from 99.9% pure Ti, Nb and Mn metals) via CCLM. The alloys were cold rolled 

into a plate with a thickness reduction of ~60%, later the ingots were sealed in 
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quartz capsules evacuated to a pressure of 1x10-5 Pa and solution treated at 900 °C 

for 30 minutes. After solution treatment, the alloys were quenched in water by 

breaking the capsules. The purpose of this study was to look at how the addition of 

Mn to Ti-16Nb would affect the microstructure and mechanical properties of the 

alloy. The Ti-16Nb alloy was chosen on the basis of previous studies indicating that 

the alloy comprised of α'' and β phases, and with the addition of Mn to Ti-16Nb it 

would suppress the α'' phase and form a single β-phase (as shown in Figure 1-13). 

 

 

Figure 1-13 XRD patterns of a) Ti-16Nb, b) 1Mn, c) 3Mn, d) 5Mn, e) 7Mn and f) 

9Mn alloys [43]. 

 

The MoE of Ti-16Nb-xMn alloys is higher than 10 indicating that the alloys will 

consist of β-phase, and with increasing Mn concentration the MoE increases 

significantly. The microstructure of the alloys consisted of an equiaxed β matrix. 

The experimental results showed that the Ti-16Nb-5Mn alloy exhibited the highest 

UTS of 716 MPa and YS of 657 MPa which was 26% and 77% respectively higher, 

than that of the Ti-16Nb alloy. The presence of the athermal ω phase, β-phase and 

solid-solution strengthening effects of Mn affected the tensile properties of the Ti-

16Nb-xMn alloys. The tensile strengths of Ti-16Nb-(1-5)Mn alloys increased (from 

644-716 MPa) and then decreased (from 695-660 MPa) for the Ti-16Nb-(7-9)Mn 

alloys. In this study no hardness measurements were reported. 
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The addition of Nb to Ti-Mn alloys 

A study by Ethemam et al.  [44] looked at a new group of ternary Ti-7Mn-

xNb (x = 0, 3, 7 and 10%) alloys fabricated via PM (conventional press and sinter) 

from BE powder. The average powder particle size for Ti, Mn and Nb powders 

were <50 μm, ≤10 μm and <50 μm, respectively. The microstructure, phase 

composition and mechanical properties were investigated on the effects of 

increasing the Nb concentration in Ti-7Mn-xNb alloys. The study primarily focused 

on producing β-type ternary Ti-7Mn-xNb alloys, with the addition of Nb to Ti-7Mn, 

the intensity of the β-phase increased and in contrast the intensity of the α-phase 

decreased. α + β lamellar microstructures consisted for all the alloys as shown in 

Figure 1-14. 

 

 

Figure 1-14 SEM micrographs of the sintered Ti-7Mn-xNb alloys: a) Ti-7Mn, b) Ti-

7Mn-3Nb, c) Ti-7Mn-7Nb, and d) Ti-7Mn-10Nb [44]. 

 

With the addition of 3 wt% Nb (Figure 1-14b), the α-phase becomes finer and its 

amount decreases. Increasing the Nb concentration to 7 wt% (Figure 1-14c) 

enhances the β-phase while the α-phase reduces even further. Lastly, with the 

addition of 10 wt% Nb (Figure 1-14d), the β-phase is more stabilized and the α-

phase is further reduced (refined microstructure). Experimental results showed that 
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with increasing Nb concentration, the ultimate compressive strength (UCS) and YS 

of the Ti-7Mn-xNb alloys gradually decreased. Compressive strength was chosen 

instead of tensile strength, as it is a key factor in determining the suitability of 

implant materials since bone tissues are mainly exposed to compressive stresses 

[44]. The compressive strain of the Ti-7Mn-xNb alloys increased gradually as the 

Nb concentration increased. The highest UCS (2127 MPa) and YS (1005 MPa) was 

observed for the Ti-7Mn alloy, whereas the lowest was observed for the Ti-7Mn-

10Nb alloy (UCS: 1842 MPa & YS: 842 MPa). The hardness was again the highest 

for the Ti-7Mn alloy (375 HV), and gradually decreased as the Nb concentration 

increased (similar to the trends of UCS and YS). The high mechanical properties of 

the Ti-7Mn alloy is due to the strong solid-solution strengthening effect of Mn. 

Overall the properties of the Ti-7Mn-xNb alloys was significantly greater than the 

sintered CP-Ti alloy. 

 

Chicardi et al. [45] fabricated ternary Ti-Nb-xMn (x = 0, 3, 6, 9 and 12%) alloys 

(with high purity metal powders Ti: 99.6%, Nb: 99.9% and Mn: 99.9%) via 

mechanical alloying (MA) in a planetary ball mill with different milling times 

between 1 hour and 120 hours at spinning rate of 300 rpm [45]. The aim of the study 

was to manufacture β-type ternary Ti-Nb-xMn alloys, with the addition of Mn, and 

a Nb concentration in the range of 30-35 wt% was used. It has been reported in 

previous studies that, the Ti-30Nb alloy is sufficient to stabilize the β-phase [25; 

45]. 

 

Other ternary Ti alloys with Mn 

As mentioned in section 1.2.1.3, the second set of samples were Mn-

dominant ternary Ti-xCu-yMn alloys designed by Alqattan et al. [32]. The Mn-

dominant samples were in a ratio of 3:1 i.e. one with Mn/Cu, which consisted of 

the following compositions of Ti-xMn-yCu (x = 0.6, 1.2, 2.4, and 4.8% & y = 0.2, 

0.4, 0.8 and 1.6%). The experimental results showed that with the addition of Mn 

to the Ti-xMn-yCu alloy, the tensile properties of the alloy increased remarkably, 

the highest reported UTS and YS (was for the Ti-4.8Mn-1.6Cu alloy) was 817 MPa 

and 729 MPa respectively. However, as the Mn concentration increased the 

elongation of the Ti-xMn-yCu alloys decreased gradually (from to 20% to 5%). The 

hardness of the Ti-xMn-yCu alloys increased considerably (from 56 – 63.5 HRA) 

with increasing Mn concentration. With the addition of two alloying elements (Mn 
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and Cu) they both contributed to the increased properties of Mn-dominant ternary 

Ti-xMn-yCu alloys. It is worth mentioning that Mn has a stronger stabilizing effect 

on the β-Ti phase than Cu at the same concentration, hence Mn-dominant alloys are 

predominantly stronger and have higher UTS, YS and hardness in comparison to 

Cu-dominant alloys (as mentioned in section 1.2.1.3) [32]. As shown in Figure 1-15, 

it is evident that at same Mn-dominant and Cu-dominant concentrations, the Mn-

dominant alloy has a much finer microstructure compared to the Cu-dominant alloy, 

thus it is responsible for the increased mechanical properties. 

 

 

Figure 1-15 OM of a) Mn-dominant alloy (Ti-1.2Mn-0.4Cu) and b) Cu-dominant 

alloy (Ti-0.4Mn-1.2Cu) [32]. 

 

1.2.3 Ternary Ti-Fe-Nb alloys 

 In this section binary Ti-Fe alloys are first discussed followed by the ternary 

Ti-Fe-Nb alloys. Binary Ti-Nb alloys have already been discussed in section 1.2.1.2. 

 

1.2.3.1 Ti-Fe alloys 

 Fe is the cheapest metallic element being readily available across the word. 

Fe is a strong β-stabilizing element (providing strong solid-solution strengthening 

effect) when alloyed to Ti, permitting to achieve similar properties to other binary 

Ti alloys (i.e. binary Ti-(Cu or Nb or Mn) alloys); however, Fe has a high diffusivity 

in Ti, making it favourable for the sinterability of the material (Fe is an ideal 

element to develop PM Ti alloys) [46-53]. The addition of Fe to Ti lowers the cost 

of the alloy, thus cost effective PM Ti-Fe alloys can be manufactured [50; 52]. Fe 

is a β-eutectoid element and will form TiFe intermetallic compounds at 1085 °C at 

a Fe concentration of 32.5 wt% according to the binary Ti-Fe equilibrium phase 
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diagram [54]. Ti-Fe alloys have been studied by many researches and have been 

fabricated by PM approach which is beneficial in making comparisons in this study. 

 

The effects of increasing Fe concentration in Ti-Fe alloys 

 The addition of Fe to Ti increases the mechanical properties of Ti-Fe alloys 

similar to other binary Ti alloys. With increasing Fe concentration, the elongation 

decreases as well as the relative density of Ti-Fe alloys. Tensile properties such as 

UTS and YS increase with increasing Fe concentration as well as the hardness of 

Ti-Fe alloys. The increase in the mechanical properties of Ti-Fe alloys is due to the 

strong solid-solution strengthening effect of Fe. 

 

Processing Ti-Fe alloys 

 In a study by Chen et al. [46], Ti-xFe (x = 3, 5 and 7%) alloys (gas atomized 

Ti powder and carbonyl Fe powder with particle size of 25.2 and 3.4 μm 

respectively) alloys were fabricated via PM route (i.e. press and vacuum sintering 

at 1250 °C), followed by cooling at different cooling schedules. The objective of 

the study was to analyse the effects of post-sintering heat treatment parameters, 

mainly at different holding temperatures in the α + β region and cooling rates on 

the mechanical properties of Ti-xFe alloys. Bolzoni et al. [47] used PM in their 

work to fabricate Ti-xFe (x = 5 and 7%) alloys (elemental Ti and Fe powder: 99.6% 

and 85Fe/15Ni respectively). In a study by Raynova et al. [48], binary Ti-5Fe alloy 

(HDH Ti powder and elemental 5 wt% Fe powder) was fabricated by a combination 

of sintering plus thermomechanical treatment. Two stage sintering was used for 

consolidation of the powder compacts, to guarantee chemical homogeneity of the 

materials. The thermomechanical treatment involved open die forging/extrusion, 

further some of the samples were subjected to annealing heat treatment [48]. In 

another study by the same author [49], induction sintering method was used to 

produce binary Ti-5Fe alloy (HDH Ti powder and Fe carbonyl powder). In this 

method high-frequency induction heating was used as the heating source to 

induction sinter BE Ti-5Fe alloy (warm pressing at 250 °C at a uniaxial pressure of 

700 MPa) [49]. Romero et al. [50] also fabricated PM Ti-5Fe alloy (HDH Ti powder 

and Fe carbonyl powder) by the BE route (warm pressing at 230 °C at a compacting 

pressure of 400 MPa), followed by thermomechanical processing. In the 

thermomechanical processing the alloy was extruded at different temperatures and 

heat treatment such as solution treatment and aging were investigated [50]. The 
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same method was used by Alshammari et al. [51] to fabricate binary Ti-5Fec and 

Ti-5Fem alloys (HDH Ti powder, c = carbonyl powder and m = milled powder), via 

PM route (i.e. warm compaction at 250 °C applying a uniaxial pressure of 600 MPa 

and vacuum sintering). Thermomechanical processing of the alloys was done by 

forging in the β region to enhance the mechanical properties as well as refine the 

microstructure of the alloy [51]. 

 

Niu et al. [55] manufactured a series of binary Ti-xFe (x = 0.2, 0.5, 1, 2,3 and 4%) 

alloys (high purity grade 0 Ti sponge: >99.8% and Fe powder: 99.9%) via casting. 

The alloys were fabricated by vacuum CCLM method. 

 

Properties of Ti-Fe alloys 

 Many researchers have studied binary Ti-Fe alloys, with Fe concentrations 

between 5 to 7 wt%, due to the excellent mechanical properties obtained with the 

β-Ti phase being retained [46-53; 55]. Literature is very limited on Ti-Fe alloys 

with less than 5 wt% Fe additions. The relative density of Ti-Fe alloys is higher 

than CP-Ti, and with the addition of Fe to Ti, the ductility of Ti-Fe alloys decreases 

(similar affects to other binary Ti alloys). The highest elongation reported for a Ti-

Fe alloy is 26 ± 8.90% (Ti-0.2Fe), fabricated via casting (CCLM) [55]. 

 

Tensile properties of Ti-Fe alloys are significantly higher than CP-Ti. The sintered 

Ti-5Fe alloy [48] has an UTS and YS value of 930 MPa and 850 MPa respectively 

(with a low ductility of 2.6% at a relative density of 98.73%) as shown in Figure 

1-16. 

 

 

Figure 1-16 Characterization of the sintered, forged and extruded Ti-5Fe alloy [48]. 
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Similar tensile properties have been reported for other binary Ti-5Fe alloys 

fabricated by the PM approach [46; 49-51]. Hardness of Ti-Fe alloys increases with 

Fe additions, the highest reported hardness for Ti-5Fe is 345 HV (fabricated via PM 

method [52]). Similar hardness values have also been reported for other Ti-5Fe 

alloys (fabricated by PM method) [46; 47; 51]. 

 

Subsequent treatments such as extrusion, forging and solution treatment have been 

reported to further increase the ductility (remove most of the porosity left behind 

from sintering), mechanical properties (as shown in Figure 1-16) as well as the 

hardness of PM Ti-5Fe alloys [46; 48; 50-52]. 

 

1.2.3.2 Ternary Ti-Fe-Nb alloys 

The addition of Fe to Ti-Nb alloys 

 Ternary Ti-5Nb-xFe (x = 0, 1, 2, 3, 4 and 5%) alloys were studied by Hsu 

et al. [56]. The alloys were fabricated using a commercial arc-melting vacuum-

pressure casting system using Ti (ASTM grade 2), Nb and Fe powders with 99.95% 

purity. With increasing Fe concentrations retention of the metastable β-phase 

started to begin, small amounts were obtained with 1 to 2 wt% Fe and large amounts 

were retained at higher Fe concentrations (≥ 3 wt% Fe) as shown in Figure 1-17.  

 

 

Figure 1-17 XRD patterns of Ti-5Nb-xFe alloys [56]. 
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It was reported that the binary Ti-5Nb alloy mainly consisted of the α' phase, and is 

shown in the XRD spectra (Figure 1-17). A three-point bending test was performed 

to evaluate the mechanical properties of the ternary alloys. All ternary alloys 

showed higher bending strengths (from 1466 – 2460 MPa) than CP-Ti (844 MPa), 

the alloys Ti-5Nb-2Fe and Ti-5Nb-5Fe both showed the highest bending strengths 

compared to the other alloys [56]. 

 

The addition of Fe (0.5, 3.5, 6 and 9%) to binary Ti-11Nb alloys were designed by 

Ehtemam-Haghighi et al. [57], and fabricated via CCLM. Raw Ti, Fe and Nb 

powders with 99.9% purity were used. With increasing Fe concentration, the 

volume fraction of the β-phase increased, with the resultant microstructure 

comprised mainly with β and very small amount of α''. The addition of Fe (from 0.5 

– 6 wt% Fe) to Ti-11Nb increased the compressive YS (from 796 – 1137 MPa) as 

well as the hardness (from 278 – 357 HV5) of the alloys. 

 

The addition of Nb to Ti-Fe alloys 

 Ehtemam-Haghighi et al. [58] also fabricated a series of ternary Ti-xNb-

7Fe (x = 0, 1, 4, 6 and 11%) alloys via CCLM under an argon atmosphere. The 

alloys were made using raw Ti, Nb and Fe powders from 99.9% purity. With the 

addition of Nb to Ti-7Fe, the volume fraction of the β-phase increased while the 

volume fraction of the α'' phase decreased (as shown in Figure 1-18). 

 

 

Figure 1-18 XRD patterns of the as-cast Ti-7Fe-xNb alloys [58]. 
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The experimental results showed that the compressive stresses for the ternary alloys 

(except Ti-7Fe-1Nb) did not fail when the maximum load capacity of the machine 

reached 100 kN. However, the alloys Ti-7Fe and Ti-7Fe-1Nb failed due to the high-

volume fraction of the α'' phase. The Ti-7Fe alloy showed the highest compressive 

YS (1874 MPa) and hardness (560 HV), and the lowest plastic strain (2%) 

compared to the ternary alloys [58]. With the addition of Nb to Ti-7Fe, the 

compressive strength (from 2093 – 1990 MPa), compressive YS (from 1847 – 985 

MPa) and hardness (from 520 – 325 HV) decreased as the concentration of Nb 

increased (from 1 – 11 wt% Nb). In another study by the same author [59], the same 

ternary Ti-xNb-7Fe alloys were fabricated by the same manufacturing methods 

(CCLM). In this study the mechanical and wear properties of the ternary alloys were 

evaluated. With the addition of Nb to Ti-7Fe, the wear resistance reduced with 

increasing Nb concentration (from 0 – 11 wt% Nb), thus showing better wear 

resistance than CP-Ti and Ti-6Al-4V.  

 

In a study by Afonso et al. [60], ternary Ti-3Fe-xNb (x = 10, 15, 20, 25, 30 and 

35%) alloys were prepared by arc melting and then copper mold cast into cylinder 

and plate shapes. Two sets of samples were produced, the first being 30 g as-cast 

(slowly cooled (SC)), and the other being rapidly solidified (RS). From the initial 

ingots (30 g), samples of 10 g were cut, melt and rapidly solidified in another arc 

furnace melting system (RS – samples). Pure elements of Ti sponge (99.5%), Nb 

(99.8%) and electrolytic Fe (99.7%) were used as raw materials. The aim of the 

study was to produce β-type ternary Ti-3Fe-xNb alloys applicable for biomedical 

applications, with low Young’s modulus (i.e. close to the human bone). 

Experimental results showed that increasing the Nb concentration from 10 – 25 

wt%, stabilized the β-phase (as shown in Table 1-1), while the volume fraction of 

the α-phase decreased (as confirmed by XRD results). The Ti-25Nb-3Fe alloy 

consisted of only the β-phase, since the addition of 3 wt% Fe, a strong β-stabilizing 

element, favoured the stabilization of the β-phase (instead of a minimum of 35 wt% 

Nb to obtain the stable β-phase in binary Ti-Nb system [60]). No martensite α' and 

α'' phases were identified by XRD, and it is believed that with the addition of 3 wt% 

Fe, there should be no formation of these phases [60]. The RS samples obtained β-

Ti structures with volume fractions of the ω phase at lower Nb concentrations (10 

and 15 wt%). For the SC samples, α + β structures were obtained up to 20 wt% Nb 

addition (the ω phase was only detected for the Ti-20Nb-3Fe alloy), and for higher 
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additions of Nb (from 25 – 35 wt%), β-Ti structure was obtained. Microstructure of 

alloys showed refinement, with the addition of Nb. The RS Ti-10Nb-3Fe and Ti-

15Nb-3Fe alloys showed higher hardness values (due to the formation of the ω 

phase, as confirmed by XRD analysis), compared to SC samples as shown in Table 

1-1. The SC Ti-20Nb-3Fe alloy, showed the highest hardness among the other SC 

alloys, due to the formation of the ω phase (as confirmed by XRD analysis) as 

shown in Table 1-1. 

 

Table 1-1 Vickers hardness values for arc melting as-cast (SC) sample and RS 

copper mold samples for cylinder with  6 mm diameter of Ti-xNb-3Fe alloys [60]. 

 

 

Li et al. [61] fabricated a series of ternary Ti-xNb-2Fe (x = 14, 16, 18, 20, 22 and 

24%) alloys via casting. After casting the ingots were solution treated at 850 °C for 

1 hour and then quenched in water. The alloys were cold-rolled (room temperature) 

under a reduction ratio of 88% to a sheet with a thickness of 1.4 mm. Lastly the 

alloys were subjected to solution treatment at 800 °C for 1 hour followed by water 

quenching. The aim of the study was to design β-type ternary alloys with excellent 

mechanical properties and biocompatibility for biomedical applications. The results 

showed that the Ti-14Nb-2Fe (comprised of both α'' and ω phases) alloy displayed 

the highest UTS (830 MPa) and YS (685 MPa), compared to the other alloys 

(comprised of just single β-phases), this was due to the ω phase (detected by XRD) 

which showed the precipitation strengthening effect [61]. Increasing the Nb 

concentration (from 14 – 24 wt% Nb) caused a decrease in the mechanical 

properties of the ternary alloys as shown in Figure 1-19. 
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Figure 1-19 Tensile strength (σb), YS (σ0.2), elongation (ϵ) and Young’s modulus (E) 

of Ti-xNb-2Fe alloys [61]. 

 

Other Ti-Fe-Nb alloys 

  In a study by Chirico et al. [62], binary Ti-xFe (x = 5 and 7%) and Ti-xNb 

(x = 12, 25 and 40%), and ternary Ti-xFe-yNb (x = 5 and 7%, and y = 25 and 40%) 

alloys were fabricated via PM. The study primarily focused on producing β-type Ti 

alloys by using TiH2, elemental Nb and Fe powders with average particle sizes of 

27, 18 and 4 μm, respectively. No mechanical properties were reported in the study.  

 

1.2.4 Ternary Ti-Fe-Cu alloys 

 Both Fe and Cu are cheap alloying elements (Fe being cheaper than Cu), 

when both elements are alloyed to Ti, the overall cost of the material is low 

compared to other alloying elements (such as Nb, Mo, V and Ta). By adding both 

Fe and Cu to Ti, the melting temperature of the alloy is relatively low (lower than 

Ti), thus making it favourable for the sinterability of the material (Fe has a high 

diffusivity in Ti) [48]. Studies on ternary Ti-Fe-Cu alloys have not been reported 

extensively, suggesting more work should be done on this alloy system. 

 

In a study by Cho et al. [63], six ternary Ti-xFe-yCu (x = 18, 22, 30, 27, 30 and 30% 

& y = 4, 5, 2, 6, 4 and 6.6%) alloys were studied (designed using a d-electrons alloy 

method) and fabricated by casting, followed by heat treatment under high-purity 

argon atmosphere at 900 ºC for 6 hours followed by air cooling. All alloys except 
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Ti-18Fe-4Cu and Ti-22Fe-5Cu were further subjected to heat treatment under a 

high-purity argon atmosphere at 900 ºC for 24 hours followed by air cooling. Ti 

sponge (99.7%), Fe wire (99%) and high purity Cu (99.99%) were used in this work. 

The aim of the study was to develop new ternary Ti-Fe-Cu alloys with high ductility, 

Young’s modulus, hardness as well as compressive strength compared to existing 

Ti alloys. Experimental results show that the as-cast Ti-Fe-Cu alloys, consist of the 

β-Ti phase and dendritic TiFe phase (confirmed by XRD analysis and optical 

microscopy (OM)) as shown in Figure 1-20, and no Ti2Cu phase was reported in 

the study. 

 

 

Figure 1-20 XRD patterns of studied Ti-Fe-Cu alloys before heat treatment (as-cast) 

[63]. 

 

The hardness of as-cast Ti-Fe-Cu alloys increased from 490 HV (Ti-18Fe-4Cu) to 

550 HV (Ti-30Fe-6.6Cu), with increasing Fe concentration. The hardness of these 

as-cast alloys is relatively higher than the heat treated alloys (hardness decreased 

by 6% after the heat treatment for all alloys), CP-Ti (145 HV) and Ti-64 (extra low 

interstitial (ELI)) (320HV) [63]. The high hardness of as-cast Ti-Fe-Cu alloys is 

due to the formation of the TiFe phase (volume fraction of TiFe phase increases 

with the addition of Fe). From compressive testing, the heat treated Ti-Fe-Cu alloys 

displayed high compressive strengths and strains compared to as-cast Ti-Fe-Cu 

alloys. With the highest reported compressive strength and strain being 2121 MPa 

and 24.5% respectively, which was reported for the heat-treated alloy (Ti-27Fe-6Cu 

at 24 hours). This is because the fracture of as-cast alloys does not occur in the 

plastic region but occurs in the elastic region, and for the heat treated alloys it is 
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vice versa since the hardness decreases and the fracture occurs in the plastic region 

(“this is a well-known phenomenon for brittle alloys with intermetallic phase” [63]). 

 

1.2.5 Ternary Ti-Fe-Mn alloys 

 Ternary Ti-Fe-Mn alloys have not been studied in depth in literature, 

suggesting more work should be done on this alloy system. 

 

Ikeda et al. [64] studied the influence of Fe additions to Ti-Mn-Fe (Ti-10Mn (0Fe), 

Ti-8.7Mn-1Fe (1Fe), Ti-6.1Mn-3Fe (3Fe) and Ti-3.5Mn-5Fe (5Fe)) alloys via 

casting. The alloys were designed based on an average ratio of valence electrons to 

atoms (i.e. e/a) of 4.26. Ti sponge, flake-like Mn and Fe wire were used in this study. 

The alloy ingots were hot forged and rolled at 847 ºC. Furthermore, the specimens 

were encapsulated in a silica tube and solution treated at 900 ºC for 1 hour, and then 

quenched by breaking the capsules in ice water. Lastly the specimens were 

isothermally aged at 300, 400 and 500 ºC. From the experimental results all alloys 

showed equiaxed grain structures (Figure 1-21a) and only the β-phase (Figure 

1-21b), expect for the Ti-10Mn alloy (athermal ω and β-phase were observed as 

shown in Figure 1-21b). The hardness of the Ti-Mn alloys was relatively uniform, 

with the 5Fe alloy having a significantly higher hardness, followed by the 3Fe alloy. 

 

 

a) 
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Figure 1-21 a) OM and b) XRD of Ti-Mn-Fe alloys [64]. 
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1.3 Conclusions 

 Binary Ti-Cu, Ti-Nb, Ti-Mn and Ti-Fe alloys have been studied to a great 

extent, compared to ternary Ti-Cu-Nb, Ti-Mn-Nb, Ti-Fe-Nb, Ti-Fe-Cu and Ti-Fe-

Mn alloys. The additions of Cu, Nb, Mn and Fe to Ti have shown to significantly 

increase the mechanical properties (compared to CP-Ti), as well as refine the 

microstructure of the alloy (especially Mn and Fe, as they are strong β-stabilizers 

providing strong solid-solution strengthening effect). Fabrication of binary Ti 

alloys has been considered via casting and PM, PM being cost effective. However, 

literature studies reported for the binary Ti-Nb alloy system, have only fabricated 

the alloys via casting, suggesting the alloy should be fabricated by PM (in order to 

make comparisons of the alloy by both processes). Reported literature studies for 

the ternary alloy systems, aiming to produce β-type ternary Ti alloys, with high β-

stabilizer concentrations, thus increasing the cost of the alloy are lacking. Both 

ternary Ti-Fe-Cu and Ti-Fe-Mn alloy systems, reported only one literature study, 

showing that the alloy systems are not studied extensively. Reported studies 

indicate that, adding two elements to Ti, could lower the overall cost, melting 

temperature of the alloy as well as enhancing the mechanical properties of the alloy. 
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Chapter 2 

Motivation and Objectives 

2.1 Motivation of This Work 

Based on the conclusions from the literature review, to a great extent, binary 

Ti-Cu, Ti-Nb, Ti-Mn and Ti-Fe alloys have been studied, compared to ternary Ti-

Cu-Nb, Ti-Mn-Nb, Ti-Fe-Nb, Ti-Fe-Cu and Ti-Fe-Mn alloys. With only one 

relevant literature study reported for the Ti-Fe-Cu and Ti-Fe-Mn alloy systems, the 

work proposed in this thesis fills a big gap in literature. For the studies reported in 

literature, they mainly focused on fabricating the ternary alloy systems via casting, 

whereas fabrication by PM has not been considered. With the limited amount of 

literature, it is in best interest to fabricate novel ternary Ti-Cu-Nb, Ti-Mn-Nb, Ti-

Fe-Nb, Ti-Fe-Cu and Ti-Fe-Mn alloys via PM route (PM being more economical 

than casting). The alloying elements Cu, Nb, Mn and Fe are chosen because of their 

low cost (except for Nb), strong β-stabilizing effect (especially Fe and Mn) when 

alloyed to Ti (providing different strengthening effects), and their ability to provide 

superior mechanical properties as well as biocompatibility when alloyed to Ti. By 

adding two different elements to Ti, the overall cost is reduced, the melting 

temperature is lowered, and better mechanical properties compared to CP-Ti are 

expected. 

 

2.2 Aim and Objectives 

2.2.1 Aim 

 This study aims to understand the effects of adding two different β-

stabilizing elements (Cu, Nb, Mn and Fe) to Ti. The main goal of this thesis is to 

fabricate cost effective PM ternary Ti alloys, with small additions of alloying 

elements (from 0.5 – 5 wt%), aiming to have enhanced properties compared to CP-

Ti. In order to achieve this, certain objectives need to be fulfilled. 
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2.2.2 Objectives 

 Review current literature studies on binary Ti-Cu, Ti-Nb, Ti-Mn and Ti-Fe 

alloys, and ternary Ti-Cu-Nb, Ti-Mn-Nb, Ti-Fe-Nb, Ti-Fe-Cu and Ti-Fe-

Mn alloys. 

 Design novel ternary Ti alloy compositions using the MoE approach. 

 Fabricate the novel ternary Ti alloy compositions via PM (i.e. cold press and 

vacuum sintering). 

 Evaluate the properties of the sintered novel ternary Ti alloys through 

density measurements (theoretical, green, and sintered), microstructure 

analysis (OM, SEM, and XRD), and mechanical testing (tensile test and 

hardness). 

 Compare the performance of the novel ternary Ti alloys with relevant 

counterpart Ti alloys used in engineering applications. 
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Chapter 3 

Experimental Method 

3.1 Alloy Design and Materials 

In this thesis new ternary Ti alloy compositions are designed using the MoE. 

In a study by Tang et al. [65], two MoE models were used, one proposed by Bania 

(Equation (1)) [66]: 

 

MoE = 1.0 Mo + 0.67 V + 0.44 W + 0.28 Nb + 0.22 Ta + 2.9 Fe + 1.6 Cr +       

0.77 Cu + 1.11 Ni + 1.43 Co + 1.54 Mn – 1.0 Al (wt%) 

 

            Simplified MoE = 0.28 Nb + 2.9 Fe + 0.77 Cu + 1.54 Mn (wt%)    Eq. 1  

 

and the other proposed by Wang et al. (Equation (2)) [67]: 

 

MoE = 1.0 Mo + 1.25 V + 0.59 W + 0.28 Nb + 0.22 Ta + 1.93 Fe + 1.84 Cr + 

1.50 Cu + 2.46 Ni + 2.67 Co + 2.26 Mn + 0.30 Sn + 0.47 Zr + 3.01 Si –            

1.47 Al (wt%) 

 

            Simplified MoE = 0.28 Nb + 1.93 Fe + 1.50 Cu + 2.26 Mn (wt%)      Eq. 2 

 

which were used to classify the three metastable β Ti alloys, Ti-5553 (Ti-5Al-5Mo-

5V-3Cr), Ti-55531 (Ti-5Al-5Mo-5V-3Cr-1Zr) and Ti-7333 (Ti-7Mo-3Cr-3Nb-

3Al). The aim of the study involved, using the MoE, to discuss the effect of 

chemical composition on the starting temperature of the ω phase transformation 

(during isothermal ageing and continuous heating process) for the metastable β Ti 

alloys [65]. Results showed that the metastable β Ti alloys with lower MoE had 

lower starting temperature of the ω phase transformation and wider transformation, 

it was concluded that Eq. 2 was more accurate than Eq. 1 for discussing the starting 

temperature of the ω phase transformation. However, both MoE models will be 

used to design the ternary Ti alloy compositions in this thesis, as they have the 

alloying elements Cu, Nb, Mn and Fe, to prove which model better predicts the 

equilibrium microstructure of vacuum sintered Ti alloys. 
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Raw Ti, Cu, Nb, Mn and Fe powders were used in this study (details of the raw 

powders are shown in Figure 3-1 and Table 3-1). The raw Ti, Cu, Nb, Fe and Mn 

powders are characterized by an irregular, dendritic, irregular, spherical, and 

irregular morphology, respectively, as shown in Figure 3-1. 

 

  

  

 

Figure 3-1 Morphology of the raw materials: a) Ti, b) Cu, c) Nb, d) Fe, and e) Mn. 

 

 

 

a) b) 

d) 

e) 

c) 
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Table 3-1 Details of the raw powders. 

Materials Purity Particle size Supplier 

Ti 99.4% 
200 mesh  

(<75 µm) 

Goodfellow Cambridge Ltd 

(UK) 

Cu 99.7% 230 mesh (63µm) Merck KGaA (Germany) 

Nb 99.8% 
325 mesh  

(<45 µm) 
Alfa Aesar (USA) 

Mn 99.0% 
325 mesh  

(63 µm) 
Sigma-Aldrich (USA) 

Fe 99.0% 
1200 mesh  

(<10 µm) 

Goodfellow Cambridge Ltd 

(UK) 

 

The designed alloy compositions of Ti-xCu-xNb, Ti-xMn-xNb, Ti-xFe-xNb, Ti-

xFe-xCu and Ti-xFe-xMn (x = 0.5, 1, 2, 3.5 and 5 in wt%), are displayed on Table 

3-2, Table 3-3, Table 3-4, Table 3-5 and Table 3-6, respectively, with their 

theoretical density (calculated using the rule of mixtures equation as shown in 

section 3.3.1 [68]), MoE and the predicted alloy type. The designed ternary Ti alloy 

compositions were prepared using the correct ratio of powders weighed on an 

analytical scale (2-decimal digits). 

 

Table 3-2 Designed ternary Ti-xCu-xNb alloys. 

Compositions 
Theoretical 

density  
MoE Alloy type 

Ti-xCu-xNb (g/cm3) Eq. 2 Eq. 1 Eq. 2 Eq. 1 

Ti-0.5Cu-0.5Nb 4.55 0.9 0.5 

α + β 
α + β 

Ti-1Cu-1Nb 4.60 1.8 1.1 

Ti-2Cu-2Nb 4.68 3.6 2.1 

Ti-3.5Cu-3.5Nb 4.81 6.2 3.7 
Near-β 

Ti-5Cu-5Nb 4.94 8.9 5.3 Near-β 

 

Table 3-3 Designed ternary Ti-xMn-xNb alloys. 

Compositions 
Theoretical 

density  
MoE Alloy type 

Ti-xMn-xNb (g/cm3) Eq. 2 Eq. 1 Eq. 2 Eq. 1 

Ti-0.5Mn-0.5Nb 4.54 1.3 0.9 

α + β Ti-1Mn-1Nb 4.58 2.5 1.8 

Ti-2Mn-2Nb 4.65 5.1 3.6 



 

44 

Ti-3.5Mn-3.5Nb 4.75 8.9 6.4 Near-β 
Near-β 

Ti-5Mn-5Nb 4.85 12.7 9.1 Metastable β 

 

Table 3-4 Designed ternary Ti-xFe-xNb alloys. 

Compositions 
Theoretical 

density  
MoE Alloy type 

Ti-xFe-xNb (g/cm3) Eq. 2 Eq. 1 Eq. 2 Eq. 1 

Ti-0.5Fe-0.5Nb 4.55 1.1 1.6 

α + β 
α + β 

Ti-1Fe-1Nb 4.58 2.2 3.2 

Ti-2Fe-2Nb 4.66 4.4 6.4 Near-β 

Ti-3.5Fe-3.5Nb 4.77 7.7 11.1 Near-β Metastable 

β Ti-5Fe-5Nb 4.88 11.1 15.9 Metastable β 

 

Table 3-5 Designed ternary Ti-xFe-xCu alloys. 

Compositions 
Theoretical 

density  
MoE Alloy type 

Ti-xFe-xCu (g/cm3) Eq. 2 Eq. 1 Eq. 2 Eq. 1 

Ti-0.5Fe-0.5Cu 4.55 1.7 1.8 
α + β 

Ti-1Fe-1Cu 4.59 3.4 3.7 

Ti-2Fe-2Cu 4.67 6.9 7.3 Near-β 

Ti-3.5Fe-3.5Cu 4.78 12.0 12.8 
Metastable β 

Ti-5Fe-5Cu 4.90 17.2 18.4 

 

Table 3-6 Designed ternary Ti-xFe-xMn alloys. 

Compositions 
Theoretical 

density  
MoE Alloy type 

Ti-xFe-xMn (g/cm3) Eq. 2 Eq. 1 Eq. 2 Eq. 1 

Ti-0.5Fe-0.5Mn 4.54 2.1 2.2 
α + β 

Ti-1Fe-1Mn 4.57 4.2 4.4 

Ti-2Fe-2Mn 4.63 8.4 8.9 Near-β 

Ti-3.5Fe-3.5Mn 4.73 14.7 15.5 
Metastable β 

Ti-5Fe-5Mn 4.82 21.0 22.2 
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3.2 Alloy Fabrication 

3.2.1 Mixing 

The metal powder blends of the designed ternary Ti alloy compositions were 

mixed in the V-blender (Figure 3-2) at speed of 45 Hz for 30 minutes, to obtain 

homogeneous compositions. 

 

 

Figure 3-2 V-blender used for mixing the designed ternary Ti alloy compositions. 

 

3.2.2 Pressing 

The mixed metal powders of the ternary Ti alloy compositions were pressed 

in a 40 mm diameter cylindrical die (Figure 3-3) using a hydraulic press with a 

compaction pressure of 600 MPa. 

 

 

Figure 3-3 Picture of the set up used to press the ternary Ti alloy compositions. 

Hydraulic RAM 

Cylindrical die 

Plunger 

Mixed metal 

powder (inside) 
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3.2.3 Sintering 

The pressed ternary Ti alloy samples were sintered in a vacuum sintering 

furnace (Figure 3-4). Sintering of the samples was carried out at a starting rate of 

10 ºC/min up to 1300 ºC/min which were held for 2 hours, followed by cooling 

inside the furnace. This temperature was chosen in order to both facilitate 

densification and allow for sufficient homogenisation of the alloying elements. 

 

 

Figure 3-4 Vacuum sintering furnace. 

 

3.3 Characterization 

Characterization of the ternary Ti alloy samples involved density 

measurements (theoretical, green, and sintered), microstructure analysis (OM, SEM, 

and XRD), and mechanical behaviour (tensile and hardness). 

  

3.3.1 Density 

The theoretical density (as shown in Table 3-2 – 3-6) of each designed 

ternary Ti alloy composition was calculated using the rule of mixtures Equation (3); 

 

                       𝜌𝑡ℎ𝑒𝑜𝑟𝑒𝑐𝑡𝑖𝑐𝑎𝑙 =  %𝑋𝑒1𝜌𝑒1 +  %𝑋𝑒2𝜌𝑒2 +  %𝑋𝑒3𝜌𝑒3     Eq. 3  

 

where ρtheoretical is the theoretical density (g/cm3), %Xe is the percentage of the 

element in the alloy, and ρe is the density of the element (g/cm3). 
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Secondly, the green density of each pressed ternary Ti alloy was measured using a 

digital Vernier caliper (2-decimal digits) to measure the dimensions of the green 

sample (i.e. diameter (d) and thickness (t)) and an analytical scale (4-decimal digits) 

to measure the weight of the green sample. The green density of the samples was 

calculated using Equation (4), with average values taken for each sample (5 

measurements of the thickness, and 3 for the diameter). 

 

                                                   𝜌𝑔 =  
𝑀

𝑉
                             Eq. 4 

 

Where ρg is the green density (g/cm3), M is the mass (g), and V is the volume of the 

green sample (cm3) (i.e. V = πd2t/4). 

 

Lastly, the sintered density of the ternary Ti alloys was measured using the 

Archimedes principle. The density values were calculated using Equation (5) with 

5 values taken from each sample and averaged. 

 

                                                 𝜌𝑠 =  
𝑊𝑎𝑖𝑟

𝑊𝑎𝑖𝑟− 𝑊𝑤𝑎𝑡𝑒𝑟
   ×  𝜌𝑤                                 Eq. 5  

 

Where ρs is the sintered density (g/cm3), Wair is the weight of the sample in air (g), 

Wwater is the weight of the sample in water (g), and ρw is the density of water at 

room temperature (0.977 g/cm3). 

 

3.3.2 Microstructure analysis 

OM 

Microstructural characteristics of all the sintered ternary Ti alloys were 

captured by a Nikon digital camera attached to an Olymbus BX53 microscope. To 

observe each sample, a small metal piece with dimensions of 4x4x20 mm3 was cut 

from the sintered 40 mm diameter cylindrical sample using an EDM (electric 

discharge machine) wire cutter. All cut samples went through a grinding process 

which involved removing the oxide surface on the metal alloy using Struers 

RotoPol-21 grinding machine with Struers #320, #600, #1000 and #2000 grit silicon 

carbide (SiC) grinding papers. The samples were then polished with colloidal silica 

suspension (OP-S NonDry, Struers), to obtain mirror-like surface finish using 
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Struers Tegramin-25 automatic polisher. Lastly, before microstructure observation, 

all samples were etched with Kroll’s solution, consisting of HF, HNO3 and distilled 

water. 

 

SEM 

 Further microstructure analysis of the sintered ternary Ti alloys was done 

using a Hitachi S4700 microscope. SEM was done using the OM samples, with an 

additional step involving coating the OM samples with a thin layer of carbon. 

 

XRD 

Phase analysis of the ternary Ti alloys was done by XRD. Before the 

analysis, a small metal piece with dimensions of 2x20x10 mm3 was cut from the 

sintered 40 mm diameter cylindrical sample using the wire cutter. Each sample went 

through the same grinding processes as done for the OM samples ensuring the oxide 

surface on the metal alloy was removed. A Philips X’Pert diffractometer (45 kV 

and 40 mA) with Cu Kα radiation (1.54056 Å) was used to collect the diffraction 

patterns. The scanning angle range was 5º to 100º, and the step size was 0.013º. 

 

3.3.3 Mechanical behaviour 

Tensile testing 

Mechanical properties such as UTS, YS and elongation of the ternary Ti 

alloys were measured on an Instron 33R4204 universal tester using a crosshead 

speed of 0.1 mm/min with a mechanical extensometer used to record the 

deformation. Before testing, 5 dog-bone tensile testing samples (with dimensions 

shown in Figure 3-5) were cut from each sintered 40 mm diameter cylindrical 

samples using the wire cutter. 
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Figure 3-5 Dog-bone tensile testing sample with dimensions (in mm). 

 

The side surfaces of the dog-bone tensile testing samples were ground using a 

Dremel 3000 electric hand grinder with a SiC grinding wheel. Both surfaces of the 

dog-bone samples went through the same grinding processes as done for the OM 

samples. 

 

Hardness 

Hardness measurements of the ternary Ti alloys were done on the Rockwell 

A tester. Testing was performed on the cross section of the tested tensile dog-bone 

samples, with 5 measurements taken for each sample giving an overall average 

value. 
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Chapter 4 

Results and Discussion 

 

In this chapter the results of the characterized sintered ternary Ti-Cu-Nb, Ti-Mn-

Nb, Ti-Fe-Nb, Ti-Fe-Cu and Ti-Fe-Mn alloys, are discussed individually followed 

by an overall discussion. Density measurements are first discussed, followed by the 

microstructure analysis (OM, SEM, and XRD), and lastly the mechanical behaviour 

(tensile testing and hardness). 

  

4.1 Sintered Ternary Ti-Cu-Nb Alloys 

4.1.1 Density 

 The physical properties of the ternary Ti-Cu-Nb alloys, including relative 

green and sintered density, are shown in Figure 4-1. 

 

 

Figure 4-1 Relative densities of the Ti-Cu-Nb alloys. 

 

The relative green and sintered density decreased from 89.2% to 86.7% and 94% to 

91.3% respectively, with increasing Cu-Nb concentration. The density of all the 

samples increased during sintering. The relative green density of the samples 

decreases due to the interaction between the three types of powder during pressing 

[14; 38]. Ti, Cu and Nb have different particle size (Table 3-1), hardness, 

deformability and morphology (Figure 3-1), thus the relative green density 

decreases with the amount of Cu and Nb added to Ti [14; 38]. Similar relative 
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sintered density was observed for the Ti-3.5Cu-3.5Nb (91.3%) and Ti-5Cu-5Nb 

(91.4%) alloys. Similar relative densities have been reported in the literature, for 

Ti-Cu [14] and ternary Cu-dominant [32] alloys processed via PM with low Cu 

content (i.e. less than 5 wt%). The relative green and sintered density of CP-Ti was 

86.4% and 92.6% respectively. The porosity left by the compaction of the powder 

blends, increased from 11% to 15% (i.e. relative green density decreases) as the 

amount of Cu-Nb increased. After sintering, the amount of porosity present in the 

samples increased from 6% to 9% (i.e. relative sintered density decreases) as the 

amount of Cu-Nb increased. Porosity is partially eliminated via sintering, and 

increases with the addition of alloying elements. 

 

4.1.2 Microstructure analysis 

 Microstructure analysis of the ternary Ti-Cu-Nb alloys is shown in Figure 

4-2. The sintered samples show the presence of some residual porosity, where the 

pores are characterized by a spherical or elongated morphology. The size of the 

spherical pores is approximately within the range of 5 – 55 μm, and there is a small 

amount of irregular/elongated pores present.  

 

  

  

c) 

b) 

d) 

a) 
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Figure 4-2 Optical and SEM micrographs, respectively, for: (a) and (b) CP-Ti, (c) 

and (d) Ti-0.5Cu-0.5Nb, (e) and (f) Ti-1Cu-1Nb, (g) and (h) Ti-2Cu-2Nb, (i) and (j) 

Ti-3.5Cu-3.5Nb, and (k) and (l) Ti-5Cu-5Nb. 

i) 

g) 

e) 

k) 

f) 

h) 

j) 

l) 
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The sintered Ti-Cu-Nb alloys are characterized by an α + β lamellar microstructure 

because of the slow cooling from above the β transus temperature regardless of the 

Cu-Nb content [14]. CP-Ti is composed of only equiaxed α-Ti grains (Figure 4-2 a) 

and b)). The lamellar microstructure for the Ti-0.5Cu-0.5Nb alloy is coarse due to 

the low amount of β-stabilizer (Figure 4-2 c) and d)). By increasing the amount of 

Cu-Nb (from 0.5 to 5 wt%), the thickness of the β lamellae decreases resulting in a 

finer microstructure for the Ti-5Cu-5Nb alloy (Figure 4-2 k) and l)) [14]. A Ti alloy 

characterized by an α + β lamellar microstructure generally has better mechanical 

properties compared to CP-Ti, since the β-Ti phase is stronger than the α-Ti phase 

[69]. Moreover, a finer lamellar microstructure tends to give higher mechanical 

properties, compared to an alloy with a coarse lamellar microstructure (the effects 

are seen later on). Similar α + β lamellar microstructures have been reported in 

literature for sintered Ti-Cu [14] as well as ternary Cu-dominant [32] alloys, and 

cast Ti-Cu [13] as well as Ti-Nb [16] alloys, with less than 5 wt% Cu and Nb 

additions. 

 

The microstructure of the sintered Ti-Cu-Nb alloys are compared with their 

predicted MoE and alloy type in Table 3-2. It shows that alloys Ti-0.5Cu-0.5Nb, 

Ti-1Cu-1Nb and Ti-2Cu-2Nb, and Ti-0.5Cu-0.5Nb, Ti-1Cu-1Nb, Ti-2Cu-2Nb and 

Ti-3.5Cu-3.5Nb predicted by Eq. 2 and Eq. 1, respectively, agree with the sintered 

Ti-Cu-Nb alloys, as their microstructure is composed of α + β lamellae. However, 

the Ti-3.5Cu-3.5Nb and Ti-5Cu-5Nb alloys, and Ti-5Cu-5Nb predicted by Eq. 2 

and Eq. 1, respectively, are not in agreement with the sintered Ti-Cu-Nb alloys, due 

to the high MoE (i.e. greater than 5 wt%), and alloy type being near-β. From Table 

3-2, Eq. 1 is more accurate than Eq. 2, for predicting the alloy type for sintered Ti-

Cu-Nb alloys, since the MoE values are lower than the ones predicted by Eq. 2. 

 

XRD patterns of the ternary Ti-Cu-Nb alloys are shown in Figure 4-3. The results 

show that only the α-phase was detected in all alloys, while the β-phase was only 

detected in the Ti-5Cu-5Nb alloy. The β-phase is generally retained at small β-

stabilizer (Cu-Nb) additions (as shown in Figure 4-2), however it is not visible in 

the XRD spectra for Cu-Nb concentrations of 0.5, 1, 2 and 3.5 wt% (since the 

amount of β-phase is below the detection limit of the equipment [14; 32]). The 

Ti2Cu phase was also detected in the Ti-3.5Cu-3.5Nb and Ti-5Cu-5Nb alloys, and 

its intensity increases with the addition of Cu. It has been reported in literature [14; 
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32] that the Ti2Cu phase is found at low Cu concentrations (i.e. less than 5 wt%), 

and is in agreement with the current results. It is worth mentioning that the Ti2Cu 

phase was not clearly visible in the microstructural analysis for the Ti-3.5Cu-3.5Mn 

and Ti-5Cu-5Nb alloys via SEM. In literature [18; 20-22], studies have detected the 

Ti2Cu phase via TEM (transmission electron microscope), since it is hard to find in 

SEM. 

 

 

Figure 4-3 XRD patterns of the sintered Ti-Cu-Nb alloys. 

 

4.1.3 Mechanical behaviour 

 Figure 4-4 shows representative stress-strain curves of the ternary Ti-Cu-

Nb alloys in comparison to CP-Ti, and Table 4-1 shows the average mechanical 

properties. The tensile stress of the alloys increases as the amount of alloying 

elements (Cu-Nb) increase, and is higher in comparison to CP-Ti. The elongation 

initially increases, reaching the highest value for the Ti-1Cu-1Nb alloy (23%), and 

then decreases. Due to the strain limit of the testing machine (maximum strain was 

23%), the Ti-1Cu-1Nb alloy did not break, suggesting that the alloy displayed good 

ductility. Strength and ductility are mutually exclusive. The Ti-Cu-Nb alloys are 

characterized by a ductile behaviour, showing both an elastic and plastic 

deformation region in their stress-strain curves. The YS and UTS of the Ti-Cu-Nb 
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alloys increases from 404 MPa to 553 MPa and 495 MPa to 655 MPa, respectively, 

as the amount of alloying elements increases, and is higher in comparison to CP-Ti 

(YS = 281 MPa and UTS = 374 MPa). The Ti-5Cu-5Nb alloy shows the highest YS 

and UTS, however the elongation was the lowest (9.1%), in comparison to the other 

Ti-Cu-Nb alloys, and higher than that of CP-Ti (5.7%). 

 

 

Figure 4-4 Representative stress-strain curves of the sintered Ti-Cu-Nb alloys. 

 

Table 4-1 Average mechanical properties of the sintered Ti-Cu-Nb alloys. 

 

 

The hardness of the Ti-Cu-Nb alloys increases linearly (Figure 4-5), from 51 HRA 

to 58 HRA as the amount of alloying elements increases, and is higher than that of 

CP-Ti (46 HRA). The addition of Cu and Nb to Ti improves the mechanical 

properties (tensile strength and hardness) due to the solid-solution strengthening 

Material YS (MPa) UTS (MPa) Elongation (%) Hardness (HRA)

Ti-0.5Cu-0.5Nb 404 ± 24 495 ± 21 10.3 ± 1.9 51 ± 0.9

Ti-1Cu-1Nb 432 ± 7 532 ± 9 23.0 ± 0.1 54 ± 1.0

Ti-2Cu-2Nb 485 ± 20 588 ± 17 12.0 ± 1.7 56 ± 1.7

Ti-3.5Cu-3.5Nb 544 ± 38 635 ± 22 10.9 ± 1.7 57 ± 0.9

Ti-5Cu-5Nb 553 ± 47 655 ± 38 9.1 ± 0.4 58 ± 1.0
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effect they have in Ti, and the increase volume fraction of the β-Ti phase (β-Ti 

phase has higher strength/hardness and lower ductility than the α-Ti phase). A finer 

α + β lamellar microstructure (Ti-5Cu-5Nb) tends to give higher mechanical 

properties, compared to an alloy with a coarse lamellar microstructure (Ti-0.5Cu-

0.5Nb). The Ti2Cu phase is also responsible for improving the mechanical 

properties, as present in the Ti-3.5Cu-3.5Nb and Ti-5Cu-5Nb alloys. The 

intermetallic phase increases the resistance to plastic deformation, thus improving 

the mechanical properties [14; 18]. Another factor affecting the mechanical 

properties of PM Ti and Ti-Cu-Nb alloys is the residual porosity. An alloy with a 

high relative density (i.e. greater than 98%) results in better mechanical properties, 

compared to an alloy with a low relative density. This is because of pores, as they 

act as stress concentration sites, which therefore decreases the strength, hardness 

and ductility of the alloys [44]. 

 

 

Figure 4-5 Rockwell hardness of the sintered Ti-Cu-Nb alloys. 

 

The mechanical properties (Figure 4-6 (tensile) and Figure 4-7 (hardness)) of the 

sintered Ti-Cu-Nb alloys are compared with other Cu- and Nb- based Ti alloys, as 

well as Ti-6Al-4V. From Figure 4-6, the UTS and YS of the sintered Ti-5Cu-5Nb 

(UTS = 655 MPa and YS = 553 MPa) are higher compared to the cast Ti-5Cu (UTS 

= approximately 630 MPa and YS = approximately 570 MPa [13]) and cast Ti-5Nb 

(UTS = 536 MPa and YS = 407 MPa [16]) alloys, however lower than cast Ti-6Al-

4V (UTS = 976 MPa and YS = 847 [70]), cast Ti-4Cu-6Nb (UTS = approximately 

790 MPa and YS = approximately 572 MPa [31]) and sintered Ti-5Cu (UTS = 754 

MPa and YS = 627 MPa [14]) alloys. Furthermore, the sintered Ti-5Cu-5Nb (9.1%) 
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alloy shows a higher elongation than cast Ti-6Al-4V (5.1%), cast Ti-4Cu-6Nb 

(approximately 4%) and cast Ti-5Cu (approximately 3.2%), however lower than 

that of cast Ti-5Nb (11%), and comparable with the sintered Ti-5Cu (9.5%) alloy. 

The high YS and UTS of the cast Ti-6Al-4V alloy is due to the fine lamellar 

microstructure consisting of both α-phase and β-phase, and the presence of no 

porosity in comparison to the sintered Ti-5Cu-5Nb alloy. Ti alloys fabricated via 

casting consist of no porosity and this effect tends to result in better mechanical 

properties in comparison to sintered Ti alloys with porosity. As mentioned before, 

the amount of porosity tends to lower the mechanical properties compared to a fully 

dense material. The cast Ti-4Cu-6Nb alloy showed acicular structures and consisted 

of only the α-phase which contributed to the high UTS in comparison to the sintered 

Ti-5Cu-5Nb alloy. The Ti2Cu phase was present in both sintered Ti-5Cu and cast 

Ti-5Cu alloys, and the effect was noticeably higher for the sintered Ti-5Cu alloy in 

comparison to both sintered Ti-5Cu-5Nb and cast Ti-5Cu alloys. It is worth 

mentioning that high YS and UTS of the sintered Ti-5Cu alloy is also due to the 

fine lamellar microstructure. The low YS/UTS and high elongation of the cast Ti-

5Nb alloy is due to the α and/or metastable α' phase found in the alloy (confirmed 

in XRD results) [16; 25]. Both the sintered Ti-5Cu-5Nb and Ti-5Cu alloys were 

processed in the same manner, achieving similar elongations, relative sintered 

density and microstructure (α + β lamellar microstructure). 

 

 

Figure 4-6 Comparison of the tensile properties of the sintered Ti-5Cu-5Nb alloy to 

other Cu- and Nb- based Ti alloys, as well as Ti-6Al-4V. 

0

2

4

6

8

10

12

0

100

200

300

400

500

600

700

800

900

1000

Ti-5Cu-5Nb Ti-4Cu-6Nb
(Cast)

Ti-6Al-4V
(Cast)

Ti-5Cu
(Sintered)

Ti-5Cu (Cast) Ti-5Nb (Cast)

St
ra

in
 (

%
)

St
re

ss
 (

M
P

a)

YS UTS Elongation



 

59 

 

In terms of hardness (Figure 4-7), the sintered Ti-5Cu-5Nb (222 HV) alloy shows 

a higher hardness than cast Ti-5Nb (177 HV), however lower than that of cast Ti-

6Al-4V (approximately 340 HV) and cast Ti-4Cu-6Nb (approximately 260 HV) 

alloys, and is comparable with the cast Ti-5Cu (approximately 230 HV) and 

sintered Ti-5Cu (227 HV) alloys. The trends of hardness (Figure 4-7) are similar to 

the trends of the tensile properties (Figure 4-6). 

 

 

Figure 4-7 Comparison of the hardness of the sintered Ti-5Cu-5Nb alloy to other 

Cu- and Nb- based Ti alloys, as well as Ti-6Al-4V. 
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4.2 Sintered Ternary Ti-Mn-Nb Alloys 

4.2.1 Density 

 The physical properties of the ternary Ti-Mn-Nb alloys, including relative 

green and sintered density, are shown in Figure 4-8. 

 

 

Figure 4-8 Relative densities of the Ti-Mn-Nb alloys. 

 

The relative green and sintered density decreases from 87.2% to 83.9% and 93.6% 

to 91.3%, respectively, with increasing Mn-Nb concentration (from 1 to 5 wt%). 

The relative sintered density of the Ti-0.5Mn-0.5Nb (93%) alloy was the second 

highest, compared to the other ternary Ti-Mn-Nb compositions. The relative green 

density of the samples decreases due to the interaction between the Ti, Mn and Nb 

powders during pressing, as they have different particle sizes (Table 3-1), hardness, 

deformability and morphology (Ti and Mn have the same morphology (Figure 3-1)) 

[14; 38]. Similar relative densities have been reported in literature, for Ti-Mn [38] 

and ternary Mn-dominant [32] alloys processed via PM with low Mn content (i.e. 

less than 5 wt%). The porosity left by the compaction of the powder blends, 

increases from 13% to 16% as the amount of Mn-Nb increases. After sintering the 

amount of porosity present in the samples increases from 7% to 9% as the amount 

of Mn-Nb increases. 
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4.2.2 Microstructure analysis 

 Figure 4-9 shows the microstructure analysis of the ternary Ti-Mn-Nb alloys. 

The sintered samples show pores, where they are characterized by a spherical or 

irregular morphology. The size of the spherical pores is approximately within the 

range of 5 – 55 μm, and a small amount of irregular/elongated pores are present. 

The sintered Ti-Mn-Nb alloys are characterized by an α + β lamellar microstructure 

(Figure 4-9). With the addition of 0.5 wt% of Mn and Nb to Ti the lamellar 

microstructure is coarse (Figure 4-9 a) and b)). By increasing the amount of Mn-

Nb (from 0.5 to 5 wt%) the lamellar microstructure is refined, which is clearly 

visible in the OM/SEM micrographs (Figure 4-9). Similar α + β lamellar 

microstructures have been reported in literature, for sintered Ti-Mn [38; 40], Ti-

Mn-Nb [44] as well as ternary Mn-dominant [32] alloys, and cast Ti-Nb [16] alloys, 

with less than 5 wt% Mn and Nb additions. 

 

  

  

a) 

c) 

b) 

d) 
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Figure 4-9 Optical and SEM micrographs, respectively, for: (a) and (b) Ti-0.5Mn-

0.5Nb, (c) and (d) Ti-1Mn-1Nb, (e) and (f) Ti-2Mn-2Nb, (g) and (h) Ti-3.5Mn-3.5Nb, 

and (i) and (j) Ti-5Mn-5Nb. 

 

The predicted MoE and alloy type of ternary Ti-Mn-Nb alloys in Table 3-3, are 

compared with the microstructure (Figure 4-9) of sintered Ti-Mn-Nb alloys. Table 

3-3 shows that alloys Ti-0.5Mn-0.5Nb, Ti-1Mn-1Nb and Ti-2Mn-2Nb, predicted 

by both Eq. 2 and 1 agree with the sintered Ti-Mn-Nb alloys, as their microstructure 

is composed of α + β lamellae. However, alloys Ti-3.5Mn-3.5Nb and Ti-5Mn-5Nb 

are not in agreement with the sintered Ti-Mn-Nb alloys, since their microstructure 

does not consist of near-β and metastable β. Overall Eq. 2 appears to be more 

e) 

g) 

i) 

f) 

h) 

j) 
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accurate than Eq. 1 for predicting the alloy type of sintered Ti-Mn-Nb alloys, since 

the MoE values are lower than the ones predicted by Eq. 1 (Table 3-3). 

 

Figure 4-10 shows the XRD patterns of the ternary Ti-Mn-Nb alloys. The results 

show that the α-phase was detected in all alloys, whereas the β-phase was only 

detected in the Ti-2Mn-2Nb, Ti-3.5Mn-3.5Nb and Ti-5Mn-5Nb alloys. The relative 

intensity of the main β peak (β (110)) increases as the amount of β-stabilizer (Mn-

Nb) increases. 

 

 

Figure 4-10 XRD patterns of the sintered Ti-Mn-Nb alloys. 

 

4.2.3 Mechanical behaviour 

 Table 4-2 shows the average mechanical properties of the ternary Ti-Mn-

Nb alloys, and Figure 4-11 shows representative stress-strain curves in comparison 

to CP-Ti. The tensile stress of the alloys increases as the amount of alloying 

elements (Mn-Nb) increase. The elongation initially increases, reaching the highest 

value for the Ti-1Mn-1Nb alloy (13.2%), and then decreases. 
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Table 4-2 Average mechanical properties of the sintered Ti-Mn-Nb alloys. 

 

 

 

Figure 4-11 Representative stress-strain curves of the sintered Ti-Mn-Nb alloys. 

 

The Ti-Mn-Nb alloys are characterized by a ductile behaviour, showing both an 

elastic and plastic deformation in their stress-strain curves. The YS and UTS of the 

alloys increases from 431 MPa to 670 MPa and 514 MPa to 726 MPa, respectively, 

as the amount of alloying elements increases. The Ti-5Mn-5Nb alloy shows the 

highest YS and UTS, however the elongation was the lowest (2.6%) in comparison 

to the other tested samples as shown in Figure 4-11. The hardness of the Ti-Mn-Nb 

alloys increases linearly (Figure 4-12), from 53 HRA to 61 HRA as the amount of 

alloying elements increases, and is higher than that of CP-Ti (46 HRA). With the 

addition of Mn and Nb to Ti the mechanical properties are improved due to the 

solid-solution strengthening effect both alloying elements have in Ti, and the 

Material YS (MPa) UTS (MPa) Elongation (%) Hardness (HRA)

Ti-0.5Mn-0.5Nb 431 ± 10 514 ± 19 9.2 ± 2.6 53 ± 1.7

Ti-1Mn-1Nb 470 ± 15 560 ± 15 13.2 ± 0.9 55 ± 1.2

Ti-2Mn-2Nb 538 ± 8 626 ± 2 8.2 ± 0.3 56 ± 1.3

Ti-3.5Mn-3.5Nb 622 ± 9 704 ± 2 6.0 ± 0.1 59 ± 0.9

Ti-5Mn-5Nb 670 ± 11 726 ± 13 2.6 ± 0.7 61 ± 2.2
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increased volume fraction of the β-Ti phase (as shown in Figure 4-10 (XRD)). It is 

worth mentioning that the addition of Mn and Nb to Ti refines the coarse α + β 

lamellar microstructure of Ti-0.5Mn-0.5Nb, thus higher mechanical properties are 

attained for the Ti-5Mn-5Nb alloy (fine α + β lamellar microstructure as shown in 

Figure 4-9 i) and j)). 

 

 

Figure 4-12 Rockwell hardness of the sintered Ti-Mn-Nb alloys. 

 

The mechanical properties (Figure 4-13 (tensile) and Figure 4-14 (hardness)) of the 

sintered Ti-Mn-Nb alloys are compared with other Mn- and Nb- based Ti alloys, as 

well as Ti-6Al-4V. From Figure 4-13, the UTS and YS of the sintered Ti-5Mn-5Nb 

(UTS = 726 MPa and YS = 670 MPa) are higher compared to the cast Ti-5Nb (UTS 

= 536 MPa and YS = 407 MPa [16]) alloy, however lower than cast Ti-6Al-4V 

(UTS = 976 MPa and YS = 847 MPa [70]) and sintered Ti-5Mn (UTS = 800 MPa 

and YS = 716 MPa [38]) alloys, and is comparable with the cast Ti-5Mn-16Nb 

(UTS = 716 MPa and YS = 657 MPa [43]) alloy. Furthermore, the sintered Ti-5Mn-

5Nb (2.6%) alloy shows a lower elongation than cast Ti-5Mn-16Nb (26%) and cast 

Ti-5Nb (11%), and is comparable to cast Ti-6Al-4V (5.1%) and sintered Ti-5Mn 

(3%) alloys. The high strength of the sintered Ti-5Mn alloy is due to the fine α + β 

lamellar microstructure in comparison to the sintered Ti-5Mn-5Nb alloy. Although 

both alloys have an α + β lamellar microstructure, the solid-solution strengthening 

effect of Mn is stronger in Ti-5Mn compared to Ti-5Mn-5Nb. Both Ti-5Mn and Ti-

5Mn-5Nb alloys show comparable elongations as they were fabricated using the 
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same process, and have a similar relative sintered density. The cast Ti-5Mn-16Nb 

alloy consists of only a single β-phase and shows lower/comparable strengths in 

comparison to the sintered Ti-5Mn-5Nb alloy. 

 

 

Figure 4-13 Comparison of the tensile properties of the sintered Ti-5Mn-5Nb alloy 

to other Mn- and Nb- based Ti alloys, as well as Ti-6Al-4V. 

 

 

Figure 4-14 Comparison of the hardness of the sintered Ti-5Mn-5Nb alloy to other 

Mn- and Nb- based Ti alloys, as well as Ti-6Al-4V. 

 

In terms of hardness (Figure 4-14), the sintered Ti-5Mn-5Nb (243 HV) alloy shows 

a higher hardness than cast Ti-5Nb (177 HV), however lower than that of cast Ti-

6Al-4V (approximately 340 HV), and is comparable with the sintered Ti-5Mn (245 
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HV) alloy. No hardness was reported for the cast Ti-5Mn-16Nb alloy. As 

mentioned before, both sintered Ti-5Mn and Ti-5Mn-5Nb alloys have a fine α + β 

lamellar microstructure and relative sintered density, thus having a similar hardness. 
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4.3 Sintered Ternary Ti-Fe-Nb Alloys 

4.3.1 Density 

 Figure 4-15 shows the physical properties of the ternary Ti-Fe-Nb alloys, 

including relative green and sintered density. The relative green and sintered 

density decreases from 87.1% to 84.4% and 93.9% to 91.8%, respectively, with 

increasing Fe-Nb concentration (from 0.5 to 3.5 wt%). The relative green density 

decreases due to the interaction between the Ti, Fe and Nb powders which have 

different particle sizes (Table 3-1), morphology (Ti and Nb have the same 

morphology (Figure 3-1)), hardness and deformability [14; 38]. The relative 

sintered density of the Ti-5Fe-5Nb (92.3%) alloy is the second lowest, compared to 

the other ternary Ti-Fe-Nb compositions. Similar relative densities have been 

reported in literature for Ti-Fe [46-49; 51] alloys processed via PM. The porosity 

left by the compaction of the powder blends increases from 13% to 16% as the 

amount of Fe-Nb increases. After sintering the amount of porosity present in the 

sample increases from 6% to 8% as the amount of Fe-Nb increases. 

 

3  

Figure 4-15 Relative densities of the Ti-Fe-Nb alloys. 

 

4.3.2 Microstructure analysis 

 Figure 4-16 shows the optical and SEM micrographs of the ternary Ti-Fe-

Nb alloys. The sintered samples show the presence of some residual porosity, where 

the pores are characterized by a spherical or elongated morphology. The size of the 

spherical pores is approximately within the range of 5 – 60 μm, and a small amount 

of irregular/elongated pores are also present. The sintered Ti-Fe-Nb alloys are 
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characterized by an α + β lamellar microstructure. By increasing the amount of Fe-

Nb (from 0.5 to 5 wt%) the lamellar microstructure is refined as shown in Figure 

4-16. Similar α + β lamellar microstructures have been reported in literature, for 

sintered Ti-Fe [46-51], and cast Ti-Nb-Fe [57] as well as Ti-Nb [16] alloys. 

 

  

  

  

a) 

c) 

e) 

b) 

d) 

f) 
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Figure 4-16 Optical and SEM micrographs, respectively, for: (a) and (b) Ti-0.5Fe-

0.5Nb, (c) and (d) Ti-1Fe-1Nb, (e) and (f) Ti-2Fe-2Nb, (g) and (h) Ti-3.5Fe-3.5Nb, 

and (i) and (j) Ti-5Fe-5Nb. 

 

The microstructure of the sintered Ti-Fe-Nb alloys are compared with their 

predicted MoE and alloy type in Table 3-4. In Table 3-4 it shows that alloys Ti-

0.5Fe-0.5Nb, Ti-1Fe-1Nb and Ti-2Fe-2Nb, and Ti-0.5Fe-0.5Nb and Ti-1Fe-1Nb 

predicted by Eq. 2 and Eq. 1, respectively, agree with the sintered Ti-Fe-Nb alloys. 

However, alloys Ti-3.5Fe-3.5Nb and Ti-5Fe-5Nb, and Ti-2Fe-2Nb, Ti-3.5Fe-

3.5Nb and Ti-5Fe-5Nb predicted by Eq. 2 and Eq. 1, respectively, are not in 

agreement with the sintered Ti-Mn-Nb alloys. As their microstructure is composed 

of only α + β lamellae, thus not consisting of near-β and metastable β. Overall Eq. 

2 appears to be more accurate than Eq. 1 for predicting the alloy type of sintered 

Ti-Fe-Nb alloys, as the MoE values are lower than the ones predicted by Eq. 1 

(Table 3-4). 

 

Figure 4-17 shows the XRD patterns of the ternary Ti-Fe-Nb alloys. The α-phase 

was detected in all alloys, whereas the β-phase was only detected in the Ti-2Fe-

2Nb, Ti-3.5Fe-3.5Nb and Ti-5Fe-5Nb alloys. The relative intensity of the main β 

g) 

i) 

h) 

j) 
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peak (β (110)) increases as the amount of β-stabilizer (Fe-Nb) increases. Although 

Fe is a β-eutectoid stabilizer, no TiFe intermetallic phases were detected.     

 

 

Figure 4-17 XRD patterns of the sintered Ti-Fe-Nb alloys. 

 

4.3.3 Mechanical behaviour 

 Table 4-3 shows the average mechanical properties of the ternary Ti-Fe-Nb 

alloys, and Figure 4-18 shows representative stress-strain curves in comparison to 

CP-Ti. 

 

Table 4-3 Average mechanical properties of the sintered Ti-Fe-Nb alloys. 

 

 

Material YS (MPa) UTS (MPa) Elongation (%) Hardness (HRA)

Ti-0.5Fe-0.5Nb 408 ± 17 501 ± 11 10.7 ± 3.0 53 ± 1.3

Ti-1Fe-1Nb 439 ± 7 547 ± 9 11.4 ± 2.0 54 ± 1.3

Ti-2Fe-2Nb 496 ± 6 601 ± 23 6.8 ± 3.0 56 ± 1.2

Ti-3.5Fe-3.5Nb 585 ± 6 700 ± 10 6.0 ± 1.5 59 ± 1.2

Ti-5Fe-5Nb 727 ± 14 800 ± 23 2.3 ± 0.2 62 ± 1.0
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Figure 4-18 Representative stress-strain curves of the sintered Ti-Fe-Nb alloys. 

 

The tensile stress of the alloys increases as the amount of alloying elements (Fe-Nb) 

increase. The elongation initially increases, reaching the highest value for the Ti-

1Fe-1Nb alloy (11.4%), and then decreases. The Ti-Fe-Nb alloys are characterized 

by a ductile behaviour, showing both an elastic and plastic deformation region in 

their stress-strain curves. The YS and UTS of the Ti-Fe-Nb alloys increases from 

408 MPa to 727 MPa and 501 MPa to 800 MPa, respectively, as the amount of 

alloying elements increases. The Ti-5Fe-5Nb alloy shows the highest YS and UTS, 

however the elongation was the lowest (2.3%) in comparison to the other tested 

samples as shown in Figure 4-18. The hardness of the Ti-Fe-Nb alloys increases 

linearly (Figure 4-19), from 53 HRA to 62 HRA as the amount of alloying elements 

increases, and is higher than that of CP-Ti (46 HRA). The addition of Fe and Nb to 

Ti improves the mechanical properties due to the solid-solution strengthening effect 

it has in Ti, and the increased volume fraction of the β-Ti phase (as shown in Figure 

4-17 (XRD)). The refinement of the lamellar microstructure from Ti-0.5Fe-0.5Nb 

to Ti-5Fe-5Nb (Figure 4-16), shows the increase in mechanical properties as shown 

in Figure 4-18. 
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Figure 4-19 Rockwell hardness of the sintered Ti-Fe-Nb alloys. 

 

The mechanical properties (Figure 4-20 (tensile) and Figure 4-21 (hardness)) of the 

sintered Ti-Fe-Nb alloys are compared with other Fe- and Nb- based Ti alloys, as 

well as Ti-6Al-4V. The UTS and YS of the sintered Ti-5Fe-5Nb (UTS = 800 MPa 

and YS = 727 MPa) are higher compared to the cast Ti-5Nb (UTS = 536 MPa and 

YS = 407 MPa [16]) alloy, however lower than cast Ti-6Al-4V (UTS = 976 MPa 

and YS = 847 MPa [70]) and sintered Ti-5Fe (UTS = 930 MPa and YS = 843 MPa 

[51]) alloys, and is comparable with the cast/solution-treated Ti-2Fe-14Nb (UTS = 

830 MPa and YS = 685 MPa [61]) alloy. Furthermore, the sintered Ti-5Fe-5Nb 

(2.3%) alloy shows a lower elongation than cast/solution-treated Ti-2Fe-14Nb 

(24%), cast Ti-5Nb (11%) as well as cast Ti-6Al-4V (5.1%), and is comparable to 

sintered Ti-5Fe (2.6%). The high strength of the sintered Ti-5Fe alloy is due to the 

fine α + β lamellar microstructure and high relative sintered density (98.7%) in 

comparison to the sintered Ti-5Fe-5Mn alloy (relative sintered density was 92.3%). 

Processing of the sintered Ti-5Fe alloy was done via warm pressing (at 250 ºC), 

which obtains high green density values which, in turn results in high relative 

density values after sintering and increased mechanical properties in comparison to 

cold pressing [51]. Although both sintered Ti-5Fe and Ti-5Fe-5Nb alloys have an 

α + β lamellar microstructure, the difference in relative sintered density has an effect 

on the mechanical properties of the alloy. The cast/solution-treated Ti-2Fe-14Nb 

alloy is composed of only equiaxed β grains, the solution-treatment has 

significantly increased the elongation of the alloy (24%) in comparison to the 

sintered Ti-5Fe-5Nb alloy (2.3%). 
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Figure 4-20 Comparison of the tensile properties of the sintered Ti-5Fe-5Nb alloy to 

other Fe- and Nb- based Ti alloys, as well as Ti-6Al-4V. 

 

In terms of hardness (Figure 4-21), the sintered Ti-5Fe-5Nb (254 HV) alloy shows 

a higher hardness than cast Ti-5Nb (177 HV), however lower than both cast Ti-6Al-

4V (approximately 340 HV) and sintered Ti-5Fe (331 HV) alloys. No hardness was 

reported for the cast/solution-treated Ti-2Fe-14Nb alloy. Once again, the high 

hardness of the sintered Ti-5Fe alloy is due to the high relative sintered density in 

comparison to the sintered Ti-5Fe-5Nb alloy, even though they both have an α + β 

lamellar microstructure. 

 

 

Figure 4-21 Comparison of the hardness of the sintered Ti-5Fe-5Nb alloy to other 

Fe- and Nb- based Ti alloys, as well as Ti-6Al-4V. 
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4.4 Sintered Ternary Ti-Fe-Cu Alloys 

4.4.1 Density 

 The physical properties of the ternary Ti-Fe-Cu alloys, including relative 

green and sintered density, are shown in Figure 4-22. 

 

 

Figure 4-22 Relative densities of the Ti-Fe-Cu alloys. 

 

The relative green and sintered density for the Ti-0.5Fe-0.5Cu, Ti-1Fe-1Cu and Ti-

2Fe-2Cu alloys are fairly constant, with the difference being approximately 0.3% 

in terms of relative sintered density. The relative sintered density for the Ti-3.5Fe-

3.5Cu (92.3%) alloy was the lowest, compared to the other ternary Ti-Cu-Fe 

compositions. Similar relative densities have been reported in literature, as 

mentioned above in density sections of sintered ternary Ti-Cu-Nb (4.1) and Ti-Fe-

Nb (4.3) alloys. The porosity left by the compaction of the powder blends was 

constant for all the samples (approximately 13%) except Ti-3.5Fe-3.5Cu 

(approximately 15%), even though the Ti, Fe and Cu powders have different 

particle sizes (Table 3-1) and morphology (Figure 3-1). After sintering the amount 

of porosity present in the samples was also constant (approximately 7%). 

 

4.4.2 Microstructure analysis 

 Figure 4-23 shows the microstructure analysis of the ternary Ti-Fe-Cu 

alloys. The sintered samples show porosity, where the pores are characterized by a 

spherical or irregular morphology. The size of the spherical pores is approximately 

within the range of 5 – 55 μm, and a small amount of irregular/elongated pores are 
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present. The sintered Ti-Fe-Cu alloys are characterized by an α + β lamellar 

microstructure. The addition of Fe-Cu (from 0.5 to 5 wt%) to Ti, refines the lamellar 

microstructure as shown in Figure 4-23. Similar α + β lamellar microstructures have 

been reported in literature, as mentioned above in microstructure analysis sections 

of sintered ternary Ti-Cu-Nb (4.1) and Ti-Fe-Nb (4.3) alloys. 

 

  

  

  

a) 

c) 

e) 

d) 

b) 

f) 
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Figure 4-23 Optical and SEM micrographs, respectively, for: (a) and (b) Ti-0.5Fe-

0.5Cu, (c) and (d) Ti-1Fe-1Cu, (e) and (f) Ti-2Fe-2Cu, (g) and (h) Ti-3.5Fe-3.5Cu, 

and (i) and (j) Ti-5Fe-5Cu. 

 

The microstructure of the sintered Ti-Fe-Cu alloys are compared with their 

predicted MoE and alloy type in Table 3-5. It shows that alloys Ti-0.5Fe-0.5Cu and 

Ti-1Fe-1Cu predicted by both Eq. 2 and 1 agree with the sintered Ti-Fe-Cu alloys. 

However, alloys Ti-2Fe-2Cu, Ti-3.5Fe-3.5Cu and Ti-5Fe-5Cu predicted by both 

equations, are not in agreement with the sintered Ti-Fe-Cu alloys, as their 

microstructure does not consist of near-β and metastable β. Overall Eq. 2 appears 

to be more accurate than Eq. 1 for predicting the alloy type of sintered Ti-Fe-Cu 

alloys, since the MoE values are lower than the ones predicted by Eq. 1 (Table 3-5). 

 

XRD patterns of the ternary Ti-Fe-Cu alloys are shown in Figure 4-24. The α-phase 

was detected in all alloys, while the β-phase was only detected in the Ti-3.5Fe-

3.5Cu and Ti-5Fe-5Cu alloys. The relative intensity of the main β peak (β (110)) 

increases as the amount of β-stabilizer (Fe-Cu) increases. The Ti2Cu phase was 

detected in the Ti-3.5Fe-3.5Cu alloy, and its intensity increases with the addition of 

Fe-Cu. It has been reported in literature that the Ti2Cu phase is found at low Cu 

g) 

i) 
j) 

h) 
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concentrations as mentioned above in microstructure analysis section of the sintered 

ternary Ti-Cu-Nb (4.1) alloys. 

 

 

Figure 4-24 XRD patterns of the sintered Ti-Fe-Cu alloys. 

 

4.4.3 Mechanical behaviour 

 Figure 4-25 shows representative stress-strain curves of the ternary Ti-Fe-

Cu alloys in comparison to CP-Ti, and Table 4-4 shows the average mechanical 

properties. The tensile stress of the alloys increases as the amount of alloying 

elements (Fe-Cu) increase. The elongation initially increases, reaching the highest 

value for the Ti-1Fe-1Cu alloy (9.6%), and then decreases. All Ti-Fe-Cu alloys 

except Ti-5Fe-5Cu (brittle behaviour) are characterized by a ductile behaviour, 

showing both an elastic and plastic deformation region in their stress-strain curves. 
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Figure 4-25 Representative stress-strain curves of sintered Ti-Fe-Cu alloys. 

 

Table 4-4 Average mechanical properties of the sintered Ti-Fe-Cu alloys. 

 

 

The YS and UTS of the Ti-Fe-Cu alloys increases from 442 MPa to 864 MPa and 

526 MPa to 912 MPa, respectively, as the amount of alloying elements increase. 

The Ti-5Fe-5Cu alloy shows the highest YS and UTS, however the elongation was 

the lowest (1.4%) in comparison to the other tested samples as shown in Figure 

4-25. The hardness of the Ti-Fe-Cu alloys increases linearly (Figure 4-26), from 54 

HRA to 65 HRA as the amount of alloying elements increase, and is higher than 

that of CP-Ti (46 HRA). The addition of Fe and Cu to Ti improves the mechanical 

properties due to the solid-solution strengthening effect it has in Ti, and the 

increased volume fraction of the β-Ti phase (as shown in Figure 4-24 (XRD)). A 

fine lamellar microstructure (Ti-5Fe-5Cu) tends to give higher mechanical 

Material YS (MPa) UTS (MPa) Elongation (%) Hardness (HRA)

Ti-0.5Fe-0.5Cu 442 ± 8 526 ± 13 7.6 ± 1.3 54 ± 1.5

Ti-1Fe-1Cu 472 ± 16 581 ± 20 9.6 ± 2.3 53 ± 1.3

Ti-2Fe-2Cu 526 ± 6 653 ± 11 7.6 ± 1.4 58 ± 1.0

Ti-3.5Fe-3.5Cu 630 ± 22 754 ± 34 3.7 ± 0.7 61 ± 0.8

Ti-5Fe-5Cu 864 ± 24 912 ± 29 1.4 ± 0.1 65 ± 1.0
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properties, compared to an alloy with a coarse lamellar microstructure such as Ti-

0.5Fe-0.5Cu (Figure 4-23 a) and b)). The Ti2Cu phase is also responsible for 

improving the mechanical properties, as present in the Ti-3.5Fe-3.5Cu and Ti-5Fe-

5Cu alloys. 

 

 

Figure 4-26 Rockwell hardness of the sintered Ti-Fe-Cu alloys. 

 

The mechanical properties (Figure 4-27 (tensile) and Figure 4-28 (hardness)) of the 

sintered Ti-Fe-Cu alloys are compared with other Fe- and Cu- based Ti alloys, as 

well as Ti-6Al-4V. From Figure 4-27, the UTS and YS of the sintered Ti-5Fe-5Cu 

(UTS = 912 MPa and YS = 864 MPa) are higher compared to sintered Ti-5Cu (UTS 

= 754 MPa and YS = 627 MPa [14]) and cast Ti-5Cu (UTS = approximately 630 

MPa and YS = approximately 570 MPa [13]) alloys, however comparable to cast 

Ti-6Al-4V (UTS = 976 MPa and YS = 847 MPa [70]) and sintered Ti-5Fe (UTS = 

930 MPa and YS = 843 MPa [51]) alloys. Furthermore, the elongation of the 

sintered Ti-5Fe-5Cu (1.4%) alloy is comparable with cast Ti-5Cu (approximately 

3.2%) and sintered Ti-5Fe (2.6%) alloys, however is lower than that of sintered Ti-

5Cu (9.5%) and cast Ti-6Al-4V (5.1%) alloys. Although the sintered Ti-5Fe-5Cu 

alloy shows comparable strength with cast Ti-6Al-4V and sintered Ti-5Fe alloys, 

the full mechanical potential of the alloy is low because of porosity (approximately 

7%). If the compaction of the powder blends was done via warm pressing, the 

strength of the alloy would significantly increase and could potentially be higher 

than both cast Ti-6Al-4V and sintered Ti-5Fe alloys. The low elongation of the 

sintered Ti-5Fe-5Cu alloy is due to porosity in the sample. The trends of hardness 
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(Figure 4-28), are similar to the trends of tensile properties (Figure 4-27). In terms 

of hardness the sintered Ti-5Fe-5Cu (296 HV) alloy shows a higher hardness than 

cast Ti-5Cu (230 HV) and sintered Ti-5Cu (227 HV) alloys, however comparable 

with the cast Ti-6Al-4V (approximately 340 HV) and sintered Ti-5Fe (331 HV) 

alloys. 

 

 

Figure 4-27 Comparison of the tensile properties of the sintered Ti-5Fe-5Cu alloy to 

other Fe- and Cu- based Ti alloys, as well as Ti-6Al-4V. 

 

 

Figure 4-28 Comparison of the hardness of the sintered Ti-5Fe-5Cu alloy to other 

Fe- and Cu- based Ti alloys, as well as Ti-6Al-4V. 
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4.5 Sintered Ternary Ti-Fe-Mn Alloys 

4.5.1 Density 

 Figure 4-29 shows the physical properties of the ternary Ti-Fe-Mn alloys, 

including relative green and sintered density. 

 

 

Figure 4-29 Relative densities of the Ti-Fe-Mn alloys. 

 

The relative green density of the ternary Ti-Fe-Mn compositions, except Ti-5Fe-

5Mn, were constant with the addition of Fe-Mn, regardless of the different particle 

sizes (Table 3-1) and morphology (Figure 3-1) of the Ti, Fe and Mn powders. The 

relative sintered density of the Ti-0.5Fe-0.5Mn, Ti-2Fe-2Mn and Ti-3.5Fe-3.5Mn 

alloys was fairly constant, with the difference being approximately 0.4% in terms 

of relative sintered density. Furthermore, the relative sintered density of the Ti-5Fe-

5Mn (94%) alloy was the highest, compared to the other ternary Ti-Fe-Mn 

compositions. Similar relative densities have been reported in literature, as 

mentioned above in density sections of sintered ternary Ti-Mn-Nb (4.2) and Ti-Fe-

Nb (4.3) alloys. The porosity left by the compaction of the powder blends was 

constant for all the samples (approximately 14%). After sintering the amount of 

porosity present in the samples was also constant (approximately 7%). 

 

4.5.2 Microstructure analysis 

 Microstructure analysis of the ternary Ti-Fe-Mn alloys is shown in Figure 

4-30. Pores are present in the sintered samples, where they are characterized by a 

spherical or elongated morphology. The size of the spherical pores is approximately 
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within the range of 5 – 55 μm, and a small amount of irregular/elongated pores are 

present. The sintered Ti-Fe-Mn alloys, expect Ti-5Fe-5Mn, are characterized by an 

α + β lamellar microstructure (Figure 4-30 a) – h)). The microstructure of the Ti-

5Mn-5Fe alloy is composed of equiaxed β-phase grains (Figure 4-30 i) and j)), a 

close up of the β grain boundary is shown in Figure 4-31, which shows a lamellar 

structure inside of it, suggesting that the alloy is a metastable β alloy. With the 

addition of 0.5 wt% Fe and Mn to Ti the lamellar microstructure is coarse (Figure 

4-30 a) and b)). By increasing the amount of Fe-Mn (from 0.5 to 5 wt%) the lamellar 

microstructure is refined (Figure 4-30 a) – h)). Similar microstructures have been 

reported in literature, as mentioned above in microstructure analysis sections of 

sintered ternary Ti-Mn-Nb (4.2) and Ti-Fe-Nb (4.3) alloys. 

 

  

  

a) 

c) 
d) 

b) 
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Figure 4-30 Optical and SEM micrographs, respectively, for: (a) and (b) Ti-0.5Fe-

0.5Mn, (c) and (d) Ti-1Fe-1Mn, (e) and (f) Ti-2Fe-2Mn, (g) and (h) Ti-3.5Fe-3.5Mn, 

and (i) and (j) Ti-5Fe-5Mn. 

 

e) 

g) 

i) 

h) 

f) 

j) 
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Figure 4-31 SEM micrograph of the Ti-5Fe-5Mn alloy. 

 

The microstructure of the sintered Ti-Fe-Mn alloys are compared with their 

predicted MoE and alloy type in Table 3-6. It shows that alloys Ti-0.5Fe-0.5Mn and 

Ti-1Fe-1Mn predicted by both Eq. 2 and 1 agree with the sintered Ti-Fe-Cu alloys, 

as their microstructure is composed of α + β lamellae. However, alloys Ti-2Fe-2Mn 

and Ti-3.5Fe-3.5Mn predicted by both equations are not in agreement with the 

sintered Ti-Fe-Cu alloys, as their microstructure does not consist of near-β and 

metastable β. The MoE and alloy type predicted by both equations for the Ti-5Fe-

5Mn alloy agrees with the sintered Ti-5Fe-5Mn showing a metastable β 

microstructure composed of equiaxed β-phase grains (Figure 4-30 i) and j)). Both 

equations predicted the same alloy type for each ternary Ti-Fe-Mn compositions, 

however both equations were only correct for the Ti-0.5Fe-0.5Mn and Ti-1Fe-1Mn 

alloys, and not for the Ti-2Fe-2Mn and Ti-3.5Fe-3.5Mn alloys (Table 3-6). 

 

XRD patterns of the ternary Ti-Fe-Mn alloys are shown in Figure 4-32. The α-phase 

was detected in all alloys, while the β-phase was also detected in all alloys (except 

Ti-0.5Fe-0.5Mn). The relative intensity of the main β peak (β (110)) increases as 

the amount of β-stabilizer (Fe-Mn) increases. 



 

86 

 

Figure 4-32 XRD patterns of sintered Ti-Fe-Mn alloys. 

 

4.5.3 Mechanical behaviour 

 Table 4-5 shows the average mechanical properties of the ternary Ti-Fe-Mn 

alloys, and Figure 4-33 shows representative stress-strain curves in comparison to 

CP-Ti. 

 

Table 4-5 Average mechanical properties of the sintered Ti-Fe-Mn alloys. 

 

 

The tensile stress of the alloys increases as the amount of alloying elements (Fe-

Mn) increase. However, the elongation increases, reaching the highest value for the 

Ti-0.5Fe-0.5Mn alloy (9.3%), and then decreases. All Ti-Fe-Mn alloys (except Ti-

5Fe-5Mn) are characterized by a ductile behaviour. The Ti-5Fe-5Mn alloy showed 

no plastic deformation, only elastic behaviour was observed (Figure 4-33), thus the 

alloy is characterized by a brittle behaviour (no YS could be calculated). The YS 

Material YS (MPa) UTS (MPa) Elongation (%) Hardness (HRA)

Ti-0.5Fe-0.5Mn 433 ± 14 519 ± 17 9.3 ± 2.5 54 ± 0.9

Ti-1Fe-1Mn 475 ± 13 567 ± 6 8.5 ± 0.9 56 ± 1.4

Ti-2Fe-2Mn 609 ± 8 676 ± 17 2.1 ± 0.5 59 ± 1.2

Ti-3.5Fe-3.5Mn 816 ± 8 842 ± 15 1.7 ± 0.3 63 ± 0.8

Ti-5Fe-5Mn ‒ 607 ± 7 0.6 ± 0.1 70 ± 0.5
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and UTS of the alloys increase from 433 MPa to 816 MPa and 519 MPa to 842 

MPa, respectively, as the amount of alloying elements increase. The Ti-3.5Fe-

3.5Mn alloy shows the highest YS and UTS, however the elongation was the second 

lowest (1.7%) in comparison to the other tested samples as shown in Figure 4-33.  

 

 

Figure 4-33 Representative stress-strain curves of sintered Ti-Fe-Mn alloys. 

 

The addition of Fe and Mn to Ti improves the mechanical properties. As mentioned 

before, a fine lamellar microstructure tends to give higher mechanical properties 

(Ti-3.5Fe-3.5Mn), compared to an alloy with a coarse lamellar microstructure such 

as Ti-0.5Fe-0.5Mn. The hardness of the Ti-Fe-Mn alloys increases linearly (Figure 

4-34), from 54 HRA to 70 HRA as the amount of alloying elements increase, and 

is higher than that of CP-Ti (46 HRA). 

 

The mechanical properties (Figure 4-35 (tensile) and Figure 4-36 (hardness)) of the 

sintered Ti-Fe-Mn alloys, are compared with other Fe- and Mn- based Ti alloys, as 

well as Ti-6Al-4V. 
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Figure 4-34 Rockwell hardness of the sintered Ti-Fe-Mn alloys. 

 

 

Figure 4-35 Comparison of the tensile properties of the sintered Ti-3.5Fe-3.5Mn 

alloy to other Fe- and Mn- based Ti alloys, as well as Ti-6Al-4V. 

 

From Figure 4-35, the UTS and YS of the sintered Ti-3.5Fe-3.5Mn (UTS = 842 

MPa and YS = 816 MPa) are higher compared to the sintered Ti-5Mn (UTS = 800 

MPa and YS = 716 MPa [38]) alloy, however lower than cast Ti-6Al-4V (UTS = 

976 MPa and YS = 847 MPa [70]) and sintered Ti-5Fe (UTS = 930 MPa and YS = 

843 MPa [51]) alloys. It is worth mentioning that the YS of the sintered Ti-3.5Fe-

3.5Mn, cast Ti-6Al-4V and sintered Ti-5Fe alloys are comparable as shown in 

Figure 4-35. Furthermore, the elongation of the sintered Ti-3.5Fe-3.5Mn (1.7%) 

alloy is comparable with sintered Ti-5Mn (3%) and sintered Ti-5Fe (2.6%) alloys, 
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however, is lower than the cast Ti-6Al-4V (5.1%) alloy. The low UTS of the 

sintered Ti-3.5Fe-3.5Mn alloy in comparison to both cast Ti-6Al-4V and sintered 

Ti-5Fe alloys, is due to porosity (7%). The sintered Ti-3.5Fe-3.5Mn (268 HV) alloy 

shows lower hardness than cast Ti-6Al-4V (approximately 340 HV) and sintered 

Ti-5Fe (331 HV) alloys (as shown in Figure 4-36), however, is comparable with the 

sintered Ti-5Mn (245 HV) alloy. It is worth mentioning that the sintered Ti-5Fe-

5Mn alloy displayed the highest hardness (384 HV) in comparison to the other 

alloys as shown in Figure 4-36. The high hardness of the sintered Ti-5Fe-5Mn alloy 

is due to the equiaxed microstructure regardless of the amount of porosity (6%). 

 

 

Figure 4-36 Comparison of the hardness of the sintered Ti-3.5Fe-3.5Mn alloy to 

other Fe- and Mn- based Ti alloys, as well as Ti-6Al-4V. 
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4.6 Comparison Between the Sintered Ternary Ti Alloys 

4.6.1 Ternary Ti-X-Nb alloys (X = Cu, Mn and Fe)  

 The relative green/sintered density of the ternary Ti-Cu-Nb, Ti-Mn-Nb and 

Ti-Fe-Nb alloys decreases as more alloying elements are added to Ti. The sintered 

Ti-5Fe-5Nb (92.3%) alloy showed the highest density compared to the Ti-5Cu-5Nb 

(91.4%) and Ti-5Mn-5Nb (91.3%) alloys at the same total amount of alloying 

elements. As mentioned in the literature review (1.2.3.1), Fe has a high diffusivity 

in Ti, making it favourable for the sinterability, thus having an impact on the relative 

density of PM Ti alloys. 

 

The effects of the amount and type of alloying elements directly effects the 

microstructure. The microstructure of the Ti-5Fe-5Nb alloy is significantly finer 

than Ti-5Cu-5Nb, and is comparable to Ti-5Mn-5Nb at the same total amount of 

alloying elements. Both Fe and Mn are strong β-stabilizers compared to Cu, thus 

much finer microstructures are observed with the addition of Fe and Mn as alloying 

elements to Ti. It is worth mentioning that even at low alloy concentrations of 0.5 

wt%, both Ti-0.5Fe-0.5Nb and Ti-0.5Mn-0.5Nb alloys showed a more refined 

microstructure than Ti-0.5Cu-0.5Nb at the same total amount of alloying elements. 

As mentioned in the literature review (1.2.2.2), a study by Alqattan et al. [32] found 

that Mn-dominant alloys had a much finer microstructure compared to Cu-

dominant alloys at the same concentrations, and is in agreement with the current 

results. A more refined microstructure tends to give better mechanical properties 

(tensile and hardness). 

 

Regarding the mechanical behaviour of the ternary Ti-Cu-Nb, Ti-Mn-Nb and Ti-

Fe-Nb alloys, the microstructural features of each alloy will have an effect on the 

mechanical properties of the alloy. The UTS and YS of Ti-5Fe-5Nb (UTS = 800 

MPa and YS = 727 MPa) are higher than Ti-5Mn-5Nb (UTS = 726 MPa and YS = 

670 MPa) and Ti-5Cu-5Nb (UTS = 655 MPa and YS = 553 MPa) as shown in 

Figure 4-37.  
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Figure 4-37 Comparison of the highest UTS and YS of Ti-5Cu-5Nb, Ti-5Mn-5Nb 

and Ti-5Fe-5Nb. 

 

Both Ti-5Fe-5Nb (62 HRA) and Ti-5Mn-5Nb (62 HRA) showed similar hardness, 

compared to Ti-5Cu-5Nb (58 HRA). The elongation for the Ti-5Cu-5Nb (9.1%) 

alloy was higher than both Ti-5Mn-5Nb (2.6%) and Ti-5Fe-5Nb (2.3%) alloys. The 

high strength of the Ti-5Fe-5Nb alloy is due to the refined microstructure as well 

as Fe having a stronger stabilizing effect on the β-phase of Ti. Mn is also a strong 

β-stabilizer in Ti, its effects in terms of strength for the Ti-5Mn-5Nb alloy were not 

observed compared to the Ti-5Fe-5Nb alloy at the same total amount of alloying 

elements. The relative sintered density of the Ti-5Mn-5Nb alloy was approximately 

1% lower than that of Ti-5Fe-5Nb, this implies that the mechanical properties 

would be low based on a lower relative density (i.e. an alloy with a high relative 

density results in better mechanical properties, as there are less pores present in the 

material, thus reducing the stress concentration sites). Even though the Ti2Cu phase 

was detected in the Ti-5Cu-5Nb alloy, it did not increase the mechanical properties 

significantly. However, the elongation was higher with the addition of Cu to Ti-Nb, 

compared to Mn and Fe alloying elements. 

 

Overall from this group of ternary Ti-Cu-Nb, Ti-Mn-Nb and Ti-Fe-Nb alloy 

systems, the Ti-Fe-Nb alloy system shows higher mechanical properties (tensile 

strength and hardness) than both Ti-Mn-Nb and Ti-Cu-Nb alloy systems, at the 

same total amount of alloying elements. 
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4.6.2 Ternary Ti-X-Fe alloys (X = Nb, Cu and Mn) 

 The Ti-5Fe-5Mn (94%) alloy showed the highest relative sintered density 

compared to the Ti-5Fe-5Cu (92.8%) and Ti-5Fe-5Nb (92.3%) alloys. As 

mentioned before both Fe and Mn are strong β-stabilizers in Ti, thus having a strong 

effect on the relative density of PM Ti alloys. 

 

The addition of 5 wt% of both Fe and Mn to Ti caused significant refinement of the 

microstructure, achieving a β type microstructure composed of equiaxed β-phase 

grains. Both Ti-5Fe-5Nb and Ti-5Fe-5Cu alloys showed similar microstructures, 

however the Ti-5Fe-5Cu alloy showed a much more refined microstructure 

compared to Ti-5Fe-5Nb at the same total amount of alloying elements. As a result, 

a Ti alloy consisting of a β type microstructure tends have better mechanical 

properties as the β-Ti phase is highly stabilized. As mentioned before the β-Ti phase 

has high strength/hardness and low ductility, compared to the α-Ti phase. 

 

The UTS and YS of Ti-5Fe-5Cu (UTS = 912 MPa and YS = 864 MPa) are higher 

compared to Ti-3.5Fe-3.5Mn (UTS = 842 MPa and YS = 816 MPa) and Ti-5Fe-

5Nb (UTS = 800 MPa and YS = 727 MPa) as shown in Figure 4-38.  

 

 

Figure 4-38 Comparison of the highest UTS and YS of Ti-5Fe-5Nb, Ti-5Fe-5Cu and 

Ti-3.5Fe-3.5Mn. 

 

The Ti-5Fe-5Mn alloy showed only brittle behaviour (no YS could be measured), 

and therefore it is best to look at the mechanical behaviour of the Ti-3.5Fe-3.5Mn 
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alloy as both UTS and YS are found. Hardness of the Ti-5Fe-5Mn (70 HRA) alloy 

was the highest compared to both Ti 5Fe-5Cu (65 HRA) and Ti-5Fe-5Nb (62 HRA) 

alloys at the same total amount of alloying elements. It is worth mentioning that the 

hardness of the Ti-3.5Fe-3.5Mn (63 HRA) alloy, was higher than that of the Ti-

5Fe-5Nb alloy with a lower amount of alloying elements. The elongation of the Ti-

5Fe-5Nb (2.3%) alloys is higher than both Ti-3.5Fe-3.5Mn (1.7%) and Ti-5Fe-5Cu 

(1.4%) alloys. Once again, the high tensile properties of the Ti-5Fe-5Cu alloy are 

due to the refined microstructure as well as Fe having a stronger stabilizing effect 

on the β-phase of Ti. The presence of the Ti2Cu phase (detected in XRD) in Ti-5Fe-

5Cu is also responsible for the high tensile properties, as it leads to precipitation 

strengthening, thus increasing the strength and reducing the ductility (Ti2Cu phase 

is brittle) of the alloy [32]. The Ti-3.5Fe-3.5Mn alloy showed higher tensile 

properties compared to the Ti-5Fe-5Nb alloy, with a lower amount of alloying 

elements, thus being cost effective. Hardness of the Ti-5Fe-5Mn alloy was the 

highest, as mentioned before both Fe and Mn are strong β-stabilizers in Ti, thus 

providing strong solid-solution strengthening effect. 

 

Overall from this group of ternary Ti-Fe-Nb, Ti-Fe-Cu and Ti-Fe-Mn alloy systems, 

the Ti-Fe-Cu alloy system shows greater tensile properties than the Ti-Fe-Nb alloy 

system, and is comparable with the Ti-Fe-Mn alloy systems. However, hardness of 

the Ti-Fe-Mn alloy system is better than both Ti-Fe-Nb and Ti-Fe-Cu alloy systems. 

 

4.6.3 Comparison of the mechanical properties of the sintered ternary 

Ti alloys 

 The UTS and YS of Ti-5Fe-5Cu (UTS = 912 MPa and YS = 864 MPa) are 

higher than Ti-3.5Fe-3.5Mn (UTS = 842 MPa and YS = 816 MPa), Ti-5Fe-5Nb 

(UTS = 800 MPa and YS = 727 MPa), Ti-5Mn-5Nb (UTS = 726 MPa and YS = 

670 MPa) and Ti-5Cu-5Nb (UTS = 655 MPa and YS = 553 MPa) as shown in 

Figure 4-39. All ternary Ti alloys except Ti-5Cu-5Nb showed comparable 

elongations (Figure 4-39), at the highest UTS and YS of each alloy system. 
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Figure 4-39 Comparing the highest UTS and YS of each alloy system. 

 

It is worth mentioning that the Ti-3.5Fe-3.5Mn alloy has higher UTS and YS than 

Ti-3.5Fe-3.5Cu (UTS = 754 MPa and YS = 630 MPa) at the same total amount of 

alloying elements, indicating that Mn is a stronger β-stabilizer than Cu, therefore 

having better tensile properties (UTS and YS) compared to Cu at the same total 

amount of alloying elements when alloyed to Ti-Fe. However, the elongation of the 

Ti-3.5Fe-3.5Cu (3.7%) alloy is twice that of Ti-3.5Fe-3.5Mn (1.7%), thus showing 

that Cu is more ductile than Mn at the same total amount of alloying elements. 

 

The elongation of Ti-1Cu-1Nb (23%) was higher than alloys at the highest 

elongation of each alloy system as shown in Figure 4-40. The Ti-0.5Fe-0.5Mn 

(9.3%) alloy showed the lowest elongation compared to both Ti-1Mn-1Nb (13.2%) 

and Ti-1Fe-1Nb (11.4%) alloys, however comparable with the Ti-1Fe-1Cu (9.6%) 

alloy. From Figure 4-40, all ternary Ti alloys of each alloy system showed similar 

UTS and YS at the same total amount of alloying elements, this had no effect on 

the elongation of the alloys. It is worth mentioning that the all Ti-xCu-xNb alloys 

showed very high elongations, when compared to the other alloy systems at the 

same total amount of alloying elements. It can be concluded that Cu and Nb as 

alloying elements added to Ti show high elongations compared to Fe and Mn. 

Generally, Mn and Fe are more ductile at lower additions as mentioned in the 

literature review. 
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Figure 4-40 Comparison of the highest elongation of each alloy system. 

 

The hardness of the Ti-5Fe-5Mn (70 HRA) was significantly higher than all alloys 

at the highest hardness of each alloy system as shown in Figure 4-41. As mentioned 

before both Fe and Mn (Mn being more than Fe) are strong β-stabilizers because 

they have a stronger stabilizing effect on the β-Ti phase, as well as having high 

diffusivity in Ti. It is worth mentioning that Nb has a poor diffusivity in Ti, thus the 

effects are observed in the mechanical properties of the sintered ternary Ti alloys. 

 

 

Figure 4-41 Comparison of the highest hardness of each alloy system. 
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Chapter 5 

Conclusion and Recommendation 

 

 Concluding, novel ternary Ti-xCu-xNb, Ti-xMn-xNb, Ti-xFe-xNb, Ti-xFe-

xCu, Ti-xFe-xMn alloys were successfully fabricated via cost effective PM route 

(i.e. cold press and vacuum sintering), and characterized. The addition of alloying 

elements (Cu, Nb, Mn and Fe) to Ti caused significant changes in the 

microstructures as well as increasing the mechanical properties compared to CP-Ti. 

 

The progressive increment of the alloying elements decreases the density of the 

alloys, especially for the Ti-xCu-xNb, Ti-xMn-xNb and Ti-xFe-xNb alloys, but was 

fairly constant for the Ti-xFe-xCu and Ti-xFe-xMn alloys. With the addition of 0.5 

wt% of alloying elements (Cu, Nb, Mn and Fe) to Ti, the microstructure changes 

from an equiaxed structure (CP-Ti) into a α + β lamellar structure (the increment of 

the alloying elements from 0.5 to 5 wt% caused significant refinement of the α + β 

lamellar microstructure), this was exhibited for all the sintered ternary Ti alloy 

systems. Ti-5Fe-5Mn was the only alloy to show an equiaxed microstructure 

(agreed with the MoE). As result of the microstructural changes, the strength and 

hardness of the ternary Ti alloys increases, nevertheless, the ductility decreases. 

High tensile properties were observed for the Ti-5Fe-5Cu alloy (due to the 

formation of the Ti2Cu phase as well as the strong β-stabilizer effects of Fe), in 

comparison to all the sintered ternary Ti alloys. Ti-5Fe-5Mn showed the highest 

hardness compared to all the sintered ternary Ti alloys, owing to the strong β-

stabilizer effects of Fe and Mn (strong solid-solution strengthening effect). Cu and 

Nb as alloying elements added to Ti show high elongations compared to Fe and Mn, 

because of that the Ti-xCu-xNb alloy system showed higher elongations than the 

other alloy systems at the same total amount of alloying elements. The sintered 

novel ternary Ti alloys exhibit mechanical properties comparable to Ti based alloys 

used on engineering applications, thus could have potential use in industrial 

applications. It is worth mentioning that Ti-5Fe-5Cu was the only alloy to show 

comparable UTS and YS with Ti-6Al-4V, and Ti-5Fe-5Mn showed higher hardness 

compared to Ti-6Al-4V. 
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Future work such as antibacterial activity and corrosion behaviour should be 

investigated on the novel ternary Ti alloys, as the alloying elements Cu, Nb and Mn 

have excellent biocompatibility when alloyed to Ti. Hot working treatments could 

also be investigated, as they tend to improve the physical and mechanical properties 

as well as change the microstructure of the alloy.  
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