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ABSTRACT 

Remote sensing technology is an efficient tool for various practical applications of 

environmental resources management. Advances in this technology include the 

diverse range of high quality data sources and image analysis techniques. Object-

based image analysis (OBIA) and machine learning algorithms are recent advances, 

which this thesis evaluates.  

OBIA and machine learning algorithms are first tested using a combination of 

multiple datasets for identifying individual tree species. These datasets include 

Quickbird, LiDAR, and GIS derived terrain data. Improvements in tree species 

classification were obtained and the best data combination was terrain context 

(based on slope, elevation, and wetness), tree height, canopy shape, and branch 

density (based on LiDAR return intensity).  

The availability of a range of classifiers and different data pre-processing 

techniques adds to the complexity of image analysis. The combinations of these 

techniques result in a large number of potential outcomes and these need to be 

evaluated. Therefore, the second part of this research investigated and compared 

tree species classification performance for different methods (Naïve Bayes - NB , 

Logistic Regression - LR, Random Forest - RF, and Support Vector Machine - 

SVM), combined with various dimensionality reduction (DR) methods 

(Correlation-based feature selection filter, Information Gain, Wrapper methods, and 

Principal Component Analysis). When DR was used prior to classification, only the 

NB classifier had a significant improvement in accuracy. SVM and RF had the best 

classification accuracy, and this was achieved without DR.  

The final part of this thesis demonstrates a new method using OBIA for mapping 

the biomass change of mangrove forests in Vietnam between 2000 and 2011 from 

SPOT images. First, three different mangrove associations were identified using 

two levels of image segmentation followed by a SVM classifier and a range of 

spectral, texture and GIS information for classification. The RF regression model 

that integrated spectral, vegetation association type, texture, and vegetation indices 

obtained the highest accuracy. 
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CHAPTER 1 

INTRODUCTION AND THE RESEARCH CONTEXT 

  

The motivation for this research was to develop techniques for monitoring change 

to coastal vegetation using remote sensing. Natural and anthropogenic disturbances 

of coastal vegetation are a major issue. Monitoring the spatial extent of coastal 

vegetation is an important step in understanding these disturbances, and remote 

sensing technology is a useful tool for providing such information. This thesis 

researches the use of advanced remote sensing techniques, including object-based 

image analysis and machine learning algorithms for coastal vegetation. 

The first sections of this introduction chapter provide an overview of previous 

remote sensing research and what this thesis will do to address the gaps in the 

literature. Next sections provide the aim and scope of this research. The final section 

provides information about thesis structure and chapter outlines. 

 Remote sensing research 

Remote sensing has been demonstrated to be cost efficient and effective for many 

practical applications such as biodiversity monitoring, agriculture planning, and 

forest fire control and management. Remote sensing is a rapidly changing 

technology due to new data sources becoming available as well as advancing image 

analysis techniques.  

Image analysis is a combination of different data sets, pre-processing, and image 

classification techniques. Figure 1.1 shows the sequence of these techniques and 

the choices available, which are represented on the left of this Figure as data sources, 

image analysis, dimensionality reduction, and classifiers. These techniques interact 

and can impact on the accuracy of the final classification. For example, using the 

object-based image analysis for high resolution multispectral data can extract more 

input variables for classification such as contextual variables than the pixel-based 

approach. The large number of input data requires pre-processing steps using 

dimensionality reduction methods to obtain higher classification accuracy. The 

preferred combination of analysis techniques therefore requires research. 
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Figure 1.1. The sequence of image analysis techniques and the choices available 

Traditionally remotely sensed data has mainly focused on multispectral images, but 

now there is a wide range of data sets that can be used in remote sensing, which 

includes hyperspectral images, LiDAR, and RADAR data, as well as GIS 

topographical data that provides environmental context. Spectral data can now be 

combined with tree height and shape, as well as landform and wetness indices. 

Using simultaneously multiple data sets introduces new challenges in image 

analysis and this research investigates whether such data sets improve image 

classification accuracy. 

As well as advances in the number and quality of available data sets, techniques for 

image analysis have also improved. Traditionally images have been classified at the 
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pixel level but a more sophisticated technique is the use of object-based image 

analysis (OBIA; see chapter 2 for details). The OBIA first joins pixels into objects 

(this process is known as segmentation), and then classification is performed on 

these objects using the diversity of spectral, textural, and contextual information. In 

contrast to the pixel-based approach, the OBIA exploits various information 

simultaneously such as spectral, spatial, shape, textural, and contextual information. 

The effectiveness of using OBIA combined with multiple data sets depends on the 

classification targets and the types of data sources available. However, there is no 

general framework about how to integrate OBIA and multiple data sets for mapping 

vegetation; therefore research is required. In addition, the level of segmentation 

used depends on the data and the objects being identified. This level needs to be 

investigated to produce the most optimal results. 

Combining multiple datasets can result in high computational demand as well as 

feature redundancy that compromise classification performance. Therefore, pre-

processing the data using dimensionality reduction methods is often done to not 

only reduce processing time but also improve the classification accuracy. There are 

many dimensionality reduction techniques to choose from such as Correlation-

based feature selection filter, Information gain, and Wrapper methods. Choosing 

the best dimensionality reduction methods is important for improving classification 

accuracy and will be explored in this research.  

In addition to the above techniques, several image classification algorithms have 

been developed. These include parametric classifiers such as Maximum Likelihood, 

and K-nearest neighbour, as well as non-parametric methods such as Decision Trees, 

Artificial Neutral Network, Random Forest, and Support Vector Machine (see 

details in Chapter 2). The choice of classification algorithms depends on the data 

properties and this is investigated to determine which is best for classification 

accuracy. 

 Remote sensing of coastal vegetation 

Another aspect of remote sensing research is developing new applications of remote 

sensing such as single tree mapping and biomass estimation. The performance of 

different remote sensing techniques, such as described previously, will vary with 
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different vegetation types. It is therefore necessary to choose a particular context 

for the research as it is not practical to research their accuracy with all the different 

vegetation types. This thesis focuses on using remote sensing techniques for 

mapping coastal vegetation and testing their accuracies. The reason for choosing 

coastal vegetation is twofold. Firstly the research was supported by an international 

collaboration between the University of Waikato in NZ and the University of 

Bremen in Germany, called INTERCOAST. This collaboration focuses on coastal 

research.  

The second reason was because of the importance of coastal vegetation. Coastal 

ecosystems such as dunes, mangrove forests, salt marshes, and coral reefs provide 

several important services such as purifying the water from human wastes and 

pollutants, preventing coastal erosion, and minimizing the impact of natural 

disasters such as flood, tsunamis and hurricane (Tanaka et al., 2007; Wang and 

Wang, 2010). In addition, coastal ecosystems provide scenic beauty and recreation 

(Álvarez-Molina et al., 2012). However, those ecosystems are facing increased 

natural and anthropogenic disturbances such as climate change, sea level rise, 

storms, land use change and encroachment by urban development (Álvarez-Molina 

et al., 2012; Wang and Wang, 2010). Providing accurate up-to-date information 

about the characteristics of the coastal vegetation such as the presence of individual 

species, distribution, and biomass is necessary to help managers and policy makers 

decide on appropriate conservation and restoration strategies within a restricted 

time span.  

Coastal vegetation can be mapped using a range of methods. Traditional vegetation 

mapping methods such as field surveys or aerial photography interpretation are 

time-consuming, costly and provide inconsistent results (Castillejo-González et al., 

2009; Xie et al., 2008). Compared to traditional field surveys, the use of satellite 

remotely sensed data has many advantages such as significantly lower costs; it is 

also quicker and more suitable for use over extensive areas (Castillejo-González et 

al., 2009; Xie et al., 2008). Given these strengths, remote sensing data have been 

commonly used for identifying coastal vegetation and measuring its physical 

characteristics.  
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Many studies using remote sensing have mapped vegetation at a coarse spatial 

resolution data which is defined by Xie et al. (2008) as pixels with ground sampling 

distance of 30 m or greater and identified vegetation types that often include several 

different species. Given the desire to provide the most detailed and accurate results, 

vegetation maps should use high quality remotely sensed data and advanced image 

analysis techniques. This research thus focuses on mapping single trees in New 

Zealand, where high quality data is available.  

Although this study uses high quality data, such as LIDAR and QuickBird images, 

for New Zealand, it is important to be mindful that many developing countries do 

not have access to such data because of the expense. Developing countries also face 

high environmental pressures and have a need for vegetation monitoring. Therefore, 

research on remote sensing should consider how best to utilise low resolution 

images, such as Landsat and SPOT, which are considerably cheaper. This research 

modified the methodology developed in New Zealand and applied this to the 

context of developing countries lower spatial resolution data sources. 

 Aim of this research 

The main objective of this research is to evaluate a range of remote sensing 

techniques for mapping coastal vegetation as accurately as possible, including the 

best combination of techniques. This vegetation mapping includes mapping the 

location of individual trees in New Zealand as well as calculating biomass of 

mangrove forests in Vietnam. 

 Specific research questions 

1. What levels of segmentation are required to separate individual tree 

crowns/mangrove associations from other land-cover types such as 

grasslands, buildings, and water? 

2. Which dimensionality reduction methods improve the accuracy of 

vegetation classification or biomass prediction?  

3. Which classifier algorithms should be used for identifying coastal 

vegetation? 

4. Does the combination of spectral and GIS derived data improve the 

accuracy of vegetation classification and biomass prediction? 
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 Scope of this research 

This study will use a unique combination of GIS data, remotely sensed images, 

OBIA with different dimensionality reduction and classification techniques that 

have never been used before for mapping tree species and estimating biomass. 

Improving the vegetation classification accuracy is the main goal of this research. 

The accuracy will be compared with other vegetation mapping studies conducted 

elsewhere in the world. 

Two study areas have been chosen for this research – a coastal site in NZ for which 

higher spatial resolution data is available and a coastal site in Vietnam that has 

lower spatial resolution data sources. These two countries provided the opportunity 

to investigate whether the object-based approach with various classifiers is widely 

applicable for different types of environments and vegetation species.  

Case study in New Zealand – Coromandel Peninsula 

The New Zealand site is the Coromandel Peninsula. The site is characterized by 

different land cover types including built-up area, urban parkland/open space, sand 

or gravel, coastal broadleaved species of scrub or scrublands, pine forests, manuka 

and/or kanuka, and pohutukawa forests on the coast (Humphreys and Tyler, 1990; 

Weeks et al., 2009).  

Pohutukawa, one of the best-known native trees in New Zealand, is a coastal species 

and found mainly in northern New Zealand (Bergin and Hosking, 2006; Simpson, 

2005). Pohutukawa has cultural significance to Maori including medicinal uses. It 

has also provided timber for boat building. At present, it is used for honey 

production as well as cosmetic and cleaning products (Bergin and Hosking, 2006; 

Simpson, 2005). Regarding its ecological and environmental functions, it helps 

stabilize soil on eroding or unstable areas and provides habitat and resources to 

plant and animal associates such as tui and bellbird (Bergin and Hosking, 2006).  

Despite such benefits, the number of Pohutukawa trees has considerably declined 

in the past due to fires and land clearance (Bergin and Hosking, 2006; Simpson, 

2005). Unfortunately, this decrease is continuing at present, mainly due to possum 

and herbivore browsing (Bergin and Hosking, 2006; Bylsma, 2012). Recently 
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Pohutukawa has been considered to be at risk from myrtle rust. Therefore, counting 

the trees which is the first step at monitoring impacts such as possum browsing is 

necessary to help managers develop appropriate conservation strategies. These 

tasks can be done effectively and economically using remote sensing data combined 

with the object-based approach to identify individual trees. A map showing 

individual tree locations of Pohutukawa would be a first for NZ and would generate 

considerable interest. It is expected that the method developed will be applicable in 

similar locations throughout NZ. 

The Coromandel Peninsula has been chosen because: 1) LIDAR and QuickBird 

data sets (high spatial resolution) are available, 2) there is a range of coastal 

vegetation including Pohutukawa, conifers, and exotic species, and 3) it is 

accessible by car so that ground-truth data can be collected easily. 

Case study in Vietnam – Cangio mangrove forests 

The Vietnam site is the Cangio mangrove forests. The Cangio mangrove forest is 

located in Cangio District - one of 24 districts of Ho Chi Minh City - covering an 

area of about 72 000 ha. In January 2000, the Cangio mangrove forest was 

recognized as the first biosphere reserve in Vietnam. This reserve consists of 60% 

planted and 40% natural forests (Kuenzer and Tuan, 2013). There are more than 

200 species of fauna and more than 52 species of flora, so it is considered to have 

high biodiversity (Nguyen, 2006). Besides those types of vegetation, the research 

area includes shrimp ponds, bare lands, and muddy flats. Mangroves in Cangio have 

been facing the threat of increased coastal erosion as a result of the transit of large 

cargo ships, the ever expanding aquaculture and salt farming activities, and the 

negative impacts of socio-economic transformation (Kuenzer and Tuan, 2013). 

This site has been chosen because: 1) SPOT images and Digital Elevation data 

(DEM) are freely available; 2) there are various mangrove species; 3) there is a 

range of GIS data available; and 4) mangrove forest in Cangio is extensive and the 

methodology developed by this research can be evaluated in different environments. 
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 Thesis structure and chapter outlines 

This thesis consists of six chapters – this general introductory chapter (Chapter 1), 

a literature review of advanced image analysis techniques (Chapter 2), three 

chapters written as manuscripts for publication (Chapters 3, 4, and 5), and a 

concluding chapter (Chapter 6) that provides discussions and a final conclusion. 

Because the research chapters 3, 4, and 5 have been submitted to different journals, 

they follow different specific formatting and referencing styles appropriate to each 

journal. However, changes have been made in the formats of the individual chapters 

to maintain the overall consistency of the overall thesis.  

Chapter 2 – “A literature review of advanced image analysis techniques for 

mapping vegetation”.  

Chapter 2 clarifies the advantages of OBIA compared to the traditional pixel-based 

approach. It also reviews different machine learning algorithms for classifying 

vegetation and predicting biomass. It enables the discovery of knowledge gaps in 

the use and combination of existing techniques that the thesis seeks to fill. 

Chapter 3 - “Combining QuickBird, LiDAR, and GIS topography indices to 

identify a single native tree species in a complex landscape using an object-based 

classification approach”. 

Chapter 3 is a peer-reviewed paper published as “Pham, L.T.H, Brabyn, L., Ashraf, 

S., 2016. Combining QuickBird, LiDAR, and GIS topography indices to identify a 

single native tree species in a complex landscape using an object-based 

classification approach. International Journal of Applied Earth Observation and 

Geoinformation 50, 187-197”. http://dx.doi.org/10.1016/j.jag.2016.03.015 

The chapter investigates the benefits of combining a range of techniques to identify 

individual tree species. A QuickBird image and low point density LiDAR data for 

a coastal region in New Zealand were used to examine the possibility of mapping 

individual Pohutukawa trees, which are regarded as an iconic tree in New Zealand. 

This chapter shows how combining LiDAR and spectral data improves 

classification for Pohutukawa trees. 
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Chapter 4 - “An evaluation of dimensionality reduction and classification 

techniques for identifying tree species using integrated QuickBird imagery and 

LiDAR data” 

Chapter 4 is a paper submitted to the “IEEE Transactions on Geoscience and 

Remote Sensing” Journal. This chapter investigates and compares tree species 

classification performance for a variety of classification schemes (Naïve Bayes, 

Logistic Regression, Random Forest, and Support Vector Machine), combined with 

various dimensionality reduction methods (Correlation-based feature selection 

filter, Information Gain, Wrapper methods, and Principle component analysis). This 

chapter concludes that the SVM and RF achieve highest classification accuracy, 

and dimensionality reduction should be applied prior to the classification step to 

make the classifier algorithms run faster and/or achieve higher classification 

accuracy. 

Chapter 5 - “Monitoring mangrove biomass change in Vietnam using SPOT 

images and an object-based approach combined with machine learning algorithms”. 

Chapter 5 is a peer-reviewed paper published as “Pham, L.T.H., Brabyn, L., 2017. 

Monitoring mangrove biomass change in Vietnam using SPOT images and an 

object-based approach combined with machine learning algorithms”. ISPRS 

Journal of Photogrammetry and Remote Sensing 128, 86 -97”. 

http://dx.doi.org/10.1016/j.isprsjprs.2017.03.013 

The chapter extends the applications of an object-based approach for measuring the 

biomass change between 2000 and 2011 of mangrove forests in the Cangio region 

in Vietnam. Firstly, it uses object-based image analysis and Support Vector 

Machine classifier for identifying different mangrove types. Random Forest 

regression algorithms are then used for modelling and mapping biomass. This 

chapter concludes that the integration of spectral, vegetation association type, 

texture, and vegetation indices obtains the highest accuracy (R2
adj = 0.73). 

Chapter 6 – “Discussion and Conclusion” 

This final chapter synthesises results given in previous chapters, and summarises 

the answers to the research questions. This chapter recaps the contribution of this 
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research in establishing new knowledge for remote sensing of vegetation. 

Limitations of this research are discussed, including suggestions for future research 

that address these limitations. 
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CHAPTER 2 

 A LITERATURE REVIEW OF ADVANCED IMAGE ANALYSIS 

TECHNIQUES FOR MAPPING VEGETATION  

  

2.1 Introduction 

Remote sensing techniques cover a wide range of image preparation, classification, 

and accuracy assessment techniques. The emergence of various remote sensing data 

sources requires new and advanced image processing techniques to use these data 

sets efficiently. An overview of different types of image analysis techniques used 

for mapping vegetation can be found in many articles and remote sensing text books 

such as Chuvieco (2016), Houborg et al. (2015), Pettorelli et al. (2014), and Wang 

(2009). As stated in the introduction chapter this thesis focuses on advanced image 

analysis techniques. Therefore this review chapter focuses on just these techniques 

and the methods that are common to all three chapter/papers. This includes object 

based classification, integration of GIS and remotely sensed data, classifiers, and 

accuracy assessment. The subsequent chapters/papers summarise the main points 

of this review in light of the restriction imposed by the publication format as well 

as review specialised methods that are relevant to the particular chapter/paper. 

These specialised methods include LiDAR processing, treetop identification, 

biomass estimation, allometric functions, and dimensionality reduction techniques.  

2.2 Pixel-based versus object-based approach 

Two common categorial image analysis approaches are pixel-based and object-

based analysis (Aguirre-Gutiérrez et al., 2012). While the pixel-based analysis has 

long been the main approach used in remote sensing studies, the object-based image 

analysis has become increasingly popular over the last decade (Blaschke, 2010; 

Duro et al., 2012). A pixel-based analysis approach assigns an individual pixel into 

one category (Liu and Xia, 2010) while an object-based approach operates on 

objects which are groups of homogenous and contiguous pixels (Liu and Xia, 2010). 

Compared to the pixel-based technique, the OBIA has many advantages. Firstly, 

shifting the classification units from pixels to image objects decreases the intra-

class spectral variability and removes the “salt-and-pepper” problem which is usual 
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in pixel-based classification of high spatial resolution imagery (Gao et al., 2007; 

Liu and Xia, 2010; Yu et al., 2006). Secondly, the OBIA integrates various features 

of image objects. It can use not only the spectral properties but also spatial and 

contextual information into the classification process, which may be able to perform 

the classification more accurately (Blaschke, 2010; Blaschke et al., 2014a; Gao et 

al., 2007; Han et al., 2014; Ouyang et al., 2011). Thirdly, the object-based approach 

with multi-scale segmentation and hierarchical structure of the classification 

scheme will provide detailed information at different levels of landscape such as 

from individual trees to forests (Mishra and Crews, 2014). Thanks to these 

flexibility characteristics, the cost for producing many products and updating 

information at different levels of the landscape is reduced significantly. However, 

one of the drawbacks of object-based image analysis is that the segmentation 

process and the calculation of the topological relationships between objects can 

consume a large amount of computer memory (Liu and Xia, 2010; Whiteside et al., 

2011). In addition, there are no objective methods to choose parameters for 

producing image objects (Jakubowski et al., 2013; Liu and Xia, 2010; Whiteside et 

al., 2011). Other disadvantages are that the software is expensive and has a steep 

learning curve. 

Many studies showed that the OBIA performed better than the pixel-based methods 

using a great variety of remote sensing imagery for mapping vegetation. For 

example, Ouyang et al. (2011) compared pixel-based and object-based analysis 

using QuickBird imagery and different classification models for mapping saltmarsh 

plants. The results indicated that OBIA achieved higher overall accuracy (87%) 

than the pixel-based approach (82%). Moreover, there was no “salt and pepper” in 

the map created from object-based classification approaches. Ghosh and Joshi 

(2014) used WorldView-2 imagery and different classification algorithms to map 

bamboo patches in West Bengal, India. Their method combined both the OBIA and 

a Support Vector Machine classifier, which produced 91% accuracy while the 

pixel-based classification scheme was only 80% accurate. Similarly, Fu et al. (2017) 

showed that the object-based Random Forest algorithm improved the overall 

accuracy (OA) between 3%-10% when compared to pixel-based classifications for 

wetland vegetation using high spatial resolution Gaofen-1 satellite image, L-band 

PALSAR and C-band Radarsat-2 data. 
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The OBIA outperforms pixel-based analysis for not only high but also medium 

resolution satellite imagery. For instance, Whiteside et al. (2011) used ASTER data 

to map land cover in the tropical north of the Northern Territory of Australia. The 

OA of using the object-oriented approach was statistically significantly greater than 

that of the pixel-based approach. Similarly, Myint et al. (2008) found that an object-

based approach with the lacunarity technique for Landsat Thematic Mapper data 

was more effective in identifying three types of mangrove species than a pixel-

based classifier. The OA of the object-oriented classifier was significantly higher 

than that of the pixel-based classifier (94.2% and 62.8% respectively). 

Although the above studies found that the OBIA obtained more accurate results 

than pixel-based methods, the pixel-based approach may achieve similar or 

sometimes more accurate classification results for certain land cover categories 

(Duro et al., 2012; Flanders et al., 2003). In such cases, the combination of two 

approaches can produce the best results. Wang et al. (2004a) demonstrated that the 

OA of mangrove maps created from very high-resolution IKONOS imagery was 

improved when combining pixel-based and object-based classifications. Similarly, 

Aguirre-Gutiérrez et al. (2012) compared the land cover classification results 

among pixel-based, object-based, and the combined object-based and pixel-based 

classification using medium resolution imagery (Landsat ETM+). The result 

showed that the combination method delivered the best results. Li et al. (2013) also 

illustrated that the hybrid of image segmentation and pixel-based classification for 

land cover classification outperformed the use of object-based or pixel-based 

approach alone. 

2.3 Object-based image segmentation 

A defining step in OBIA is image segmentation (Kim et al., 2009a; Lang, 2008), 

which divides an image into contiguous, separate and homogeneous areas. These 

areas are called image objects (Blaschke et al., 2004; Blaschke et al., 2014b; Duro 

et al., 2012), which are then classified into different categories using a range of 

classifiers (reviewed in the next section). The quality of segmentation will affect 

the accuracy of the classified image (Kim et al., 2009a; Liu and Xia, 2010). The 

segmenting process can produce meaningful image objects at different scales of the 

landscape (granularity), which enables multiple features to be extracted from a 
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single dataset (Burnett and Blaschke, 2003; Lang and Langanke, 2006; Mishra and 

Crews, 2014). 

Image segmentation methods can be divided into three categories, including point-

based or pixel-based (e.g. grey-level thresholding), edge-based (e.g. edge detection 

techniques), and region-based (Blaschke et al., 2004; Pal and Pal, 1993; Van Coillie 

et al., 2007). Point-based methods gather pixels in a feature space using thresholds 

and clusters (Yu et al., 2006). Edge-based methods determine boundaries between 

image objects using edge detection algorithms based on changes in values 

(Blaschke et al., 2004; Yu et al., 2006). Region extraction can be divided into region 

growing, region dividing, and their combinations (Blaschke et al., 2004; Yu et al., 

2006). The region growing method starts with a set of seed pixels, which are then 

merged to adjacent pixels that are similar (Ke and Quackenbush, 2011). This 

process of growing continues until a threshold is reached, and defined by specified 

homogeneity criteria (Blaschke et al., 2004). For segmenting individual tree crowns, 

various semi- and fully-automated methods have been developed and can be 

generally categorized into: template matching (Korpela et al., 2007; Olofsson et al., 

2006); valley following (Leckie et al., 2003); watershed segmentation (Chen et al., 

2006); and region growing (Bunting and Lucas, 2006; Li et al., 2012; Zhen et al., 

2014). The region growing method outperformed other methods, e.g., valley-

following (Hussin et al., 2014; Larsen et al., 2011), and template matching (Larsen 

et al., 2011) in a mixed forest. 

2.4 Combining GIS data with remotely sensed data 

The OBIA provides the possibilities to integrate GIS techniques and image 

processing to use data effectively and improve classification. This is especially 

useful for situations where shape or neighbourhood relations are distinctive and 

spectral properties are not (Blaschke et al., 2014b). For example, old meandering 

river beds can have a range of land cover possibilities such as remaining water filled 

in by sediment or overgrown by vegetation. The mixed spectral properties in this 

case limits the meanders identification. However, the unchanged shape of the 

meander provides a unique property to distinguish it from its land cover appearance 

(Blaschke et al., 2014b).  
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The integration of GIS data with remotely sensed data has been used in many 

studies. Han et al. (2014) used the linkages between vegetated objects at different 

scales to identify land cover types in shadow areas for Moso bamboo forest. 

Similarly, MacFaden et al. (2012) combined multispectral imagery and LiDAR data 

using OBIA with contextual analysis to distinguish urban tree canopy from other 

land cover types. The contextual analysis in their research focused on the 

relationship between individual objects and their neighbours. MacFaden et al. (2012) 

identified tree canopy with accuracy that exceeded 90%. Yu et al. (2006) also used 

integrated Digital Airborne Imaging System imagery and topographic data with the 

object-based approach for detailed vegetation classification in Northern California. 

They pointed out that topographic information such as slope, aspect, and distance 

to water courses contributed significantly for vegetation classification besides 

spectral and texture features derived from airborne imagery. Likewise, Blaschke et 

al. (2014a)  showed that the combination of difference variables from satellite 

images with GIS variables such as slope and flow direction derivatives can detect 

and delineate landslides more accurately than using a single data source.  

2.5 Classification algorithms  

Choosing suitable classification algorithms is important to improve classification 

accuracy (Lu and Weng, 2007; Otukei and Blaschke, 2010). There are two main 

types of classification algorithms - supervised and unsupervised classification (Lu 

and Weng, 2007). Commonly used supervised classification techniques include 

Maximum Likelihood (ML), Minimum Distance, Artificial Neutral Network 

(ANN), and Support Vector Machine (SVM); while unsupervised methods include 

K-Means and ISODATA (Ghosh and Joshi, 2014; Lu and Weng, 2007). 

Classification algorithms are also divided into non-parametric methods such as 

Decision Tree (DT), ANN, and SVM, and parametric methods such as ML and K-

nearest neighbour (Ghosh and Joshi, 2014; Lu and Weng, 2007; Yu et al., 2006). 

The most commonly used parametric classifier in remote sensing is the ML because 

it is widely available in image-processing software programmes (Ghosh and Joshi, 

2014; Lu and Weng, 2007). However, the parametric approach assumes that the 

image data are normally distributed. Such assumption is often not guaranteed, 

especially in complex landscapes (Löw et al., 2015; Lu and Weng, 2007). This 
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assumption error is more serious in circumstances where training samples are not 

adequate, unrepresentative, or multimode distributed (Cracknell and Reading, 2014; 

Lu and Weng, 2007). 

In contrast to parametric classifiers, non-parametric classifiers do not need an 

assumption of normal distribution of the dataset (Löw et al., 2015; Lu and Weng, 

2007). This flexible characteristic of non-parametric classifiers allows integration 

of spectral and ancillary data into a classification process. Several previous studies 

have shown that non-parametric classifiers can produce better results than 

parametric classifiers in complex landscapes (Cracknell and Reading, 2014; Ghosh 

and Joshi, 2014). Neural Networks, DT, SVM, and Random Forest (RF) are the 

most common non-parametric classifiers (Löw et al., 2015; Lu and Weng, 2007; 

Raczko and Zagajewski, 2017). 

Many studies compare the performance between parametric classifiers and non-

parametric classifiers and amongst non-parametric classifiers. There is no 

consensus as to which method is the best practice. In general, RF and SVM perform 

better than ANN and MLC, especially when there is a limited number of training 

samples and many different classes (Cracknell and Reading, 2014). Ghosh and 

Joshi (2014) compared the performance among kernel based SVM, ensemble based 

RF and parametric ML classifiers in both pixel-based and object-based 

classification approaches for mapping bamboo patches in West Bengal India with 

WorldView 2 imagery. They showed that SVM produced higher accuracy than RF 

and ML classifiers while ML classifiers ran faster than SVM and RF. Similarly, 

Dalponte et al. (2012) identified tree species in the Southern Alps, Italy using the 

fused multispectral/hyperspectral images and LiDAR data and two non-parametric 

classifiers (SVM and RF). Their results showed that SVM provided better results 

than RF. Dalponte et al. (2012) explained that the unbalanced number of training 

samples among tree species classes may lead to the poor performance of RF. Duro 

et al. (2012) mapped agricultural landscapes in western Canada using SPOT-5 HRG 

imagery (medium spatial resolution multi-spectral imagery). Duro et al. (2012) 

compared the performance between three non-parametric classifiers: DT, RF, and 

SVM. They found that object-based classification using the DT algorithm had lower 

overall classification accuracy (88.84%) than the RF (93.39%) and the SVM 
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(94.21%) classifiers. Furthermore, statistical assessment of the classification results 

showed that there were statistically significant differences between DT and SVM 

algorithms and DT and RF algorithms. On the other hand, Otukei and Blaschke 

(2010) found that DT generally performed better than classifications produced 

using SVM. Pal (2005) showed that both SVM and RF algorithms produced similar 

classification accuracies.  

Because this thesis mainly uses machine learning SVM and RF algorithms, these 

are reviewed in detail in the following subsections. The reason why the SVM and 

RF are used in this thesis is explained in Chapter 3 and 5. Naïve Bayes and Logistic 

Regressions are reviewed in Chapter 5. 

2.5.1 Support Vector Machine 

The theory of SVM was developed by Vapnik (1995). The SVM algorithm 

determines a hyperplane that separates the dataset into a discrete number of classes 

(Han et al., 2012). The basic theory of SVM is explained by Vapnik (1995) and 

Hastie et al. (2009) using the following mathematical nomenclature: Given the 

training data T with N samples: T = {(x1,y1), (x2,y2),…(xn,yn)}, where xi ∈ ℝ𝑑and 

yi ∈ {-1,1}, i=1,2,…,n. With the linear data, the separating hyperplane which 

classifies the data input can be written as: 

              𝑓(x) = wT. x +  b = ∑ (wT𝑥𝑖  + b)
𝑁

𝑖=1
=  0,                             (2.1) 

where 𝑤 is a N-dimensional vector and b is a scalar. 

The separating hyperplane satisfies the following constraint in order for data points 

to lie on the correct side of the margin: 

              𝑦𝑖𝑓(𝑥𝑖) = 𝑦𝑖(wT𝑥𝑖  +  b) ≥ 1, ∀𝑖 (𝑖 = 1, … , 𝑁).                          (2.2) 

The separating hyperplane which has the maximum distance between the plane and 

the nearest training data (or the maximum margin) is the optimal separating 

hyperplane. The nearest data samples that are used to define the margin are support 

vectors, shown as thick borders (see Figure 2.1).  
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Figure 2.1. The (a) panel shows the linear SVM separable case while the (b) panel 

shows the linearly non-separable case. Source: adapted from Hastie et al. (2009). 

Geometrically, the margin is equal to  
2

‖𝑤‖
 . To maximize the distance between the 

plane and the nearest training data,  ‖w‖ should be minimized. Therefore, the 

optimal separating hyperplane for classifying two different categories of data can 

be obtained as a solution to the following optimization problem: 

     min
w,𝑏

‖w‖                                         (2.3) 

subject to the constraint (2.2) 

When introducing the slack variables  𝜀𝑖  to intensify the generalization, the 

optimization problem is modified to: 
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min
w,𝑏

(‖w‖)  subject to {
𝑦𝑖(wT𝑥𝑖  +  b) ≥ 1 −  𝜀𝑖 , ∀𝑖 (𝑖 = 1, … . , 𝑁),

𝜀𝑖 ≥ 0, ∑ 𝜀𝑖 ≤ constant
             (2.4) 

  

The slack variables measure the distance between the margin and the data point that 

lies beyond the correct margin. The problem (2.4) is quadratic with linear inequality 

constraints, therefore it is a convex optimization problem. For computational 

convenience, (2.4) is re-expressed in the equivalent form: 

min
w,𝑏

(
1

2
 ‖w‖2) + 𝐶 ∑ 𝜀𝑖

𝑁
𝑖=1                                         (2.5) 

subject to    𝜀𝑖 ≥ 0, 𝑦𝑖(wT𝑥𝑖  +  b) ≥ 1 − 𝜀𝑖 , ∀𝑖,  

where the parameter C replaces the constant in (2.4) 

To optimize (2.5), the Lagrange (primal) function is applied: 

L (w, b, 𝜀𝑖) =  
1

2
 ‖w‖2 +  𝐶 ∑ 𝜀𝑖

𝑁
𝑖=1 − ∑ 𝛼𝑖[𝑦𝑖(wT𝑥𝑖 + b) − (1 − 𝜀𝑖)] − ∑ 𝜇𝑖𝜀𝑖

𝑁
𝑖=1

𝑁
𝑖=1   (2.6) 

Setting the derivatives of L with respect to w, b, and 𝜀𝑖 to zero, we get: 

   w = ∑ 𝛼𝑖
𝑁
𝑖=1 𝑦𝑖𝑥𝑖,      (2.7) 

   0 = 𝛼𝑖𝑦𝑖,      (2.8) 

   𝛼𝑖 =  𝐶 −  𝜇𝑖, ∀𝑖,     (2.9) 

Substituting  (2.7), (2.8), (2.9) into (2.6), we get the Lagrangian dual problem: 

maximize   L (𝛼) = ∑ 𝛼𝑖
𝑁
𝑖=1 −

1

2
∑ ∑ 𝛼𝑖𝛼𝑗

𝑁
𝑗=1

𝑁
𝑖=1 𝑦𝑖𝑦𝑗𝑥𝑖𝑥𝑗   (2.10) 

subject to 0 ≤ 𝛼𝑖 ≤ 𝐶,  

  ∑ 𝛼𝑖𝑦𝑖
𝑁
𝑖=1  = 0 

The coefficients 𝛼𝑖 is obtained by solving the dual optimization problem. Then, the 

decision function is define by: 

                        𝑓(x) = sign(∑ 𝛼𝑖
𝑁
𝑖,𝑗=1 𝑦𝑖(𝑥𝑖𝑥𝑗) + b)                              (2.11) 

In the nonlinear SVM classification, the nonlinear vector function 𝜙(x) =

(𝜙1(x), … . , 𝜙𝑚(x) is used to map the input data into a higher dimensional feature 

space: 

                                 𝑓(x) = wT𝜙(x)   +  b  (2.12) 
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The Lagrangian dual problem is given by:  

                               L (𝛼) = ∑ 𝛼𝑖
𝑁
𝑖=1 −

1

2
∑ ∑ 𝛼𝑖𝛼𝑗

𝑁
𝑗=1

𝑁
𝑖=1 𝑦𝑖𝑦𝑗𝜙T(𝑥𝑖)𝜙(𝑥𝑗)    (2.13) 

The decision function is written as:  

                                 𝑓(x) = sign (∑ 𝛼𝑖
𝑁
𝑖,𝑗=1 𝑦𝑖 (𝜙T(𝑥𝑖). 𝜙(𝑥𝑗)) + b)  (2.14) 

The high dimensional feature space can cause computational problem. To solve this 

problem, the kernel function K is used where:  

        𝐾(x𝑖, x𝑗) =  𝜙T(𝑥𝑖). 𝜙(𝑥𝑗),    (2.15) 

When applying the kernel function, (2.14) becomes: 

          𝑓(x) = sign(∑ 𝛼𝑖
𝑁
𝑖,𝑗=1 𝑦𝑖𝐾(x𝑖 , x𝑗) + b)   (2.16) 

2.5.2 Random Forest 

RF is an ensemble method that combines multiple decision trees and obtains results 

by aggregating the predictions from all individual trees (majority votes for 

classification, average for regression). Random forest was developed by Breiman 

(2001a). The advantages of RF compared to other tree ensemble methods are: (1) 

high accuracy for prediction outcomes, (2) robustness to outliers and noise, (3) fast 

computation speed, and (4) ability to estimate the importance of predictor variables 

(Cutler et al., 2007; Rodriguez-Galiano et al., 2012). In addition, RF can use a large 

number of predictor variables (Breiman, 2001a; Chaudhary et al., 2015). These 

characteristics led to the use of RF for this research. 

RF is built using bagging (bootstrap aggregating) with random predictor selection 

(Breiman, 2001a). The process involves the following steps: 

(1) Given the training dataset of size k, bagging generates n new training 

datasets Di (i = 1, 2,…, n) - the same size as the original dataset - by picking 

data randomly with replacement from the original dataset. This is called a 

bootstrap sample. Some data points in the original dataset can be used more 

than once to generate a bootstrap sample while others may never be used 

(Belgiu and Drăguţ, 2016).  

(2) The bootstrap samples are then used to build decision trees (ntree). To 

construct a decision tree, a random subset of the predictors (mtry) is used to 

determine the best split at each node of the tree (Breiman, 2001a). Such a 
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random predictive variable selection reduces correlation among trees, which 

decreases bias (Breiman, 2001a; Prasad et al., 2006). The trees are grown to 

maximum size and not pruned, hence the computation is light (Rodriguez-

Galiano et al., 2012). 

(3) The prediction at a target point x results from majority votes (for 

classification) and average (for regression) from the predictions of all trees.  

It is usual for 2/3 of data points from the original dataset to be included in a 

bootstrap sample (‘in bag’ data) while the 1/3 remaining data set is excluded from 

the bootstrap sample – known as ‘out-of-bag’ (OOB) data (Rodriguez-Galiano et 

al., 2012). The OOB data are used to calculate a prediction error, known as the OOB 

error estimate, by contrasting the predictions from the in-bag data and the OOB data 

(Poulos and Camp, 2010). The OOB samples are also used to measure the variable 

importance (the prediction strength of each variable) by changing randomly the 

values of a given variable in the OOB samples. The increase of OOB error from 

these changes are averaged over all trees and is a measure of the importance of the 

variable (Hastie et al., 2009). 

2.6 Accuracy assessment 

The error matrix is the most commonly used approach for classification accuracy 

assessment (Comber et al., 2012; Foody, 2002; Lu and Weng, 2007). An error 

matrix is a square array of rows and columns in which columns express the 

reference data and rows represent the classification produced from remotely sensed 

data (Congalton and Green, 2008; Lillesand et al., 2014). Important accuracy 

measures such as overall accuracy and kappa coefficient can be derived from the 

error matrix (Congalton and Green, 2008). The advantage of overall accuracy is its 

easy interpretation as a proportion of the correctly classified sample units to the 

total number of the sample units (Congalton and Green, 2008). The Kappa 

coefficient is considered as a powerful method for assessing statistical difference 

between classifications (Congalton, 1991; Congalton and Green, 2008).  

Three additional indices are useful to evaluate the performance of the classifications. 

These include quantity disagreement (QD), allocation disagreement (AD), and total 

disagreement (TD) developed by Pontius Jr and Millones (2011). The quantity 

disagreement is defined as the difference in the proportions of the categories 
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between the reference map and the predicted map. The allocation disagreement 

represents the amount of difference between the reference map and the predicted 

map, based on the spatial allocation of the categories. Total disagreement is the sum 

of the quantity disagreement and the allocation disagreement.  

Studies assessing the performance of different classifiers often use the same testing 

and training samples (Duro et al., 2012; Foody, 2004). Therefore, the samples are 

not independent and a statistical comparison using Kappa coefficient which 

requires independent samples is inappropriate (Foody, 2004). In such case, using 

McNemar’s test, a non-parametric test based on confusion matrixes and on the 

binary distinction between correct and incorrect class allocations is suggested 

(Foody, 2004; Pal and Foody, 2010).  

𝜒2 =
(𝑓12−𝑓21)2

𝑓12+ 𝑓21
     

in which f12 and f21, respectively, are the number of points correctly identified by 

one classifier and not the other. 

2.7 Conclusion 

There are now a wide range of image analysis techniques to consider. This review 

has highlighted the development of object based techniques as an advancement over 

pixel based techniques. OBIA can be used with both remotely sensed data and GIS 

derived data to improve classification. In considering OBIA it is necessary to 

determine the appropriate segmentation parameters and classifiers. There are now 

a wide range of classifiers to choose from that go beyond consideration of 

supervised versus non supervised techniques. Machine learning is a relatively new 

classifier technique used for remote sensing, and there is a wide range of machine 

learning techniques to choose from. Research that tests the performance of these 

different techniques as well as different combinations of techniques and parameters 

is necessary. 

  



25 

  

REFERENCES 

Aguirre-Gutiérrez, J., Seijmonsbergen, A.C., Duivenvoorden, J.F., 2012. 

Optimizing land cover classification accuracy for change detection, a 

combined pixel-based and object-based approach in a mountainous area in 

Mexico. Applied Geography 34, 29-37. 

https://doi.org/10.1016/j.apgeog.2011.10.010 

Belgiu, M., Drăguţ, L., 2016. Random forest in remote sensing: A review of 

applications and future directions. ISPRS Journal of Photogrammetry and 

Remote Sensing 114, 24-31. https://doi.org/10.1016/j.isprsjprs.2016.01.011 

Blaschke, T., 2010. Object based image analysis for remote sensing. ISPRS Journal 

of Photogrammetry and Remote Sensing 65(1), 2-16. 

https://doi.org/10.1016/j.isprsjprs.2009.06.004 

Blaschke, T., Burnett, C., Pekkarinen, A., 2004. Image segmentation methods for 

object-based analysis and classification, in: de Jong, S.M., van der Meer, 

F.D. (Eds.), Remote Sensing Image Analysis: Including the Spatial Domain. 

Springer, Dordrecht, pp. 211-236. 

Blaschke, T., Feizizadeh, B., Hölbling, D., 2014a. Object-based image analysis and 

digital terrain analysis for locating landslides in the Urmia Lake basin, Iran. 

IEEE Journal of Selected Topics in Applied Earth Observations and Remote 

Sensing 7(12), 4806-4817. https://doi.org/10.1109/JSTARS.2014.2350036 

Blaschke, T., Hay, G.J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Queiroz 

Feitosa, R., van der Meer, F., van der Werff, H., van Coillie, F., Tiede, D., 

2014b. Geographic object-based image analysis – towards a new paradigm. 

ISPRS Journal of Photogrammetry and Remote Sensing 87, 180-191. 

https://doi.org/10.1016/j.isprsjprs.2013.09.014 

Breiman, L., 2001a. Random forests. Machine Learning 45(1), 5-32. 

https://doi.org/10.1023/A:1010933404324 

Bunting, P., Lucas, R., 2006. The delineation of tree crowns in Australian mixed 

species forests using hyperspectral Compact Airborne Spectrographic 

Imager (CASI) data. Remote Sensing of Environment 101(2), 230-248. 

https://doi.org/10.1016/j.rse.2005.12.015 

Burnett, C., Blaschke, T., 2003. A multi-scale segmentation/object relationship 

modelling methodology for landscape analysis. Ecological Modelling 

168(3), 233-249. https://doi.org/10.1016/S0304-3800(03)00139-X 

Chaudhary, N., Sharma, A.K., Agarwal, P., Gupta, A., Sharma, V.K., 2015. 16S 

classifier: a tool for fast and accurate taxonomic classification of 16S rRNA 

hypervariable regions in metagenomic datasets. PloS One 10(2), e0116106. 

https://doi.org/10.1371/journal.pone.0116106 

Chen, Q., Baldocchi, D., Gong, P., Kelly, M., 2006. Isolating individual trees in a 

savanna woodland using small footprint lidar data. Photogrammetric 

Engineering & Remote Sensing 72(8), 923-932. 

https://doi.org/10.14358/PERS.72.8.923 

Chuvieco, E., 2016. Fundamentals of Satellite Remote Sensing: An Environmental 

Approach, 2nd ed. CRC press, Boca Raton, FL. 

Comber, A., Fisher, P., Brunsdon, C., Khmag, A., 2012. Spatial analysis of remote 

sensing image classification accuracy. Remote Sensing of Environment 

127(Supplement C), 237-246. 

https://doi.org/https://doi.org/10.1016/j.rse.2012.09.005 

https://doi.org/10.1016/j.apgeog.2011.10.010
https://doi.org/10.1016/j.isprsjprs.2016.01.011
https://doi.org/10.1016/j.isprsjprs.2009.06.004
https://doi.org/10.1109/JSTARS.2014.2350036
https://doi.org/10.1016/j.isprsjprs.2013.09.014
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.rse.2005.12.015
https://doi.org/10.1016/S0304-3800(03)00139-X
https://doi.org/10.1371/journal.pone.0116106
https://doi.org/10.14358/PERS.72.8.923
https://doi.org/https:/doi.org/10.1016/j.rse.2012.09.005


26 

 

Congalton, R.G., 1991. A review of assessing the accuracy of classifications of 

remotely sensed data. Remote Sensing of Environment 37(1), 35-46. 

https://doi.org/10.1016/0034-4257(91)90048-B 

Congalton, R.G., Green, K., 2008. Assessing the Accuracy of Remotely Sensed 

Data: Principles and Practices. CRC Press, Boca Raton, FL. 

Cracknell, M.J., Reading, A.M., 2014. Geological mapping using remote sensing 

data: A comparison of five machine learning algorithms, their response to 

variations in the spatial distribution of training data and the use of explicit 

spatial information. Computers & Geosciences 63, 22-33. 

https://doi.org/10.1016/j.cageo.2013.10.008 

Cutler, D.R., Edwards, T.C., Beard, K.H., Cutler, A., Hess, K.T., Gibson, J., Lawler, 

J.J., 2007. Random forests for classification in ecology. Ecology 88(11), 

2783-2792. https://doi.org/10.1890/07-0539.1 

Dalponte, M., Bruzzone, L., Gianelle, D., 2012. Tree species classification in the 

Southern Alps based on the fusion of very high geometrical resolution 

multispectral/hyperspectral images and LiDAR data. Remote Sensing of 

Environment 123, 258-270. https://doi.org/10.1016/j.rse.2012.03.013 

Duro, D.C., Franklin, S.E., Dubé, M.G., 2012. A comparison of pixel-based and 

object-based image analysis with selected machine learning algorithms for 

the classification of agricultural landscapes using SPOT-5 HRG imagery. 

Remote Sensing of Environment 118, 259-272. 

https://doi.org/10.1016/j.rse.2011.11.020 

Flanders, D., Hall-Beyer, M., Pereverzoff, J., 2003. Preliminary evaluation of 

eCognition object-based software for cut block delineation and feature 

extraction. Canadian Journal of Remote Sensing 29(4), 441-452.  

Foody, G.M., 2002. Status of land cover classification accuracy assessment. 

Remote Sensing of Environment 80(1), 185-201. 

https://doi.org/10.1016/S0034-4257(01)00295-4 

Foody, G.M., 2004. Thematic map comparison: Evaluating the statistical 

significance of differences in classification accuracy. Photogrammetric 

Engineering & Remote Sensing 70(5), 627-634.  

Fu, B., Wang, Y., Campbell, A., Li, Y., Zhang, B., Yin, S., Xing, Z., Jin, X., 2017. 

Comparison of object-based and pixel-based Random Forest algorithm for 

wetland vegetation mapping using high spatial resolution GF-1 and SAR 

data. Ecological Indicators 73, 105-117. 

https://doi.org/10.1016/j.ecolind.2016.09.029 

Gao, Y., Mas, J., Niemeyer, I., Marpu, P., Palacio, J., 2007. Object-based image 

analysis for mapping land-cover in a forest area, 5th International 

Symposium: Spatial Data Quality, Enschede, The Netherlands, pp. 13-15. 

Ghosh, A., Joshi, P., 2014. A comparison of selected classification algorithms for 

mapping bamboo patches in lower Gangetic plains using very high 

resolution WorldView 2 imagery. International Journal of Applied Earth 

Observation and Geoinformation 26, 298-311. 

https://doi.org/10.1016/j.jag.2013.08.011 

Han, J., Kamber, M., Pei, J., 2012. Data Mining: Concepts and Techniques, 3rd ed. 

Morgan Kaufmann, Boston, MA. 

Han, N., Du, H., Zhou, G., Sun, X., Ge, H., Xu, X., 2014. Object-based 

classification using SPOT-5 imagery for Moso bamboo forest mapping. 

International Journal of Remote Sensing 35(3), 1126-1142. 

https://doi.org/10.1080/01431161.2013.875634 

https://doi.org/10.1016/0034-4257(91)90048-B
https://doi.org/10.1016/j.cageo.2013.10.008
https://doi.org/10.1890/07-0539.1
https://doi.org/10.1016/j.rse.2012.03.013
https://doi.org/10.1016/j.rse.2011.11.020
https://doi.org/10.1016/S0034-4257(01)00295-4
https://doi.org/10.1016/j.ecolind.2016.09.029
https://doi.org/10.1016/j.jag.2013.08.011
https://doi.org/10.1080/01431161.2013.875634


27 

  

Hastie, T.J., Tibshirani, R.J., Friedman, J.H., 2009. The Elements of Statistical 

Learning: Data Mining, Inference, and Prediction. Springer, New York, NY. 

Houborg, R., Fisher, J.B., Skidmore, A.K., 2015. Advances in remote sensing of 

vegetation function and traits. International Journal of Applied Earth 

Observation and Geoinformation 43, 1-6. 

https://doi.org/10.1016/j.jag.2015.06.001 

Hussin, Y., Gilani, H., Leeuwen, L., Murthy, M.S.R., Shah, R., Baral, S., 

Tsendbazar, N.-E., Shrestha, S., Shah, S., Qamer, F., 2014. Evaluation of 

object-based image analysis techniques on very high-resolution satellite 

image for biomass estimation in a watershed of hilly forest of Nepal. Appl 

Geomat 6(1), 59-68. https://doi.org/10.1007/s12518-014-0126-z 

Jakubowski, M.K., Li, W., Guo, Q., Kelly, M., 2013. Delineating individual trees 

from Lidar data: A comparison of vector-and raster-based segmentation 

approaches. Remote Sensing 5(9), 4163-4186. 

https://doi.org/10.3390/rs5094163 

Ke, Y., Quackenbush, L.J., 2011. A review of methods for automatic individual 

tree-crown detection and delineation from passive remote sensing. 

International Journal of Remote Sensing 32(17), 4725-4747. 

https://doi.org/10.1080/01431161.2010.494184 

Kim, M., Madden, M., Warner, T.A., 2009a. Forest type mapping using object-

specific texture measures from multispectral IKONOS imagery: 

Segmentation quality and image classification issues. Photogrammetric 

Engineering and Remote Sensing 75(7), 819-829.  

Korpela, I., Dahlin, B., Schäfer, H., Bruun, E., Haapaniemi, F., Honkasalo, J., 

Ilvesniemi, S., Kuutti, V., Linkosalmi, M., Mustonen, J., 2007. Single-tree 

forest inventory using lidar and aerial images for 3D treetop positioning, 

species recognition, height and crown width estimation, Proceedings of 

ISPRS Workshop on Laser Scanning, pp. 227-233. 

Lang, S., 2008. Object-based image analysis for remote sensing applications: 

Modeling reality–dealing with complexity, in: Blaschke, T., Lang, S., Hay, 

G.J. (Eds.), Object-Based Image Analysis. Springer-Verlag, Berlin, pp. 3-

27. 

Lang, S., Langanke, T., 2006. Object-based mapping and object-relationship 

modeling for land use classes and habitats. Photogrammetrie 

Fernerkundung Geoinformation 2006(1), 5.  

Larsen, M., Eriksson, M., Descombes, X., Perrin, G., Brandtberg, T., Gougeon, 

F.A., 2011. Comparison of six individual tree crown detection algorithms 

evaluated under varying forest conditions. International Journal of Remote 

Sensing 32(20), 5827-5852. 

https://doi.org/10.1080/01431161.2010.507790 

Leckie, D., Gougeon, F., Hill, D., Quinn, R., Armstrong, L., Shreenan, R., 2003. 

Combined high-density lidar and multispectral imagery for individual tree 

crown analysis. Canadian Journal of Remote Sensing 29(5), 633-649. 

https://doi.org/10.5589/m03-024 

Li, W., Guo, Q., Jakubowski, M.K., Kelly, M., 2012. A new method for segmenting 

individual trees from the lidar point cloud. Photogrammetric Engineering & 

Remote Sensing 78(1), 75-84.  

Li, X., Meng, Q., Gu, X., Jancso, T., Yu, T., Wang, K., Mavromatis, S., 2013. A 

hybrid method combining pixel-based and object-oriented methods and its 

application in Hungary using Chinese HJ-1 satellite images. International 

https://doi.org/10.1016/j.jag.2015.06.001
https://doi.org/10.1007/s12518-014-0126-z
https://doi.org/10.3390/rs5094163
https://doi.org/10.1080/01431161.2010.494184
https://doi.org/10.1080/01431161.2010.507790
https://doi.org/10.5589/m03-024


28 

 

journal of remote sensing 34(13), 4655-4668. 

https://doi.org/10.1080/01431161.2013.780669 

Lillesand, T., Kiefer, R.W., Chipman, J., 2014. Remote sensing and image 

interpretation. John Wiley & Sons, Hoboken, NJ. 

Liu, D., Xia, F., 2010. Assessing object-based classification: advantages and 

limitations. Remote Sensing Letters 1(4), 187-194. 

https://doi.org/10.1080/01431161003743173 

Löw, F., Conrad, C., Michel, U., 2015. Decision fusion and non-parametric 

classifiers for land use mapping using multi-temporal RapidEye data. 

ISPRS Journal of Photogrammetry and Remote Sensing 108, 191-204. 

https://doi.org/10.1016/j.isprsjprs.2015.07.001 

Lu, D., Weng, Q., 2007. A survey of image classification methods and techniques 

for improving classification performance. International Journal of Remote 

Sensing 28(5), 823-870. https://doi.org/10.1080/01431160600746456 

MacFaden, S.W., O’Neil-Dunne, J.P.M., Royar, A.R., Lu, J.W.T., Rundle, A.G., 

2012. High-resolution tree canopy mapping for New York City using 

LIDAR and object-based image analysis. J Appl Remote Sens 6(1), 063567-

063561-063567-063523. https://doi.org/10.1117/1.JRS.6.063567 

Mishra, N.B., Crews, K.A., 2014. Mapping vegetation morphology types in a dry 

savanna ecosystem: integrating hierarchical object-based image analysis 

with Random Forest. International Journal of Remote Sensing 35(3), 1175-

1198. https://doi.org/10.1080/01431161.2013.876120 

Myint, S.W., Giri, C.P., Wang, L., Zhu, Z., Gillette, S.C., 2008. Identifying 

mangrove species and their surrounding land use and land cover classes 

using an object-oriented approach with a lacunarity spatial measure. 

GIScience & Remote Sensing 45(2), 188-208. 

https://doi.org/10.2747/1548-1603.45.2.188 

Olofsson, K., Wallerman, J., Holmgren, J., Olsson, H., 2006. Tree species 

discrimination using Z/I DMC imagery and template matching of single 

trees. Scandinavian Journal of Forest Research 21(S7), 106-110. 

https://doi.org/10.1080/14004080500486955 

Otukei, J., Blaschke, T., 2010. Land cover change assessment using decision trees, 

support vector machines and maximum likelihood classification algorithms. 

International Journal of Applied Earth Observation and Geoinformation 12, 

S27-S31. https://doi.org/10.1016/j.jag.2009.11.002 

Ouyang, Z.-T., Zhang, M.-Q., Xie, X., Shen, Q., Guo, H.-Q., Zhao, B., 2011. A 

comparison of pixel-based and object-oriented approaches to VHR imagery 

for mapping saltmarsh plants. Ecological Informatics 6(2), 136-146. 

https://doi.org/10.1016/j.ecoinf.2011.01.002 

Pal, M., 2005. Random forest classifier for remote sensing classification. 

International Journal of Remote Sensing 26(1), 217-222. 

https://doi.org/10.1080/01431160412331269698 

Pal, M., Foody, G.M., 2010. Feature selection for classification of hyperspectral 

data by SVM. IEEE Transactions on Geoscience and Remote Sensing 48(5), 

2297-2307. https://doi.org/10.1109/TGRS.2009.2039484 

Pal, N.R., Pal, S.K., 1993. A review on image segmentation techniques. Pattern 

recognition 26(9), 1277-1294. https://doi.org/10.1016/0031-

3203(93)90135-J 

Pettorelli, N., Laurance, W.F., O'Brien, T.G., Wegmann, M., Nagendra, H., Turner, 

W., 2014. Satellite remote sensing for applied ecologists: opportunities and 

https://doi.org/10.1080/01431161.2013.780669
https://doi.org/10.1080/01431161003743173
https://doi.org/10.1016/j.isprsjprs.2015.07.001
https://doi.org/10.1080/01431160600746456
https://doi.org/10.1117/1.JRS.6.063567
https://doi.org/10.1080/01431161.2013.876120
https://doi.org/10.2747/1548-1603.45.2.188
https://doi.org/10.1080/14004080500486955
https://doi.org/10.1016/j.jag.2009.11.002
https://doi.org/10.1016/j.ecoinf.2011.01.002
https://doi.org/10.1080/01431160412331269698
https://doi.org/10.1109/TGRS.2009.2039484
https://doi.org/10.1016/0031-3203(93)90135-J
https://doi.org/10.1016/0031-3203(93)90135-J


29 

  

challenges. Journal of Applied Ecology 51(4), 839-848. 

https://doi.org/10.1111/1365-2664.12261 

Pontius Jr, R.G., Millones, M., 2011. Death to Kappa: Birth of quantity 

disagreement and allocation disagreement for accuracy assessment. 

International Journal of Remote Sensing 32(15), 4407-4429. 

https://doi.org/10.1080/01431161.2011.552923 

Poulos, H.M., Camp, A.E., 2010. Decision support for mitigating the risk of tree 

induced transmission line failure in utility rights-of-way. Environmental 

Management 45(2), 217-226. https://doi.org/10.1007/s00267-009-9422-5 

Prasad, A.M., Iverson, L.R., Liaw, A., 2006. Newer classification and regression 

tree techniques: bagging and random forests for ecological prediction. 

Ecosystems 9(2), 181-199.  

Raczko, E., Zagajewski, B., 2017. Comparison of support vector machine, random 

forest and neural network classifiers for tree species classification on 

airborne hyperspectral APEX images. European Journal of Remote Sensing 

50(1), 144-154. https://doi.org/10.1080/22797254.2017.1299557 

Rodriguez-Galiano, V.F., Ghimire, B., Rogan, J., Chica-Olmo, M., Rigol-Sanchez, 

J.P., 2012. An assessment of the effectiveness of a random forest classifier 

for land-cover classification. ISPRS Journal of Photogrammetry and 

Remote Sensing 67, 93-104. https://doi.org/10.1016/j.isprsjprs.2011.11.002 

Van Coillie, F.M.B., Verbeke, L.P.C., De Wulf, R.R., 2007. Feature selection by 

genetic algorithms in object-based classification of IKONOS imagery for 

forest mapping in Flanders, Belgium. Remote Sensing of Environment 

110(4), 476-487. https://doi.org/10.1016/j.rse.2007.03.020 

Vapnik, V.N., 1995. The Nature of Statistical Learning Theory. Springer-Verlag, 

New York, NY. 

Wang, L., Sousa, W.P., Gong, P., 2004a. Integration of object-based and pixel-

based classification for mapping mangroves with IKONOS imagery. 

International Journal of Remote Sensing 25(24), 5655-5668. 

https://doi.org/10.1080/014311602331291215 

Wang, Y., 2009. Remote Sensing of Coastal Environments. CRC Press, Boca Raton, 

FL. 

Whiteside, T.G., Boggs, G.S., Maier, S.W., 2011. Comparing object-based and 

pixel-based classifications for mapping savannas. International Journal of 

Applied Earth Observation and Geoinformation 13(6), 884-893. 

https://doi.org/10.1016/j.jag.2011.06.008 

Yu, Q., Gong, P., Clinton, N., Biging, G., Kelly, M., Schirokauer, D., 2006. Object-

based detailed vegetation classification with airborne high spatial resolution 

remote sensing imagery. Photogrammetric Engineering and Remote 

Sensing 72(7), 799-811.  

Zhen, Z., Quackenbush, L.J., Zhang, L., 2014. Impact of tree-oriented growth order 

in marker-controlled region growing for individual tree crown delineation 

using Airborne Laser Scanner (ALS) data. Remote Sensing 6(1), 555-579. 

https://doi.org/10.3390/rs6010555 

 

https://doi.org/10.1111/1365-2664.12261
https://doi.org/10.1080/01431161.2011.552923
https://doi.org/10.1007/s00267-009-9422-5
https://doi.org/10.1080/22797254.2017.1299557
https://doi.org/10.1016/j.isprsjprs.2011.11.002
https://doi.org/10.1016/j.rse.2007.03.020
https://doi.org/10.1080/014311602331291215
https://doi.org/10.1016/j.jag.2011.06.008
https://doi.org/10.3390/rs6010555




 

31 

 

CHAPTER 3  

 COMBINING QUICKBIRD, LIDAR, AND GIS TOPOGRAPHY INDICES TO 

IDENTIFY A SINGLE NATIVE TREE SPECIES IN A COMPLEX LANDSCAPE 

USING AN OBJECT-BASED CLASSIFICATION APPROACH 

This chapter was published as following: “Pham, L.T.H., Brabyn, L., Ashraf, S., 2016. 

Combining QuickBird, LiDAR, and GIS topography indices to identify a single native tree 
species in a complex landscape using an object-based classification approach. International 

Journal of Applied Earth Observation and Geoinformation 50, 187-197”. 

https://doi.org/10.1016/j.jag.2016.03.015 

  

Abstract  

There are now a wide range of techniques that can be combined for image analysis. 

These include the use of object-based classifications rather than pixel-based 

classifiers, the use of LiDAR to determine vegetation height and vertical structure, 

as well terrain variables such as topographic wetness index and slope that can be 

calculated using GIS. This research investigates the benefits of combining these 

techniques to identify individual tree species. A QuickBird image and low point 

density LiDAR data for a coastal region in New Zealand was used to examine the 

possibility of mapping Pohutukawa trees which are regarded as an iconic tree in 

New Zealand. The study area included a mix of buildings and vegetation types. 

After image and LiDAR preparation, single tree objects were identified using a 

range of techniques including: a threshold of above ground height to eliminate 

ground based objects; Normalised Difference Vegetation Index and elevation 

difference between the first and last return of LiDAR data to distinguish vegetation 

from buildings; geometric information to separate clusters of trees from single trees, 

and treetop identification and region growing techniques to separate tree clusters 

into single tree crowns. Important feature variables were identified using Random 

Forest, and the Support Vector Machine provided the classification. The combined 

techniques using LiDAR and spectral data produced an overall accuracy of 85.4% 

(Kappa 80.6%). Classification using just the spectral data produced an overall 

accuracy of 75.8% (Kappa 67.8%). The research findings demonstrate how the 

combining of LiDAR and spectral data improves classification for Pohutukawa 

trees. 

Keywords: Object-based classification; Pohutukawa; Random Forest; Support Vector 

Machine, QuickBird; LiDAR 
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 Introduction  

It is often important to map single tree species, such as when a tree has high 

ecological or cultural significance, and requires intensive management because it is 

under threat.  Pohutukawa (Metrosideros excelsa Sol. ex Gaertn) is such a tree in 

New Zealand because it has been subject to fires and land clearance, and more 

recently possum browsing (Bylsma et al., 2014). Pohutukawa is a multi-stemmed 

tree up to 25m high with large rounded crowns growing in northern coastal regions 

of New Zealand. Providing accurate information about the distribution of this 

species is necessary to help managers decide on appropriate conservation strategies. 

Remote sensing and image analysis is advancing quickly with the capture of high 

spatial resolution data, which includes multispectral images as well as LiDAR. 

There have also been advances in data analysis techniques, including object based 

image analysis (OBIA), combining GIS terrain analysis, and advanced classifier 

algorithms. In the past, remote sensing of vegetation has focused on identifying 

broad vegetation classes, but advances in data and analysis techniques make it 

possible to identify specific vegetation species. LiDAR data produces accurate 

information on the vertical vegetation structure, which has been used for tree 

species classification (Kim et al., 2009b; Ørka et al., 2009). LiDAR has also been 

combined with multispectral information to identify species (Cho et al., 2012; 

Dalponte et al., 2012).  

OBIA has become increasingly popular over the last decade (Blaschke, 2010) 

because it provides a higher accuracy of classification compared to traditional pixel-

based approaches (Ouyang et al., 2011). OBIA integrates spectral properties and 

spatial and contextual information into the classification process (Blaschke, 2010; 

Han et al., 2014), and can be combined with multi-scale analysis to classify at 

regional and individual tree scales (Blaschke, 2010).    

An important first step in OBIA is image segmentation which divides an image into 

contiguous, separate and homogeneous areas called image objects (Blaschke et al., 

2004). For segmenting individual tree crowns, various automated methods have 

been developed and include: template matching (Korpela et al., 2007; Olofsson et 

al., 2006); valley following (Leckie et al., 2003); watershed segmentation (Chen et 

al., 2006); and region growing (Bunting and Lucas, 2006; Zhen et al., 2014). For 

some crown delineation algorithms the prior detection of treetops is required, which 

often uses the local maximum filtering technique with fixed or variable window 

sizes (Chen et al., 2006; Zhen et al., 2014). The local maximum technique is based 
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on the assumption that treetops have the highest reflectance (multispectral images) 

or the highest elevation value (LiDAR data) within a tree crown. Using variable 

window sizes to identify treetops provides higher accuracy than a fixed window 

size (Gebreslasie et al., 2011). 

The region growing method for crown delineation has outperformed other methods 

such as valley-following (Hussin et al., 2014) and template matching (Larsen et al., 

2011) in both mixed and dense forests. The region growing method starts with a set 

of seed pixels (treetops), which are then merged to adjacent pixels that are similar 

(Ke and Quackenbush, 2011). This process of growing continues until a threshold 

is reached, and defined by specified homogeneity criteria (Blaschke et al., 2004).  

In this study, the support vector machine (SVM), a non-parametric classifier, was 

used because the number of training samples was small.  With small training data 

sets, the SVM is the preferred classifier because it has good generalization ability 

(Mountrakis et al., 2011).  In addition, a non-parametric classifier does not need an 

assumption of a normal distribution of the dataset; thus it is suitable for the 

integration of non-spectral data into a classification process (Lu and Weng, 2007). 

SVM can also produce more accurate classification results than other traditional 

parametric classifiers in a complex landscape (Dalponte et al., 2009). SVM 

algorithm finds the best decision boundary that separates the dataset into discrete 

classes with minimal misclassification (Mountrakis et al., 2011). A SVM can be 

nonlinear and linear, however, the nonlinear SVM is proving to be more accurate 

for nonlinear, complex classification problems (Izenman, 2008). An important pre-

process for SVM is selecting relevant features, which improves the classification 

accuracy and computational efficiency (Huang and Wang, 2006).  

Although recent studies on tree species mapping have used a combination of 

multispectral and LiDAR data with OBIA (and produced promising results), the 

combined technique requires further testing on a range of species, contexts, and 

input data, including the inclusion of additional GIS generated feature objects, such 

as the terrain wetness index. It is clear that humans use surrounding context 

information when manually identifying individual trees from an image, and it is 

well known that water is a key driver of vegetation distribution. It therefore makes 

sense that topographical indices well established in the GIS and ecological literature 

are included. This study therefore combines LiDAR and QuickBird imagery to: (1) 

develop an OBIA workflow for segmentation and classification of Pohutukawa 
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trees, and (2) identify which object features are important based on classification 

accuracy. For comparison other broad classes of vegetation are also classified. 

 Materials 

 Study area 

The  research area is the Eastern side of the Coromandel region (see Figure 3.1) at 

between 36°48'30"S to 36°47'30"S latitude, and 175°38'30"E and 175°47'30"E 

longitude. The total area of the study site is 1277.76 ha. The site is characterized by 

different land cover types including built-up area, urban parkland/open space, and 

both coniferous and broadleaf species.  

 

Figure 3.1. QuickBird image of the Coromandel study area. The coordinate is in 

NZTM2000 projection system. 

 Field data collection 

Details of field data collected are shown in Table 3.1. The position of 560 trees was 

randomly selected and the species type recorded.  Of these trees, 320 (57%) were 

used as training data and the remaining were used for accuracy assessment. Tree 

heights and crown diameters (mean of the N–S and E–W directions) of 90 trees 

were measured to determine the relationship between these variables, which are 

used for the treetop algorithm. These crowns were also manually mapped, which 

was required for assessing the segmentation accuracy. 
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Table 3.1. Ground-truthed data 

a) Training and validation datasets 

Species No. of crowns for 

training data 

No. of crowns for 

validation data 

Pohutukawa 80 60 

Other broadleaf species 80 60 

Coniferous species 80 60 

Manuka 80 60 

b) Descriptive statistics of tree height and crown size from field inventory data   

 
Minimum Median Mean Maximum 

Standard 

deviation 

Tree height (m) 2.32 13.04 13.61 34.55 4.95 

Crown size (m) 2.78 14.58 15.14 28.04 4.49 

 Image data  

Two main data sets were used – a QuickBird image and a LiDAR point cloud. The 

QuickBird multispectral image was captured on November 5th, 2010 (Figure 3.1), 

and had a panchromatic band (450-900nm) with 0.6m spatial resolution, and four 

multispectral bands - blue (450–520 nm), green (520–600 nm), red (630–690 nm), 

and NIR (760–900 nm) - with 2.4m spatial resolution.  The LiDAR data set was 

captured during Feb and March, 2013 using NZAM’s Optech 3100EA LiDAR 

system (flight height 1,300 metres above lowest ground and scan angle of 22 

degrees either side of nadir). The outgoing laser pulse rate was 70kHZ and the 

mirror scan frequency was 34 Hz. The maximum returns for each pulse was four 

and the average point density was 1.2 point/m2. 

 Methods 

Figure 3.2 provides an overview of the method developed and a detailed description 

and justification of the five main steps is discussed further in the following sections. 
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Figure 3.2. Workflow of tree species classification 

 Step 1 - Image and data pre-processing  

The QuickBird image was atmospherically corrected using the Atmospheric 

Correction Algorithm, ATCOR-3 developed by Richter and Schläpfer (2014). The 

hue-saturation-intensity method was chosen for panchromatic sharpening because 
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it has been proven to obtain the best balance between the spectral and spatial 

information for QuickBird imagery (Arenas-Castro et al., 2012). 

A 1m spatial resolution DEM was created using LAS2DEM in LAStools 

(http://rapidlasso.com, version 6.1.7601). The LiDAR point cloud data was also 

used to derive a height above bare ground model (Figure 3.3), which involved 

removing “data pits”.  Data pits are caused by the laser beams penetrating to a lower 

branch or the ground before generating the first return (Khosravipour et al., 2014). 

Data pits in the height model of the canopy decrease the tree detection accuracy if 

the tree detection is based on the identification of local maxima in the canopy height 

model. The data pits were removed using the method developed by Khosravipour 

et al. (2014), which works by: 1) creating a standard canopy height model (CHM) 

from all first returns, and a partial CHM from only the first returns meeting or 

exceeding defined height thresholds; and then (2) merging both CHMs based on the 

highest value. This method provides a higher accuracy for tree detection than the 

Gaussian smoothing, and can be easily implemented in the LAStools. 

 
 

Figure 3.3. The LiDAR derived height above bare ground model 
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 Step 2 - Distinguishing trees from buildings 

Low land-cover types, such as grasslands, shrubs, bare ground, and coastal sand 

were identified using the above bare ground height model (with the value lower 

than 2m) and excluded because they are not trees. The process for distinguishing 

trees from buildings first used the multi-resolution segmentation function in 

eCognition to create image objects of trees and buildings. The four bands from the 

Quickbird image and the above bare ground height model were used as the input 

layers for this process (Ke et al., 2010). The average size of the image objects 

created was specified as a segmentation scale parameter, which affects the accuracy 

of the later image classification (Kim et al., 2011). A large segmentation scale 

results in buildings and neighbour trees being segmented into one object, while a 

small scale separates buildings into too many objects (Chen and Gao, 2014). A scale 

of 20 was selected based on comparing the segmentation quality of different 

parameter values. 

A combination of elevation difference (calculated from LiDAR penetration) and 

NDVI (calculated from the QuickBird image) were used to distinguish tree objects 

from building objects.  Figure 3.4 shows the decision steps that were used. Trees 

allow laser pulses to penetrate gaps between leaves (Chen and Gao, 2014), therefore 

the elevation value of the first return is significantly different to the last return for 

tree objects. For building roofs these values are the same and can therefore be used 

to distinguish the trees (Chen and Gao, 2014). NDVI was also used to improve the 

classification between trees and buildings because elevation difference can be 

similar for dense vegetation and buildings. 
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Figure 3.4. Decision steps for distinguishing trees and buildings 

 Step 3 - Delineating individual tree crowns 

3.3.3.1  Separating individual tree crowns from cluster crowns 

The trees identified in Step 2 could either be an individual tree crown or a cluster 

of crowns. To differentiate individual crowns from crown clusters, the eCognition 

geometric object features include elliptic fit, ratio of length to width, and area were 

applied. Using reference crowns from the field data, thresholds of these geometric 

parameters were used to distinguish individual crowns from crown clusters. The 

elliptic fit describes how closely an object fits into an ellipse of a similar area 

(Trimble Germany GmbH, 2015a) and has a value from 0 to 1. A perfect circle has 

an elliptic fit value equal to 1. As most of the tree crowns in the research area had 

a relatively circular shape, a high elliptic fit threshold of > 0.65 was used. The ratio 

of length to width was useful to identify single crowns which were symmetrical and 

not elongated; therefore a threshold of < 2.2 was used. A width threshold of the 

objects was used to limit the possible extent of the individual crowns and was 

calculated from the relationship between tree height and crown size shown in Figure 

3.5. Equation (1) shows the mathematical relationship using a nonlinear regression 

calculated with STATA (version 11.2). 
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No 
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Figure 3.5. The relationship between tree crown size and height 

The Equation (1) shows the nonlinear relationship between tree height and crown 

size: 

 Crown size = 2.6125 + 𝐭𝐫𝐞𝐞 𝐡𝐞𝐢𝐠𝐡𝐭(𝟎.𝟔𝟔𝟓) (1) 

3.3.3.2 Splitting cluster crowns into individual crowns 

This sub-step involved first identifying treetops as seed points and then growing 

these points into individual tree crowns using the eCognition functions - Image 

Object Fusion algorithm and Parent Process Object (see Figure 3.6 for an 

illustration of the result). 

Treetop points were identified by applying the method of Chen et al. (2006). First 

a canopy maxima model (CMM) is calculated in ArcMap using a focal 

neighbourhood maximum height value with variable window sizes. The variable 

window sizes were determined by the 97% lower prediction limit of the regression 

curve between tree height and crown size (see Figure 3.5). A smoothed CMM was 

then generated using Gaussian filtering with a standard deviation of 1 to further 

remove non-treetop local maxima. A condition statement was used to identify 

pixels where the height above ground equalled the maximum values. These pixels 

were then converted to point features. 

The treetop points were expanded into individual crowns using the eCognition 

functions - Image Object Fusion and Parent Process Object. These functions grew 
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the treetop points (seeds) by merging the immediate neighbouring pixels which 

have lower height value than the original seeds if the region generated satisfied the 

following conditions: (1) the crown area is less than or equal to the area of a circle 

with the diameter defined by the equation (1); (2) The elliptic fit is higher than 0.65 

so the crown delineated has a circular shape; (3) the ratio of length to width is less 

than 2.2 so the crown generated is symmetrical and not elongated. The growing 

stopped when there was no candidate that can combine with the seed to satisfy these 

criteria. 

 

Figure 3.6. a) A subset image showing crown overlap. b) Segmentation of the image - 

red polygons represent the ground reference crowns and the blue polygons 

representing automatic segmentation 

 Step 4 - Feature extraction and selection 

Table 3.2 lists the features extracted for each tree crown and considered for 

classification. Apart from the topographic variables, which were calculated in 

ArcGIS, eCognition was used to generate the other features from Quickbird and 

LiDAR data using mostly standard functions. The texture features were calculated 

using Haralick’s algorithims, which included Grey-Level Co-occurrence (GLCM) 

and Gray-Level Difference Vector features (GLDV). The relative height percentiles 

were calculated as the height percentile of laser returns divided by the maximum 

height of laser returns within individual tree crowns.  

  



42 

 

The topographical wetness index (TWI) used Beven and Kirkby (1979) formula 

and is as follows: 

TWI = ln(α/tanβ) 

where α = area value calculated as (flow accumulation + 1) x (cell size) and β is the 

slope expressed in radians. 
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Table 3.2. Image object features used for classifications 

Categories Input layers Object features No of features 

Spectral • Blue  

• Green 

• Red 

• Nir 

 

- Mean of each layer 

-  Standard deviation of each layer 

-  Texture variables of each layer: GLCM mean, GLCM standard deviation, GLCM 

correlation, GLCM homogeneity, GLCM contrast, GLCM dissimilarity, GLCM entropy,  

GLDV mean, GLDV contrast, GLDV entropy 

48 

Height  Point cloud 

LiDAR data 

- hmean1:  mean height of all returns within each tree crown 

- hmean2:  mean height of first returns within each tree crown 

- hmax:    maximum height of all returns within each tree crown 

- hmin:  minimum height of all returns within each tree crown 

- reh10:  Relative 10th height percentile of all returns within each tree crown 

- reh25: Relative 25th  height percentile of all returns within each tree crown 

- reh50:  Relative 50th  height percentile of all returns within each tree crown 

- reh75:  Relative 75th  height percentile of all returns within each tree crown 

- reh90:  Relative 90th  height percentile of all returns within each tree crown 

- hst:   standard deviation of all returns within each tree crown 

- hcoef:   coefficient of variation of all returns within each tree crown 

11 

Intensity Point cloud 

LiDAR data 

- imean1: mean intensity of all returns within each tree crown 

- imean2: mean intensity of first returns within each tree crown 

- imax: maximum intensity of all returns within each tree crown 

- imin:  minimum intensity of all returns within each tree crown 

- ist1:  standard deviation of all returns within each tree crown 

- ist2:  standard deviation of first returns within each tree crown 

- icoef:   coefficient of variation of all returns within each tree crown 

7 

Topographic • DEM  

• Slope 

• Aspect 

• TWI 

- Mean of each layer 

-  Standard deviation of each layer 

 

8 
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The Random Forest (RF) algorithm in the R statistical package (R Core Team, 2015) 

was used for selecting relevant features. This algorithm is a classifier consisting of 

a set of randomly generated decision trees and each tree contributes with a single 

vote for the most frequent class. This algorithm calculates the importance of each 

feature, which is based on the mean decrease in classification accuracy if the values 

of this feature are randomly altered in the out-of-bag (OOB) samples, while keeping 

all the other features constant (Hastie et al., 2009). The higher the mean decrease in 

accuracy when a feature is altered, the more relevant that feature is for the 

classification (Archer and Kimes, 2008). 

The two main parameters for RF are the number of trees in the forest (ntree) and 

number of variables considered for splitting at each tree node (mtry). These 

parameters were optimized and selected based on the lowest OOB estimate of error 

rate for mtry and the stability of OOB error rate for ntree (Adelabu and Dube, 2015; 

Breiman, 2001a). The ntree value was tested from 10 – 1000 trees  with intervals 

of 50, while mtry was tested using all values with a single interval - ranging from 1 

to 74 for both LiDAR and QuickBird data used and ranging from 1 to 48 values for 

only QuickBird data used. Figures 3.7a and 3.7b showed the OOB error rates were 

stable after ntree = 300 and the optimal mtry = 12 with only the QuickBird data 

used. These values are 300 and 18, respectively when both QuickBird and LiDAR 

data were used (Figures 3.8a and 3.8b).  

After running RF with the selected ntree and mtry, only features that met both the 

following criteria were used as input variables for the SVM algorithm: 1) had 

positive values of mean decrease accuracy and, 2) the values exceeded the absolute 

negative values (Strobl et al., 2009). 
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Figure 3.7. The effect of different ntree and mtry values on the performance of RF 

measured by OOB estimate of error rate using only QuickBird data 
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Figure 3.8. The effect of different ntree and mtry values on the performance of RF 

measured by OOB estimate of error rate using both QuickBird and LiDAR data.  

Of the 74 features derived from a combination of QuickBird and LiDAR data, 32 

features were selected as inputs for the SVM classifier. When only QuickBird was 

used, 18 features from a total of 48 were chosen for the SVM classifier. 

Figures 3.9a and 3.9b show the average decease in accuracy for eleven of the most 

important features from only multispectral data and a combination of multispectral 

and LiDAR data. 
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Figure 3.9. The importance of different features measured by mean decrease accuracy (a) using spectral data (b) using both spectral and LiDAR data. 
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 Step 5- Classification and accuracy assessment 

The eCognition SVM classifier was applied to the selected features using the radial 

basis kernel function. This classifier was trained using two parameters: 1) cost of 

constraint violation (C) and, 2) gamma. The open source LIBSVM tools (version 

3.20), developed by Chang and Lin (2011) was used to determine C and gamma.  

Four classifications were conducted in this study. These included classifications 

using LiDAR and QuickBird data with and without RF feature selection; and 

classifications using only QuickBird data with and without RF feature selection. 

The accuracy of both the segmentation and the classification was assessed against 

reference data collected in the field. The accuracy of the segmentation was 

measured using the closeness to an ideal segmentation result represented by D 

(Equation 2) developed by Clinton et al. (2010). D is calculated from over-

segmentation (Equation 3) and under-segmentation (Equation 4). The higher the D 

value, the more the mismatch between reference objects and segments. 

𝐷 =  √
𝑂𝑣𝑒𝑟𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑖𝑗

2 +𝑈𝑛𝑑𝑒𝑟𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑖𝑗
2  

2
        (2) 

𝑂𝑣𝑒𝑟𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑖𝑗 =  1 −  
𝑎𝑟𝑒𝑎(𝑥𝑖 ∩ 𝑦𝑗)

𝑎𝑟𝑒𝑎(𝑥𝑖)
    (3) 

𝑈𝑛𝑑𝑒𝑟𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑖𝑗 =  1 − 
𝑎𝑟𝑒𝑎(𝑥𝑖 ∩ 𝑦𝑗)

𝑎𝑟𝑒𝑎(𝑦𝑗)
   (4) 

Where:  xi is the reference polygons relative, and yj is the set of image segments 

that are relevant to reference polygons xi 

The accuracy metrics were reported using producer’s (PA) and user’s accuracies 

(UA), overall accuracy (OA), the overall Kappa coefficient of agreement (K) and 

conditional Kappa value for each category (K1). Furthermore, three additional 

indices were used to evaluate the performance of the classifications. These included 

quantity disagreement (QD), allocation disagreement (AD), and total disagreement 

(TD) developed by Pontius Jr and Millones (2011). The quantity disagreement is 

defined as the difference in the proportions of the categories between the reference 

map and the predicted map. The allocation disagreement represents the amount of 

difference between the reference map and the predicted map, based on the spatial 
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allocation of the categories. Total disagreement is the sum of the quantity 

disagreement and the allocation disagreement.  The training and testing sets were 

different, but the same sets were used for developing each classification. Because 

the same sets of data were used for each classification, the McNemar’s test was 

conducted to determine whether the different classification results were statistically 

different (Foody, 2004). 

 Results and Discussions 

The over- and under-segmentation was 0.27 and 0.34 respectively for the crown 

delineation. The D value was 0.31. The segmentation accuracy was 69%. This is a 

similar accuracy to the study of Hussin et al. (2014), which obtained 68% 

segmentation accuracy for mixed forest in Nepal.    

Tables 3.3a and 3.3b compare the accuracy of using both spectral and LiDAR data 

with just spectral data (both have feature selection), and Tables 3.4a and 3.4b 

provide the same comparison but without feature selection. Overall, the best result 

was achieved using both spectral and LiDAR data, and feature selection (Table 

3.3a). This improvement is reflected in both the Kappa index, the OA, AD and TD, 

as well as the UA and PA percentages across all the vegetation classes. Combining 

spectral and LiDAR data improved the classification regardless of whether feature 

selection was used - the highest increase in Kappa % index was 12.8 (z value = 4.2) 

and the largest decrease in total disagreement % was 9.6. Having feature selection 

increased the Kappa % index by 6.7 (z value = 5.4) and decreased total 

disagreement and allocation disagreement by 5% and 5.4%, respectively when both 

spectral and LiDAR data were used. Similarly, using feature selection for just 

multispectral data also increased the Kappa % value by 5.0 (z value = 2.3) and 

decreased total disagreement and allocation disagreement by 3.7% and 7.9% 

respectively. 
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Table 3.3. Confusion matrix of classification accuracies obtained through RF feature selection and SVM classifier 

(a) Confusion matrix of classification accuracies obtained 

through RF feature selection and SVM classifier using both 

spectral and LiDAR data 

    (b) Confusion matrix of classification accuracies 

obtained through RF feature selection and SVM 

classifier using just spectral data 

    

Class  

 Reference data       Reference data 

Pohu Other Co  Ma UA(%)     Class Pohu Other Co  Ma UA(%) 

Pohu 49 3 2 6 81.7     Pohu 41  6 4 9 68.3 

Other 8 56 5 7 73.7     Other 16 53 7 11 60.9 

Co  0 0 53 0 100     Co  1 0 49 1 96.1 

Ma 3 1 0 47 92.2     Ma 2  1 0 39 92.9 

PA(%) 81.7 93.3 88.3 78.3      PA(%) 68.3 88.3 81.7 65  

K1(%) 75.6 90.2 85 72.5      K1(%) 57.8 81.7 76.7 57.6  

OA(%) 85.4         OA(%) 75.8     

K (%) 80.6         K (%) 67.8     

QD(%) 6.6         QD(%) 11.3     

AD(%) 7.9         AD(%) 12.9     

TD(%) 14.6         TD(%) 24.2     

Class key: Pohu, pohutukawa; Other, other broadleaf species; Co, coniferous species; Ma, manuka/kanuka.  
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Table 3.4. Confusion matrix of classification accuracies obtained through SVM classifier without feature selection 

(a) Confusion matrix of classification accuracies obtained through 

SVM classifier using both spectral and LiDAR data with all 74 

features 

    (b) Confusion matrix of classification accuracies obtained 

through SVM classifier using just spectral data with all 48 

features 

Class 

 Reference data      Reference data 

Pohu Other Co  Ma UA(%)     Class Pohu Other Co  Ma UA(%) 

Pohu 45 1 7 11 70.3     Pohu 38 12 8 7 58.5 

Other 12 53 2 4 74.6     Other 15 47 2 8 65.3 

Co  0 3 51 1 92.7     Co  4 1 47 4 83.9 

Ma 3 3 0 44 88     Ma 3 0 3 41 87.2 

PA(%) 75 88.3 85 73.3      PA(%) 63.3 78.3 78.3 68.3  

K1(%) 65.9 83.4 80.5 66.3      K1(%) 49.7 69 71.7 60.6  

OA(%) 80.4         OA(%) 72.1     

K (%) 73.9         K (%) 62.8     

QD(%) 6.3         QD(%) 7.1     

AD(%) 13.3         AD(%) 20.8     

TD(%) 19.6         TD(%) 27.9     

Class key: Pohu, pohutukawa; Other, other broadleaf species; Co, coniferous species; Ma, manuka/kanuka.  
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 Pohutukawa was difficult to accurately identify compared to other general 

vegetation classes (other broadleaf, and conifer) but was similar to the more specific 

Manuka/Kanuka class. This is reflected in the kappa % values for each class (K1).  

 The contribution of different features 

Figure 3.9 (mean decrease accuracy) and Figure 3.10 (spectral reflectance) show 

that the green and near infrared bands were the most valuable for discriminating 

between vegetation classes. Figures 3.9b, 3.11, and 3.12 show that the LiDAR-

derived features, in particular, the standard deviation of the intensity and height 

features also made a strong contribution to classifying different species. 

Topographic features, especially mean slope and mean DEM were more valuable 

than texture information. 

Similarly to previous studies, this result emphasizes the important role of the green 

region  (Adelabu and Dube, 2015; Alonzo et al., 2014) and the NIR (Adelabu and 

Dube, 2015; Clark et al., 2005) in tree species discrimination. The reason may be 

the variations in pigment contents, and the structural carbohydrates among the tree 

species. There is a close relationship between pigment contents such as chlorophyll, 

carotenoid, anthocyanin and xanthophyll content and the green band reflectance. 

The NIR reflectance also has a relationship with cellulose and other structural 

carbohydrates (Ustin et al., 2009; Vin et al., 2011). 

Concerning LiDAR-derived features, the standard deviation of intensity values 

were the most useful for differentiating between tree species. Figure 3.11 shows 

that Pohutukawa has a higher standard deviation of intensity values than the other 

tree species. These high values could be because the majority of the samples (75%) 

were taken from mature Pohotukawa trees, which have large gaps between the 

branches. This is similar to research by Holmgren and Persson (2004) who also 

found that standard deviation of intensity is one of the most important variables 

affecting species classification of spruce and pine trees. 

The maximum height of all returns also contributes an important role for identifying 

different species. The Coniferous species had the highest maximum height of all 

returns; therefore this feature is useful for differentiating between Coniferous 

species from others (see Figure 3.12). This supports Dalponte et al. (2012) research, 
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which also found that the addition of the maximum height of low density LiDAR 

data increased the classification accuracy. 

 

Figure 3.10. Box-and-whisker plot showing the statistics of reflectance of different 

tree species across 4 multi-spectral bands 

 

Figure 3.11. Box-and-whisker plot showing the statistics of the standard deviation of 

intensity of all returns of different tree species  
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Figure 3.12. Box-and-whisker plot showing the statistics of the maximum height of all 

returns of different tree species  

 Conclusion 

The goal of this research was to develop a method to distinguish single trees of 

Pohutukawa, from a mix of other trees and structures, and experiment with a range 

of techniques and data sets to determine the best method. Using a combination of 

spectral and LiDAR data has been shown that Pohutukawa trees can be identified 

with a kappa accuracy of 75.6%. The method developed has used a range of 

techniques that goes well beyond basic spectral classification and has shown the 

improvements that can be gained from also considering terrain context (based on 

slope, elevation, and wetness), tree height, canopy shape, and branch density (based 

on LiDAR return intensity). The method is explicitly described in this paper and is 

therefore reproducible. The study area chosen to demonstrate the method was a 

large area containing a complex mix of vegetation and infrastructure, therefore the 

method will be transferable to other areas, which are likely to be less complex in 

the land-cover mix. This research supports the growth of combining GIS and image 

analysis techniques to produce sophisticated multi-stepped methods. 

There are many different steps in the method that could be improved with future 

research. For example, this research used Random Forest for feature selection; 

however there are many other algorithms for feature selection that could be 

experimented with, including principle component analysis, linear discriminant 

analysis, and genetic algorithms. Identifying treetops is important because errors in 

treetop detection can lead to under-segmentation (omission errors) or over-
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segmentation (commission error). Clinton et al. (2010) have also highlighted this 

issue because the object segmentation affects the feature information submitted to 

the classifier. Combining LiDAR and spectral data could also improve treetop 

identification and object segmentation. Individual tree segmentation could be 

improved by using a simultaneous growth, which will overcome problems 

associated with the order of growth specified in the sequential growth algorithm 

(Zhen et al., 2014). 

Humans can accurately identify individual tree specimens such as Pohutukawa trees 

in the field and also from detailed images. It is clear that the human brain does not 

just consider spectral information when identifying individual trees, but uses a 

range of information such as the surrounding context, density of branches, canopy 

shape, and height. All this information is now available in digital form due to the 

addition of LiDAR and GIS analysis, as well as image analysis functions. This 

research has shown how this information can be used together to produce more 

accurate results. With additional research computers will be just as accurate as the 

human brain, but have the added advantage of 24/7 processing power which can 

analyse large areas consistently. 
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CHAPTER 4 

 AN EVALUATION OF DIMENSIONALITY REDUCTION AND 

CLASSIFICATION TECHNIQUES FOR IDENTIFYING TREE SPECIES 

USING INTEGRATED QUICKBIRD IMAGERY AND LIDAR DATA 

  

Abstract 

The objective of this research was to investigate and compare tree species 

classification performance for a variety of classification schemes (Naïve Bayes, 

Logistic Regression, Random Forest, and Support Vector Machine), combined with 

various dimensionality reduction methods (Correlation-based feature selection 

filter, Information Gain, Wrapper methods, and Principal Component Analysis). 

Two primary data sets were used - QuickBird and LiDAR, as well as derived 

topography data. When dimensionality reduction was used prior to classification, 

only the Naïve Bayes (NB) classifier had a significant improvement in accuracy. 

SVM and RF had the best classification accuracy, and this was achieved without 

dimensionality reduction. The overall accuracy (OA) of SVM and RF were 88.2% 

and 87.2% (Kappa 0.84 and 0.83) respectively, followed closely by LR (OA: 84.8%, 

Kappa: 0.79) and more distantly by NB (OA: 79%, Kappa: 0.72). 

Key words: Tree species, Dimensionality reduction, Naïve Bayes, Logistic 

Regression, Random Forest, Support Vector Machine 

 Introduction  

Information on the spatial distribution of tree species, especially for species that 

have high ecological and cultural significance as well as under threat, is important 

for managers and policy makers when deciding on appropriate conservation 

strategies. Pohutukawa (Metrosideros excelsa Sol. ex Gaertn) is such a tree in New 

Zealand which has been subject to fires and land clearance, and more recently 

possum browsing (Bylsma et al., 2014). Pohutukawa is a multi-stemmed tree up to 

25m high with large rounded crowns growing in northern coastal regions of New 

Zealand.  

Many studies have combined spectral information derived from multispectral or 

hyperspectral images with height information derived from LiDAR data, which has 
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improved classification accuracy of tree species (Ke et al., 2010; Pham et al., 

2016b). Having diverse information from multiple data sets results in more features 

for classification. However, not all features are useful for classification and can 

decrease the classification performance. Dimensionality reduction methods are 

used to reduce the redundancy and irrelevance of some features as a pre-processing 

step. This improves the classification accuracy and reduces computation demand 

(Xue et al., 2014). Dimensionality reduction methods can be categorized as feature 

extraction and feature selection (Fassnacht et al., 2014a). Feature extraction uses a 

transformation of the original features into a lower dimensional space, while the 

feature selection process selects a subset from the original features (Fassnacht et al., 

2014a; Widodo et al., 2007). 

Although previous studies have compared various classifiers combined with 

dimensionality reduction methods for tree species classification (Fassnacht et al., 

2014b; Pal and Foody, 2010), they only used a single dataset and compared two 

machine learning algorithms: Random Forest and Support Vector Machines. Hence, 

this paper examines and compares the performance of a larger variety of machine 

learning algorithms, combined with a wide range of dimensionality reduction 

methods. This study also uses 74 features extracted from QuickBird and LiDAR 

data, and a complex mixed landscape environment instead of a boreal forest. 

In addition, the performance of the classifiers were compared with different levels 

of sample training data. Ideally, it is preferable to have high classification 

performance with a low sample size to reduce field work and computation. The 

training data ranged from 10 to125 samples per class. 

 Materials 

 Study area and data sets 

The research area was the eastern side of the Coromandel region (36°48'30"S to 

36°55'30"S latitude, and 175°38'30"E and 175°48'30"E longitude). The site is 

characterized by different land cover types including built-up areas, urban 

parkland/open space, and both coniferous and broadleaf species. This research 

focuses on identifying four important tree species/types in the Coromandel region: 

Pohutukawa, Manuka/Kanuka, other broadleaf species, and coniferous species. 
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A QuickBird image and a LiDAR point cloud were used. The QuickBird image was 

captured on November 5th 2010, and has a panchromatic band (450-900nm; 0.6m 

spatial resolution) and four multispectral bands - blue (450–520 nm), green (520–

600 nm), red (630–690 nm), and NIR (760–900 nm) - with 2.4m spatial resolution. 

The QuickBird image was atmospherically corrected using the Atmospheric 

Correction Algorithm (ATCOR-3) developed by Richter and Schläpfer (2014). The 

hue-saturation-intensity method was chosen for panchromatic sharpening to 

increase the spatial resolution of the multispectral bands (to 0.6m spatial resolution). 

The LiDAR data set was captured during February and March, 2013. The maximum 

number of returns for each pulse was four and the average point density was 1.2 

point/m2.  

For training and comparing the classification performance of various feature 

selection and classification techniques, a ground-truth dataset was collected. There 

were a total 500 trees identified, 125 trees for each type of the four tree species/types 

in the region. To evaluate the effects of dimensionality reduction methods on 

classifiers, a range of training set sizes, including 10, 25, 50, 75, 100, and 125 

samples per class were used. This range is commonly used in remote sensing studies 

(Ma et al., 2017; Pal and Foody, 2010). The supervised resampling filter in the 

WEKA data mining package version 3.8 (Frank et al., 2016) was used to synthesise 

small training sets from larger dataset containing ground truth information. 

 Methods 

Figure 4.1 provides an overview of the method developed. Identification of tree 

species using information derived from QuickBird and LiDAR data includes two 

main procedures. First, image segmentation - which divides an image into 

contiguous, separate and homogeneous areas; these areas are called image objects. 

In the context of this paper, these image objects are individual trees. The second 

step classified these image objects into different species/types. 
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Figure 4.1. Work flow of mapping tree species using dimensionality reduction and 

classification techniques. 

The Methods section only focuses on dimensionality reduction and classification 

methods because these are the subject of this research. The procedures used to 

segment individual trees and extract image features from the image objects are 

described in Pham et al. (2016b). Figure 4.2 illustrates the individual crown trees 

obtained from the segmentation process. The object features investigated for 

classification are listed in Table 4.1.  

Figure 4.2. Individual tree crowns are represented by polygons. 
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Table 4.1. Image object features were used for classifications 

. Categories Input layers Object features No of features 

Spectral • Blue  

• Green 

• Red 

• Nir 

 

- Mean of each layer 

-  Standard deviation of each layer 

-  Texture variables of each layer: GLCM mean, GLCM standard deviation, GLCM 

correlation, GLCM homogeneity, GLCM contrast, GLCM dissimilarity, GLCM entropy,  

GLDV mean, GLDV contrast, GLDV entropy 

48 

Height  Point cloud 

LiDAR data 

- hmean1:  mean height of all returns within each tree crown 

- hmean2:  mean height of first returns within each tree crown 

- hmax:    maximum height of all returns within each tree crown 

- hmin:  minimum height of all returns within each tree crown 

- reh10:  Relative 10th height percentile of all returns within each tree crown 

- reh25: Relative 25th  height percentile of all returns within each tree crown 

- reh50:  Relative 50th  height percentile of all returns within each tree crown 

- reh75:  Relative 75th  height percentile of all returns within each tree crown 

- reh90:  Relative 90th  height percentile of all returns within each tree crown 

- hst:   standard deviation of all returns within each tree crown 

- hcoef:   coefficient of variation of all returns within each tree crown 

11 

Intensity Point cloud 

LiDAR data 

- imean1: mean intensity of all returns within each tree crown 

- imean2: mean intensity of first returns within each tree crown 

- imax: maximum intensity of all returns within each tree crown 

- imin:  minimum intensity of all returns within each tree crown 

- ist1:  standard deviation of all returns within each tree crown 

- ist2:  standard deviation of first returns within each tree crown 

- icoef:   coefficient of variation of all returns within each tree crown 

7 

Topographic • DEM  

• Slope 

• Aspect 

• TWI 

- Mean of each layer 

-  Standard deviation of each layer 

 

8 
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 Dimensionality reduction methods 

As mentioned previously, dimensionality reduction methods can be divided into 

feature selection and feature extraction. The feature selection methods will be 

presented first, followed by feature extraction. These methods were implemented 

using the WEKA data mining package (Frank et al., 2016). 

4.3.1.1 Feature selection methods 

Two common feature selection methods will be used in this research: filter and 

wrapper methods. 

4.3.1.1.1 Filter methods 

Filter methods use feature ranking to select variables. A metric is used to compute 

the feature score, and then all features with a score below a user defined threshold 

are removed (Chandrashekar and Sahin, 2014; Saeys et al., 2007). The advantages 

of filter methods are that they are computationally cheaper than wrapper methods 

and operate independently of the choice of classifier (Galelli et al., 2014). 

Consequently, only a single iteration of filtering needs to be run, and then different 

classifiers can be assessed using the reduced feature set (Bolón-Canedo et al., 2013; 

Saeys et al., 2007). The disadvantage of filter methods is that dependencies among 

features are not taken into account because each feature is considered in isolation, 

which leads to some relevant features be eliminated (Galelli et al., 2014). For 

example, an important feature, which is less informative individually but highly 

discriminative when combined with others, could be removed (Bolón-Canedo et al., 

2013). This issue can be overcome by multivariate filter methods such as 

Correlation-based feature selection, but at the cost of being slower and less scalable 

than univariate methods (Bolón-Canedo et al., 2013).  

Two filter methods were used in this research: Correlation-based feature selection 

and Information gain. 

 Correlation-based feature selection filter (CFS)  

CFS is a multivariate filter algorithm that uses a correlation based heuristic 

evaluation function (Hall, 1999) to select a subset of features. These features are 
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individually correlated with the class but uncorrelated with each other. The CFS’s 

feature subset evaluation function is described by Hall (1999) as following: 

𝑀𝑠 =
𝑘𝑟𝑐𝑓̅̅ ̅̅ ̅

√𝑘+𝑘(𝑘−1)𝑟𝑓𝑓̅̅ ̅̅ ̅
         

Where Ms is the heuristic “merit” of a feature subset S containing k features, 𝑟𝑐𝑓̅̅ ̅̅  is 

the mean feature-class correlation, and 𝑟𝑓𝑓̅̅ ̅̅  is the average feature-feature inter-

correlation. 

 Information Gain (InfoGain)  

Information gain is a metric for univariate filters which ranks features based on 

information value (also called entropy). The information gain value of a feature is 

a measure of the amount of uncertainty that is reduced for a target class when this 

feature is used. Features with higher information gain values have a greater 

probability of improving the classification (Rogers et al., 2015).  

The formula for entropy and information gain are:  

Entropy  =  ∑ (−𝑝𝑖𝑙𝑜𝑔2𝑝𝑖)
𝑛
𝑖=1  (Shannon and Weaver, 1949; Witten and Frank, 2005)    

 with pi being the probability of class i.  

Information gain (Class, Attribute) = Entropy (Class) – Entropy (Class | Attribute)   

4.3.1.1.2 Wrapper methods 

Wrapper methods employ search algorithms to extract the relevant feature sets and 

evaluate these feature sets by using a machine learning algorithm with cross 

validation (Witten and Frank, 2005). Search algorithms can be broadly classified as 

sequential selection algorithms (SS) and heuristic search algorithms 

(Chandrashekar and Sahin, 2014). Forward selection and backward elimination are 

examples of SS. The SS starts either with no features and then sequentially adds 

features, or all features and then sequentially removes features, until the 

classification performance stops improving (Witten and Frank, 2005). The heuristic 

search algorithms explore the space of possible subsets of the original feature space, 

keeping track of the best performing subset as measured by cross validation 

(Chandrashekar and Sahin, 2014). Genetic Algorithms and Particle Swarm 

Optimisation are two common heuristic search algorithms. 
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The main disadvantage of Wrapper methods is the high computational costs 

associated with training and testing several models, which is required to evaluate 

each subset. In addition, using classifier performance in the subset selection has a 

risk of overfitting. Using classification accuracy for the subset selection can lead to 

an inappropriate feature subset with high accuracy but poor generalization capacity 

(Chandrashekar and Sahin, 2014). Using cross validation, rather than a single 

training and testing set, helps to mitigate this. 

4.3.1.2 Feature extraction method - Principal component analysis (PCA) 

PCA is one of the most popular feature extraction methods used in machine learning 

(Uğuz, 2011). The first step is to find the principal components of the dataset. This 

is done by computing the covariance matrix of the data, and then performing an 

eigen-decomposition.  

That is, finding the eigenvectors and associated eigenvalues of the covariance 

matrix (Abdi and Williams, 2010). The size of each eigenvalue indicates the 

significance of the relationship represented by the corresponding eigenvector 

(Widodo et al., 2007). Once principal components have been obtained, a linear 

transformation can be constructed by concatenating the most informative 

eigenvectors into a matrix. By multiplying vectors from the original feature space 

by this matrix, the dimensionality of the data can be reduced while retaining most 

of the information. 

 Classification techniques  

In this research, a range of classification algorithms were compared, including: 

Naïve Bayes (NB), Logistic Regression (LR), Random Forest (RF), and Support 

Vector Machine (SVM). All of these methods were implemented in the WEKA data 

mining package (version 3.8). 

4.3.2.1 Naïve Bayes classifier (NB) 

The Naïve Bayes classifier uses Bayes’ theorem to predict a new instance, and 

assumes that the predictive variables are independent given the output class (Duda 

and Hart, 1973; Pham et al., 2016a; Soria et al., 2011). The Naïve Bayes formula 
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calculates the un-normalized posterior probabilities of each class using the 

following equation: 

𝑃(𝑐|𝑥1, 𝑥2, … , 𝑥𝑛) =
∏ 𝑃(𝑥𝑖|𝑐)𝑛

𝑖=1 𝑃(𝑐)

𝑃(𝑥1,𝑥2,…,𝑥𝑛)
        

where 𝑃(·) refers to the probability; 𝑥1, 𝑥2, … , 𝑥𝑛  are conditionally independent 

attributes given the class variable c. The instance is then categorized into the class 

associated with the highest un-normalized probability value. 

4.3.2.2 Logistic Regression classifier (LR) 

Logistic Regression classifiers are linear models for solving binary classification 

problems (Cox, 1958). Because the data we considered contained more than two 

classes, we selected one of the several generalisations to multiclass data. Namely, 

multinomial logistic regression, which also goes by the name of softmax regression 

(Bishop, 2007). This method builds a set of binary logistic regression models, each 

corresponding to a different class. Each of these models can then be used to 

compute a score indicating how likely a novel instance is to belong to each class. 

By normalising this vector of scores one can produce a categorical distribution over 

the possible classes. To make a prediction, one simply selects the class 

corresponding to the highest probability. Similar to building logistic regression 

models, these softmax regression models can be trained by minimising the negative 

log-likelihood of the model parameters through the use of numerical optimisation 

algorithms. 

4.3.2.3 Random Forest classifier (RF)  

A Random Forest is an ensemble method that combines multiple decision trees by 

aggregating their predictions and treating them as votes (Breiman, 2001a). Each 

tree is built from a bootstrap sample generated by sampling data randomly with 

replacement from the original dataset. A random subset of the features is used when 

determining the best split at each node of the tree - a technique known as feature 

bagging (Liaw and Wiener, 2002; Rodriguez-Galiano et al., 2012). New instances 

are classified based on the majority vote of the decision trees in the ensemble.  

On average, two-thirds of the data points in the original dataset are included in each 

bootstrap sample, and are known as the ‘in bag’ data, while the remaining one-third 
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of the data excluded from the bootstrap sample is known as the ‘out-of-bag’ (OOB) 

data (Rodriguez-Galiano et al., 2012). The OOB data are used to estimate the 

prediction error, known as the OOB error estimate, by contrasting the predictions 

from the in-bag data and the OOB data (Poulos and Camp, 2010). The OOB samples 

are also used to measure the importance of each variable by randomly changing the 

values of a given variable in the OOB samples. The variable importance is 

positively correlated with the change in OOB error (Hastie et al., 2009).  

Two parameters – mtry (the number of predictors) and ntree (the number of 

classification trees) – need to be specified. Choosing good values for mtry and ntree 

is necessary to build a RF model with a low OOB error. These two parameters were 

identified using the multi-search scheme in WEKA. 

4.3.2.4 Support Vector Machines classifier (SVM) 

SVM algorithm, formally developed by Vapnik (1995), implicitly maps the original 

training data into a higher dimensional vector space, through the use of a kernel 

function, where the maximum margin separating hyperplane is used to classify the 

input data (Han et al., 2012; Rodrigues and de la Riva, 2014). In this research, the 

Gaussian radial basis function (RBF) was used as the kernel function. Given the 

training data T with n samples: T = {(x1, y1), (x2, y2),…(xn, yn)}, xi ∈ 𝑅𝑑and yi ∈{-

1,1}, i=1, 2,…, n, the SVM classification model can be written as: 

                                 𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑖
𝑛
𝑖,𝑗=1 𝑦𝑖𝐾(𝑥𝑖, 𝑥𝑗) + 𝑏)   

where 𝐾 is the kernel function, 𝛼𝑖 is a Lagrange multiplier, and b is a scalar bias 

term. 

The RBF-SVM was used in this research for many reasons. First, the RBF kernel 

can deal with the situation where the relationship between the class labels and 

features is non-linear. Consequently, the RBF-SVM proves to be more accurate for 

nonlinear, complex classification problems (Izenman, 2008). Second, the RBF 

kernel has fewer tuning parameters than the polynomial and the sigmoid kernels. It 

is known that the number of tuning parameters affects the complexity of model 

selection. There are only two parameters required for a RBF-SVM: the 

regularisation coefficient (C) and the kernel smoothness (gamma). The multi-search 

function in WEKA was used to find a good assignment for these two parameters. 
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Values in the set 2i with i = -10, -9,…, 15 were considered for C, and 2i with i = -8, 

-2,…, 8 for gamma. 

 Validation and comparison method 

To obtain a reliable result for each algorithm, a 10-fold cross-validation was 

performed on the entire data set and repeated 5 times. For each 10-fold cross-

validation process, the data set was first divided into ten equal-sized parts or folds. 

Then 10 iterations of training and validation were performed. With each iteration a 

different fold was held out for validation and the remaining nine folds were used 

for training the classification model. 

In this research, the overall accuracy (OA) and the Kappa coefficient of agreement 

were used to measure the accuracy of each classifier. For comparing different 

classifiers, the corrected paired t-test (Nadeau and Bengio, 2003) with a 

significance level of 0.05 was used.  

 Results and Discussions 

Since this research compares four different classifiers combined with four different 

dimensionality reduction methods, and six different levels of sampling, a total of 

96 unique combinations are analysed. The performances of these combinations 

were compared using the paired t-test. This produced a large number of results and 

it is not practical to present them all. Instead, three sets of comparisons are used to 

present the results. First, the performance of the four different classifiers combined 

with the four different dimensionality reduction (DR) methods are compared. These 

overall accuracies are also compared with just the performance of each classifier 

alone without using dimensionality reduction. The results showed that 

dimensionality reduction only improved the NB classifier. Second, the performance 

of the different classifiers is then compared using a range of sample sizes and no 

dimensionality reduction. The best performances varied with sample size, however 

SVM had the best performance when sample size was over 25. Third, the best 

combinations of classifier and DR (or No DR) are presented using different sample 

sizes. The best combination was SVM with No DR when the sample size was 50 or 

above. 
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 Comparison of dimensionality reduction and non-dimensionality reduction 

for the different classifiers 

Table 4.2 and Figure 4.3 show the performance of each classifier (NB, LR, RF, and 

SVM) with 125 training samples per class combined with four different 

dimensionality reduction (DR) methods and no dimensionality reduction (no DR). 

Table 4.2 also shows the paired t-test results when the combination of each classifier 

and DR is compared with just the classifier (no DR). The DR methods only 

improved the accuracy significantly for the NB classifier, and this was only using 

the CFS and Wrapper methods (see Table 4.2). This is because of the sensitivity of 

NB to redundant and irrelevant features (Fong et al., 2015). DR techniques did not 

improve the performance of RF, and when RF was used with PCA it actually 

reduced the accuracy. This result is in line with Dalponte et al. (2013) and is 

observed regardless of the training set size. RF performs an implicit feature 

selection or feature weighting in its learning process, therefore reducing the number 

of input features does not enhance the classification performance (Dalponte et al., 

2013). Dimensionality reduction also did not improve SVM performance, even 

when the training set size was small. 

 

 

 

 

 

 

 

 



 

73 

 

Table 4.2. Comparison between four different classifiers combined with four different 

DR methods and no DR. Paired t-test (corrected) between the use of DR and no DR 

at 0.05 significance level from 10-fold CV repeated 5 times. Note: (b) and (w) denote 

that the result was statistically better or worse respectively than the no DR, while (-) 

denotes that there was no significant difference. 

Classifiers Dimensionality Reduction method OA (%) 

Naïve Bayes 

 

CFS  77.7 (b) 

InfoGain  72.9 (-) 

PCA  75.7 (-) 

Wrapper NB + Linear Forward Selection  79.0 (b) 

No DR 71 

Logistic Regression 

CFS  83.5 (-) 

InfoGain  83.9 (-) 

PCA  81.6 (-) 

Wrapper LR + Linear Forward Selection 84.1 (-) 

No DR 84.8 

Random Forest  

CFS  85.3 (-) 

InfoGain  86.2 (-) 

PCA  78.6 (w) 

Wrapper RF + Linear Forward Selection 87.0 (-) 

No DR 87.2 

Support Vector 

Machine 

CFS  85.9 (-) 

InfoGain  85.8 (-) 

PCA  84.9 (w) 

Wrapper SVM + Linear Forward Selection 87.0 (-) 

No DR 88.2 
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Figure 4.3. Classification accuracy (OA) of NB, LR, RF, and SVM with different DR and no DR using a range of training samples per class 
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 Comparing the performance of different classifiers using different training 

sample sizes and no DR 

Figure 4.3 also shows the effect of training sample size on classification 

performance. Figure 4.4, for visual convenience, only compares the classifiers 

without DR. The performance improves with increasing sample sizes and this 

research does not show the level of sampling where there is no incremental 

improvement in performance. Notably, the accuracy of the Naïve Bayes classifier 

increases much slower than the other methods once the sample sizes are over 50. 

Ng and Jordan (2002) provide some theoretical reasoning for why this might be. 

Table 4.3 supports these finding by showing the individual overall accuracies (OA) 

and Kappa statistics (K). Table 4.3 also shows what comparisons are statistically 

significant. 

 

Figure 4.4. Classification accuracy (OA) of NB, LR, RF, and SVM with different 

training sizes per class with no DR  
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Table 4.3. Comparing NB, LR, RF, and SVM using all features and different training 

set sizes with 10-fold CV repeated 5 times and paired t-tester (corrected) at 0.05 

significance level. Note: Bolded OA and Kappa scores indicate the highest 

performance, b and w denote the result is statistically better or worse than the 

classifier compared; while - denotes there is no significant difference between 

classifiers. 

Training size Classifier 
OA 

(%) 
Kappa 

Paired t-test results 

NB   LR  RF SVM 

10 samples per class 

NB  61.2 0.48 NB - w - 

LR  64.0 0.52 - LR - - 

RF  68.0 0.57 b - RF - 

SVM  65.8 0.54 - - - SVM 

25 samples per class 

NB  67.3 0.56 NB w w w 

LR 76.7 0.69 b LR  - - 

RF  75.4 0.67 b - RF - 

SVM  75.6 0.67 b - - SVM 

50 samples per class 

NB  67.9 0.57 NB w w w 

LR 80.8 0.74 b LR  - - 

RF 79.0 0.72 b - RF - 

SVM 82.2 0.76 b - - SVM 

75 samples per class 

NB  69.9 0.60 NB w w w 

LR 82.4 0.77 b LR - - 

RF 82.0 0.76 b - RF - 

SVM 85.6 0.81 b - - SVM 

100 samples per 

class 

NB  70.7 0.61 NB w w w 

LR 83.3 0.78 b LR - w 

RF 84.0 0.79 b - RF - 

SVM 87.0 0.83 b b - SVM 

125 samples per 

class 

NB  71.0 0.61 NB w w w 

LR  84.8 0.79 b LR  - w 

RF  87.2 0.83 b - RF - 

SVM  88.2 0.84 b b - SVM 

 Comparing the performance of the best combinations of classifier and DR 

(or no DR) 

Table 4.4 and Figure 4.5 compares the performance of each classifier when 

combined with the best DR (or no DR) that suits each classifier for a particular 

training sample size. For each combination of sample size and classification 

algorithm, we selected the DR (or no DR) that performed best in the previous 

experiments. When the training sample size is 25 or less there is no difference in 

performance of the different classifiers when these are combined with the most 

suitable DR (or no DR). When the sample size is 50 or greater, SVM is better than 

NB. SVM also has higher performance than RF when sample size is large but this 
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is not significant. RF is better than SVM when the sample size is 10 but this is also 

not significant.  

These results are consistent with other research, where SVM outperformed other 

parametric classifiers (Tien Bui et al., 2012). These results confirms the research of 

Dalponte et al. (2013), where there was no significant difference between SVM and 

RF classifiers. RFs and SVMs are both capable of approximating arbitrary 

nonlinear functions, with the accuracy of this approximation constrained by the 

regularisation parameters of each scheme. 

For LR, although in general its OA and Kappa were lower than RF, no statistically 

significant difference was found. This trend does not extend to the comparison with 

SVM, where LR was statistically significantly worse than SVM when the sample 

size is 125. The ability of these nonlinear methods to outperform Logistic 

Regression provides some evidence that there is an inherent nonlinear relationship 

between the input features and the log odds of the output target variable. This is 

something that can be difficult to verify in practice because of the high 

dimensionality of the data. When many features are present in a dataset, 

visualisation becomes difficult and standard goodness-of-fit tests for linear models 

are known to be ineffective (Breiman, 2001b). 
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Table 4.4. Comparing the best classification accuracy of NB, LR, RF, and SVM and 

different training set sizes with 10-fold CV repeated 5 times and paired t-tester 

(corrected) at 0.05 significance level. Note: Bolded OA and Kappa scores indicate the 

highest performance, b and w denote that the result is statistically significantly better 

or worse respectively than the classifier compared; while - denotes there is no 

significant difference between classifiers. 

Training size Classifier + DR (or no DR) OA (%) Kappa 
Paired t-test results 

NB   LR  RF SVM 

10 samples 

NB + CFS 64.4 0.52 NB - - - 

LR + InfoGain 64.5 0.53 - LR  - - 

RF + InfoGain 68.7 0.58 - - RF - 

SVM + CFS 66.6 0.56 - - - SVM 

25 samples 

NB+ Wrapper  74.3 0.66 NB - - - 

LR + no DR 76.7 0.69 - LR  - - 

RF  + CFS 76.3 0.68 - - RF - 

SVM +CFS 77.4 0.70 - - - SVM 

50 samples 

NB+ Wrapper  77.2 0.71 NB - w w 

LR + no DR 80.8 0.74 - LR  - - 

RF + CFS 82.4 0.76 b - RF - 

SVM + no DR 82.4 0.76 b - - SVM 

75 samples 

NB+ Wrapper  77.7 0.71 NB - w w 

LR + no DR 82.4 0.77 - LR - - 

RF + CFS 83.8 0.78 b - RF - 

SVM + no DR 85.6 0.81 b - - SVM 

100 samples 

NB+ Wrapper  78.3 0.72 NB w w w 

LR + CFS 83.6 0.78 b LR - - 

RF + Wrapper 86.7 0.81 b - RF - 

SVM + no DR 87.0 0.83 b - - SVM 

125 samples 

NB+ Wrapper 79.0 0.72 NB w w w 

LR + no DR 84.8 0.79 b LR  - w 

RF + no DR 87.2 0.83 b - RF - 

SVM + no DR 88.2 0.84 b b - SVM 
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Figure 4.5. The classification accuracy of the best combination of classifier and DR (or 

no DR) for different training sample size per class. Note: the DR (or no DR) changes with 

the sample size. 

 Conclusion 

This study has provided further evidence that SVM and RF are the best 

classification algorithms compared to other machine learning algorithms when 

using integrated data sets for identifying tree species. The results suggest that SVM 

or RF should be used when high accuracy is required for tree species classification. 

The four DR methods did not improve the accuracy of SVM and RF, and only 

improved the accuracy of NB. However, the benefit of using a DR method in 

combination with classifiers is that it reduces computation, and thus speeds up the 

modelling process. This research does not show that DR methods significantly 

decrease the accuracy of classifiers, therefore they can be applied prior to 

classification with all four classifiers to accelerate the model fitting process —

particularly when the sample size is large. Among the various feature selection 

methods, the CFS approach should be used when speed is important because it is 

much faster than Wrapper methods. The CFS is also more convenient than the 

InfoGain method because the CFS method does not need the user to select the 

number of desired features, while the InfoGain does. 

Although Naïve Bayes was the worst classifier in terms of classification accuracy, 

when the sample size was small, it achieved similar accuracies to the other 

classifiers. This is congruent with the conclusions made by Ng and Jordan (2002), 

where it is shown that generative models have a tendency to outperform 
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discriminative models when sample sizes are small. The additional benefit of NB 

is that it is simple and fast compared to LR, RF, and SVM because it does not 

require tuning parameters for training. The performance of NB also improves with 

the feature selection methods. Future research could investigate the performance of 

other generative model, such as Bayesian Networks, that could potentially be more 

sample efficient than discriminative models such as LR, RF, and SVM. 

The range of classifiers as well as the different data pre-processing techniques that 

are available are increasingly complicating image classification methods. When 

these techniques are combined, there are a large number of potential outcomes. It 

is important to investigate these combination and outcomes for different 

applications. This research has systematically researched a range of classifiers and 

dimensionality reduction methods for tree species classification to provide a clear 

picture of how these techniques perform and the trade-offs associated with different 

sampling intensity. This type of research is important for guiding future tree species 

classification using remote sensing data. 
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CHAPTER 5 

MONITORING MANGROVE BIOMASS CHANGE IN VIETNAM USING 

SPOT IMAGES AND AN OBJECT-BASED APPROACH COMBINED WITH 

MACHINE LEARNING ALGORITHMS 

This chapter was published as following as “Pham, L.T.H., Brabyn, L., 2017. Monitoring 
mangrove biomass change in Vietnam using SPOT images and an object-based approach 

combined with machine learning algorithms”. ISPRS Journal of Photogrammetry and Remote 

Sensing 128, 86 -97”. http://dx.doi.org/10.1016/j.isprsjprs.2017.03.013 

  

Abstract 

Mangrove forests are well-known for their provision of ecosystem services and 

capacity to reduce carbon dioxide concentrations in the atmosphere. Mapping and 

quantifying mangrove biomass is useful for the effective management of these 

forests and maximizing their ecosystem service performance. The objectives of this 

research were to model, map, and analyse the biomass change between 2000 and 

2011 of mangrove forests in the Cangio region in Vietnam. SPOT 4 and 5 images 

were used in conjunction with object-based image analysis and machine learning 

algorithms. The study area included natural and planted mangroves of diverse 

species. After image preparation, three different mangrove associations were 

identified using two levels of image segmentation followed by a Support Vector 

Machine classifier and a range of spectral, texture and GIS information for 

classification. The overall classification accuracy for the 2000 and 2011 images 

were 77.1% and 82.9%, respectively. Random Forest regression algorithms were 

then used for modelling and mapping biomass. The model that integrated spectral, 

vegetation association type, texture, and vegetation indices obtained the highest 

accuracy (R2
adj = 0.73). Among the different variables, vegetation association type 

was the most important variable identified by the Random Forest model. Based on 

the biomass maps generated from the Random Forest, total biomass in the Cangio 

mangrove forest increased by 820,136 tons over this period, although this change 

varied between the three different mangrove associations.    

Keywords: Mangrove; Biomass change; Object-based; Random Forest; Support 

Vector Machine 
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 Introduction  

Mangrove forests provide a wide range of ecological and socio-economic functions. 

One of their important roles is global climate change mitigation through carbon 

sequestration. Mangroves are well-known as highly effective carbon sinks when 

compared with terrestrial forests in the tropics (Donato et al., 2011). However, the 

extent of mangrove forests worldwide has declined considerably, mainly due to 

human activities such as shrimp farm expansions and urbanization (Giri et al., 2015). 

Mangroves in Vietnam have faced the same decline, and have decreased from 

408,500 ha in 1943 to 155,290 ha in 2000 (Viet Nam Environment Protection 

Agency, 2005). Mangroves in the Cangio have been facing the threat of increased 

coastal erosion as a result of three anthoropogenic factors: the waves from large 

cargo ships, ever expanding aquaculture and salt farming activities, and the negative 

impacts of socio-economic transformation (Kuenzer and Tuan, 2013). At present, 

information on the extent and biomass of mangrove forests in Vietnam is deficient. 

Effective methods to provide such information are necessary to understand how 

above-ground biomass (AGB) changes in time and space. This information could 

then be used for effective mangrove management. 

There are two common approaches for AGB estimation: field measurements and 

remote sensing (Lu, 2006; Tian et al., 2014). Although the traditional field 

inventory method is often the most accurate estimation approach, it is costly, time-

consuming, and difficult to apply for large areas. Compared to field measurements, 

remote sensing can efficiently obtain data on inaccessible regions and provide large 

and repetitive coverage (Bergen and Dobson, 1999). Therefore, remote sensing is a 

viable data source for estimating AGB at large scales (Lu, 2006; Proisy et al., 2007; 

Tian et al., 2014). When linked with biomass inventory data, AGB can be measured 

using remote sensing data combined with statistical models. Biomass inventory data 

can be obtained by using the allometric models available for tree species, which are 

based on input parameters such as diameter at breast height and tree height 

measured in the field.  

There is a range of promising approaches for biomass estimation that use new 

remote sensing data sources. These include synthetic aperture radars (Bergen and 

Dobson, 1999; Hamdan et al., 2014; Le Toan et al., 1992; Proisy et al., 2000; Simard 
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et al., 2006) and light detection and ranging (LiDAR) (Drake et al., 2002; Feliciano 

et al., 2014; Lefsky et al., 2002; Popescu et al., 2011). Compared to optical sensors, 

these types of data sets have the advantage of penetrability through forest canopy 

to get tree trunk information. Therefore, biomass estimation can achieve higher 

accuracy because the trunks may contain over 60% of the above-ground biomass 

(Bergen and Dobson, 1999). Especially, for radar data sets, they are also weather 

independent; while for LiDAR data sets, they overcome the saturation problem 

which limits the usefulness of optical and radar data in regions with high biomass 

levels (Chen, 2013). The disadvantages of LiDAR data sets are their cost to capture 

and their limited spectral resolution (Chen, 2013). 

This research focuses on optical images for monitoring biomass change because 

there are new techniques available to improve the biomass estimation accuracy; and 

fundamentally, they are the only cost effective solution for use in developing 

countries, where the majority of the world’s mangrove forests exists. They are also 

the only solution for retrospectively estimating biomass over the past decades 

because archived images are available. Optical data sets that have been used for 

measuring biomass in mangrove forests include Landsat and SPOT (Hamdan et al., 

2013), IKONOS (Proisy et al., 2007), ALOS AVNIR-2 (Wicaksono et al., 2016), 

and GeoEye-1 (Jachowski et al., 2013). These optical data sets are available at 

various spatial, spectral, and temporal resolutions. However, the accuracy of the 

biomass estimates using optical sensor data is compromised in overcast weather 

and by factors such as forest stand complexity and shadows caused by canopy and 

topography (Lu et al., 2014). These limiting factors can be reduced through the use 

of object-based analysis and textural images (Lu et al., 2014). Addink et al. (2007) 

showed that object-based image analysis for biomass estimation provides higher 

accuracy than a pixel-based approach. In addition, because different mangrove 

species have their own allometric models, AGB accuracy can be improved by using 

species maps and species-specific allometric relationships (Chen et al., 2012). 

Different parametric and non-parametric statistical models have been used for 

predicting mangrove biomass. Compared to parametric methods, the prediction 

accuracy of the non-parametric approaches is often better because they do not make 

assumptions about the distribution of the data (Tian et al., 2014). Therefore, the 

non-parametric approaches are preferred (Jachowski et al., 2013). One of the most 
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common non-parametric methods that has been used for mangrove biomass 

estimation is the Random Forest algorithm (Mutanga et al., 2012), which is 

discussed in the Methods Section.  

Although previous research has used an object-based approach for estimating 

biomass in different forest types (Charoenjit et al., 2015; Kajisa et al., 2009), it has 

primarily focused on estimating biomass at a specific time. There have not been 

many published research projects that use an object-based approach for monitoring 

forest biomass change over a period of time. This research addresses this knowledge 

gap using the Cangio mangrove forest of Vietnam as a study area. The specific 

objectives of this research include: (1) mapping mangrove associations in the 

Cangio mangrove forest in 2000 and 2011 using object-based classification; (2) 

establishing a relationship between mangrove biomass and indices derived from 

SPOT4 and SPOT5 images using Random Forest models; and (3) quantifying and 

analysing mangrove biomass changes between 2000 and 2011.  

 Materials  

 Study area 

The Cangio mangrove forest is located in Cangio District (see Figure 5.1) - one of 

24 districts of Ho Chi Minh City - covering an area of about 72 000 ha. In January 

2000, the Cangio mangrove forest was recognized as the first biosphere reserve in 

Vietnam. This reserve consists of 60% planted and 40% natural forests (Kuenzer 

and Tuan, 2013). There are more than 200 species of fauna and more than 52 species 

of flora, so it is considered to have high biodiversity (Nguyen, 2006). There are 

three main floral associations (Luong et al., 2015). The first of these is the Avicennia 

alba – Sonneratia alba association (Association I), which is often found along 

estuaries, riverbanks, and watery, muddy flats. This association is dominated by 

Avicennia alba and Sonneratia alba or mixed with Avicennia officinalis, 

Rhizophora mucronata, and Sonneratia caseolaris. These species are tolerant of 

high salinity and are able to grow on unstable soil (Kuenzer and Tuan, 2013). The 

second association is mainly Rhizophora apiculata (Association II), which is 

located on stable land and covering large areas of the Cangio mangrove forest. The 

remaining association (Association III or mixed species) is found on higher ground 

and stable clay and contains small tree/shrub species such as Phoenix paludosa, 
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Ceriops zippeliana, Xylocarpus granatum, and Lumnitzera racemosa. Besides 

these vegetation associations, the research area includes shrimp ponds, bare lands, 

and muddy flats.  

Although the research area has different types of mangrove species, this research 

used the association of the dominant species as described above because the 

resolution of the SPOT images was not high enough to identify each specific species 

(Wang et al., 2004a). This approach has been used by Chen et al. (2012) due to the 

strong correlation between forest stand biomass and prevailing species.  

 

Figure 5.1. SPOT4 image of the Cangio study area. The coordinate is in WGS 1984 

UTM zone 48N projection system. 

 Field data collection 

The GPS position and mangrove floral associations were collected for 525 points 

distributed over the study area. Of these 525 points, 60% were used for 

classification training, and the remaining 40% were used for validation. 
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Plot locations for biomass estimation were selected using a stratified random 

sampling approach, based on the classification maps generated from this research 

and the management zones issued by the HCMC Forest Protection Department. The 

sample plots covered the three floral associations described previously and included 

a wide range of age classes and stand densities. A total of 140 plots – 30m x 30m, 

were measured and of these a third were collected in 2000 and the remaining 

collected during 2016. The diameter at breast height (DBH) of each living tree with 

a DBH greater than 5 cm was recorded for each plot. The DBH records of 98 (70%) 

plots were then used for biomass model training, and the remaining plots (42) were 

used for validation.  

The above-ground biomass of each plot was calculated from five species-specific 

allometric equations for the Cangio mangrove forest. For species where the 

allometric equation was unknown, a generic allometric equation developed by 

Komiyama et al. (2005) was used. Table 5.1 provides details on the species-specific 

allometric equations, and Table 5.2 provides the descriptive statistics of the 

generated biomass results. 

Table 5.1. Species-specific biomass allometric equations for the Cangio mangrove 

forest 

Species Biomass allometric equation (kg)  

Rhizophora apiculata W =0.3482 x (DBH)2.2965  (Nam, 2011b) 

Avicennia alba  W = 0.128 x (DBH)2.417 (Nam, 2003) 

Lumnitzera racemosa  W= 0.0157 x (DBH)2.36238 (Nam, 2011a) 

Ceriops zippeliana W = 0.20792 x (DBH)2.407 (Binh and Nam, 2014) 

Phoenix paludosa  W = (-1.5857 + 1.6962 x √DBH)2 (Sang, 2011) 

W: Dry biomass (kg) 

Table 5.2. Descriptive statistics of biomass plots 

Vegetation 

association 

No. 

of 

plots 

Biomass (ton/ha) Tree density 

Min Max Mean Standard 

deviation 

Min no. 

of trees 

Max no. of 

trees 

Association I 30 42 324 72 35 90 450 

Association II 75 58 596 276 52 57 400  

Association III 35 30 347 134 68 102 1092 
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 Image data  

Two orthorectified satellite images were obtained for this research - a SPOT4 image 

captured on 26th March, 2000, and a SPOT5 image captured on 24th February, 2011. 

Both images have four multispectral bands, each with 10m spatial resolution. These 

bands are green (500-590 nm), red (610-680 nm), near infrared (NIR, 780-890 nm), 

and mid infrared (MIR, 1580 -1750 nm). 

 Methods 

The procedures for predicting biomass with the object-based image analysis 

involved two main steps: (1) identifying the three mangrove associations with two-

level segmentation and a Support Vector Machine for classification, and (2) 

estimating biomass using the Random Forest algorithm with a range of object 

features - spectral, texture, vegetation indices, and vegetation association type.  

Figure 5.2 provides an overview of the method developed. A detailed description 

and justification of the main steps are discussed further in the following sections. 
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Figure 5.2. A workflow of estimating ABG in the Cangio mangrove forest from SPOT 

data and ground inventory data. 

 Image data pre-processing  

The pre-processing first involved geo-referencing the images to the topographic 

map of Ho Chi Minh City at a scale of 1:5000. This process used 30 control points, 

the first order polynomial transformation, and the nearest neighbour resampling 

algorithm for each image. The nearest neighbour resampling method was selected 

because it maintains the original pixel values of the images (Wicaksono et al., 2016). 

The root-mean-square error for the geo-referencing was less than 0.5 pixels (5 m). 

Digital numbers of the images were then converted into radiance values. Lastly, the 

images were atmospherically corrected to obtain surface reflectance using the Fast 

Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) module of ENVI 

software.   
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 Classifying different mangrove associations 

As mentioned in Section 5.2.1, the study area is a heterogeneous landscape which 

includes water bodies (river channels and shrimp ponds), non-vegetation types 

(bare land, muddy flats, and roads), and different mangrove associations. Therefore, 

water and non-vegetation types were identified and excluded prior to distinguishing 

different mangrove associations. An object-based approach with a two-level 

segmentation was used to identify different land cover types because it provided 

greater accuracy than pixel-based approaches for mangrove forests (Myint et al., 

2008). The object-based image analysis includes two main steps: (1) image 

segmentation which divides an image into contiguous, separate, and homogeneous 

areas and (2) image classification (Blaschke, 2010). In this research, the multi-

resolution segmentation algorithm in eCognition Developer 9.1 was used for the 

two levels of segmentation. This is a region-growing technique that starts with 

single pixels as image objects and then merges them with their neighbours based 

on relative homogeneity criteria (Trimble Germany GmbH, 2015b). This 

homogeneity criterion comprises spectral and shape criteria where shape is 

composed of smoothness and compactness.  

5.3.2.1 Level 1: Masking of water and non-vegetation regions 

A first level segmentation was used to distinguish between water and other features. 

This used the four bands from the SPOT images, with an equal weight of one for 

all bands. The scale parameter, which determines the size of the image objects 

created, was set to one so that small objects such as roads and channels could be 

identified and excluded. The spectral information contributes more to the 

identification of the homogeneous regions than the shape information, therefore the 

shape parameter was set to a low value (0.1). To set the weighting of smoothness 

and compactness equally, compactness was set to 0.5. These shape and 

compactness values were constant for the second level of segmentation. 

After segmentation, objects with a mean Normalized Difference Water Index 

(NDWI) higher than zero and a Normalized Difference Vegetation Index (NDVI) 

less than 0.3 were classified as water. The NDWI was calculated from the green 

and MIR bands (Ji et al., 2009), and the NDVI was calculated from the red and near 

infra-red bands. 
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Rivers needed to be distinguished from shrimp pond objects because distance 

between vegetation and the river was required for later analysis of mangrove 

associations. Water objects with a length larger than 2 km were assigned as river 

objects, and then merged.  

The remaining objects were either non-vegetation or vegetation. Vegetation was 

distinguished from non-vegetation by using a NDVI threshold greater than 0.3.  

5.3.2.2 Level 2: Identifying three mangrove associations 

This second level was used for segmenting vegetation and then classifying 

vegetation into three mangrove associations (refered to in Section 5.2.1).  

For segmentation, input layers included all four spectral bands and a DEM layer. 

Adding topographic information for segmenting can result in higher accuracy for 

vegetation classification than the use of spectral information alone (Ke et al., 2010). 

The layer weight was set at one for each input layer except the NIR band, which 

was set at four because vegetation reflectance is more differentiated in this band 

(Chemura et al., 2015). After visually comparing the segmentation quality of 

different parameter values, the scale parameter was set at three. At this scale the 

average object size was 0.8 ha, which is similar with the average patch size in the 

field inventory. 

After segmentation, a Support Vector Machine (SVM) algorithm was used to 

classify different mangrove associations. The theory of SVM was developed by 

Vapnik (1995). The SVM algorithm determines a hyperplane that separates the 

dataset into a discrete number of classes. The advantage of the SVM is that it is a 

non-parametric classifier and does not require an assumption of normal distribution 

of the dataset. The SVM has been also shown to obtain a higher classification 

accuracy than other traditional parametric classifiers in a complex landscape 

(Dalponte et al., 2009; Pham et al., 2016c).  

The object feature variables considered for mangrove classification included the 

spectral and texture values listed in Table 5.3, as well as topography (elevation and 

slope), and distance from the river. A SVM with Gaussian Radial Basis Function 

(RBF) was used for this study. Two parameters are required for the RBF kernel 
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SVM training: a cost parameter C and gamma (γ). The cost parameter controls the 

trade-off between the misclassification rates for the training data and the model’s 

complexity (Cortes and Vapnik, 1995). A smaller value for C leads to a larger error 

on the training data with a simple prediction function, while a higher value C creates 

a lower classifying error on training data with a complex prediction function 

(Joachims, 2002).  The γ controls the width of the Gaussian function. A smaller γ 

value gives a lower bias and higher variance, while a large γ leads to a higher bias 

and lower variance (Ben-Hur et al., 2008).  

 Estimating biomass  

5.3.3.1 Features for predicting biomass 

Table 5.3 lists the wide range of feature variables that were considered for 

predicting biomass. They include spectral, texture, vegetation indices, and 

vegetation association type (obtained from Section 5.3.2.2).  The object texture 

features were based on Haralick et al. (1973) and vegetation indices were calculated 

in eCognition software. The 2000 ground truthed biomass values were compared 

with the variables derived from the 2000 SPOT image, and the 2016 ground truthed 

biomass values were compared with the variables derived from the 2011 SPOT 

image because the 2011 biomass data were not available. Both sets of comparisons 

were used to develop the biomass models. 

 



 

 

 

9
6
 

Table 5.3. Variables for calculating biomass (spectral and texture variables were also used for classification) 

Categories Object’s feature variables Algorithm References 

Spectral • Mean Green 

• Mean Red 

• Mean NIR 

• Mean MIR 

  

Texture  Haralick texture variables: 

- GLCM mean  

- GLCM homogeneity 

- GLCM standard deviation 

- GLCM entropy 

- GLCM contrast 

- GLCM correlation 

- GLCM angular second 

moment 

Haralick texture variables derived from individual SPOT 

bands and calculated in four directions (00, 450, 900, and 

1350)  

Haralick et al. (1973) 

Vegetation Indices • NDVI  

•  NDII 

• OSAVI 

• EVI2  

• MSAVI 

• SAVI 

NDVI =
𝑁𝐼𝑅−𝑟𝑒𝑑

𝑁𝐼𝑅+𝑟𝑒𝑑
  

NDII =
𝑁𝐼𝑅 − 𝑀𝐼𝑅

𝑁𝐼𝑅 + 𝑀𝐼𝑅
 

OSAVI =
𝑁𝐼𝑅 − 𝑟𝑒𝑑

𝑁𝐼𝑅 +  𝑟𝑒𝑑 +  0.16
 

EVI2 = 2.5 (
𝑁𝐼𝑅 − 𝑟𝑒𝑑

𝑁𝐼𝑅 + 2.4𝑟𝑒𝑑 + 1
) 

MSAVI =
2𝑁𝐼𝑅 + 1 − √(2𝑁𝐼𝑅 + 1)2 − 8(𝑁𝐼𝑅 − 𝑟𝑒𝑑)

2
 

Tucker (1979) 

 

Hardisky et al. (1983) 

Rondeaux et al. 

(1996) 

 

Jiang et al. (2008) 

Qi et al. (1994) 
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SAVI = 1.75 (
𝑁𝐼𝑅 − 𝑟𝑒𝑑

𝑁𝐼𝑅 +  𝑟𝑒𝑑 +  0.75
) 

Huete (1988) 

Vegetation association 

type 

Objects classified in section 

5.3.2.2 

  

Note: NDVI: Normalized difference vegetation index; NDII: Normalized difference infrared index; OSAVI: Optimized soil-adjusted vegetation index; 

EVI2: Enhanced vegetation index; MSAVI: Modified soil-adjusted vegetation index; SAVI: Soil-adjusted vegetation index 
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5.3.3.2 Random Forest 

Random forest (RF) is an ensemble method that combines multiple decision trees 

and obtains results by averaging the predictions from all individual regression trees. 

Random forest was developed by Breiman (2001a). The advantages of RF 

compared to other tree ensemble methods are: (1) high accuracy for prediction 

outcomes, (2) robustness to outliers and noise, (3) fast computation speed, and (4) 

ability to estimate the importance of predictor variables (Cutler et al., 2007; 

Rodriguez-Galiano et al., 2012). In addition, RF can use a large number of predictor 

variables (Breiman, 2001a; Chaudhary et al., 2015). These characteristics led to the 

use of RF for this research. 

RF is built using bagging (bootstrap aggregating) with random predictor selection 

(Breiman, 2001a). The process involves the following steps: 

(1) Given the training dataset of size k, bagging generates n new training 

datasets Di (i = 1, 2,…, n) - the same size as the original dataset - by picking 

data randomly with replacement from the original dataset. This is called a 

bootstrap sample. Some data points in the original dataset can be used more 

than once to generate a bootstrap sample while others may never be used.  

(2) The bootstrap samples are then used to build decision trees (ntree). To 

construct a decision tree, a random subset of the predictors (mtry) is used to 

determine the best split at each node of the tree (Breiman, 2001a). Such a 

random predictive variable selection reduces correlation among trees, which 

decreases bias (Breiman, 2001a). The trees are grown to maximum size and 

not pruned, hence the computation is light (Rodriguez-Galiano et al., 2012). 

(3) The prediction at a target point x results from averaging the predictions of 

all trees.  

It is usual for 2/3 of data points from the original dataset to be included in a 

bootstrap sample (‘in bag’ data) while the 1/3 remaining data set is excluded from 

the bootstrap sample – known as ‘out-of-bag’ (OOB) data (Rodriguez-Galiano et 

al., 2012). The OOB data are used to calculate a prediction error, known as the OOB 

error estimate, by contrasting the predictions from the in-bag data and the OOB data 

(Poulos and Camp, 2010). The OOB samples are also used to measure the variable 

importance (the prediction strength of each variable) by changing randomly the 
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values of a given variable in the OOB samples. The increase of OOB error from 

these changes are averaged over all trees and is a measure of the importance of the 

variable (Hastie et al., 2009). 

In this research, the randomForest package in the R statistical software (R Core 

Team, 2015) was used for fitting Random Forest regression models. Two 

parameters – mtry and ntree – were specified. Choosing good values for mtry and 

ntree was necessary to build a RF model with low OOB root mean square residuals 

(RMSEOOB). The mean of square residuals was computed as:  𝑀𝑆𝐸𝑂𝑂𝐵 =

𝑛−1 ∑ {𝑦𝑖 − 𝑦̂𝑖
𝑂𝑂𝐵}

2
 𝑛

1 (Liaw and Wiener, 2002),  where 𝑦̂𝑖
𝑂𝑂𝐵 was the average of the 

OOB predictions for the ith observation. 

The ntree values were tested from 50 – 2000 trees with intervals of 50. The ntree 

was selected based on the stability of RMSEOOB (Adelabu and Dube, 2015) (see 

Figure 5.3). With mtry, the values provided by the tuneRF function in the 

randomForest package varied due to the randomness associated with RF. Running 

the tuneRF function many times and then assigning the value of mtry with the most 

frequent occurrence is an accepted method for addressing this variation of mtry (Li 

et al., 2014).  
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Figure 5.3. The RMSEOOB is stable after ntree = 1000 for all three cases: spectral + 

texture + vegetation association type + vegetation indices (123 variables); spectral + 

texture + vegetation indices (122 variables); and spectral + vegetation indices (10 

variables) used respectively.  

RF provided importance values of each variable. While the importance rankings of 

the most important variables were relatively stable among different iterations, the 

order of least important variables was unstable among iterations.  

It was important to optimise the number of variables to improve model accuracy. 

Removing irrelevant variables results in higher predictive power and easier 

interpretation (Gregorutti et al., 2016). To choose the optimal number of variables 

for predicting biomass, the rfcv function in the randomForest package was used. 

This function compares the cross-validated prediction performance of models as 

the number of predictors is reduced (R Core Team, 2015). Using recommendations 

by Li et al. (2014), this research replicated the rfcv 100 times, with10-fold cross-

validation, to obtain the optimal number of variables. 

To test the accuracy of different combinations of variables, three RF models were 

investigated. These models were: 

• Model 1 - spectral, texture, vegetation indices (VI), and vegetation 

association type variables (123 variables).  

• Model 2 - spectral, texture, and VI (122 variables). 

• Model 3 - spectral and VI (10 variables). 
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 Accuracy assessment 

5.3.4.1 Classification accuracy assessment 

The classification accuracy metrics were reported using producer accuracy (PA), 

user accuracy (UA), overall accuracy (OA), and the overall Kappa coefficient of 

agreement (K). Furthermore, three additional indices developed by Pontius Jr and 

Millones (2011) were used to evaluate the performance of the classifications. These 

included quantity disagreement (QD), allocation disagreement (AD), and total 

disagreement (TD).   

5.3.4.2 Validation biomass result 

The accuracy of the biomass predictions from the RF models was calculated using 

a withheld validation data set. These included the adjusted coefficient of 

determination (𝑅𝑎𝑑𝑗
2 ), and root mean square error (RMSE) between observed and 

predicted values. The formulas to calculate these indices were: 

𝑅𝑎𝑑𝑗
2 = 1 −  

(𝒏−𝟏) ∑ (𝒚𝒊−𝒚̂𝒊)𝟐𝒏
𝒊=𝟏

(𝒏−𝟐) ∑ (𝒚𝒊−𝒚̅)𝟐𝒏
𝒊=𝟏

       

𝑅𝑀𝑆𝐸 = √
∑ (𝒚̂𝒊−𝒚𝒊)𝟐𝒏

𝒊=𝟏

𝒏−𝟐
          

Where 𝑦̂𝑖  and 𝑦𝑖  were the predicted and observed biomass for the ith plot 

respectively, n was the number of validation plots, and 𝑦̅ was observed mean of 

biomass. 

 Results and Discussion 

 Classification results 

The resulting mangrove association maps of the Cangio mangrove forest in 2000 

and 2011 are shown in Figure 5.4, while the classification accuracy is shown in 

Tables 5.4a and 5.4b. 
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Figure 5.4. Mangrove classification map of the Cangio in: (a) 26th March 2000 and (b) 

24th February 2011  

The overall accuracy of mangrove classifications in this research were 77.1% and 

82.9% for the year 2000 and 2011 respectively. These accuracy ranges are similar 

to other studies that used object-based analysis and machine learning algorithms for 

mapping mangrove stand types (cf. Wang et al. (2004b) and Xin et al. (2009)). 

Overall, the accuracy of the 2011 classified map is greater than that of the 2000 

map. This is reflected in most of the accuracy assessment indices (the Kappa index, 

OA, AD, TD, UA and PA) across all vegetation associations (See Tables 5.4a and 

5.4b). The lower classification accuracy for the year 2000 can be explained by the 

2000 SPOT4 image having more cloud cover than the 2011 SPOT5 image. 

Regarding the mangrove associations, Rhizophora apiculata had the highest 

classification accuracy. This is because approximately 90% of the Rhizophora 

apiculata association in Cangio is planted and tends to be more homogeneous. The 

two remaining associations are natural regions, which have more heterogeneity.   
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Table 5.4. Confusion matrix of classification accuracies obtained through SVM classifier in 2000 and 2011 

(a) Confusion matrix of classification accuracies obtained 

through SVM classifier in 2000 

 (b) Confusion matrix of classification accuracies obtained 

through SVM classifier in 2011 

Class 
Reference data  

Class 

Reference data 

A1 A2 A3 UA(%)  A1 A2 A3 UA(%) 

A1 54 3 13 77.1  A1 61 1 8 87.1 

A2 3 60 7 85.7  A2 3 63 4 90 

A3 15 7 48 68.6  A3 15 5 50 71.4 

PA(%) 75 85.7 70.6   PA(%) 77.2 91.3 80.6  

OA(%) 77.1     OA(%) 82.9    

K (%) 65.7     K (%) 74.3    

QD(%) 1     QD(%) 4.3    

AD(%) 21.9     AD(%) 12.9    

TD(%) 22.9     TD(%) 17.2    

Class key: A1: Avicennia alba – Sonneratia alba association; A2: Rhizophora apiculata association; A3: mixed species  
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 Variable importance 

The importance of each predictive variable for the three RF models investigated are 

shown in Figure 5.5. 

  

 

(a) 

(b) 
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Figure 5.5. The importance of different features measured by %InMSE (the 

percentage increase in the mean squared error) determined from 100 runs of the RF 

for: (a) all 123 variables used (spectral + texture + VI + vegetation association type); 

(b) 122 variables used (spectral + texture + VI); (c) 10 variables (spectral + VI). 

 Variable selection for the final three RF models 

For Model 1, the optimal number of variables was nine based on the rfcv results 

(see Figure 5.6a). Therefore, the top nine variables in the variable importance 

ranking were used in the final predictive model. For Model 2, there were two local 

optimal number of variables – 12 and 28 (see Figure 5.6b). Consequently, the top 

12 variables and the top 28 variables were further tested with RF using 100 

iterations to determine the final model. The result showed that using the top 12 

variables provided the best result. For Model 3, the optimal number of variables 

was 7 (see Figure 5.6c). Table 5.5 summarises for each of the three models - the 

number of variables, ntree, and mtry. 

(c) 
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Figure 5.6. The number of variables used and the average RMSE of models based on 

100 times of 10-fold cross validation: (a) all 123 variables; (b) 122 variables; (c) 10 

variables. 
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Table 5.5. Summary of settings for Random Forest Models 

Models  
Number of 

variables 
Ntree mtry 

Spectral + Vegetation indices + Texture + 

vegetation association type                      (1) 

9 1000 3 

Spectral + Vegetation indices + Texture  (2)          12 1000 4 

Spectral + Vegetation indices                   (3)         7 1000 2 

Table 5.6 shows the results of the calibration and testing for each of the three models. 

Figure 5.7 shows the accuracy assessment of the final three RF biomass models. 

Model 1 had the highest accuracy, and was therefore used for the final estimate and 

map of biomass. 

Table 5.6. Calibration and validation results 

Models 

%Variance explained Root mean squared 

residuals 

Calibration 

sample 

Validation 

sample 

Calibration 

sample 

Validation 

sample 

Spectral + Vegetation 

indices + texture + 

vegetation association 

type                       (1)                       

74.4 73.9 69.8 71.4 

Spectral + Vegetation 

indices + Texture  (2)                                       

63.1 62.2 81.3 82.5 

Spectral + Vegetation 

indices                   (3) 

52.3 51.9 90.3 92.1 
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Figure 5.7. Plots of the observed and predicted biomass values using RF with a) Model 

1; b) Model 2; c) Model 3 

 Biomass distribution and change between 2000 -2011  

The biomass maps shown in Figure 5.8 were generated using the final RF model 

(Model 1). Summary statistics of the AGB for each year are shown in Table 5.7. 

There was an overall increase in AGB of 9.6%. However, only the AGB of the 

Rhizophora apiculata association increased, while the other two associations 

showed an overall decrease. Regarding the Avicennia alba – Sonneratia alba 

association, the change was not spatially consistent. The North-East part of the 

Cangio diminished in 2011, but increased in the Southern part (see the circled 

regions in Figure 5.8). Such inconsistent change can be explained by soil accretion 

in this Southern region, which helped the Avicennia alba – Sonneratia alba develop. 



 

109 

 

In the Northern region, mixed species replaced the pioneering Avicennia alba – 

Sonneratia alba association. 

Table 5.7. General descriptive statistics of AGB in the Cangio mangrove forest in the 

years 2000 and 2011 

 Year 

2000 

Year 

2011 

Change 

Vegetation 

association type 

Total (ton) Total 

(ton) 

Total change 

(ton) 

% 

Change 

Association I 2,124,818 1,847,434 -277,384 -13.1 

Association II 3,525,279 4,896,419 1,371,140 +38.9 

Association III 2,921,280 2,647,661 -273,619 -9.4 

All  associations 8,571,379 9,391,515 820,136 +9.6 

 
Figure 5.8. Biomass map of the Cangio mangrove forest: (a) 2000 derived from 

SPOT4 and (b) 2011 derived from SPOT5 
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 The role of different feature variables for predicting biomass  

Figure 5.5a shows that vegetation association type was the most important variable 

for predicting biomass. A similar finding was made by Zhu et al. (2015), whose 

research used a Back Propagation Artificial Neural Network with WorldView-2 to 

estimate biomass for mangrove areas in Guangdong Province, China. The next two 

most important variables were vegetation index - derived from MIR and NIR bands, 

and texture - derived from the red band. 

It is noticeable that among the spectral bands, the middle infrared spectrum has the 

strongest relationship with AGB (see Figures 5.5a, 5.5b, and 5.5c). This result was 

also observed by Lu et al. (2014). An explanation for this is that MIR reflectance is 

more sensitive to change in forest characteristics, such as wood volume, than visible 

and near-infrared reflectance (Lu et al., 2004).  

Texture features played a less important role in biomass estimation than features 

derived from spectral information. This is similar to Lu’s (2005) observation that 

when the forest stand structure is relatively simple, texture is less important than 

spectral information. In general, most forested areas in the Cangio are planted, 

therefore its forest structure is quite homogeneous and simple. However, this 

research also showed that using texture features and spectral information improves 

biomass estimation compared to using spectral information alone (see Table 5.6 and 

Figure 5.7). This is because texture parameters are sensitive to the shape, height, 

and size of the canopy, and can therefore identify different characteristics of forest 

stand structure, including age, top height, and stand density (Dube and Mutanga, 

2015; Kayitakire et al., 2006; Sarker and Nichol, 2011). 

This research also found that the MSAVI variable is more useful for predicting 

biomass than NDVI. The reason is that MSAVI reduces the background soil 

reflectance which is added to vegetation reflectance. In the Cangio reserve, tree fall 

caused by strong winds or lightning strikes creates small gaps in the canopy (Vogt 

et al., 2013). This can cause a mixed spectral signature between the soil and 

vegetation. 
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 Conclusion 

The accuracy of AGB estimation in the Cangio mangrove forest was affected by 

many factors. Identifying these factors is important for improving the AGB 

estimation. As discussed in Section 5.4.5, vegetation association type is one of the 

most important variables affecting the AGB model. It also means that the accuracy 

of mangrove classification contributes to the AGB accuracy prediction. Therefore, 

increasing the classification accuracy through using supplementary ancillary data, 

such as soil conditions, could improve the ABG estimation performance. Plot 

location error is also an important factor that needs to be considered for biomass 

prediction. This type of error was reduced in this study by choosing the plots in the 

middle of large homogeneous objects. In addition, the use of generic allometric 

equations increased the biomass estimation errors. This limitation could be reduced 

through improved allometric equations. Besides reducing errors, integrating other 

data sets such as climate and soil could improve AGB estimation accuracy as 

suggested by Lu (2005). This is because these additional variables affect AGB 

accumulation rates and the development of forest stand structures. Time for 

collecting ground truthed biomass is also a factor that needs to be considered for 

monitoring biomass change. It is best if ground truthed data were collected at the 

same time as the images are captured. In this research, the ground truthed biomass 

data collected in 2016 were used for the 2011 image because there was no available 

ground truthed biomass data for the year 2011.  

This research shows that using vegetation association type and texture information 

can significantly improve biomass estimation in mangrove forests. It also 

demonstrates that the RF algorithm is suitable for estimating biomass in the context 

of mangrove forests where the sample sizes are often small due to difficulty in 

collecting field data. The study area chosen to demonstrate the method was a large 

and complex area. Therefore, although this research was based on only one study 

area, its method can be applied to other mangrove regions. This research has also 

developed a technique that works with relatively low-resolution satellite imagery, 

which is affordable for developing countries. 
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CHAPTER 6  

DISCUSSION AND CONCLUSION 

  

 Key questions addressed by this research 

As stated in the introduction, the main objective of this research was to evaluate the 

accuracy of a range of remote sensing techniques for mapping coastal vegetation, 

including the best combination of techniques. Four key questions resulting from 

this objective were provided in Chapter 1. This section describes how each of these 

questions have been answered.  

Q.1. What levels of segmentation are required to separate individual tree 

crowns/mangrove associations from other land-cover types such as grasslands, 

buildings, and water? 

This research has shown the flexibility of OBIA application for identifying coastal 

vegetation at different levels of detail ranging from a broad-scale such as vegetation 

associations to a single tree species. Choosing how many levels of segmentation 

and classification depends on the classification targets and the surrounding 

environment of these targets. The more detailed the classification targets are, the 

more levels of segmentation that are required. Chapter 3 has illustrated that 

classifying individual trees in a mixed landscape required the use of multiple levels 

of segmentation with complex criteria and a variety of classification algorithms. 

These levels of segmentation range from separating objects at a large scale (e.g. 

distinguishing vegetation from other objects) and to detailed scales (e.g. 

distinguishing individual crowns from clump trees). 

Q2. Which dimensionality reduction methods improve the accuracy of vegetation 

classification or biomass prediction? 

This research has demonstrated that the improvements in classification accuracy 

obtained from dimensionality reduction depend on not only the properties of the 

input data but also the classifiers used. As mentioned in Chapter 4, dimensionality 

reduction includes feature selection and extraction. In Chapter 3, the SVM classifier 

with the Random Forest as a feature selection method achieved higher classification 

accuracy (OA= 85.4, Kappa= 80.6) than that without the feature selection (OA= 
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80.4, Kappa=73.9), however, the increase in accuracy was not large (5%). The 

study of dimensionality reduction methods and classifiers investigated in Chapter 5 

showed that only Naïve Bayes improved with feature selection, while Logistic 

Regression, RF, and SVM did not. The difference in the impact of the feature 

selection on the classification accuracy in Chapter 3 and Chapter 5 may be 

explained by the fact that the training dataset used in Chapter 5 was less noisy than 

that used in Chapter 3. The position of trees in Chapter 5 was recorded with higher 

accuracy GPS than was the case in Chapter 3. Consequently, the position errors 

were reduced in Chapter 5, which resulted in less noise in the training samples. This 

research concluded that the feature selection should be applied prior to 

classification to make classification faster and/or better for identifying tree species 

as demonstrated in Chapters 3 and 5 regardless of the quality of training samples. 

Q3. Which classifier algorithms should be used for identifying coastal vegetation? 

In order to answer this question, this research investigated and compared tree 

species classification performance for a variety of classification schemes (Naïve 

Bayes, Logistic Regression, Random Forest, and Support Vector Machine). This 

research concluded that SVM and RF had the best classification accuracy. The 

overall accuracy (OA) of SVM and RF were 88.2% and 87.2% (Kappa 0.84 and 

0.83) respectively, followed closely by LR (OA: 84.8%, Kappa: 0.79) and more 

distantly by NB (OA: 79%, Kappa: 0.72).  

Q.4. Does the combination of spectral and GIS derived data improve the accuracy 

of vegetation classification and biomass prediction? 

The research findings demonstrated that combining LiDAR and spectral data 

improved classification of Pohutukawa trees. Using a combination of spectral and 

LiDAR data it was shown that Pohutukawa trees can be identified with an overall 

accuracy of 85.4% (Kappa 80.6%). Classification using just the spectral data alone 

produced an overall accuracy of 75.8% (Kappa 67.8%). Terrain context (based on 

slope, elevation, and wetness), tree height, canopy shape and branch density (based 

on LiDAR return intensity) have been shown to be useful variables that can be 

combined with spectral data to improve the classification of vegetation.  
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This research also showed that using vegetation association type and texture 

information can significantly improve biomass estimation in mangrove forests. The 

model that integrated spectral, vegetation association type, texture, and vegetation 

indices obtained the higher accuracy (R2adj = 0.73) compared to just using spectral, 

texture, and vegetation index (R2adj = 0.64) or just spectral and vegetation index 

(R2adj = 0.51). This research demonstrated that using texture features and spectral 

information improves biomass estimation compared to using just spectral 

information alone. This is because texture parameters are sensitive to the shape, 

height, and size of the canopy, and can therefore identify different characteristics 

of forest stand structure, including age, top height, and stand density (Dube and 

Mutanga, 2015; Kayitakire et al., 2006; Sarker and Nichol, 2011). 

 Limitations 

LiDAR data is an important input for separating individual tree crowns from tree 

clusters. The vegetation classification in Vietnam case study would have improved 

with LiDAR data.  

Regarding the identification of individual trees in the New Zealand case, the 

research focused on the upper vegetation layer which was higher than 2m. This 

height limitation was set because the LiDAR data set used had a density of 1.5 

points per m2, which was not detailed enough for the lower vegetation layers, which 

is smaller in size. This limitation could be resolved by using LiDAR datasets with 

higher resolution. 

The separation of individual trees from tree clusters and other structures was 

performed by identifying treetops. Treetop detection can lead to under-

segmentation (omission errors) or over-segmentation (commission error). In the 

future, combining LiDAR and spectral data could be used to improve treetop 

identification and object segmentation. Individual tree segmentation was performed 

by the sequential growth algorithm, which depended on the order of growth 

specified. To avoid reliance on this growth specification, a simultaneous growth 

algorithm developed by Zhen et al. (2014) could be used.  

The use of a generic allometric equation rather than a species specific equation 

limited biomass estimation, which increased the biomass estimation errors. This 
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limitation could be reduced through improved species specific allometric equations. 

Another improvement for biomass estimation could be to integrate other data sets 

such as climate and soil. This is because these additional variables affect above 

ground biomass accumulation rates and the development of forest stand structures. 

Time for collecting ground truthed biomass is also a factor that needs to be 

considered for monitoring biomass change. It is best if ground truthed data were 

collected at the same time as the images are captured. In this research, ground 

truthed biomass data collected in 2016 were used for the 2011 image because there 

was no available ground truthed biomass data for the year 2011 and there were no 

recent SPOT5 images available. 

The methodology for predicting mangrove biomass in Vietnam case study can be 

applied to other mangrove regions. However, different mangrove regions may have 

different types of mangroves. Therefore, the parameters and input variables should 

be modified to be suitable with the research location. 

 Implications for mapping vegetation and future research 

Accurate spatiotemporal distribution of tree species plays an important role for a 

wide variety of vegetation management tasks such as monitoring disease and 

biodiversity assessment. For example, in the New Zealand context, a number of tree 

species in the myrtle family have recently been attacked by a fungal disease, known 

as myrtle rust. The myrtle family includes iconic natives such as pohutukawa, 

kanuka, manuka and rata, and commercially-grown species such as eucalyptus and 

feijoa. The myrtle rust can cause a deformation of the leaves and shoots, and twig 

dieback, and the plant can die if the infection is severe. 

(http://www.doc.govt.nz/myrtlerust). Using remotely sensed data with the 

advanced techniques tested in this thesis (object-based analysis and machine 

learning algorithms) can spatially map the impact of this fungal disease cost-

effectively. Such mapping is important to monitor the spread of the disease or its 

retreat. 

Integrating LiDAR data and optical data can be used to map individual trees as 

demonstrated in this research. Another advantage of using LiDAR data is that it can 

measure the height of trees. Combining maps of individual trees and tree height 
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derived from time series of optical and LiDAR data would provide an opportunity 

for monitoring tree growth in future research. 

As mentioned in Chapter 5, radar data can estimate biomass with higher accuracy 

than optical data. In this thesis, only optical datasets were used for predicting 

biomass of mangrove forests. Future research could use both optical datasets and 

radar datasets to improve biomass mapping. These datasets are now freely available, 

e.g. Sentinel-1 and ALOS-PALSAR. 

The methodology for predicting biomass include two main sections: 1) identifying 

different mangrove types and then 2) using allometric algorithm combined with 

random forest for predicting biomass.  

For identifying different mangrove types, the surrounding environment of 

mangroves in NZ is different from Vietnam. The research location in Vietnam is 

protected mangrove forests which include mangrove associations as a dominant 

land cover type and other land cover types such as shrimp ponds, bare lands, and 

muddy flats. On the other hand, mangrove in NZ is closed to urban residential areas 

and pasture. 

 Overall conclusion 

The overall motivation for this research was to investigate whether the inclusion of 

a wide range of context and shape variables can improve the accuracy of vegetation 

classification, as well as investigate which machine learning techniques work best. 

The overall conclusion of this research is that these additional variables can be 

obtained using OBIA and that they do improve vegetation classification accuracy. 

The research has also shown that machine learning techniques when used in 

combination with OBIA also improve vegetation classification accuracy. 

Humans can accurately identify individual tree objects, such as Pohutukawa trees 

in the field and also from detailed images, because the human brain is capable of 

integrating a diverse range of information such as the surrounding context, density 

of branches, canopy shape, and height. Human do not limit their perceptual 

information to just spectral colours. This research has shown that computers can 

now also utilise a wide range of information, which is available in digital form due 

to the addition of LiDAR and GIS derived variables that describe context and shape. 
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Remote sensing can now integrate the same complex information that humans use, 

but have the added advantage of being cost effective and consistent.  
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