

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the

Act and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right

to be identified as the author of the thesis, and due acknowledgement will be

made to the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://researchcommons.waikato.ac.nz/

Rating the Significance of
Detected Network Events

A report
submitted in fulfillment

of the requirements for the degree
of

Master of Science
at

The University of Waikato

by

Meenakshee Mungro

Department of Computer Science
Hamilton, New Zealand

July 7, 2014

c© 2014 Meenakshee Mungro

Abstract

Existing anomaly detection systems do not reliably produce accurate severity
ratings for detected network events, which results in network operators wasting
a large amount of time and effort in investigating false alarms. This project
investigates the use of data fusion to combine evidence from multiple anomaly
detection methods to produce a consistent and accurate representation of the
severity of a network event. Four new detection methods were added to Netev-
mon, a network anomaly detection framework, and ground truth was collected
from a latency training dataset to calculate the set of probabilities required for
each of the five data fusion methods chosen for testing. The evaluation was
performed against a second test dataset containing manually assigned sever-
ity scores for each event and the significance ratings produced by the fusion
methods were compared against the assigned severity score to determine the
accuracy of each data fusion method.

The results of the evaluation showed that none of the data fusion methods
achieved a desirable level of accuracy for practical deployment. However,
Dempster-Shafer was the most promising of the fusion methods investigated
due to correctly classifying more significant events than the other methods,
albeit with a slightly higher false alarm rate. We conclude by suggesting some
possible options for improving the accuracy of Dempster-Shafer that could be
investigated as part of future work.

Acknowledgements

I would like to acknowledge and thank the following people for their contri-
butions to this project: Dr Richard Nelson, my supervisor, who has provided
invaluable input throughout the year; Shane Alcock for keeping me motivated
and helping debug my code; Brad Cowie, the WAND Systems Administrator,
for keeping everything running smoothly and proofreading my thesis; Brendon
Jones for also proofreading this thesis; members of WAND for the countless
tea breaks and a tremendously pleasant experience throughout the duration
of the project; friends and family, in particular my Dad, who provided moral
support throughout the year.

A special thanks to my significant other, who was a neverending source of
support and reminders to work throughout the year.

Contents

Abstract ii

Acknowledgements iii

List of Acronyms vii

1 Introduction 1

2 Background 5
2.1 Network Anomaly Detection 5
2.1.1 Netevmon . 7
2.2 Data Fusion . 10
2.2.1 Existing Work . 11

3 Detector Research 14
3.1 Existing Latency Time Series Detectors 14
3.2 Potential Detector Candidates 17
3.3 Chosen Candidates to Implement 21

4 Detector Implementation 23
4.1 Implementation of the Symboliser 23
4.2 Implementation of the T-Entropy Detector 26
4.3 Implementation of the Hidden Markov Model (HMM) Detector 29
4.4 Implementation of the Changepoint Detector 30

5 Data Fusion Methods 31
5.1 Dempster-Shafer Belief Fusion 31
5.2 Bayes’ Theorem . 33
5.3 Cumulative Belief Fusion . 34
5.4 Averaging Belief Fusion . 36
5.5 Detector Count Heuristic . 37

Contents v

6 Ground Truth 38
6.1 Detector Selection . 38
6.2 Smokeping Ground Truth Data 39

7 Fusion Method Validation 53
7.1 Implementation Script . 53
7.2 The Test Dataset . 56
7.3 Validation Method . 62

8 Results 64
8.1 Possible Improvements . 72

9 Conclusion 75

References 78

A Probability Masses for Dempster-Shafer Belief Fusion 83

B Prior Probabilities for Bayes’ Theorem 90

List of Figures

2.1 Architecture of Netevmon including the proposed Data Fusion com-
ponent . 8

4.1 Screenshot of an event observed in a latency time series measured
between prophet.cms.waikato.ac.nz and f.root-servers.net over IPv4 28

6.1 Screenshot of the Smokeping latency on the network between WAND
and google.com. The vertical lines represent events detected by
Netevmon. 40

8.1 Accuracy when using detector probabilities for the Latency and
Variability categorisation method with a significance threshold of 0.9 66

8.2 Accuracy when using detector probabilities for the Latency cate-
gorisation method with a significance threshold of 0.9 67

8.3 Accuracy when using detector probabilities for the Variability cat-
egorisation method with a significance threshold of 0.9 68

8.4 Accuracy when using detector probabilities for the No Categorisa-
tion method with a significance threshold of 0.9 68

8.5 Accuracy when using detector probabilities for the Latency and
Variability categorisation method with a significance threshold of
0.85 . 70

8.6 Accuracy when using detector probabilities for the Latency cate-
gorisation method with a significance threshold of 0.85 71

8.7 Accuracy when using detector probabilities for the Variability cat-
egorisation method with a significance threshold of 0.85 71

8.8 Accuracy when using detector probabilities for the No Categorisa-
tion method with a significance threshold of 0.85 72

List of Acronyms

AMP Active Measurement Project

API Application Programming Interface

DoS Denial-of-Service

FSN Finite State Network

HMM Hidden Markov Model

IDS Intrusion Detection Systems

IP Internet Protocol

NMS Network Monitoring Systems

PCA Principal Component Analysis

SVM Support Vector Machine

Chapter 1

Introduction

Detecting anomalous behaviour in a network is important because it allows
network operators to address problems on the network in a timely fashion, be-
fore the problems are noticed by the network users. Existing anomaly detection
systems, such as Intrusion Detection Systems (IDS) and Network Monitoring
Systems (NMS), tend to produce a high rate of false alarms, which results in
network operators wasting time and energy in investigating erroneous events.
Many IDS and NMS require extensive configuration and tuning of additional
plugins for the system to behave as desired by the network operator, which
can lead to misconfiguration issues and may not recognise every possible mal-
function in the system.

Netevmon is a network event monitor, developed by the WAND Network Re-
search Group [20], that runs a series of anomaly detection methods on network
time series data. A monitor collects the measurements that form the time se-
ries and these measurements are used as input by Netevmon. The anomaly
detection methods deployed within Netevmon produce severity scores for each
detected event, but these scores are assigned arbitrarily and are often not an
accurate indication of the true significance of the events.

We propose extending Netevmon to use data fusion to combine the evidence
from the anomaly detection methods to form a single, accurate representa-
tion of the significance of an event that takes into consideration all of the
evidence provided by the detection methods. We will focus exclusively on la-
tency measurements, because many problems on the network are reflected in
the changes in latency to other hosts and are thus clearly observable in a la-
tency time series. Additionally, latency measurements were already available

Chapter 1 Introduction 2

from the WAND Network Research Group’s ongoing monitoring of latency us-
ing both a local instance of the Smokeping software [31] and measurements
collected by monitors situated throughout New Zealand as part of the Active
Measurement Project (AMP) [19]. This meant that a large volume of latency
measurements was available to use for this work. If data fusion proves useful
for latency time series, it will likely be useful for other network metrics as well,
e.g. traffic volumes.

This project is not the first attempt at applying data fusion to network anomaly
detection [28] [10] [42], but previous work has typically dealt with metrics
extracted from passively captured network packets, rather than active latency
measurements. However, the results from the previous work have shown that
data fusion can be effective for network anomaly detection.

Data fusion requires evidence from multiple sources to be effective, but Netev-
mon only had two anomaly detection methods in use with latency time series
at the time when this project was started. Hence, the first step was to in-
vestigate existing literature to find suitable anomaly detection methods for
possible implementation within Netevmon to extend the number of potential
sources of evidence. Of the candidates identified, three were chosen for im-
plementation, namely T-Entropy [16], Hidden Markov Model (HMM) [23] and
Real-time Changepoint Detection [4]. The implementation of these methods
resulted in four new anomaly detection methods added to Netevmon, due to
the T-Entropy method being applied to two separate metrics: one based on
the standard deviation and the other based on the mean of the time series.

Each of the data fusion methods required a set of probabilities describing the
likelihood that an event detected by a given anomaly detection method is
significant. For this purpose, we collected ground truth data for 535 events
detected from 25 Smokeping latency time series and manually assigned each
event a severity score ranging from 0 to 5, with 0 being a false positive and 5
being a major event. Using this ground truth, the probabilities were derived
by calculating the proportion of significant events, i.e. events with a sever-
ity score above 2 reported by each anomaly detection method. To determine
whether the magnitude or the variability of the series should be accounted for
when assigning the likelihood of significance, probabilities were also calculated
for a set of “categories” defined by the mean latency and the variability of the
time series at the time the event occurred. When considering the significance

Chapter 1 Introduction 3

of an event, the data fusion algorithms would use the probabilities for the
categories that described the current behaviour of the time series. Four cate-
gorisation methods (No categorisation, Latency only, Variability only, Latency
and Variability) were implemented and compared in the course of this study.

To evaluate the accuracy of each data fusion method, a second dataset con-
sisting of AMP-ICMP latency time series was collected and the events from
the test dataset were manually processed in the same way as the Smokeping
training data to derive ground truth. The events from the test dataset were
run against the data fusion methods and the results reported by the fusion
methods were compared with the manually assigned severity scores. Each fu-
sion method reported a probability or belief that the event is significant. A
threshold of 0.9 was used to determine when a data fusion method had iden-
tified that an event was significant, e.g. if the final probability reported by a
fusion method was less than 0.9, the fusion method had not determined the
event to be significant. An event with a severity score below 3 was correctly
classified if the probability of significance never exceeded the threshold of 0.9.
The opposite was true for significant events, i.e. events with a severity score
of 3 and above must have exceeded the threshold to be correctly classified.

The results of the evaluation showed that none of the data fusion methods
performed at a suitable level for practical deployment, primarily due to a high
false negative rate, i.e. events marked as significant in the ground truth not
exceeding the 0.9 threshold. The best performing method was Dempster-Shafer
because it had the lowest rate of false negatives, despite achieving a slightly
higher number of false positives than some of the other methods and therefore
we conclude that future work should be focused on improving Dempster-Shafer
to a satisfactory level of accuracy.

The contributions of this work can be summarised as follows:

• a ground truth latency time series dataset with manually assigned sever-
ity scores for known identified events has been collected that can be made
available for distribution to other researchers;

• four new anomaly detection methods have been successfully implemented
within Netevmon and are actively being used to detect network events
by existing Netevmon deployments;

• five data fusion methods were implemented within Netevmon, namely

Chapter 1 Introduction 4

Dempster-Shafer, Averaging Belief Fusion, Cumulative Belief Fusion, De-
tector Count Heuristic, and Bayes’ Theorem;

• the five data fusion methods have been evaluated against a test dataset
and although we found that none of the methods achieved satisfactory
results, Dempster-Shafer correctly identified the most significant events
and would be therefore best suited for further experimentation;

• we discovered that the variability of a time series affects the reliabil-
ity of the implemented detectors for latency time series, but found that
categorising events based on the magnitude of the time series had lit-
tle discernible benefit when deriving the probabilities for use with data
fusion.

This thesis is organised as follows: Chapter 2 discusses network anomaly detec-
tion systems and the lack of anomaly detection systems that produce accurate
severity ratings for detected events. It introduces our proposed solution to this
problem: using data fusion to combine the evidence produced by the detec-
tors deployed within Netevmon, a network event monitor. Chapter 3 describes
the state of Netevmon at the start of this project, describes several anomaly
detection methods that were potential detector candidates and discusses the
selection of three anomaly detection methods (HMM [23], Real-time Change-
point Detection [4] and T-Entropy [16]) for implementation within Netevmon.
Chapter 4 documents the implementation of the new detectors and the Sym-
boliser, which is used to convert latency measurements to discrete characters
for use by the Hidden Markov Model (HMM) and T-Entropy Detectors. Chap-
ter 5 introduces the data fusion methods that will be evaluated and describes
how they have been implemented within Netevmon. Chapter 6 describes the
method for collecting ground truth from a set of Smokeping latency time se-
ries and the process of calculating the probabilities for each of the detectors.
Chapter 7 documents the fusion method validation process, where each data
fusion method was run against a second latency test dataset and their results
compared against known ground truth for the test dataset. Chapter 8 presents
and discusses the results of the fusion method validation and possible improve-
ments that may increase the accuracy rate for some data fusion methods are
identified. Finally, Chapter 9 concludes the report.

Chapter 2

Background

2.1 Network Anomaly Detection
Anomaly detection refers to the identification of abnormal behaviour that does
not conform to the regular pattern in a dataset. In the case of a time series,
an anomaly could be a sudden increase in value, a plunge or a change in the
trend of the series. It is important to detect anomalies because they are often
an indication that undesirable or unexpected behaviour is occurring and may
warrant somebody’s attention.

In the context of networking, anomaly detection refers to the identification
of significant events or changes on a network. This is particularly useful for
network operators since they are interested in knowing about problems on their
networks as soon as possible. This allows the network operators to resolve the
problems before the event escalates and affects the performance of the network,
which could result in customer complaints.

There are several anomaly detection methods currently used by network opera-
tors to monitor real-time network traffic. Most of these methods belong to two
broad categories: Intrusion Detection Systems (IDS) and Network Monitoring
Systems (NMS).

An IDS is a software application or device that is used to detect malicious net-
work traffic, e.g. malformed packets, network scans, Denial-of-Service (DoS)
attacks, hacking attempts, etc. An IDS can be network based (NIDS), where
a whole network is monitored for abnormal activity, or host based (HIDS),
where individual hosts on the network are monitored. A NIDS analyses the
traffic on a network and matches the packets to known network traffic attack

Chapter 2 Background 6

signatures, while a HIDS monitors incoming and outgoing traffic for the host
and detects whether the critical file system on a machine has been modified.
A popular NIDS is Bro [32], an open-source passive network traffic analyser
that monitors the network traffic on a link for any suspicious behaviour. Snort
[37] is another widely used IDS that includes features such as real-time traffic
analysis and packet logging, detecting a large range of probes and real-time
alerting functionality.

A NMS continuously monitors a network to detect failing conditions (e.g. un-
reachable servers or congested links) and sends notifications when required to
the network operator via email or text messages. An example of a widely used
NMS is Nagios [17], which is a network monitoring tool that monitors many
components of a network and alerts the network administrator when any of
the components malfunction. Its basic functionality includes alerting, handling
events and reporting events to network operators, but it can also be configured
with a large variety of plug-ins to provide additional functionality, e.g. a visual
front-end that allows visualising the state of the network or MySQL database
statistics.

The downside of existing IDS and NMS software is that they can generate a
large number of false alarms on a daily basis, which is undesirable because net-
work operators either waste time and energy in investigating the false alarms
or learn to ignore the system. While an NMS like Nagios can be tailored to
the network operator’s requirements, this often means spending a long time
configuring multiple plug-ins and writing several scripts to ensure that the
NMS will behave in the desired manner. Misconfiguration of the plug-ins and
scripts is a common occurrence that means that the NMS will not function ex-
actly as required by the network operator. It is also very difficult to tailor the
configuration of an NMS to cater to every possible malfunction in the system.

Outside of IDS and NMS, network anomaly detection has been frequently
investigated in literature, although most of the methods proposed are yet to
see widespread use in industry. Shon et al. (2007) [41] proposed a novel
Support Vector Machine (SVM) approach that uses unsupervised learning and
provides a low false alarm rate. Thottan et al. (2003) [46] investigated a
statistical signal processing method based on the detection of sudden changes
on an Internet Protocol (IP) network and showed that it was an effective
approach for detecting network anomalies on an IP network. Lu et al. (2009)

Chapter 2 Background 7

[27] described a method for detecting anomalies using a new network signal
modelling approach with the combination of wavelet approximation and system
identification theory. Taeshik et al. (2005) [40] investigated a machine learning
based approach using a genetic algorithm for the selection of features and a
Support Vector Machine (SVM) for classifying packets. Sekar et al. [38]
attempted to achieve low rate of false alarms while detecting new attacks
by using a new technique that integrates specification-based and anomaly-
based intrusion detection. Krügel et al. (2002) [24] presented a technique
that uses application specific knowledge of network services when extending
network traffic models for the purposes of detecting suspicious data concealed
in network packets. Androulidakis et al. (2009) [5] investigated the effect of
intelligent flow sampling methods when detecting and classifying anomalies on
a network. Ziviani et al. (2007) [49] proposed using non-extensive entropy,
which is a one-parameter generalisation of Shannon entropy, in the detection
of anomalies in an autonomous system (AS).

2.1.1 Netevmon

Netevmon is a software package developed by the WAND Network Research
Group [20] which is designed to perform anomaly detection on a wide variety of
different types of network time series data. As shown in Figure 2.1, Netevmon
receives network time series data from the monitor that is collecting the mea-
surements. The measurement must include a timestamp, a unique identifier
for the time series that it belongs to, the method that was used to collect the
measurement (e.g. Smokeping [31], traceroute, etc), and the observed value
itself. The measurement method is used to determine which time series mod-
ule should be used to analyse the time series. For example, if a Smokeping
latency measurement is received, the Latency time series module will be used.

Within Netevmon, each anomaly detection method is implemented as a “De-
tector” module and each Time Series module defines a set of Detector modules
that are suitable for finding anomalies in that particular type of time series
data. A detector is not exclusive to a single Time Series module, e.g. the
Plateau Detector in Figure 2.1 is used by both the Latency and Byte Count
Time Series modules. Each time a new measurement is passed into a Time
Series module, it is forwarded to an instance of each of the Detectors associ-
ated with the Time Series module. If the new measurement causes a Detector
to decide that an event has occurred, an event object will be returned to the

Chapter 2 Background 8

Time Series module which will then be written into the Events database. This
database can then form the back-end for a NMS-style dashboard which lists
recent network events for an operator.

Figure 2.1: Architecture of Netevmon including the proposed Data Fusion component

Netevmon has a modular design which makes it easy to extend Netevmon
to implement new anomaly detection methods as Detector modules or add
support for new time series types, e.g. flow counts, packet counts, etc. New
Detector modules can also be easily associated with existing time series mod-
ules. This makes Netevmon particularly suitable for developing and evaluating
new anomaly detection methods, as the developer only needs to write code for
the Detector module and add the new Detector to the desired Time Series
module.

Currently, events detected by Netevmon are assigned severity scores (ranging
from 0 to 100) by the Detector modules, but these scores are either arbitrary
or assigned in a very simplistic fashion and are thus poorly representative of an
event’s true significance. For example, the Plateau Detector determines sever-
ity by dividing the average “normal” measurement by the average “anomalous”
measurement. In this case, a latency change from 2ms to 4ms would have the
same severity score as a change from 100ms to 200ms, but the latter case is
likely to be of much more interest to the network operator than the former.

Chapter 2 Background 9

As a result, it is difficult for a network operator to evaluate the significance of
the events currently detected by Netevmon.

Therefore, our proposed approach is to extend Netevmon to allow the Latency
time series module to send detected events to a Data Fusion component. The
Data Fusion component will then take into consideration all of the evidence
produced by all of the Detectors and generate a final probability of significance
for any given event. Although in Figure 2.1 only the Latency time series
module is exporting events to the Data Fusion component, we anticipate that
the other modules could also make use of data fusion.

We chose to focus exclusively on latency time series data because one of the
more obvious indicators of a network experiencing problems is changes in the
latency between hosts. For example, a failure in a router could result in packets
using a different path or being unable to reach the destination, which might
result in an increase in latency or missing latency measurements respectively.
Latency can also be used to infer the location of a destination based on the
mean latency; destinations in the same town will normally have a very low
latency, whereas destinations on the other side of the globe will have a much
higher latency. This feature is useful for network operators because it allows
them to identify when the nearest server is no longer being used by observing an
increase in latency. This is particularly significant for New Zealand operators,
as domestic transit is cheap and high-bandwidth whereas international transit
is expensive. Any change from domestic to international transit for a major
content provider would demand immediate attention from the operator.

Another reason for choosing latency was that we had two ongoing sources of
latency measurements that were readily available and supported by Netev-
mon. The first of these was the Smokeping [31] measurements collected by
the WAND Network Research Group’s internal monitoring, which measure la-
tency from the WAND network to a variety of external targets. The second
is the ICMP [33] test results collected by AMP [19] monitors located through-
out New Zealand, which measure latency to both each other and to popular
content and service providers, e.g. Google, DNS root servers, Twitter. This
meant that we had a large number of latency time series that we could use as
training and evaluation data for the purpose of this study.

Chapter 2 Background 10

2.2 Data Fusion
Network monitoring typically collects measurements at a regular interval, which
creates a time series that can be used as input for an anomaly detection
method. In literature, there are many anomaly detection methods for use
with time series data, such as the Plateau Algorithm [29], Hidden Markov
Model [23], Bayesian online changepoint detection [4], and an optimized K-
nearest neighbors algorithm [34]. A more exhaustive list of anomaly detection
methods can be found in [9].

While these methods can be effective at detecting changes in a time series, not
all of the anomalies reported by each method is worthy of a network operator’s
attention. An ideal system would only alert an operator to significant anoma-
lies, rather than alerting for every minor change observed on the network.

One potential solution is to utilise data fusion to combine the results from
multiple anomaly detection methods to determine the significance of a detected
network anomaly. Data fusion is defined as the combination of evidence from
several sources to produce a unified result that is an accurate and consistent
representation of the original evidence. There are several different methods
for the combination of evidence (e.g. Dempster-Shafer [39], Averaging Belief
Fusion [22], Bayes’ Theorem [6], etc) which have been used in a wide variety
of domains. One of the uses of data fusion in the weather monitoring domain
is described in [26] where Dempster-Shafer is used to combine evidence from
multiple radiation sensors for the purposes of predicting the presence of clouds.
Data fusion also has military applications, for example in [15], Dempster-
Shafer and fuzzy logic are used to aggregate the results of multiple sensors for
the purposes of enhancing the performance and reliability of automatic target
recognition systems. Data fusion is also used in semantic categorisation of
images [13], where attributes of images such as colour, edge properties and
texture, are combined with Bayes’ Theorem to improve the performance of
image categorisation.

In the context of network anomaly detection, each anomaly detection method
acts as a source of evidence, either in favour of or against a detected anomaly
being significant. The data fusion techniques combine the evidence from the
anomaly detection methods to produce a final significance rating that takes
into consideration all of the provided evidence.

Chapter 2 Background 11

Data fusion allows network operators to employ a wider range of anomaly
detectors, without having to be concerned about the false positive rate of
individual detectors. If a detector is known to be unreliable, any events it
detects would require additional evidence before a network operator is alerted.
Previous studies [28] [10] have shown that data fusion within the context of
network anomaly detection is more effective than using the evidence of anomaly
detection methods on their own. Other studies have shown that data fusion
can provide an increase in the rate of detection while lowering the false alarm
rate when combining results from different detection techniques [8] [47]. Some
data fusion methods can also account for missing or unreliable evidence, which
means that it is possible to obtain a significance rating without having to wait
for the results of every detection method. This is important for providing
timely feedback to network operators, as some detection methods are quicker
to react to changes in the underlying time series than others.

2.2.1 Existing Work

At present, data fusion in the context of network anomaly detection has not
been widely examined. There are only a few studies in literature where data
fusion has been used to combine evidence from anomaly detection methods,
such as [28], [10], [42].

Löf (2013) [28] proposed a method for evaluating network anomaly detection
methods by using a novel methodology that uses a data fusion based approach.
The new methodology is based on a new technique for creating anonymised
network traces that include more information than other traces, while pre-
serving the network users’ privacy. A network trace annotation format that
includes the information about the results of the anomaly detection methods
is used, which allows keeping the implementation of the anomaly detection
techniques private. Data fusion is then utilised to combine the output of mul-
tiple anomaly detection approaches for the purposes of identifying a wider
range of network events. Five anomaly detection methods were chosen for
testing, two of which used a time series as input (Holt Winters Forecasting
[7] and Adaptive Single Exponential Smoothing Forecasting [48]). The three
remaining anomaly detection methods, Snort [37], T-Entropy [16] and Bro [32]
required network traces as input. The output of the anomaly detection meth-
ods were combined with two data fusion techniques, namely Dempster-Shafer
and Averaging Belief Fusion. A third technique, “Majority Voting”, was also

Chapter 2 Background 12

used, where each anomaly detection method votes as to whether the detected
event is an anomaly or not. The results of testing the performance of each
individual anomaly detection method on their own and the three Data Fusion
methods showed that Dempster-Shafer produced the best results.

Chatzigiannakis et al. (2007) [10] investigated the detection of anomalies in
large scale networks using a data fusion based approach on a wide variety of
sensors. The authors discussed a number of classifications of anomaly detec-
tion methods based on the data fusion approach relevant to each method, and
chose to further study and test the performance of two different anomaly de-
tection techniques: a Dempster-Shafer Theory of Evidence based method and
a Principal Component Analysis (PCA) [21] based method. The two methods
were evaluated using network traces captured on the network between the Na-
tional Technical University of Athens (NTUA) and the Greek Research and
Technology Network (GRNET) as input. The Dempster-Shafer method was
applied to the sensor measurements using three metrics, ICMP packets out/in
ratio, UDP packets in/out ratio, and TCP-SYN in/TCP-FIN out ratio. The
measurements were then converted to basic probability assignments by using
multiple thresholds per sensor measurement. The PCA-based approach was
implemented using an algorithm based on M3L [11] and uses properties of the
network trace as metrics, e.g. ICMP packets in, ICMP packets out, TCP flows
in, TCP flows out, etc. The PCA-based method also used a training dataset
that was captured on the same NTUA to GRNET network to create the net-
work model. The results of the tests with the two data fusion based methods
showed that the two methods could be used effectively to complement each
other and increase the range of detected network anomalies.

Siaterlis and Maglaris (2004) [42] employed a Dempster-Shafer Theory of Ev-
idence based approach to develop a new Denial-of-Service (DoS) anomaly de-
tection method. Two sources of sensor input are used for the DoS detection
method: simple traffic statistics from packet data (using libpcap [3]) captured
using a preprocessor plug-in for Snort [37] (e.g. incoming and outgoing TCP
SYN, TCP FIN, TCP, ICMP, UDP packet rates, etc) and data collected from
an SNMP [1] collector and analyser (e.g. number of flow learn failures, queue
drop counters and active flows). The state of the network is expressed as basic
probability assignments by the sensors translating the measurements received
as input. The basic probability assignments are transferred to the Dempster-
Shafer fusion node by first converting the probability information to XML

Chapter 2 Background 13

format and then using an extended version of the IDS communication proto-
col, called IDMEF [2]. The Dempster-Shafer fusion method then calculates
the belief and plausibility values, and an averaging function is used in filtering
short changes. The DoS detection engine was tested on a Gigabit Ethernet link
on an academic research network that contained a combination of standard,
online games, peer-to-peer and streaming audio traffic. The authors found ev-
idence that showed that an attack would still be identified even when a sensor
failed to detect the attack by combining information obtained from the other
sensors.

Because the approaches mentioned in literature, [28], [10] and [42] require
passive packet processing, they are not suitable for this project which is pri-
marily focused on actively measured latency time series. Instead, we will
implement and compare several data fusion techniques described in literature
(e.g. Dempster-Shafer, Bayes’ Theorem, Cumulative Belief Fusion [22]) to
determine which one works best for network latency time series. An ideal
data fusion method would correctly classify major network events as signif-
icant (minimising false negatives) while classifying a minimal number of in-
significant events as significant (minimising false positives) to ensure that the
network operator is only alerted to events that demand their attention.

Chapter 3

Detector Research

Data fusion requires several sources of evidence to be effective. In the case
of Netevmon, each individual detector acts as a source of evidence. However,
the number of detectors deployed within Netevmon at the start of this project
was insufficient to be able to fairly evaluate the effectiveness of fusion methods.
The implementation of new detectors within Netevmon was therefore necessary
before belief fusion could be used effectively to combine the results reported
by the detectors.

This chapter describes the existing detectors deployed within Netevmon at the
time the project began, followed by a brief description of a number of potential
detector candidates. Three methods are chosen for implementation and the
reasons for choosing those detectors are described.

3.1 Existing Latency Time Series Detectors
At the start of this project, there were four detectors that used latency time
series implemented within Netevmon:

Mode Detector
The Mode Detector has been designed to detect changes in the most
common value observed by latency time series. For many paths, the
latency is relatively constant and the Mode Detector can be effective at
finding changes in the series.

The Mode Detector maintains a history buffer which stores the most re-
cent 25 datapoints observed in chronological order and a frequency map
which records how often each latency value appears in the history buffer.

Chapter 3 Detector Research 15

The primary and secondary modes, which are the most frequent and sec-
ond most frequent latency values respectively, are found by analysing the
frequency map and the following conditions are evaluated to determine
if a mode event has occurred:

• the history buffer must be full, since an accurate mode cannot be
identified from only a few measurements;

• a previous mode is required for a change to be detected;

• the frequency of the primary mode must be greater than the mini-
mum frequency threshold of 12;

• a mode change can only be reported if the most recent datapoint in
the history buffer matches the primary mode. This is to avoid sit-
uations where old datapoints matching the previous primary mode
are expired from the history buffer and frequency map, which would
otherwise trigger a mode change;

• the difference between the frequency of the primary and secondary
modes must be more than 5;

• the difference between the new and previous primary modes must be
more than 3ms, as any latency change smaller than 3ms is unlikely
to be worth alerting on;

• the previous mode must still be in the frequency map. If not, the
series has not changed from one mode to another but has instead
become constant again after a period of variability.

If all of these conditions have been met, the severity score of the event
is obtained by calculating the ratio of the previous mode to the current
one. Finally, the event is reported and the previous mode is set to the
current primary mode.

Plateau Detector
The Plateau Detector is used to detect anomalous changes in the levels
of the mean of a time series and is a modified implementation of the
algorithm described in [29]. It maintains two buffers - a history buffer
of measurements from the past 6 hours and a trigger buffer of 12 mea-
surements. Initially, all new values are added to the history buffer. Once
the history buffer is full, new measurements are evaluated by checking

Chapter 3 Detector Research 16

whether they fall within 3 standard deviations from the mean of the val-
ues currently in the history buffer. If the new measurement falls within
the acceptable range, i.e. a non-anomalous measurement is seen, it is
added to the history buffer and the oldest measurement is deleted, after
which the statistics are updated. In this case, the oldest value in the
trigger buffer is also removed if the trigger buffer contains values. If the
new measurement falls outside of the acceptable range, the measurement
is added to the trigger buffer. If the trigger buffer becomes full, an event
is reported, provided the difference between the means of the two buffers
is sufficiently large relative to the the history buffer mean.

Once it has been determined that there is an event at the current times-
tamp, the severity score is calculated depending on the value of the
history and trigger buffer means. If one of the means is 0, the severity
score is the other buffer mean. Otherwise, the severity score is the value
of the larger mean divided by the smaller mean.

Loss Detector
Latency measurements also report whether packets were lost during the
test. Normally, this value should be zero and any amount of lost packets
may indicate a problem on the network. The Loss Detector maintains a
history buffer of lost packet counts from the past 90 minutes. Each new
measurement is added to the history buffer, after which the percentage
of loss is calculated using the number of non-zero values in the buffer.

The Loss Detector is designed to detect two types of events:

• the percentage of non-zero values in the buffer exceeds a given
threshold

• the number of consecutive non-zero values is greater than 3

The loss percentage is used to determine the severity level of the event,
which is one of the following:

basic
A basic loss event occurs either when the loss percentage simply
exceeds 33% or when the number of consecutive non-zero measure-
ments exceeds 3;

Chapter 3 Detector Research 17

escalated
An escalated event occurs when the percentage of loss in the buffer
exceeds 66%;

extreme
An extreme loss event occurs when the history buffer is full of non-
zero measurements.

When a loss event has been identified, the severity score is assigned
depending on the current state of loss. If more than 3 non-zero mea-
surements were found in the buffer, the severity score is 40; if the loss
percentage exceeded 33%, the score is 60; escalated loss events have a
score of 80 and finally, extreme loss events have a score of 100.

Latency TS Detector
The Latency TS Detector continuously monitors changes in the variabil-
ity of a latency time series and is used to detect when the time series
changes from constant to noisy or vice versa. In that case, it triggers a
special “Noisy to Constant” or “Constant to Noisy” event with a severity
score of 50. This component of Netevmon has the sole responsibility of
informing the other active detectors of the current state of the time se-
ries, as they may behave differently based on the variability of the time
series, e.g. using a larger threshold for anomalous behaviour if the series
is noisy.

3.2 Potential Detector Candidates
Because it was not feasible to consider an exhaustive list of all the possible
detectors that have been developed by other authors, we chose the methods
presented in [9] as a suitable sample of possible options to investigate. Out of
the anomaly detection methods discussed in [9], we chose methods that were
likely to perform adequately with measurements from a latency time series. We
also chose to investigate other methods based on their popularity in the context
of anomaly detection, e.g. Holt-Winters Forecasting. The list of detectors that
we evaluated and considered for implementation within Netevmon are:

Hidden Markov Model (HMM)
A HMM can be defined as a stochastic Finite State Network (FSN) that
uses probabilistic rules to build an internal and external symbol sequence,

Chapter 3 Detector Research 18

which is then used to evaluate the likelihood of belonging to a previously
determined model [35]. The HMM-based application proposed by [23]
differentiates between regular and anomalous network traffic by using a
predictive model.

First, the training stage builds a model using the training data. This
includes the initialisation of parameters required for the model and the
selection of a discrete symbol space for the conversion of states to an
appropriate observation symbol. The Baum - Welch method [14] is used
in estimating the parameters necessary for the HMM. The training model
is iteratively evaluated and re-estimated until the required limiting point
is reached. After the training session, the recognition phase allows testing
if the network traffic is anomalous or normal. The anomaly detection
system is provided discrete observation values and the recognition phase
assigns a winning model (normal or abnormal) to the network traffic.

T-Entropy
T-entropy is a measure of complexity of any given string of symbols,
where strings with more variability have higher T-entropy [16]. In [44],
the average T-entropy rate of a stream of network packets is obtained
by first converting the network packet features into a string. The stream
data is simplified by mapping the contents of the IP packets into pre-
determined symbols to produce a string of characters that model the com-
plexity of the original data. The T-complexity of the string is calculated
using a set of values returned by an algorithm called T-decomposition.
T-information, which is a linear measure for the amount of information
in a string, is calculated from the resulting T-complexity value using an
inverse logarithmic integral. Finally, T-entropy is obtained by calculat-
ing the gradient of T-information and is measured in natural information
units. Events are then represented as changes in the rate of the average
T-entropy.

While this approach used features of IP packets (e.g. the protocol field
from the IP header), it could also be applied to a time-series of network
measurements such as latency. This would require mapping the latency
measurements to a discrete symbol space but would otherwise operate
in a similar fashion to the original method.

Chapter 3 Detector Research 19

Real-time Changepoint Detection
Changepoints are defined as sudden changes in the model of a sequence of
data. There are a number of methods in literature that attempt to iden-
tify changepoints in time-series data [25] [4] [43] [45] [30] [12]. However,
[43], [45] and [12] were ruled out as their approaches were not suitable
for real-time processing. Of the methods that could be implemented for
online changepoint detection, [4] was chosen as a candidate primarily
because it explained the algorithm clearly in the literature.

Adams and MacKay (2007) [4] proposed a method where the parameters
of the model are independent both before and after the changepoint. This
method focuses on using causal predictive filtering, where a distribution
of the next datum in the sequence is generated using previously-observed
data. The observation sequence is assumed to be divisible into a series of
product partitions that do not overlap based on the likelihood that con-
servative values belong to the same sequence. The delimitions between
the resulting partitions represent the changepoints in the series.

Plunge Detector
The Plunge Detector is based on heuristics developed by the original
authors of Netevmon. It is currently deployed on metrics other than la-
tency, such as byte counts and user counts. It is used to detect sharp and
sudden drops in time series that measure traffic volumes or other net-
work utilisation metrics by using the median of previous measurements
to represent the typical usage pattern. In this case, the mean is inap-
propriate since a downward trend at the start of the plunge will decrease
the mean, meaning that a change would often not be detected. Each
new measurement is added to the history buffer and once the median is
calculated, the range is obtained by calculating the difference between
the largest and smallest datapoints. A plunge event is reported if the
following conditions are met:

• the datapoint is smaller than the smallest value currently in the
history buffer;

• the difference between the median and the observed datapoint must
exceed a minimum threshold (2 KB in the case of byte counts, 2
users in the case of user counts);

Chapter 3 Detector Research 20

• the median of the values in the history buffer is at least 5ms, be-
cause plunges from very small values are less important to network
operators.

k-Nearest Neighbours Algorithm
This algorithm is used in determining if a data value lies in the feature
space by calculating the sum of distances to the k-nearest neighbours
of the data value, which is called a kNN score for a data value. The
authors of [34] propose a system that defines and categorises normality
while also identifying new types of network attacks without any prelimi-
nary information of their existence. However, computing the kNN score
to determine if an instance fits in with the rest of the sample is compu-
tationally expensive, especially when the complexity and volume of the
network data is considered. Hence, the proposed method improves the
efficiency of the algorithm by using a method similar to canopy cluster-
ing, which involves breaking down the feature set into smaller subsets.
This eliminates the need to check every data point.

Exponential Smoothing with an Adaptive Response Rate
As stated by [48], forecasting systems that use exponential smoothing
assume that the time-series data stems from basic processes that depend
only on time, but that are laden with random noise. However, these sim-
plistic systems do not react in a timely fashion to a sudden change in the
time-series data. The authors of [48] proposed a forecasting system that
uses exponential smoothing where the response rate is varied according
to a tracking signal that is based on the amount of error observed in
the previous forecasts. This allows the forecast method to adapt more
quickly to significant changes in the underlying time-series, which is par-
ticularly relevant in the case of latency measurements because changes in
latency tend to be relatively large. In simple cases, the authors suggest
calculating the tracking signal by dividing the smoothed error by the
smoothed absolute error, but more sophisticated methods could also be
used if required.

Holt-Winters
The Holt-Winters [7] forecasting method is similar to the Exponential
Smoothing with an Adaptive Response Rate method, but differs in that
it can handle seasonal variations and can predict more than a single step

Chapter 3 Detector Research 21

in the future of a time series.

Holt-Winters’ ability to handle seasonal data is especially useful in the
context of latency time series since the forecast can therefore account
for variation due to the network having varying loads at different times
during the day. For example, latency may be higher or more variable
during the peak hours of network usage.

Additionally, Holt-Winters deals with long term trends without using any
adaptive methods. Holt-Winters forecasting states that the underlying
time series model can be split into three major components: a baseline,
a linear trend, and a seasonal effect. The algorithm used by the method
applies exponential smoothing to gradually update the components since
Holt-Winters Forecasting assumes that each component will evolve over
a time period.

3.3 Chosen Candidates to Implement
In order to choose the most appropriate detectors to add to Netevmon, a list
of requirements was drafted, namely:

• the detector must be easy to implement since the time allocated for
detector implementation was limited;

• the detector must not require labelled training datasets for their training
stage;

• the detector must not be computationally expensive since the detectors
must be able to work in real-time and report events in a timely fashion;

• the detector should use a noticeably different approach from the existing
detectors in order to detect different types of events;

• the detector does not require a perfect event detection rate since the data
fusion method will ideally filter out false positives produced by unreliable
detectors.

After studying the potential candidates and considering the set of require-
ments, T-Entropy, Hidden Markov Model (HMM) and Changepoint were se-
lected. The chosen methods are not computationally expensive, which means
that the techniques are appropriate for real-time analysis of network data.

Chapter 3 Detector Research 22

They are all unsupervised methods, which means that they do not require
labelled training datasets for their training stage. The algorithms used by
the chosen methods were also clearly explained in the literature, which sim-
plified the implementation. This was important given that there was a lim-
ited amount of time available for implementing new detectors. Additionally,
they all differ in nature and this is necessary to detect a broader spectrum
of anomaly types. Using the T-Entropy anomaly detection method was also
advantageous because working code to convert a string of characters into an
average T-entropy value was already available online [36] under the Apache
License, which meant that the code would only need to be adapted to work
within Netevmon. However, this method would require modifying Netevmon
such that new measurements would be converted to discrete characters to form
a string, which will in turn be used as input to the T-Entropy calculator. These
discrete character strings will also be used as input by HMM, which will enable
HMM to be implemented more easily.

The existing Plunge Detector was ruled out for implementation since it was
designed primarily to monitor traffic volumes and user counts, where a sudden
plunge to near zero would indicate a major network failure. However, latency
measurements differ in that latency increases are generally more interesting
events than plunges to network operators. Also, plunges in latency to near
zero are very uncommon and do not typically indicate network failure. Net-
work operators are instead more concerned about spikes in latency and thus,
modifying the Plunge Detector to suit latency time series did not appear to
offer much benefit over the candidates that were chosen.

Holt-Winters had been previously implemented within Netevmon and was
found to produce inadequate results. In particular, the predictions made by
the model would react too quickly to changes in the measurements and imitate
the time series with a slight delay. Hence, it was difficult to detect when a
measurement was anomalous since the predictions would learn the anomalous
behaviour before a detection method would infer a change had occurred.

A prototype of Exponential Smoothing with an Adaptive Response Rate was
developed but testing found that it had similar problems to the earlier Holt-
Winters implementation, so this method was not pursued any further.

Chapter 4

Detector Implementation

Having identified suitable anomaly detection methods, the next phase of this
research is the implementation of the new methods. Since the focus of this
work involved investigating the combination of results from different sources,
the time allocated for implementing new detectors was limited and the devel-
opment of two of the three chosen detectors was assigned to other students.

This chapter primarily focuses on the implementation of the T-Entropy De-
tector. It also briefly describes the implementation of the Hidden Markov
Model (HMM) and Changepoint detectors.

4.1 Implementation of the Symboliser
Since two of the proposed detectors required the conversion of latency mea-
surements into a discrete symbol space, the first task involved developing al-
gorithms for this purpose. The result of this work was the Symboliser.

The main objective of the Symboliser is to convert latency measurements into
discrete characters. However, the range of possible latencies was too large
to allow for a one-to-one mapping of latency measurements to symbols. One
approach that we considered was to assign characters to ranges of latency
measurements. For example, a measurement within the range of 0 to 5ms
would be assigned an ‘a’ character, another measurement within the range of
6 to 10ms would be assigned a ‘b’ character, etc. This was ruled out because
choosing appropriate ranges is difficult since a change from 5 to 10ms is much
more significant than a change from 200 to 205ms. Also, there is the problem
of two measurements that fall just either side of the range delimiter, e.g. with

Chapter 4 Detector Implementation 24

ranges of 5-10 and 10-15, a change from 9ms to 11ms would appear to have
more impact than a change from 11ms to 15ms.

A better approach is to use metrics that measure the relative amount of dif-
ference between a latency measurement and the previously observed values,
rather than any absolute difference or value. Relative metrics were also better
suited for this work since they have a smaller range of pertinent values. This
necessitated storing a history buffer of previous measurements since calculat-
ing the symbol metrics requires comparing the current measurement against
statistics about previous measurements. The Symboliser currently maintains
a history buffer of the past 3 hours of measurements, but the buffer can be
configured to store varying amounts of data.

Before we can explain the Symboliser in more detail, we must first establish
the terminology that will be used in this chapter. A measurement refers to
the original latency value. A symbol metric refers to the result of applying
one of the Symboliser metrics to a new measurement. A symbol refers to the
character that a given symbol metric maps to. Finally, a symbol string refers
to an ordered list of the symbols generated for the most recent measurements.

The Symboliser converts new measurements into a symbol metric, which is in
turn mapped to a character from the discrete symbol space. The new character
is then appended to the end of the symbol string for the symbol metric. Each
new measurement observed will result in a new character getting added to the
symbol string for the corresponding metric. Three metrics are supported by
the Symboliser, namely:

diffStdDev
For a measurement x at position n in a time series, the diffStdDev met-
ric is calculated as the number of standard deviations x is away from
the mean of the history buffer. This metric can be expressed using the
formula:

diffStdDev(xn) = xn −mean(Hn−1)
stddev(Hn−1) (4.1)

where Hn-1 is the history buffer containing recent measurements up to
and including xn-1;

relMeanDiff
This symbol metric represents the difference between the current and pre-
vious measurements xn and xn-1, relative to the the mean of the history

Chapter 4 Detector Implementation 25

buffer. It is useful for detecting large changes in consecutive measure-
ments and uses the formula:

relMeanDiff(xn) = xn − xn−1

mean(Hn−1) (4.2)

propDiffMean
The propDiffMean symbol metric is calculated as the mean of the history
buffer after adding the new measurement divided by the mean of the
history buffer before the addition of the new value. It is represented
with the following formula:

propDiffMean(xn) = mean(Hn)
mean(Hn−1) (4.3)

Once the value for a symbol metric has been calculated, the next step is to
convert that value into a discrete symbol. In the Symboliser, the symbol map
consists of the default character ‘?’, ‘a’ to ‘z’ for positive ranges, and ‘A’ to
‘Z’ for negative ranges. A range delimiter defines the range of values that
correspond to each character in the symbol map. Assuming a range delimiter
of 0.4, a symbol metric between -0.4 and 0.4 would result in a ‘?’ character,
which indicates a relatively normal measurement. Otherwise, the value is
divided by the range delimiter and the quotient is used as an index into the
symbol alphabet. The maximum index is 26 and any index larger than 26 is
reduced to 26, i.e. a ‘z’ or ‘Z’ character depending on whether the symbol
metric is negative or positive. For example, a symbol metric value of 1.3 and
a range delimiter of 0.4 would result in an index of 3, which corresponds to a
‘c’. Similarly, a symbol metric of -2.4 would result in an index of 6, which then
results in an ‘F’ character since the value was negative. A very large change
that would result in a symbol metric of 14 would have an index of 35 when
using a range delimiter of 0.4, but the maximum index of 26 would be used,
resulting in a ‘z’ character. The resulting character is then added to the end
of the corresponding symbol string.

The symbol string returned by the Symboliser only contains the most recent
characters added to the symbol string. Careful choice of the symbol string
length is important because the length can have a significant impact on the
event detection method that is using the string as input. In the case of long

Chapter 4 Detector Implementation 26

strings, measurements remain in the symbol string for longer and therefore,
can affect the event detection long after those measurements are relevant. If
the string length is too short, a string containing anomalous behaviour may
not be sufficiently different from one that represents normal behaviour. The
Symboliser implementation thus allows for the string length to be configured
by the detector that is using it.

When using the Symboliser with the T-Entropy Detector, we encountered the
problem where large changes would generate the same amount of entropy as
smaller changes, i.e. an ‘a’ is equivalent to a ’z’ as far as entropy is concerned.
This is a problem because any detection method designed to alert on the large
changes would also alert on the insignificant ones as well. To mitigate this,
an option was added to the Symboliser to append additional characters to the
symbol string whenever the symbol represented a large change. For example,
small changes that result in ’?’, ’a’, ’b’, ’A or ’B’ only have the 1 character
added to the string; characters from ’c’ to ’e’ and ’C to ’E’ result in 2 duplicate
characters getting added to the string; characters from ’f’ to ’i’ and ’F’ to
’I’ result in 3 duplicate characters getting added and finally, the remaining
characters are added 4 times to the string. This ensures that significant events
are detected faster due to the larger magnitude of the change being better
reflected in the character strings.

4.2 Implementation of the T-Entropy Detector
The T-Entropy Detector was the first of the chosen candidates to be imple-
mented. Source code for a stand-alone tool called t-codes [36] that would
convert a string of characters into an average T-entropy value was available
online under the Apache license. However, the tool being stand-alone meant
that there was no usable Application Programming Interface (API) or shared
library to use within Netevmon. Using the code in its original format would
require executing the stand-alone tool and parsing the resulting output which
would have been computationally expensive. This is especially problematic
when working with online data as any delays in the processing of measure-
ments would mean that recent measurements would not be processed in a
timely fashion.

Hence, the source code included with the t-codes tool had to be converted
to fit within the Netevmon framework. This involved adding debug output

Chapter 4 Detector Implementation 27

to analyse the order of the function calls, the effects of each function, and
the results produced to ensure that all of the necessary code was correctly re-
implemented. Once the code had been implemented as a shared library within
Netevmon, it was tested for accuracy by comparing its output with that of the
original t-codes tool for the same symbol string.

Each of the symbol metrics supported by the Symboliser will produce a distinct
symbol string for the same time series of latency measurements. Because the
symbol strings can differ, the T-entropy for each symbol metric is evaluated
independently. As a result, the T-Entropy Detector acts as three separate
detectors:

• the TEntropy-StdDev Detector, which uses the diffStdDev symbol met-
ric;

• the TEntropy-RelMeanDiff Detector, which uses the relMeanDiff symbol
metric;

• the TEntropy-MeanDiff Detector, which uses the propDiffMean symbol
metric.

Converting latency measurements into T-entropy values produces a new time
series which models the variation in the original data. However, changes in
the new time series still need to be detected. Hence, the T-entropy values for
each measurement are passed into a separate instance of the Plateau Detector,
which detects anomalous behaviour in the T-entropy time series.

Figure 4.1 shows an example of a significant event that started at around
10:37 on 9 May 2014. The event was detected by the Plateau Detector at
10:42:02. Table 4.1 shows the effects of the event on the entropy calculated
from the diffStdDev symbol metric. The T-entropy of the network just before
the event started was constant at 0.35 since there was no abnormal behaviour
that would introduce non-default characters and increase the entropy. The first
abnormal measurement is observed at 10:37:03 with an increase from 4400ms
to 133656ms, which inserts 4 ’z’ characters at the tail of the string and increases
the T-entropy from 0.35 to 0.55. The T-entropy is further increased with the
following measurements, where multiple characters were inserted because the
difference between the current measurements and standard deviation of the
previous measurements was still quite large.

Chapter 4 Detector Implementation 28

Figure 4.1: Screenshot of an event observed in a latency time series measured between
prophet.cms.waikato.ac.nz and f.root-servers.net over IPv4

Time Latency String Representation T-Entropy
10:34:03 3799 ?????????????????????????????? 0.35
10:34:31 3664 ?????????????????????????????? 0.35
10:35:02 4400 ?????????????????????????????? 0.35
10:37:03 133656 ??????????????????????????zzzz 0.55
10:37:31 132746 ??????????????????????zzzzzzzz 0.64
10:38:05 133631 ??????????????????zzzzzzzzzzzz 0.68
10:38:33 133297 ??????????????zzzzzzzzzzzzzzzz 0.69
10:39:00 133765 ??????????zzzzzzzzzzzzzzzzuuuu 0.91
10:39:32 133773 ??????zzzzzzzzzzzzzzzzuuuupppp 1.16
10:40:34 133677 ??zzzzzzzzzzzzzzzzuuuuppppmmmm 1.33
10:41:00 133181 zzzzzzzzzzzzzzuuuuppppmmmmjjjj 1.42
10:41:32 133473 zzzzzzzzzzzuuuuppppmmmmjjjjhhh 1.62
10:42:02 133192 zzzzzzzzuuuuppppmmmmjjjjhhhggg 1.96
10:42:32 133289 zzzzzuuuuppppmmmmjjjjhhhgggfff 2.22

Table 4.1: Example of the T-Entropy during the event

Chapter 4 Detector Implementation 29

4.3 Implementation of the Hidden Markov
Model (HMM) Detector

The HMM detector was implemented by Andrew Mackintosh as a project for
the University of Waikato Summer Research Scholarships. Similar to the T-
Entropy Detector, it uses the Symboliser to generate a string of characters
used to evaluate the model. However, it differs from the other detector in the
configuration of the Symboliser, where the sample size and string size are set
to half a day’s worth of measurements, the range delimiter is 0.2 as opposed
to 0.4, and the minimum difference between the current measurement and the
previous mean is set to 4. It also disables the addition of multiple characters
for larger symbol metric values and only uses a single metric: proportion of
the current to previous mean, i.e. propDiffMean.

Before the HMM can begin detecting anomalous behaviour, it needs to be
trained to determine the best model for the time series. During the training
phase, every new measurement is added to the Symboliser until the default
training size of half a day’s worth of measurements has been observed. Then,
a genetic algorithm is used to evaluate a large number of possible models for
the training data and the best model is chosen. The genetic algorithm has
been configured with a population size of 25 and is run for 500 generations.

Once the training model has been determined, the probability of the base
case (string of 5 default ’?’ characters) is then calculated, after which the
Symboliser is reset and the length of the string is set to 5 characters. The
following measurements are then passed through the new Symboliser and the
resulting string is tested against the training model to determine the proba-
bility of the string conforming to the training model. Because the probabil-
ity values are often very small, they are scaled using the following formula:
scaled = max(−baseP rob,−prob)

min(−baseP rob,−prob) , where baseProb is the probability of the base case
and prob is the calculated probability for the current string.

Finally, the scaled probability is passed through a Plateau Detector, which
detects any anomalous behaviour in the time series of the HMM probabilities.
Similar to T-entropy, events in the original latency time series are then reported
at the timestamp at which an anomaly is detected in the probability time series.

Chapter 4 Detector Implementation 30

4.4 Implementation of the Changepoint Detector
The Changepoint Detector was implemented by Richard Sanger and is an im-
plementation of the algorithm described in [4] with some modifications to suit
the context of network anomaly detection. The Changepoint algorithm looks
for sequences of consecutive measurements that are distinctly different from
the values that comprise the preceding sequence. This is done by fitting a dis-
tribution to the sequence that is deemed to be “current” behaviour and using
that distribution to determine the likelihood of recent measurements belonging
to the current sequence. If the likelihood is low for several consecutive mea-
surements, a changepoint is detected and an event is reported. The sequence
that triggered the event then becomes the “current” sequence.

The distribution of regular measurements is based on a Gaussian distribution
as opposed to the suggested student-t distribution because the Gaussian dis-
tribution was much simpler to implement and produced satisfactory results in
testing. Another change was that a changepoint would only be detected if the
sequence of anomalous measurements was no longer than 20% of the length
of the sequence of previous normal behaviour. This ensures that the detector
only reports recent changes as events by discarding events detected based on
a change that occurred long ago.

Chapter 5

Data Fusion Methods

With the addition of new detectors within Netevmon, there are now sufficient
sources of evidence available to investigate different data fusion methods. the
data fusion methods will be used to integrate the output from each of the
detectors into a final and accurate representation of the belief that an event
is significant, i.e. the event is important enough for network operators to
be interested in investigating it. Data fusion can also be used to calculate
the likelihood that an event is a false positive because the detectors are not
expected to be fully reliable and will occasionally report false positives. This
is also useful to network operators by indicating which events may be false
positives and should not be investigated.

In order to determine the best fusion method for integrating the output of
several detectors using latency time series, five fusion methods were chosen as
candidates for testing.

5.1 Dempster-Shafer Belief Fusion
The Dempster-Shafer Belief Theory [39] is a mathematical theory of evidence
that is used to combine observations from several sources to produce a degree
of belief which considers all of the presented evidence. It is based on the idea
that degrees of belief for one question can be obtained from subjective prob-
abilities of a related question, and Dempster-Shafer’s rule is used to combine
these degrees of belief when independent evidence is present. It also allows ex-
plicitly expressing uncertainty about subset probabilities, e.g. due to missing
evidence in the results. This makes Dempster-Shafer’s rule especially suited
for Netevmon because the significance of some events may not be apparent at

Chapter 5 Data Fusion Methods 32

the point when the first detector fires, but may become less uncertain if more
detectors later suggest that there is an event.

One commonly cited problem with Dempster-Shafer [18] is that it can pro-
duce counter-intuitive conclusions due to the final normalization step when
conflicting sources are integrated because Dempster-Shafer ignores the weaker
of the two opposing results. This is not an issue within Netevmon because
detectors do not contradict the results of other detectors, but instead provide
a cumulative proof of the possible presence of an event. As such, this problem
can be safely disregarded in this context.

A key element of Dempster-Shafer is the concept of mass functions which, in
this context, are pre-determined values that represent a prior belief about how
likely it is that an event will be significant or a false positive when a particular
detector fires. As will be explained in Chapter 6, the mass functions will be
determined by examining the performance of each detector against a large
sample of events where the significance has been manually classified.

The formula required for Dempster-Shafer’s belief function is as follows:

bel(Sig) = (p(Sig).m(DetSig)) + (p(Any).m(DetSig)) + (m(DetSig).m(DetAny))
(5.1)

bel(FP) = (p(FP).m(DetFP)) + (p(Any).m(DetFP)) + (p(FP).m(DetAny))
(5.2)

bel(Any) = p(Any).m(DetAny) (5.3)

where:

bel(Sig)
The belief that an event is significant;

bel(FP)
The belief that an event is a false positive;

bel(Any)
The belief that an event is neither significant or a false positive;

p(Sig)
The prior belief that the event is significant based on the detectors that
have fired previously;

Chapter 5 Data Fusion Methods 33

p(FP)
The prior belief that the event is a false positive based on the detectors
that have fired previously;

p(Any)
The prior belief that the event is neither significant nor a false positive
based on the detectors that have fired previously;

m(DetSig)
The degree of belief that an event reported by this detector is significant
based on previous detector history;

m(DetFP)
The degree of belief that an event reported by this detector is a false
positive based on previous detector history;

m(DetAny)
The degree of belief that an event reported by this detector is neither
significant nor a false positive based on previous detector history.

5.2 Bayes’ Theorem
Bayes’ Theorem [6] is a mathematical formula used to calculate conditional
probabilities. It can be used as a means of determining how the probability
that a theory is true is affected by new evidence. Bayes’ Theorem was chosen
as a fusion method because it is a well-studied and widely used method in
the field of statistical inference using probabilities. It is also useful within the
context of event detection using belief fusion where the probability of an event
being significant will be updated each time a new detector fires for any event
group.

Implementing Bayes’ Theorem within Netevmon will require computing the
formula:

P (Sig|Det) = P (Det|Sig).P (Sig)
(P (Det|Sig).P (Sig)) + (P (Det|!Sig).P (!Sig)) (5.4)

P (FP |Det) = P (Det|FP).P (FP)
(P (Det|FP).P (FP)) + (P (Det|!FP).P (!FP)) (5.5)

which involves the following components:

Chapter 5 Data Fusion Methods 34

P(Det)
The probability that a particular detector has fired;

P(Sig)
The probability that an event is significant;

P(FP)
The probability that an event is a false positive;

P(!Sig)
The probability that an event is not significant;

P(!FP)
The probability that an event is not a false positive;

P(Det|Sig)
The probability that the detector will fire if an event is significant;

P(Det|FP)
The probability that the detector will fire if an event is a false positive;

P(Det|!Sig)
The probability that the detector will fire if an event is not significant;

P(Det|!FP)
The probability that the detector will fire if an event is not a false posi-
tive;

P(Sig|Det)
The probability that an event is significant given that the detector has
fired;

P(FP|Det)
The probability that an event is a false positive given that the detector
has fired.

5.3 Cumulative Belief Fusion
The authors of [22] have proposed Cumulative Belief Fusion as a solution to
the contradictory evidence problem introduced by Dempster-Shafer’s Belief Fu-
sion. The cumulative rule is appropriate for scenarios where the accumulation
of evidence is used to combine independent belief fusions, whereas Dempster-

Chapter 5 Data Fusion Methods 35

Shafer’s rule combines beliefs by normalised conjunction. The latter ignores
the weaker of the conflicting evidence, while the proposed method attempts a
fair and equal representation of the conflicting beliefs.

This method is especially appropriate for use within Netevmon since the de-
tectors are independent and their results can be accumulated to determine
whether an event is significant or not.

The formula to update the probability that an event is significant when a
detector fires is:

P (Sig) = (p(Sig).P (DetAny)) + (P (DetSig).p(Any))
(P (DetAny) + p(Any))− (P (DetAny).p(Any)) (5.6)

P (FP) = (p(FP).P (DetAny)) + (P (DetFP).p(Any))
(P (DetAny) + p(Any))− (P (DetAny).p(Any)) (5.7)

P (Any) = 1− (P (Sig) + P (FP)) (5.8)

where p(Any) and P(DetAny) are both not equal to 0, and:

P (Sig) = (0.5.p(Sig)) + (0.5.P (DetSig)) (5.9)

P (FP) = (0.5.p(FP)) + (0.5.P (DetFP)) (5.10)

P (Any) = 1− (P (Sig) + P (FP)) (5.11)

where p(Any) and P(DetAny) are both equal to 0, and:

P(Sig)
The probability that an event is significant;

P(FP)
The probability that an event is a false positive;

P(Any)
The probability that an event is neither significant nor a false positive;

p(Sig)
The prior probability of the event being significant based on the detectors
that have fired previously;

p(FP)
The prior probability of the event being a false positive based on the
detectors that have fired previously;

Chapter 5 Data Fusion Methods 36

p(Any)
The prior probability of the event being neither significant nor a false
positive;

P(DetSig)
The probability that an event reported by this detector is significant;

P(DetFP)
The probability that an event reported by this detector is a false positive;

P(DetAny)
The probability that an event reported by this detector is neither signif-
icant nor a false positive;

The last three probabilities, i.e. P(DetSig), P(DetFP) and P(DetAny) are
equivalent to the mass function values used by Dempster-Shafer.

5.4 Averaging Belief Fusion
Averaging belief fusion is the second method proposed in [22] and is a solution
to Dempster-Shafer’s problem for the same reasons as the Cumulative Belief
Fusion method.

Averaging belief fusion is appropriate for scenarios using dependant belief func-
tions, where combining belief functions is achieved by averaging the evidence.
This means that this fusion method is not entirely suited for use within Netev-
mon since the detectors are fully independent and do not rely on the results of
other detectors to reach a conclusion. However, because the averaging method
is simple to implement, it was included as a candidate fusion method for this
study primarily to serve as a point of comparison against the other fusion
methods.

The averaging belief fusion is simply an average of the probabilities that an
event is significant for each individual detector that fired. It uses the same
probability values derived from the mass functions for Dempster-Shafer with
the following formula:

P (Sig) = 1
n

∑
P (DetSig) (5.12)

P (FP) = 1
n

∑
P (DetFP) (5.13)

Chapter 5 Data Fusion Methods 37

P (Any) = 1
n

∑
P (DetAny) (5.14)

5.5 Detector Count Heuristic
This heuristics-based fusion method was designed as a simple fusion method
that does not require any pre-computed probability values regarding the accu-
racy of the detectors that fired. It was suggested by the author of Netevmon
based on his experiences with the events produced by the detectors in a pro-
duction environment.

It is based on the principle that a significant event is much more likely to cause
most, if not all, of the detectors to fire, but assumes that all detectors are
equally reliable. If four or more detectors fire for any event group, the event is
instantly classified as significant. If fewer detectors fire, the count of detectors
that fired is multiplied by 0.2 to get the final probability of significance. The
formula used for this method is:

P (Sig) =

0.2x, if x ≤ 3

0.9, otherwise

where:

P(Sig)
The probability that an event is significant;

x
The number of detectors that fired for an event group.

If this method performs well in our evaluation, it would suggest that probability-
based belief fusion is unnecessary, which is especially convenient since the De-
tector Count Heuristic method is computationally inexpensive and easy to
implement than the other methods.

Chapter 6

Ground Truth

The implemented data fusion methods require a set of probabilities for each of
the detectors, e.g. the probability of a detector triggering given a significant
event or false positive, the probability of an event in a time series being sig-
nificant, etc. Due to the nature of the fusion methods, different probabilities
were required for Bayes’ Theorem and Dempster-Shafer, but the same prob-
abilities can be used for Dempster-Shafer, Averaging and Cumulative Belief
Fusion methods. Hence, a dataset of events with known severity ratings was
collected for the purposes of calculating the different probabilities to use for
each detector.

This chapter focuses on the detectors chosen for use with the data fusion
methods, how the ground truth data was collected and assigned a severity
rating, followed by the selection and calculation of the probability values for
each individual detector.

6.1 Detector Selection
Before the ground truth data collection could begin, we needed to confirm
which detectors would be used with the data fusion methods. The Loss Detec-
tor was ruled out because it has been implemented specifically for detecting
loss in a time series, which is a different type of event from the latency changes
that the other detectors monitor. The Latency TS Detector was also not cho-
sen for this task since it had been designed to primarily monitor changes in the
variability of the time series and only triggers “Noisy to Constant” or “Con-
stant to Noisy” events, which are more useful for informing the other detectors
of the current state of the time series.

Chapter 6 Ground Truth 39

Having implemented the three metrics (diffStdDev, relMeanDiff, and propDiffMean)
for the TEntropy Detector, we obtained three new detectors: TEntropy-StdDev,
TEntropy-MeanDiff and TEntropy-RelMeanDiff. After thoroughly testing and
analysing the performance of the three detectors, we observed that the TEntropy-
RelMeandiff Detector was too unreliable for event detection in its current form
and it was not clear if it could be easily improved.

Therefore, the detectors that had been chosen for use with data fusion were:

• Plateau Detector

• Mode Detector

• TEntropy-StdDev Detector

• TEntropy-MeanDiff Detector

• Changepoint Detector

• Hidden Markov Model (HMM) Detector

6.2 Smokeping Ground Truth Data
Because Netevmon was primarily analysing Smokeping [31] measurements at
the time when the processing of ground truth data was required, Smokeping
data was used as the ground truth. The Smokeping data is a duplicate of the
measurements collected by the real-time monitoring system used by the WAND
group at the University of Waikato to monitor their connectivity to external
sites. Smokeping was also the only data source available at the time that could
be used to provide a sufficiently large sample of events across multiple latency
time series.

Smokeping latency measurements are collected by sending batches of ICMP
echo request packets out to the network and measuring the time taken for
the packets to travel from the source to the destination and back again. The
WAND Smokeping system sends 20 packets for each measurement every 5
minutes, which is a standard configuration for Smokeping. Afterwards, the
resulting round trip times for the 20 packets are sorted and the median is
selected as the final latency value used by Netevmon. When the measurements
are graphed, the variation in the individual results for each burst of packets is
represented by drawing the remaining values as lighter gray shades (known as

Chapter 6 Ground Truth 40

“smoke”) in the background. Lost packets are displayed by changing the line
colour based on the loss percentage, as shown in Figure 6.1.

Figure 6.1: Screenshot of the Smokeping latency on the network between WAND and
google.com. The vertical lines represent events detected by Netevmon.

To gather the ground truth data, Netevmon was run against a wide variety of
Smokeping time series and each event reported by one of the six detectors was
written to a file for later analysis. While we expected the detectors to trigger
events whenever there was a change in the time series, there was also the
possibility of false negatives, i.e. no detectors identifying irregular behaviour on
the network when anomalous changes were happening. It is important to bear
in mind that the aim of this research is to evaluate how well fusion methods
work with the events that are being detected, rather than the effectiveness of
the detectors themselves. After going through several weeks of data for 25
Smokeping time series and manually inspecting 535 event groups, there were
no obvious false negatives.

Every event reported by at least one detector was manually examined to de-
termine the starting time of the event. This is used primarily to analyse the
delay between the event starting and the detector recognising that an event
has occurred. The delay is important for determining how fast the individual
detectors are at identifying significant events. Detectors that take a long time
to identify an event are seldom useful to network operators, even if the detec-
tor itself is completely reliable. Any events that occur within close proximity
of the event start time are manually grouped together as these are likely to be

Chapter 6 Ground Truth 41

the same event. For each event group, the following information is recorded:

• the timestamp when the time series started changing, i.e. the start of the
event; This is typically several measurements prior to the first detector
firing;

• the severity score of the event group. This is a value ranging from 0 to
5, where 0 indicates a false positive, 1 indicates an insignificant event, 2
means that the event is neither significant nor insignificant (also termed
“undecided”), and 3 - 5 indicate significant events of increasing impor-
tance;

• the timestamp at which each detector fired for an event group, or 0 if
the detector did not fire;

• the delay in minutes between the start of the event and the time when
the detector determined that there was an event, if the detector fired.

We assigned the severity scores to each event group by manually inspecting
the state of the time series at the time when the event started and assigning
a severity rating based on the magnitude of the change and the duration of
the anomaly. While the severity ratings were subjective, a consistent logic was
applied when classifying each events to ensure that the severity ratings would
be consistent across the multiple time series. Also, when in doubt, we sought
second opinions from colleagues to clarify any uncertainty.

Table 6.1 displays a summary of the events detected by each detector across
25 Smokeping latency time series. Each row contains the number of events
for each severity score that were reported by each detector. The “Detected
Events” row contains the number of unique events observed across all of the
detectors, i.e. the maximum number of events observed with that severity
score. Because an event can be reported by multiple detectors, the values in
this row should not be interpreted as a sum of the other rows in the table.

Table 6.1 reveals some of the characteristics of each detector. For example,
while the Mode Detector fired less often when compared to the other detectors,
almost all of the events it detected were significant, suggesting that any event
reported by the Mode Detector would be of interest to an operator. On the
other hand, the detector that fired the most often, TEntropy-Stddev, has a
high rate of detecting insignificant events, which implies that it is more prone
to false alarms than the other detectors.

Chapter 6 Ground Truth 42

Severity Score
Detector 0 1 2 3 4 5 Total
Plateau 0 23 46 40 25 76 210

Changepoint 10 8 28 16 13 32 107
TEntropy-StdDev 6 44 80 63 30 82 305

TEntropy-MeanDiff 14 13 50 41 28 80 226
Mode 4 0 0 9 23 56 92
HMM 6 27 59 46 26 77 241

Detected Events 34 87 159 93 52 110 535

Table 6.1: Summary of the manually classified severity scores for the events detected
by each detector

Table 6.2 shows the average delays between the start of an event and the
timestamp at which each detector identified that an event occurred. Because
the average interval between measurements is 5 minutes, the delays become
quite large, especially for the Mode and Plateau detectors. Large delays are
not ideal in a practical context because the delays prevent network operators
from handling events in a timely fashion. Although the Mode Detector is a
reliable indicator of significance, the delay between the event occurring and
the detector alerting makes it difficult for network operators to react on time.
By contrast, the T-Entropy detectors are less reliable than the Mode Detector,
but are much quicker at detecting events, which means that network operators
are alerted to potentially significant events much faster and are thus able to
respond in a timely fashion.

Even though the average delay for the Mode Detector is 75.2 minutes, this
corresponds to only 15 measurements. If measurements were taken more fre-
quently, the average delay should decrease correspondingly.

Chapter 6 Ground Truth 43

Severity Score
Detector 1 2 3 4 5 All Events
Plateau 56.7 60.3 54 68.4 51.9 56.7

Changepoint 45 47.7 42 83 47.8 52
TEntropy-Stddev 33.8 31.9 30.9 33.3 30.6 31.8

TEntropy-MeanDiff 39.6 29.7 34.6 34 28.8 31.3
Mode N/A N/A 86.6 69.6 73.7 75.2
HMM 44.4 31.7 32.3 40.8 31.5 34.4

All Detectors 44.6 38 41 51.9 41.8 42.5

Table 6.2: Summary of the average delay in minutes before a detector fires for events
that are not false positives

Before commencing the calculation of probability values for each detector, we
decided to divide the latency time series into categories. This was impor-
tant because we anticipated that individual detector performance would differ
depending on the magnitude of the latency values and the noisiness of the mea-
sured time series. To account for this, we divided the time series in our sample
into several categories based on their average latency and their variability. We
also chose to create a “No Categorisation” category where there would be no
splitting, i.e. a category that would include all of the latency time series in
our sample, because it would allow us to compare the effects of the different
categorisation methods on the final probabilities. The categorisation methods
and the resulting categories are:

No Categorisation
This categorisation method only has one category containing all of the
events, i.e. no splitting based on latency or variability;

Latency
This categorisation method separates the latency time series into dif-
ferent categories based on the mean latency of the time series, which
are:

• 0 - 5ms (same or nearby cities)

• 5 - 25ms (within the rest of New Zealand)

• 25 - 100ms (Australia)

Chapter 6 Ground Truth 44

• 100 - 300ms (United State and Europe)

• 300+ms (rest of the world)

The latency categories were chosen because they are representative of
the location of the target relative to a source located in New Zealand.
Targets that are in close proximity of the source (e.g. in the same city)
will typically have a much lower latency than targets that are much
further away.

Variability
This categorisation method separates the latency time series into two
categories based on their variability, which are:

• Constant

• Noisy

The variability of a stream is “Constant” when the majority of the mea-
surements are within 2ms of a consistent value. A stream is classified as
“Noisy” when the measurements tend to vary much more from measure-
ment to measurement, rather than settling on a constant value.

Latency and Variability This categorisation method separates the latency time
series into multiple categories based on both their variability and latency,
e.g. 0 - 5ms & Noisy, 5-10ms & Noisy, etc.

Table 6.3 contains a list of the Smokeping latency time series used in the
sample for the ground truth. The range of the mean latency, the variability,
the number of false positives (assigned at severity score of ‘0’), insignificant
events (severity score rating of ‘1’), events that are neither significant nor
insignificant (severity score of ‘2’) and significant events (severity score of ‘3’
to ‘5’) is included.

As shown in the table, there are only 4 latency time series with a variability
of “Noisy” because only a few time series qualified as “Noisy” in Smokeping
tests. Some latency groups had no noisy time series, e.g. ‘100 - 300’ and ‘300
+’. Others, such as ‘0 - 5’, only had 1 “Noisy” time series, which is not ideal
because the resulting sample is not diverse, and therefore biased towards the
behaviour of one series. Because of the limited number of different time series
collected by WAND’s Smokeping monitor, processing other series to increase
the sample size of a specific category was not a viable option.

Chapter6
Ground

Truth
45

Time Series IP Version Mean Variability FP Significant Insignificant Undecided Total
Latency (ms) Events Events Events Events Events

trademe.co.nz IPv4 0 - 5 Noisy 15 4 7 8 34
htb.gtw.rurallink.co.nz IPv4 0 - 5 Constant 0 2 13 8 23
ariel-248.waikato.ac.nz IPv4 0 - 5 Constant 5 5 1 14 25
pegasus.waikato.ac.nz IPv4 0 - 5 Constant 0 15 0 0 15
fx.net.nz IPv4 0 - 5 Constant 0 4 0 7 11
fx.net.nz IPv6 0 - 5 Constant 0 4 3 2 9
google.com IPv4 5 - 25 Noisy 1 31 2 12 46
ps02-wlg.reannz.co.nz IPv4 5 - 25 Constant 0 1 0 5 6
ps02-wlg.reannz.co.nz IPv6 5 - 25 Constant 1 0 1 1 3
ns1.dns.net.nz IPv4 5 - 25 Constant 1 4 0 4 9
ns1.dns.net.nz IPv6 5 - 25 Constant 0 6 2 3 11
ns4.dns.net.nz IPv4 5 - 25 Constant 0 11 1 6 18
youtube.com IPv4 25 - 100 Noisy 1 41 3 1 46
apnic.net IPv4 25 - 100 Noisy 0 4 0 5 9
ftp.monash.edu.au IPv4 25 - 100 Constant 1 5 3 0 9
google.com IPv4 25 - 100 Constant 0 14 0 2 16
8.8.8.8 IPv4 25 - 100 Constant 0 5 0 0 5
youtube.com IPv6 100 - 300 Constant 0 13 1 1 15
netflix.com IPv4 100 - 300 Constant 0 3 4 1 8
facebook.com IPv4 100 - 300 Constant 0 5 1 3 9
facebook.com IPv6 100 - 300 Constant 0 3 3 3 9
apnic.net IPv4 100 - 300 Constant 2 23 2 21 48
arin.net IPv4 100 - 300 Constant 0 3 7 4 14
afrinic.net IPv4 300 + Constant 7 11 2 13 33
lacnic.net IPv4 300 + Constant 0 34 31 35 100

Table 6.3: The number of false positive, significant, insignificant, and undecided events for each individual time series in the sample for our
ground truth

Chapter 6 Ground Truth 46

The probability masses and values used for each individual detector are calcu-
lated as follows:

m(DetSig) = Count of significant events
Total events (6.1)

m(DetFP) = Count of false positive events
Total events (6.2)

m(DetAny) = Count of events that are neither significant nor false positive
Total events

(6.3)
P (Sig) = Count of all significant events in a category

Total events in a category (6.4)

P (!Sig) = 1− P (Sig) (6.5)

P (FP) = Count of all false positive events in a category
Total events in a category (6.6)

P (!FP) = 1− P (FP) (6.7)

P (Det|Sig) = Count of significant events identified by a detector
Total significant events in a category (6.8)

P (Det|!Sig) = Count of all non-significant events identified by a detector
Total non-significant events in a category

(6.9)
P (Det|FP) = Count of false positive events identified by a detector

Total false positive events in a category (6.10)

P (Det|!FP) = Count of all non-false positive events identified by a detector
Total non-false positive events in a category

(6.11)

Tables 6.4 and 6.5 contain the probability masses used for Dempster-Shafer
and Tables 6.6 and 6.7 contain the probability values used for Bayes’ Theorem
for the TEntropy-StdDev and Mode Detectors respectively. The probability
masses and values used for the other detectors can be found in the tables given
in Appendices A and B. In cases where there were no samples for a category,
we used the probabilities from the equivalent category where the latency is
disregarded. Probability values where no sample was available are marked
with an asterisk in the probability tables.

The “None” variability category is used whenever the categorisation method
does not take variability into account, i.e. noisy and constant time series are
considered equivalent. The “No Latency” latency category is the equivalent
for categorisation methods that ignore the latency of a time series. The “No

Chapter 6 Ground Truth 47

Latency” - “None” row is used by the “No Categorisation” method, where both
latency and variability have been disregarded.

Careful examination of the probability masses and values show that they ac-
curately reflect the observed behaviour for each detector. For example, we
observed that the Mode Detector has a very high chance of detecting a signifi-
cant event, e.g. it has a probability mass of more than 0.9 for 14 out of the 18
categories. This is supported by the evidence in Table 6.1, where 88 out of the
92 Mode events were significant. By contrast, Table 6.1 showed that 43% of the
events identified by the TEntropy-StdDev Detector were either false positives,
insignificant or neither significant nor insignificant. This is supported by the
probability masses and values being relatively lower for the TEntropy-StdDev
Detector, e.g. 8 out of 18 categories have a probability mass of below 0.6, with
no mass values above 0.9.

Chapter 6 Ground Truth 48

Latency (ms) Variability m(DetSig) m(DetFP) m(DetAny)
Constant 0.81 0.00 0.19

0 - 5 Noisy 0.17 0.33 0.50
None 0.58 0.12 0.30
Constant 0.82 0.00 0.18

5 - 25 Noisy 0.71 0.00 0.29
None 0.76 0.00 0.24
Constant 0.82 0.00 0.18

25 - 100 Noisy 0.84 0.00 0.16
None 0.83 0.00 0.17
Constant 0.47 0.02 0.51

100 - 300 Noisy 0.88* 0.00* 0.12*
None 0.47 0.02 0.51
Constant 0.40 0.00 0.60

300 + Noisy 0.88* 0.00* 0.12*
None 0.40 0.00 0.60
Constant 0.52 0.11 0.37

No Latency Noisy 0.88 0.00 0.12
None 0.57 0.09 0.34

Table 6.4: Probability masses used for the TEntropy-StdDev Detector for Dempster-
Shafer, Averaging, and Cumulative Belief Fusions.
Probability masses marked with an asterisk use the probability samples for
the equivalent No Latency category because no samples were available.

Chapter 6 Ground Truth 49

Latency (ms) Variability m(DetSig) m(DetFP) m(DetAny)
Constant 1.00 0.00 0.00

0 - 5 Noisy 0.00 1.00 0.00
None 0.79 0.21 0.00
Constant 1.00 0.00 0.00

5 - 25 Noisy 1.00 0.00 0.00
None 1.00 0.00 0.00
Constant 1.00 0.00 0.00

25 - 100 Noisy 1.00 0.00 0.00
None 1.00 0.00 0.00
Constant 0.80 0.07 0.13

100 - 300 Noisy 0.92* 0.08* 0.00*
None 0.87 0.07 0.07
Constant 1.00 0.00 0.00

300 + Noisy 0.92* 0.08* 0.00*
None 1.00 0.00 0.00
Constant 0.96 0.02 0.02

No Latency Noisy 0.92 0.08 0.00
None 0.95 0.04 0.01

Table 6.5: Probability masses used for the Mode Detector for Dempster-Shafer, Aver-
aging, and Cumulative Belief Fusions.
Probability masses marked with an asterisk use the probability samples for
the equivalent No Latency category because no samples were available.

Chapter6
Ground

Truth
50

Latency (ms) Variability P(Sig) P(!Sig) P(Det|Sig) P(Det|!Sig) P(FP) P(!FP) P(Det|FP) P(Det|!FP)
Constant 0.36 0.67 0.57 0.08 0.06 0.94 0.00 0.27

0 - 5 Noisy 0.12 0.88 0.50 0.33 0.44 0.56 0.27 0.42
None 0.29 0.71 0.56 0.17 0.17 0.83 0.20 0.30
Constant 0.47 0.53 0.64 0.12 0.04 0.96 0.00 0.38

5 - 25 Noisy 0.67 0.33 0.65 0.53 0.02 0.98 0.00 0.62
None 0.57 0.43 0.64 0.28 0.03 0.97 0.00 0.50
Constant 0.80 0.20 0.75 0.67 0.03 0.97 0.00 0.76

25 - 100 Noisy 0.82 0.18 0.69 0.60 0.02 0.98 0.00 0.69
None 0.81 0.19 0.71 0.63 0.02 0.98 0.00 0.71
Constant 0.49 0.51 0.80 0.87 0.02 0.98 1.00 0.83

100 - 300 Noisy 0.59* 0.41* 0.66* 0.44* 0.13* 0.87* 0.24* 0.62*
None 0.49 0.51 0.80 0.87 0.02 0.98 1.00 0.83
Constant 0.34 0.66 0.73 0.56 0.05 0.95 0.00 0.65

300 + Noisy 0.59* 0.41* 0.66* 0.44* 0.13* 0.87* 0.24* 0.62*
None 0.34 0.67 0.73 0.56 0.05 0.95 0.00 0.65
Constant 0.43 0.57 0.71 0.47 0.04 0.96 0.12 0.60

No Latency Noisy 0.59 0.41 0.66 0.44 0.13 0.87 0.24 0.62
None 0.47 0.53 0.70 0.46 0.06 0.94 0.18 0.60

Table 6.6: Probability values used for the TEntropy-StdDev Detector for Bayes’ Theorem.
Probability masses marked with an asterisk use the probability samples for the equivalent No Latency category because no samples
were available.

Chapter6
Ground

Truth
51

Latency (ms) Variability P(Sig) P(!Sig) P(Det|Sig) P(Det|!Sig) P(FP) P(!FP) P(Det|FP) P(Det|!FP)
Constant 0.36 0.64 0.37 0.00 0.06 0.94 0.00 0.14

0 - 5 Noisy 0.18 0.82 0.00 0.10 0.44 0.56 0.20 0.00
None 0.29 0.71 0.32 0.04 0.17 0.83 0.15 0.11
Constant 0.47 0.53 0.68 0.00 0.04 0.96 0.00 0.33

5 - 25 Noisy 0.67 0.02 0.55 0.00 0.02 0.98 0.00 0.38
None 0.57 0.43 0.60 0.00 0.03 0.97 0.00 0.36
Constant 0.80 0.20 0.42 0.00 0.03 0.97 0.00 0.34

25 - 100 Noisy 0.82 0.18 0.36 0.00 0.02 0.98 0.00 0.30
None 0.81 0.19 0.38 0.00 0.02 0.98 0.00 0.31
Constant 0.49 0.51 0.26 0.04 0.02 0.98 0.50 0.14

100 - 300 Noisy 0.59* 0.41* 0.41* 0.05* 0.13* 0.87* 0.18* 0.28*
None 0.49 0.51 0.26 0.04 0.02 0.98 0.50 0.14
Constant 0.34 0.66 0.13 0.00 0.05 0.95 0.00 0.05

300 + Noisy 0.59* 0.41* 0.41* 0.05* 0.13* 0.87* 0.18* 0.28*
None 0.34 0.66 0.73 0.56 0.05 0.95 0.00 0.65
Constant 0.43 0.57 0.32 0.01 0.04 0.96 0.06 0.15

No Latency Noisy 0.59 0.41 0.41 0.05 0.13 0.87 0.18 0.28
None 0.47 0.53 0.35 0.02 0.06 0.94 0.12 0.18

Table 6.7: Probability values used for the Mode Detector for Bayes’ Theorem.
Probability masses marked with an asterisk use the probability samples for the equivalent No Latency category because no samples
were available.

Chapter 6 Ground Truth 52

One downside of the data fusion approach that became apparent while collect-
ing the ground truth is the manual assignment of severity scores to event groups
and calculating the resulting probability masses and values used for each de-
tector is a time consuming, tedious, and error-prone task. Any new detector
that is implemented within Netevmon will require its own set of probability
masses and values, which may make further detector development an onerous
task.

However, the ground truth generated for this work can be reused for this
purpose since the events have already been assigned a severity score. However,
any new events that were previously undetected by the old detectors will still
need to be recorded and assigned a severity score.

Chapter 7

Fusion Method Validation

Having collected the ground truth data and calculated different probability
values to use for each detector, a method to compare and validate the differ-
ent data fusion methods was required. Thus, an event grouping script was
created for the purpose of reading event data generated by Netevmon, group-
ing events together and calculating the final probability values using the data
fusion methods. This script was run against a test dataset containing mea-
surements from another set of latency time series where the events have been
independently assigned a severity score in the same manner as the original
Smokeping ground truth. The resulting event groups and their significance
ratings were then compared against the assigned severity scores to evaluate
how effective each fusion method is at determining the severity of an event
based on the detectors that fired and the properties of the time series.

This chapter describes the implementation and functions of the event grouping
script, the test dataset used for evaluating the performance of the data fusion
methods and details how the output from the event grouping script is validated
against the test dataset.

7.1 Implementation Script
The event grouping script accepts the events generated by the detectors run
within Netevmon as input, which includes:

• the timestamp at which the detector fired;

• a unique number to identify the time series that the event came from;

• the name of the detector which triggered the event;

Chapter 7 Fusion Method Validation 54

• the type of event (e.g. a mean update, a changepoint event, etc);

• a description of the event;

• the metric of the time series, e.g. latency, byte counts, user counts, etc.

The event grouping script also receives hourly mean updates from Netevmon,
which contain the mean of the last 720 measurements for the time series.
Additionally, the script receives updates on the variability of the time series
from the LatencyTS Detector when a “Noisy to Constant” or “Constant to
Noisy” event occurs. The mean and variability updates are used to choose the
correct category for the time series based on which categorisation method is
being employed, e.g. matching the time series to a category based on mean
latency, variability, both, or neither. The categorisation method is chosen when
executing the script, allowing each categorisation method to be evaluated easily
and independently.

Because each detector will trigger an event at different times for the same
change in the time series, the first task of the script is to create an event group
containing all the events that are in close proximity, instead of individually
processing events from detectors. An event group within this context is simply
a grouping of all events that occur within an hour of the first event in the
group. Thus, the timestamp of the very first event received by the event
grouping script is used as the start of the first event group and any subsequent
events that occurred within an hour of the start of the event group are added
to the current group. When an event occurs more than an hour away from the
current event group’s start time, the probability values for each data fusion
method are finalised and the next event group is started with the new event’s
timestamp as the start time for that group.

The script has been written with an implementation of each data fusion method
which is used to calculate the probability values for each method. The Dempster-
Shafer belief values, Bayes’ Theorem and Cumulative Fusion Method posterior
probabilities are updated for each group as the events are added to the current
group, whereas the final probabilities for the Averaging and Detector Count
Heuristic Fusion methods are calculated when an event group is complete.
The probability masses and Bayesian likelihoods required for each grouping
method and detector are obtained from an external module that contains all
of the masses and likelihoods calculated from the Smokeping ground truth,

Chapter 7 Fusion Method Validation 55

which are included in Appendices A and B. An external module was imple-
mented instead of including the values in the event grouping script since that
would allow updating the probability values easily, without having to modify
the event grouping script. Additionally, the external module could be used in
other projects if required.

Occasionally, a detector may produce multiple events in an event group. In
this case, probability values are updated for any duplicate detectors (except
for the HMM Detector) because we consider additional events from the same
detector within the hour to be a reinforcement of the significance of an event
group. The HMM Detector is only accounted for once in every event group
because in testing, HMM Detector was observed to be prone to trigger multiple
events for insignificant changes in the time series.

While updating the probability values for an event group, the timestamp
at which each fusion method recognised that the event group is significant
is recorded. Initially, a probability threshold of 0.9 was used to determine
whether an event group was significant, i.e. whenever a fusion method reported
a probability of significance greater than 0.9. This threshold was chosen with
the aim of minimising false positives to ensure that the system would only alert
network operators to genuinely significant events, as alerting on insignificant
events would reduce the operator’s faith in the system. During development of
the event grouping script, testing against the Smokeping data suggested that
0.9 was a suitable compromise between the desire for few false positives while
still ensuring that most significant events would be identified as such by the
system.

Once an event group is finalised, the following details are written as output
for each group:

• the timestamp of the first event in the group;

• the number of detectors that fired in that event group;

• the mean latency during that event group;

• the variability of the time series during that event group;

• the probability masses for significance and false positive for the Dempster-
Shafer Belief Fusion method;

• the timestamp of the event that caused Dempster-Shafer’s significant

Chapter 7 Fusion Method Validation 56

probability to exceed the 90% threshold, or 0 if this did not occur;

• the probability values for significance and false positive for Bayes’ The-
orem Belief Fusion method;

• the timestamp of the event that caused Bayes’ Theorem’s significant
probability to exceed the 90% threshold, or 0 if this did not occur;

• the probability values for significance and false positive for the Averaging
Belief Fusion method;

• the timestamp of the event that caused the Averaging method’s signifi-
cant probability to exceed the 90% threshold, or 0 if this did not occur;

• the probability values for significance and false positive for the Cumula-
tive Belief Fusion method;

• the timestamp of the event that caused the Cumulative method’s sig-
nificant probability to exceed the 90% threshold, or 0 if this did not
occur;

• the probability value for the event being significant for the Detector
Count Heuristic method

• the timestamp at which the Detector Count Heuristic method’s signifi-
cant probability to exceed the 90% threshold, or 0 if this did not occur;

• a list of the detectors in the order in which they fired for that particular
event group.

7.2 The Test Dataset
After testing the event grouping script on the training dataset, i.e. the Smokeping
latency time series, we evaluated the data fusion methods against a separate
dataset. We chose measurements from the AMP-ICMP latency test for this
purpose, which consists of latency measurements between a source host and a
destination IP address collected using the Active Measurement Project (AMP)
[19]. The latency measurements are generated by sending an ICMP Echo Re-
quest [33] packet to the target IP address every 30 seconds and waiting for a
response from the target. The latency measurement is the delay between the
time the echo request was sent and the time the echo response was received
by the original sender.

Chapter 7 Fusion Method Validation 57

AMP-ICMP was not used as the ground truth data for the purposes of calcu-
lating the detector probabilities because it was not deployed widely enough at
the time when the ground truth data was collected, which would have limited
the size of the sample for the ground truth data. We decided to use AMP-
ICMP as the test dataset because Netevmon is part of the Active Measure-
ment Project (AMP), and hence it would be prudent to test the effectiveness
of the detectors and data fusion methods on the AMP-ICMP time series. The
AMP-ICMP time series also include a wider range of time series using differ-
ent sources and destinations, whereas the Smokeping time series were sourced
from the WAND Network Research Group’s internal monitoring and therefore
only used a single source and a smaller number of destinations.

The frequency of new measurements in the AMP-ICMP time series is 30 sec-
onds, whereas the frequency of measurements for Smokeping time series is 5
minutes. Because of the shorter delay between measurements for AMP-ICMP
time series, it is expected that the delay between the start of an event and a
detector identifying the event will be shorter than for Smokeping time series.
Additionally, because the individual measurements obtained from the echo
requests form the AMP-ICMP time series, there is likely to be much more
variation in each time series and this may cause the more sensitive detectors
to perform poorly with these time series compared to the Smokeping data.
This was not a problem for Smokeping time series because the variability of
the individual measurements may have been concealed by a median that was
relatively constant.

Ground truth is needed for the test dataset to enable comparing the results of
the fusion methods against a set of latency time series events where the signif-
icance of the events is already known. The process of collecting and assigning
severity scores to the AMP-ICMP test dataset was similar to the method
used to acquire the Smokeping ground truth that acted as the training data.
The main difference between the AMP-ICMP and Smokeping datasets is that
the AMP-ICMP dataset was collected and classified independently by another
member of the WAND group. Having another person perform the classification
reduced the likelihood of the ground truth for the test dataset being biased
based on the observed reliability of each detector during the analysis of the
Smokeping dataset. For example, the Mode Detector was shown to be highly
reliable for the Smokeping dataset and therefore the person who collected the
Smokeping ground truth may subconsciously assume that any event detected

Chapter 7 Fusion Method Validation 58

by the Mode Detector in the AMP-ICMP dataset is also significant rather than
evaluating the event solely on its characteristics.

The AMP-ICMP ground truth dataset includes events from 24 latency time
series that were observed during February 2014. Table 7.1 shows a summary
of these events. As with the corresponding table for the Smokeping ground
truth dataset (Table 6.1), the events are broken down by category and assigned
severity scores. The severity scores have the same meaning as before, e.g. a
severity score of 0 is a false positive, a score of 1 is an insignificant event,
etc. While we endeavoured to ensure that the test dataset included at least
35 significant events for each latency category, it was difficult to find events
where the time series was also noisy as few of the high latency series qualified
as noisy according to Netevmon. As a result, some Noisy categories are poorly
represented in the test dataset, e.g. the 300+ & noisy category only has 10
events in total and only one of those was significant, which limits the number
of test cases for those categories.

Chapter7
Fusion

M
ethod

Validation
59

Latency (ms) Variability Contributing False Positive Insignificant Undecided Significant Total
Time Series Events Events Events Events Events

0 - 5 Noisy 4 0 5 4 13 22
Constant 4 1 6 2 26 35

5 - 25 Noisy 6 2 18 16 16 52
Constant 5 2 15 13 26 56

25 - 100 Noisy 5 2 21 10 19 52
Constant 6 1 60 37 76 174

100 - 300 Noisy 3 4 7 7 7 25
Constant 7 14 89 32 36 171

300 + Noisy 1 4 5 0 1 10
Constant 4 3 37 35 39 114

Table 7.1: The number of false positive, insignificant, undecided and significant events detected in the AMP-ICMP test dataset

Chapter7
Fusion

M
ethod

Validation
60

Series Source Series Target IP False Positive Insignificant Undecided Significant Total
Version Events Events Events Events Events

inspire facebook.com IPv4 0 3 1 1 5
citylink facebook.com IPv4 1 7 0 2 10
fx-aknnr wikipedia.org IPv6 3 8 5 4 20
lightwire twitter.com IPv4 0 10 8 3 21
callplus youtube.com IPv6 1 2 1 3 7
massey-pn netflix.com IPv6 2 38 12 14 66
waikato arin.net IPv6 11 28 12 16 67
inspire lacnic.net IPv4 0 6 5 10 21
citylink lacnic.net IPv6 0 11 9 14 34
callplus afrinic.net IPv6 6 15 9 4 34
ns4a.amp.wand.net.nz mega.co.nz IPv4 1 10 12 12 35
Waikato www.xero.com IPv4 2 1 12 16 31
catalyst ns3.dns.net.nz IPv4 1 20 10 4 35
waikato www.quickflix.co.nz IPv4 0 4 4 25 33
lightwire www.northpower.co.nz IPv4 0 5 0 10 15
ns4a www.orcon.co.nz IPv4 0 3 6 13 22
inspire csotago IPv4 2 10 0 5 17
massey-pn waikato IPv6 0 1 3 8 12
lightwire apnic.net IPv4 2 25 6 9 42
ns4a 8.8.8.8 IPv4 0 10 9 21 40
fx-aknnr www.vocus.com.au IPv6 0 8 4 1 13
waikato www.vocus.com.au IPv6 0 8 6 3 17
lambda h.root-servers.net IPv6 1 22 6 7 36
catalyst cloudflare.com IPv4 0 17 4 5 26

Table 7.2: The number of false positive, insignificant, undecided and significant events events detected in each of the individual AMP-ICMP
time series in the test dataset

Chapter 7 Fusion Method Validation 61

Table 7.2 contains a list of all the AMP-ICMP time series present in the test
dataset and the events detected for each time series, categorised by manually
assigned significance. For AMP-ICMP, a “Series Source” is a location where
an AMP monitor has been deployed, e.g. an ISP, a university, a data centre.
A “Series Target” can be an AMP monitor, a website or a DNS server that
the “Series Source” tests to. The latency and variability have been excluded
from this table because the mean and variability often differed greatly during
the examined period, which meant that a series would not have a regular
variability or mean latency. Instead, the mean and variability was recorded
for each individual event, rather than having a single category value for the
entire time series.

Table 7.3 shows the mean delay between the start of an event and the times-
tamp when each detector identified the event in the AMP ICMP dataset. The
delays are much smaller for the AMP-ICMP time series than for the Smokeping
time series because of the higher measurement frequency of 30 seconds, whereas
the frequency for the Smokeping latency time series was much lower at 5 min-
utes. While the average delay in minutes might be lower for the AMP-ICMP
time series, the number of measurements required before the event is detected
is slightly higher than the Smokeping time series because the noisiness of the
time series makes it difficult to fulfil some of the conditions required for trig-
gering an event. For example, the Mode detector would take longer to identify
a distinct mode when having to consider the full range of observed measure-
ments rather than the median and hence, take more measurements to detect
anomalous behaviour in the time series.

Severity Score
Detector 1 2 3 4 5 All Events
Plateau 6.1 8.3 8.6 10.3 7.0 8.2

Changepoint 5.3 6.3 8.5 8.1 5.6 6.2
TEntropy-StdDev 7.0 6.2 6.8 9.2 7.1 6.9

TEntropy-MeanDiff 7.1 7.1 8.0 10.8 7.7 7.8
Mode N/A 7.9 9.4 8.4 8.9 8.8
HMM 3.9 4.9 5.1 6.7 4.3 4.7

All Detectors 5.8 6.5 7.8 9.0 6.7 6.8

Table 7.3: Summary of the average delay in minutes before a detector fires for events
found in the AMP-ICMP test dataset

Chapter 7 Fusion Method Validation 62

7.3 Validation Method
Now that we have a pre-classified test dataset where the severity scores have
been manually assigned, it is now possible to compare the detector probabilities
produced by the event grouping script against the test dataset. An event
matching script was created for this purpose. The script initially loads the
manually classified event groups from the test dataset, including the timestamp
when each event started and the timestamps at which each detector reported
the event. The results from the event grouping script are then loaded, including
the timestamp of the first event in the group, the time series mean, variability
of the time series at that time, a set of probabilities calculated using each fusion
method (e.g. Bayes Sig and Bayes FP) and a timestamp for each fusion method
for when the significance threshold of 90% was reached. The timestamp of the
first event from the event grouping script is compared with the timestamps
at which the individual detectors fired from the ground truth data. When a
match is found, the event group from the test dataset is removed from the
available ground truth events and the output string is constructed for that
particular event group, which includes:

• a hyphenated string of the source, target and IP version of the AMP-
ICMP time series for a particular event, e.g. waikato-arin-ipv6;

• the timestamp when the manually classified event group started;

• the severity score manually assigned to that particular event group;

• the number of detectors that fired for the event group, according to the
ground truth;

• the timestamp of the first event in the group observed by the event
grouping script;

• the number of detectors that fired for that event group, according to the
event grouping script;

• the mean latency of the time series during that particular event group;

• the variability of the time series during that particular event group;

• the probabilities of the event being significant, reported by each of the
fusion methods;

• the probabilities of the event being a false positive, reported by each of

Chapter 7 Fusion Method Validation 63

the fusion methods;

• the timestamp of the event that caused each individual fusion method’s
significant probability to exceed the 90% significance threshold, or 0 if
the probability did not exceed the significance threshold for that fusion
method;

• a list of the detectors in the order in which they fired for that particular
event, primarily used for debugging.

Ideally, this process would continue until all of the event groups in the test
dataset have been matched to a corresponding set of probabilities from the
event grouping script. However, because Netevmon and the detectors are un-
der constant development, the events produced when the AMP-ICMP ground
truth was collected differed slightly from the events observed when the vali-
dation method was run. Some detectors, specifically the HMM Detector and
the TEntropy Detectors, also vary their results slightly depending on the mea-
surements they received in their training phase. This resulted in the manually
classified events not having exactly the same timestamps as the events pro-
duced with the event grouping script.

As a solution to this problem, we added another rule to identify a match when
the timestamp of the first event from the ground truth is within 5 minutes of
the timestamp of the first event from the event grouping script. This ensures
that event groups will be matched to a set of probabilities even if the timestamp
at which the detectors fired differ slightly.

The final stage of the validation is to determine if each fusion method has cor-
rectly identified the significance of the event group as described in the ground
truth for the test dataset. If the manually assigned severity score for an event
group is less than 3, i.e. the event is not significant, a correct classification
would require that the probability of significance never exceeds the threshold
of 90%. Otherwise, the opposite must occur, i.e. the probability of significance
must exceed 90% for that event group at some point during the lifetime of the
group.

The best fusion method will be the method that not only correctly classifies
the highest number of significant events, but also classifies the least number
of insignificant events as significant.

Chapter 8

Results

This chapter presents the results of running each data fusion method against
the AMP-ICMP test dataset and comparing those results against the known
ground truth for the test dataset. The accuracy of each fusion method will be
shown and the best data fusion method for identifying significant anomalies in
a latency time series will be determined.

As mentioned in Chapter 6, four different categorisation methods were used
when evaluating the data fusion methods. A categorisation method is used to
determine which set of probabilities to use for an event group. For example,
an event group with a mean latency of 20 and a variability of “Noisy” will
use probabilities from the “5 - 25 and Noisy” category if the “Latency and
Variability” categorisation method is used. The same event group would use
probabilities from the “5 - 25 and None” category if the “Latency” categorisa-
tion method was used instead. As well as evaluating the accuracy of the data
fusion methods, we also aimed to determine the best categorisation method for
use with each data fusion method. In particular, does the latency or variability
of the time series matter when deriving mass functions or prior probabilities
for the anomaly detection methods?

Figures 8.1 to 8.8 show the accuracy of classifying events using four categori-
sation methods and the five data fusion methods used in this project. The
events were grouped by their severity scores, resulting in six sets of bars (la-
belled 0 to 5) and these represent the accuracy of each data fusion method at
correctly classifying events matching each of the different severity scores. The
data fusion methods represented by the bars from left to right are: Detector
Count Heuristic, Dempster-Shafer, Bayes’ Theorem, Averaging Belief Fusion

Chapter 8 Results 65

and Cumulative Belief Fusion.

The ideal result for any data fusion method is 100% accurately classified events,
which means that all events with a severity score from 0 to 2 are correctly
classified classified as insignificant, while all events with a severity score from
3 to 5 are correctly identified as significant by the fusion method. If the
percentage of accurately classified events for any given data fusion method
and severity score is below 100%, this means that the data fusion method has
produced false positives (for events with a severity score of 0, 1 or 2) or false
negatives (for events with a severity score of 3, 4 or 5).

Figure 8.1 displays the results of using the “Latency and Variability” cat-
egorisation method with a significance threshold of 0.9. While the rate of
correct classifications for significant events is much lower than the goal of
100%, all of the data fusion methods have a relatively low false positive rate.
Averaging Belief Fusion was the best fusion method for correctly classifying
insignificant events, but was very poor at recognising significant events. By
contrast, Dempster-Shafer was the best method for accurate classification of
significant events overall but also produced the highest number of false pos-
itives, marginally ahead of Bayes’ Theorem. However, the accuracy rate for
Dempster-Shafer is poor overall: only 60% of events with a severity score of
5 were classified as significant and the accuracy was even lower for severity 3
and 4.

Figure 8.2, 8.3 and 8.4 display the results of using the “Latency”, “Variability”
and “No Categorisation” methods respectively. The “Latency” categorisation
method shown in Figure 8.2, has the least number of false positives but also the
greatest number of false negatives. While most of the data fusion methods for
the “No Categorisation” method shown in Figure 8.4 performed similarly to the
“Latency and Variability” classification method, Dempster-Shafer improved
quite noticeably in terms of reducing false negatives (80% of events with a
severity score of 5 correctly classified), while the other data fusion methods
observed only minor changes.

The best results overall were achieved when using the “Variability” classifica-
tion method. Dempster-Shafer, Bayes’ Theorem and Cumulative Belief Fusion
all achieved a classification accuracy of greater than 70% for events with a
severity score of 5, with Dempster-Shafer having the highest accuracy at 85%.
False negatives were also decreased for events with a severity score of 3 or 4.

Chapter 8 Results 66

 0

 20

 40

 60

 80

 100

0 1 2 3 4 5

P
e

rc
e

n
ta

g
e

 o
f

A
c
c
u

ra
te

ly
 C

la
s
s
if
ie

d
 E

v
e

n
ts

Severity Score

DetCount
DS

Bayes
Averaging

Cumulative

Figure 8.1: Accuracy when using detector probabilities for the Latency and Variability
categorisation method with a significance threshold of 0.9

However, these gains are partly counteracted by an increased false positive
rate, especially for Dempster-Shafer. It appears that the variability of a time
series has the biggest impact on the performance of the detectors, whereas ac-
counting for latency actually decreased the accuracy of Dempster-Shafer and
Bayes’ Theorem.

From these results, we suggest that Dempster-Shafer is the best performing
data fusion method. While the other fusion methods have a lower false positive
rate, Dempster-Shafer achieves a much lower false negative rate than the other
methods, especially when using the “Variability” categorisation method. The
main weakness of Dempster-Shafer is a high false positive rate among events
with a severity score of 2. However, these events are typically events that are
neither clearly insignificant or significant and therefore may be of some interest
to the network operator. As a result, a higher false positive rate among events
with a severity score of 2 is not a critical flaw for Dempster-Shafer, although
it warrants further investigation to see if there is a way for the false positive
rate to be reduced.

While Bayes’ Theorem and the Cumulative Belief Fusion methods perform sim-

Chapter 8 Results 67

ilarly, or even better, to Dempster-Shafer when classifying insignificant events
correctly, they are surpassed at identifying significant events by Dempster-
Shafer most of the time. The Detector Count Heuristic method had a low rate
of false positives, but performed poorly when classifying significant events.
This suggests that simply relying on the number of detectors that fired does
not produce accurate results.

The worst data fusion method is the Averaging Belief Fusion, which works well
for identifying insignificant events as insignificant, but performs very poorly
at accurately determining when events are significant. As stated earlier, this
is not an unexpected result as the Averaging Belief Fusion method is better
suited for dependent evidence, i.e. multiple sources of evidence that depend
on each other for their results, whereas the detectors deployed by Netevmon
are independent.

 0

 20

 40

 60

 80

 100

0 1 2 3 4 5

P
e

rc
e

n
ta

g
e

 o
f

A
c
c
u

ra
te

ly
 C

la
s
s
if
ie

d
 E

v
e

n
ts

Severity Score

DetCount
DS

Bayes
Averaging

Cumulative

Figure 8.2: Accuracy when using detector probabilities for the Latency categorisation
method with a significance threshold of 0.9

Chapter 8 Results 68

 0

 20

 40

 60

 80

 100

0 1 2 3 4 5

P
e

rc
e

n
ta

g
e

 o
f

A
c
c
u

ra
te

ly
 C

la
s
s
if
ie

d
 E

v
e

n
ts

Severity Score

DetCount
DS

Bayes
Averaging

Cumulative

Figure 8.3: Accuracy when using detector probabilities for the Variability categorisation
method with a significance threshold of 0.9

 0

 20

 40

 60

 80

 100

0 1 2 3 4 5

P
e

rc
e

n
ta

g
e

 o
f

A
c
c
u

ra
te

ly
 C

la
s
s
if
ie

d
 E

v
e

n
ts

Severity Score

DetCount
DS

Bayes
Averaging

Cumulative

Figure 8.4: Accuracy when using detector probabilities for the No Categorisation
method with a significance threshold of 0.9

Chapter 8 Results 69

One possible reason why the “Latency and Variability” categorisation method
performed so poorly was that splitting the events in the time series used as
training data by latency and variability may have resulted in sample sizes
that were too small to generate a representative belief or probability. A larger
sample size might produce better results with the “Latency and Variability”
categorisation method, but collecting a larger sample for each category would
be prohibitive because of the tedious ground truth processing and the difficulty
in finding appropriate test targets for some categories.

Because all of the methods produced a high false negative rate that is un-
suitable for practical use, we considered the possibility that the significance
threshold might have been too high, making it too difficult for the fusion meth-
ods to recognise an event as significant. To test this, we lowered the significance
threshold from 0.9 to 0.85 and repeated the validation experiment.

Figures 8.5 to 8.8 display the results of using the four categorisation methods
with a significance threshold of 0.85. While the “Variability” categorisation
method was clearly the best performer at correctly classifying events when
using a significance threshold of 0.9, this distinction is harder to make for the
results when using a lower significance threshold. The “Variability” categori-
sation method was again the worst performer in terms of the number of false
positives, while being the best categorisation method at identifying significant
events across all data fusion methods. There was a small improvement in ac-
curacy when classifying significant events across all of the fusion methods. For
example, when using the “Variability” categorisation method, the percentage
of correctly classified events with a severity score of 3 and a significance thresh-
old of 0.85 are 76%, 68%, 20%, 73%, and 36% as opposed to 73%, 56%, 9%,
65% and 34% for Dempster-Shafer, Bayes’ Theorem, Averaging Belief Fusion,
Cumulative Belief Fusion and Detector Count Heuristics respectively. How-
ever, we also observed a significant increase in the number of false positives
for severity score 2 for all the fusion methods. For example, the percentage of
false positives produced by Dempster-Shafer was very high at 49% when using
a significance threshold of 0.85, whereas a threshold of 0.9 produced a lower
percentage of false positives (40%).

Overall, lowering the significance threshold has had the expected effect: the
number of false negatives has decreased, but the number of false positives has
increased. The increase in false positives is much larger than the improvement

Chapter 8 Results 70

in the number of false negatives, suggesting that 0.9 is a better significance
threshold.

 0

 20

 40

 60

 80

 100

0 1 2 3 4 5

P
e

rc
e

n
ta

g
e

 o
f

A
c
c
u

ra
te

ly
 C

la
s
s
if
ie

d
 E

v
e

n
ts

Severity Score

DetCount
DS

Bayes
Averaging

Cumulative

Figure 8.5: Accuracy when using detector probabilities for the Latency and Variability
categorisation method with a significance threshold of 0.85

Chapter 8 Results 71

 0

 20

 40

 60

 80

 100

0 1 2 3 4 5

P
e

rc
e

n
ta

g
e

 o
f

A
c
c
u

ra
te

ly
 C

la
s
s
if
ie

d
 E

v
e

n
ts

Severity Score

DetCount
DS

Bayes
Averaging

Cumulative

Figure 8.6: Accuracy when using detector probabilities for the Latency categorisation
method with a significance threshold of 0.85

 0

 20

 40

 60

 80

 100

0 1 2 3 4 5

P
e

rc
e

n
ta

g
e

 o
f

A
c
c
u

ra
te

ly
 C

la
s
s
if
ie

d
 E

v
e

n
ts

Severity Score

DetCount
DS

Bayes
Averaging

Cumulative

Figure 8.7: Accuracy when using detector probabilities for the Variability categorisation
method with a significance threshold of 0.85

Chapter 8 Results 72

 0

 20

 40

 60

 80

 100

0 1 2 3 4 5

P
e

rc
e

n
ta

g
e

 o
f

A
c
c
u

ra
te

ly
 C

la
s
s
if
ie

d
 E

v
e

n
ts

Severity Score

DetCount
DS

Bayes
Averaging

Cumulative

Figure 8.8: Accuracy when using detector probabilities for the No Categorisation
method with a significance threshold of 0.85

In Figure 8.7, the false negative rate for Dempster-Shafer decreased by 3% and
6% for events with a severity score of 3 and 4 respectively. For severity score
5, the false negative rate actually increased by 3% with the lower threshold.
By contrast, the false positive rate increased by 15%, 8% and 9% for events
with a severity score of 0, 1, and 2 respectively. Similar results are seen
for Bayes’ Theorem and Cumulative Belief Fusion, where any improvements
in the false negative rate are counteracted by an equal or larger increase in
the false positive rate. Lowering the threshold is more helpful when using
the other categorisation methods, e.g. the “Latency” categorisation method,
but the resulting accuracy is still inferior to the accuracy of the “Variability”
categorisation method.

8.1 Possible Improvements
None of the fusion methods achieved a satisfactory level of accuracy, especially
when considering the rate of false negatives. We have shown that decreasing
the significance threshold from 0.9 to 0.85 resulted in a larger rate of false
positives, while only providing a small decrease in the rate of false negatives,

Chapter 8 Results 73

so this is not a viable solution. However, there are several options available
that may improve the classification accuracy which could form the basis for
further research.

Collecting additional ground truth and increasing the sample size of the test
dataset would ensure that each of the categories for the different categorisation
methods has a representative sample to eliminate bias towards a particular
time series, which could occur when a category contains events from a single
time series only. Some categories had very little training data available and in
these cases, rather than the probability representing a detector’s reliability for
the category, it represents the reliability for the time series. However, latency
time series for the under-represented categories can be hard to find, even with
the variety of targets tested by AMP.

Some significant events in the AMP-ICMP dataset were only detected by one or
two detectors, which means that a lack of evidence often prevents probabilities
from crossing the significance threshold. Implementing more detectors within
Netevmon may help, but this requires a lot of time and effort to research and
implement new detectors and then to generate the probabilities for the fusion
methods. Fortunately, the ground truth and manually assigned severity scores
from the Smokeping and AMP-ICMP dataset can be used for this purpose,
reducing the workload somewhat. An additional improvement could be to
incorporate evidence from other time series modules, rather than just latency
alone. For example, if a change in the Traceroute path is observed at the same
time as a latency event, that could act as further evidence in favour of the
event being significant.

Another problem was that the probabilities used by the fusion methods were
based on Smokeping time series, but our test data was from AMP. We had
assumed that because they were both latency time series, the detector per-
formance would be similar and thus, reusing the Smokeping probabilities for
AMP latency time series would be suitable. However, it appears that the AMP
time series would benefit from having their own set of probabilities for each
detector, especially given the higher variability of AMP-ICMP time series and
the likely impact on sensitive detection methods. One avenue of future work
would be to replace the probabilities and mass functions with values derived
from AMP-ICMP events and evaluate whether there is any improvement in
the accuracy of classifying events. However, this would require collecting a

Chapter 8 Results 74

new test dataset (using either new AMP-ICMP time series or different time
periods from the same time series) because the previous test dataset is now
being used as training data.

Chapter 9

Conclusion

This report has presented an evaluation of five data fusion methods (Dempster-
Shafer, Bayes’ Theorem, Averaging Belief Fusion, Cumulative Belief Fusion,
and Detector Count Heuristic) for the purpose of identifying significant events
in a latency time series. The aim of this work was to identify a method that can
reliably indicate to a network operator whether a detected anomaly requires
immediate attention.

Six anomaly detection methods implemented within Netevmon, an anomaly
detection framework for time series data, were used as sources of evidence for
the data fusion techniques. Four of the detection methods were researched
and implemented as part of this project because data fusion requires multiple
sources of evidence to be effective and only two detectors were implemented
within Netevmon at the start of this work. To combine the evidence, the
data fusion methods required a set of probabilities describing the likelihood
that a detected event is significant for each of the anomaly detection methods.
This was achieved using ground truth data collected for 535 events from 25
Smokeping time series. Each event was manually assigned a severity score of
0 to 5, reflecting the perceived significance of the event and the probabilities
were derived from this ground truth. The latency and variability of the time
series were used to divide the events into categories based on four different
categorisation methods for the purpose of evaluating the impact of the latency
and variability of a time series on the reliability of the detectors.

Another dataset of 24 AMP-ICMP latency time series was collected for evalu-
ating the accuracy of the data fusion methods. Ground truth was also obtained
for the test dataset by manually processing the AMP-ICMP time series using

Chapter 9 Conclusion 76

the same process that was employed with the Smokeping training dataset.
Events from the test dataset were passed through the data fusion methods
and the resulting belief score, i.e. a fusion method’s belief that an event was
significant, was compared against the manually assigned severity scores for the
test dataset. A significance threshold of 0.9 was used to determine if an event
was significant or not. An insignificant event (severity scores 0, 1, or 2) had
been correctly classified when the probability of significance was below the
significance threshold. Significant events (severity scores 3, 4 or 5) had been
correctly classified if the probability of significance reached or exceeded 0.9.

The results of the evaluation experiments showed that the accuracy of all of
the data fusion methods was unsuitable for practical deployment. The results
also showed that the variability of a time series has a noticeable impact on
the reliability of the detectors, whereas calculating separate probabilities for
different latency ranges made negligible improvements to the accuracy of the
fusion methods. After analysing the results, we concluded that Dempster-
Shafer was the most accurate data fusion method as it achieved the least
number of false negatives, despite having a slightly higher false positive rate
than Bayes’ Theorem and Cumulative Belief Fusion. From this, we suggest
that future research in this area should be centered on improving the accuracy
of the Dempster-Shafer method to reach a level where it would be useful for
network operators.

We have identified a number of possible approaches towards decreasing the
rate of incorrect significance classifications. The first possible improvement
would be to collect additional ground truth data to ensure that the derived
probabilities are based on a representative sample, instead of being biased
towards a particular time series. Implementing a wider variety of detectors
within Netevmon would provide additional evidence for events being significant
because many of the false negatives in the AMP-ICMP test dataset were only
reported by one or two detectors. Using evidence from the other Time Series
modules would also be a useful addition because some events will also be
apparent in other network metrics, e.g. routing changes can affect both the
latency and the Traceroute path. Another approach would be to derive the
probabilities for the fusion methods from the AMP-ICMP dataset because
we believe that the high variability of the AMP-ICMP time series may have
had a detrimental effect on the performance of some of the more sensitive
detectors. This approach would require the collection of a new independent

Chapter 9 Conclusion 77

dataset because the original AMP-ICMP test dataset would be used as training
data.

References

[1] A Simple Network Management Protocol (SNMP). http://www.ietf.org/
rfc/rfc1157.txt. Accessed: 2014.05.23.

[2] Intrusion Detection Message Exchange Format Data Model and Exten-
sible Markup Language (XML) Document Type Definition. http://www.
ietf.org/proceedings/50/I-D/idwg-idmef-xml-03.txt. Accessed: 2014.05.23.

[3] The Libpcap Project. http://sourceforge.net/projects/libpcap/. Accessed:
2014.05.23.

[4] Ryan Prescott Adams and David JC MacKay. Bayesian Online Change-
point Detection. arXiv preprint arXiv:0710.3742, 2007.

[5] G. Androulidakis, V. Chatzigiannakis, and S. Papavassiliou. Network
Anomaly Detection and Classification via Opportunistic Sampling. Net-
work, IEEE, 23(1):6–12, January 2009.

[6] Thomas Bayes, Derek W Bunn, Howard Raiffa, Robert Schlaifer, and Det-
lof Von Winterfeldt. An Essay toward Solving a Problem in the Doctrine
of Chances. Philosophical Transactions of the Royal Society of London,
53, 1984.

[7] Peter J Brockwell and Richard A Davis. Introduction to Time Series and
Forecasting, volume 1. Taylor & Francis, 2002.

[8] SC Byun, DB Choi, BH Ahn, and Hanseok Ko. Traffic Incident Detection
using Evidential Reasoning Based Data Fusion. In Proceedings of 6th
World Congress on Intelligent Transport Systems (ITS), held Toronto,
Canada, November 8-12, 1999, 1999.

[9] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly Detec-
tion: A Survey. ACM Comput. Surv., 41(3):15:1–15:58, July 2009.

[10] V. Chatzigiannakis, G. Androulidakis, K. Pelechrinis, S. Papavassiliou,

http://www.ietf.org/rfc/rfc1157.txt
http://www.ietf.org/rfc/rfc1157.txt
http://www.ietf.org/proceedings/50/I-D/idwg-idmef-xml-03.txt
http://www.ietf.org/proceedings/50/I-D/idwg-idmef-xml-03.txt
http://sourceforge.net/projects/libpcap/

References 79

and V. Maglaris. Data Fusion Algorithms for Network Anomaly Detec-
tion: Classification and Evaluation. In Proceedings of the Third Inter-
national Conference on Networking and Services, ICNS ’07, pages 50–,
Washington, DC, USA, 2007. IEEE Computer Society.

[11] Vasilis Chatzigiannakis, Symeon Papavassiliou, Georgios Androulidakis,
and B Maglaris. On the Realization of a Generalized Data Fusion and
Network Anomaly Detection Framework. Fifth International Sympo-
sium on Communication Systems, Networks and Digital Signal Processing
(CSNDSP’06), Patra, Greece, 2006.

[12] Siddhartha Chib. Estimation and Comparison of Multiple Change-point
Models. Journal of econometrics, 86(2):221–241, 1998.

[13] Can Demirkesen and Hocine Cherifi. Fusing Image Representations for
Classification Using Support Vector Machines. CoRR, abs/1207.3607,
2012.

[14] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from
Incomplete Data via the EM Algorithm. Journal of the Royal Statistical
Society, Series B, 39(1):1–38, 1977.

[15] Yong Deng, Xiaoyan Su, Dong Wang, and Qi Li. Target Recognition
Based on Fuzzy Dempster Data Fusion Method. Defence Science Journal,
60(5):525–530, 2010.

[16] Werner Ebeling, Ralf Steuer, and MR Titchener. Partition-based En-
tropies of Deterministic and Stochastic Maps. Stochastics and Dynamics,
1(01):45–61, 2001.

[17] Nagios Enterprises. Nagios. http://www.nagios.org/. Accessed on:
2014.05.05.

[18] Terrence L. Fine. Review: Glenn shafer, a mathematical theory of evi-
dence. Bulletin of the American Mathematical Society, 83(4):667–672, 07
1977.

[19] WAND Network Group. Active Measurement Project. http://research.
wand.net.nz/software/amp.php. Accessed: 2014.06.06.

[20] WAND Network Research Group. WAND Network Research Group. http:
//wand.net.nz/. Accessed: 2014.05.24.

http://www.nagios.org/
http://research.wand.net.nz/software/amp.php
http://research.wand.net.nz/software/amp.php
http://wand.net.nz/
http://wand.net.nz/

References 80

[21] Ian Jolliffe. Principal Component Analysis. Wiley Online Library, 2005.

[22] Audun Jøsang, Javier Diaz, and Maria Rifqi. Cumulative and Averaging
Fusion of Beliefs. Inf. Fusion, 11(2):192–200, April 2010.

[23] Shrijit S. Joshi and Vir V. Phoha. Investigating Hidden Markov Models
Capabilities in Anomaly Detection. In Proceedings of the 43rd Annual
Southeast Regional Conference - Volume 1, ACM-SE 43, pages 98–103,
New York, NY, USA, 2005. ACM.

[24] Christopher Krügel, Thomas Toth, and Engin Kirda. Service Specific
Anomaly Detection for Network Intrusion Detection. In Proceedings of
the 2002 ACM Symposium on Applied Computing, SAC ’02, pages 201–
208, New York, NY, USA, 2002. ACM.

[25] Tze Leung Lai. Sequential Changepoint Detection in Quality Control and
Dynamical Systems. Journal of the Royal Statistical Society. Series B
(Methodological), pages 613–658, 1995.

[26] Jiaming Li, Suhuai Luo, and Jesse S. Jin. Sensor Data Fusion for Accu-
rate Cloud Presence Prediction Using Dempster-Shafer Evidence Theory.
Sensors, 10(10):9384–9396, 2010.

[27] Wei Lu and Ali A. Ghorbani. Network Anomaly Detection Based on
Wavelet Analysis. EURASIP J. Adv. Signal Process, 2009:4:1–4:16, Jan-
uary 2009.

[28] Andreas Löf. Improving the Evaluation of Network Anomaly Detection
Using a Data Fusion Approach. PhD thesis, University of Waikato, 2013.

[29] A.J. McGregor and Braun H-W. Automated Event Detection for Active
Measurement Systems, 2001.

[30] JJ O Ruanaidh, WJ Fitzgerald, and KJ Pope. Recursive Bayesian Loca-
tion of a Discontinuity in Time Series. In Acoustics, Speech, and Signal
Processing, 1994. ICASSP-94., 1994 IEEE International Conference on,
volume 4, pages IV–513. IEEE, 1994.

[31] Tobi Oetiker. About Smokeping. http://oss.oetiker.ch/smokeping/index.
en.html. Accessed: 2014.05.05.

[32] Vern Paxson. Bro: a System for Detecting Network Intruders in Real-
Time. Computer Networks, 31(23-24):2435–2463, 1999.

http://oss.oetiker.ch/smokeping/index.en.html
http://oss.oetiker.ch/smokeping/index.en.html

References 81

[33] J. Postel. Internet Control Message Protocol. RFC 792 (INTERNET
STANDARD), September 1981. Updated by RFCs 950, 4884, 6633, 6918.

[34] Michael J Prerau and Eleazar Eskin. Unsupervised Anomaly Detection
using an Optimized K-nearest Neighbors Algorithm. Undergraduate The-
sis, Columbia University: December, 2000.

[35] Lawrence R Rabiner. A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition. Proceedings of the IEEE, 77(2):257–
286, 1989.

[36] Niko Rebenich. Fast Low Memory T-Transform. http://www.t-codes.org/.
Accessed: 2014.05.05.

[37] Martin Roesch. Snort - Lightweight Intrusion Detection for Networks. In
Proceedings of the 13th USENIX Conference on System Administration,
LISA ’99, pages 229–238, Berkeley, CA, USA, 1999. USENIX Association.

[38] R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang, and
S. Zhou. Specification-based Anomaly Detection: A New Approach for
Detecting Network Intrusions. In Proceedings of the 9th ACM Conference
on Computer and Communications Security, CCS ’02, pages 265–274,
New York, NY, USA, 2002. ACM.

[39] Glenn Shafer. A Mathematical Theory of Evidence, volume 1. Princeton
university press Princeton, 1976.

[40] Taeshik Shon, Yongdae Kim, Cheolwon Lee, and Jongsub Moon. A Ma-
chine Learning Framework for Network Anomaly Detection using SVM
and GA. In Information Assurance Workshop, 2005. IAW ’05. Proceed-
ings from the Sixth Annual IEEE SMC, pages 176–183, June 2005.

[41] Taeshik Shon and Jongsub Moon. A Hybrid Machine Learning Approach
to Network Anomaly Detection. Information Sciences, 177(18):3799 –
3821, 2007.

[42] Christos Siaterlis and Basil Maglaris. Towards Multisensor Data Fusion
for DoS Detection. In Proceedings of the 2004 ACM Symposium on Applied
Computing, SAC ’04, pages 439–446, New York, NY, USA, 2004. ACM.

[43] A. F. M. Smith. A Bayesian Approach to Inference about a Change-point
in a Sequence of Random Variables. Biometrika, 62(2):407–416, 1975.

http://www.t-codes.org/

References 82

[44] U. Speidel, R. Eimann, and N. Brownlee. Detecting Network Events via
T-entropy. In Information, Communications Signal Processing, 2007 6th
International Conference on, pages 1–5, Dec 2007.

[45] DA Stephens. Bayesian Retrospective Multiple-Changepoint Identifica-
tion. Applied Statistics, pages 159–178, 1994.

[46] M. Thottan and Chuanyi Ji. Anomaly Detection in IP Networks. Signal
Processing, IEEE Transactions on, 51(8):2191–2204, Aug 2003.

[47] K Tomsovic and B Baer. Fuzzy Information Approaches to Equipment
Condition Monitoring and Diagnosis. Electric Power Applications of Fuzzy
Systems, IEEE Press, pages 59–84, 1998.

[48] DW Trigg and AG Leach. Exponential Smoothing with an Adaptive
Response Rate. Journal of the Operational Research Society, 18(1):53–59,
1967.

[49] A. Ziviani, A. T A Gomes, M.L. Monsores, and P.S.S. Rodrigues. Net-
work Anomaly Detection using Nonextensive Entropy. Communications
Letters, IEEE, 11(12):1034–1036, December 2007.

Appendix A

Probability Masses for
Dempster-Shafer Belief Fusion

Probability masses marked with an asterisk use the probability samples for the
equivalent No Latency category because no samples were available.

Appendix A Probability Masses for Dempster-Shafer Belief Fusion 84

Latency (ms) Variability m(DetSig) m(DetFP) m(DetAny)
Constant 0.64 0.00 0.36

0 - 5 Noisy 0.00 0.00 1.00
None 0.59 0.00 0.41
Constant 0.89 0.00 0.11

5 - 25 Noisy 0.00 0.00 1.00
None 0.95 0.00 0.05
Constant 0.93 0.00 0.07

25 - 100 Noisy 0.91 0.00 0.09
None 0.92 0.00 0.08
Constant 0.69 0.00 0.31

100 - 300 Noisy 0.91* 0.00* 0.09*
None 0.69 0.00 0.31
Constant 0.37 0.00 0.63

300 + Noisy 0.91* 0.00* 0.09*
None 0.37 0.00 0.63
Constant 0.61 0.00 0.39

No Latency Noisy 0.91 0.00 0.09
None 0.67 0.00 0.33

Table A.1: Probability masses used for the Plateau Detector for Dempster-Shafer, Av-
eraging, and Cumulative Belief Fusions

Appendix A Probability Masses for Dempster-Shafer Belief Fusion 85

Latency (ms) Variability m(DetSig) m(DetFP) m(DetAny)
Constant 0.43 0.00 0.57

0 - 5 Noisy 0.00 0.00 0.00
None 0.43 0.00 0.57
Constant 0.36 0.05 0.59

5 - 25 Noisy 0.89 0.00 0.11
None 0.52 0.03 0.45
Constant 0.89 0.11 0.00

25 - 100 Noisy 0.86 0.00 0.14
None 0.88 0.06 0.06
Constant 0.78 0.06 0.17

100 - 300 Noisy 0.88* 0.00* 0.13*
None 0.78 0.06 0.17
Constant 0.39 0.25 0.36

300 + Noisy 0.88* 0.00* 0.13*
None 0.39 0.25 0.36
Constant 0.52 0.11 0.37

No Latency Noisy 0.88 0.00 0.13
None 0.57 0.09 0.34

Table A.2: Probability masses used for the Changepoint Detector for Dempster-Shafer,
Averaging, and Cumulative Belief Fusions

Appendix A Probability Masses for Dempster-Shafer Belief Fusion 86

Latency (ms) Variability m(DetSig) m(DetFP) m(DetAny)
Constant 0.81 0.00 0.19

0 - 5 Noisy 0.17 0.33 0.50
None 0.58 0.12 0.30
Constant 0.82 0.00 0.18

5 - 25 Noisy 0.71 0.00 0.29
None 0.76 0.00 0.24
Constant 0.82 0.00 0.18

25 - 100 Noisy 0.84 0.00 0.16
None 0.83 0.00 0.17
Constant 0.47 0.02 0.51

100 - 300 Noisy 0.88* 0.00* 0.12*
None 0.47 0.02 0.51
Constant 0.40 0.00 0.60

300 + Noisy 0.88* 0.00* 0.12*
None 0.40 0.00 0.60
Constant 0.52 0.11 0.37

No Latency Noisy 0.88 0.00 0.12
None 0.57 0.09 0.34

Table A.3: Probability masses used for the Tentropy-StdDev Detector for Dempster-
Shafer, Averaging, and Cumulative Belief Fusions

Appendix A Probability Masses for Dempster-Shafer Belief Fusion 87

Latency (ms) Variability m(DetSig) m(DetFP) m(DetAny)
Constant 0.41 0.08 0.52

0 - 5 Noisy 0.00 0.62 0.38
None 0.34 0.17 0.49
Constant 0.70 0.00 0.30

5 - 25 Noisy 0.66 0.03 0.31
None 0.67 0.01 0.31
Constant 0.89 0.00 0.11

25 - 100 Noisy 0.92 0.00 0.08
None 0.91 0.00 0.09
Constant 0.84 0.00 0.16

100 - 300 Noisy 0.68* 0.11* 0.22*
None 0.84 0.00 0.16
Constant 0.95 0.00 0.05

300 + Noisy 0.68* 0.11* 0.22*
None 0.95 0.00 0.05
Constant 0.65 0.03 0.31

No Latency Noisy 0.68 0.11 0.22
None 0.66 0.06 0.28

Table A.4: Probability masses used for the TEntropy-MeanDiff Detector for Dempster-
Shafer, Averaging, and Cumulative Belief Fusions

Appendix A Probability Masses for Dempster-Shafer Belief Fusion 88

Latency (ms) Variability m(DetSig) m(DetFP) m(DetAny)
Constant 1.00 0.00 0.00

0 - 5 Noisy 0.00 1.00 0.00
None 0.79 0.21 0.00
Constant 1.00 0.00 0.00

5 - 25 Noisy 1.00 0.00 0.00
None 1.00 0.00 0.00
Constant 1.00 0.00 0.00

25 - 100 Noisy 1.00 0.00 0.00
None 1.00 0.00 0.00
Constant 0.80 0.07 0.13

100 - 300 Noisy 0.92* 0.08* 0.00*
None 0.87 0.07 0.07
Constant 1.00 0.00 0.00

300 + Noisy 0.92* 0.08* 0.00*
None 1.00 0.00 0.00
Constant 0.96 0.02 0.02

No Latency Noisy 0.92 0.08 0.00
None 0.95 0.04 0.01

Table A.5: Probability masses used for the Mode Detector for Dempster-Shafer, Aver-
aging, and Cumulative Belief Fusions

Appendix A Probability Masses for Dempster-Shafer Belief Fusion 89

Latency (ms) Variability m(DetSig) m(DetFP) m(DetAny)
Constant 0.62 0.00 0.38

0 - 5 Noisy 0.15 0.38 0.46
None 0.46 0.13 0.41
Constant 0.62 0.00 0.38

5 - 25 Noisy 0.59 0.00 0.41
None 0.60 0.00 0.40
Constant 0.85 0.00 0.15

25 - 100 Noisy 0.90 0.03 0.06
None 0.88 0.02 0.10
Constant 0.71 0.0 0.29

100 - 300 Noisy 0.65* 0.08* 0.27*
None 0.71 0.00 0.29
Constant 0.44 0.00 0.56

300 + Noisy 0.65* 0.08* 0.27*
None 0.44 0.00 0.56
Constant 0.61 0.0 0.39

No Latency Noisy 0.65 0.08 0.27
None 0.62 0.02 0.36

Table A.6: Probability masses used for the HMM Detector for Dempster-Shafer, Aver-
aging, and Cumulative Belief Fusions

Appendix B

Prior Probabilities for Bayes’
Theorem

Probability masses marked with an asterisk use the probability samples for the
equivalent No Latency category because no samples were available.

Appendix
B

PriorProbabilities
forBayes’Theorem

91

Latency (ms) Variability P(Sig) P(!Sig) P(Det|Sig) P(Det|!Sig) P(FP) P(!FP) P(Det|FP) P(Det|!FP)
Constant 0.36 0.67 0.53 0.17 0.06 0.94 0.00 0.32

0 - 5 Noisy 0.12 0.88 0.00 0.07 0.44 0.56 0.00 0.11
None 0.29 0.71 0.47 0.13 0.17 0.83 0.00 0.28
Constant 0.47 0.53 0.73 0.08 0.04 0.96 0.00 0.4

5 - 25 Noisy 0.67 0.33 0.65 0.00 0.02 0.98 0.00 0.44
None 0.57 0.43 0.68 0.05 0.03 0.97 0.00 0.42
Constant 0.80 0.20 0.58 0.17 0.03 0.97 0.00 0.52

25 - 100 Noisy 0.82 0.18 0.47 0.20 0.02 0.98 0.00 0.43
None 0.81 0.19 0.51 0.19 0.02 0.98 0.00 0.46
Constant 0.49 0.51 0.62 0.26 0.02 0.98 0.00 0.45

100 - 300 Noisy 0.59* 0.41* 0.51* 0.07* 0.13* 0.87* 0.00* 0.38*
None 0.49 0.51 0.62 0.26 0.20 0.80 0.00 0.45
Constant 0.34 0.66 0.51 0.44 0.05 0.95 0.00 0.49

300 + Noisy 0.59* 0.41* 0.51* 0.07* 0.13* 0.87* 0.00* 0.38*
None 0.34 0.66 0.51 0.44 0.05 0.95 0.00 0.49
Constant 0.43 0.57 0.58 0.29 0.04 0.96 0.00 0.44

No Latency Noisy 0.59 0.41 0.51 0.07 0.13 0.87 0.00 0.38
None 0.47 0.53 0.56 0.25 0.06 0.94 0.00 0.42

Table B.1: Probability values used for the Plateau Detector for Bayes’ Theorem

Appendix
B

PriorProbabilities
forBayes’Theorem

92

Latency (ms) Variability P(Sig) P(!Sig) P(Det|Sig) P(Det|!Sig) P(FP) P(!FP) P(Det|FP) P(Det|!FP)
Constant 0.36 0.64 0.20 0.15 0.06 0.94 0.00 0.18

0 - 5 Noisy 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
None 0.29 0.71 0.18 0.10 0.17 0.83 0.00 0.14
Constant 0.47 0.53 0.36 0.56 0.04 0.96 0.50 0.47

5 - 25 Noisy 0.67 0.33 0.26 0.07 0.02 0.98 0.00 0.20
None 0.57 0.43 0.30 0.38 0.03 0.97 0.33 0.86
Constant 0.80 0.20 0.33 0.17 0.03 0.97 1.00 0.28

25 - 100 Noisy 0.82 0.18 0.13 0.10 0.02 0.98 0.00 0.13
None 0.81 0.19 0.20 0.13 0.02 0.98 0.50 0.18
Constant 0.49 0.51 0.28 0.04 0.02 0.98 0.50 0.17

100 - 300 Noisy 0.59* 0.41* 0.18* 0.04* 0.13* 0.87* 0.00* 0.14*
None 0.49 0.51 0.28 0.04 0.02 0.98 0.50 0.17
Constant 0.34 0.66 0.24 0.19 1.00 0.05 0.95 0.17

300+ Noisy 0.59* 0.41* 0.18* 0.04* 0.13* 0.87* 0.00* 0.14*
None 0.34 0.66 0.24 0.19 0.05 0.95 1.00 0.17
Constant 0.43 0.57 0.27 0.20 0.04 0.96 0.59 0.21

No Latency Noisy 0.59 0.41 0.18 0.04 0.13 0.87 0.00 0.14
None 0.47 0.53 0.24 0.16 0.06 0.94 0.29 0.20

Table B.2: Probability values used for the Changepoint Detector for Bayes’ Theorem

Appendix
B

PriorProbabilities
forBayes’Theorem

93

Latency (ms) Variability P(Sig) P(!Sig) P(Det|Sig) P(Det|!Sig) P(FP) P(!FP) P(Det|FP) P(Det|!FP)
Constant 0.36 0.67 0.57 0.08 0.06 0.94 0.00 0.27

0 - 5 Noisy 0.12 0.88 0.50 0.33 0.44 0.56 0.27 0.42
None 0.29 0.71 0.56 0.17 0.17 0.83 0.20 0.30
Constant 0.47 0.53 0.64 0.12 0.04 0.96 0.00 0.38

5 - 25 Noisy 0.67 0.33 0.65 0.53 0.02 0.98 0.00 0.62
None 0.57 0.43 0.64 0.28 0.03 0.97 0.00 0.50
Constant 0.80 0.20 0.75 0.67 0.03 0.97 0.00 0.76

25 - 100 Noisy 0.82 0.18 0.69 0.60 0.02 0.98 0.00 0.69
None 0.81 0.19 0.71 0.63 0.02 0.98 0.00 0.71
Constant 0.49 0.51 0.80 0.87 0.02 0.98 1.00 0.83

100 - 300 Noisy 0.59* 0.41* 0.66* 0.44* 0.13* 0.87* 0.24* 0.62*
None 0.49 0.51 0.80 0.87 0.02 0.98 1.00 0.83
Constant 0.34 0.66 0.73 0.56 0.05 0.95 0.00 0.65

300 + Noisy 0.59* 0.41* 0.66* 0.44* 0.13* 0.87* 0.24* 0.62*
None 0.34 0.67 0.73 0.56 0.05 0.95 0.00 0.65
Constant 0.43 0.57 0.71 0.47 0.04 0.96 0.12 0.60

No Latency Noisy 0.59 0.41 0.66 0.44 0.13 0.87 0.24 0.62
None 0.47 0.53 0.70 0.46 0.06 0.94 0.18 0.60

Table B.3: Probability values used for the TEntropy-StdDev Detector for Bayes’ Theorem.

Appendix
B

PriorProbabilities
forBayes’Theorem

94

Latency (ms) Variability P(Sig) P(!Sig) P(Det|Sig) P(Det|!Sig) P(FP) P(!FP) P(Det|FP) P(Det|!FP)
Constant 0.36 0.67 0.87 0.72 0.06 0.94 1.00 0.76

0 - 5 Noisy 0.12 0.88 0.00 0.43 0.44 0.56 0.53 0.26
None 0.29 0.71 0.76 0.61 0.17 0.83 0.65 0.66
Constant 0.47 0.53 0.64 0.24 0.04 0.96 0.00 0.44

5 - 25 Noisy 0.67 0.33 0.68 0.73 0.02 0.98 1.00 0.69
None 0.57 0.43 0.66 0.43 0.03 0.97 0.33 0.57
Constant 0.80 0.20 0.71 0.33 0.03 0.97 0.00 0.66

25 - 100 Noisy 0.82 0.18 0.78 0.30 0.02 0.98 0.00 0.70
None 0.81 0.19 0.75 0.31 0.02 0.98 0.00 0.69
Constant 0.49 0.51 0.32 0.06 0.02 0.98 0.00 0.19

100 - 300 Noisy 0.59* 0.41* 0.70* 0.49* 0.13* 0.87* 0.53* 0.63*
None 0.49 0.51 0.32 0.06 0.02 0.98 0.00 0.18
Constant 0.34 0.66 0.44 0.01 0.05 0.95 0.00 0.17

300 + Noisy 0.59* 0.41* 0.70* 0.49* 0.13* 0.87* 0.53* 0.63*
None 0.34 0.66 0.44 0.01 0.05 0.95 0.00 0.17
Constant 0.43 0.57 0.54 0.22 0.04 0.96 0.29 0.36

No Latency Noisy 0.59 0.41 0.70 0.49 0.13 0.87 0.53 0.63
None 0.47 0.53 0.59 0.28 0.06 0.94 0.41 0.43

Table B.4: Probability values used for the TEntropy-MeanDiff Detector for Bayes’ Theorem

Appendix
B

PriorProbabilities
forBayes’Theorem

95

Latency (ms) Variability P(Sig) P(!Sig) P(Det|Sig) P(Det|!Sig) P(FP) P(!FP) P(Det|FP) P(Det|!FP)
Constant 0.36 0.64 0.37 0.00 0.06 0.94 0.00 0.14

0 - 5 Noisy 0.18 0.82 0.00 0.10 0.44 0.56 0.20 0.00
None 0.29 0.71 0.32 0.04 0.17 0.83 0.15 0.11
Constant 0.47 0.53 0.68 0.00 0.04 0.96 0.00 0.33

5 - 25 Noisy 0.67 0.02 0.55 0.00 0.02 0.98 0.00 0.38
None 0.57 0.43 0.60 0.00 0.03 0.97 0.00 0.36
Constant 0.80 0.20 0.42 0.00 0.03 0.97 0.00 0.34

25 - 100 Noisy 0.82 0.18 0.36 0.00 0.02 0.98 0.00 0.30
None 0.81 0.19 0.38 0.00 0.02 0.98 0.00 0.31
Constant 0.49 0.51 0.26 0.04 0.02 0.98 0.50 0.14

100 - 300 Noisy 0.59* 0.41* 0.41* 0.05* 0.13* 0.87* 0.18* 0.28*
None 0.49 0.51 0.26 0.04 0.02 0.98 0.50 0.14
Constant 0.34 0.66 0.13 0.00 0.05 0.95 0.00 0.05

300 + Noisy 0.59* 0.41* 0.41* 0.05* 0.13* 0.87* 0.18* 0.28*
None 0.34 0.66 0.73 0.56 0.05 0.95 0.00 0.65
Constant 0.43 0.57 0.32 0.01 0.04 0.96 0.06 0.15

No Latency Noisy 0.59 0.41 0.41 0.05 0.13 0.87 0.18 0.28
None 0.47 0.53 0.35 0.02 0.06 0.94 0.12 0.18

Table B.5: Probability values used for the Mode Detector for Bayes’ Theorem

Appendix
B

PriorProbabilities
forBayes’Theorem

96

Latency (ms) Variability P(Sig) P(!Sig) P(Det|Sig) P(Det|!Sig) P(FP) P(!FP) P(Det|FP) P(Det|!FP)
Constant 0.36 0.64 0.53 0.19 0.06 0.94 0.00 0.33

0 - 5 Noisy 0.12 0.88 0.50 0.37 0.44 0.56 0.33 0.42
None 0.29 0.71 0.53 0.25 0.17 0.83 0.25 0.35
Constant 0.47 0.53 0.73 0.40 0.04 0.96 0.00 0.58

5 - 25 Noisy 0.67 0.33 0.52 0.73 0.02 0.98 0.00 0.60
None 0.57 0.43 0.60 0.53 0.03 0.97 0.00 0.59
Constant 0.80 0.20 0.71 0.50 0.03 0.97 0.00 0.69

25 - 100 Noisy 0.82 0.18 0.62 0.30 0.02 0.98 1.00 0.56
None 0.81 0.19 0.65 0.38 0.02 0.98 0.50 0.60
Constant 0.49 0.51 0.58 0.23 0.02 0.98 0.00 0.41

100 - 300 Noisy 0.59* 0.41* 0.58* 0.45* 0.13* 0.87* 0.35* 0.55*
None 0.49 0.51 0.58 0.23 0.02 0.98 0.00 0.41
Constant 0.34 0.66 0.56 0.36 0.05 0.95 0.00 0.45

300 + Noisy 0.59* 0.41* 0.58* 0.45* 0.13* 0.87* 0.35* 0.55*
None 0.34 0.66 0.56 0.36 0.05 0.95 0.00 0.45
Constant 0.43 0.57 0.60 0.30 0.04 0.96 0.00 0.45

No Latency Noisy 0.59 0.41 0.58 0.45 0.13 0.87 0.35 0.55
None 0.47 0.53 0.59 0.33 0.06 0.94 0.18 0.47

Table B.6: Probability values used for the HMM Detector for Bayes’ Theorem

	Front Matter
	Abstract
	Acknowledgements
	Contents
	List of Figures

	List of Acronyms
	Introduction
	Background
	Network Anomaly Detection
	Netevmon

	Data Fusion
	Existing Work

	Detector Research
	Existing Latency Time Series Detectors
	Potential Detector Candidates
	Chosen Candidates to Implement

	Detector Implementation
	Implementation of the Symboliser
	Implementation of the T-Entropy Detector
	Implementation of the Hidden Markov Model (HMM) Detector
	Implementation of the Changepoint Detector

	Data Fusion Methods
	Dempster-Shafer Belief Fusion
	Bayes' Theorem
	Cumulative Belief Fusion
	Averaging Belief Fusion
	Detector Count Heuristic

	Ground Truth
	Detector Selection
	Smokeping Ground Truth Data

	Fusion Method Validation
	Implementation Script
	The Test Dataset
	Validation Method

	Results
	Possible Improvements

	Conclusion
	References
	Probability Masses for Dempster-Shafer Belief Fusion
	Prior Probabilities for Bayes' Theorem

