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Abstract: The mechanical properties of titanium and titanium alloys are very sensitive to processing, 

microstructure, and impurity levels. In this paper, a blended powder mixture of Ti-6Al-4V alloy was 

consolidated by powder compact extrusion that involved warm compaction, vacuum sintering, and 

hot extrusion. The as-processed material with an oxygen content of 0.34 wt.% was subjected to 

various annealing treatments. The impact toughness of heat-treated material was determined using 

Charpy V-notch impact testing at room temperature. An emphasis was placed on establishing a 

relationship among fracture behaviour, microstructure, and the resulting properties of tested 

material. From the results, it is apparent that the highest impact toughness value of 19.3 J was 

achieved after α/β annealing and is comparable with typical values given in the literature for 

wrought Ti-6Al-4V. In terms of fracture behaviour, it is quite apparent that the crack propagation 

behaviour of powder-produced material is rather complex compared with the limited amount of 

data reported for ingot counterparts.  

Keywords: blended powder; vacuum sintering; extrusion; heat treatment; microstructure; 

toughness; fracture; crack propagation behaviour 

 

1. Introduction 

The microstructures in material produced by powder metallurgy (PM) tend to be more complex 

than ingot-derived material, with more refined features. Furthermore, heat treatment of such 

microstructures results in more diversity in terms of grain and α/β colony size and the morphology 

of both lamellar and grain boundary α. Hence, finding a possible relationship among heat treatment, 

resulting microstructure, and mechanical properties is rather important in powder-produced 

material. Additionally, if relatively inexpensive powders are being used, then titanium and titanium 

alloys produced by PM route have much higher impurity contents compared to ingot counterparts. 

High oxygen content in the titanium lattice increases the strength, Young’s modulus, fatigue strength, 

and hardness, but compromises the ductility, impact strength, and fracture toughness. Therefore, it 

is very important to determine the level of enhancement or balance of properties that can be obtained 

from various heat treatments. The theme of this paper is to evaluate the effect of various heat 

treatments on material produced by powder compact extrusion (PCE) processing.  

Before specifically focusing on the current study, it is important to cover some of the background 

on the effect of microstructure on mechanical properties. Therefore, a review of previous studies on 

the impact toughness of ingot- and powder-produced Ti-6Al-4V alloy is presented. The relationship 

among heat treatment, resulting microstructure, and mechanical properties for ingot/wrought 

titanium and titanium alloys is well understood, and this information is readily found in the 
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literature, in particular for Ti-6Al-4V alloy [1–3]. A general conclusion from an extensive body of 

literature suggests that a duplex microstructure is good for providing creep strength without 

excessively compromising fatigue strength, while a fine equiaxed microstructure gives high tensile 

strength, good ductility, and a good resistance to fatigue crack initiation. Other mechanical properties 

such as impact toughness, fracture toughness, resistance to fatigue crack propagation, and creep 

strength are associated with Widmanstätten/basketweave/lamellar-type microstructures [1–3]. 

There are a number of studies in the literature that investigated the effect of post-processing heat 

treatments on impact toughness of Ti-6Al-4V alloy produced by conventional ingot/wrought or 

casting routes [1,4–6]. The work done by Meyer et al. suggests that heat treatment of mill-annealed 

Ti-6Al-4V alloy gives a range of impact toughness; however, furnace cooling from the β or α + β phase 

fields provides the best energy absorption to failure, with values in the range 42–46 J, using U-notch 

specimens [6]. It is reported that an increase in the sharpness of the notch considerably decreases 

impact toughness [7]. Therefore, utilisation of a U-shaped notch generally provides a larger impact 

energy value and, thus, extra care should be taken when comparing results with other studies.  

Reda et al.’s work on the heat treatment of as-cast Ti-6Al-4V alloy reported significantly inferior 

impact strengths than those given in other studies on wrought counter parts [4,5]. A typical impact 

toughness of as-cast material in their work was around 11 J with various α + β heat treatments giving 

only a limited enhancement in toughness. The work done by Kwon et al. on heat treatment of rolled 

plate emphasised that annealing in the α + β phase field followed by ageing is more effective in 

improving impact absorbed energy (as high as 35 J) compared to material which underwent β 

annealing plus ageing, where an impact energy around 24 J was attained [8]. Similarly, a study by 

Buirette et at. on β-annealed and α/β-annealed rolled plate suggests that a lamellar microstructure 

gives a superior average fracture energy (19 J) to an equiaxed microstructure (13 J) [9]. Other than 

these studies, further impact toughness data published for heat-treated ingot/wrought/investment 

cast Ti-6Al-4V alloy typical vary between 17 and 46 J [1,10]. 

There are very little data for impact toughness of heat-treated Ti-6Al-4V alloy produced by a PM 

route, yet good impact toughness may be a requirement for many applications. Guo et al. reported 

that an impact toughness value of about 500 kJ/m2 (50 J/cm2 or 40 J) is achievable by heat-treating a 

powder compact originally produced by hot isostatic pressing pre-alloyed gas atomised powder with 

an oxygen level of 0.12 wt.% [11]. In this study, a heat treatment consisting of an annealing 

temperature of 930 °C, an isothermal hold of one hour, and subsequent air-cooling was employed 

prior to ageing. Additionally, U-notch Charpy impact specimens were used, which generally provide 

much higher impact energy compared to V-notch Charpy specimens. Another study by Yasa et al., 

which investigated the effect of heat treatment on selective laser-melted material, reported an impact 

energy of about 10.1 J after annealing for two hours at 735 °C [12]. There are few other studies that 

investigated the effect of microstructure on impact toughness. Among these, microstructures were 

altered using different processing conditions or processing routes, rather than by applying various 

post-processing heat treatments [13,14] 

Another important aspect that lacks significant understanding is crack propagation behaviour 

of titanium and titanium alloys during impact toughness testing. There are several studies that 

investigated the fracture surfaces of Ti-6Al-4V alloy after impact testing [1,4–6,8,9]. However, there 

were only a limited number of studies that specifically investigated the crack propagation mechanism 

during Charpy impact toughness testing on titanium and titanium alloys. Recently, Buirette et al. 

made some effort to explore fracture and crack propagation behaviour of highly textured rolled plates 

of ingot Ti-6Al-4V alloy with an α equiaxed microstructure and a very coarse α lamellar 

microstructure (grain size in the range 920 ± 320 µm) [9]. No other similar studies for titanium and 

titanium alloys produced by a PM route were reported, despite the fact that PM-produced material 

has a more refined microstructure with some residual porosity or other processing-related defects, 

which result in significant differences in the fracture/crack propagation mechanism. 

In the current study, four different heat treatments are employed to gain a better understanding 

of the Charpy impact behaviour of heat-treated Ti-6Al-4V alloy produced from a blended powder 

mixture with oxygen levels in the range of 0.33–0.35 wt.%. In addition, possible relationships between 
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the microstructure and fracture behaviour of impact test specimens through an investigation of crack 

path and an in-depth examination of fracture surfaces are explored. 

2. Material and Methods 

In this study, titanium alloy rods with a nominal composition of Ti-6Al-4V were produced 

following a standard blended elemental (BE) processing sequence of blending, warm pressing, and 

vacuum sintering prior to hot extrusion. Information regarding the starting powders and processing 

parameters used in this study can be found in Table 1. The particle size distribution of starting 

powders was obtained using a Malvern Mastersizer 2000 analyser (Malvern Instruments Ltd., 

Worcestershire, UK). 

Table 1. Characteristics of the starting powders and processing conditions used to produce Ti-6Al-4V 

alloy rods by powder compact extrusion (PCE). HDH—hydride–dihydride; MA—master alloy. 

Starting Powders 

Powders 
Oxygen 

Content (wt.%) 

Volume Fraction Below Particular (m) 
Particle Size 

d(0.1) d(0.5) d(0.9) 

HDH Ti 

MA (60Al-40V) 

~0.25 

~0.61 

27.043 

28.384 

51.252 

53.460 

89.485 

91.167 

−200 mesh 

−250 mesh 

Processing 

Process Equipment Description 

Blending/roller 

mixing 
Horizontal rollers 450 g of HDH Ti + 50 g of MA (60Al-40V) were mixed 

Compaction 
100-ton hydraulic 

press 

Warm compaction was performed at 220 °C, using 313 MPa 

of uniaxial pressure with 8 min of hold time 

Sintering Vacuum furnace 
All samples were sintered together at 1325 °C with a 10 

°C/min heating rate and 120 min of hold time 

Induction heating Induction furnace Compacts were heated to 1150–1200 °C prior to extrusion 

Extrusion 
300-ton horizontal 

hydraulic press 

An extrusion speed of 122 mm/s was used along with a 9:1 

extrusion ratio 

Elemental hydride–dehydride (HDH) Ti powder was blended with 60Al-40V master alloy 

powder using a roller mill at a speed of 200 rpm for 24 hours in an air-tight container. The blended 

powder mixture was uniaxially warm pressed at 220 °C in a 56-mm-diameter H14 heat-treated steel 

die under a pressure of 313 MPa with 8 min of hold time to achieve 80% or above relative density for 

each of the powder compacts. The inner surface of this die and plunger was coated with colloidal 

graphite lubricant to reduce die wall friction. Prior to extrusion, these green compacts were sintered 

to 1325 °C with a heating rate of 10 °C/min using a vacuum furnace. The isothermal hold time was 

selected to be two hours, followed by natural cooling to room temperature. A vacuum in the range 

of 1–3 × 10−2 Pa was maintained inside the furnace during heating and isothermal holding. For 

powder compact extrusion, the vacuum-sintered compacts were heated again to temperatures in the 

range of 1150~1200 °C using an induction coil in air. The hot compact was shifted to a cylindrical 

extrusion chamber which, along with the die, was already at 420 °C. A 300-ton hydraulic press was 

used to produce rods with a diameter of 20 mm and extrusion ratio of 9:1. 

Extruded rods were produced as described in Table 1 and were then subjected to different heat 

treatments (see Figure 1). The annealing heat treatments were carried out in the same vacuum furnace 

used for sintering to avoid additional oxygen pickup. The functionality of this particular furnace does 

not allow for the removal of rods at high temperature; therefore, natural furnace cooling (FC) was 

used rather than air-cooling. For all annealing treatments, variations such as annealing temperature, 

isothermal hold time, ageing temperature, and cooling rate were incorporated. A heating rate of 10 

°C/min was used for every heat treatment, followed by an isothermal hold. Cooling to 200 °C from 

any temperature above the β transus was reached in two hours once the furnace was turned off. The 

thermal cycle used for the four annealing treatments can be seen in Figure 1. The first treatment 

involved a high β anneal, followed by two hours of ageing in the α/β region. A more standard β 



Materials 2019, 12, 3824 4 of 19 

 

annealing temperature (a few degrees higher than the β transus temperature) was used in the second 

treatment, followed by the same ageing scheme as in the previous case. The third case involved FC 

from the α/β region without any ageing step. Similarly, the final treatment was also α/β annealing, 

where there was well-controlled cooling from 925 to 760 °C, followed by FC. 

The chemical compositions, impurity content, and microstructures of as-extruded and heat-

treated materials were determined using X-ray fluorescence (Spectro Xepos spectrometer, SPECTRO 

Analytical Instruments, Kleve, Germany), an inert gas fusion method (ASTM E1409-08), and optical 

metallography (Olympus BX60, Olympus Optical Co Ltd, Tokyo, Japan), respectively. The ground 

and polished samples for optical metallography were etched in a modified Kroll’s reagent consisting 

of 2 vol.% HF, 4 vol.% HNO3, and 94 vol.% H2O. The heat-treated extruded rods were machined to 

obtain three impact toughness specimens with dimensions of 10 mm × 10 mm × 55 mm and a 2-mm-

deep V-notch with an approximate tip radius of 0.25 mm, which was introduced using an electro 

discharge machine (EDM). Impact testing was performed at room temperature using an Avery-6703 

impact tester (Avery Denison, United Kingdom) with a maximum energy rating of 300 J and an 

impact velocity of 5 m/s. 

 

Figure 1. Schematic showing time-temperature cycles for annealing treatments (a) 1200 °C/30 min, 

FC, 730 °C/2 h; (b) 1065 °C/1 h, FC, 730 °C/2 h; (c) 955 °C/1 h, FC; (d) 925 °C/4 h, CFC@50 °C/h to 760 

°C, FC. Note: FC—furnace cooling and CFC—controlled furnace cooling. 

The fracture surfaces and crack propagation behaviour of heat-treated impact-tested specimens 

were examined using optical and scanning electron microscopy. A broken half of a fractured impact 

specimen was examined using a Carl Zeiss SEM, and multiple fractographs were captured at 

different magnifications to identify the mode of fracture and other key fracture features. Similarly, 

the relationship between crack propagation path and microstructure was explored using the other 

broken half of an impact test-piece (one from each heat-treated condition) which was sectioned 

perpendicular (longitudinal direction) to the crack propagation direction. In order to capture optical 

images of the crack path, a standard procedure of epoxy mounting, grinding, polishing, and etching 

was employed. 

(a) (b) 

(c) (d) 
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3. Results 

The chemical composition and oxygen content of the material after various heat treatments are 

shown in Table 2 along with as-processed material (VS-E3’). The actual chemical composition of heat-

treated Ti-6Al-4V rods was very consistent, and the concentration of Al and V was within the ranges 

5.5–6.75 wt.% and 3.5–4.5 wt.%, as stated in the ASM standard for Ti-6Al-4V alloy [15].  

Table 2. A summary of chemical composition and oxygen contents of the extruded Ti-6Al-4V rods 

after various heat treatments. 

Heat Treatment 

Description 

Abbreviation 

(Treatment Temperature/Hold Time, Cooling 

Type, Ageing Temperature/Hold Time) 

Composition (wt.%) 

Ti Al V O 

- As-extruded (VS-E3’) 90.5 5.8 3.6 0.34 

β annealing + 

ageing treatment 

1200 °C/30 min, FC, 730 °C/2 h 

1065 °C/1 h, FC, 730 °C/2 h 

89.6 

89.9 

6.4 

6.5 

3.6 

3.5 

0.33 

0.34 

α + β 

annealing 

955 °C/1 h, FC 

925 °C/4 h, CFC@50 °C/h to 760 °C, FC 

89.9 

90.3 

6.3 

6.0 

3.6 

3.6 

0.35 

0.33 

Note: FC—furnace cooling, VS-E3’—as-extruded rod, CFC—controlled furnace cooling. 

The oxygen content of material produced in this study varied between 0.33 and 0.35 wt.%. A 

comparison of the oxygen contents achieved in this work with the specification required in the 

ASTM-B988 standard for powder-produced structural components suggests that the level of oxygen 

impurity attained here was marginally higher (0.03–0.05 wt.%) [16]. However, the impurity oxygen 

level here is much higher than that for commercially available grade five ingot Ti-6Al-4V (oxygen 

content ≤0.2 wt.%). 

3.1. Microstructure 

The microstructure of as-extruded material had a typical Widmanstätten/lamellar appearance 

which formed as a result of diffusion-controlled growth of the α phase as the material air-cooled from 

the β phase after exiting the extrusion die (see Figure 2a). Annealing above the β transus followed by 

ageing at 730 °C for two hours led to the formation of a coarse lamellar-type microstructure. Furnace 

cooling from a relatively high temperature (1200 °C) resulted in larger α + β colonies containing very 

coarse α lamellas, as shown in Figure 2b. In general, there were fewer colonies per grain, with some 

grains having a more complex colony morphology. The amount of retained β phase also varied from 

grain to grain. Most of the grains were well defined by a fine grain boundary α with uniform 

thickness.  

The standard β annealing treatment (1065 °C/1 h, FC, 730 °C/2 h) gave a microstructure 

containing a small, but very complex colony structure within larger grains. It is apparent that 

transformation from β to α led to a typical basketweave structure in most areas; however, there were 

a few areas that contained significant thick α plates separated by fine discontinuous dark lines 

corresponding to retained β, as shown in Figure 2c. This type of variation significantly affected the 

volume fraction of each phase along with the general morphology present within the same grain or 

colony. Overall, the grain size after this heat treatment was significantly larger (in the mm range) 

compared to material after a non-standard high β anneal and ageing treatment (1200 °C/30 min, FC, 

730 °C/2 h). The combination of a high annealing temperature and an isothermal hold time were 

thought to be the reasons for the fast grain growth kinetics, resulting in very large grains with a 

significant variation in colony, α lath, and lamellar interfaces.  

Furnace cooling from 955 °C produced a homogeneous lamellar microstructure containing small 

α/β colonies, with complex orientations (Figure 2d). This microstructure had a high β phase content 

as the lamella packages were well defined by continuous and uniformly thick darker lines. Other 

than the β phase, the grain boundary α phase was thicker compared with that observed in previous 

annealed and aged microstructures. There were a few colonies which had a lighter appearance, and 

which showed less clear features. An investigation of these areas at high magnification indicated that 

these features contained some retained β phase in the form of a very fine discontinuous line or dots.  
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Figure 2. Optical micrograph of powder compact extrusion (PCE)-produced Ti-6Al-4V alloy: (a) as-

extruded: fine lamellar microstructure; (b) 1200 °C/30 min, FC, 730 °C/2 h: coarse lamellar 

microstructure with a complex structure of α lamellas; (c) 1065 °C/1 h, FC, 730 °C/2 h: basketweave 

structure with partially broken up β phase; (d) 955 °C/1 h, FC: fine lamellar microstructure with 

complex grain and colony structure; (e) 925 °C/4 h, CFC@50 °C/h to 760 °C, FC: α laths, interfaces, and 

the grain boundary layer morphology. Note: the bottom row of images shows the same features at 

high magnification. 

This annealing treatment gave a similar homogeneous microstructure to that described for the 

previous case, with a few new key features. This microstructure had an even more complex colony 

arrangement containing a partly broken up β phase between each lenticular lamellar plate as shown 

in Figure 2e. Overall, the α morphology at the β boundaries was similar, but there were a few areas 

containing complex triple joints along with discontinuous grain boundary layers. There was also less 

retained β compared with that shown in the previous microstructure, which was evident from the 

thinner interfacial β (Figure 2e). It is clear that very slow controlled cooling from 975 °C to 760 °C at 

a rate of 50 °C/h followed by standard furnace cooling was responsible for α coarsening and a 

reduction in the β phase fraction.  

3.2. Impact Properties 

The room temperature impact toughness of heat-treated Ti-6Al-4V alloy rods is summarised in 

Table 3. Here, impact toughness values for individual Charpy impact specimens is reported along 

with the mean, standard deviation (SD), and standard error (SE) obtained from three replicate tests. 

The impact toughness of the heat-treated material varied between 13.7 and 19.3 J on average. It is 

very evident that impact toughness for each heat-treated material had a significant standard 

deviation/standard error and, due to this fact, the effect of individual heat treatments that fell under 

the same general category was indistinguishable. A comparison of impact energy values from each 

of the heat treatments suggests that the incorporation of post α + β annealing and β annealing and 

ageing treatments improved the average energy absorption to failure. The Charpy V-notch impact 

energy of as-extruded Ti-6Al-4V alloy (VS-E3’) fabricated from a blended powder mixture using PCE 

was 13.7 ± 0.3 J. Material after α/β annealing gave a mean impact toughness 40% higher than that for 

as-extruded material. Similarly, annealing treatments above the β transus followed by ageing at 730 

°C gave Charpy impact strengths of 1.3–1.7 J (11–14%) higher than the base material.  
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Table 3. Impact toughness of heat-treated Ti-6Al-4V alloy rods produced by powder compact 

extrusion (PCE). 

Heat Treatment 

Description 

Abbreviation 

(Treatment Temperature/Hold Time, Cooling 

Type, Ageing Temperature/Hold Time) 

Impact Toughness (J) 

S1 S2 S3 Mean SD^ SE+ 

- As-extruded (VS-E3’) 13 14 14 13.67 0.58 0.33 

β annealing + 

ageing treatment 

1200 °C/30 min, FC, 730 °C/2 h 

1065 °C/1 h, FC, 730 °C/2 h 

16 

17 

16 

14 

15 

15 

15.67 

15.33 

0.58 

1.53 

0.33 

0.88 

α + β 

annealing 

955 °C/1 h, FC 

925 °C/4 h, CFC@50 °C/h to 760 °C, FC 

20 

20 

20 

19 

18 

19 

19.33 

19.33 

1.15 

0.58 

0.67 

0.33 

Note: FC—furnace cooling, VS-E3’—as-extruded, CFC—controlled furnace cooling, S1*—impact 

specimen one, (SD^)—standard deviation, (SE+)—standard error. 

Overall, each heat treatment category could be ranked as follows: α + β annealing (19.3 J) > β 

annealing plus ageing (15.3–15.7 J) > as-extruded (13.7 J), based on their positive effect on mean 

impact toughness. 

3.3. Fracture Behaviour of Charpy Impact Specimens 

The optical fractographs of impacted specimens for each heat treatment are shown in Figure 3. 

It is very apparent that fracture surfaces of both β-annealed and aged conditions were very rough 

with shiny facets and thin shear lips (Figures 3a,b). The general fracture appearance of α + β heat-

treated material (955 °C/1 h, FC and 925 °C/4 h, CFC@50 °C/h to 760 °C, FC) were very similar. Here, 

the fracture surface was much smoother, with larger shear lips of more uniform thickness around the 

outer edges, as shown in Figures 3c,d. For as-extruded material (VS-E3’) shown in Figure 3e, the 

typical fracture surface was rather flat and featureless, and there were no shear lips around the outer 

edge, clearly suggesting greater brittleness compared to heat-treated materials. 

     

Figure 3. Fracture appearance of broken impact specimens: (a) 1200 °C/30 min, FC, 730 °C/2 h; (b) 

1065 °C/1 h, FC, 730 °C/2 h; (c) 955 °C/1 h, FC; (d) 925 °C/4 h, CFC@50 °C/h to 760 °C, FC; (e) as-

extruded. 

3.3.1. Crack Propagation Behaviour 

The crack path profile for β-annealed and aged (1200 °C/30 min, FC, 730 °C/2 h) microstructure 

could be divided into two parts (Figure 4a). A rough and regularly deviating crack profile was 

observed in the first half of the fracture profile (Figure 4b), whereas, after reaching the middle of the 

sample, the crack propagation mechanism changed. From here onwards, the crack followed a straight 

line (clear sign of brittle fracture) (Figure 4c). Overall, the fracture mode was predominantly 

transgranular as there were no signs of cracking around the grain boundaries. At an early stage of 

crack propagation, the individual α + β colonies and thick α lamellas provided some resistance to 

crack advancement, along with the grain boundary α layer. In the remaining half of the fractured 

test-piece, the propagating crack ruptured all the microstructural features randomly, which suggests 

that an unstable fracture occurred. Overall, the large aspect ratios of the α lamellas and resulting 

colonies were more resistant to fracture. This is most likely because this microstructural feature 

increased the crack length and, therefore, the surface area or surface energy, giving a larger 

toughness. 

(e) 
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Figure 4. Crack propagation behaviour of 1200 °C/30 min, FC, 730 °C/2 h heat-treated material: (a) 

overall crack path; (b) crack path in first half; (c) crack propagation in second half (relative location of 

image (b) and (c) is marked on (a)). 

The crack profile for material heat-treated 1065 °C/1 h, FC, 730 °C/2 h suggests a predominantly 

transgranular fracture mode in which the angle of crack front deviation was very sharp (as displayed 

in Figures 5a,b). The high-magnification SEM fractographs clearly indicate that the main sources of 

crack deflections were the entrance points to a new colony or, in some instances, a relatively thick 

individual α lamella arrested the crack, as shown in Figures 5c,d. 

 

Figure 5. Crack propagation behaviour of 1065 °C/1 h, FC, 730 °C/2 h heat-treated material: (a) overall 

crack path; (b) transgranular fracture with relatively sharp crack deflection; (c,d) microstructural 

features causing a significant change to crack path. 

V-Notch 

V-Notch 
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Generally, after entering each colony, cracks ruptured individual lamellas at a variety of angles 

to obtain the path of least resistance, and the thick grain boundary α layer played a negligible role in 

causing any change to the crack front. Overall, it can be concluded that relatively small colonies with 

large aspect ratio α lamellas (basketweave) did not further improve the crack propagation resistance 

compared with material heat-treated at 1200 °C/30 min, FC, 730 °C/2 h. Hence, the average impact 

toughness values for this heat treatment category were in close agreement. 

The crack propagation behaviour of material furnace cooled from 955 °C (shown in Figure 6) 

was drastically different from that described in the previous two cases (β-annealed and aged). 

Overall, the crack path shown in Figure 6a highlights the fact that the amplitude of crack front 

deviation was relatively small, while changes in the crack path were much more frequent. This 

suggests that individual microstructural features caused significant resistance to crack propagation, 

while the crack spread through the interior of grains (as clearly observed in the optical fractographs 

in Figure 6b). Confirmation of this can be seen in the higher-magnification images shown in Figures 

6c,d. From these images, it is clear that a crack was not only deflected by the differently orientated 

colonies, but each α lamellar plate and retained β phase matrix diverted the crack propagation paths 

to possibly retard crack propagation by blunting the crack tip. Additionally, the interaction of the 

crack with grain boundary α had a minor contribution to crack propagation resistance. In general, it 

can be concluded that a relatively thick retained β interface and individual α lamellar platelets in this 

microstructure were much tougher than those in β-annealed and aged material. Overall, each 

individual microstructural feature hindered the crack growth and, as a result, the best impact 

toughness values were obtained for this particular microstructure compared to the other heat 

treatments. 

 

Figure 6. Crack propagation behaviour of 955 °C/1 h, FC heat-treated material: (a) overall crack path; 

(b) transgranular fracture; (c,d) individual α lamellar plates and retained β phase matrix providing 

sufficient hindering to crack growth. 

The general crack path in material annealed using 925 °C/4 h, CFC@50 °C/h to 760 °C, FC shown 

in Figures 7a,b was comparable to that described in the previous case (where the material was cooled 

V-Notch 
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from 955 °C). From high-magnification SEM fractographs (Figures 7c–e), it was clear that various 

forms of α phase, i.e., the thick α present in a more rounded form, individual lamellas, and those at 

colony interfaces, were responsible for changes in crack direction. The retained β phase also provided 

some resistance to crack propagation. However, in this case, there was only sufficient blunting at the 

crack tip when there was a head-on encounter by the crack with a non-uniform thickness β strip. An 

example of such behaviour is presented in Figure 7c, where the crack deviated towards the path of 

least resistance after interacting with the β phase. Most of the time, cracks ripped apart these β 

interface strips and, therefore, a local deflection of the crack after passing each individual lath was 

absent. Overall, transgranular fracture was the major failure mode as there was no indication of 

cracking around grain boundaries. 

 

Figure 7. Crack propagation behaviour of 925 °C/4 h, CFC@50 °C/h to 760 °C, FC treated material: 

(a,b) overall crack path; (c) interaction with β phase; (d,e) different forms of α phase providing 

sufficient resistance to crack growth. 

For as-extruded material, an examination of the fracture surface of broken impact specimens 

(Figure 8) showed that the amplitude of the crack deflection was relatively lower than that for 925 

°C/4 h, CFC@50 °C/h to 760 °C, FC annealed and 955 °C furnace-cooled samples. However, a 

phenomenon of frequent changes in crack path was still very active (see Figures 8b,c). 

 

Figure 8. Crack propagation behaviour of as-extruded Ti-6Al-4V alloy: (a) overall crack path; (b) 

major deviation caused by colony interface; (c) limited resistance provided by retained β phase 

matrix. 

V-Notch 

V-Notch 
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The zigzagging of the crack profile here was mainly due to the presence of small colonies and a 

relatively fine morphology of the individual α and β phases. The size of the shear lips was similar to 

that observed in β-annealed and aged (730 °C) samples, as well as in 955 °C quenched and aged 

samples. Overall, an energetically favourable fracture path in this sample was crack deflection, as the 

crack entered individual colonies and cut through the α lamellas and interfacial and grain boundary 

α layers at a range of angles. 

3.3.2. Fracture Surfaces  

After annealing at 1200 °C followed by ageing at 730 °C, the failure mode was mostly cleavage 

(see Figures 9a,b). There were just a few areas where crack propagation was trans-lamellar, and some 

ductile dimpling was evidence of a limited amount of ductile fracture. These observations correlate 

with the earlier crack path investigation studies, and the cleavage seen here derived from cracks 

travelling along crystallographic planes with a preferred orientation relating to colony interfaces. 

 

Figure 9. Fracture surface of 1200 °C/30 min, FC, 730 °C/2 h heat-treated Ti-6Al-4V alloy: (a) cleavage 

fracture; (b) ductile dimples. 

The features present in the fracture surface of standard β-annealed and subsequently aged 

samples (Figures 10a,b) included well-defined transgranular fracture features, some cleavage facets, 

and sufficient dimples to be comparable to those in high β-annealed and aged samples. The size of 

the spallings (areas where a crack travelled through the lamellas) were very similar to the colony size, 

and this confirmed the observations made regarding the path taken by the crack.  

 

Figure 10. Fracture surface of 1065 °C/1 h, FC, 730 °C/2 h heat-treated Ti-6Al-4V alloy: (a) 

transgranular fracture marks; (b) signs of ductile fracture. 
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Fractographs of fractured impact specimens given a 955 °C/1 h, FC heat treatment are shown in 

Figure 11, and these showed a typical ductile fracture that one would expect from a Ti-6Al-4V alloy. 

Here, the presence of many ductile dimples and ductile tearing ridges suggests that the predominant 

mode of failure was ductile. There are no signs of trans-lamellar fracture, which suggests that α 

platelets provided sufficient resistance to crack propagation. In other words, the individual α 

lamellas and β phase matrix were plastically deformed, giving a fracture surface that consisted 

mostly of ductile fracture features. 

 

Figure 11. Fracture surface of 955 °C/1 h, FC heat-treated Ti-6Al-4V alloy: (a) general appearance; (b) 

evidence of ductile fracture. 

The fracture surfaces of Ti-6Al-4V heat-treated using 925 °C/4 h, CFC@50 °C/h to 760 °C, FC 

looked rather ductile at first sight. However, the presence of well-built cleavage facets on the fracture 

surface cannot be ignored (as shown in Figure 12a). A comparison of this fracture surface with that 

for the previous case (where material was subjected to 955 °C/1 h, FC) suggests that, in this case, the 

cleavage fracture features were evidence of brittle behaviour along with smaller-sized dimples 

(compare Figures 11 and 12). Despite this fact, the mean impact toughness values from each of these 

α + β annealing treatments was the same. 

 

Figure 12. Fracture surface of 925 °C/4 h, CFC@50 °C/h to 760 °C, FC heat-treated Ti-6Al-4V alloy: (a) 

general appearance and the occasional presence of cleavage facets; (b) ductile dimpling. 

For as-extruded material, the fracture area containing ductile dimples or other signs of ductile 

fracture was significantly smaller than the area represented by cleavage and transgranular fracture 

in all surfaces investigated. Hence, it was very evident that brittle fracture was the predominant mode 

of failure here. Figures 13a,b show high-magnification fractographs that contain a significant number 

of cleavage facets along with large plane spallings (or transgranular features). 
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Figure 13. Typical fractographs of as-extruded Charpy impact specimens: (a) cleavage and 

transgranular fracture; (b) relatively flat surface with brittle fracture. 

In general, the type of fracture features present in both α + β-annealed materials emphasises the 

point that the energy required to fracture an α colony (or α platelets) is greater than that required to 

circumvent them. Therefore, a much more frequent change in crack path was observed because cracks 

had to deviate past the colonies or around α platelets, causing significant plastic deformation that 

resulted in ductile failure. Overall, it is very clear that there was more pronounced ductile dimpling 

here compared with all the other samples investigated. 

4. Discussion 

There are many potential applications of titanium and titanium alloys requiring lower but 

reproducible levels of mechanical properties. For this reason, Peter et al. suggested that an industrial 

grade of titanium and titanium alloys should be developed, which can provide adequate levels of 

properties to fulfil the obligation of less demanding components rather than manufacturing of these 

parts from non-feasible aerospace-quality material [17]. Based on this principle, the present study 

explores the processing of Ti-6Al-4V alloy prepared from starting powders with relatively high 

oxygen contents. To further enhance the economics, a blended elemental powder approach was 

employed to produce Ti-6Al-4V alloy powder, which was then consolidated using processing steps 

such as warm pressing, vacuum sintering, and hot extrusion in air.  

The results given in this paper show that microstructural control of Ti-6Al-4V alloy, produced 

from a relatively high-oxygen-containing blended powder mixture via PCE processing, is necessary 

for achieving levels of impact toughness which are sufficiently high enough to fulfil the requirements 

of typical applications. It can be concluded that heat treatments such as furnace cooling from 955 °C 

(without any ageing) and 925 °C/4 h, CFC@50 °C/h to 760 °C, FC are capable of achieving an optimum 

microstructure that delivers the best impact toughness. Also, the level of properties obtained after 

such heat treatments closely matches the expected values of ingot or wrought counterparts, even 

though the oxygen contents of powder-produced material in this study are still 0.13–0.15 wt.% higher 

than those in typical grade five Ti-6Al-4V.  

4.1. Microstructure Comparison 

The microstructure of as-extruded, β-annealed plus aged, and α + β-annealed material was 

generally characterised as a typical lamellar/Widmanstätten /basketweave-type structure. From each 

individual optical micrograph, it was clear that a significant difference in microstructural features, 

such as thickness, length and aspect ratio of α laths, α/β colony size, and thickness of grain boundary 

α does exist. Generally, the morphology of this microstructure attained after 1200 °C/30 min, FC, 730 

°C/2 h was consistent with that reported in previous studies, where extra-low interstitial Ti-6Al-4V 

alloy was heat-treated under identical conditions [18]. However, the size of individual features in the 



Materials 2019, 12, 3824 14 of 19 

 

microstructure described here were different, mainly due to the prior thermal history of the material 

and the different oxygen content. Furnace cooling from the β phase field gives a very coarse lamellar 

structure [1,3,19,20]. Here, for 1065 °C/1 h, FC, 730 °C/2 h treatment, the time of ageing at a relatively 

high temperature was responsible for a reduction in lamellar length and the formation of a complex 

colony arrangement within each grain, where a limited number of small aspect ratio laths were 

present. There were a few studies in which similar heat treatments were used for ingot/wrought or 

PM-produced material [6]. In these cases, the reported microstructures were significantly different 

from those observed in this work, where the material had a higher oxygen content and a relatively 

finer starting lamellar microstructure (or microstructure of as-processed material) [6].  

A comparison of the phase morphology from 955 °C/1 h, FC heat treatment with the 

microstructure produced by prior thermomechanical processing suggests that the original α lamella 

length underwent minimal change, and the slow furnace cooling from the α + β region increased the 

α lamellar thickness. Meyar et al. carried out the same heat treatment on mill-annealed Ti-6Al-4V 

alloy, and their results were significantly different [1,3,6]. In their work, a duplex microstructure was 

obtained rather than a coarse lamellar structure as found in this work. The variation in starting 

microstructure is probably the main reason for such diverse results. Jia et al. used 925 °C/4 h, CFC@50 

°C/h to 760 °C, FC heat treatment on as-forged HDH Ti-6Al-4V alloy, and their results were 

significantly different [21]. In their work, a fully equiaxed microstructure was obtained rather than a 

coarse lamellar structure. This suggests that the starting microstructure and prior thermal history, 

along with a higher level of impurity, have a significant effect on the final heat-treated microstructure. 

In other words, Ti-6Al-4V alloy prepared using the powder consolidation route described here has a 

very different as-processed microstructure compared to powder-forged parts. Therefore, a heat 

treatment established for powder-forged Ti-6Al-4V alloy cannot always be directly applied to other 

powder-produced material to obtain the same microstructural features. 

4.2. Comparison of Impact Properties with Literature 

To get a general idea of the level of impact toughness found in this study, a summary of 

previously published data for heat-treated Ti-6Al-4V alloy produced via various processing routes is 

considered in Table 4. It is important to realise that there are no reports of previous studies giving 

impact data for Ti-6Al-4V alloy which underwent severe powder particle deformation, such as that 

from PCE, and with the same impurity levels as the material in this work. Therefore, in this section, 

only general comments are made to put the current findings into context with a broad spectrum of 

impact energy values available for standard grade five heat-treated Ti-6Al-4V alloy. From Table 4, it 

is very apparent that the best impact toughness (19.33 J), obtained by furnace-cooling material from 

955 °C or by a 925 °C/4 h, CFC@50 °C/h to 760 °C, FC treatment in this work, is 14% higher than the 

minimum value reported for typical grade five Ti-6Al-4V alloy [15]. 

Similarly, impact energy values obtained after each heat treatment in this study are better than 

values reported by Reda et al. on as-cast Ti-6Al-4V alloy and Yasa et al. who worked on heat treated 

selective laser-melted material [4,5,12]. However, the other impact toughness values presented in 

Table 4 are significantly higher than those obtained in this work, mainly because of the variation in 

oxygen content, processing route, or heat treatment conditions, along with inconsistency in notch 

shape and dimensions of test specimens [1,6,8,10,22]. 

In addition to the comparisons with a broad spectrum of previously published data on ingot Ti-

6Al-4V alloy (with oxygen 0.2 wt.%), it is also important to correlate the results from this work with 

research carried out previously by the author on hot-pressed and extruded material with an oxygen 

content of 0.44 wt.% [23]. In this work, a high-oxygen blended powder mixture was consolidated by 

hot-pressing a green compact prior to extrusion. Again, it is important to realise that the oxygen 

content and pre-consolidation technique (vacuum sintering or hot pressing) is different for each 

study. Therefore, a direct comparison is still not possible. A general observation made from Figure 

14 suggests that the overall response of the material with respect to each heat treatment is similar. In 

both studies, furnace cooling from 955 °C appears to be the most effective heat treatment, as the 

highest impact energy absorptions to failure of 19.33 J and 14 J, respectively, were obtained for 
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vacuum-sintered and extruded (oxygen 0.34 ± 0.005 wt.%) and hot-pressed and extruded (oxygen 

0.44 ± 0.01 wt.%) material. 

Table 4. A summary of previously published impact toughness data for heat-treated Ti-6Al-4V alloy 

produced via various processing routes (including ingot or powder metallurgy). 

Starting 

Material 

Heat 

Treatment 

Category 

Microstructure 

Impact 

Toughness 

(J) 

Comment Reference 

PCE 

β-annealed 

and aged 
Lamellar or basketweave 15.33–15.67 

O ~0.34 ± 0.005 

wt.% 

Current 

work α + β-

annealed 
Lamellar 19.33 

Quenched 

and aged 

Martensitic or mixture of 

primary α, secondary α 

and β phase 

13.67 [24] 

TPM+ As-processed 
Lamellar, 

Widmanstätten 
9.7–14.3 

O < 0.32–0.43 

wt.% 
[25,26] 

Ingot - - 17 O < 0.20 wt.% [15] 

Ingot 
Mill-annealed 

- 20–27 O < 0.20 wt.% [10] 

Ingot (ELI) - 20–40 O < 0.13 wt.% [10] 

HIPed 

investment 

cast 

α + β-

annealed plus 

ageing 

- 28.2–30.6 
O between 0.16–

0.19 wt.% 
[1,8] 

Β-annealed 

plus ageing 
- 26–28.7 

As-casted 
Quenching 

Mixture of acicular αʹ, β 

structures and primary 

α 

5–10 
O ≤ 0.20 wt.% [4,5] 

Duplex Widmanstätten 8–12 

Rolled plate 

α + β-

annealed 
Biomodal 35 

O ≤ 0.186 wt.% [7] 

β-annealed Lamellar 24 

Rolled plate 

α + β-

annealed 
Equiaxed 13 

non-standard v-

notch sample, O 

≤ 0.20 wt.% 

[12] 

β-annealed Coarse lamellar 19 

Mill-

annealed* 

Quenched 

and aged 

Martensitic 

microstructure or 

primary α phase plus 

quenched and aged 

16–28 

Impact 

Specimens with 

U notch*, Oxygen 

0.18 wt.% 

[6] 

Annealed 

Coarse-grained lamellar 

or Duplex 

microstructure 

42–46 

α + β-

annealed + 

aged 

Biomodal 
50 J/cm2 (40 

J) 

Annealing 735 

°C for two 

hours 

- 10.1 

HIPed 

PREP* 

Annealing 735 

°C for two 

hours 

- 10.1 

U-notch* Charpy 

specimens, 

oxygen < 0.12 

wt.% 

[22] 

Selective 

laser melted 

Annealing 735 

°C for two 

hours 

- 10.1 - [12] 
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Electron 

beam 

melting 

HIPed - 3.78–57.73 
O between 0.11–

0.46 wt.% 
[27] 

Note: -: no information available, TPM+: thermomechanical powder processing, *: utilisation of U-

notch Charpy impact specimen generally predicts much high-energy value compared to sharp V- 

notch. 

From Figure 14, it is also apparent that the heat-treated material described in this paper, with 0.1 

wt.% lower oxygen, has (on average) a 2–6.3 J higher impact energy compared to hot-pressed and 

extruded material, depending on the respective microstructure/heat treatment. From the literature, it 

is clear that the presence of oxygen is favourable for some properties, whereas it is detrimental for 

others [1–3]. Generally, high oxygen content in the titanium lattice increases the yield strength, 

ultimate tensile strength, Young’s modulus, fatigue strength, and hardness, but compromises the 

ductility, impact strength, and fracture toughness. The main reason for a high dependency of the 

mechanical properties of titanium and titanium alloys on oxygen content can be explained by the 

interaction of oxygen atoms with the hydrostatic fields of both edge and screw dislocations and the 

alteration it brings to twinning and prismatic slip. 

 

Figure 14. A comparison of mean Charpy impact toughness of heat treated Ti-6Al-4V alloy prepared 

via two different processing routes with different oxygen contents [23]. 

On the whole, it is clear that the levels of impact toughness given in this work match typical 

values stated for standard ingot grade five Ti-6Al-4V alloy with an oxygen content of 0.2 wt.%. The 

impact toughness is also significantly better than that for material processed by hot pressing and 

extrusion [23]. Hence, Ti-6Al-4V alloy with a high oxygen content ~0.34 wt.% produced in this study 

by PCE processing can be used for industrial applications after α + β annealing to satisfy the 

performance requirement of more critical applications. This offers an opportunity to expand the 

application of Ti-6Al-4V parts with high oxygen content, in addition to their utilisation in “fit-for-

purpose” components. 

4.3. Comments about Complex Fracture Behaviour in PM materials 

The result attained in this study suggests that the global fracture morphology of each impacted 

specimen correlates well with respective microstructural features and resulting properties. In terms 

of crack propagation behaviour, each microstructure gave a completely different fracture path of least 

resistance. The general crack path in specimens with a lamellar type microstructure is rather tortuous, 

indicating that when a crack meets α platelets of suitable thickness or an interface between colonies, 

it has to follow the more energetically favourable pathway by either deflecting past the α lamellar 

platelets/colonies or by cutting through them. Similarly, from fracture surfaces observation, it was 
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quite evident that most impact samples showed a mixed fracture mode, and there was confirmation 

of this in the form of well-defined cleavage facets, inter-granular fracture marks, and ductile dimples 

or ductile tearing in each case. Generally, it can be concluded that a fully lamellar or Widmanstätten-

type microstructure of PM materials increases the resistance to crack propagation and results in a 

significant improvement in impact energy values. 

The number of studies investigating crack propagation mechanisms in titanium and titanium 

alloys during a Charpy impact toughness test is very limited. Therefore, an in-depth 

discussion/comparison of the crack propagation behaviour of PM-produced Ti-6Al-4V with an ingot-

produced and heat-treated alloy is not possible, except for a comparison with the limited work 

reported by Buirette et al. [9]. In their study, highly textured rolled plates of ingot Ti-6Al-4V alloy 

with a very coarse α lamellar microstructure (grain size in the range 920 ± 320 µm) were studied for 

crack propagation mechanisms. The general appearance of the crack path shows some similarity with 

the crack profile observed for heat-treated Ti-6Al-4V alloy described in this paper [9]. However, it is 

important to note that the more refined microstructural features in powder-produced Ti-6Al-4V alloy 

give complex fracture or crack propagation mechanisms leading to more frequent crack deviation 

possibilities. The frequent change in crack path is a beneficial phenomenon, because it simply 

highlights the fact that a larger amount of work is done in order to break the specimen into two halves. 

In other words, a significant resistance to crack propagation results in overall improvement in 

toughness of the respective material.  

Additionally, when considering the crack propagation mechanism, it was observed that most of 

the crack branching, deflection, crack-tip blunting, and microcrack formation in the current study 

was obtained from colony arrangement/orientation, α platelets, and retained β phase morphology. 

The role of prior β grain boundary in causing significant deviation in the crack path was negligible. 

This is very different to what was reported by Buirette et al. for ingot Ti-6Al-4V material; according 

to them, cracks were significantly arrested by a prior β grain boundary, in addition to colony interface 

or α laths [9]. This illustrates that there is some fundamental difference in crack propagation 

mechanism when it comes to the complex refined lamellar morphology of powder-produced 

materials compared to conventional ingot/wrought counterparts.  

5. Conclusions  

This research proves that it is possible to enhance the mechanical properties of Ti-6Al-4V alloy, 

produced by consolidating a blended powder mixture through a combination of vacuum sintering 

and extrusion, despite the presence of relatively high impurity oxygen contents (~0.34 wt.%). It can 

be concluded that annealing in high α + β phase followed by controlled cooling is the most effective 

heat treatment capable of achieving an optimum lamellar/Widmanstätten-type microstructure that 

delivers superior impact toughness levels equivalent to those found in ingot/wrought material. In 

terms of fracture, it can be stated that the crack deflection mechanism of the powder-produced 

material during impact toughness testing is rather complex, and it is different compared to the limited 

work reported for Ti-6Al-4V alloy produced by ingot metallurgy. Overall, Ti-6Al-4V alloy produced 

in this study meets the performance requirement for a variety of industrial applications, from “fit-

for-purpose” parts to more critical components. 
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