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Abstract 

Powder compact forging was used to produce Ti and Ti-6Al-4V rocker arms using 

pre-alloyed and blended elemental powders. Green powder compacts with high 

relative density were manufactured by warm compaction. Due to the 

characteristics of raw powders, interlocking and cold welding are the main 

mechanisms for HDH powder compaction, while warm welding is the main 

mechanism for GA powder compaction. During induction heating of the powder 

compact, it was found that necks formed extensively in as-sintered HDH Ti 

powder compact, leading to an average elongation to fracture of 7.5%, whereas 

necks did not form so extensively in as-sintered HDH Ti-6Al-4V and GA 

Ti-6Al-4V powder compacts, which make them brittle due to their low relative 

density. 

 

As a rapid consolidation process, the densification rate was enhanced by powder 

compact forging due to pore collapsing caused by material flow driven by a large 

amount of localized plastic deformation. The degree of powder consolidation of 

powder compact forging using HDH Ti, HDH and GA Ti-6Al-4V powders were 

studied by characterising their porosity distributions, microstructure, mechanical 

properties and fracture behaviour. Due to the positive effect of shear deformation 

on the powder consolidation of powder compact forging, the powder compact in 

the centre of forged parts were consolidated completely with full density and had 

better mechanical properties than those from ingot metallurgy. 

 

The effects of heat treatments on microstructure and mechanical properties of 

as-forged HDH Ti part, HDH and GA Ti-6Al-4V parts were investigated, and the 

ductility of forged HDH Ti part was improved significantly by annealing 

treatment. Recrystallization annealing was regarded as one of the best heat 
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treatments to achieve the high ductility of as-forged HDH and GA Ti-6Al-4V parts, 

which can open the applications of forged HDH Ti-6Al-4V part with high oxygen 

content (~0.5%). The mechanical properties of forged HDH and GA Ti-6Al-4V 

parts after solution and aging treatment and recrystallization annealing were much 

better than those from both the ones from reported pre-alloyed approaches and 

wrought parts, which were caused by the enhancement of powder consolidation 

during recrystallization process. 

 

Blended elemental approach and mechanical alloying method were applied to 

produce Ti-6Al-4V rocker arm by powder compact forging at 1350 oC. The effect 

of holding time at forging temperature on the samples produced by forging the 

compact of HDH Ti/Al-V master alloy powder mixture was studied, and it was 

found that a holding time of 5-10 minutes at forging temperature is required to get 

the as-forged part with good mechanical properties and homogeneous 

microstructure of free undissolved master alloy powders. Also, in order to reduce 

the holding time for achieving composition homogeneity, the powder mixture of 

Ti and Al-V master alloy powders was milled to produce Ti/Al-40wt%V 

composite powder. With such composite powder, the master alloy layers/particles 

were dissolved rapidly into Ti matrix, but the oxygen pick up during milling and 

powder passivation make the mechanical properties of the forged samples inferior 

to those of the parts made by powder compact forging of the powder mixture or 

pre-alloyed powder. 
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Chapter 1: Introduction and Literature Review 

1.1 Introduction 

Titanium and its alloys have been applied in various fields, including automobile 

[1, 2], aerospace [3], chemical engineering and medical devices such as 

orthopaedic implants [4], due to their high strength to density ratio, low modulus, 

high corrosion resistance and good biocompatibility. Plenty of titanium and 

titanium alloy products such as turbine blades [5], landing gears [6], fasteners [7], 

and artificial hip joints [8], have been manufactured by casting, cold and hot 

working.  

 

Recently, more attention has been paid to titanium powder metallurgy (PM) [9-12] 

to produce near-net shaped parts with good dimensional tolerance, due to its 

outstanding advantages over ingot metallurgy, such as microstructural 

homogeneity, less compositional segregation and no constraint in alloy 

composition. So far powder injection molding (MIM) [13], hot isostatic pressing 

(HIP) [14], laser sintering [15] and powder forging [16] have been applied to 

manufacture near-net shaped parts. However, one main obstacle for wider 

industrial applications of titanium and its alloy manufactured by powder 

metallurgy is the high cost of good quality raw powders (i.e. powder produced by 

gas-atomization with a low oxygen level) [17], so a large amount of research [18, 

19] has focussed on minimizing the cost of raw powders. Among these, a blended 

elemental approach (BE) is one of the common ways to manufacture titanium 

alloy products with low cost. However, the quality of the final products, in terms 

of their mechanical properties and porosity level, is poorer than those made by a 

pre-alloyed approach (PA) using powders with a low level of impurities. In order 

to manufacture titanium and titanium alloy products with high quality, a PA 

approach is preferred for structural parts in aerospace and the automobile industry 
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[1, 20, 21] regardless of the high cost of the raw powders. As one of several rapid 

consolidation methods, powder compact forging has been used in some industrial 

fields, such as automotive [22, 23]. Generally, there are three steps included in the 

powder forging process [24, 25]: (1) powder compaction; (2) sintering; (3) forging. 

To constrain grain growth, a powder forging process without a sintering step is 

used to produce nano-material and amorphous bulk material [26]. 

 

The purpose of this research is: 

 To test the feasibility of making low cost titanium/titanium alloy rocker arms 

by powder compact forging. 

 To determine the effects of processing parameters and raw powders on the 

relative density of HDH Ti, and HDH and GA Ti-6Al-4V powder compacts. 

 To determine the factors that control the induction sintering of HDH Ti, HDH 

and GA Ti-6Al-4V powder compacts. 

 To understand the effects of raw powders, powder compact forging 

parameters and heat treatment conditions on the microstructure and 

mechanical properties of as-forged HDH Ti parts and Ti-6Al-4V parts made 

using HDH and GA pre-alloyed Ti-6Al-4V powders. 

 To determine the effects of raw powders, milling conditions and powder 

compact forging parameters on microstructure and mechanical properties of 

as-forged Ti-6Al-4V parts made using Ti and Al-V master alloy powders. 

 

There are seven chapters in this thesis. A literature review on the powder 

metallurgy of titanium and its alloy is presented in Chapter 1. Chapter 2 

introduces the experimental procedure including raw materials, experimental 

procedures and information on the testing equipment used. In Chapter 3, 

compaction and induction sintering of Ti and Ti-6Al-4V powders are investigated. 

The results of a study on powder compact forging of Ti and Ti-6Al-4V powders 
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using GA and HDH Ti, and GA and HDH pre-alloyed Ti-6Al-4V powders are 

presented and discussed in Chapter 4. This also includes an investigation of the 

fracture behaviour of as-forged Ti and Ti-6Al-4V parts. In Chapter 5, the effects 

of various heat treatments on the microstructure as–forged parts is investigated to 

improve the mechanical properties of as-forged Ti and Ti-6Al-4V parts with 

appropriate microstructural modification. In Chapter 6, the microstructure and 

mechanical properties of Ti-6Al-4V rocker arms made in two different ways are 

presented and discussed. Rocker arms were made by forging mixtures of Ti and 

Al60V40 (in wt%) master alloy powders, and also by using mechanically alloyed 

powders produced by high energy mechanical milling (HEMM) of mixtures of Ti 

and Al60V40 master alloy powders. The conclusions from these studies and 

recommendations for further work are presented in Chapter 7. 

 

1.2 Literature Review 

1.2.1 Powder Metallurgy in General 

Powder metallurgy (PM) is widely used as one of the advanced technologies for 

manufacturing near-net shaped parts or structural members. The production boom 

in PM parts started from the 1970s and so far a lot of PM parts have been 

manufactured as structural and functional parts for automobile applications [27, 

28] (such as connecting rods [29], gears [30]) and metal cutting wheels [31]), 

aerospace [32], biomedicine [33] and other fields [34, 35]. This is mainly due to 

the outstanding advantages of the PM process, including low-cost facilities for 

manufacturing products, low material waste, fewer steps to produce near-net 

shaped and fully consolidated parts with more complex geometries and high 

materials strength. There are also a few disadvantages of PM processing which 

restrict its applications. They include high raw material cost and low ductility and 
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strength due to high levels of porosity and contamination during some powder 

metallurgical processes, such as a powder injection molding approach. 

 

In general, the processing steps in powder metallurgy consist of powder making, 

mixing, powder compaction and sintering as shown in Figure 1.1. In the first place, 

feedstock powder can be produced by various methods, such as atomization 

[36-40], mechanical methods [40], chemical and electrolytic methods [40]. In the 

second place, a homogeneous powder mixture is obtained by mixing elemental 

powder with alloying powders, and also lubricants are added to powders by 

mixing to reduce the internal friction between the particles during compaction. 

Thirdly, a powder compact of designed desired shape is made into a die. Finally, 

the powder compact is sintered, and the powder particles are bonded atomically. 

 

 

Figure 1.1: Conventional PM process. 
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1.2.1.1 Compaction 

Generally, powder compacts for sintering are made by die compaction and cold 

isostatic pressing (CIP) [41-44]. Even though powder compaction is not the final 

step, it directly affects the sintering step which follows and the microstructure and 

mechanical properties of the material in the final parts. Die compaction is used to 

make powder compacts in a die under an axial compressive load. The effect of die 

compaction on metal powders can be described as having several stages. In the 

early stage of compaction, under low pressure, particle rearrangement occurs to 

fill the large gaps between particles leading to an increase in particle packing 

density. With a further increase in pressure, plastic deformation of powder 

particles occurs during the intermediate stage of compaction, then in the final 

stage, both cold welding and mechanical interlocking occur as the main 

mechanism for creating strength in the powder compact [45]. During die 

compaction, parameters such as the size [46, 47] and shape [48-50] of particles, 

friction between particles [51-54], work hardening [46], compacting pressure [48, 

55-57], temperature and ejection force [54] all have an effect the density and 

density distribution of a powder compact [46]. 

 

Plastic deformation of powder particles occurs earlier [54] in warm compaction 

than in cold compaction. The parameters which influence the density of powder 

compacts made by warm compaction are the same as those which influence the 

density of powder compacts made by cold compaction, except that the compacting 

temperature plays a more important role in warm compaction. As shown in Figure 

1.2, with increasing compaction temperature, the densities of different metal 

powder compacts, including Ti powder compacts, increase markedly. So warm 

compaction is an important and effective way to improve the density of titanium 

and titanium alloy powder compacts. 
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Figure 1.2: Effect of temperature on the green compact density of various metal 
powders [54].  
 

1.2.1.2 Sintering 

During sintering, gaps between the particles are reduced or eliminated, and bonds 

between particles are established by diffusion. Generally, during the sintering 

process, a powder compact is heated up to a temperature which is about 80% of 

the metal or alloy’s melting temperature (in Kelvin scale), and then held at this 

temperature for a period of time to achieve near to full density. The biggest 

challenge for this process is that shrinkage occurs during sintering. If the 

shrinkage is not uniform in different directions, cracking or distortion of the 

powder compact may occur. Several novel methods have been developed to 

rapidly sinter a powder compact, such as induction sintering [58], spark plasma 

sintering [59-61], microwave sintering [62-68] and electrical resistance sintering 

[69, 70]. Furthermore overpressure sintering [71] is also used to accelerate the 

densification process.  

 

The reduction in total interface energy as lower energy solid-solid interfaces form 

between powder particles is the main driving force for the sintering process. There 

are three stages in the solid state sintering process: an initial stage, an intermediate 

stage and a final stage. In the initial stage, necking forms between particles, and 
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the neck size is small. The end of the initial stage is determined by achieving a 

neck size to particle diameter ratio of 0.3 [72]. Several mass transport mechanisms, 

including surface diffusion, viscous flow, plastic flow, evaporation-condensation, 

volume diffusion and grain boundary diffusion operate in the process of neck 

growth [72]. The two spherical particle model is widely used to illustrate the neck 

growth in the initial stage, as shown in Figure 1.3, and the mass transport is driven 

by the curvature gradient at the neck area [72]. 

 

 

Figure 1.3: Two spherical particle model for initial stage of sintering (a) without 
shrinkage and (b) with shrinkage [73].  

 

At the beginning of the intermediate stage, interconnected pores form in the 

powder compact, and the pore geometry is cylindrically-shaped and surrounding 

the necks on grain edges as shown in Figure 1.4. The grain is assumed to be a 

tetrakaidecahedron. There are two ways of mass transport in the intermediate 

stage [72]: volume diffusion and grain boundary diffusion. In the final stage of 

sintering, pores become closed and spherical, as shown in Figure 1.5. The process 

of isolation and spheroidization of pores in this stage is explained in Ref. [72]. 

Also both volume diffusion and grain boundary diffusion are densification 

mechanisms in the final stage, and the powder size and sintering temperature 

would determine which mechanism is dominant [72]. 
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Figure 1.4: Pore structure in the 
intermediate stage of sintering [73]. 

 
Figure 1.5: Pore structure in the final 
stage of sintering [73]. 

 

1.2.1.3 Powder Forging 

Powder forging combines powder metallurgy (PM) and bulk material forging 

technology, and has the advantages of both processes. A variety of products with 

complex shapes can be produced by powder forging without considering the alloy 

constituent [74-81]. Generally, there are three steps [25] in the powder forging 

process: (1) to make the powder into a green compact with 10–30% porosity using 

an accurate powder mass, (2) to sinter the powder compact in a protective 

environment to eliminate the metal oxides and (3) forging the powder compact in 

a die to the designed shape. Powder forging is one kind of rapid densification 

process [82]. Powder repressing and powder upsetting in Figure 1.6 are two 

variations of powder forging [83], and they are distinguished by the degree of 

material flow. In a powder repressing process, the material flow is along the 

pressing direction, which is much less than in powder upsetting, while in a 

powder upsetting process, a large amount of material flows along the lateral 

direction. The parts made by powder upsetting have good mechanical properties 

due to high material flow, while those produced by powder repressing have a 

more complex shape. Also the powder forging process can be divided into two 

types, according to the type of forging die used, namely a trap die and an 

impression die with flash [83], as shown in Figure 1.7. 
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Figure 1.6: Schematic diagram of the powder repressing and upsetting processes 
[83].  
 

 

 

Figure 1.7: Powder forging process with different dies [83].  

 

Also, a powder forging process has two variants [72]: high-strain-rate forging, 

which is a rapid densification under a stress which exceeds the material tensile 

strength, and low-strain-rate sinter-forging with a low stress and a time for forging 

which is similar to that required for sintering without stress. The effect of pressure 

on densification of alumina during a sinter-forging process has been investigated 

(b) Impression die 

(a) Trap die 
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and the results are shown in Figure 1.8 [72]. With increasing pressure, the 

densification rate increased. Also the stress required to achieve densification 

depends on temperature. With an increase in temperature, the yield strength of the 

material decreases and as a result, the material flows more easily, but large 

deformation could easily lead to cracking due to large circumferential tensile 

stresses. The forging window [72] in Figure 1.9 has been developed according to 

the fracture limit and the strain of 50% required by good particle bonding. 

 

 
Figure 1.8: The effect of applied pressure on densification of alumina at 1500oC 
during sinter-forging process [72].  

 

 

Figure 1.9: A fracture limit determined by preform and forged height to diameter 
ratio: H/D [72].  
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Isothermal forging [84-87] is also used to forge titanium alloys and nickel-base 

superalloy powder compacts. Due to its low strain rate, stable temperature and 

high die temperature compared with conventional powder forging, parts with 

good quality and properties can be obtained. Other powder forging techniques 

include “Orbital Forging” and the TR-Method, introduced in Ref. [83]. 

 

An axial compressive stress acts on a powder compact during powder forging, and 

the material flow laterally, which leads to numerous shear stress as a result of 

fresh surfaces being formed by the fracturing of oxide films on the powder 

particle leading to enhanced particle bonding. The way in which pores collapse by 

conventional hot forging is schematically contrasted with hot isostatic pressing in 

the final stage of sintering in Figure 1.10, based on a spherical closed pore in the 

powder compact [72]. The shear deformation of the powder compact caused by 

forging plays an important role in removing the pores in the compact completely, 

whereas the pores only shrink under the hydrostatic compressive stress during HIP. 

Although the pores in the powder compact can be removed completely by further 

diffusion assistance with pressure during HIP, this process requires a long time to 

complete. In contrast, the pores in a powder compact can be rapidly removed by 

plastic deformation during forging. Compared with other pressure-assisted 

sintering processes such as HIP and hot pressing, forging is the fastest 

densification process due to a collapsing of pores by plastic deformation. 

 

 
Figure 1.10: Pore collapse in the final stage of sintering by hot forging and HIP 
[72].  
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During the forging of a powder compact, an upsetting bulging deformation and 

densification occur simultaneously. This is different from the conventional solid 

material forging approach without a densification process. Several models [88-90] 

have been established to analyze and simulate the forging process. Among these 

models, the Arzt, Ashby and Easterling (AAE) model [26] was successfully used 

to simulate the rapid forging process of nanometer sized metal powders. In the 

AAE model, yielding, creep, and diffusion are three possible mechanisms for 

plastic flow of material, which controls the densification. The results show that 

creep plays an important role in the forging process. The relative density-pressure 

curves produced by only simulating creep without considering yield and diffusion 

effects are nearly the same as the relative density-pressure curves obtained 

through experiments, as shown in Figure 1.11. In the meantime, the AAE model 

can be modified to simulate the forging of micrometer-sized powders by replacing 

Db f for Dv in Eqs. [19] and [21] of Ref. [91], KK = 5.3 � Ab Db f
KT μn−1� (P)n  and 

KK = 3
2
� Ab Db f

KTμn−1� �
3P
2n
�

n
, Kk is a constant related to pressure, temperature, the 

parameters of diffusion and heat conductivity, etc, A is the Dorn constant, b is the 

Burgers vector, Db is the grain boundary diffusion coefficient, f is the fraction of 

the material volume which is occupied by grain boundaries, K is a constant, μ is 

the shear modulus, T is the temperature, P is the pressure and n is a creep stress 

exponent. The densification rate due to creep is at least twice that due to diffusion 

and plastic yield, so it can be concluded that the dominant densification 

mechanism in this forging process at low temperature is creep, which is 

accelerated by having a nanostructure. 
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Figure 1.11: Relative density of powder compact as a function of forging pressure, 
including experimental data and AAE model in Ref. [26].  

 

Powder forging has been used to manufacture components, such as gears [92-94], 

hubs [95], bearings [96], connecting rods [97-101] and so forth, and its material 

selection ranges from metal to ceramic, such as aluminum alloys [102-104], steel 

[105], titanium [99, 100], refractory metals including tungsten [106] and 

molybdenum [107], alumina [108, 109], silicon carbide [110, 111] and zirconia 

[112, 113].  

 

1.2.2 Titanium and Its Alloys  

1.2.2.1 Classification of Titanium Alloys 

Alloying elements added to titanium are classified into three types: neutral, α 

stabilizers, and β stabilizers. α stabilizers increase the α transus temperature, and 

they include Al, O, N and C. β stabilizers reduce the β transus temperature. There 

are two types of β stabilizers: isomorphous β stabilizers, which have a high 

solubility in titanium (e.g. Mo, V, Nb, Ta) and eutectoid β stabilizers which can 

form intermetallic compounds with titanium (e.g. Fe, Mn, Cr, Cu, Co, Ni, Si, H). 

Neutral elements don’t change the α and β transus temperatures, and they include 
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Zr and Sn. There are five types of titanium alloys, namely α, near α, α/β, 

metastable β and β alloys. α alloys include unalloyed pure titanium and titanium 

alloys with additions of α stabilizers only. Near α alloys have a similar 

microstructures to α alloys, except a limited amount of β phase exists in the 

microstructure after heat treatment [114] due to adding a minor amount of β 

stabilizers into titanium. α/β alloys such as Ti-6Al-4V are widely used in various 

fields [115, 116], and they consist of an α phase and a retained or transformed β 

phase with a volume fraction in the range of 5-40% [117]. Both metastable β and 

β alloys retain the β phase at room temperature after cooling from high 

temperature. They do not experience martensite formation during fast quenching, 

but metastable β alloys will allow precipitation of the α phase during aging after 

quenching. The typical microstructures of Ti alloys are shown in Figure 1.12. 

 

        
(a) Equiaxed α grains in CP Ti    (b) Equiaxed α+β grains 

after 1 h annealing at 699 oC  

    
    (c) Acicular α+β            (d) Equiaxed β grains 

       in Ti-6Al-4V              in Ti-13V-11Cr-3Al  

Figure 1.12: Typical microstructures of α, α+β, β alloys [114].  
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1.2.2.2 Commercially Pure (CP) Ti 

There are four grades of CP Ti, each with increasing oxygen content as an 

interstitial element. The addition of oxygen increases the strength of CP Ti, but 

reduces its ductility. The compositions of the four grades of CP Ti are listed in 

Table 1.1. The equiaxed microstructure of CP Ti is shown in Figure 1.12. The 

mechanical properties of the four grades of CP Ti are summarized in Table 1.2. 

From the table, Grade 1 CP Ti has the lowest ultimate tensile strength (UTS) and 

yield strength of 240 MPa and 170 MPa and the highest elongation of 24%, 

among these four grades of CP Ti. Grade 4 Ti has the highest UTS and yield 

strength of 550 MPa and 480 MPa, respectively, and the lowest elongation of 15%, 

due to its highest oxygen content of 0.4% [117].  

 

Table 1.1: Compositions of four grades of CP Ti [118]. 
CP Ti O N C Fe 

Grade 1 ≤0.18 ≤0.03 ≤0.10 ≤0.20 
Grade 2 ≤0.25 ≤0.03 ≤0.10 ≤0.30 
Grade 3 ≤0.35 ≤0.05 ≤0.10 ≤0.30 
Grade 4 ≤0.40 ≤0.07 ≤0.10 ≤0.50 

 
Table 1.2: Mechanical properties of four grades of CP Ti sheet, strip and plate 
[118]. 

CP Ti UTS  
(MPa) 

Yield Strength 
 (MPa) 

Elongation 
 (%) 

Grade 1 240 170 24 
Grade 2 345 275 20 
Grade 3 445 380 18 
Grade 4 550 480 15 

 

1.2.2.3 Ti-6Al-4V Alloy 

Ti-6Al-4V (wt%) alloy is the most popular and intensively studied titanium alloy 

so far since 1950’s, due to its good balance of properties as shown in Table 1.3. 

Its Young’s modulus ranges from 110 to 140 MPa, and its yield strength varies 

from 800 to 1100 MPa. Ti-6Al-4V is a typical α+β alloy, and its microstructure is 
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an acicular α+β as shown in Figure 1.12. The oxygen content has a significant 

effect on the mechanical properties of Ti-6Al-4V alloy. It ranges from 0.08 to 

0.2wt% in Ti-6Al-4V alloy for commercial applications. As shown in Figure 1.13, 

the strength of Ti-6Al-4V alloy increases, but its elongation decreases with 

increasing oxygen content [119]. Ti-6Al-4V ELI (extra-low interstitial) [118] was 

developed with very low oxygen content (<0.13%) and iron contents to get higher 

damage-tolerance properties. 

 

Table 1.3: Mechanical properties of Ti-6Al-4V alloy [117]. 
 Hardness 

[HV] 
E 

[GPa] 
UTS 

[MPa] 
YS 

[MPa] 
El 
% 

KIc 

[MPa m1/2] 
Ti-6Al-4V 300-400 110-140 900-1200 800-1100 13-16 33-110 

 

 
Figure 1.13: Effect of oxygen content on the strength of Ti-6Al-4V [118].  

 

Both classical equiaxed and acicular α+β microstructures of Ti-6Al-4V alloy are 

shown in Figure 1.12. The microstructures of Ti-6Al-4V are changed with 

different thermomechanical treatments, including deformation, heat treatment, etc. 

The sizes of lamellae and equiaxed grains in the microstructures are significantly 

dependent on cooling rates and heat treatment temperature. In cooling from the β 

phase field, the lamellae become coarsened with a low furnace cooling rate, while 

martensitic transformation occurs with a fast cooling rate from water quenching. 

To obtain an equiaxed microstructure, deformation is necessary to break up the α 
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lamellae. Duplex microstructures consisting of lamellae and equiaxed grains are 

obtained by solution heat treatment just below the β transus temperature. A 

Ti-6Al-4V alloy with an equiaxed microstructure has high ductility and fatigue 

strength, while a lamellar microstructure can improve fracture toughness. Duplex 

microstructures give the best balance of properties. 

 

1.2.2.4 Thermomechanical Processing and Heat Treatment of Titanium Alloys 

Conventional titanium alloy processing involves four steps: (1) vacuum arc 

melting and ingot casting; (2) primary hot working to break down grains by hot 

forging; (3) recrystallization annealing and (4) secondary hot working. The grain 

sizes of titanium alloy ingots produced by vacuum arc melting and ingot casting 

range from 75 µm to 1.5 mm diameter [120], so it is necessary to break down the 

coarse grains by thermomechanical processing in the second step. In the second 

step, there are two types of hot forging, cogging [121, 122] and upsetting 

[123-125]. In the upsetting process, a round ingot is compressed along its axis, 

while the round ingot is elongated along its axis by several side pressing 

operations. An upsetting process is often followed by cogging down to get a 

uniform microstructure [123]. Recrystallization annealing causes the 

globularization of Widmanstatten α and grain boundary α [120]. Most of the 

secondary hot working of titanium alloys is done in the α+β phase field [126, 127], 

and the microstructure obtained is an equiaxed primary α in a transformed β 

matrix. Beta forging [123, 128] is another common type of hot working of 

titanium alloys. The high forging temperature allows the use of a low working 

pressure and effective die fill during forging. A Widmanstatten or acicular α 

microstructure are evolved after beta forging [120]. 

 

Heat treatments are often used to improve the mechanical properties of the hot 

worked parts. They include duplex annealing, solution treatment and aging, beta 
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annealing, beta quenching, recrystallization annealing and milling annealing. 

Duplex annealing includes annealing in the α+β phase field, followed by mill 

annealing, which can improve the creep resistance of Ti-6Al-2Sn-4Zr-2Mo alloy 

[129] significantly. During recrystallization annealing of Ti-6Al-4V alloy, a high 

volume fraction of equiaxed α grains with β particles at triple grain junctions form 

with a slow cooling rate of 50 oC/h, and such a microstructure provides high 

damage tolerance [130]. Beta annealing [131] is used for fracture critical 

components with high damage tolerance, but if the rate of cooling from the β 

phase field is high, the part can have a finer transformed microstructure which 

results in high tensile strength and lower damage tolerance. Solution treatment 

and aging [132] is used to increase the tensile strength. For α+β titanium alloys 

such as Ti-6Al-4V, the strength can be increased by ~200 MPa. The mechanical 

properties of Ti-6Al-4V alloy after different heat treatments are listed in Table 1.4.  

 

Table 1.4: Ti-6Al-4V properties after heat treatments [114]. 
Condition UTS  

(MPa) 
Yield Strength 

(MPa) 
Elongation 

(%) 
Mill annealed 1060 945 10 

Duplex annealed 965 917 18 
Solution treated and aged 1151 1103 13 

 

1.2.3 Powder Metallurgy of Titanium and Titanium Alloys 

Owing to high specific strength and good biocompatibility, titanium and titanium 

alloys are used in many fields including automobile [1], aircraft and surgical 

implants [4]. However, compared with other light metals and alloys (aluminum 

and magnesium alloys), expensive raw materials and a difficulty in machining 

constrain the applications of titanium and titanium alloys. Near-net shape 

manufacturing can significantly reduce the manufacturing costs of titanium 

products with less material waste and shorter machining time. Due to lower cost, 
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uniform grain size and composition distribution, powder metallurgy is an effective 

near-net shape manufacturing process to replace casting and isothermal forging 

for producing titanium alloy products. Recently, Dynamet Technology, Inc has 

received qualification approval from Boeing to supply PM Ti-6Al-4V products for 

commercial aircraft applications, which is a milestone in the field of PM Ti [133]. 

 

Pre-alloyed (PA), and blended elemental (BE) approaches (shown in Figure 1.14) 

are two major methods which are widely used for making titanium and titanium 

alloy parts by powder metallurgy. For making structural titanium alloy parts used in 

the aircraft industry, a PA approach is the first choice to obtain the required 

mechanical properties of the final aircraft parts, while it is difficult to obtain such 

properties by a BE approach due to a higher porosity level caused by the salt 

impurities originating from the raw material (titanium sponge) used in titanium 

powder manufacturing process. Compared with a PA approach, the BE approach 

results in a lower manufacturing cost of the products, so it is favourable for less 

property demanding and more cost sensitive applications.  

 

 

Figure 1.14: Variety of methods used to produce PA and BE starting powder. 

 

As shown in Figure 1.14, the HDH process is widely used to produce titanium and 

titanium alloy powders, owing to its low cost and complexity. In the HDH process 

titanium sponge or titanium alloy machining chips are first combined with 

hydrogen to form titanium hydride. The brittle hydride sponge or chips are milled 
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to produce a finer titanium hydride powder and then finally hydrogen is desorbed 

in a vacuum at elevated temperature to produce titanium and titanium alloy 

powders. A controlled passivation is required to form a stable and dense TiO2 film 

on the powder surface, so as a result, the oxygen and nitrogen level of HDH 

powders are increased [134]. Also in order to reduce the cost of HDH powders, a 

process has been developed where TiH2 starting powder, generated from a 

modified Kroll process, is cooled down in hydrogen rather than in an inert gas, 

and the hydrogen is removed from the titanium hydride during vacuum sintering 

[135, 136]. Gas atomized (GA) titanium and titanium alloy powders have a lower 

content of impurities than found in HDH titanium and titanium alloy powders, but 

fine ceramic particles, such as yttrium, could be a source of contamination during 

this process. Also entrapped argon gas is another limitation of GA powder [134]. 

Similar to the GA process, spherical titanium and titanium powders can be 

produced by plasma atomization [134]. Titanium sponge fines can be produced by 

the Hunter process or Kroll process directly, but their coarse particle size 

(180-185 μm) and contamination by metallic-salt residues from these processes 

limit their application [134]. Milling titanium sponge is also a low cost process for 

producing titanium and titanium alloy powders with irregular particle morphology 

and relatively low impurity contents (such as chlorine and oxygen). The Rotating 

Electrode Process (REP) can produce high quality titanium and titanium alloy 

powders with a spherical particle morphology, but the production cost is relatively 

high. Low cost titanium and titanium alloy powders made by the HDH process 

always have a high oxygen content and residual chlorine when made using the 

Kroll and Hunter processes. In order to achieve low-cost, high-performance PM 

Ti parts, additions of rare earth (RE) elements in the form of oxides, hydrides and 

silicides (such as Y2O3 [137], YH2 [138, 139] and CeSi2 [140]) have been 

successfully introduced into titanium and titanium alloy powders to scavenge 

oxygen and chlorine from titanium. Also, a “meltless” titanium powder is 
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currently receiving much attention as a low cost way to produce titanium and 

titanium alloy powders. Such methods are the Armstrong process and the Fray, 

Farthing and Chen (FFC) Cambridge process [134]. 

 

Until now, many PM processes have been used to consolidate titanium and 

titanium alloy powders to make shaped components or samples for research. They 

include press and sintering [141], metal injection moulding, debinding and 

sintering [142], hot pressing [143], hot isostatic pressing [14], laser sintering [15], 

electron beam melting [144], plasma spark sintering [145], microwave sintering 

[146], electrical resistance sintering [147], powder compact forging [148], powder 

rolling [149] and powder extrusion [150, 151].  

 

1.2.3.1 Microstructure and Mechanical Properties of Titanium and Titanium 

Alloys Produced by Powder Metallurgy 

The microstructure and mechanical properties of titanium and titanium alloy 

powder metallurgy products are not only dependent on the powder stock (BE or 

PA), but also on the powder metallurgy conditions. The fatigue properties of 

titanium and titanium alloy PM products is better than that of the corresponding 

cast products, and close to that of the wrought products as shown in Figure 1.15.  

 

 
Figure 1.15: High-cycle fatigue results of Ti-6Al-4V at room temperature with 
different alloy status in Ref. [117]. 
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The blended elemental (BE) PM approach manufactures titanium alloy products 

by mixing titanium powder and other elemental powders. One major drawback of 

this approach [152] and which is hindering its applications is the formation of a 

coarse colony microstructure [153] which is composed of aligned α platelets and a 

grain boundary α phase. Among the various microstructures in titanium alloys, a 

colony microstructure (shown in Figure 1.16(b)) leads to the lowest high cycle 

fatigue (HCF) strength [152].  

 

 
Figure 1.16: Typical microstructures of BE Ti-6Al-4V alloy produced by cold 
pressing and sintering: (a) die compaction [17], (b) cold isostatic pressing [17], 
and (c) after the “broken up structure” (BUS) heat treatment [17].  

 

A typical microstructure of α platelets in as-sintered BE Ti-6Al-4V alloy produced 

by a conventional powder metallurgy process, including cold compaction 

followed by sintering, are shown in Figure 1.16(a) and (b). α platelets, with a low 

aspect ratio in as-sintered BE Ti-6Al-4V alloy and produced by cold die 

compaction and sintering, were achieved. These originated from small β grains. In 

contrast, typical α platelets with a high aspect ratio were obtained by cold isostatic 

pressing and sintering of a BE Ti-6Al-4V alloy. During microstructural evolution, 

large β grains formed at first and then the α platelets formed by a slow cooling 

rate from above the β transus temperature. The typical α platelets structure could 

be modified into a “broken-up” structure (BUS) shown in Figure 1.16(c) by heat 

treatment, and an improvement in fatigue behaviour can be realised by this 

(c) (a) (b) 

40µm

 
30µm 30µm 
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microstructural modification. 

 

There are several ways to modify the microstructure of titanium alloys produced 

by powder metallurgy. For near-α and α/β titanium alloys, a colony microstructure 

can be changed into a finer equiaxed α microstructure (such as a “broken-up” 

structure) by deformation and beta heat treatment. The equiaxed microstructure, 

with small grains, can be obtained by deformation and subsequent annealing in 

the α+β two phase region, which leads to improved ductility and high-cycle 

fatigue (HCF) strength. However, for a BE titanium compact, the combination of 

deformation and beta heat treatment does not lead to an ideal microstructure. After 

a hot isostatically pressed (HIPped) titanium alloy is beta solution treated, 

water-quenched and then annealed in the α+β two phase region, an acicular 

microstructure consisting of α-platelets with a high aspect ratio forms. This 

microstructure results in an excellent HCF strength, but poor ductility, because of 

the coarsened prior β grains formed during beta solution heat treatment. To 

produce fatigue-tolerant titanium alloy products with good ductility by a BE 

approach, a new BE PM process [152], as shown in Figure 1.17, was developed. 

In this process, a heat treatment is done after the sintering step and before the final 

hot isostatic pressing step. It was shown that, compared with the conventional BE 

PM process, the new BE PM process produced an acicular microstructure 

consisting of α-platelets with low aspect ratio, leading to a clear improvement in 

tensile strength [152], as shown in Table 1.5. 

 

The effect of an isothermal hot forging (IHF) on the microstructure and 

mechanical properties of a Ti-6Al-4V alloy produced by BE PM process were 

investigated in Ref. [152]. It was found that a low fatigue limit of 172 MPa was 

achieved from the as-forged samples produced by forging with a 30% reduction. 

This was because the lenticular α microstructure and residual porosity in the 
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products greatly influenced the nucleation and growth of fatigue cracks. On the 

other hand, when the forging reduction reached 78%, a fatigue strength of 485 

MPa was achieved, since the resulting microstructure consisted of equiaxed grains 

with lenticular α platelets and no residual porosity. 

 

 

Conventional BE PM process 

 

New BE PM process  

Figure 1.17: Two BE PM processes for making Ti-6Al-2.75Sn-4Zr-0.4Mo-0.4Si 
(Ti-1100) alloy [152]. 

 

Table 1.5: Room temperature tensile properties of Ti alloys made by BE PM 
processes in Ref. [152]. 

Alloy Method YS 
(MPa) 

UTS  
(MPa) 

EI.  
(%) 

RA 
(%) 

σf 
(MPa) 

Ti-6Al-2.75Sn-4Zr 
-0.4Mo-0.4Si 

Conventional 887 971 11 13 420 
New 1003 1088 10 23 530 

Ti-6Al-2Sn 
-4Zr-Mo 

Conventional 892 980 15 31 412 
New 990 1088 15 26 647 

Ti-6Al-2Sn 
-4Zr-Mo-0.1Si 

Conventional 970 1058 18 27  
New 1020 1117 13 18  

Ti-6Al-4V Conventional 833 921 14 36 411 
New 862 951 15 42 588 

 

The microstructure and mechanical properties of Ti-6Al-4V samples made from 

PA powders using a variety of powder consolidation methods have been 
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investigated. A microstructure consisting of α plates in a β matix is obtained by 

HIP at temperatures below the beta transus temperature, as shown in Figure 

1.18(a). It has been proved that a microstructure consisting of small equiaxed α 

grains as shown in Figure 1.18(b) is better than a microstructure with coarser or 

lenticular α grain morphology [17] for improving the fatigue properties of the 

products made by a PM processes. An equiaxed α grain morphology can be 

obtained from the HIP process. It is well recognised that a lower α platelet aspect 

ratio in the microstructure is beneficial to mechanical properties and increasing 

plastic strain in the α particles caused by plastic deformation is an effective way to 

reduce the aspect ratio of the α particles (this is called the Strain Energizing 

Process [154]). This PM process uses a low temperature and high pressure to 

consolidate the powder, and results in a microstructure consisting of equiaxed α 

grains and acicular α, as shown in Figure 1.18(c). The original α particle shape 

can still be observed in some regions where recrystallization did not occur. The 

fatigue strength of the material can be ameliorated with this PM process. 

 

 

Figure 1.18: Microstructures of Ti-6Al-4V samples produced from PA powder 
using different powder consolidation conditions [17]: (a) HIP at 900 oC for 2 h 
with a pressure of 105 MPa in a steel mould; (b) HIP at 925 oC for 4 h with a 
pressure of 105 MPa in a ceramic mould; (c) Strain energizing process’ powder 
HIP-ed at 870 oC for 2 h with a pressure of 105 MPa in a steel mould. 

 

An uniform recrystallized microstructure consisting of equiaxed α grains can be 

(c) (a) (b) 25µm 25µm 25µm 
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obtained by hot pressing of PA Ti-6Al-4V powder, and the favourable 

Widmanstatten microstructure can be produced by using a high hot pressing 

temperature and a low heating rate [155]. However, to obtain a fine microstructure, 

a rapid-heating and short-hold vacuum hot pressing (VHP) process was developed 

[156]. Compared with Ti-6Al-4V samples produced by HIP, Ti-6Al-4V samples 

produced by powder forging possess better mechanical properties due to a fine 

microstructure [157, 158]. The mechanical properties of Ti-6Al-4V parts 

produced using different BE and PA approaches and different PM processes are 

listed in Table 1.6, and schematically illustrated in Figure 1.19.  

 

Table 1.6: Mechanical properties of PM Ti-6Al-4V samples produced using BE 
and PA approaches and different PM processes [11]. 

 Relative density  
(%) 

UTS 
 (MPa) 

YS  
(MPa) 

EI.  
(%) 

Ref. 

Conventional BE 95 773 683 6 [159] 
CIP+VS BE  95 830 740 6 [160] 
MR-9TM BE  99.2 932 849 14 [159] 

CHIP BE  ~100 960 882 17 [161] 
P&S+HT+HIP  ~100 921 1000 17 [161] 

TIARA BE  99.6 926 809 19 [162] 
PA  ~100 992 930 15 [163, 164] 

Ceramic mold PA  ~100 958 889 14 [165] 
Wrought ~100 978 923 16 [163] 

*BE: blended elemental approach. CIP: cold isostatic pressing. VS: vacuum 

sintering. CHIP: cold and hot isostatic pressing. P&S: single pressing and 

sintering. HT: heat treatment. HIP: hot isostatic pressing. PA: pre-alloyed 

approach. MR-9TM: a patented blended elemental approach. TIARA: a patented 

blended elemental approach.  
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PM(ECAP ) 

(210 MPa/400 oC) [166] 

PM(CIP+HT): 1 STA [167],  

2 (1350 oC/4 h) [114], 3 annealed [167] 

Wrought bar: 1 mill ann. [167], 2 

recryst. ann. [167], 3 beta ann. [167] 

Cast bar: 1 HIP [167]. 2 ann. [167],3 

STA [167], 4 STA [167] 

PM (TiH2 CIP+HT (1350 oC/4 h)) [114] 

 

PM (HIPped): 1 [168], 2 [168], 3 [167]  

 

Figure 1.19: A comparison of mechanical properties of Ti-6Al-4V parts produced 
from PA powder using different PM processes and ingot metallurgy [166]. 

 

1.2.3.2 Powder Compact Forging of Titanium and Titanium Alloys 

Hot forging of powder compacts is an effective way to consolidate titanium and 

titanium alloy powders. There are several parameters associated with hot forging 

which affect the powder consolidation process. Temperature controls two 

parameters of the powder compact forging process. Firstly, as shown in Figures 

1.19 and 1.20, with increasing temperature, the flow stress of the powder particles 

is reduced, so the required applied pressure becomes lower, and the densification 

process becomes easier. On the other hand, atomic diffusion directly influences 

the powder sintering process, and the diffusivity of atoms is controlled by the 

temperature in accordance with the Arrhenius equation: D = D0e−
Q

RT . So the 
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densification and sintering are accelerated by increasing temperature. The 

temperature range selected for forging Ti-6Al-4V alloy powder compacts was 850 

to 950 oC [169]. 

 

 

 

Figure 1.20: Compressive stress-strain curves of dense Ti-6Al-4V alloy specimens 
at high temperatures tested with a strain rate of 10-4 s-1 (a) and 10-3 s-1 (b) [169]. 

 

Pressure is another important parameter of the powder compact forging process. 

At constant temperature during the forging process, the higher the pressure on the 

powder compact, the higher the density that can be achieved as shown in Figure 

1.21. The deformation of titanium and titanium alloys is easier in the β phase region 

where the titanium phase has a bcc crystal structure, and the deformation 

temperature is higher, compared with that in the α phase region where the titanium 

phase has a hcp crystal structure and the deformation temperature is lower. As 

shown in Figure 1.20, the strain rate significantly influences the flow stress of a 

Ti-6Al-4V alloy, especially at temperatures lower than 850 oC Overall, the 

maximum flow stress at a strain rate of 10-3/s is approximately twice that at a 

strain rate of 10-4/s. 

 

(a)                              (b) 
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Figure 1.21: Sintering curves for a titanium powder compact at a variety of 
pressures and temperatures [170]. 

 

  

Figure 1.22: Sintering curves for a titanium powder compact at different heating 
rates under the same pressure of 50 MPa [170]. 

 

Because of the inconspicuous effect of heating rate on powder compact 

densification, it had not been recognized in conventional powder compact forging 

that fast powder compact densification and sintering can occur in some pressure 

assisted sintering processes such as spark plasma sintering [59, 60]. As shown in 

Figure 1.22, a high heating rate (200 K/min) significantly accelerates the 

densification process of titanium powder compacts at temperatures lower than 850 
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oC, and by the time the powder compact reaches 950 oC, it has achieved full 

density. This temperature is the same as that for the samples to achieve full 

density when the heating rate is 50 and 100 K/min. This means that there is no 

obvious difference in densification behaviour in the temperature range of 850-950 
oC due to an increase in heating rate from 50 to 200 K/min, so the heating rate 

only affects the densification of Ti powder at temperatures lower than 850 oC. 

 

A lot of titanium and titanium alloy samples have been made by isothermal 

powder compact forging. One example is Ti-10V-2Fe-3Al (Ti-1023) alloy [171]. 

The microstructure of the as-forged Ti-1023 alloy samples consisted of fine, 

recrystallized equiaxed α grains [172], and their room temperature mechanical 

properties were excellent. Isothermal forging of Ti-6Al-4V blended elemental 

powder compacts at temperatures below the β transus temperature were studied by 

Weiss et al. [173]. They obtained as-forged samples which had a microstructure 

consisting of fine equiaxed α grains giving superior fatigue properties. Also 

quasi-isostatic forging has been used to consolidate cryomilled CP Ti powders 

[174]. The blended powders used, which consisted of 15 pct 

liquid-argon-cryomilled CP Ti powder and 85 pct unmilled CP Ti powder, were 

forged and mechanically tested. This approach gave balanced mechanical 

properties, with a yield strength of 601 MPa, a UTS of 711 MPa and an 

elongation to fracture of 30%. Recently, a Ti connecting rod shown in Figure 1.23 

has been made successfully by a powder forging process using elemental 

Ti-1.5Fe-2.25Mo alloy powders [99, 100]. Two different types of microstructures 

were achieved in an as-forged part: a lamellar α+β structure in the crank pin end, 

fork part and piston pin end, and a through-transus bi-model phase structure, 

consisting of a fine martensitic microstructure and equiaxed grains with branched 

internal dendrites, in the shank. This variation of structure is caused by the 

cooling rate after forging, but their density is improved by the effective strain 
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during powder forgings shown in Figure 1.24. On the other hand, isothermal 

forging has also been used to improve the microstructure and properties of hot 

isostatically pressed Ti-5Al-2Sn-2Zr-4Mo-4Cr powder compacts using 

deformation parameters determined by processing maps with different true strain, 

such as those shown in Figure 1.25 [175]. The shaded regions in the processing 

maps are for unstable flow and the temperature of isothermal forging was 

determined to be either as above the beta transus or below the beta transus with 

suitable deformation parameters. An ultra-fine grained microstructure in the hot 

isostatically pressed Ti-5Al-2Sn-2Zr-4Mo-4Cr part had much improved 

mechanical properties than found in a wrought part made by isothermal forging. 

 

  

Figure 1.23: Ti-5Al-2Sn-2Zr-4Mo-4Cr connecting rod produced by powder 
forging [100]. 
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Figure 1.24: Effect of effective strain on the relative density [100]. 

 

 
(a)                                  (b) 

 
Figure 1.25: Processing map of Ti-5Al-2Sn-2Zr-4Mo-4Cr powder alloy with true 
strain: (a) 0.3; (b) 0.5; (c) 0.7 [175]. 

 

(c) 
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1.2.4 Summary 

Conventional powder metallurgy processes have been reviewed in this chapter in 

the order of powder compaction, sintering and powder forging. Ingot metallurgy 

and the powder metallurgy of titanium and its alloys have also been reviewed. The 

conclusions from the three parts of this literature review are summarized as 

below: 

 

PM has been widely used to produce near-net shaped parts with higher material 

strength than parts made by ingot metallurgy, but the main issue restricting its 

further application is the raw material cost. Nowadays more attention has been 

paid to reducing the cost of raw powders. Rapid consolidation processes, such as 

pressure assisted sintering and powder forging have been used to produce 

amorphous and nanomaterial from powders by constraining grain growth. 

 

The effects of oxygen content and heat treatment conditions on microstructure and 

mechanical properties of CP Ti and Ti-6Al-4V alloy has been studied widely, and 

the microstructural modification of Ti-6Al-4V alloy by different heat treatments 

can improve its mechanical properties. 

 

Pre-alloyed (PA) and blended elemental (BE) approaches are regarded as two 

major methods to produce titanium and titanium alloy parts by powder metallurgy. 

A PA approach produces parts with good mechanical properties, but the raw 

powder is relatively expensive; a BE approach can manufacture parts using lower 

cost powder, but at a cost of a higher porosity level. 

 

For titanium and titanium alloy powder metallurgy, the effects of various 

parameters affecting the relative density and microstructure of powder compact 

forgings have been studied. Powder Compact Forging is a promising powder 
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metallurgy process to consolidate titanium and its alloy powders to make parts 

with good mechanical properties and an optimized microstructure. 
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Chapter 2: Materials and Experimental Procedure 

2.1 Starting Powders 

In this study, titanium and pre-alloyed Ti-6Al-4V (wt%) powders produced by gas 

atomization (GA) and hydride-dehydride (HDH) methods, were used directly to 

carry out powder compact forging experiments, HDH powders were supplied by 

Xi'an Lilin International Trade Co., Ltd. (Xi’an, China), while GA powder was 

supplied by Phelly materials (USA) Inc. (New Jersey, USA). Al-40wt%V master 

alloy powder supplied by Xi'an Lilin International Trade Co., Ltd. (Xi’an, China) 

was also blended and mechanically alloyed with Ti powder to make Ti-6Al-4V 

(Ti64) powders used in the powder compact forging experiments. The particle size 

and compositions of the starting powders are listed in Table 2.1, compared with 

GA Ti and Ti-6Al-4V powders, HDH Ti and Ti-6Al-4V powders are low cost and 

have high oxygen content. 

 
Table 2.1: Powder particle size and composition (wt%). (“-“ Element not indicated 
by supplier). 

Powder Particle size H O N C Fe V Al Ti 

HDH Ti -200 mesh 0.023 0.35 - 0.07 - - - Bal 
GA Ti -100 mesh 0.027 0.11 0.02 0.01 0.11 - - Bal 

HDH Ti64 -200 mesh 0.039 0.50 0.18 0.02 0.05 3.9 6.00 Bal 
GA Ti64 -100 mesh 0.0045 0.13 0.02 0.02 0.05 4.1 6.07 Bal 
Al-40%V -250 mesh - 0.24 - 0.003 0.16 42.24 Bal - 

 
The particle size distributions of the starting powders, shown in Figure 2.1, were 

determined by a Malvern Mastersizer 2000 laser-scattering instrument. The d(0.1), 

d(0.5) and d(0.9) values for the powders are summarized in Table 2.2. Here d(0.1), 

d(0.5) and d(0.9) mean that 10%, 50% and 90% of the volume fraction of the 

powder particles have sizes below a particular value (in micrometer), respectively. 

 

 



Chapter 2: Materials and Experimental Procedure 

48 
 

Table 2.2: Results of particle size analysis of the starting powder. 
Powder Particle size d(0.1) d(0.5) d(0.9) 
GA Ti -100 mesh 70.530 97.008 133.547 

HDH Ti -200 mesh 20.843 47.559 90.759 
GA Ti64 -100 mesh 72.290 104.085 149.479 

HDH Ti64 -200 mesh 10.234 45.645 97.630 
Al-40wt%V -325 mesh 6.658 39.320 89.396 

 

 
(a) 

 
(b) 

(1) (2) 
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(c) 

 
(d) 

 
 

 

Figure 2.1: Particle size distributions for starting powders, curve (1) shows the 
volume percent at the corresponding particle size, and curve (2) shows the volume 
percent under the corresponding particle size: (a) GA Ti; (b) HDH Ti; (c) GA 
Ti-6Al-4V; (d) HDH Ti-6Al-4V; (e) Al-40wt%V. 
 

(e) 
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The particle morphologies of the starting powders were examined by scanning 

electron microscopy (SEM), as shown in Figure 2.2. Due to the nature of the 

powder production processes, both GA Ti and Ti-6Al-4V powders have a 

spherical particle shape, while both HDH Ti and Ti-6Al-4V powders have an 

irregular particle shape. 

 
(a)                              (b) 

 
(b)                              (d) 

 

 
 

Figure 2.2: SEM images of starting powders used in this study. (a) GA Ti; (b) 
HDH Ti; (c) GA Ti-6Al-4V; (d) HDH Ti-6Al-4V; (e) Al-40wt%V master alloy. 

(e) 
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2.1.1 Blended and Mechanical Alloyed Powder Synthesis 

Ti-6Al-4V powder mixture was produced by blending HDH Ti and Al-40wt%V 

master alloy powders with a mass ratio of 9:1 in a planetary ball mill (shown in 

Figure 2.3), 150g of raw powders and 300g of stainless steel balls with a diameter 

of 6 mm (ball:powder weight ratio was 2:1) were placed a steel vial which was 

then sealed under high purity argon. The powder milling was done for 6 hours 

using a rotational speed of 100 rpm, as summarized in Table 2.3. 

 

 
Figure 2.3: Retsh PM 100 planetary ball mill. 
 

For mechanical alloyed Ti-6Al-4V powder production by high energy mechanical 

milling (HEMM), HDH and GA Ti powders were mixed with Al-40wt%V master 

alloy powder, respectively, with the powder mass ratio of 9:1. Before powder 

milling, 110g of Ti and master alloy powders were mixed in a planetary ball mill, 

at a rotation speed of 100 rpm for 6 hours, under argon using a similar operating 

procedure as that used for blending Ti and master alloy powder to make a 

Ti-6Al-4V powder mixture mentioned above. The difference was that both the 

mass and diameter of the stainless steel balls were changed to 550g (ball:powder 

ratio is 5:1) and 12.5 mm, respectively. After powder mixing, the powders were 

milled directly without opening the vial using the planetary ball mill at a speed of 

200 rpm or 400 rpm without using a process control agent (PCA) to avoid 
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contamination. With a milling speed of 400 rpm, the milling was stopped for 30 

minutes after every 30 minute interval, and the net total milling time was 6 hours. 

For a milling speed of 200 rpm the process was continuous. The conditions used 

for powder milling are listed in Table 2.3. 

 
Table 2.3: Conditions of powder mixing and milling. 

 Matrix 
Powder 

Master alloy 
powder 

Speed of milling  
(rpm) 

Milling time 
(hours) 

Blended powder HDH Ti Al-40wt%V 100 6 
Powder milling HDH Ti Al-40wt%V 200 3 

   200 6 
   400 6 
 GA Ti Al-40wt%V 200 6 

 

2.2 Powder Compact Forging Procedure 

In this study, powder compact forging was used to consolidate raw powders into 

fully dense rocker arm parts with the designed shape shown in Figure 2.4. 

 

 

Figure 2.4: The designed shape of the rocker arm to be produced by powder 
compact forging in this study. 
 

The procedure used for powder compact forging is shown in Figure 2.5. The 

powder was poured into a powder compaction die, then compacted by uniaxial 

pressing, and finally the green powder compact was ejected from the die. The 

green powder compact was placed in the center of an induction coil, which was 

manufactured using copper tube, and heated up to 1350 oC in a glove chamber (in 
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Figure 2.6) under argon (Oxygen content of the argon is below 200 ppm). The 

temperature of the powder compact was measured using a K-type thermao-couple 

connected to a temperature controller. After heating to the desired temperature, the 

powder compact was forged into rocker arm shape using an impression die set 

driven by a 100 ton hydraulic press in a glove chamber. To improve the 

microstructure and properties of as-forged parts, heat treatments were conducted 

in a muffle furnace under air. 

 

 

Figure 2.5: Schematic diagram showing the procedure of powder compact 
forging. 
 

 

Figure 2.6: Image of glove chamber. 
 

Warm compaction was used to manufacture the powder compacts in this study. 

After the powders were poured into the powder compact die, shown in Figure 2.7, 

the die was heated up to a desired powder compacting temperature by band heater. 

If the desired powder compacting temperature was 300 oC or lower, the powder 

compacting was done in air, otherwise, it was done under argon. To reduce the 
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friction between powders and the wall of the powder compact die, colloidal 

graphite was used as a die wall lubricant and was coated on the inner wall surface 

of the powder compacting die. The conditions used for powder compaction for 

each kind of powder are listed in Table 2.4. 

 
Table 2.4: Conditions of powder compaction. 

Raw powder Sample Temperature 
(oC) 

Pressure 
(MPa) 

Atmosphere 

HDH Ti 1 25 544 Air 
2 150 
3 250 
4 400 544 Argon 
5 450 
6 500 

GA Ti-6Al-4V 7 450 726 Argon 
8 500 
9 550 

GA Ti 10 450 726 Argon 
HDH Ti-6Al-4V 11 25 726 Air 

12 250 
13 300 
14 450 726 Argon 
15 500 
16 550 

Blended Ti-6Al-4V 17 250 726 Air 
MA Ti-6Al-4V  18 250 726 Air 

 

 

Figure 2.7: Powder compaction die. 
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During a powder compact forging process, the powder compact was heated to 

1350 oC by induction heating, and the powder compact forging temperature was 

kept constant in this study. Before forging the powder compact using the 

impression die set shown in Figure 2.8, the upper and lower dies were both coated 

with colloidal graphite at room temperature, and heated to different temperatures 

up to 500 oC by cartridge elements inserted into the dies. Before forging, the 

holding time at the forging temperature (1350 oC) was varied, but was in the range 

of 0-10 minutes. The conditions for powder compact forging are summarized in 

Table 2.5. 

 

 
Figure 2.8: Forging die set. (a) upper die; (b) lower die. 
 
Table 2.5: Conditions of powder compact forging. 

Powder compact Temperature (oC) Holding time (Minutes) 
HDH Ti 1350 0 

  5 
GA Ti 1350 0 

HDH Ti-6Al-4V 1350 0 
GA Ti-6Al-4V 1350 0 

Blended Ti-6Al-4V 1350 0 
  5 
  10 

MA Ti-6Al-4V 1350 0 

 

(b) 

(a) 
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2.3 Heat Treatment of As-forged Parts 

After powder compact forging, as-forged rocker arms were heat treated in a 

Muffle furnace under air. An annealing treatment was chosen to relieve the 

internal stress of as-forged HDH Ti parts. Four types of heat treatment were used 

for as-forged HDH and GA Ti-6Al-4V parts: duplex annealing, a solution and 

aging treatment, recrystallization annealing and beta annealing. The heat treatment 

processes are described in Table 2.6 and schematically shown in Figures 2.9 and 

2.10. The temperature was selected to be in the same range for the corresponding 

heat treatment of wrought material in Ref.[1]. 
 
Table 2.6: Conditions of heat treatments of as-forged parts. 

As-forged part Heat treatment Condition 
HDH Ti √ Annealing Anneal at 550 oC for 6 

hours, air cool. 
HDH Ti-6Al-4V GA Ti-6Al-4V   

√ √ Duplex annealing Solution treat at 920 oC 
for 2 hours, air cool and 

age at 550 oC for 6 hours, 
air cool. 

√ √ Solution and Aging Solution treat at 955 oC 
for 2 hours, water quench 

and age at 550 oC for 6 
hours, air cool. 

√ √ Recrystallization 
annealing 

Heat treat at 925 oC for 4 
hours, furnace cool at 50 
oC/h to 750 oC, air cool. 

√  Beta annealing Solution treat at 1010 oC 
for 1 hour, air cool and 

age at 700 oC for 2 hours, 
air cool. 

*√ indicates that the condition was chosen in this study. 
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Figure 2.9: Schematic diagram of the annealing treatment for an as-forged HDH 
Ti part. 
 

 
       Duplex annealing              Solution and aging treatment 

(a)                              (b) 

 
 
 

 
Figure 2.10: Schematic diagrams showing the schedule fused for heat treating 
as-forged Ti-6Al-4V parts. 

 

2.4 Characterization of Powders and Consolidated Samples 

2.4.1 Particle Size Analysis 

The particle size distribution for all powders used and produced in this study was 

Recrystallization annealing              Beta annealing 

(c)                             (d) 
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analyzed by a Malvern Mastersizer 2000 laser-scattering instrument. For the 

analysis, a few grams of a powder sample were dispersed in water to reach the 

detection level for determining the particle size distribution. The maximum 

diameter of powder particles which can be detected is 2 mm.  

2.4.2 Oxygen Analysis 

As-forged samples was cut into 1mm×1mm×1mm cubes, and then quantitative 

chemical analysis (oxygen, nitrogen and hydrogen) was done at Durkee Testing 

Laboratories, Inc. USA, using a LECO combustion method. 

2.3.3 Thermal Analysis 

Differential thermal analysis (DTA) was carried out on blended and milled 

powders using a TA Instrument SDT 2960. The powders were heated up to 1300 
oC in an alumina crucible at a heating rate of 10 oC/min, with flowing argon as the 

protective atmosphere. 

2.3.4 Density Measurement 

The density of green and as-sintered powder compacts were calculated in 

Equation 2.1 by dividing their mass with their corresponding volumes, measured 

by a Nextengine 3D scanner shown in Figure 2.11. 

Density = Mass
Volume

                       (2.1) 

To evaluate the pososity eliminated by sintering, a densification parameter is 

calculated from the sintered density and green density of a powder compact as 

follows: 

Densification parameter = sintered  density  − green  density
theoretical  density  − green  density

        (2.2) 
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Figure 2.11: Nextengine 3-D scanner. 
 

2.4.5 Optical Microscopy 

An examination of the powder and the as-forged and heat treated parts by optical 

microscopy was carried out using an Olympus BX60 optical microscope equipped 

with a digital camera. For metallographic examination of the powders, samples 

were prepared by mounting the powders in an epoxy resin at room temperature. 

For examining consolidated parts, samples for metallography were cut from the 

as-forged and heat treated parts by electric discharge machining (EDM) wire 

cutting. Both mounted and bulk samples were ground step by step using 120, 320, 

600, 1200, 2000 and 4000 grit SiC papers to produce flat surfaces. After grinding, 

the flat surfaces were polished to a “mirror” finish using an alumina dispersion 

with a particle size of 0.3 μm. The polished samples were used for X-ray 

diffraction (XRD) analysis, optical microscopy (OM), porosity distribution 

measurement and scanning electron microscopy (SEM). 

 

To observe the microstructure of the samples, their polished surfaces were etched 

using Kroll’s solution, consisting of 2 ml HF, 6 ml HNO3 and 92 ml distilled water. 

Images of the microstructures were captured using digital cameras attached to the 

optical microscope and scanning electron microscope. 

2.4.6 Porosity Distribution Measurement 

Images of polished cross-sections of as-forged parts were captured by a digital 
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camera attached to an optical microscope. Two-dimensional porosity distributions, 

perpendicular to and along the forging direction, were determined by analyzing 

these digital OM images using IQ image analysis software. The OM images were 

taken at equal intervals of distance from the edge to the center of the parts along 

the two directions mentioned above.  

2.4.7 X-ray Diffraction 

X-ray diffraction (XRD) analysis was carried out using a Philips X’ pert system 

diffractometer with Cu Kα radiation source and an incidence beam at a scan rate of 

2o/min. The working conditions of the X-ray tube were a voltage of 20 kV and 

current of 40mA. The scan range of 2θ was from 20 oC to 90 oC, and the results 

were matched with standard X-ray diffraction powder pattern from PDF cards of 

Ti, AlV and Ti-6Al-4V. 

2.4.8 Scanning Electron Microscopy 

A Hitachi S4700 scanning electron microscope (SEM) was used to observe the 

microstructures and morphology of specimens, and the elemental content and 

distribution of specimens were measured by an energy dispersive X-ray 

spectrometer (EDS) attached to the scanning electron microscope. Resin mounted 

specimens were coated by a thin layer of carbon before examination, but it was 

not necessary to coat the bulk samples since they are electrically conductive. 

2.4.9 Transmission Electron Microscopy 

The microstructure of as-forged parts was examined using a CM30 Philips 

transmission electron microscope (TEM). A double tilt holder was used to hold 

the specimens. To prepare specimens for TEM, slices with a thickness of around 

0.5 mm were cut from as-forged parts using an EDM wire cutter, and then the 

slices were ground to reduce their thickness to about 50 μm by 120, 320, 600, 

1200 and 2000 grit SiC abrasive papers. Then several disks with a diameter of 3 
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mm were punched from each slice, and finally each disk was further thinned by 

electrical jet polishing to produce a hole. The conditions used for jet polishing 

were a voltage of 10 mV a current of 10 mA and a temperature ranging from -40 
oC to -30 oC. The jet polishing solution was composed of 60vol.% methanoll, 

35vol.% Butanol and 5vol.% perchloric acid.  

2.4.10 Tensile Testing 

The shape and dimensions of specimens used for tensile testing are shown in 

Figure 2.12. Tensile testing was done using an Instron 33R4204 universal testing 

machine with a load cell of 5 kN at room temperature. An extensometer with a 

gauge length of 10 mm was used to record the strain during tensile testing. A 

strain rate of 8.3×10-5 s-1 was used for all of the tensile tests. For the as-forged 

parts, tensile test specimens were cut one by one in a direction perpendicular to 

the forging direction using an EDM wire cutter, as shown in Figure 2.13.  

Specimens from as-sintered parts, were cut along the powder pressing direction. 

The rough surfaces of the cut specimens were ground by 120, 320, 600, 1200 and 

2000 grit SiC papers to remove the effect of surface roughness on tensile 

properties.  

 

 

Figure 2.12: Shape (a) and dimensions (b) of the tensile test specimens. 
 

(a) (b) 
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Figure 2.13: A schematic diagram showing the orientation used for cutting tensile 
test specimens from an as-forged rocker arm. 
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Chapter 3: Compacting and Induction Sintering of Ti and 

Ti-6Al-4V Powders 

3.1 Introduction 

To achieve high relative density in Ti and Ti-6Al-4V powder compacts, the effect 

of compacting temperature on the relative density of HDH Ti, HDH and GA 

Ti-6Al-4V powder compacts was investigated in this study. Based on the time 

taken for making the powder compacts and their quality, the HDH Ti and HDH 

Ti-6Al-4V powder compacts made using the highest compacting temperature in 

air were selected to do the powder compact forging experiments. Using GA 

Ti-6Al-4V powder, compacts could not be made in air using the highest attainable 

pressure for the equipment of 726 MPa, even at temperatures up to 300oC. For this 

reason, the GA Ti-6Al-4V powder compacts were made at a compacting 

temperature of 550 oC, which was close to the working temperature limit of the 

powder compacting die. The effectiveness of the different particle shapes found in 

HDH and GA powders, on the degree of particle interlocking and cold welding 

during the powder compacting process, were studied. The powder compacts were 

partially sintered while being heated up in an induction furnace to the forging 

temperature. The microstructure and mechanical properties of as-sintered HDH Ti 

and HDH and GA Ti-6Al-4V powder compacts were investigated, and the 

mechanism of induction sintering of these Ti and Ti-6Al-4V powders was 

analyzed in this chapter. 

3.2 Compacting of Ti and Ti-6Al-4V Powders 

Figure 3.1 shows the shape of an HDH Ti powder compact which was produced 

by pressing HDH Ti powder in a powder compacting die shown in Figure 2.7. The 

upper and lower surfaces of the powder compact had some features of the rocker 

arm to be made by powder compact forging using the upper and lower forging die 

halves shown in Figure 2.8. These features were designed so that for powder 
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compact forging experiments, the powder compact could be easily and accurately 

located and fitted to the powder forging die. 

 

 

Figure 3.1: Image of an HDH Ti powder compact with mass of 120g for making a 
Ti rocker arm by powder compact forging. 
 

3.2.1 The Effect of Temperature on Compacting 

For the powder compacting process, close attention was paid to achieving a high 

density and uniform density distribution in the powder compacts to obtain final 

products with good quality after powder consolidation. In this study, warm 

compaction was used to make powder compacts with a high density, by reducing 

the flow stress of powder particles through increasing temperature. In the warm 

compaction process, temperature and pressure are the main parameters that 

influence the density of powder compacts [1]. HDH Ti and Ti-6Al-4V alloy 

powders were compacted at temperatures in the range of room temperature to 550 
oC under pressures of 544 and 726 MPa, respectively. The difference in the 

pressure used for compacting HDH Ti and Ti-6Al-4V powders is due to the higher 

flow stress of Ti-6Al-4V powder particles compared with Ti powder particles at 

the same temperature. Powder compacting at temperatures of 300 oC or lower was 

done in air, and when the compacting temperature was increased to above 300 oC, 

an argon protective atmosphere (Oxygen content is below 200 ppm) was used as a 

protective atmosphere. The upper limit for the powder compacting temperature 

was 550 oC, which was set by the maximum working temperature of the powder 
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compacting die made of heat treated H13 steel. Compared with HDH Ti and HDH 

Ti-6Al-4V powders with irregular particle shapes, as shown in Figure 2.2, GA 

Ti-6Al-4V powder, with a spherical particle shape, was difficult to compact at 

relatively low temperatures between room temperature and 450 oC. Therefore, in 

this study, it was only compacted at temperatures between 450 to 550 oC using a 

pressure of 726 MPa under argon atmosphere. The conditions used for powder 

compacting are summarized in Table 2.4. 

 

 

Figure 3.2: The relative density of HDH Ti and HDH and GA Ti-6Al-4V powder 
compacts as functions of temperature under constant pressure: 544 MPa applied to 
HDH Ti powder, 726 MPa applied to HDH and GA Ti-6Al-4V powders. 
 

The density of the powder compacts is given by Equation 2.1, and the relative 

density of HDH Ti, HDH and GA Ti-6Al-4V powder compacts as functions of 

temperature are shown in Figure 3.2. From the relative density vs temperature 

curves shown in Figure 3.2, the density of powder compacts increases with 

increasing compacting temperature, as the flow stress of the powder particles 

decreases with increasing temperature. The influence of compacting temperature 

on the relative density of HDH Ti powder compacts is more significant than that 
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on the relative density of Ti-6Al-4V powder compacts. The relative density of 

HDH Ti powder compacts increases from 75% to a maximum value of 97% with 

increasing powder compacting temperature from room temperature to 400 oC. The 

relative density of HDH Ti-6Al-4V powder compacts increases slightly from 75% 

to 79% with increasing compaction temperature from room temperature to 450 oC, 

and then increases significantly from 79% to a maximum value of 84% with 

increasing compaction temperature from 450 to 500 oC. The relative density of 

GA Ti-6Al-4V powder compacts gradually increases from 80% to a maximum 

value of 84% with increasing powder compaction temperature from 450 to 550 oC. 

For HDH Ti powder compacts, a further increase of compacting temperature 

beyond 400 oC does not cause any further increase in the relative density of 

powder compacts. The amount of increase in relative density in HDH Ti-6Al-4V 

powder, as a result of increasing the compaction temperature from 450 to 500 oC 

is clearly greater than that for GA Ti-6Al-4V powder, with the same compacting 

temperature increase. This means that the shape of the powder particles affects 

powder compaction behavior. Due to the difficulty of compacting GA Ti-6Al-4V 

powder at temperatures lower than 450 oC, the effect of powder particle shape on 

powder compacting behaviour at lower temperatures (below 450 oC) was not 

determined in this study.  

 

Considering the difficulty and cost of producing powder compacts with high 

density, the selected temperatures for compacting HDH Ti and HDH Ti-6Al-4V 

powders for making powder compacts for forging experiments were 250 and 300 
oC, respectively. Due to the relatively low temperatures, powder compaction was 

done in air. For making powder compacts for forging experiments, GA Ti-6Al-4V 

powder was compacted at 550 oC under an argon protective atmosphere. These 

powder compaction conditions are shown by the arrows in Figure 3.2. The powder 

compaction temperatures for making powder compacts for subsequent sintering 

and forging of HDH Ti, HDH and GA Ti-6Al-4V powder compacts and their 
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relative density are listed in Table 3.1. 

 
Table 3.1: Selected powder compacting temperatures for making powder 
compacts for further sintering and forging experiments and their density. 

Powders HDH Ti GA Ti-6Al-4V HDH Ti-6Al-4V 
Temperature (oC) 250 550 300 
Relative density 90.3% 84% 77.4% 

 

3.2.2 Mechanism of Compacting HDH Ti, HDH Ti-6Al-4V and GA Ti-6Al-4V 

Powders Compact 

According to the results from the powder compaction experiments, it can be 

concluded that HDH Ti and Ti-6Al-4V powders are much easier to compact to a 

complete shape than GA Ti-6Al-4V powder. This is especially true at low 

temperatures, ranging from room temperature to 300 oC, because of their rough 

particle surfaces and irregular particles shape as shown in Figure 2.2. There are 

two stages in the powder compaction process with increasing external pressure, as 

described in Chapter 1, namely particle rearrangement and sliding and plastic 

deformation. Based on the tap density of HDH Ti, HDH and GA Ti-6Al-4V 

powders shown in Table 3.2, Ti-6Al-4V GA powder has a higher tap density than 

HDH Ti and HDH Ti-6Al-4V powders, which can be attributed to the difference 

in shape of the powder particles and the friction between powder particles. GA 

Ti-6Al-4V powder particles with a spherical shape can be rearranged because they 

slide more easily than HDH Ti and HDH Ti-6Al-4V powder particles with more 

irregular shapes. GA powder particles have a lower surface roughness than HDH 

powder particles and this reduces the internal friction between adjacent powder 

particles.  
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Table 3.2: Relative apparent and tap densities of raw powders. 
Powder HDH Ti GA Ti-6Al-4V HDH Ti-6Al-4V 

Powder size -200 mesh -100 mesh -200 mesh 
Shape Irregular Spherical irregular 

Relative apparent density 35.4% 61.2% 33.4% 
Relative tap density 37.7% 65.2% 41.7% 

 

Cold welding and interlocking are two mechanisms for powder compaction. After 

breaking HDH Ti powder compacts, it can be seen that the contact surfaces 

between the powder particles (Figure 3.3) are much smoother than in the raw 

powder particles, showing that the powder particles were cold welded as a result 

of the friction between particles. The friction between powder particles is 

regarded as harmful to densification of a powder compact by some researchers, 

but here it is shown that the friction between powder particles is beneficial for 

bonding between particles. Also the interlocking of HDH Ti and HDH Ti-6Al-4V 

powder particles occurs easily due to their rough surfaces. As shown in Figure 3.3, 

as the density of powder compacts increases because of an increase in compacting 

temperature, the surfaces of HDH powder particles become smoother. These are 

highlighted in the figure and suggest that the powders were deformed more 

severely. Also according to the particle size distributions of raw powders shown in 

Figure 2.1, even though the average particle size of the -100 mesh GA powder 

was larger than that of the -200 mesh HDH powder, the range of particle sizes of 

the HDH powder was much wider than that of the GA powder. The small powder 

particles are located among the large powder particles as bridges, so during 

powder compacting, small powder particles can be deformed more easily than 

large powder particles under the same external pressure. This is another reason 

why HDH powder can be compacted more easily than GA powder. 
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(a) Room temperature 

  
(b) 150 oC 

 

Figure 3.3: Fracture surfaces of HDH Ti powder compacts made by compacting at 
different temperature respectively. 
 

The morphologies of GA Ti-6Al-4V powder particle surfaces after compacting at 

different temperature are shown in Figure 3.4. Due to good flowability and the 

spherical shape of GA powder particles, particle rearrangement and sliding can 

(c) 250 oC 
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more easily occur during compacting the GA powder than compacting the HDH 

powder. This makes it difficult to produce GA powder compacts, especially at low 

temperatures. Cold welding between two adjacent powder particles is also hard to 

achieve because of the lower surface roughness of GA powder particles compared 

with HDH powder particles. In Figure 3.4, the warm welding areas in a GA 

powder compact are difficult to observe, but the deformed areas in those powder 

particles with flattened surfaces caused by compaction can be seen more clearly 

than observed in the HDH powder compacts in Figure 3.3. With increasing 

compaction temperature, the areas of the flattened surfaces in GA powder 

particles became larger due to a larger amount of deformation. As shown in Figure 

3.4, the area of welding between two adjacent powder particles, caused by plastic 

deformation during compacting at 500 oC, is larger than that during compacting at 

450 oC. It can also be seen that in the welding area there is a large amount of shear 

deformation in the powder particles. This means that welding between GA powder 

particles occured by shear deformation of two adjacent powder particles rather 

than normal deformation. This can be explained by the breaking of the oxide 

surface layers on powder particles to form new surfaces which are easily welded 

together. So the main mechanism for powder compaction of GA Ti-6Al-4V 

powder is by warm welding. 

 

  
(a) 450 oC 
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(b) 500 oC 

 
Figure 3.4: GA Ti-6Al-4V powder particle morphologies after compaction at 
different temperatures with a pressure of 726 MPa, respectively. 
 

3.3 Induction Sintering of Ti and Ti-6Al-4V Powder Compacts 

Before powder compact forging, powder compacts were heated up to the forging 

temperature at a high heating rate using an induction furnace. During induction 

heating, some pre-sintering of the powder compacts occurred. The as-sintered 

powder compacts were characterized in this study. HDH Ti, HDH and GA 

Ti-6Al-4V powder compacts with relative density of 90.3%, 77.4% and 84%, 

respectively, as shown in Table 3.1, were selected to be sintered by induction 

heating. The powder compacts were heated up from room temperature to 1350 oC 

in 3 minutes, and then cooled down under an argon protective atmosphere. 

Shrinkage of powder compacts occurred during sintering, so the as-sintered 

Warm welding 
Shear deformation 

(c) 550 oC 
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powder compacts became denser than the green powder compacts as shown in 

Table 3.3. Because of the sintering during induction heating the relative density of 

HDH Ti and HDH and GA Ti-6Al-4V powder compacts increased by 0.7%, 3.4% 

and 1.8% and corresponding porosity of 7.2%, 15% and 11.3% had been 

eliminated, as indicated by their densification parameters. 

 
Table 3.3: Relative density of as-sintered powder compacts. 

Powder HDH Ti HDH Ti-6Al-4V GA Ti-6Al-4V 
Relative density 91% 80.8% 85.8% 

Densification parameter 7.2% 15% 11.3% 

 

3.3.1 Microstructure of As-sintered Parts 

An as-sintered HDH Ti powder compact, with a relative density of 91%, 

contained a large fraction of isolated pores formed during sintering, and the 

powder compact became stronger due to neck formation between powder particles 

by atomic diffusion at the high temperatures up to the forging temperature of 1350 
oC. The as-sintered Ti powder compact showed a microstructure consisting of 

equiaxed α grains, as shown in Figure 3.5(a). The as-sintered HDH and GA 

Ti-6Al-4V powder compacts contained both open and closed pores formed during 

sintering. The different microstructures of as-sintered GA and HDH Ti-6Al-4V 

powder compacts are shown in Figures 3.5(b) and (c). The as-sintered GA 

Ti-6Al-4V powder compact had a microstructure consisting of α acicular in an α/β 

lamellar matrix (Figure 3.5(b)), and the width of the α acicular was around 500nm. 

In contrast to this, the as-sintered HDH Ti-6Al-4V powder compact had a 

microstructure consisting of primary α particles in a coarse α/β lamellar matrix 

(Figure 3.5(c)). The coarse primary α lamellae, which formed at the β grain 

boundaries during cooling from the β phase region, were transformed into α+β 

two phase regions, with most of the β grain boundaries evolving from powder 

particle contacts during sintering. With further cooling into the α phase region, a 

coarse α lamellae formed β grains, leading to the formation of a coarse α/β matrix 
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with a primary α lamellar structure. From SEM images of the microstructure of an 

as-sintered HDH Ti-6Al-4V powder compact, it can be seen that both primary 

coarse α lamellar and the α lamellar in β grains are coarser than the α acicular.  

 

The reasons for the microstructural difference between as-sintered HDH and GA 

Ti-6Al-4V powder compacts are the composition of the raw powders and the 

powder production process. HDH powder is produced from ingots by a hydride 

and dehydride process, and the powder particles still keep the microstructure of 

the equilibrium microstructure of the ingots. However, the GA powder is 

produced by rapid solidification of liquid droplets during fast cooling, and the 

powder particles have a non-equilibrium microstructure. When the powder 

compacts were heated up to the forging temperature, an acicular structure formed 

in the GA Ti-6Al-4V powder compacts, while a coarse lamellar structure formed 

in HDH Ti-6Al-4V powder compacts. Also oxygen is an alpha stabilizer. The 

oxygen content of the GA Ti-6Al-4V powder is lower than that of the HDH 

Ti-6Al-4V powder used in this work, as shown in Table 2.1, so this is the other 

reason why a coarse α lamellar structure formed in the as-sintered HDH 

Ti-6Al-4V powder compact, while an α acicular structure formed in the 

as-sintered GA Ti-6Al-4V powder compacts. 

 

 

(a) Optical microscopy (OM) image of an as-sintered HDH Ti powder compact 

OM 

50µm 
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(b) OM and SEM images of an as-sintered GA Ti-6Al-4V powder compact 

 

Figure 3.5: Microstructure of as-sintered powder compacts. 
 

3.3.2 Mechanical Properties of As-sintered Powder Compacts 

The tensile properties of as-sintered powder compacts for different relative 

densities are shown in Figure 3.6. The tensile stress-strain curves of the specimens 

cut from an as-sintered HDH Ti powder compact with a relative density of 91% 

showed that the material had clear yield points and an elongation to fracture of 

6.6%-8.9%. On the other hand, the tensile stress-strain curves of specimens cut 

from as-sintered HDH and GA Ti-6Al-4V powder compacts with a lower relative 

density, showed that the material did not clearly yield before fracturing and their 

elongation to fracture was very small, being in the range of 0.4%-1.4%.  

 

OM SEM 

OM SEM 

50µm 

50µm 

(c) OM and SEM images of an as-sintered HDH Ti-6Al-4V powder compact 
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Figure 3.6: Stress-strain curves of specimens cut from as-sintered compacts: (a) 
HDH Ti, relative density of 91%; (b) GA Ti-6Al-4V, relative density of 85.8%; (c) 
HDH Ti-6Al-4V, relative density of 80.8%. (AS=as-sintered) 

 

From the stress-strain curves in Figure 3.6(a), the average ultimate tensile strength 

(UTS) of as-sintered Ti specimens could reach 575.4 MPa, and the average yield 

strength was 470 MPa, with the average elongation to fracture being 7.5% (Table 

3.4). These properties are far different from those of bulk titanium with full 
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density. Even though there are a lot of pores in the as-sintered HDH Ti powder 

compact with a relative density of 91%, it is not a brittle material. Nevertheless, 

the large isolated pores play an important role as fracture initiators and cause a 

reduction in elongation to fracture. As shown in Figures 3.6(b) and (c), the tensile 

stress-strain curves of as-sintered HDH and GA Ti-6Al-4V powder compacts 

showed a very small elongation to fracture, and their UTS was lower than 700 

MPa. The brittleness of the as-sintered HDH and GA Ti-6Al-4V powder compacts 

can be attributed to their low relative density of about 80%, as shown in Table 3.3.  

 
Table 3.4: Summary of mechanical properties of as-sintered HDH Ti powder 
compact with relative density of 91% and oxygen content of 0.41%. 

Sample  YS(MPa)  UTS(MPa)  Elongation  
AS HDH Ti-1 470.6  577.1  8.4%  
AS HDH Ti-2 476.5  586.1  8.0%  
AS HDH Ti-3 462.7  563.0  6.1%  

Average  470.0  575.4  7.5%  

 

3.3.3 Fracture Morphology of As-sintered Powder Compacts 

After tensile testing, the fracture surfaces of the specimens were examined by 

SEM, as shown in Figure 3.7. The main fracture mechanism in the as-sintered 

powder compacts is the fracture of the necks formed between powder particles. 

This is shown in Figure 3.7(b), where the SEM images of the fracture surface of 

an as-sintered GA Ti-6Al-4V powder compact show the concave and convex 

shapes of the fracture surfaces. This is especially so where a sinter-neck was torn 

off due to insufficient sintering. At high magnifications, the SEM images show 

that the fracture morphology of the necks between powder particles in as-sintered 

HDH Ti and GA Ti-6Al-4V powder compacts have dimples, indicating that the 

fracture was ductile. However, a cleavage morphology was seen on the fracture 

surfaces of the necks between the powder particles in the as-sintered HDH 

Ti-6Al-4V powder compact (Figure 3.7(c)). 
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(a) HDH Ti, relative density of 91% 

 
(b) GA Ti-6Al-4V, relative density of 85.8% 

Dimple 

Dimple 
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Figure 3.7: SEM images at different magnifications of the fracture morphology of 
as-sintered HDH Ti and GA and HDH Ti-6Al-4V powder compacts after tensile 
testing. 
 

3.3.4 Mechanisms of Densification and Sintering during Induction Heating 

A reduction of surface energy is the thermodynamic driving force for forming 

necks between two powder particles in contact, which is the initial stage of the 

sintering process. When the powder compacts were heated to 1350 oC, the 

necking between two neighboring particles in the powder compacts occurred as 

shown in Figure 3.8. The necking between neighboring GA spherical powder 

particles was seen more clearly (Figure 3.8(b)) than that between neighboring 

HDH powder particles with irregular shapes (Figures 3.8(a) and (c)). The extent 

of necking between powder particles in the HDH Ti and HDH Ti-6Al-4V powder 

compacts (Figures 3.8(a) and (c)) during induction heating was much more 

Cleavage 

(c) HDH Ti-6Al-4V, relative density of 80.8% 
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significant than that found in a GA Ti-6Al-4V powder compact. This is reflected 

by the extent of the change in powder particle surface morphology caused by the 

induction heating. This can be attributed to the fact that the HDH powder particles, 

with irregular shapes have more surface energy than the spherical GA powder 

particles.  

 

  
(a) As-sintered HDH Ti powder compact 

  
(b) As-sintered GA Ti-6Al-4V powder compact 
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Figure 3.8: Powder morphologies of as-sintered powder compacts sintered at a 
temperature of 1350oC. 

 

As described in Chapter 1, the driving force for necking is the curvature gradient 

at the neck. For a green powder compact heated up by a furnace with heating 

elements, the heat energy is transferred into the powder compact by the outside 

atmosphere acting as a heating agent. When induction heating is used, induction 

sintering depends on eddy current heating. An alternating electromagnetic field 

induces eddy currents in a conductive material, by electromagnetic induction and 

an alternating current in a loop is induced in the alternating magnetic field. The 

formula is described as Faraday - Lenz’s law below: 

E = 𝑑𝑑∅
𝑑𝑑𝑑𝑑

                            (3.1) 

where E is voltage, Φ is magnetical flux and t is time. 

 

For the Joule-effect, the thermal power generated when an electrical current flows 

through a conductive material can be calculated using the following equation: 

P = I2 × R                         (3.2) 

where P is power, I is electric current and R is resistance. 

 

From the above two equations, the absorption of heat energy in the powder 

compact by induction heating can be calculated, assuming the electric current is 

(c) As-sintered HDH Ti-6Al-4V powder compact 
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constant [2]. With a two-sphere model shown in Figure 3.9, the resistance R can 

be calculated by the following equation: 

R = ρ 𝑑𝑑𝑑𝑑
𝐴𝐴

                          (3.3) 

where ρ is the resistivity of the conductor material, dL is unit length and A is the 

cross-sectional area. 

 

During powder compaction, two adjacent spherical particles are deformed as 

shown in Figure 3.9. Assuming that the diameter of the contact area of two 

adjacent particles, shown Figure 3.9 is X1, the electrical resistance at the particle 

contact area can be described as: R = 4ρ 𝑑𝑑𝑑𝑑
𝜋𝜋𝑋𝑋1

2 . The resistance at the particle 

contacts is the highest, so the temperature at the contact area of two particles is 

higher than any other region in the two particles, and this can accelerate the 

formation of necking. This means that the necking area grows faster during 

induction heating than heating using other methods such as radiation heating 

which does not involve passing electrical currents through powder particles and 

the contacts between them. Also due to the existence of an oxide layer on the 

surfaces of Ti and Ti-6Al-4V powder particles, the electrical resistance at the 

contact area between powder particles is much larger than that in the body of the 

powder particles. Therefore heat energy is very concentrated at the particle 

contact areas, which makes the temperature of these areas much higher than that 

in the particle body. 

 

 

Figure 3.9: Two-sphere model for necking formation showing the powder particle 
surface contact area caused by plastic deformation. 

 

I 

L 
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3.4 Discussion 

3.4.1 The effect of Compacting Temperature on the Relative Density of Ti 

and Ti-6Al-4V Powder Compacts 

The relationship between compaction temperature and the relative density of Ti 

powder compacts was studied from room temperature to 140 oC under air in Ref. 

[1, 3]. With an increase in powder compaction temperature, the relative density of 

Ti powder compacts increases slightly from 77.7% to a maximum value of 81.6% 

as shown in Figure 3.10. When the powder compaction temperature was extended 

to 500 oC, which is close to the maximum working temperature of the powder 

compaction die made of heat treated H13 steel in this study, the relative density of 

HDH Ti powder compacts increases significantly from 75% to a maximum value 

of 97% at 400 oC. Also from the relative density versus temperature curve for an 

HDH Ti powder compact, a relative density of 92% was produced at a powder 

compaction temperature of 250 oC (this is below 276 oC which is the starting 

temperature for the onset of severe oxidation for pure titanium [4]) in air without 

an argon protective atmosphere, under a pressure of 544 MPa). Powder compacts 

with a relative density of over 90% were pressed at room temperature with a 

pressure greater than 1000 MPa [5], so in order to produce a Ti powder compact 

with a high relative density and with an increase in powder compacting 

temperature, the compacting pressure was decreased a lot. This is beneficial for 

increasing the working life of the powder compacting die. 
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Figure 3.10: Comparison of relative density of Ti powder compacts as functions 
of temperature under different pressures: 450 MPa [1] and 544 MPa (this work). 
 

For the warm compaction of Ti-6Al-4V powder, there is little information 

reported in the literature. Most Ti-6Al-4V powder compacts [5, 6] were produced 

by cold compaction. In Ref. [5], Ti-6Al-4V powder compacts with a relative 

density of 80% were pressed uniaxially at room temperature under a compacting 

pressure of 970 MPa. In this study, to produce both HDH and GA Ti-6Al-4V 

powder compacts with the same relative density of 80%, the compacting pressure 

was slightly decreased to 726 MPa by increasing the compacting temperature to 

450 oC. As shown in Figure 3.11 the relative density of a Ti-6Al-4V powder 

compact was increased to 84.5% by increasing the compaction pressure to 1366 

MPa at room temperature [5]. To get the same relative density in a powder 

compact, the compaction temperature was only increased from 450 to 550 oC for 

both HDH and GA Ti-6Al-4V powder compacts. So for GA and HDH Ti-6Al-4V 

powder, a compaction temperature within the range of 450-550 oC can 

significantly influence the compaction pressure needed to achieve the desired 

density. 



Chapter 3: Compacting and Induction Sintering of Ti and Ti-6Al-4V Powders 

84 
 

 

Figure 3.11: A comparison of the relative density of Ti-6Al-4V powder compacts 
as a function of temperature at different pressures: 970 MPa [5], 1366 MPa [5] 
and 726 MPa (this work). 
 

The effect of compaction temperature on the relative density of Ti and Ti-6Al-4V 

powder compacts in this study can be explained by the relationship between yield 

stress and temperature of the bulk material shown in Figure 3.12. In this figure, 

the yield stress of Grade 4 CP Ti bulk material dropped significantly with 

increasing temperature from room temperature to 300 oC, and then changed 

slightly up to 500 oC, which is consistent with the change in relative density of an 

HDH Ti powder compact with compaction temperature. Also, a curve of yield 

stress vs temperature for Ti-6Al-4V bulk material after mill annealing, shows that 

the yield stress falls gradually with increasing temperature to 450 oC, then drops 

more sharply when the temperature is further increased to 550 oC. This is the 

reason why the change in the relative density of HDH Ti-6Al-4V powder 

compacts during compaction in the temperature range of 450-550 oC was more 

significant than for those made using a compaction temperature less than 450 oC. 
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Figure 3.12: Yield strength vs temperature curves of Grade 4 CP Ti and milled 
annealed Ti-6Al-4V bulk material [7]. 
 

3.4.2 The effect of Particle Shape and Oxygen Content on Ti-6Al-4V Powder 

Compaction 

As shown by the results in Figure 3.11 for GA and HDH Ti-6Al-4V powder 

compaction in this study, at a compaction temperature of 450 oC, the relative 

densities of HDH and GA Ti-6Al-4V powder compacts are the same. However, 

with increasing compaction temperature to 500 or 550 oC, the relative density of 

HDH Ti-6Al-4V powder compacts is much higher than that for GA Ti-6Al-4V 

powder compacts. As shown in Table 2.1, the oxygen content of HDH Ti-6Al-4V 

powder is 0.5wt%, which is much higher than that of the GA Ti-6Al-4V powder, 

which is 0.13wt%. Therefore the HDH Ti-6Al-4V powder particles are more 

difficult to deform than GA Ti-6Al-4V powder particles based on the correlation 

between the oxygen content and yield stress of Ti-6Al-4V shown in Ref. [7]. This 

means that a powder compact made from HDH Ti-6Al-4V powder should have a 

lower relative density than one made using GA Ti-6Al-4V powder without taking 

the effect of particle shape into account. The effect of particle shape on the density 

of a green powder compact was reported in Ref. [8]. According to these results, a 

higher green powder compact density should be produced by using powders with 
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irregularly shaped particles. Therefore, the fact that a higher relative density is 

obtained when compacting HDH Ti-6Al-4V alloy powder, means that particle 

shape plays a more important role in controlling the density of a green powder 

compact than the oxygen content, at a high compacting temperature of 500 or 550 
oC. 

3.4.3 The effect of Particle Shape on Induction Sintering in Ti-6Al-4V 

Powder  

The densification rate dVS/dt of a powder compact can be described as [9]: 

dVS
dt

= (1 − VS)Bg γSV
x

                   (3.4) 

where VS represents the fraction of solid, B is a collection of parameters which 

includes diffusivity, temperature, particle size, g is a geometric term, γSV is 

solid-vapor surface energy, x is the scale of the microstructure. In Equation 3.4, 

the densification rate of a powder compact is proportional to the solid-vapour 

surface energy. Compared with spherical GA Ti-6Al-4V powder, the densification 

rate of an HDH Ti-6Al-4V powder compact was higher because of its irregularly 

shaped powder particles and larger surface energy due to a rougher surface. As a 

result, the relative density of an HDH Ti-6Al-4V powder compact increased more 

rapidly than that for a GA Ti-6Al-4V powder compact during induction heating. 

The large surface energy of raw powder enhances the powder sintering. From a 

comparison of the results from tensile testing, both as-sintered HDH and GA 

Ti-6Al-4V powder compacts had a small elongation to fracture, but the stress to 

fracture for an as-sintered HDH Ti-6Al-4V powder compact was higher than that 

for an as-sintered GA Ti-6Al-4V powder compact. This was found even though 

the relative density of an as-sintered GA Ti-6Al-4V powder compact was much 

higher than that for an as-sintered HDH Ti-6Al-4V powder compact. 
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3.4.4 The effect on Induction Sintering of the Relative Density of Ti and 

Ti-6Al-4V Powder Compacts.  

As described in Equation 3.4, the densification rate of a powder compact is 

proportional to the fraction of porosity (1-VS), so a green powder compact with a 

lower porosity had a lower densification rate after sintering, which is consistent 

with the experimental results in this study. The relative density of an HDH Ti 

powder compact increased less than that for HDH and GA Ti-6Al-4V powder 

compacts during induction sintering. Also green powder compacts with a higher 

relative density, consolidate much better after induction sintering, and a large area 

of neck forms between two adjacent contact particles. This makes the particles 

bond more strongly after induction sintering and this is the reason why as-sintered 

an HDH Ti powder compact had a higher UTS and elongation to fracture than 

as-sintered HDH and GA Ti-6Al-4V powder compacts. 

3.5 Summary 

In this chapter, three types of raw powders, HDH Ti, HDH Ti-6Al-4V and GA 

Ti-6Al-4V powders, were used to make powder compacts by warm compaction.  

 

 The relative density of HDH Ti powder compacts increased more 

significantly with increasing compaction temperature than Ti-6Al-4V powder 

compacts within a compacting temperature range from room temperature to 

550 oC. 

 

 Interlocking and cold welding mechanisms are both significant for HDH Ti 

and HDH Ti-6Al-4V powder compaction, while warm welding is the main 

mechanism for the compaction of GA Ti-6Al-4V powder.  

 

 After induction sintering, the as-sintered HDH and GA Ti-6Al-4V powder 

compacts were brittle with very little elongation to fracture, while HDH Ti 
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powder compacts had an average elongation to fracture of 7.5%, UTS of 

575.4 MPa and yield strength of 470 MPa.  

 

 The mechanisms for the induction sintering of powder compacts investigated 

in this study were explained by the electrical resistance distribution in two 

adjacent particles in contact and with a spherical shape. Necking forms and 

grows faster during induction heating than found in other methods of heating 

which do not involve the passing of an electric current through powder 

particles and the contacts between them. 
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Chapter 4: Powder Compact Forging of Ti and Ti-6Al-4V 

Powders 

4.1 Introduction 

In the previous chapter, powder compaction and induction sintering of Ti and 

Ti-6Al-4V powder compacts were studied. In this chapter, the microstructure and 

mechanical properties of as-forged rocker arms produced by powder compact 

forging of HDH and GA Ti and Ti-6Al-4V powders were studied. During 

induction sintering of a powder compact as a pre-sintering step before forging, 

necking between adjacent powder particles occurred. However, if sintered parts 

with nearly full density are desired, a longer sintering time will be needed. 

Forging of a pre-sintered compact can be used to accelerate any remaining powder 

consolidation. This is achieved by severe plastic deformation, which rapidly 

makes a consolidated part with full density, compared with conventional sintering 

methods. 

 

In this chapter, the factors which influence the microstructure, porosity 

distribution and mechanical properties of as-forged parts produced by a powder 

compact forging process are investigated. After powder compact forging, 

quantitative chemical analyses of the as-forged parts were conducted to determine 

the oxygen, nitrogen and hydrogen pick-up during forging. The fracture behaviour 

of as-forged parts during tensile testing were analyzed by examining both the 

fracture surfaces and the longitudinal surfaces of the fractured specimens cut from 

the as-forged parts. The powder consolidation mechanism in powder compact 

forging is discussed.  

4.2 Microstructure of As-forged Parts 

As-forged HDH Ti, HDH and GA Ti-6Al-4V rocker arms are shown in Figure 4.1. 

From the figure, the surface quality of an as-forged HDH Ti rocker arm is better 
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than that of as-forged HDH and GA Ti-6Al-4V rocker arms, as reflected by fewer 

cold-shuts and cracks on the surface of the HDH Ti rocker arm. Due to a lower 

relative density in HDH and GA Ti-6Al-4V green powder compacts compared 

with an HDH Ti powder compact, there are more pores and weaker particle 

bonding after induction sintering. This makes the HDH and GA Ti-6Al-4V 

powder compacts more easily fractured during forging. The lower flow stress of 

Ti powder particles compared with Ti-6Al-4V powder particles at the forging 

temperature is another reason why an HDH Ti powder compact has better 

flowability than HDH and GA Ti-6Al-4V powder compacts during forging. 

 

 

(a) HDH Ti 

 

(b) HDH Ti-6Al-4V 
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Figure 4.1: Images of as-forged rocker arms showing their top and bottom 
surfaces. 
 

As forging is one kind of non-homogeneous plastic deformation process, 

streamlines were observed in as-forged HDH Ti, HDH and GA Ti-6Al-4V parts 

when cross-sections along the forging direction were examined by optical 

microscopy at low magnification, in Figure 4.2. Large localized deformed regions 

were concentrated in the center of the as-forged parts, while the powder particles 

were either not deformed or deformed little near the surface of the part resulting in 

the formation of streamlines. The streamlines in the cross sections of as-forged 

HDH Ti and HDH Ti-6Al-4V parts were clearer than those in the cross section of 

a GA Ti-6Al-4V part, as shown in Figure 4.2. This is caused by better flowability 

during forging of spherical powder particles in a GA powder compact compared 

with HDH powder particles with irregular shapes. This leads to a lower stress 

concentration during forging. On the other hand, large localized deformation 

assists in the consolidation of the powder and a reduction in the grain size. This 

will be further discussed in more detail in the latter part of this chapter.  

 

(c) GA Ti-6Al-4V 
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Figure 4.2: Low magnification images of as-forged parts: (a) HDH Ti; (b) GA 
Ti-6Al-4V; (c) HDH Ti-6Al-4V. 

 

The microstructure of as-forged HDH Ti, HDH Ti-6Al-4V and GA Ti-6Al-4V 

parts was examined by optical microscopy, as shown in Figure 4.3. Unlike the 

equiaxed structure of the α phase in an as-sintered Ti powder compact, the 

as-forged HDH Ti part had a lamellar structure with α lamellae randomly 

orientated near the surface of the part, and being mainly along the streamline in 

the center of the part, where the amount of deformation was large. The SEM 

micrograph in Figure 4.4(a) shows equiaxed grains, with clear grain boundaries 

and a size of around 2 μm, between α lamellae. There were no obvious large pores 

existing both near the surface and in the centre of the as-forged HDH Ti part. 
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Figure 4.3: Optical micrographs showing the microstructure of different regions of 
the as-forged parts. 
 

As shown in Figure 4.3(b), the spherical shape of the undeformed GA powder 
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particles can be seen clearly near the surface of the as-forged GA Ti-6Al-4V part, 

showing that there was little plastic deformation in this region. The microstructure 

in this region was the same as that for an as-sintered GA Ti-6Al-4V powder 

compact shown in Figure 3.5(b), which consists of α acicular in an α/β matrix. In 

the centre of the as-forged part, α acicular has been broken into shorter plates 

(Figure 4.3(b)) and the spherical powder particles were deformed into a polygonal 

shape. The interparticle boundaries can be seen in general, but not very clearly. 

There was no obvious porosity in the center, so the powder was fully consolidated. 

With increasing distance from the surface to the centre of the part, the powder 

particles were deformed by a larger amount and the grain sizes became smaller, 

with a smaller aspect ratio in the α acicular in the centre compared with  that of 

the α acicular near the surface of the part. As observed by SEM (Figure 4.4(b)), α 

acicular and fine transformed β lamellae between the α needles were visible, and 

the width of the α acicular was the same as that of the α acicular in the as-sintered 

part (Figure 3.5(b)) which was around 500 nm. 

 

The microstructure near the surface and in the center of an as-forged HDH 

Ti-6Al-4V part consisted of primary α lamellae in a coarse α/β matrix as shown in 

Figure 4.3(c). In this structure, the primary α lamellae are nucleated firstly on the 

β grain boundaries, and then secondly in the grain. Finally a coarse α/β matrix 

structure is formed in the prior β grains [1], so the microstructure evolution is the 

same as that for an as-sintered HDH Ti-6Al-4V powder compact. The 

microstructure near the surface of an as-forged part was porous. Due to 

non-homogeneous deformation, primary α lamellae in the microstructure in the 

centre of the part were thinner than those near the surface. The prior β grain size 

became smaller in the centre, due to fine grains produced by dynamic 

recrystallization caused by plastic deformation. In the meantime, there were no 

large pores in the center, showing that the powder particles in this region were 

fully consolidated. The difference in the microstructure of as-forged parts 
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produced using the two kinds of Ti-6Al-4V powders is caused by the difference in 

their particle shapes and composition, as discussed in Chapter 3.  

 

 
Figure 4.4:  SEM micrographs showing the microstructure of the centre region of 
as-forged parts. 
 

The microstructure in the centre of an as-forged HDH Ti part was examined in 

detail by TEM. Equiaxed α grains with sizes of around 2 μm and fine α lamellae 

with a thickness in the range of 100-300 nm were observed by TEM. The reason 

for formation of fine α lamellae can be explained by the deformation behavior of 

the hcp crystal structure during forging. As twinning is the main deformation 

mechanism of α grains, twin boundaries are formed in the α grains during plastic 

deformation in the forging process. Finally the twins evolve into fine α lamellae. 
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Figure 4.5: TEM bright field images and SADPs of the microstructure of an 
as-forged HDH Ti part. 
 

As shown in Figure 4.6, α acicular containing a high density of dislocations and 

fine β laths between the α acicular were in the microstructure of an as-forged GA 

Ti-6Al-4V part. The width of the α acicular was in the range of 100-300 nm, and 

the width of the β laths was about 15 nm. 
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(a) α acicular 

 

 

Figure 4.6: TEM bright field images and SADP showing the microstructure of an 
as-forged GA Ti-6Al-4V part. 
 

The microstructure of an as-forged HDH Ti-6Al-4V part, as observed by TEM is 

shown in Figure 4.7. Compared with the microstructure of an as-forged GA 

Ti-6Al-4V part shown in Figure 4.6, the α lamellar boundaries were not quite as 

straight, and the width of the α lamellae was larger, being in the range of 100-600 

nm. Based on the shape and sizes of the α lamellae shown in Figure 4.7(a), it was 

determined that they were α lamellae in a coarse α/β matrix with a lamellar 

structure. As shown in Figure 4.7(b), coarse α grains with sizes greater than 1 μm 

and separated from the primary α lamellae were observed. It is likely that they 

500nm 

200nm 200nm 

(1010) 

(0110) 

(1100) 

(b) α acicular with fine β lath 
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were induced by the large amount of localized deformation in the forging process. 

Coarse α grains were observed in the microstructure as shown in Figure 4.7(c). 

 

 

(a) α/β matrix with a lamellar structure and the corresponding SADP 

 

(b) Coarse equiaxed α grains formed between primary α lamellae 
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1μm 500nm 
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Figure 4.7: TEM bright field images and SADPs showing the microstructure of 
as-forged HDH Ti-6Al-4V part. 
 

4.3 Porosity Distribution in As-forged Parts 

The formation of streamlines, as shown in Figure 4.2, suggests that the plastic 

deformation in the powder compact caused by forging was not uniform, with the 

material in the centre of the part experiencing a larger amount of deformation than 

that near the surface. As the degree of powder consolidation depends on the 

amount of plastic deformation, there are more pores near the surface of the part 

due to less plastic deformation, while in the centre of the part, the powder is 

completely consolidated due to the larger amount of localized plastic deformation. 

Therefore, with increasing distance from the surface to the centre of the part, the 

porosity is reduced. To get a part with good quality and necessitating low material 

removal after forging, the thickness of the surface layer with porosity greater than 

an accepted level needs to be as small as possible. Qualitative measurement of the 

porosity distribution on a cross section of each as-forged part, along directions 

perpendicular to and along the forging direction (P-FD and FD) respectively, was 

conducted for each as-forged part by analyzing optical microscopy images. The 

results are shown in Figure 4.8. 
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(c) An isolated coarse α grain and corresponding SADP 
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(a) As-forged HDH Ti part 
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(b) As-forged GA Ti-6Al-4V part 
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Figure 4.8: Porosity distribution of as-forged parts perpendicular to and along the 
forging direction on a cross section from the surface. (P and FD are the 
abbreviations for perpendicular and forging direction in the figures) 
 

(c) As-forged HDH Ti-6Al-4V part 
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As shown in Figure 4.8, along a direction perpendicular to the forging direction 

the porosity distribution in as-forged GA and HDH Ti-6Al-4V parts are similar, 

both showing that the porosity decreased to zero with increasing distance from the 

surface to the centre of the part. For the as-forged HDH Ti part, with increasing 

distance from the surface of the part from 0 to 0.24 mm, its porosity decreased 

from 4% to 0.028%, so the material became fully consolidated beyond this 

distance. For an as-forged GA Ti-6Al-4V part, beyond a distance of 1.2 mm from 

the surface, there were no obvious pores, and the relative density reached 99.9%, 

as shown in Figure 4.8(b). In contrast, the relative density of the part was 87.2% 

in the surface region. As shown in Figure 4.8(c), the porosity distribution in an 

as-forged HDH Ti-6Al-4V part along a direction perpendicular to the forging 

direction was similar to that for an as-forged GA Ti-6Al-4V part, and the distance 

from the surface of the part beyond which the powder was completely 

consolidated, with relative density of 99.9%, was 1.85 mm. Generally speaking, 

the porosity distribution along a direction perpendicular to the forging direction in 

as-forged parts shows that the relative density of the as-forged parts increased 

rapidly with distance from the surface, and reached almost 100% at a certain 

distance. This distance is the shortest for the as-forged HDH Ti part among the 

three parts. 

 

Due to the chilling effect of the forging die, caused by the large temperature 

difference between the forging die and hot powder compact, there was a porosity 

distribution along the forging direction on the cross-section of the as-forged part. 

As shown in Figure 4.8(a), the porosity gradually decreased from 0.45% to zero 

with increasing distance from the surface of the as-forged HDH Ti part to 0.75 

mm. For the as-forged GA and HDH Ti-6Al-4V parts, the porosity distribution 

along the forging direction followed the same trend, as shown in Figures 4.8(b) 

and (c). However, the distance from the surface of the part beyond which the 

as-forged part became fully dense was much larger, being 2.8 mm and 2.2 mm for 
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as-forged GA and HDH Ti-6Al-4V parts, respectively. This shows that an 

as-forged HDH Ti part has the thinnest surface layer with pores, and the as-forged 

GA and HDH Ti-6Al-4V parts have porous surface layers with similar thickness. 

The pores were much larger in the as-forged GA Ti-6Al-4V part than the as-forged 

HDH Ti-6Al-4V part. 

 

Comparing the porosity distribution along a direction perpendicular to the forging 

direction with that along the forging direction as shown in Figure 4.8, it can be 

concluded that in a direction perpendicular to the forging direction the distance 

from the surface of the porosity distribution is much larger than that along the 

forging direction. This can be explained by the mechanism for formation of pores 

during the forging process. Pores near a surface at the side of a part are caused by 

the non-homogeneous plastic deformation of the powder compact as a result of 

the upset forging. Because a surface at the side is a free surface, there is less 

plastic deformation than in the center of the part. Pores near the top and bottom 

surfaces of the part are caused by the chilling effect of the forging die halves. 

When the hot powder compact touches the cold surface of the forging die halves 

during forging, fast heat transfer from the powder compact to the forging die 

occurs, and makes the top and bottom surface layers of the part cool down more 

rapidly than the centre. When the temperature of the top and bottom surface layers 

decreases to a sufficiently low level, the flow stress of the material becomes large 

enough to prevent further material flow and continue the powder consolidation. 

This leads to the formation of residual pores in the top and bottom surface layers 

of the part. The distance of the porosity distribution in an as-forged HDH Ti part, 

along both the direction perpendicular to the forging direction and the forging 

direction, is shorter than that in as-forged GA and HDH Ti-6Al-4V parts, as 

shown in Figure 4.8. This can be attributed to the high relative density of the 

green powder compact made from HDH Ti powder and the relatively lower flow 

stress of CP Ti at elevated temperatures. The density of a green powder compact 
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and the high temperature mechanical properties of metals are two of the most 

important factors which control the quality of as-forged parts produced by powder 

compact forging. 

4.4 Mechanical Properties of As-forged Parts 

Specimens for tensile testing were cut from as-forged parts at an interval of 2 mm 

in thickness along a direction perpendicular to the forging direction, as shown in 

Figure 2.13. The first specimens from as-forged HDH Ti, HDH and GA 

Ti-6Al-4V parts were cut at a distance 2 mm, 3 mm and 3 mm away from the 

surface of the part, respectively. As shown by the tensile stress-strain curves in 

Figure 4.9, with increasing distance from the surface of the parts, the tensile 

strength and ductility of the specimens improved gradually. The yield strength 

(YS), ultimate tensile strength (UTS) and elongation to fracture are summarized in 

Tables 4.1-4.3 and plotted in Figure 4.10. For the as-forged HDH Ti part, with 

increasing distance from the surface, the elongation to fracture of the specimen 

increased from 9% to 14.3%, and its UTS and yield strength increased from 767.4 

MPa to 800.4 MPa and from 631.3 MPa to 663.2 MPa, respectively. For the 

as-forged GA Ti-6Al-4V part, with increasing distance from the surface, the 

elongation to fracture of the specimen increased from 1.7% to 10.9%, and its UTS 

and yield strength improved from 845.1 MPa to 1054.4 MPa and from 737.8 MPa 

to 948.4 MPa, respectively. The mechanical properties of an as-forged HDH 

Ti-6Al-4V part showed a similar improvement with increasing distance from the 

surface: the elongation to fracture increased from 0.7% to 7.9%; the UTS 

increased from 1217.2 MPa to 1302.9 MPa; and the yield strength increased from 

1160.9 MPa to 1180.5 MPa. 
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Figure 4.9: Tensile stress-strain curves for specimens cut from the as-forged HDH 
Ti, GA Ti-6Al-4V and HDH Ti-6Al-4V parts in the order of sample numbers with 
increasing distance from the part surface. (AF = as-forged) 
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Figure 4.10: The distribution of mechanical properties with distance from the 
surface of as-forged parts: (a) HDH Ti; (b) GA Ti-6Al-4V; (c) HDH Ti-6Al-4V. 

 

(c) 

(a) 

(b) 
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Table 4.1: Summary of mechanical properties of specimens cut from an as-forged 
HDH Ti part. 

Sample YS(MPa) UTS(MPa) Ductility 
1 631.3  767.4  9%  
2 638.7  775.9  9.6%  
3 653.1  794.8  12%  
4 663.2  800.4  14.3%  
5 666.8  793.6  9.7%  

 
Table 4.2: Summary of mechanical properties of specimens cut from an as-forged 
GA Ti-6Al-4V part. 

Sample  YS(MPa)  UTS(MPa)  Ductility 
1 737.8  845.1  1.7%  
2 901.8  1008.6  3.1%  
3 960.8  1070.4  7.2%  
4 956.8  1065.5  9.9%  
5 948.4  1054.4  10.9%  

 
Table 4.3: Summary of mechanical properties of specimens cut from an as-forged 
HDH Ti-6Al-4V part. 

Sample  YS(MPa)  UTS(MPa)  Ductility 
1 1160.9  1217.2  0.7%  
2 1296.0  1372.0  2.4%  
3 1180.5  1302.9  7.9%  
4 1156.5  1294.6  6.8%  
5 1144.9  1277.8  4%  

 

The changes in mechanical properties with distance from the surface to the centre 

of as-forged HDH Ti, GA Ti-6Al-4V and HDH Ti-6Al-4V parts are in line with 

their porosity distributions along the same direction. The mechanical properties of 

the material improve with decreasing porosity. From the mechanical properties 

and porosity distributions for the as-forged HDH and GA Ti-6Al-4V parts along 

the forging direction, pores have a significant effect on both elongation to fracture 

and tensile strength, and the effect of a reduction in porosity on elongation to 

fracture is more dramatic than that on the tensile strength. The difference between 

the maximum values of elongation to fracture, yield strength and UTS of the 

as-forged HDH and GA Ti-6Al-4V parts is mainly due to their difference in 
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oxygen content. The oxygen content of HDH Ti-6Al-4V powder is 0.5%, while 

that of GA Ti-6Al-4V powder is 0.13%. Also, as shown in Table 4.4, during the 

powder compact forging process, an as-forged HDH Ti part picked up 0.06% 

oxygen, while as-forged GA and HDH Ti-6Al-4V parts only picked up 0.01% and 

0.02% of oxygen, due to the formation of a denser Al2O3 oxide film, respectively. 

This shows that the oxygen pick-up was controlled to a low level by a flowing 

argon protective atmosphere during the forging process. Also, the oxygen content 

of the raw powders plays a much more important role on the mechanical 

properties of as-forged parts. 

 
Table 4.4: Nitrogen and oxygen contents of the as-forged parts. 

As-forged part Nitrogen (%) Oxygen (%) 
HDH Ti 0.026 0.41 

HDH Ti-6Al-4V 0.035 0.52 
GA Ti-6Al-4V 0.03 0.14 

 

4.5 Cold-shuts in As-forged Parts 

As shown in Figure 4.1, there were several deeper cracks on the surfaces of the 

as-forged HDH Ti, HDH and GA Ti-6Al-4V parts, which were caused by 

cold-shuts. In metal casting, a cold-shut is defined as a surface defect in a casting 

caused by two merging liquid streams failing to coalesce during casting. Here the 

same term can be used to describe the same surface defect caused by two streams 

of solid material failing to coalesce. The depth of the cracks is dependent on the 

temperature difference between the hot powder compact and the cold forging die. 

Furthermore the porosity distribution in as-forged parts, along the forging 

direction as shown in Figure 4.8, can be improved by reducing the cold-shut effect. 

To study the cold-shut effect, the effect of forging die temperature on the surface 

quality of as-forged HDH Ti and Ti-6Al-4V parts was investigated. As shown in 

Figure 4.11, with increasing die temperature from room temperature to 300, 400 

and 500 oC, respectively, the cracks on the surface of the as-forged HDH Ti parts 
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caused by the cold-shut effect became narrower and finally disappeared at a die 

temperature of 500 oC. For as-forged HDH Ti-6Al-4V parts, the cracks caused by 

the cold-shut effect became narrower with increasing die temperature, as shown in 

Figure 4.12. However, additional cracks formed on the surfaces of the part due to 

a larger amount of deformation. When the hot powder compact was in contact 

with the cold forging die, the surface layers of the powder compact cooled down 

rapidly, and the cracks formed in these layers and were extended by further 

deformation driven by the forging pressure. Compared with the as-forged HDH Ti 

part, the as-forged HDH Ti-6Al-4V part is less ductile, so it is easy to form cracks 

under the same deformation condition. With an increase in die temperature, the 

number of both kinds of cracks was reduced. With a die temperature of 500 oC, 

which is close to the limit of the die working temperature, the surface quality of 

the as-forged HDH Ti-6Al-4V part was improved significantly.  

 

Figure 4.11: Surface quality improvement of as-forged HDH Ti rocker arms by an 

increase in die temperature. 
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Figure 4.12: Surface quality improvement in as-forged HDH Ti-6Al-4V rocker 

arms by an increase in die temperature. 

 

4.6 Improvement in the Mechanical Properties of an As-forged Ti 

Part 

As shown in Table 4.1, the best mechanical properties for specimens cut from an 

as-forged HDH Ti part are 14.3% for elongation to fracture, 800.4 MPa for UTS 

and 663.2 MPa for yield strength, so the ductility of the titanium in the as-forged 

HDH part is far lower than that obtained from ingot metallurgy Ti (30%-40%). 

Two factors are considered to be the reasons for the worse ductility of the powder 

metallurgy titanium: the high content of interstitial elements, especially oxygen, 

and the degree of powder consolidation. Here GA Ti powder with a much lower 

oxygen content (0.11wt% in GA Ti, compared with 0.35wt% in HDH Ti powder) 

was used to improve the mechanical properties of as-forged Ti parts. The powder 

was compacted at a temperature of 450 oC and pressure of 726 MPa, as shown in 

Table 2.4, and then forged using the same conditions as those used for forging 
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HDH Ti powder compacts. To improve the level of powder consolidation, the 

holding time at the forging temperature was also increased. 

  

The GA Ti powder compact was forged at 1350 oC with a die temperature of 500 
oC. Images of the as-forged GA Ti part are shown in Figure 4.13. The number of 

cold-shuts was reduced by increasing the die temperature to 500 oC. 

 

 
Figure 4.13: Images of both the top and bottom surfaces of an as-forged rocker 
arm produced by powder compact forging of GA Ti powder. 

 

The stress-strain curves for the tensile test specimens cut from the as-forged GA 

Ti part along a direction perpendicular to the forging direction are shown in 

Figure 4.14. From the curves, the tensile strength of the specimens cut from the 

as-forged GA Ti part is much lower than that of the specimens cut from the 

as-forged HDH Ti part, whereas their ductility is clearly higher in general. The 

mechanical properties of the specimens are plotted as a function of the specimen 

number, which corresponds to the distance of the specimens from the surface of 

the as-forged GA Ti part (Figure 4.15), and are summarized in Table 4.5. As 

shown by the graphs and table, the maximum UTS and yield strength are 589.7 

MPa and 499.6 MPa, respectively. The specimens cut from the centre of the 

as-forged part have an elongation to fracture of over 14%, with the maximum 

elongation to fracture reaching 27.3%. Compared with the mechanical properties 

of an as-forged HDH Ti part, the as-forged GA Ti part sacrifices a certain amount 

of tensile strength, but gains from having much better ductility, which can be 

attributed to the much lower oxygen content of the raw powder. 
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Figure 4.14: Stress-strain curves of tensile specimens cut from the as-forged GA 
Ti part. 
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Figure 4.15: Mechanical properties of tensile test specimens cut from the 
as-forged GA Ti part as a function of the specimen number. 

 
Table 4.5: A summary of the mechanical properties of tensile test specimens cut 
from an as-forged GA Ti part. 

Sample YS(MPa) UTS(MPa) Elongation to fracture(%) 
1 431.5 538.0 17.4 
2 436.6 554.0 27.3 
3 441.2 554.6 22.7 
4 462.7 561.5 15.1 
5 494.0 584.5 14.0 
6 499.6 589.7 19.6 
7 487.2 578.2 21.6 
8 462.4 559.0 18.4 
9 439.8 549.5 19.4 

Average 461.7 563.2 19.5 
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As mentioned in Chapter 3, necking between particles occurred rapidly during 

induction heating of the powder compact. To improve the level of powder 

consolidation by powder compact forging, the HDH Ti powder compact was held 

at the forging temperature of 1350 oC for 5 minutes to get a denser powder 

compact. The die temperature was set at room temperature. The stress-strain 

curves for tensile test specimens cut from the as-forged part are shown in Figure 

4.16. The tensile strengths are the same as those for the specimens cut from the 

as-forged HDH Ti part made without a holding time at the forging temperature, 

but the ductility has been improved a lot, and there are no pores evident in the 

microstructure shown in Figure 4.17. The mechanical properties of the specimens 

are plotted as a function of the specimen number, which corresponds with the 

distance from the surface of the part, as shown in Figure 4.18 and summarized in 

Table 4.6. The elongation to fracture of all specimens is over 16.3%, with the best 

value reaching 27.1%. This shows that the ductility of the as-forged HDH Ti part, 

made with a holding time of 5 minutes at the forging temperature, is much higher 

than that of an as-forged HDH Ti part made without a holding time. The ductility 

of an as-forged HDH Ti part, made with a holding time of 5 minutes at the forging 

temperature, is also comparable with that of the as-forged GA Ti part made 

without a holding time. However, its tensile strength is much higher than that of 

the as-forged GA Ti part, so an improvement in mechanical properties of an 

as-forged HDH Ti part can be achieved by increasing the holding time at the 

forging temperature to 5 minutes. 
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Figure 4.16: Stress-strain curves of tensile test specimens cut from the as-forged 
HDH Ti part made with a holding time of 5 minutes at the forging temperature. 

 

 
Figure 4.17: Microstructure an as-forged HDH Ti part made with a holding time 
of 5 minutes at the forging temperature. 
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Figure 4.18: Mechanical properties of specimens cut from the as-forged HDH Ti 
part made using a holding time of 5 minutes at the forging temperature as a 
function of specimen number. 

 
Table 4.6: Summary of the mechanical properties of tensile test specimens cut 
from the as-forged HDH Ti part made with a holding time of 5 minutes. 

Sample YS(MPa) UTS(MPa) Elongation to fracture(%) 
1 597.1 770.1 16.3 
2 629.4 788.8 21.0 
3 636.6 786.7 19.1 
4 648.9 800.8 23.4 
5 651.9 794.4 25.3 
6 658.0 800.9 22.8 
7 646.3 783.7 24.4 
8 632.1 787.7 27.1 

Average 637.5 789.1 22.4 

 

4.7 Fracture Behavior of As-forged Ti and Ti-6Al-4V Parts 

4.7.1 Fracture Behavior of an As-forged HDH Ti Part 

The fracture surfaces of selected tensile test specimens cut from the as-forged 

HDH Ti part were characterized by SEM, as shown in Figure 4.19(a). At low 

magnification, the fractograph of an AF HDH Ti-1 specimen with the ductility of 

9%, which is near the surface of the part, showed features resembling the irregular 
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shape of HDH powder particles. While at high magnification, the powder particle 

boundaries cannot be seen, only a dimple pattern is shown in the figure. Also on 

the longitudinal cross section in Figure 4.19(b), there are no observable pores in 

both the area near the fracture surface and the non-deformed area. This means that 

powder bonding is strong enough to resist the stress up to the point of fracturing 

the solid material of the specimen, i.e. the specimen is consolidated very well, 

otherwise the material would have fractured prematurely, without any ductility, 

before plastic yielding. According to the morphology of the fracture surface and 

longitudinal cross section, the fracture behavior of an AF HDH Ti-1 specimen 

near the surface of the part is by inter-particle fracturing, and the fracturing of the 

specimen occurred at the grain boundaries formed from the interparticle 

boundaries of the powder compacts. This might be the reason for features of the 

fracture surfaces, at low magnification, resembling the shape of HDH powder 

particles as shown in Figure 4.19(a). The dimple features were formed by powder 

particle separation. 

 



Chapter 4: Powder Compact Forging of Ti and Ti-6Al-4V Powders 

118 
 

 

 

 
Figure 4.19: Fracture surface and corresponding longitudinal cross section of AF 
HDH Ti-1 specimen. 
 

 



Chapter 4: Powder Compact Forging of Ti and Ti-6Al-4V Powders 

119 
 

In contrast, the fracture surface of an AF HDH Ti-4 specimen which was cut from 

the center of the part and had an elongation to fracture of 14.3%, the highest 

among all the tensile test specimens cut from this part, did not show 

distinguishable powder particle shapes at low magnification (Figure 4.20(a)) and 

showed a large number of dimples at a higher magnification. In contrast to the 

dimples on the fracture surface of the AF HDH Ti-1 specimen, shown in Figure 

4.20(b), the dimples in Figure 4.20(a) were oriented in one direction, as shown by 

the arrow in the figure, which is the orientation of the α lamellae shown in Figure 

4.3(a). The sizes of the dimples were about 5 μm in width which matched the 

thickness of α lamellae very well. This suggests that the specimen fractured by 

delamination and transgranular fracture of α lamellae. The longitudinal cross 

section of the specimen, as shown in Figure 4.20(b), did not show any cavities in 

either the area near the fracture surface or the non-deformation area. This shows 

that the grain boundaries, formed by transformation of the interparticle boundaries, 

were strong enough to resist the high stress which eventually caused fracture 

through the body of the powder particles. This suggests that the powder in this 

specimen was better consolidated than that in the AF HDH Ti-1 specimen. The 

better powder consolidation state is the reason for an AF HDH Ti-4 specimen 

having a better ductility than an AF HDH Ti-1 specimen. 
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Figure 4.20: Fracture surface and corresponding longitudinal cross section of an 
AF HDH Ti-4 specimen. 
 

4.7.2 Fracture Behavior of an As-forged HDH Ti-6Al-4V Part 

Similarly to the fracture surface of an AF HDH Ti-1 specimen, shown in Figure 

4.19(a), the fracture surface of an AF HDH Ti-6Al-4V-1 specimen taken from a 

position near the surface of the part, had features that resembled the irregular 

shapes of HDH powder particles, and did not have clear dimples, as shown in 

Figure 4.21(a). On the longitudinal cross section of this specimen, as shown in 

Figure 4.21(b), there were no pores or cavities in either the area near the fracture 

surface or the non-deformation area, so the powder compact in the specimen was 

well consolidated to full density. The fracture of the specimen occurred through 

intergranular fracturing. The AF HDH Ti-6Al-4V-1 specimen had an elongation 

to fracture of 0.7% which is much lower than that AF of an HDH Ti-1 specimen, 
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even though the degree of powder consolidation of the two specimens was the 

same. This might be due to the fact that the Ti-6Al-4V part has a lower elongation 

than a Ti part with the same oxygen content [2].  
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Figure 4.21: Fracture surface and corresponding longitudinal cross section of an 
AF HDH Ti-6Al-4V-1 specimen. 
 

As shown in Figure 4.22, the fracture surface of the AF HDH Ti-6Al-4V-3 

specimen, which had an elongation to fracture of 7.9% and was cut from the 

centre of the part, had a large number of fine dimples at the lath boundaries due to 

fracturing of the β phase. These are typical features of the fracture surface of a 

Ti-6Al-4V alloy with fine primary α grains in a coarse α/β matrix microstructure. 

On the longitudinal cross section of this specimen, there were no cavities in both 

the area near the fracture surface and in the non-deformed area, so the powder 

compact in the position of the specimen was very well consolidated with full 

density. The fracture mode of the specimen was transgranular, in line with its 

microstructure consisting of an α/β lath structure. Compared with an intergranular 

fracture without the formation of cavities in the AF HDH Ti-6Al-4V-1 specimen, 

the transgranular fracture with the formation of cavities at the lath boundaries in 
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the AF HDH Ti-6Al-4V-3 specimen renders better ductility. 
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Figure 4.22: Fracture surface and corresponding longitudinal cross section of the 
AF HDH Ti-6Al-4V-3 specimen. 
 

4.7.3 Fracture Behavior of an As-forged GA Ti Part 

Specimens cut from an as-forged GA Ti part, with low oxygen content, had better 

ductility than the specimens cut from the as-forged HDH Ti part, with a high 

oxygen content, no matter whether they were cut from near the surface or in the 

center of the part. The minimum elongation to fracture of as-forged GA Ti 

specimens was 14%, suggesting that the GA Ti powder compacts were 

consolidated very well by powder compact forging. Particle bonding surfaces, as 

shown in Figure 4.23(a) were clearly observed on the fracture surface of the AF 

GA Ti-1 specimen, which was cut near to the surface of the part, but the 

longitudinal cross section of this specimen (Figure 4.23(b)) did not show any 

cavities. This means that the GA Ti powder compact in the AF GA Ti-1 specimen 
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was very well consolidated, with most of the interparticle boundaries having 

strong bonding and only in a few regions was the powder particle bonding weak, 

as circled in Figure 4.23(a). It appeared that the weak particle bonding in these 

regions did not affect the ductility of the specimen very much as evidenced by its 

elongation to fracture of 17.4%, and the fracture surface showed a large number of 

dimples, reflecting the ductile fracture behavior of the AF GA Ti-1 specimen. The 

fracture surface of the AF GA Ti-6 specimen, cut from the centre of the part, as 

shown in Figure 4.24, showed a large number of dimples of various sizes in the 

range of 2-20μm, reflecting the ductile fracture behaviour of the specimen. 

Particle bonding surfaces could not be observed on the fracture surface of the 

specimen, and no cavities were visible on a longitudinal cross section of the 

specimen in both the area near to the fracture surface and the non-deformed area. 

This suggests that the powder compact in the location of the specimen was very 

well consolidated with full density, and there were no regions where the particle 

bonding was weak. 
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Figure 4.23: Fracture surface and corresponding longitudinal cross section of AF 
GA Ti-1 specimen. 
 



Chapter 4: Powder Compact Forging of Ti and Ti-6Al-4V Powders 

128 
 

 



Chapter 4: Powder Compact Forging of Ti and Ti-6Al-4V Powders 

129 
 

 

Figure 4.24: Fracture surface and corresponding longitudinal cross section of the 
AF GA Ti-6 specimen. 
 

4.7.4 Fracture Behavior of an As-forged GA Ti-6Al-4V Part 

The fracture surface of the AF GA Ti-6Al-4V-3 specimen, which had an 

elongation to fracture of 7.2% and was cut near to the surface of the part, showed 

the shapes of the deformed spherical powder particles which were elongated along 

a direction perpendicular to the forging direction, as shown in Figure 4.25(a). 

Particle bonding surfaces were also clearly seen on the fracture surface when 

these were examined in the SEM at a high magnification (Figure 4.25(a)). The 

fracture surface had a large number of dimples, reflecting the ductile fracture 

behaviour of the specimen. On a longitudinal cross section of the specimen, there 

were a few cavities in the area near the fracture surface, as shown in Figure 

4.25(b). It appeared that these cavities were formed by powder particle debonding, 

because there were no such cavities in the non-deformed area. This suggests that 

the particle bonding strength in some regions cannot resist the tensile stress up to 

the yield strength of the specimen during tensile testing, and the bonded particles 

separate under the tensile stress, causing the formation of cavities, which finally 

led to the fracturing of the specimen and a low elongation to fracture. Overall, it 

appears that the powder compact in the AF GA Ti-6Al-4V-3 specimen was fairly 

well consolidated to nearly full density, despite a few regions where the particle 
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bonding was weak. 
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Figure 4.25: Fracture surface and corresponding longitudinal cross section of the 
AF GA Ti-6Al-4V-3 specimen. 

 

The fracture surface of the GA Ti-6Al-4V-5 specimen, which had an elongation to 

fracture of 10.9% and was cut from a location near the centre of the part, showed 

a large number of fine dimples with sizes in the range of 1-10 μm, as shown in 

Figure 4.26(a), reflecting the ductile fracture behaviour of the specimen. There 

were no features in the fracture surface which resembled the powder particle 

shapes, so the powder compact in the location of the specimen was consolidated 

very well with full density. This was further proved by the fact that there were no 

cavities in both the area near to the fracture surface and the non-deformed area in 

a longitudinal cross section of the specimen.  
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Figure 4.26: Fracture surface and corresponding longitudinal cross section of the 
AF GA Ti-6Al-4V-5 specimen. 
 

4.8 Discussion 

4.8.1 Improvement in the Mechanical Properties of Ti and Ti-6Al-4V Parts by 

Powder Compact Forging 

Compared with conventional powder hot consolidation techniques, the powder 

compact forging process without a separate sintering step used in this study is a 

rapid consolidation technique. The process is completed in less than 10 minutes, 

being faster than HIP [3-8], hot pressing [9-14] and powder forging with a powder 

compact sintering step [15-17], all of which require several hours to consolidate 

the powders and achieve full density.  

 

In the powder compact forging process, the main mechanism of densification is 

material flow by plastic deformation to remove the pores, so diffusion plays only 

a small role in densification during this process. As pointed out by German [20], 

powder particle shearing is essential to break up the particle surface films and 

obtain fresh surfaces which are needed to improve particle bonding. On the other 

hand, if the particle surface film is not broken, when the two adjacent particles are 

pressed together under pressure, the strength of particle bonding at the 
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interparticle boundaries is close to zero, meaning that real powder consolidation is 

not realized, despite achieving full density. Under tensile stress, disc-shaped pores 

are formed by this weak particle bonding, and the stresses are concentrated at the 

edges of the pore shape, which is preferable to premature fracturing of the 

material. So the extent of particle shearing controls the degree of powder 

consolidation and the strength of particle bonding. In this study, the streamlines in 

the as-forged HDH Ti, HDH and GA Ti-6Al-4V parts in Figure 4.2 were formed 

by shear bands during the powder forging process, and the shear band formation 

developed with increasing reduction, as shown in Figure 4.27 [18]. It was 

observed that the mechanical properties of as-forged HDH Ti, GA Ti-6Al-4V and 

HDH Ti-6Al-4V parts changed with distance from the surface to the centre of the 

part, where a large amount of shear band deformation is preferable for particle 

bonding, along a direction perpendicular to the forging direction. As a result, the 

ductility of the material improved with increasing distance from the surface to the 

centre of as-forged parts. This is the reason why, in as-forged HDH Ti parts, GA 

Ti-6Al-4V and HDH Ti-6Al-4V parts, the specimens cut from positions near the 

surface have a lower ductility than the specimens cut from the centre of the parts, 

even though there is no evidence of particle debonding or pores in these 

specimens. So shear deformation is important for powder consolidation by 

powder compact forging, and this work gives both experimental and theoretical 

explanations for the role of shear deformation in powder consolidation by powder 

compact forging. 
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Figure 4.27: Schematic diagram of shear band deformation in a cylinder under 
compression. 
 

Based on the porosity distributions in as-forged HDH Ti and GA and HDH 

Ti-6Al-4V parts, the powders were completely consolidated, except in the regions 

near their surfaces. The fracture surfaces of specimens, cut from the centre of 

as-forged HDH and GA Ti parts, GA and HDH Ti-6Al-4V parts, showed the same 

features as those found in the fracture surfaces of wrought Ti and Ti-6Al-4V alloy 

specimens with the same oxygen content and similar microstructure [19]. The 

mechanical properties of a fully consolidated HDH Ti part and GA and HDH 

Ti-6Al-4V parts made by powder compact forging were determined by averaging 

the mechanical properties of three specimens cut from the centre of the parts. 

They are listed in Table 4.7, together with the typical corresponding mechanical 

properties from ingot metallurgy Ti and Ti-6Al-4V. 
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Table 4.7: Mechanical properties of as-forged Ti and Ti-6Al-4V parts made by 
powder compact forging in this study and the typical corresponding mechanical 
properties of ingot metallurgy Ti and Ti-6Al-4V. 

Sample Oxygen 
content(%) 

YS(MPa) UTS(MPa) Elongation to 
fracture(%) 

As-forged HDH Ti 0.41 661.0 796.3 12 
As-forged HDH Ti with 
holding time of 5 mins 

0.42 637.5 789.1 22.4 

As-forged GA Ti 0.12 461.7 563.2 19.5 
Grade 1 Ti ingot [22] ≤0.18 240 170 24 
Grade 4 Ti ingot [22] ≤0.40 550 480 15 

As-forged HDH 
Ti-6Al-4V 

0.52 1160.6 1291.8 6.2 

As-forged GA 
Ti-6Al-4V 

0.14 955.3 1063.4 9.3 

Ti-6Al-4V ingot [22] 0.08-0.2 800-1100 900-1200 13-16 

 

The mechanical properties of as-forged Ti-6Al-4V parts are sensitive to oxygen 

content in a similar to the effect of oxygen on the mechanical properties of parts 

made by ingot metallurgy. An as-forged HDH Ti-6Al-4V part with an oxygen 

content of 0.52% had a tensile strength ~200 MPa higher than that in an as-forged 

HDH Ti-6Al-4V part with an oxygen content of 0.14%. 

 

From Table 4.7, it can be concluded that the as-forged GA Ti part, made in this 

study, had a higher tensile strength and similar ductility to a Grade 1 Ti ingot, 

while the as-forged HDH Ti part made in this study had a higher tensile strength 

and similar ductility to a Grade 4 Ti ingot. Furthermore a higher ductility in the 

as-forged HDH Ti part was achieved by holding the powder compact at the 

forging temperature for 5 minutes prior to forging. The mechanical properties of 

an as-forged HDH Ti-6Al-4V part cannot be directly compared with those made 

by ingot metallurgy Ti-6Al-4V, because the oxygen content of the part made by 

powder compact forging was 0.52%, which is much higher than of the 0.2% 

maximum in ingot metallurgy Ti-6Al-4V. However, this study shows that 

as-forged HDH Ti-6Al-4V parts have 6.2% elongation to fracture, a high tensile 
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strength of 1291.8 MPa, and are therefore ductile, strong and light materials 

desirable for many industrial applications. The mechanical properties of an 

as-forged GA Ti-6Al-4V part fall well into the range of mechanical properties of 

ingot metallurgy Ti-6Al-4V having a similar oxygen content [22]. The mechanical 

properties of as-forged Ti-6Al-4V parts are sensitive to oxygen content as shown 

by a mechanical property comparison between an as-forged GA Ti-6Al-4V part 

and an as-forged HDH Ti-6Al-4V part. This is similar to the effect of oxygen 

content on the mechanical properties of parts made by ingot metallurgy. So an 

as-forged HDH Ti-6Al-4V part with an oxygen content of 0.52% had a tensile 

strength of ~200 MPa higher than that for an as-forged HDH Ti-6Al-4V part with 

an oxygen content of 0.14%. In summary, powder compact forging was 

successfully used to produce a consolidated rocker arm for an internal combustion 

engine from HDH and GA Ti and HDH and GA Ti-6Al-4V powders. The parts 

have a higher tensile strength and slightly lower ductility than those made using 

the corresponding ingot metallurgy Ti and Ti-6Al-4V. The improvement in 

mechanical properties is attributed to the constraint in grain growth. In this study, 

even though the forging temperature is well above the β transus temperature, the 

time for the material to be at the temperatures above the β transus temperature is 

very short, being less than 10 minutes, and thus the grain growth in the 

consolidated parts was significantly restricted.  

4.8.2 Mechanisms of Powder Consolidation by Powder Compact Forging 

4.8.2.1 Enhanced Densification Mechanism in Powder Compact Forging 

Since the powder compact forging process is one kind of pressure-assisted 

sintering technique [23-25], the densification mechanism for pressure-assisted 

sintering can be used to explain the fast densification in the Ti and Ti-6Al-4V 

powder compact forging process. According to pressure enhanced densification 

theory, shown in Ref. [20], the densification rate of a powder compact under 

pressure can be described using the equation below: 
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dVS
dt

= (1 − VS)B(g γSV
x

+ PE − PP)               (4.1) 

where dVS/dt represents densification rate, VS is the fraction of solid, B is a 

collection of parameters which includes diffusivity, temperature, particle size, g is 

a geometric term, γSV is solid-vapor surface energy, x is the scale of the 

microstructure, PE is the effective pressure amplified from the applied stress, and 

PP is the gas pressure in the pores. 

 

In Equation 4.1, the effect of external pressure on the densification rate of a 

powder compact is expressed by the term (PE - PP). PE is a positive factor which 

enhances densification, while PP is a negative factor which resists densification. 

The gas pressure in the pores is due to the gas trapped in the pores during 

densification. With pore shrinkage, the gas pressure in the pores increases, and 

this is the reason why more time is required to remove the closed pores and the 

densification rate significantly decreases in the final stage of sintering. Even 

though external pressure can enhance densification, the gas pressure in the pores 

still significantly hinders the densification. This is the reason why during HIP, the 

can containing the powder must be evacuated before being sealed to remove the 

trapped gas [20].   

 

Compared with conventional powder forging, there was no sintering step before 

the powder compact forging procedure used in this study. This further enhances 

pore collapse in a powder compact as shown in Figure 4.28. A four spherical 

particle model, shown in the figure, is assumed to explain the evolution of pore 

shape and collapse during powder compact forging without an individual sintering 

step. Due to free material flow in the radial direction, the material will fill the 

gaps between the powder particles and pore collapse occurs directly to consolidate 

the powder compact to full density under a high external pressure. This is faster 

than spherical pore collapse in Ref. [20]. On the other hand, during powder 

compact forging, grain growth can be constrained [26]. The powder compact 
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forging used in this work is one kind of rapid densification process, where the 

pores collapse by plastic deformation without any entrapped gas forming during 

sintering. According to Equation 4.1, the densification rate is significantly 

enhanced by external pressure without the negative effect of gas pressure in the 

pores, so the powder compact is consolidated into full density instantly, which is 

different from powder consolidation by long time diffusion, such as in HIPing 

[3-8] and hot pressing [9-14]. So the experimental results for the microstructure 

and porosity distributions of an as-forged HDH Ti part and GA and HDH 

Ti-6Al-4V parts match the above assumption. There are no pores at the center of 

the parts, where large, localized plastic deformation occurred, as reflected by the 

streamlines shown in the low magnification optical microscopy images in Figure 

4.2. 

 

 

Figure 4.28: Pore evolution during powder the compact forging process. 
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4.8.2.2 The Effect of Powder Shape on Densification of Powder Compact 

Forging 

According to the porosity distribution in as-forged parts, the HDH Ti-6Al-4V part 

produced by powder compact forging was much denser than the GA Ti-6Al-4V 

part, and there were many more large pores near to the surface of the as-forged 

GA Ti-6Al-4V part than near the surface of the as-forged HDH Ti-6Al-4V part. 

The density of an HDH Ti-6Al-4V powder compact was lower than that of a GA 

Ti-6Al-4V powder compact. Both of these observations show that the powder 

particle shape significantly influences powder consolidation. The spherically 

shaped GA Ti-6Al-4V powder has better flowability and lower friction than the 

irregularly shaped HDH Ti-6Al-4V powder. The streamlines shown in the cross 

sections of an as-forged HDH Ti-6Al-4V part were clearer than those on the cross 

sections of a GA Ti-6Al-4V part, so the region of localized plastic deformation in 

the as-forged GA Ti-6Al-4V part is smaller than that in an HDH Ti-6Al-4V part. 

Under pressure powder particle flow weakens the effect of material flow on the 

collapsing pores, and reduces the shear stress in the powder particles. This leads to 

a decrease in the level powder consolidation. In the meantime, due to a lower 

friction coefficient between GA Ti-6Al-4V powder particles than between HDH 

Ti-6Al-4V powder particles, the shear stress in the particles near the surface, 

which controls particle surface film rupture is also reduced [20], leading to lower 

strength particle bonding. This is the reason why particle debonding was clearly 

shown in the fracture surface of the AF GA Ti-6Al-4V-3 specimen, which was cut 

near the surface of an as-forged GA Ti-6Al-4V part. In contrast, there was no 

occurrence of particle debonding in the specimens cut from a position near to the 

surface of as-forged HDH Ti and Ti-6Al-4V parts. 

4.9 Summary 

The work presented in this chapter illustrates that HDH Ti and HDH and GA 

Ti-6Al-4V powder compacts can be well consolidated by powder compact forging. 

This is indicated by the porosity distribution, mechanical properties and fracture 
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behaviour of tensile test specimens cut from various locations in the forged 

compacts.  

 

 The finer microstructure in specimens cut from the centre of an as-forged 

HDH Ti part and HDH and GA Ti-6Al-4V parts with full density had better 

mechanical properties than those made by ingot metallurgy, in Ref. [22]. 

Increasing the holding time at the forging temperature improves the 

mechanical properties of as-forged HDH Ti parts, and the surface quality of 

the powder compact forged parts was improved by increasing the die 

temperature to 500 oC.  

 

 The powder compact forging studied in this work is a rapid consolidation 

process for Ti and Ti-6Al-4V powders. Material flow, driven by large 

amounts of localised plastic deformation, causes pores to collapse during 

powder compact forging. Therefore the densification rate is significantly 

enhanced, compared with other hot consolidation processes, such as 

conventional powder forging with a long sintering step before forging. 

 

 The changes in the mechanical properties with distance from the surface to 

the centre of an as-forged HDH Ti part and HDH and GA Ti-6Al-4V parts, 

along a direction perpendicular to the forging direction are caused by an 

increasing degree of powder consolidation, which is controlled by shear 

deformation of the powder particles. GA powder, with spherical powder 

particles and good flowability, experiences a lower material flow effect on 

powder consolidation. 
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Chapter 5: Heat Treatment of Forged Ti and Ti-6Al-4V Parts 

5.1 Introduction 

Since the powder compact forging process involves severe plastic deformation, as 

reflected by the formation of streamlines shown in Figure 4.2, there is residual 

stress in the as-forged parts, which can reduce their mechanical properties. In 

addition, the ductility of the as-forged Ti and Ti-6Al-4V parts produced by powder 

compact forging is clearly lower than the expected ductility of Ti and Ti-6Al-4V 

alloy produced by ingot metallurgy with a similar level of interstitial elements 

such as oxygen. Therefore, heat treatment of the forged parts was done to 

eliminate internal residual stress and to optimize the microstructure in order to 

improve their mechanical properties. Forged Ti parts were just annealed. For 

forged GA and HDH Ti-6Al-4V parts, four types of heat treatment were carried 

out: beta annealing - annealing at a temperature just above the β transus 

temperature; duplex annealing - annealing at a temperature in the α+β phase field; 

a recrystallization heat treatment and solution treatment and aging. Details of the 

heat treatment conditions are shown in Chapter 2. This chapter presents the effects 

of heat treatment conditions on the strength and ductility of forged Ti and 

Ti-6Al-4V parts and uses these results to determine the optimum heat treatment 

conditions for achieving balanced tensile strength and ductility in forged parts. 

5.2 Annealing of Forged HDH Ti Parts 

An as-forged HDH Ti part was annealed for 6 hours at 550 oC, which is in the α 

phase region, and cooled in air. As shown by the stress-strain curves of the 

annealed specimens in Figure 5.1, after annealing, the ductility of forged HDH Ti 

parts greatly improved, while their tensile strength decreased by about 100 MPa. 

The average mechanical properties of the different as-forged Ti parts and forged 

HDH Ti part after annealing are summarized in Table 5.1. 
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Figure 5.1: Stress-strain curves of tensile test specimens cut from a forged HDH 
Ti part with an oxygen content of 0.41% after annealing. 
 
Table 5.1: Mechanical properties of different as-forged Ti parts and forged HDH 
Ti part after annealing. 

Sample YS(MPa) UTS(MPa) Elongation to 
fracture(%) 

As-forged HDH Ti part 661.0 796.3 12 
As-forged GA Ti part 461.7 563.2 19.5 

As-forged HDH Ti part 
with holding time of 5 minutes 637.5 789.1 22.4 

Forged HDH Ti part 
after annealing treatment 573.0 715.0 25.6 

 

As shown in Table 5.1, annealing of a forged HDH Ti part produced by PCF 

without prior holding at the forging temperature increased the average elongation 

to fracture from 12 to 25.6%, and its UTS and yield strength decreased from 796.3 

to 715.4 MPa and from 661.0 to 573.4 MPa, respectively. This high elongation to 

fracture is comparable to that of an as-forged GA Ti part and an as-forged HDH Ti 

part made with a holding time of 5 minutes at forging temperature prior to forging. 

This significant ductility improvement of the forged HDH Ti part after annealing 

may have been caused by grain growth during annealing as shown in Figure 5.2. 

With grain growth, the primary particle boundaries disappear or migrate as a grain 

boundary, so the weak particle bonding improves during this process. Furthermore 
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the degree of consolidation will be increased, as shown Figure 5.3 by the large 

sized dimples, formed by ductile fracture of equiaxed α grains, in the fracture 

surfaces of as-forged HDH Ti specimens after annealing where there are.  

 

 
Figure 5.2: Microstructure of a forged HDH Ti part with an oxygen content of 
0.41% after annealing. 
 

 

100µm 
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Figure 5.3: Fracture surface of a forged HDH Ti specimen with an oxygen content 
of 0.41% after annealing. 
 

5.3 Effect of Heat Treatment on the Microstructures of Forged 

HDH Ti-6Al-4V Parts 

As shown in Figure 4.3(c) in Chapter 4, the microstructure of as-forged HDH 

Ti-6Al-4V parts consisted of primary α lamellae in a coarse α/β matrix with a 

lamellar structure. There were thinner primary α lamellae and smaller prior β 

grains in the microstructure in the centre of the part than in the region near the 

surface, due to non-homogeneous deformation and dynamic recrystallization. 

After duplex annealing, there was still a difference in microstructure between the 

centre of the part and the region near to the surface of the part, as shown in Figure 

5.4. In the centre of the HDH Ti-6Al-4V part, the microstructure consisted of 

equiaxed grains and a small volume fraction of α lamellae, as shown in Figure 

5.4(a). In contrast, the region near to the surface had a bimodal type of 

microstructure consisting of equiaxed α grains and α lamellae as shown in Figure 

5.4(b). This means that there are a much higher fraction of α lamellae in the 

region near the surface of the part than in the centre, possibly due to 
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recrystallization of deformed grains.  

 

 

Figure 5.4: Microstructure in different regions of a forged HDH Ti-6Al-4V part 
with an oxygen content of 0.52% after duplex annealing. 
 

As shown in Figure 5.5, after a solution and aging treatment, the microstructure in 

the centre of the HDH Ti-6Al-4V part consisted of equiaxed α grains together 

with fine acicular α, while the microstructure in the surface region of the part 

consisted of equiaxed α grains and α lamellae. The difference in the fraction of 

equiaxed α grains between the centre and the surface region in the HDH 

Ti-6Al-4V part might be due to recrystallization of deformed grains during 

solution treatment. 
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Figure 5.5: Microstructure of different regions in a forged HDH Ti-6Al-4V part 
with an oxygen content of 0.52% after a solution and aging treatment. 
 

The microstructure in the centre of an HDH Ti-6Al-4V part after recrystallization 

annealing only consisted of equiaxed α grains as shown in Figure 5.6(a), but the 

sizes of the grains, which are in the range of 3-10 μm, were larger than those 

found in the microstructure after a duplex annealing and solution and aging 

treatment. This suggests that significant grain growth occurred during the 

recrystallization annealing process. In contrast, the microstructure in the surface 

region of the part consisted of coarse α lamellae, as shown in Figure 5.6(b). This 

might be because the region near the surface did not experience a large amount of 

plastic deformation and therefore lacked a high driving force for the nucleation of 

equiaxed grains. 
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Figure 5.6: Microstructure of different regions of a forged HDH Ti-6Al-4V part 
with an oxygen content of 0.52% after recrystallization annealing. 
 

After beta annealing, the microstructures of both the centre and the surface region 

of the HDH Ti-6Al-4V part consisted of equiaxed α grains in an “acicular” α+β 

matrix, as shown in Figure 5.7. This is because during beta annealing, the part was 

heated to a temperature above the β transus temperature and held at this 

temperature for 1 hour, and through this the difference in the amounts of plastic 

deformation between the surface region and the centre of the part was removed, 

leading to a uniform microstructure. 
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Figure 5.7: Microstructure of different regions in a forged HDH Ti-6Al-4V part 
with an oxygen content of 0.52% after beta annealing. 
 

5.4 Effect of Heat Treatment on the Mechanical Properties and 

Fracture Behaviour of Forged HDH Ti-6Al-4V Parts 

The stress-strain curves of as-forged HDH Ti-6Al-4V parts and those after 

different heat treatments are shown in Figure 5.8. The average mechanical 

properties of the parts under different heat treatment conditions are listed in Table 

5.2. From the curves and table, an HDH Ti-6Al-4V part had the lowest ductility 

with an average elongation to fracture of 3.3% after duplex annealing, and the 

mechanical properties of the HDH Ti-6Al-4V part did not change much after beta 

annealing, even though its ductility decreased slightly. The ductility of the forged 

part was improved significantly by recrystallization annealing, with its average 
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elongation to fracture increasing from 6.2% to 12.5%, while its ultimate tensile 

strength dropped from 1291.8 to 1220.6 MPa. A solution and aging treatment is 

normally used to increase the tensile strength of a Ti-6Al-4V alloy. From the 

results of this study, the ultimate tensile strength of the forged HDH Ti-6Al-4V 

part was clearly increased from 1291.8 MPa to 1421.7 MPa without loss in 

ductility. 

 

In summary, according to the results shown in Figure 5.8 and Table 5.2, in order 

to get higher tensile strength with good ductility in forged HDH Ti-6Al-4V parts, 

a solution and aging treatment is the best condition among the heat treatments 

investigated in this study. If a higher ductility is required, a recrystallization 

anneal should be chosen, although the tensile strength of the forged part decreases 

by about 100 MPa after this heat treatment. This study shows that both duplex 

annealing and beta annealing are not favorable heat treatments for improving the 

mechanical properties of forged HDH Ti-6Al-4V parts. 

 

 
Figure 5.8: Stress-strain curves of as-forged and as-forged and heat treated HDH 
Ti-6Al-4V specimens with an oxygen content of 0.52%. 
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Table 5.2: A summary of average mechanical properties of as-forged and 
as-forged and heat treated HDH Ti-6Al-4V parts with an oxygen content of 
0.52%. 

HDH Ti-6Al-4V YS(MPa) UTS(MPa) Elongation to fracture (%) 
As-forged 1160.6 1291.8 6.2 

Duplex anneal 1206.6 1262.0 3.3 
Solution and aging 1352.4 1421.7 7.2 
Recrystallization 1091.5 1220.6 12.5 

Beta anneal 1163.4 1264.6 4.8 

 

As shown in Figure 5.9(a), the fracture surfaces of forged HDH Ti-6Al-4V 

specimens after duplex annealing show dimples formed by fracturing of equiaxed 

α grains and cleavage formed by fracturing of α lamellae. This means that if the 

volume fraction of equiaxed α grains in the microstructure is larger, the material 

will become more ductile. While the acicular α is detrimental to the ductility of 

Ti-6Al-4V, it can increase the tensile strength. As the ductility of the Ti-6Al-4V 

material is determined by the ease of forming cavities, the reason for the as-forged 

Ti-6Al-4V part to have low ductility is probably due to cleavage formed by 

fracturing of α lamellae. As shown in Figure 5.9(b), the fracture surfaces of forged 

HDH Ti-6Al-4V specimens after a solution and aging treatment show a large 

number of fine dimples which indicates that a large number of cavities formed by 

ductile fracturing of equiaxed α grains. Occasionally, cleavage planes can also be 

seen in the fracture surface, as arrowed in the figure. With a combination of 

dimples and cleavage planes, the material has good ductility and excellent tensile 

strength. As shown in Figure 5.9(c), the fracture surfaces of forged HDH 

Ti-6Al-4V specimens after recrystallization annealing show only fine dimples 

formed by ductile fracture of the equiaxed α grains. The ductile fracture of 

equiaxed α grains in the specimens subjected to recrystallization annealing are the 

reason for the best ductility in this material, compared with specimens subjected 

to other heat treatments. As shown in Figure 5.9(d), the fracture surfaces of forged 

HDH Ti-6Al-4V specimens after beta annealing are quite similar to those found in 

the specimens after duplex annealing, shown in Figure 5.9(a). The fracture surface 
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consists of coarse dimples formed by equiaxed α grains and cleavage formed by α 

lamellae. The reason for a lower ductility after beta annealing, compared with 

specimens which were given a solution and aging treatment or a recrystallization 

anneal, is the cleavage formed by fracturing of α lamellae. 

 

 

 
(a) Duplex annealing 

 

 

 

 

Cleavage 

Dimple 
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(b) Solution and aging treatment 
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(c) Recrystallization annealing 
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Figure 5.9: Fracture surfaces of forged HDH Ti-6Al-4V specimens with an 
oxygen content of 0.52% after different heat treatments. 

 

5.5 The effect of Heat Treatment on the Microstructure of Forged 

GA Ti-6Al-4V Parts 

The microstructure of an as-forged GA Ti-6Al-4V part was shown in Figure 4.3(b), 

which consists of α acicular in a lamellar α/β matrix. In the center of an as-forged 

part, the α acicular and primary α lamellae at the grain boundaries were both 

(d) Beta annealing 
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broken into shorter lengths due to the large amount of plastic deformation during 

powder compact forging. After duplex annealing, the microstructures in both 

regions were changed into one consisting of coarse α lamellae as shown in Figure 

5.10. The length of the α lamellae at the centre of the part is much smaller than 

that in the surface region. 

 

 

Figure 5.10: Microstructure of different regions in a forged GA Ti-6Al-4V part 
with an oxygen content of 0.14% after duplex annealing. 
 

As shown in Figure 5.11, the microstructure of a GA Ti-6Al-4V part after a 

solution and aging treatment was α acicular in the centre of the part, while in the 

surface region, there was an α lamellar microstructure with the lamellae size being 

smaller than those in the microstructure produced by duplex annealing. 
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Figure 5.11: Microstructure of different regions in a forged GA Ti-6Al-4V part 
with an oxygen content of 0.14% after a solution and aging treatment. 
 

For a forged GA Ti-6Al-4V part after a recrystallization anneal, the microstructure 

at the centre consisted of equiaxed α grains in a matrix consisting of a fine α+β 

lamellar structure as shown in Figure 5.12. In the surface region with less plastic 

deformation, the microstructure is a fine α acicular structure, which is the same as 

that found in the as-forged part. This means that the equiaxed structure at the 

centre evolved through recrystallization driven by the large amount of plastic 

deformation. 
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Figure 5.12: Microstructure of different regions in a forged GA Ti-6Al-4V part 
with an oxygen content of 0.14% after recrystallization annealing. 
 

5.6 Effect of Heat Treatment on the Mechanical Properties and 

Fracture Behaviour of Forged GA Ti-6Al-4V Parts 

The stress-strain curves for forged GA Ti-6Al-4V parts after different heat 

treatments are plotted in Figure 5.13, and their average mechanical properties are 

summarized in Table 5.3. From the results, in contrast to the decrease in ductility 

in a forged HDH Ti-6Al-4V part after duplex annealing, the elongation to fracture 

of a forged GA Ti-6Al-4V part is increased from 9.3 to 14.3% by a duplex anneal 

without a decrease in tensile strength. After a solution and aging treatment, the 

tensile strength of the GA Ti-6Al-4V part was improved from 1063.4 to 1195.1 

MPa, and its elongation to fracture remained constant at 9.9%. In Figure 5.13, the 
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forged GA Ti-6Al-4V part after a recrystallization anneal had the best ductility of 

all the specimens with an elongation to fracture of 15.1%, whereas its tensile 

strength dropped by 80 MPa after this heat treatment. 

 

Based on the results of the study, duplex annealing can be used to improve the 

ductility of forged GA Ti-6Al-4V parts with an oxygen content of 0.14% without 

decreasing the tensile strength. After a solution and aging treatment, the UTS of 

the forged part is increased by about 140 MPa without changing the ductility, so a 

solution and aging treatment is a good way to improve the tensile strength of a 

forged part. The ductility of forged GA Ti-6Al-4V part is improved significantly 

after recrystallization annealing, with a small decrease in tensile strength. So 

recrystallization annealing is the best way to improve the ductility of a forged GA 

Ti-6Al-4V part. 

 

 
Figure 5.13: Stress-strain curves of as-forged GA Ti-6Al-4V specimens with an 
oxygen content of 0.14% after different heat treatments. 
 
Table 5.3: Summary of the average mechanical properties of as-forged GA 
Ti-6Al-4V parts with an oxygen content of 0.14% after different heat treatments. 

GA Ti-6Al-4V YS(MPa) UTS(MPa) Elongation to fracture(%) 
As-forged 955.3 1063.4 9.3 

Duplex anneal 996.6 1046.2 14.3 
Solution and aging 1102.6 1195.1 9.9 
Recrystallization 811.4 983.1 15.1 
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As shown in Figure 5.14(a), the fracture surfaces of forged GA Ti-6Al-4V 

specimens after duplex annealing showed a large number of dimples formed by 

ductile fracture of α lamellae with a low aspect ratio. As shown in Figure 5.14(b), 

the fracture surfaces of GA Ti-6Al-4V specimens after a solution and aging 

treatment showed fine dimples formed by fracturing of α acicular. As shown in 

Figure 5.14(c), the fracture surfaces of GA Ti-6Al-4V specimens, after 

recrystallization annealing, showed a mix of large dimples formed by the 

fracturing of equiaxed α grains and fine dimples formed by fracturing of fine α+β 

lamellar. 

 

 

 
(a) Duplex annealing 
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(b) Solution and aging treatment 
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Figure 5.14: Fracture surfaces of forged GA Ti-6Al-4V specimens with an oxygen 
content of 0.14% after different heat treatments. 
 

5.7 Discussion 

5.7.1 The effect of Heat Treatments on the Mechanical Properties of Forged 

HDH Ti Parts 

A comparison of the mechanical properties of as-forged HDH Ti parts, an HDH Ti 

part after annealing and Grade 4 ingot metallurgy Ti are made in Figure 5.15. 

(c) Recrystallization annealing 
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From the figure, even though the grain growth during annealing reduced the 

tensile strength of a forged part by 80 MPa, the UTS and elongation to fracture of 

a forged HDH Ti part after an annealing treatment were both higher than those for 

ingot metallurgy Ti. In this study, the best elongation to fracture in a forged HDH 

Ti part, achieved by an annealing treatment was 25.6%, which is the same as for 

Grade 1 ingot metallurgy Ti. So from this study, the ductility of a forged HDH Ti 

part can be improved by increasing the holding time at the forging temperature or 

through an annealing treatment, and the property improvement can broaden the 

high performance applications of CP Ti. 
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Figure 5.15: A comparison of the mechanical properties of as-forged HDH Ti parts, 
a forged HDH Ti part after annealing and Grade 4 ingot metallurgy Ti. 
 

5.7.2 The Microstructural Reasons for the Effects of Different Heat 

Treatments on the Mechanical Properties of Forged HDH and GA Ti-6Al-4V 

Parts 

There is a difference in the evolution of microstructure in as-forged fully 

consolidated HDH Ti-6Al-4V parts and GA Ti-6Al-4V parts after different heat 

treatments. So the effect of the microstructure in HDH Ti-6Al-4V and GA 

Grade 4 Ti ingot [1] 
As-forged HDH Ti part 
As-forged HDH Ti part with holding time of 5 mins 
Forged HDH Ti part after annealing 
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Ti-6Al-4V parts on their mechanical properties is not the same in general. 

 

After duplex annealing, the microstructure in an as-forged HDH Ti-6Al-4V part 

evolved into equiaxed grains and a small volume fraction of α lamellae due to 

dynamic recrystallization and a coarse α/β matrix structure. The α lamellae with a 

high oxygen content may reduce the ductility of an as-forged part by forming a 

cleavage pattern. After a solution and aging treatment, the microstructure at the 

centre of a forged HDH Ti-6Al-4V part consisted of equiaxed α grains with a fine 

acicular α. A large number of equiaxed α grains were formed by a recrystallization 

process during solution treatment, which enhanced the powder consolidation of a 

heat treated as-forged part, so its ductility is better than that of the as-forged one. 

On the other hand, the strength of the part is improved by a fine acicular α which 

formed during the aging treatment. After recrystallization annealing, the 

microstructure at the centre of an HDH Ti-6Al-4V part consisted of only equiaxed 

α grains formed by the recrystallization process, so the ductility of the part is 

increased significantly. This is caused by an improvement in the powder 

consolidation of the part and the ductile fracture of the equiaxed α grains, but its 

tensile strength is reduced by a coarsening of the equiaxed α grains. After beta 

annealing, the microstructure at the centre of the HDH Ti-6Al-4V part consisted 

of equiaxed α grains in a matrix of an “acicular” α+β structure, which is similar to 

the microstructure at the centre of the HDH Ti-6Al-4V part after duplex annealing. 

The ductility of the as-forged part is probably reduced by the fracturing of acicular 

α to form a cleavage pattern. 

 

Due to the low interstitial element content in a GA Ti-6Al-4V part, the 

microstructure consists of α acicular in an α/β matrix. After duplex annealing, α 

acicular grow into a coarse α lamellae structure with a low aspect ratio and a low 

oxygen content at the centre of the part. The ductility of the part is improved by 

the ductile fracture of the α lamellae with a low aspect ratio. After a solution and 
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aging treatment, the microstructure at the centre of a GA Ti-6Al-4V part is an α 

acicular structure, which improves the strength. The ductility is not reduced due to 

the fact that the recrystallization that occurs during solution treatment enhances 

the powder consolidation in the as-forged part. After recrystallization annealing, 

the microstructure at the centre of a GA Ti-6Al-4V part consists only of equiaxed 

α grains formed by a recrystallization process. For the same reason, the ductility 

of an HDH Ti-6Al-4V part increases after recrystallization annealing. 

 

From the microstructural evolution after heat treatment, it can be concluded that 

equiaxed α grains formed by recrystallization during a solution and aging 

treatment and recrystallization annealing can improve the ductility of HDH 

Ti-6Al-4V parts, whereas an α lamellae structure plays a negative role in 

influencing its ductility. On the other hand, the effect of duplex annealing, a 

solution and aging treatment and recrystallization annealing on the microstructure 

and mechanical properties of GA Ti-6Al-4V parts, with low oxygen content, is the 

same as the effects of these heat treatments on the microstructure and mechanical 

properties of ingot metallurgy wrought Ti-6Al-4V parts, with the same oxygen 

level [2].  

5.7.3 The Role of Oxygen Content on the Effect of Heat Treatment 

As oxygen is an α stabilizer, which increases the α transus temperature. The 

oxygen content in an HDH Ti-6Al-4V part (0.52%) is much higher than that in a 

GA Ti-6Al-4V part (0.14%), so when HDH and GA Ti-6Al-4V powder compacts 

are forged at 1350 oC, which is in the β phase field, the α phase precipitates earlier 

from the β phase in an HDH Ti-6Al-4V part compared with a GA Ti-6Al-4V part. 

By comparing the microstructure of as-forged HDH Ti-6Al-4V and GA Ti- 

6Al-4V parts, we can see that the sizes of α lamellae formed in an HDH 

Ti-6Al-4V part are much larger than those in a GA Ti- 6Al-4V part. During duplex 

annealing, the coarse α lamellae partially evolves into equiaxed α grains in an 
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HDH Ti-6Al-4V part, while an acicular α structure in a GA Ti- 6Al-4V part 

becomes wider to form small α lamellae with a low aspect ratio. Also after a 

solution and aging treatment, the equiaxed α grains in the microstructure of an 

HDH Ti-6Al-4V part may be caused by its higher oxygen content, which is not 

shown in the microstructure of a GA Ti- 6Al-4V part. The effect of oxygen on the 

microstructure of a forged Ti- 6Al-4V part is more obvious after recrystallization 

annealing. As a result, the equiaxed α grains in an HDH Ti-6Al-4V part were 

larger than in a GA Ti-6Al-4V part due to its higher oxygen content. So oxygen 

content changes the microstructure of a forged Ti- 6Al-4V part after duplex 

annealing and a solution and aging treatment, while after recrystallization 

annealing, the oxygen content only affects the size of the equiaxed α grains, as it 

increases the α transus temperature. 

 

On the other hand, with a higher oxygen content the tensile strength of a forged 

HDH Ti-6Al-4V part was higher than in a forged GA Ti-6Al-4V part under each 

of the heat treatment conditions used in this study. This is in agreement with the 

statement in Ref. [1]. However, with an increase in tensile strength caused by a 

higher oxygen content, the ductility decreases. From the respective mechanical 

properties of forged HDH and GA Ti-6Al-4V parts after a solution and aging 

treatment and recrystallization annealing, the ductility of such a heat treated HDH 

Ti-6Al-4V part is close to or higher than that of a forged GA Ti-6Al-4V part. This 

means that the oxygen content plays a much less significant role in controlling the 

ductility of a Ti-6Al-4V part after a solution and aging treatment and 

recrystallization annealing. Therefore, Ti-6Al-4V parts with a high oxygen content 

of up to ~0.5% produced by powder compact forging can be used for industrial 

applications after a solution and aging treatment or recrystallization annealing. 

This offers an opportunity for the wider application of Ti-6Al-4V parts with high 

oxygen content, due to their excellent mechanical properties. 
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5.7.4 The effect of Heat Treatment on the Mechanical Properties of Forged 

HDH and GA Ti-6Al-4V Parts 

The mechanical properties of forged GA and HDH Ti-6Al-4V parts under 

different heat treatments in this study are summarized in Figure 5.16. The 

mechanical properties of ingot metallurgy Ti-6Al-4V and forged GA Ti-6Al-4V 

parts, shown in the figure 5.16 indicate an improvement in the ductility of these 

materials after duplex annealing. However, the ductility of forged HDH 

Ti-6Al-4V parts is reduced by duplex annealing. After a solution and aging 

treatment, the tensile strength of wrought Ti-6Al-4V parts increases with a 

decrease in ductility, whereas the tensile strengths of forged GA and HDH 

Ti-6Al-4V parts are improved, without sacrificing ductility, by solution and aging 

treatment. This may be caused by further powder consolidation by 

recrystallization during the solution heat treatment. After recrystallization 

annealing, the ductility of forged GA and HDH Ti-6Al-4V parts were both 

improved at the expense of their tensile strength; which agrees with the general 

effect of recrystallization annealing on the mechanical properties of wrought 

alloys. In general, the tensile strength of as-forged GA Ti-6Al-4V parts is slightly 

higher than that of heat treated wrought parts, and their ductility is slightly lower, 

but once the forged GA Ti-6Al-4V parts are heat treated, the mechanical 

properties are very close to those of wrought parts under the same heat treatment 

conditions and with the same oxygen level. This suggests that the metallurgical 

quality of the GA Ti-6Al-4V alloy parts produced by powder compact forging is 

the same as or very similar to that of corresponding wrought alloy parts. In 

contrast to this, the tensile strength of powder compact forged and heat treated 

HDH Ti-6Al-4V parts are about 250 MPa higher than those of the corresponding 

wrought parts under the same heat treatment conditions, and their ductility is 

much lower than that of the wrought alloy parts. The reason for this is that the 

powder compact forged HDH Ti-6Al-4V alloy parts have a much higher oxygen 

content (0.5%) compared with the wrought alloy parts (<0.15wt%).. 
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Figure 5.16: A comparison of the mechanical properties of as-forged HDH and 
GA Ti-6Al-4V parts made under different conditions compared with ingot 
metallurgy and the other pre-alloyed approaches. 
[3] [4] [5] [6] [7] [8] 

As shown in Figure 5.16, the tensile strength of forged GA Ti-6Al-4V parts, after 

different heat treatments, is higher than that for Ti-6Al-4V parts made using other 

pre-alloyed approaches, except for the one made using equal channel angular 

extrusion. After duplex or recrystallization annealing, forged GA Ti-6Al-4V parts 

have a ductility close to that of the alloy shown in Ref. [7, 8]. Ti-6Al-4V parts 

produced by equal channel angular extrusion, using pre-alloyed powder, have a 

higher tensile strength and lower ductility than in those parts made using other 
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pre-alloyed approaches, as shown in Figure 5.16. The forged and heat treated 

HDH Ti-6Al-4V parts with a high oxygen content and made using pre-alloyed 

powder, can have at least the same mechanical properties as those parts produced 

by the severe deformation in equal channel angular extrusion. After 

recrystallization annealing, forged HDH Ti-6Al-4V parts have better ductility than 

those made using equal channel angular extrusion without too much of a decrease 

in tensile strength, while after a solution and aging treatment, forged HDH 

Ti-6Al-4V parts have the highest tensile strength (UTS=1421.7 MPa and YS = 

1352.4 MPa) with an elongation to fracture of 7.2%, of the various alloy processing 

conditions shown in Figure 5.16. Its strength is improved by the formation of acicular 

α precipitates during the solution and aging treatment, while its ductility is improved 

by the formation of equiaxed α grains. Due to this bimodal microstructure, the 

tensile properties of forged HDH Ti-6Al-4V parts are modified by a solution and 

aging treatment. In summary, powder compact forging used in this study is a 

promising fast consolidation process for the manufacture of near-net shaped Ti 

and Ti-6Al-4V parts. The energy consumption during the sintering stage and the 

cost of manufacturing Ti and Ti-6Al-4V parts [9, 10], which limits the wider 

application of Ti powder metallurgy, are both decreased significantly. 

5.7.5 Effect of Recrystallization on Powder Consolidation 

As discussed in Chapter 4, even though full density in as-forged parts was 

obtained, the consolidation of the part was not complete due to the weak particle 

bonding, especially in the as-forged GA Ti-6Al-4V parts. This study shows that 

after recrystallization annealing and a solution and aging treatment, the ductility 

of both forged GA and HDH Ti-6Al-4V parts is improved, as shown in Figure 

5.16. The recrystallization occuring during such heat treatments may enhance the 

degree of powder consolidation and this can be explained as follows. As shown 

schematically in Figure 5.17, during the recrystallization process, new grains may 

nucleate at the particle boundaries and grow into both particles on either sides of 
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the particle boundary. In this way, the weak bonding between the two particles and 

any interparticle boundary cavities are eliminated, leading to an improvement in 

the level of powder consolidation. 

 

 

Figure 5.17: Schematic diagrams showing recrystallization at a particle boundary. 
 

5.8 Summary 

 This study shows that the ductility of forged HDH Ti parts is improved 

significantly after an annealing treatment due to stress relief accompanied by 

a coarsening of α grains.  

 

 The oxygen content of the forged Ti-6Al-4V parts controls the microstructural 

evolution during heat treatment and affects their mechanical properties. As a 

result of this effect, the ductility of forged HDH Ti-6Al-4V parts is improved 

by the formation of equiaxed α grains during solution treatment and 

recrystallization annealing. One of the reasons for this beneficial effect might 

be an improvement in powder consolidation through the enhancement of 

particle bonding by recrystallization. 
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Chapter 6: Powder Compact Forging of Blended and 

Mechanically Alloyed Ti-6Al-4V Powders 

6.1 Introduction 

The microstructures and mechanical properties for Ti-6Al-4V rocker arms, 

produced by powder compact forging of pre-alloyed HDH and GA Ti-6Al-4V 

alloy powders after forging and various heat treatments, were studied in the 

previous chapters. In order to reduce the cost of raw Ti-6Al-4V powder, a blended 

elemental (BE) approach was used to produce Ti-6Al-4V rocker arms from a 

mixture of HDH Ti and Al-40wt%V master alloy powders. To achieve 

compositional homogenisation through diffusion during powder compact heating 

and forging, the holding time at the forging temperature (1350 oC) was increased 

from 0 to 10 minutes. As an alternative approach, the mixture of Ti and 

Al-40wt%V master alloy powders was mechanically alloyed (MA) by high energy 

mechanical milling (HEMM), and the MA Ti-6Al-4V powder was used as the 

starting powder to improve the composition homogenisation. Additionally to 

investigate the effect of the oxygen content of the Ti powder on the mechanical 

properties and microstructure of as-forged parts, made using MA Ti-6Al-4V 

powder, both HDH and GA Ti powders were used in this study. 

6.2 Powder Compact Forging of Blend Elemental (BE) Ti-6Al-4V 

Powder 

6.2.1 Blending of Powders 

It is essential to check the compositional homogeneity of the BE Ti-6Al-4V 

powder produced by from HDH Ti and Al-40wt%V master alloy powders. To do 

this, cross sections of the powder particles were observed by optical microscope 

as shown in Figure 6.1. There was no agglomeration of the Al-V master alloy 

powder particles (bright particles in the figure), and they were generally 



Chapter 6: Powder Compact Forging of Blended and Mechanically Alloyed Ti-6Al-4V Powders 

175 
 

homogeneously distributed among the powder particles. This proves that the Ti 

and Al-V master alloy powder particles were blended well in producing the BE 

Ti-6Al-4V powder. The compositional homogeneity of the BE powder was also 

checked by comparing XRD patterns of three random samples of the BE powder 

as shown in Figure 6.2. There is no difference in the three XRD patterns, 

suggesting that the HDH Ti and Al-V master alloy powder particles were 

sufficiently blended. 

 

 

Figure 6.1: Optical microscopy image of a cross section of blended HDH Ti and 
Al-V master alloy powder particles. 

 

 
Figure 6.2: XRD patterns of three random batches of the powder mixture. 

400µm 
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A DTA heating curve of the BE Ti-6Al-4V powder, is shown in Figure 6.3, 

together with the baseline curve. This shows a broad peak in the temperature 

range of 950 to 1150 oC, indicating that Al and V atoms diffuse into the Ti phase 

during heating to temperatures above 950 oC.  
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Figure 6.3: DTA heating curve of BE Ti-6Al-4V powder. 

 

6.2.2 Phase Constituent and Element Distribution of As-forged BE Ti-6Al-4V 

Parts 

Figure 6.4 shows a rocker arm produced by powder compact forging (PCF) of BE 

Ti-6Al-4V powder without any holding time at the forging temperature. There are 

still cold-shuts on the surface of the part, the same as those on the surface of an 

as-forged HDH Ti-6Al-4V part. 

 

 

Figure 6.4: A rocker arm produced by PCF of BE Ti-6Al-4V powder without 
holding at the forging temperature. 
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An XRD pattern of the powder mixture, in Figure 6.5 shows Ti, α-Al2V5 and Al3V 

peaks which are from the master alloy powder particles. An XRD pattern of the 

sample produced by PCF, without any holding time, shows only α-Ti peaks, 

suggesting that dissolution of the Al-V master alloy powder particles occurred 

during powder heating and forging. The amount of the β phase in the as-forged 

samples increased to an XRD-detectable level with increasing holding time to 5 or 

10 minutes, as shown in Figure 6.5. The presence of the β-Ti phase in the forged 

parts suggests that more V atoms have diffused into the Ti phase during holding at 

1350 oC, and assisted the stablisation of some of the β phase during cooling after 

forging.  
 

 

Figure 6.5: XRD patterns of a Ti-6Al-4V BE powder mixture and as-forged parts 
produced using PCF. 

 

EDS elemental mapping showed Al and V rich regions in the sample produced by 

PCF without a holding time (Figure 6.6(a)). This means that the Al-V master alloy 
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powder particles were not completely dissolved during heating and forging, but Al 

was distributed more homogeneously than V. This is due to the fact that the 

diffusivity of Al in Ti is much higher than that of V at the same temperature [1], as 

reflected by the much lower melting point of Al than that of V. With increased 

holding time, to 5 minutes, at the forging temperature, EDS elemental mapping 

showed a more homogeneous Al distribution throughout the sample, while there 

were still V rich and Ti lean regions, as shown in Figure 6.6(b). The sizes of the V 

rich regions became much smaller with increasing holding time to 5 minutes. 

When the holding time was further increased to 10 minutes, EDS elemental 

mapping showed that the sample produced by PCF had uniform Al, Ti and V 

distributions, as shown in Figure 6.6(c). EDS line scanning showed that the 

distribution of V in the samples produced by PCF without a holding time and with 

a 5 minutes holding time were non-homogeneous, and became homogeneous 

when the holding time was increased to 10 minutes. The distribution of Al was 

non-homogenous without a holding time, but became homogeneous with a 5 

minute holding time. To get detailed information about the effect of holding time 

on elemental distribution, EDS point analysis was conducted at random points on 

the cross section of each of the samples, as shown in Figure 6.8. The compositions 

at all of the points shown in the figure were semi-quantatively determined using 

the EDS point analysis, and listed in Table 6.1. The sample produced without a 

holding time had Al and V rich regions with a composition of 

Ti-63.28wt%V-11.69wt%Al (point 5 in Figure 6.8(a)), which is far away from the 

nominal composition of the alloy of Ti-6wt%%Al-4wt%V. When the holding time 

was increased to 5 minutes, V rich regions with a V content of up to 52.16wt% 

could still be found (point 3 in Figure 6.8(b)), but there was no large difference in 

the Al content among the four EDS analysis points shown in Table 6.1. Finally in 

the sample with a 10 minutes holding time, the V rich regions also disappeared, 

since there were no large differences in Al, Ti and V contents among the EDS 

analysis points shown in Table 6.1. This confirms that a homogeneous 
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composition distribution in the as-forged parts can be achieved by PCF of a 

powder mixture with a holding time of 10 minutes at a forging temperature of 

1350 oC. 

 

 

 

 

 
 
 

Figure 6.6: SEM images and EDS elemental mappings of cross sections of 
as-forged BE Ti-6Al-4V parts with different holding times at 1350 oC: (a) without 
holding; (b) holding time: 5 minutes; (c) holding time: 10 minutes. 
 

(a)                   (b)                  (c) 
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(a) Without holding 

 

(b) Holding time of 5 minutes 

 

 

Figure 6.7: SEM images and the results of an EDS line scan on cross sections of 
the as-forged BE Ti-6Al-4V parts. 
 

(c) Holding time of 10 minutes 
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Figure 6.8: Points selected for EDS analysis on the cross sections of as-forged BE 
Ti-6Al-4V parts made by PCF with different holding times: (a) with no holding 
time; (b) holding time of 5 minutes; (c) holding time of 10 minutes. 
 
Table 6.1: Results of EDS point analysis at the points shown in Figure 6.8. 
Samples (in Figure 6.8) Point No. Al (wt%) Ti (wt%) V (wt%) 

(a) 1 6.88 33.11 60.01 
2 6.80 86.16 7.04 
3 2.39 95.44 2.17 
4 3.43 94.98 1.59 
5 11.69 25.03 63.28 
6 12.37 59.58 28.04 
7 3.12 95.89 0.99 
8 1.87 96.84 1.30 

(b) 1 5.45 88.98 5.58 
2 4.39 92.31 3.29 
3 4.61 43.23 52.16 
4 7.87 86.66 5.48 

(c) 1 4.44 91.54 4.02 
2 4.02 92.03 3.94 
3 3.99 93.06 2.95 
4 4.56 92.22 3.22 

 

6.2.3 Microstructure of As-forged BE Ti-6Al-4V Parts 

From optical microscopy images (Figure 6.9) a forged BE powder compact, with 

no holding time prior to forging, contained a large number of Al-40wt%V master 

alloy particles, with sizes in the range of 25 to 50 µm, and residual pores with 

sizes in the range of 1 to 10 µm. When the holding time was increased to 5 

minutes, the Al-40wt%V master alloy particles and pores became smaller or 

disappeared as shown in Figure 6.9(b). When the holding time was further 

(a)                   (b)                  (c) 
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increased to 10 minutes, an uniform α/β lamellar structure formed in the as-forged 

part, as shown in Figure 6.9(c), and the master alloy particles and pores 

disappeared. This suggests that the consolidation of BE Ti-6Al-4V powder can be 

accomplished by forging the powder compact at 1350 oC after holding for 10 

minutes.  
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Figure 6.9: Microstructure of as-forged parts made by PCF of BE Ti-6Al-4V 
powder with different holding times at 1350 oC. 
 

The microstructures of the samples made by forging BE powder compacts after 

different holding times were examined by SEM. As shown in Figure 6.10(a), the 

undissolved Al-V master alloy powder particles in a Ti rich matrix were visible in 

the microstructure of a part made without any holding time, and a lamellar 

structure formed around the undissolved Al-V master alloy powder particles. 

When the holding time was increased to 5 minutes, more regions of lamellar 

structure were observed in the microstructure, as shown in Figure 6.10(b), but the 

lamellar structure could not be seen clearly in some regions in the microstructure, 

indicating a non-uniform microstructure. Some primary α plates were also 

observed at the grain boundaries in the regions with a fine α/β lamellar structure, 

as shown in Figure 6.10(b). The microstructure of the sample made with a holding 

time of 10 minutes showed a homogeneous α/β lamellar structure, as shown in 

Figure 6.10(c). 
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Figure 6.10: SEM images of the microstructure in as-forged parts made by PCF of 
BE Ti-6Al-4V powder with different holding times. 
 

6.2.4 Mechanical Properties of an As-forged BE Ti-6Al-4V Part 

The engineering stress-engineering strain curves of the tensile test specimens cut 
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from as-forged samples are shown in Figure 6.11. The sample produced by 

forging without any holding time was brittle, but the samples became stronger and 

more ductile with increasing holding time. As shown in Table 6.2, the average 

yield strength, ultimate tensile strength (UTS) and elongation to fracture with a 

holding time of 10 minutes before forging are 1131.8 MPa, 1248.4 MPa and 3.4%, 

respectively. This clearly shows that with a mixture of Ti and Al-V master alloy 

powders as starting materials, holding the powder compact at 1350 oC for 

sufficient time to allow full dissolution of the Al-V master alloy powder particles 

and their homogenisation is essential to ensure that the consolidated Ti-6Al-4V 

alloy has good strength and ductility. It appears that the required holding time is 

5-10 minutes.  
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Figure 6.11: Engineering stress-strain curves for specimens cut from forged 
compacts after different pre-forging holding times at 1350 oC. 
 
Table 6.2: Mechanical properties for specimens cut from forged compacts after a 
pre-forging holding time of 10 minutes at 1350 oC. 

Specimen  YS(MPa)  UTS(MPa)  Elongation  
1 1118.3 1228.8  1.7% 
2 1139.0 1258.5  4.3% 
3 1138.1 1257.9  4.3% 

Average 1131.8 1248.4 3.4% 

 

As shown in Figure 6.12(a), the fracture surfaces of tensile test specimens forged 

without a pre-forging holding time had a lot of flattened, smooth regions which 

are characteristic of brittle fracture. At low magnification, the SEM images 

showed that the fracture surfaces were rough (Figure 6.12(a)). This shows that 

debonding between the undissolved master alloy powder particles and the 

surrounding Ti powder particles may be the primary cause of fracture before 

plastic yielding. With increasing holding time at 1350 oC to 5 minutes, it was hard 

to find any flattened smooth regions on the fracture surfaces at high magnification, 

as shown in Figure 6.12(b), so the fracture mode of this specimen is probably 

transgranular fracture. When the holding time at 1350 oC was further increased to 

10 minutes, the fracture surfaces of the tensile test specimens showed that the 

fracture mode was transgranular fracture.  
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(a) Without any holding time 
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(b) Holding time of 5 minutes 
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Figure 6.12: Fracture surfaces of the tensile test specimens cut from samples 
produced by forging after different holding times at 1350 oC. 
 

(c) Holding time of 10 minutes 
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6.3 Powder Compact Forging of Mechanically Alloyed (MA) 

Ti-6Al-4V Powder 

6.3.1 Milling of Powder Mixtures 

A mixture of HDH Ti and Al-V master alloy powders, with a nominal composition 

of Ti-6Al-4V, was milled for various times and milling speeds. Figure 6.13(a) 

shows that after 3 hours at a milling speed of 200 rpm, the milled powder particles 

consisted of several Ti and Al-40wt%V layers. With increased milling time to 6 

hours, at the same milling speed of 200 rpm, the Ti/Al-40wt%V composite 

powder particles became larger and the Ti and Al-40wt%V layers became thinner, 

as shown in Figure 6.13(b). After milling for 6 hours at a higher milling speed of 

400 rpm, the thickness of the Ti and Al-40wt%V layers (Figure 6.13(c)) became 

much smaller, and also the sizes of the Ti/Al-40wt%V composite powder particles 

became even larger. Granules with a maximum size of 2 mm in diameter formed, 

and most of the powder was stuck to the wall of the vial and the surfaces of steel 

balls. Only 10% of the powder could be obtained as loose powder, so it is not 

efficient to produce mechanical alloyed (MA) powders using this milling 

condition. In contrast, 95% of the powder was obtained as loose powder after 

milling the powder mixture at a rotational speed of 200 rpm for 6 hours. When the 

HDH Ti powder was replaced by GA Ti powder, after milling at 200 rpm for 6 

hours, the sizes of Ti/Al-40wt%V composite powder particles became smaller, as 

shown in Figure 6.13(d). This might be due to the fact that GA Ti powder particles 

with a spherical shape have good flowability, and are therefore difficult to be 

captured by the milling balls during the milling process.  
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Figure 6.13: Optical micrographs of powder particle cross sections produced by 
milling HDH or GA Ti powder with Al60V40 master alloy powder at different 
milling speeds and after different milling times. 

 



Chapter 6: Powder Compact Forging of Blended and Mechanically Alloyed Ti-6Al-4V Powders 

192 
 

As shown in Figure 6.14, compared with the XRD pattern of the powder mixture 

which showed Ti, Al2V5 and Al3V peaks, the XRD patterns of the milled powders 

did not show the Al2V5 and Al3V peaks. This might be due to the significant 

reduction in the sizes of the Al-40wt%V layers/particles which leads to a 

significant decrease in the XRD peak intensity of the phases in the master alloy. 

 

 

Figure 6.14: XRD patterns of composite powders made by milling powder 
mixtures at different milling speeds and for different times. 
 

From the EDS mapping shown in Figure 6.15, the composite powder particles 

made by milling at 200 rpm for 3 and 6 hours, respectively, consisted of Ti layers 

and Al-40wt%V layers. When the milling speed was increased to 400 rpm, the 

Al-40wt%V layers became too thin to be distinguishable with EDS mapping after 

6 hours of milling. However, the composite powder particles made by milling a 

mixture of GA Ti and Al-40wt%V master alloy powders for 6 hours at a speed of 
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200 rpm consisted of Ti central regions and Al-40wt%V layers. This is shown by 

the EDS mapping in Figure 6.16. This occurs because the GA Ti powder particles 

are much softer than the master alloy and HDH Ti powder particles with a much 

higher oxygen content. During milling, the impact of the balls cannot cause 

fracture of the GA Ti powder particles due to their good ductility, so the harder 

master alloy powder particles are cold welded onto the surface of the Ti powder 

particles, resulting in a covering of master alloy on the surface of the GA Ti 

powder particles.  

 

 

 

 

 
 
 

Figure 6.15: EDS mapping of composite powder particles made by milling HDH 
Ti and master alloy powders under different milling conditions. 

(a) 200 rpm/3hrs        (b) 200 rpm/6hrs       (c) 400 rpm/6hrs 
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Figure 6.16: EDS mapping of a composite powder particle made by milling GA Ti 
and master alloy powders for 6 hours at a speed of 200 rpm. 

 

The DTA heating curves of the composite powders (Figure 6.17) did not show any 

obvious peaks, suggesting that significant elemental diffusion had not occurred 

during heating, which is different from heating the powder mixture. Due to a 

combination of plastic deformation, fracturing and cold welding, the distances 

between master alloy particles/layers in the powder compact prepared using the 

composite powder are much shorter than in the one made using a powder mixture, 

so the diffusion of Al and V into the Ti matrix is easier. A longer milling time of 6 

hours promotes the diffusion of Al and V into the Ti matrix, so before forging a 

more homogeneous compact exists. Therefore it is not necessary to hold the 

powder compact at the forging temperature in order to dissolve the master alloy 

powder particles during powder compact forging of composite powders. 
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Figure 6.17: DTA curves of composite powder particles made at different milling 
condition using different raw powders. 

 

6.3.2 Phase Constituency and Elemental Distribution in As-forged MA 

Ti-6Al-4V Parts 

Rocker arms, produced by forging a compact made from mechanically alloyed 

(MA) powders are shown in Figure 6.18. These were made by milling HDH or 

GA Ti and Al-40wt%V master alloy powders for 6 hours at a speed of 200 rpm. 

There were a few deep cracks on the surface of the part made by forging HDH 

Ti/Al-40wt%V MA powder compact, as shown by the arrows in Figure 6.18(a). 

The surface quality of as-forged parts was improved significantly by replacing the 

HDH Ti/Al-40wt%V MA powder compact by a GA Ti/Al-40wt%V MA powder 

compact, as reflected by the absence of deep cracks on the surface of the as-forged 

part shown in Figure 6.18(b). The reason for the difference in surface quality of 

two as-forged parts might be because of the big difference in the oxygen content 

of the raw Ti powder used, with the HDH Ti powder having a much higher 

oxygen content of 0.35wt% compared with the GA Ti powder with an oxygen 

content of 0.11wt%. With a higher oxygen content in the MA powder, the powder 

compact is more brittle, so it is easier to form cracks during forging. 
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Figure 6.18: Rocker arms produced by forging MA powders. 
 

The XRD patterns of the parts made from both materials (Figure 6.19) showed 

peaks of the α and β Ti phases but no peaks from any of the phases in the 

Al-40wt%V master alloy particles/layers. This suggests that the Al-40wt%V 

layers in the composite powder particles were dissolved into the Ti matrix during 

compact heating to 1350 oC and then forging.  

 

Figure 6.19: XRD patterns of as-forged parts made by PCF of HDH 
Ti/Al-40wt%V and GA Ti/Al-40wt%V composite powders. 
 

The EDS elemental mapping (Figure 6.20(a) and (b)) of cross sections of the 

forged parts, made from HDH Ti/Al-40wt%V composite powders and milled for 3 

or 6 hours at a speed of 200 rpm, showed a homogeneous distribution of Al, Ti 

(a) HDH Ti/Al-40wt%V                (b) GA Ti/Al-40wt%V 



Chapter 6: Powder Compact Forging of Blended and Mechanically Alloyed Ti-6Al-4V Powders 

197 
 

and V. Using EDS mapping it was hard to identify undissolved master alloy 

layers/particles in the samples. This proved that most of the master alloy 

layers/particles in the composite powders were already dissolved into the Ti 

matrix. On the other hand, under the same forging conditions, undissolved master 

alloy powder particles were observed in those forged parts made using an HDH 

Ti/Al-40wt%V powder mixture. This shows that milling can significantly 

accelerate the diffusion of Al and V from the master alloy powder particles into 

the Ti matrix. However, a non-uniform distribution of Al could be seen after 

forging compacts made from GA Ti/Al-40wt%V composite powder, as shown in 

Figure 6.20(c). The reason for this is that the thickness of the master alloy layers 

in the GA Ti/Al-40wt%V composite powder particles is much larger than that in 

the HDH Ti/Al-40wt%V composite powder particles. This means that the 

diffusion of Al and V into the Ti was not complete in the GA Ti/Al-40wt% 

composite powder compact, during heating to the forging temperature without 

holding at temperature prior to forging.  

 

To further study the elemental distribution in forgings of compacts made from 

different composite powders, EDS line scanning and point analysis was carried 

out. The results of EDS line scanning (Figure 6.21) showed that the distribution of 

Al, Ti and V in the two forgings made from HDH Ti/Al-40wt%V composite 

powders milled under different conditions was homogeneous. Therefore there 

were no undissolved master alloy particles/layers in the as-forged parts. The 

forging made from GA Ti/Al-40wt%V composite powder had Ti rich regions. As 

shown in Figure 6.22, four points were selected randomly on the cross section of 

each of the samples to do EDS point analysis. The compositions of the points are 

listed in Table 6.3. From the table, there was no large difference in compositions 

at the four points in the HDH Ti/Al-40wt%V composite powder forgings, but 

there was a large difference in the Al and V contents at the four points in the GA 

Ti/Al-40wt%V composite powder forgings. Although undissolved master alloy 
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particles/layers were not observed, there still remained a non-homogeneous 

composition distribution in the GA Ti/Al-40wt%V composite powder forgings. 

 

 

 

 

 
 
 
 

Figure 6.20: EDS mappings for as-forged parts produced by PCF of composite 
powders milled under different conditions. 
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(a) HDH Ti/Al-40wt%V, 200 rpm/3hrs 

 

(b) HDH Ti/Al-40wt%V, 200 rpm/6hrs 

 

 

 

Figure 6.21: EDS line scanning results for as-forged parts produced by PCF of 
composite powders milled under different conditions. 

 

 

 

 

 

(c) GA Ti/Al-40wt%V, 200 rpm/6hrs 
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Figure 6.22: Points selected for EDS analysis on the cross sections of as-forged 
parts made by PCF of composite powders milled under different conditions. (a) 
HDH Ti/Al-40wt%V, 200 rpm/3hrs; (b) HDH Ti/Al-40wt%V, 200 rpm/6hrs; (c) 
GA Ti/Al-40wt%V, 200 rpm/6hrs. 
 
Table 6.3: EDS points analysis data in Figure 6.22. 
Samples (in Figure 6.22) Point No. Al (wt%) Ti (wt%) V (wt%) 

(a) 1 4.93 89.71 5.36 
2 4.59 93.31 2.10 
3 5.09 90.32 4.60 
4 4.43 91.67 3.89 

(b) 1 5.84 90.42 3.73 
2 4.92 91.54 3.54 
3 4.04 91.70 4.26 
4 4.00 92.05 3.95 

(c) 1 5.42 91.53 3.05 
2 0 99.85 0.15 
3 1.02 98.20 0.78 
4 5.92 87.78 6.30 

 

6.3.3 Microstructures of As-forged MA Ti-6Al-4V Parts 

The oxygen content of as-forged MA Ti-6Al-4V parts is shown in Table 6.4. 

Compared with an unmilled powder mixture, the oxygen content of samples from 

three forged powder compacts made using mechanically milled composite 

powders was much higher. So a substantial amount of oxygen was absorbed by 

the powder particles during passivation of the milled powder particles.  

 

 

(a)                  (b)                   (c) 
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Table 6.4: Oxygen content of forged samples made using a powder mixture and 
composite powders. 

Sample Oxygen (%) 
Powder mixture of HDH Ti and Al60V40 0.36 

HDH Ti/Al-40wt%V, 200 rpm/3hrs 0.55 
HDH Ti/Al-40wt%V, 200 rpm/6hrs 0.50 
GA Ti/Al-40wt%V, 200 rpm/6hrs 0.29 

 

The sample produced by forging an HDH Ti/Al-40wt%V composite powder 

compact, which was milled for 3 hours at a speed of 200 rpm, had an α/β lamellar 

structure, as shown in Figure 6.23(a). Regions with a different microstructure 

caused by a non-uniform composition distribution were also observed. When the 

composite powder milled for 6 hours at a speed of 200 rpm was used to make a 

part using PCF, the regions with a different microstructure disappeared, as shown 

in Figure 6.23(b). So, by increasing the milling time from 3 to 6 hours to produce 

a composite powder, the compositional distribution in an as-forged part becomes 

more uniform. When the HDH Ti powder was replaced by GA Ti powder using 

the same conditions, regions with a different microstructure appeared again, as 

shown in Figure 6.23(c). The sizes of such regions were much larger than in the 

samples made from HDH Ti/Al-40wt%V composite powder milled for 3 hours at 

a speed of 200 rpm, but smaller than those made by forging an HDH 

Ti/Al-40wt%V powder mixture (Figure 6.9(a)). 

 



Chapter 6: Powder Compact Forging of Blended and Mechanically Alloyed Ti-6Al-4V Powders 

202 
 

 

 



Chapter 6: Powder Compact Forging of Blended and Mechanically Alloyed Ti-6Al-4V Powders 

203 
 

 
Figure 6.23: Optical micrographs of as-forged parts made using different 
composite powders. 

 

The microstructures of the samples produced using the above conditions were 

examined by SEM. Forgings made from HDH Ti/Al-40wt%V composite powder, 

which had been milled for 3 hours at a speed of 200 rpm, had a coarse α/β 

lamellar structure, as shown in Figure 6.24(a). While forgings made from HDH 

Ti/Al-40wt%V composite powder, milled for 6 hours at a speed of 200 rpm, had a 

fine, non-uniform α/β lamellar structure as shown in Figure 6.24(b). The forging 

made from GA Ti/Al-40wt%V composite powder had a fine α/β lamellar structure, 

as shown in Figure 6.24(c). 
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Figure 6.24: SEM images showing the microstructures of cross sections of 
as-forged parts made using different composite powders. 

 

6.3.4 Mechanical Properties and Fracture Behaviour of As-forged MA 

Ti-6Al-4V Parts 

The engineering stress-engineering strain curves in Figure 6.25(a) are for 

specimens taken from forgings made from HDH Ti/Al-40wt%V composite 

powder, milled for 3 hours at a speed of 200 rpm. The specimens fractured 

prematurely at a stress in the range 987-1088 MPa before reaching the yield 

strength of the material. With an increase in the milling time, from 3 to 6 hours, 

used to make the composite powder, the fracture stress increased significantly to 

1383 MPa, and two out of the three specimens tested showed plastic yielding, 

with an elongation to fracture of 0.4%-0.7%. The forging made from GA 

Ti/Al-40wt%V composite powder was clearly more ductile, as shown in Figure 

6.25(c). The mechanical properties of the three tensile test specimens cut from this 

forging are listed in Table 6.5. Their average yield strength, UTS and elongation 
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to fracture were 1123.5 MPa, 1203.3 MPa and 2.6%, respectively.  

 

 

 

 

Figure 6.25: Engineering stress-strain curves for tensile test specimens cut from 
as-forged parts made using different composite powders. 
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Table 6.5: Tensile properties for  specimens cut from a forging made from GA 
Ti/Al-40wt%V composite powder, milled at a speed of 200 rpm for 6 hours. 

Sample YS(MPa) UTS(MPa) Elongation to 
fracture(%) 

1 1096.5 1181 2.5 
2 1147 1230 3.4 
3 1127 1199 1.8 

Average 1123.5 1203.3 2.6 

 

The fracture surfaces of the broken tensile test specimens from two forged parts 

made from HDH Ti/Al-40wt%V composite powders were flat and did not show 

any dimples, as shown in Figures 6.26(a) and (b). The fracture mode of both 

specimens was by intergranular fracture. The fracture surfaces of tensile test 

specimens from a forging made from GA Ti/Al-40wt%V composite powder 

showed some dimples and the fracture mode was transgranular fracture.  

 

 

(a) HDH Ti/Al-40wt%V, 200 rpm/3hrs 
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(b) HDH Ti/Al-40wt%V, 200 rpm/6hrs 

 

 

Figure 6.26: Fracture surfaces of tensile test specimens cut from as-forged parts 
made using different composite powders. 

 

(c) GA Ti/Al-40wt%V, 200 rpm/3hrs 
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6.4 Discussion 

6.4.1 The Eeffect of Undissolved Al-40wt%V Master Alloy Particles on the 

Microstructure, Mechanical Properties and Fracture Behaviour of BE 

Ti-6Al-4V Parts 

As discussed in Chapter 4, powder compact forging, as a rapid consolidation 

process, removes pores by shear deformation, which enhances powder 

consolidation. With the blended elemental approach used in this study, the original 

pores in powder compacts and those pores formed by the Kirkendal effect, with 

respect to Al and V diffusion from the master alloy to the Ti matrix during heating, 

are removed by shear deformation during powder compact forging. As a result of 

this, there is good interparticle bonding, without pores at the particle boundaries, 

between undissolved master alloy particles and the Ti matrix in samples produced 

by forging without holding at temperature before forging. This is shown in Figure 

6.10. However, there are plenty of residual pores in the sample, as shown by the 

optical images in Figure 6.9. The reason for the formation of the residual pores 

might be that during cooling after forging, elemental Al and V diffuse from 

undissolved master alloy particles into the Ti matrix, leaving pores behind. With 

increasing holding time to 5 minutes, fewer pores form in the as-forged part due to 

a smaller number of undissolved master alloy particles before forging. Finally 

when the holding time increases to 10 minutes, residual pores are removed 

completely. This might be due to the fact that in this case, there are no undissolved 

master alloy particles in the powder compact before forging, especially since it 

has been shown that there is complete dissolution of master alloy particles and a 

homogeneous distribution of Al, Ti and V in the sample. 

 

Moreover, when undissolved master alloy particles are present in the forged 

sample, an α/β lamellar structure forms around the master alloy particles. When V 

diffusion into the Ti matrix is high enough, β laths form in the microstructure. 
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This was also observed in a Ti-6Al-4V sample produced by hot pressing of a 

mixture of Ti and master alloy powders at 900 oC for 4 hours [2]. When most of 

the master alloy particles are dissolved in the Ti, the microstructure formed 

consists mainly of an α/β lamellar structure. Finally, when the master alloy 

particles are completely dissolved, a uniform α/β lamellar structure forms in the 

sample. In contrast, to get a homogeneous Ti-6Al-4V compositional distribution 

when consolidating a Ti/Al-V master alloy powder mixture by hot pressing [2] or 

warm equal-channel angular pressing and vacuum sintering [3], a higher 

temperature of 1100 oC and a longer holding time of 2 and 4 hours, respectively 

have to be used. So this study shows that the holding time required to get a 

homogeneous composition distribution in Ti-6Al-4V parts is much shorter than 

the ones reported in Ref. [2, 3]. 

 

When a large number of undissolved master alloy particles are present in the 

sample, there is also a lot of porosity in the sample. When under tensile stress, the 

pores act as crack initiators, making crack nucleation easy. At the same time, the 

interparticle bonding between master alloy particles and the Ti matrix might be 

too weak to resist the tensile stress, so it is easy to form cavities along the 

interparticle boundaries. Such cavities also promote fracture. To prove this 

postulation, an examination of the morphology of the fracture surface shows that 

there are a lot of flattened smooth regions left by debonding between master alloy 

particles and the Ti matrix, and also residual pores. With easy crack nucleation at 

stresses lower than the yield strength of the material, the tensile test specimens 

fracture prematurely. When a forged sample has fewer undissolved master alloy 

particles and pores, the non-homogeneous distribution of Al and V are ameliorated 

due to their further diffusion from the master alloy to the Ti matrix. This can lead 

to an improvement in mechanical properties of Ti-6Al-4V forged samples made 

using HDH Ti and master alloy powders, as reflected by their increased yield 

points, figure 6.11(b). The sample still does not have good ductility, perhaps due 

to the presence of remaining master alloy particles in the microstructure. As most 
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of the master alloy particles have dissolved in Ti matrix, it is hard to find the 

flattened smooth regions caused by debonding between master alloy particles and 

Ti matrix in fracture surfaces of tensile test specimens. With a further increase in 

holding time to 10 minutes, all the master alloy particles are dissolved, and a 

homogeneous microstructure with uniform composition are achieved in the forged 

sample. EDS point analysis confirms that the actual composition of the samples is 

the nominal composition of the alloy. These factors indicate that for a Ti-6Al-4V 

alloy, made from a powder mixture, a holding time of 10 minutes before forging 

gives a forging with good mechanical properties and an average elongation to 

fracture of 3.4%. This is close to the elongation to fracture of a sample made by 

forging a pre-alloyed HDH Ti-6Al-4V powder compact (Figure 6.27). Because of 

a significantly higher oxygen content of 0.36%, the ductility of a sample made in 

this way is still substantially lower than that for a corresponding wrought alloy 

part or as-forged GA Ti-6Al-4V part. As a cheaper process, forging a powder 

compact, made using a powder mixture, with a 10 minute holding time before 

forging can be used to replace forging of a pre-alloyed HDH Ti-6Al-4V powder 

compact to make parts for many applications. 
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Figure 6.27: A comparison of mechanical properties of as-forged Ti-6Al-4V parts 
made from a powder mixture with wrought material.  
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6.4.2 The effect of Milling and Oxygen Content on the Mechanical Properties 

and Fracture Behaviour of Samples Produced by PCF of Composite Powders 

To get a homogeneous microstructure and compositional distribution, without 

holding the powder compacts at the forging temperature or by only holding for a 

very short time prior to forging, Ti/Al-40wt%V composite powders produced by 

mechanical milling are used to reduce the elemental diffusion path. As a result of 

using this method, a uniform coarse or fine α/β lamellar structure without 

undissolved master alloy particles is obtained in forged samples, made from HDH 

Ti/Al-40wt%V composite powder compacts, made using powder milled for 3 or 6 

hours at a speed of 200 rpm, without a pre-forging temperature hold. However, 

tensile testing resulted in premature fracture with a significant stress increase with 

increased milling time from 3 to 6 hours. The bad mechanical properties of the 

two as-forged parts could be attributed to their high oxygen content caused by 

oxygen pick up during mechanical milling. 

 

The oxygen content of an HDH Ti/Al-40wt%V composite powder forging can be 

reduced by replacing HDH Ti powder by GA Ti powder. However, during 

mechanical milling, GA Ti powder particles are not fractured by the impact of the 

balls and hard master alloy powder particles are cold welded onto the surfaces of 

the Ti powder particles. This is because the GA Ti powder particles are much 

softer than the master alloy powder particles. This means that the elemental 

diffusion path from master alloy particles to Ti particles is not reduced by milling, 

and therefore there are Ti rich regions associated with an inhomogeneous 

composition in GA Ti/Al-40wt%V forgings. Therefore, milling a mixture of GA 

Ti and Al-V master alloy powders for 6 hours at a speed of 200 rpm is not suitable 

for producing forged Ti-6Al-4V samples with a homogeneous microstructure and 

composition. 
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6.5 Summary 

This chapter has described the use of a blended elemental approach, with 

mechanical alloying to produce Ti-6Al-4V rocker arms by powder compact 

forging at 1350 oC.  

 

 In order to get an as-forged part with a homogeneous microstructure and 

composition, a holding time of 5-10 minutes at the forging temperature is 

required for a starting mixture of Ti and Al-V master alloy powders, to 

remove the effect of undissolved master alloy particles on the mechanical 

properties of forged samples.  

 

 A mechanical alloying approach has both a positive and negative role on 

Ti-6Al-4V parts produced by forging a powder compact made from an HDH 

Ti and Al-V master alloy powder mixture. The positive benefit is a reduction 

in the elemental diffusion path, leading to an improvement in the 

compositional homogeneity; the negative role is the high oxygen pick up. 
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Chapter 7: Conclusions and Recommendations for Future 

Work 

7.1 Conclusions 

 Warm compaction is used to produce HDH Ti powder (O: 0.35%) and 

pre-alloyed HDH Ti-6Al-4V (O: 0.50%) and GA Ti-6Al-4V (O: 0.13%) 

compacts. It is found that with increasing temperature, the powder compact 

density increases. Based on the productivity rate, quality and cost of powder 

compaction, 250 oC, 300 oC and 550 oC are selected as the optimized 

conditions for compacting HDH Ti powder, and pre-alloyed HDH and GA 

Ti-6Al-4V powders, respectively, for future sintering and forging 

experiments. 

 

 Due to an irregular shape and the rough surface of HDH powder particles, 

interlocking and cold welding are the main mechanisms for HDH powder 

compaction, while GA powder with a spherical particle shape has good 

flowability, and interlocking plays less of a role on powder compaction than 

warm welding. Warm welding is therefore the main mechanism for GA 

powder compaction. 

 

 After induction sintering, an equiaxed α structure is observed in as-sintered 

HDH Ti powder compacts, while α acicular in an α/β matrix and a coarse α/β 

matrix with a primary α lamellar structure form in as-sintered GA and HDH 

Ti-6Al-4V powder compacts, respectively. As-sintered HDH Ti powder 

compact have an average elongation to fracture of 7.5%, ultimate tensile 

strength (UTS) of 575.4 MPa and a yield strength of 470 MPa, while 

as-sintered HDH and GA Ti-6Al-4V powder compacts are brittle with very 

little elongation to fracture.  
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 The microstructure in as-forged HDH Ti parts (O: 0.41%) is an equiaxed α 

structure, with twinned α grains due to large localized plastic deformation. 

The porosity distribution depths, on a cross section of the as-forged part both 

perpendicular to and along the forging direction, are 0.24 mm and 0.2 mm 

respectively. This is respectively caused by non-homogeneous deformation 

and a cold shut effect.  

 

 Specimens cut from the centre of an as-forged HDH Ti part (O: 0.41%) have 

an average elongation to fracture of 12%, a yield strength of 661.0 MPa and 

UTS of 796.3 MPa due to large localized plastic deformation. The elongation 

to fracture can be increased to an average of 22.4% at constant stress by a 5 

minute holding time at the forging temperature. An improvement in 

elongation to fracture of 19.5% can be achieved at a lower stress by replacing 

HDH Ti powder with GA Ti powder with lower oxygen content. Also, the 

elongation to fracture can be increased to 25.6% by an annealing heat 

treatment, but its UTS decreases to 715.4 MPa due to grain coarsening during 

the annealing process. 

 

 An as-forged HDH Ti-6Al-4V part (O: 0.52%) has a microstructure consisting 

of a coarse α/β matrix with a primary α lamellar structure. The porosity 

distribution depths on a cross section of the as-forged part both perpendicular 

to and along the forging direction, are 1.85 mm and 1.8 mm, respectively. The 

centre of a forged part has an average elongation to fracture of 6.2%, a yield 

stress of 1160.6 MPa and UTS of 1291.8 MPa. 

 

 The mechanical properties of an as-forged HDH Ti-6Al-4V part (O: 0.52%) 

are improved by a solution and aging treatment and recrystallization 

annealing. After a solution and aging treatment, an equiaxed microstructure 

with acicular α is obtained, and its UTS is increased to 1421.7 MPa, with an 
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elongation to fracture of 7.2%. The elongation to fracture can be significantly 

increased to 12.5% after recrystallization annealing due to a microstructure of 

fully equiaxed α grains. However, its UTS dropps to 1220.6 MPa, but this 

material still offers an opportunity for industrial application for a forged HDH 

Ti-6Al-4V part with high oxygen content (~0.5%). 

 

 The microstructure of an as-forged GA Ti-6Al-4V part (O: 0.14%) is an α 

acicular structure. The porosity distribution depth perpendicular to and along 

the forging direction, on a cross section are 1.25 mm and 1.2mm, respectively. 

This material has an average tensile elongation to fracture of 9.3%, a yield 

strength of 955.3 MPa and UTS of 1063.4 MPa. 

 

 After duplex annealing, the elongation to fracture of as-forged GA Ti-6Al-4V 

parts (O: 0.14%) with a coarse α lamellar structure is increased to 14.3% 

without sacrificing tensile strength. Also the UTS can be increased to 1195.1 

MPa with an elongation to fracture of 9.9% by a solution and aging treatment 

to give an α acicular microstructure. After recrystallization annealing, 

equiaxed grains with a fine α/β matrix structure are obtained, and the 

elongation to fracture is improved significantly to 15.1% with a small drop in 

tensile strength. 

 

 As a rapid powder consolidation process for Ti and Ti-6Al-4V powders, the 

densification rate of powder compact forging is enhanced by pore collapse 

caused by material flow. Shear deformation plays an important role in 

influencing the degree of powder consolidation during a powder compact 

forging process. This is the main reason for the variation in material 

mechanical properties with distance, from the surface to the centre, in 

as-forged parts. Also, the degree of powder consolidation by powder compact 

forging can be improved by a recrystallization process through an 
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enhancement of particle bonding. 

 

 For Ti-6Al-4V samples, produced by forging a compact made from a mixture 

of Ti and Al-V master alloy powders, with an increase in holding time at the 

forging temperature, the Al-40wt%V master alloy particles and pores become 

smaller. Finally the master alloy particles and pores disappear in an as-forged 

part when the holding time is increased to 10 minutes, and at this point, a 

uniform α/β  lamellar structure forms. With a change in microstructure, the 

mechanical properties of as-forged parts improve to give a yield strength of 

1131.8 MPa, a UTS of 1248.4 MPa and an elongation to fracture of 3.4%. 

These mechanical properties are close to those found in as-forged HDH 

Ti-6Al-4V parts made using pre-alloyed HDH powder, but the cost of raw 

powders is lower. Therefore, the undissolved master alloy particles 

significantly influence the mechanical properties of forged parts, and forged 

parts with a homogeneous composition and microstructure, achieved by 

adequate elemental diffusion before forging, can possess good mechanical 

properties. 

 

 For an HDH Ti/Al-V compact made from a master alloy powder mixture a 

holding time of 5-10 minutes at the forging temperature is required an to 

produce a part with a homogeneous composition. This holding time can be 

reduced to zero by processing the powder mixture using high energy 

mechanical milling, to turn it into a composite powder. However, the oxygen 

absorption during milling and powder passivation is serious, and this is the 

main reason for the brittleness of samples produced by forging compacts 

made from composite powders. The deleterious effect of high oxygen content 

is reduced by replacing HDH Ti powder with GA Ti powder, but this can lead 

to a non-homogeneous compositional distribution in the microstructure of 

as-forged parts. 
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7.2 Recommendations for Future Work 

 To simulate the powder compact forging process by FEM, and analyze its 

stress-strain state to explain the mechanism of powder consolidation during 

this process. 

 

 Apply the heat treatment conditions for an as-forged Ti-6Al-4V part on 

samples produced by forging powder compacts made from a powder mixture 

or from composite powders. 

 

 Determine the effect of holding time at the forging temperature on samples 

produced by forging a Ti/Al-40wt%V master alloy composite powder 

compact. 

 

 Conduct fatigue testing on as-forged parts to analyze their fatigue behaviour 

for potential industrial application. 
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