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This article continues a study of function space models of irreducible represen-
tations of ¢ analogs of Lie enveloping algebras, motivated by recurrence relations
satisfied by g-hypergeometric functions. Here a ¢ analog of the oscillator algebra
(not a quantum algebra) is considered. It is shown that various ¢ analogs of the
exponential function can be used to mimic the exponential mapping from a Lie
algebra to its Lie group and the corresponding matrix elements of the “group
operators” on these representation spaces are computed. This “local” approach
applies to more general families of special functions, e.g., with complex argu-
ments and parameters, than does the quantum group approach. It is shown that
the matrix elements themselves transform irreducibly under the action of the
algebra. g analogs of a formula are found for the product of two hypergeometric
functions F; and the product of a F; and a Bessel function. They are
interpreted here as expansions of the matrix elements of a “group operator”
(via the exponential mapping) in a tensor product basis (for the tensor product
of two irreducible oscillator algebra representations) in terms of the matrix
elements in a reduced basis. As a by-product of this analysis an interesting new
orthonormal basis was found for a ¢ analog of the Bargmann-Segal Hilbert
space of entire functions.

I. INTRODUCTION

This article continues the study of function space models of irreducible representations of
q algebras." These algebras and models are motivated by recurrence relations satisfied by
g-hypergeometric functions* and our treatment is an alternative to the theory of quantum
groups. Here, we consider the irreducible representations of a ¢ analog of the oscillator algebra
(not a quantum algebra). We replace the usual exponential function mapping from the Lie
algebra to the Lie group by the g-exponential mappings E, and e,. In place of the usual matrix
elements on the group (arising from an irreducible representation) which are expressible in
terms of Laguerre polynomials and functions, we find seven types of matrix elements express-
ible in terms of ¢g-hypergeometric series. These ¢g-matrix elements do not satisfy group homo-
morphism properties, so they do not lead to addition theorems in the usual sense. However,
they do satisfy orthogonality relations. Furthermore, in analogy with true group representation
theory we can show that each of the seven families of matrix elements determines a two-
variable model for irreducible representations of the g-oscillator algebra. In Sec. III we show
how this two-variable model leads to orthogonality relations for the matrix elements.

In Sec. IV we find a g analog of a formula for the product of two hypergeometric functions
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F1. This is interpreted here as an expansion of the matrix elements of a “group operator” (via
the exponential mapping) in a tensor product basis (for the tensor product of two irreducible
oscillator algebra representations) in terms of the matrix elements in a reduced basis. In Sec.
V we find a ¢ analog of a formula for the product of a ,F, and a Bessel function. This is
interpreted here as an expansion of the matrix elements of the “group operator” in a tensor
product basis (for the tensor product of an irreducible oscillator algebra representation and an
irreducible representation of the quantum motion group) in terms of the matrix elements in a
reduced basis. As a by-product of this analysis we find an interesting new orthonormal basis for
a g analog of the Bargmann—Segal Hilbert space of entire functions.

Our approach to the derivation and understanding of g-series identities is based on the
study of g algebras as g analogs of Lie algebras.>® We are attemptmg to find ¢ analogs of the
theory relating Lie algebra and local Lie transformation groups.”® A similar approach has been
adopted by Floreanini and Vinet.>'? This is an alternative to the elegant articles'>2! which are

based primarily on the theory of quantum groups. The main justification of the “local” ap-
proach is that it is more general; it applies to more general families of special functions than
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does the quantum group approach.
The notation used for the g series in this article follows that of Gasper and Rahman.?

Ii. MODELS OF OSCILLATOR ALGEBRA REPRESENTATIONS

In Ref. 1 a g analog of the oscillator algebra was introduced. This is the associative algebra
generated by the four elements H, E_, E_, & that obey the commutation relations

[H7 E+] =E+: [Ha E—] = _E—:
2.1)
[E+1E—]=_q_Hg’ [g’ Ed:]=[g, H]=0-

It admits a class of algebraically irreducible representations t,; where ¢,A are complex num-
bers and ¢540. These are defined on a vector space with basis {e,:7=0,1,2,..,,}, such that

! =1

q q
E+en=/—:Ten+l’ E_e,=( I—g

1 €h_1> (22)

He,=(A+n)e,, Fe,=¢% e
If A and ¢ are real with £>0 (as we will assume in this article) then t¢, is defined on the

Hilbert space K, with orthonormal basis {e,} and on this space we have E, =(E_)*, H*=H,
and £*=&. A second convenient basis for K is {f,:n=0,1,...,.} where

E+fn=fq_(n+l)/2fn+lr E—fn= —n/2

fn 1s

(2.3)
Hfy=A+n)fy Efu=C""""f,.

Here, f, = (q;9),/(1—¢g)",. The elements € = qq_Hg+(q—-l)E E_ and & lie in the
center of this algebra, and corresponding to the irreducible representation t,, we have
€ =¢*, ¥ =¢?¢""'I where I is the identity operator on K.

A convenient one-variable model of t,, is given by the basis functions {f,(z)=z"
n=0,1,2,...,} in the complex variable z where the action of the oscillator algebra is
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(2.4)

and T5f(2)=f(4"2).
The inner product on Kj is

1 2T —g! . -
o=y [ [ rueistea - P, dr do,

where

k -+
[( Fehapr=ki-q) T Flae.

ep,= ‘f( 1=q) Z’, n=0,1,..,
(g:9),

form an orthonormal basis for the Hilbert space K, of all functions

The functions

o0

f@)= X ¢, 7"

n=0

such that

cal?

ok

These functions are analytic in the disk |z| <(1—g) ™"/
A second model of T/,l,l is determined by the orthonormal basis functions

(1-g)"
e, —gt(nt1)/4 ——z", n=0,1,..,
n=q (@),

E, =z, E_=—

and the operators

= T

(2.5)

d
— — _ P2 A1
H=A+z_, &=,%""I

The inner product is

(f,g)=f f ® f(g@plzdx dy,

where z=x+iy and
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1—¢
—(1—g)zzig) ,mIng™

p(z,z_)=( T.

The model Hilbert space Ky(z) consists of all functions

fl= 2 ¢, 2"
n=0
such that

i |cn| 2q—n(n+1)/2

—_—< .
2 (- *

This is a space of entire functions; it has the kernel function
S(Z )= X e )ey(2) =(—(1-9)ez'59).,. (2.6)
n=0

Using the relations (2.3) and the g-exponentials

i z 1 ‘ .
&)= Zo (@0r 30, o |z| <1,
2.7
gk=Dn2 2D
Ef=)= kz—:0 (59« o L=
we can define seven ¢ analogs of the matrix elements of 1.,
(e+,e— )Z eq(BE )eq(aE )f,l z T(e+’e_)(a’B)fn's
(e+.E=): e(BEL)ELE_) fo= 2 Tyy""(aB) fr,
(e—E+): eBE_)E,(@E,) fu= 2 Tyy' " (@B) fr,
(E+.e—): EBE,)e(aE_) fu=2 TR (aB) fo, (2.8)

(E—e+): E (BE_)e[aE.)fo=2 Ty " (@B) fu,

nl

(E+.E—): EyBE)E QE_) fo= 2 Ty " (@B) o,

(E—E+): EBE)E(GE,) fu=Z Ty " (@B) for-

[The series for the matrix elements T;f;”“(a,ﬁ) does not converge.]
Since E% = E_ the following relationships hold:
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T (a,B) Ay =T T (B ),

nn'

T P (0B Ayy=TE* (B ), TET 5 (0,B)Apy=TE P (Ba), (29)

nn' nn'

TEE) (0.8 Ay=TE I (B ), TEF) (0,8)4,,=TE D (Ba).

nn’ nn'

Here

R e’
~ (4:9), (=™

n'n

Since eq(z)Eq( —z)=1, we have the identities

(a) ; Tf:;’e—)(a’ﬁ) Tﬁ!f_,E-H(_B’_a) =6n'na
(2.10)
() X TE (@B TE) (—f,—a) =6y
h

Using the model (2.4) to compute the matrix elements (which are model independent) we
obtain the explicit results

T (0,8) =

r_ 1, ’_ —n 2
(¢" ~""%9) . (BO)" nq(n—n')(n+n’+1)/4 é 7> O.q —apl
(3:9) Fllgr—n+1 P 1¢

—n'+1, 41, —n’
=(q" e ’q)‘”(a/)", i (n’—n)(rz’+n+1)/42¢l
($9) (" h0) o (1—g)" "

q—n” 0 _an2
X powr @14 )

_ (@50 (@D (@) -" oBL?
T(E+e )(a’m=‘1'l 9 \q q gt =M n k4 g q

! ERT Srumpe
(¢:9) (" h9) ,(1—g)* " s T g

_@" ") o (BOT " q(,,,_,,,(,,,_3,,_3),41¢1( " apl’q “"),

(D) w g T
(2.11)
' —n4-1, n— —n n'—n
TEHE=) (g 3)=(q" ")« (BE) ”q(n’—n)(n’—-Sn—S)/4 é 7 g —apl’q
n'n 9 (q;q)w 1%2 qn'—n+1, o l_q

(@) W (¢S w (@)
(20) o (@ 0) o (1—g)"™"

el
X qn——n'+l’ O’q’ l_q 2

(n—n')(n—3n’—3)/41(1’2
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((—aB*/ (1-9)2)0) o (8" "+ g) o (2" "
(4:9)

q--n’ 0 ——aB/z
q"l_"+1 qu(l_q)q

Ton (@) =

><q(n’—n)(n'—3n—-3)/42¢I (

_U=eB*/(1-9)a)d) o (4" " *150) u (6" +59)  (BO" ™
(89 (@), (1—g)" "

q_"', 0 —anz )

X (n—n")(n—3n"'—3)/4 , gy ————
q 2¢1 qn_n +1 q (l_q)q

The matrix elements T'(¢+e=) T(E+e=) T(E+E=) are polynomials in « and B and the
matrix elements TE—F+) are entire analytic functions of these variables. We will see that the
remaining matrix elements can be expressed in terms of these four.

Each of these families of matrix elements determines models of the irreducible represen-
tations 1, ;. This is a consequence of the commutation relations (2.1). To see this we make use
of the following formal power series results for linear operators X, ¥:

Lemma 1:

o0 n

EeDYe(—ad)= 2 0y,

(X, Y],,

where
(X, Y]o=Y, [X, Y], =X[X,Y],4"—[X, Y], X, n=0,1,...

Lemma 2:

oo Bn
e,(BX)YE,(—BX) = ,Eo @ X ¥l

where
[X, Yo=Y, [&X, Y];,+1=X[X, Yl,—¢"[X, Y], X, n=0,1,...

Let X and Y be linear operators such that YX=gX7Y. A straightforward formal induction
argument using this property’® (Ref. 22, page 28) yields
Lemma 3:

k

(Y+X)r= ¥

(6:9) ¢
—_ x/y*¢
=0 (@D Aqq) k¢

>

e X+Y)=e,(X)e,(Y), EX+Y)=E(Y)E,(X).

As a consequence of Lemmas 1 and 2 we have
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a
(2) E(aE_)Ee(~aE )=Eptq—mg ",
(2.12)
B —H44
(b) ey BEVE_Ey(—BE)=E_~7— -4
Note also the easily verified identities
E(—BE,)q e (BgE, ) =g ",
(2.13)
E,(—BgE_)q "e,(BE_)=q ¥
Iterating Eq. (2.12a) and using Lemma 3 we obtain the operator identity
aB/Zq—H+A—1
e,,(——————l_ )eq(ﬂE+)Eq(aE_)=Eq(aE_)e,,(BE+) (2.14)
and Eq. (2.12b) yields
aBZZq——H+/1—l
Eq(BE+)eq(aE_)eq( s )=eq(aE_)Eq(BE+). (2.15)
Note that Eqgs. (2.14) and (2.15) imply the relations
_ aBl*q~" ! _
T (Ba )—e,,(———li 7 TEHE) (0,8,
(2.16)

_ aplq—"! _
T4 (Ba) =eq(—1;3———) T (a,B).

Thus the matrix elements T ffn_'”") are well-defined for |aBf %" —1/(1—q)| <1 and the
matrix elements T,(,f;’EH are well-defined for |aB¢ g™ ""1/(1—¢)| <1.
Considering the matrix elements (e+,e— ), we see that the operator identities

1
() eg(BE)eg(@E_)E_=— (I—-Ta)e)(BE )e,(aE_),

1
(b) e,(BE,)e,(aE_)E, =5 (I—Tg)e,(BE, )e,(aE_)

al?

i gyg T67e 4 e BE Do aEL),  (2.17)

(c) [H, e,(BE,)e,(aE_)]=(Bdg—ad,)e,(BE  )e,(aE_)

imply

1—g" _ 1 _
(@) €q~" 1 T V(@B =3 U=TI T, (ah),

J. Math. Phys., Vol. 34, No. 11, November 1993
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1 al’q"

(b) fg—mDTlere) g gy ( 5 U-Tp)+ R 1) Ty (@,B),

nnt1 (1—gq)

(2.18)
() (n—n")T ) (a,8)=(ad,—BIp) T (a,B),

where T, f(a,B)=f(qa,8). Thus the following set qf operators and basis functions defines a
realization of the representation t4,_,., (§=¢ ity O T

- al?
(e+,e—): E+=Eﬁ+mq TgT, ",
(2.19)
E‘i, fl, f—n’+n=Tf::’e_)(a’B)’
where
~ 1 A ~
E*=-U-Ty), E*=§(T;‘—I), H=ad,—Bdp. (2.20)

Due to the invariant operator € =/21=q‘§+1$'+ (g—1 )E+E %, we can write E in differ-

ent ways. Indeed, eliminating EP from E + and (a/q(1—¢))T 1% we can write the raising
operator in the simpler form

E ot 58\
+‘(q(1—q)+ ) a-

For the matrix elements (e+,E—) the operator identities

(8) €(BE,VE(aE_)E_ =2 (T3'~D)e(BE,)Ey(aE_),

(2.21)
1
(b) eq(BE+)Eq(aE_)E+ =E (I_ Tﬂ)eq(BE+)Eq(aE_)
yZ
+ (1—9)q Tgq H+*e,(BE,)E,(aE_)
and Eq. (2.17¢) imply
1—
(a) /q_ml—_f TSHE (@) =2 (T3 - DTS (@B,

_"’

1 2
(b) /q—(n+l)/2T(e+,E—)(a’B) _ (_ (I—Tp) +a q

(e+,E=)
nn+1 B (1—q)q TB) T,,ln (a.B), (2.22)

(©) (n—n")TSHE ) (a,B)=(ad,—BI T ().

For the matrix elements (E+4,E—) we have

J. Math. Phys., Vol. 34, No. 11, November 1993
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1—
(a) £g—? =7 TENE ) (g.8) =§ (7' -DTEE (a8,

1_q n'n—1
5
_ q,. _ al’q”" _
(b) £~ VAT 0 ’(a,ﬁ)=(E(Tﬂ‘—1)+(1_ e T,g)Tf,i‘":'E (a.B),

(2.23)

©) (n—n")TEFE)(a,B) =(ad,—B) TP (a,B),

whereas for the matrix elements (E+4,e—) we have

1— 1
(a) lg~? 1= T ") (a,B) == (- THTE* ) (a,),

1 —q n,n—1

2,,—n

al’q " -
(T =D+ Tgrgl)Tff,,” Y(a.B),

q 9
(1—-q)q
(2.24)

(b) /q-‘"+‘>’2T§f;ff;’(a,ﬁ)=(B

(©) (n—n" )T (a,8)=(ad,—BI T (a,B).

n'n

Due to th'e invariant operator € =¢2I we can write the raising operator E + =EP
+(@lg" /(l—q)q)T,gT;l in the alternate form

E ( al? EB)T-‘
== T @

For the matrix elements (e—,E+) we have

1—¢" o 1 al’q™" _
—n/2 (e—,E+) 27— _ —1 (e—,E+)
(a) /q l—q Tnl’n_l (a;B) - (B (I Tﬁ) (l—q)q Tﬁ Ta) Tn’n (a)B)y
(b) £g=FOATED (0f) =2 (T DTS (@B, (2.25)

(©) (n—n")TETEY) (a,8) = (BIg—ady) TSP (aB).

Due to tl}e invariant operator € =¢2I we can write the lowering operator E_ =E*
—(af?q™ " /(1—q)g)T5'T, in the alternate form

, —al? =g
E =(1 +E )T,,.

For matrix elements (E—,e+) we have

1— : g
(a) £~ T% TE ) (0,)= (% (T7'-D —%:‘%E T;‘) TE=2) (.,
1
(b) £g~ DAL (@B) =— I=T) T, " (aB), (2.26)
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(©) (n—n")TEH)(a,8)=(BIg—ad) To ) (a,B).
Finally, for the matrix elements (E—,E+) we have

1— g
(a) /q—n/Z__g_nT(E—,E+)(a,B)=(z (TB_I—I)—a q

—1 (E—,E+)
T—g Tt B -gq 17 Ta)""'" (@B).

— 9 - —
(b) £~ VAT (@) = (T =D T " (aB), (2.27)

(©) (n—n" )T F ) (@)= (BIp—ad,) TP (o)),

where the lowering operator E_=EP_(af "/ (1—-9)q)Tg T, can be expressed in the
alternate form

—al? .
E’_=( a +EB)T,,.
l—q

These relations are equivalent to g-difference relations satisfied by various
g-hypergeometric series. Furthermore, it is easy to verify from the series that the relations hold
also for ¢ and n’ complex. Thus we have a wide variety of two-variable models of algebraically
irreducible representations of the g-oscillator algebra. We note that this approach is closely
related to the factorization method of quantum mechanics.?

For later use, we also consider a class of algebraically irreducible representations R(£,5,1)
such that the spectrum of H is bounded neither above nor below. Here, ¢, 8, A are real numbers
and £,5>0. A convenient basis for the representation space K is {f,:n=0,%1,%2,....} where

1467 "
E+fn=/fn+l’ E—fn=/1—_qqfn—l’ (2.28)

an=('1+n)fn’ gfn= "‘ﬁq’l_]afn'

There is an inner product on K, with respect to which the f, forms an orthogonal basis and
E_ =(E_)* H*=H, and €*=%. We can require that ||f,,||2= (-89 %) ./(1—¢q)". The
central element € =qq~#% + (¢—1)E +E_ corresponding to this irreducible representation is
% = — ¢ *I where I is the identity operator on K.

One of the families of matrix elements of R(£,5,4) is

L]

(E+,e—): E BE,)e aE_)f,= 2 T (aB)fw.

n=—c

Explicitly

(=" *Y/8:0) o ("7 T 5q) (2 l8/g)" "
(4:9) o (—q"+/89) , (1—g)" "

_6q"‘”'. aﬁfz
X q”"’""l’q’_l_—‘l

T(E+;e—)(a B) =

’_ ’ 12
(' —n)(n'+n—1)/ 1¢1

J. Math. Phys., Vol. 34, No. 11, November 1993
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(T ) L (BOY
B (#9) .,

_Kp—n 2, n'—n
q(n'__n)(n’_n—l)/Z 1¢1 ,‘iqn_f_l;q’_a_ﬁ_fqn_ .
g 1—¢

(2.29)

With respect to the orthonormal basis {e,=f,/||f,/|} the matrix elements of the operator
Eq(BE+)eq(aE_) are

Etem) (- +/8,9) 8" o (@) (el
’ )= 1—
Swn @B =g,y (170 (44)
e —8¢~"  aBt?
X gtn'—mn +n_3)/4l¢1(qn_n,+l;q,———1_q). (2.30)

. ORTHOGONALITY RELATIONS FOR MATRIX ELEMENTS

Identities (2.10) yield orthogonality and biorthogonality relations for g-hypergeometric
functions. For example, Eq. (2.10a) can be written in the form

o (g@)alzg™" D s ", 0 s " 0 g
2o @On_w(@Dn_n P\ gt PE P ot By

(g:9) g "D

' <1, .
(Z/q;q)w 6nns |Z/q" | 1 (3 1)
[By its derivation, identity (2.10a) is valid as a formal power series in the variables a, B. Using
the ratio test to determine the domain of convergence corresponding to t,, we find that the
series (3.1) converges for |z/¢"+!| < 1]

Equation (2.10b) can be written as

—(n+n’+l))hqh(h—1)/2

i ($:9)4(—2q
Prr (6D h—n (G981

1¢1(q;.q:,,'+1§q’zqh_"’) 1¢1(qhq—_n+l;q’zqh—")

=(—2)"(g;9) (27" i) g 3"t V2%, (32)

convergent for all z.
A nontrivial extension of identity (2.10b) is

; TS ) TE (B, —a) =Sun(1,8),
where the matrix elements S,/,(7,8) are defined by
eg(BE_)E,(YE_) fv= 2 Sun(V\B) -
nl

Explicitly

J. Math. Phys., Vol. 34, No. 11, November 1993
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( —B/)n_n,(q_n;q)n—n’

Swn(VB) = (l—q)n_n'(qﬂ)n—-n'
0, if n<n'.

q(n—n')(1+n+n,)/4(_g ;q) s if n>n’

n—n’

In the special case y/B=—q" ~"*"*—"l where k[n]€{1,2,..,n} for n>0 and k[n] is arbitrary
for n<0 we find the result

(g:9) 4( —zg—"HFln=n'1yhghth—3)/2 " g, zg"+Hln—"] " hn
h=0 (49 h—n (@:9) h—n A qﬁ_"'ﬂ’q,z o g i

=(—2)"(¢;9)x(z;9) mq—n(n+ 1)/25n’n

convergent for all z. (In the case of the Lie algebra of the Euclidean group in the plane, the

analagaiie tdamiitioe gea tha Tlosoens T aceecaanl 2dottet o B o Macoal Foo ol 24132 1

d.lld.lUBUub lUClll—lqu are wie ndllbUll—LUlIllIlCl luCIll.ll.le 101 q-DCbbCl lullbl«lUIlb ; LOCIC lb a

similar extension of (2.10a).
In Ref. 1 orthogonality relations for the matrix elements 7€**~) and T(+*~) are de-
rived, analogous to the Peter—Weyl-type orthogonality relations for the oscillator group.

IV. A TENSOR PRODUCT IDENTITY

Given the irreducible representations te,a,8nd e, 4 oOn the Hilbert space K, we define the
tensor product representation 14, ; ® 1, on the space K, ® K, by the operators'

F+=A(E+) =E+ ®q(l/2)H+q_(1/2)H®E+ ,
F_=AE_)=E_oqVPH g~ UDEQE (,¢%+k3),
(4.1)
L=AH)=HeI+I®H,
F=AF)=Fl+IeF=(Ligh '+ "Hel,

where

g Cigh+ g
K1=———‘72—‘, K2=—/%?'2—. (42)

Then we have

[L,F l=+F,, [F,,F_1=-%q¢%

(4.3)
[F, F . ]=[¥%, L]=0.
We introduce an inner product { -, ) on K, ® K, such that
41A brdy) AL1A) (/ Az) (— (k1/3) g2 ), ;
<f( ! ‘) ( 2 2)’f v ®e 27 ) ahh'ajj (l_q)h+j ! (q;Q)h(Q;Q)j"“é
(44)

Then we have

(F . p1,p2)=p1,F_ps), {(Lp1,p2)={p1,Lpy)
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for all p,,p,eK,®K, that are a finite linear combination of the basis vectors f,(,{1 A

® eﬁ.’z A
In Ref. 1 the representation Tea, ® Te,, Was decomposed into irreducible components,

through use of the model (2.4). The result is as follows.
Theorem 1:

0

Tepa ®To0,= & ® 12,4+ A5
For k,s=0,1,2,..., there is an orthogonal basis {f,} for K,® K, transforming according to

7 —(k+1)/2
F+f&k=(sq k+1)/ fs,k+1’

k

~ 1—¢q
F—fs,k=(; q—k/Z

g foken (45

Lfop=(A1+A2+s+k) for,

where

b= g (g ).
Furthermore

(g:9)(5:9)«
(1—@)* M~ (ki/k) g ig),

Expanding the orthonormal basis {¢}} for K, ® K

=Sl ™ ks sk=0,12,..

(fs,k ’fs',k') =6:s’8kk’

in terms of the orthonormal basis

(£1,A1) (€3.49) __ p(€1,A1) (£3,A2) (£1,41) (£4.,4)
e, " ®e, T=f, ®e /|| f ®e; |

we obtain the Clebsch—~Gordon coefficients

fl,/'h; fz,/lz; s e(fl’l‘)ee(fz’lz).' (4.6)
my o omy o koM m

G= 2

ny,ny

These coefficients vanish unless n,+n,=s+ k. Furthermore, they satisfy the identities

CLA €nhy; 8
= ’
ny; ny; k' 7 k>

b

ny,ny

/1,/11; /2,12; s
[ ny; CHE I

4.7)

2,

s,k

;’

1A oAy s
[m; n;  k

[/1,/11; 2,A2; S]

’ ’ nan
ny; ny, ok 1
gl " 2> 7

where n) + n, = n} + nj = s + k = s’ 4 k'’ and we are assuming that ¢,,£,>0and 1,,4, are
real. Explicitly, we have
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<4l/2)+(/12/2)+s+k/1>"2

1A Cahy; 8 -
[ 1,41 2:42 ] ={;—k(q(3.2/2)—(.v/2)(l)k(q 7
Kyt)

n; ny; k
q
) (— (k/k)g 2 ) (g 1
X{g7%
T m (T 250, (450) (G50 (T50)
- - K
g™ qgh —Zgmh
X362 K1 9 |» (4.8)
ql—n2+s’ 0

where we have corrected some typograph1ca1 errors in the corresponding expression (5.11)
derived in Ref. 1. The coefficients can be written in the alternate form

WD -G/ -1y, ) n,

A €ady; s ~ q9
7=k (A2 — (/) p K|

[ "'/s (q 2 /l) Klfz
q

ny; ny; k

(— (k1/K2)g 227 55g) (— (k1/k2) 2 59) (450D n

n2] 172

X
(4:9),(2:9)s(4:9) &
q~—n2, ql +Ay+s
Xat1 s@g ! (4.9)
K PAR)
K

We will compute the matrix elements of the operator e, (BF  )E (aF_) with respect to
both the tensor product basis e((‘ 4 g e ffz A2) =e,, ® e, and the reduced basis ¢}.

From Lemma 3 we have the formal identity
J(BF )E(aF _)=e,(Bg~ VP E  )e (BE, ® ¢V Efag~ """ ® E_(x1g"+xy))
XE (aE_®qPH)
=e,(Bg~ PH @ E )Efag~ V@ E_(x1g"+K))
X e (BE, ® ¢ VPH*)E(aE_® ¢VPH),
The matrix elements with respect to the tensor product basis are given by
1 ® Fall * [f s @ FrllS bt (B)

=<eq(BF+)Eq(aF—)fm®fn’fm' ® fuw)
=(e,(Bg~VPHQE YEfaqg~VPH @E_(x14"+k,))

Xeq(BE+ ®q1/2H)Eq(aE— ®q(1/2)H)fm ® fsSfm ® fur)
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= <eq(BE+ ® qu2+”)/2)Eq(aE— ® q(/12+n)/2)fm ® fns
Efdg~*1+m 2 @ (k17 +1)E Ve (Bg™ M+ ™2 QE_) s © fur)
=(e,(Bg"2*"2E  )E(aq"** ™ 2E_) f 1y, fomr)

X (e,(Bg~ M1 +™2E VEfaq~M+m2E_ (kg7 + 1)) fasfw).  (410)

Thus, the matrix elements factor. Explicitly, we have

m'n’,mn

(:0) m(§:0) ol — (K1/K2) g 2 55g),(1 —q)""*”"""”] 2

SEHE) (q,8) = [ ;
K5 7M@) mr (G9) w(— (K1 /K0) 250

(@)™ (aryly)" " (= (ki/Kp)g M2+ q)g = m 3 At e =t

(GD) nnr (G0) ik — (1 /K3 G2 13q) g~ (B30 —2m" =24, =3)/4

—m' aB/qu—m'+n+/12
X 1¢1( ? l : )

q,n_m’+1;q’ l_q
q__n: __’_(_2_ q—'lz_”' aB/ZIqq Ay+n
Xabi| W T . gy (4.11)
qn—n’+l ’ (I—Q)Q;'H-m'
The matrix elements in the reduced basis are
SEHET(a,B) = (e(BE+)E(aE_)e €p,)
. k' —k 172~ k—k'
_[{e9:1-0) (&) Uk =3k 3178
CHY (49 k-1
K 772 k—k'
q af? "

We note from Egs. (4.6), (4.10), and (4.12) that the following identity, relating the two
classes of matrix elements must hold:

/1,/11; /2,/12; §

(e+,E—)s
S a
m; n, m4n—s (@,B)

m’'+n' —sm+4n—s
q

S(c+,E—)(a,B) — 2 [

m'n’,mn

m’; n’; m'4-n'—s .

/1:'{1; /2912; s
x[ ] .

This leads to the identity

’ ’

d"'(cq;q)n’(dQQQ)m q—m q_nl’w_lql_n s
(cdg:9) o () m (W3q) 191 dgq 50,2d | 21 392
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mE (wig) W™ ¢(q“" . dq“‘"’)
o =0 (q;q)s(q;q)m’+n’—sll cdq o w

-1 —n'

S s Pl
qw 7 g cdgm jH"1) 24’1(

"’w

><2¢1( aq™ -’“) (4.13)
The result (4.13) is established, initially, only for c=¢, d=¢” where p, t are non-negative
integers. However, a standard analytic continuation argument extends it to all complex values
of z, w, ¢, d such that |cdg| <1.

V. A SECOND TENSOR PRODUCT IDENTITY

The g-oscillator algebra, modulo the ideal generated by &, is isomorphic to the enveloping
algebra of the Lie algebra m(2) of the Euclidean motion group in the plane.>®!"!* Thus the
irreducible representations of m(2) induce irreducible representations of the g-oscillator alge-
bra. We focus our attention on the induced representation (®),0>0. The spectrum of the
operator H corresponding to (@) is the set Z={0,+1,=+2,...,} and the complex representation
space K, has basis vectors p,,, meZ, such that

Ed:pm=wpm:i:1’ Hp,,=mp,,, ng=0- (5.1

There is an inner product on X, such that {p,,,0,,/> =8,,,,"st,m’ € Z. On the dense subspace %~
of all finite linear combinations of the basis vectors we have

<E+fsf'> =<f,E—f'>: (Hfaf'>=(f’Hf’> (5-2)

forall f,f'e %, so H=H*and E% = E_.
A simple realization of (w) is given by the operators

H=

®
=u_ E =wu, E_=;‘-, &=0 (5.3)

acting on the space of all linear combinations of the functions 4™, ¥ is a complex variable,
meZ, with basis vectors p,,(u) =u".
Consider the following g analog of matrix elements of (w):2

E BE.)eaE_)p,= 2 Tur(aBpw, |oB|<l.

n=—o

Explicitly we have

(g% ~"*Lg) . (Ba)™ "

’ ’ 0 ’
T’(l{i;,'e)(a’B) = (q;q)m q(n —n)(n —n—l)/21¢1(qn,_"+l;q’_a3w2qn —n)
(qn—n'+1;q)w(aw)n—n' 0 )
= 38— . 5.4
(q;q)m7 1 l(qn +1q an) ( )
If af # 0 we can express these elements in terms of the Hahn—Exton g-Bessel function!’
(g"q) .,
I (z9)=—""7"— (%)= z 1¢1( V+1aq’qzz) (5.5)
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Indeed, setting a=ire™, B=ire~ ", we see that in terms of the new complex coordinates
[r, ¢€*] we have

TEH 1, ] =MD +N=ngn=mD2), | (rog~"%q). (5.6)

[Note that J_,(z;¢)=(—1 )”q"/zJ,, (zg™%q), for integer n.]
We define the tensor product representation (w) ® 1,,, acting on the space K, ® K, by

F, =A(E )=E,_ @q(1/2)H+q—(l/2)H®E+,

F_=AE_)=E_oqVDH  ,~WDHgE |

(5.7)
L=AH)=HolI+{+I®H,
F=AF)=I¥%.
By construction
[L,F =+F,, [F,,F_1=—%q¢71%,
(5.8)

[F, F, 1=[%, L]=0.

Note also that with respect to the induced inner product we have F, = F* , L=L* F =F*
on the dense subspace of all finite linear combinations of the basis vectors p,, ® f,,.

We will decompose (w) ® t,g; into a direct sum of irreducible representations of the
g-oscillator algebra. To carry out the decomposition explicitly it is very useful to employ a
function space realization of the tensor product representation. Using the models (2.5) and
(5.3) we find

[0}
F+ =gq l/2qu:'/2+/zT;-l/2’ F_ =q Ar2 ; T1/2 Tu—l/2(I_ T;l),

7 (1—g)z
L=ud,+28,+4, F={*"\

For the decomposition we first determine a basis for X, ® K, that consists of simultaneous
eigenvectors of the commuting operators L and

C=qq LF +(g—1)F F_. (5.9)

Introducing new variables # and r=z/u in place of u, z we see that the functions
{ ’(1—q)”/(q;q),,ugq"(”“)/“r" = ube,(r):n = 0,1,2,..;6 = 0, = 1, + 2,..,} form an ortho-

normal basis for X, ® K. Clearly, the possible eigenvalues of L on the space are {£+A:£=0,
#1,%2,...,} and the eigenspace % corresponding to eigenvalue £+ A consists of the functions
Jje such that

Jeuz) =ubh(r)=uf EO caen(r), 20 |ea]? < 0.

n=

Furthermore K, ® Ky=X7_ _ & ;. The restriction of € to #; takes the form ¥ jg(u,z)
=u5%§h(r) where j = 4*h(r) and
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~¢ A, A+1-£)72 a-1-0n22%  __tp
Ceh(r)=|q" +(q—1)(¢ %’ T,+q wlrT,)—|q —+97

X(T,—1) |h(r). (5.10)

The symmetric operator ‘é;;Ko(r) —K,(r) is bounded and its closure is self-adjoint; fur-
ther it belongs to the Hilbert-Schmidt class.?’ To see this we use Eq. (5.10) to determine the
action of € ¢ on the orthonormal basis {e,(n}

@ ser=— (- (I—g g+ 20 e, | +(g=5C?

—(1—g)dwNg"e,— J(1—q) (1—g")g P8+ D20 fe, ;. (5.11)

We see from this result that

2% 4 (1_a)? 4
(ngen:en)=q +1(_q2q) o < oo, (5.12)

Mg

n=0

which implies that the closure of the domain of the operator defined by Eq. (5.11) is # and
that this bounded self-adjoint operator ¥ is Hilbert-Schmidt.
The eigenvalue equation ¢ ¢ h(r)=ch(r) can, from Eq. (5.10), be expressed in the form

. (14 A1+ 2010 f)
’h(')_(1+(q—l)q‘“”f’”rw//)(l+q(“+“5’/2r//w)

h(r),

with solution

((1—q)g*+1+92p/£,9)  (— g 41— 218 f i),

e(r)= —IFT5B72
(—q cr/wt'q)

(5.13)

unique up to a multiplicative constant. Note that the functions f ¢(u,z) =u§h§(r) satisfy the
relations

Fifi=q"f G, F_fi=a"7

c
e (¢ ) b

(5.14)
Lfi=(A+8)fs Ffi=4"'Cf¢.

It remains to determine for which values of ¢ the functions hg(r) belong to the Hilbert
space Ko(r). Since the elements of Ky(r) are entire functions, there are only three possibilities

case 1: C=q_§°/2, §0€Z, §=§o,§o+l,§o+2,...,
case 2: c=—(1—q)q**tw? £cZ, 5=0,1,2,.,
case 3: ¢=0.

In case 1 we have basis eigenvectors (m=§—§&;,)

[ (u,2) =((1—q)g*+50+m+ D 20/ £g) (—g A= 80=m 020 f0sg) b0,
(5.15)
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c=q~%/? m=0,12,...

A direct computation for m=0 gives [| £ |> = ( — (1 — ¢)g**%w?*/¢?q),, . Then from the
recurrence relations (5.14) and the fact that FJr = F* we find
e Frg— Gty m
Il 2= (W) g ™"V gy (— (1—g)g 5002/ %),

In case 2 the eigenvectors are (n=§)

FENu,z) = (=g 4" V"%l firyq) ((1—)g P+ D 2/ L ig) i,
(5.16)
l+s602’

c=—(1—q)q n=0,4+1,+2,..,

and the normalization is

o’ 2
llf[’]I|2=(q;q)sq“’(——(l—q)q’””+1 ,q)( q"“”mz;q)nc

Case 3 does not occur because h° does not belong to the Hilbert space Ky(r). To see this,
we expand h in terms of the orthonormal basis: hg—— —0 @€, From Eq. (5.11) and the
defining equatlon G hg—O we obtain the recurrence relatlon

(45— (1 —) g0 a,— (1 —g) (1—g" g A—-+m 20 la,, |,
—V(1—g)(1—g™)gA—5+m=D720 (g, =0 (5.17)
for m>1 and

(gt~ (1-g)g *o?)ar— (1-9)g* =9 0 fa,=0

We require that gy + 0 is real, so that all a,, are real. Setting p,,=a,,, /a,, we see from Eq.
(5.17) that

(m+1)/2 +14 172
g Pm_ (1—4" -
pm+1pm=(l_qm+2)l';2_(l_qm+2) q 1/2——-"4mpm_-Bm’ (5.18)

where v is real and does not depend on m. Since 0<¢ <1 it is clear that we can choose an €
w1th 0<e<1 and an integer my such that |B | >1+€ and |4,,| <€ for all m>m,. Since

(r) is not a polynomial we can ﬁnd an m’> Mo such that a,,,520. Now either | p,,/| > 1 or
[p,,, |<1. If |pm|>1 then am,+1 > a,. X |py |<1 then from the fact that
Pm’ +lpm’—A 'Pm’_B ’ we have |Pm +1Pm’|>le’!_|Am’pm’| >(1+€)—e so
| Pom? +1Pm| > 1 which implies that a2 r 42 > @, Proceeding in this manner we can construct a
sequence of integers p; <p, <p;<:** such that a, 70 and a e af,k for k=1,2,.... Thus
3 - diverges and case 3 cannot occur.

We have computed the following eigenvalues of €, each with multiplicity one:

g~ 5tm?, —(1—q)g**"e?, m=0,1,2,...
Summing the squares of these eigenvalues we find
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© q—2§/4+(1_q)2quw4
—2%+2mp4 — )22 A 2my
,Z’o(q 4+ (1—g) g2+ =7

in agreement with Eq. (5.12). Thus we have obtained the spectral resolution of the operator % .
Theorem 2:

(@)®toa=o gE to-tr2eare,® 2 R(J1—gg* 920,474~/ (1) A).
0EZ =0

Expanding the orthonormal basis {es°) , €1} for K, © K,
e || fE 1, goeZ, m=0,12..,

= | -1 s, an=0,1,2,...,

in terms of the orthonormal basis p;®e,, + jsh=0,1,2,... we obtain the Clebsch—Gordan
coefficients

w; 64 &\
Ly ( ks m) pi®ey,

T Gm\Ts p
(5.19)
Wy (m; &A; s)2
es = . i ® €.
AV N R qp’ g

These coefficients of the first and second kind vanish unless j+h=§y+m, j-+h=n, respec-
tively. Furthermore, they satisfy the identities

2

Jk

@ A Eo\'(os A &)
( ) ( 0) =8 mmBeott (5.20a)
q9 q

i ok m)\j h m

where j + h = & + m = &

» (a); A s)z(co; CA; s')z 5 (5.200)
w\ss k on)\i Koon] Y '

w; LA E\'fw; LA s\?
1. (" =0, (5.20¢c)
w\Js B om]\j hon],

where j+h=E&y+m=n, and

© tw; Ay jAh—m\[{w; LA j+h —m 1
X )| )
q

m=0 \ J; h; m iR m ‘
i o 6A s\ L4 s 5 5.20d
+s=0 (f; h; j+h)q(j'; k' j’+h')q— jits (5.20d)

where j+h=j’'+A'. Explicitly, we have
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o; A &' (g:9) n(1—g)" " e i
(§o+m—h; B m)q—\l(q;q);,(—(l—q)mzq‘+5°//2;q)w( £ )
X(qm_h+l;q)w (h—m) (h+m—1)/4
(:9)
—h _(1_ ) 2. A+éy+m+1
x1¢1(qf_h+1;q, 9 “’/Z ) (5.21)
and
o G4 s\ | (60)s(1—-q) "¢
n—h; h n q_\l(qr;q)h(—(1—q)cozq“"*‘/fz;q)s(—fzq“"'/coz(l—q);qr)<m

—(1=@)wg*+m/2\k (p=h+lgy (h—1)/4
x( ¢ ) (¢9) . 7

-k _(2 —A 1
q 1 ) (5.22)

X 16y (qs—h+1;q, Tq)wz_

The completeness relation (5.20d) leads to the special function identity

"y "1

—h
(3:9) g™ 1¢1(qmq—h+1;q,—24) 1¢1(q,,,q_,,,+l;q,—zq)

Ms

meo (GO m—n(GD m—pe 2020/ 2) m(—29) o
y ri gt g
(—1)h+Hglhth )/21¢1(qm—h+1;q,—q/2) 1¢1(q,,,_;,r+1;4»—¢]/2)
+

(—z¢:9)m(~1/2,9) ,,

=g * A= V2(g0),, 2>0, AR =0,1,...
From Lemma 3 we have the identity
E(BF Ye(aF _)=E/(Bqg~VPHQE, )e(ag~ VPHo E_)E(BE, ® ¢'"/PH)
Xeg(aE_ ® g{/2H)
so the matrix elements with respect to the tensor product basis are given by
S (@B) = <iq(ﬁF+)eq(aF_ )P ®en.pjr @ep)

=(E,(BE, ®q**" e (aE_0q* P )p ey (dg /2 E,)

XE (Bg~/"*® E_)p; ® ey)

=(E,(Bg**P"E e (ag**P2E_)p, p;»)
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X{E(Bg~I"*E Ve (ag~""E_)e, )

(@) (1—g)"*
(9

= T;f‘;’f) (g2, B+ W2y T Ee) (00172 ga=1'12)
(5.23)

Thus the following identity, relating the matrix elements in the tensor product and reduced
(E+,e—)CA S(E+,e—)l,84 )
A i (a.B),S} (a,B)) bases must hold:

o0 3 . 1
((0, /,'1, §0 ) (E+,e—)q_§0/2/,l+§0(a,ﬁ)

(E+,e—) —
Sj'h',jh (ayB)— 50:2_00 ], h, ]+h‘_§0 \ J Ak —Eg.j+h—&

o OA; b\ & (e L4 s
(0B Vs ()
J'homy JHR k), s=o\Ji B Jt+h],

. . 2
Xﬁ(.E-l-,e—. ) w/’ququ‘“)/zw,q_‘_‘fz/(l—q)wz,l(a B) @; /’i’ § .
XN E Y ’ j's Ry 4R .

This leads to the identity

(49 0 g ;
s e ; y— , ; ,Z =7
(6:9) j— (@) n—w ld"(q"’ e th) 1¢1(q""‘ +184 )

min{j+h ' +k') (Q§q)j+h—§(y/z)j —Eq[(j+l!—j ~h")G+h—j =R 1)=&+ 1) —E(j+R)]/2

P (@69) j 11— jr (@D jr —e(@:0) j—e( —¥4°/7:0) ,

—h —K
q i q Y
><1¢1(qj—§+1;q,-}’qj+h+l/2) 1¢1(qj'—§+1;q’_}’qj +h +1/2)

g_jl_hl
i Y 1)/2 q . — it h— -I_hl
X gt =N+ D/ 1¢1<qj+h—j'—h’+l’q’zq §+j+h—j )

o0

(q;q)s(z/y)’_”( 1 _q)j+h—j’—h’q—s(j’+h')+h(h+j')+h’(h'—l)/2

+ T
=0 (@D j1njr— 1 BD s i GDs—w (=247 F ~/p:9)

q_h ; q_h' ot ’ ’

X 1¢1(qs—h+1;q,—zq_’—h+l/y) 1¢1(qs_h'+1;q’—2¢1_’ =k “/}’)(—1)”“

_zq“-'_j,_h'/y.
qj+},_j'_h'+1 39, _yq: ’

><1¢1(
where y/z2>0, hh', 47,47 =0,1,....
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Vi. A BARGMANN-SEGAL HILBERT SPACE BASIS

It follows from the proof of Theorem 2 that for any real constant u>0 the functions
{14 (2),j4(2z):m=0,1,2,...,} form an orthonormal basis for the Hilbert space K;(z), Egs. (2.5),

(2.6). Here
(1—g)™2u™((1—q)q"*211:9) . (— 4“2/ 10;0) m
K (z)= , 6.1
m(2) g =04 J(giq) o — (1 —@) 1%~ ™;9) (6.1)
/2 172 1—a)a"2z
()= q"(—q"*2/1;9) ((1—9)q"“21;9) (62)

V@D ml— 1= @)l —p =4/ (1—0);0).,

Using relations (5.11) and the operators (2.2) associated with the representation 1,, on
K,y(z) we can characterize {#%,,j%} as the orthonormal basis of eigenfunctions of the self-
adjoint operator

—(1—@)gu " YE ¢ +d7E_)+(u 2~ (1—q))¢". (6.3)

Indeed A" corresponds to eigenvalue ¢"u 2 and j% to eigenvalue —(1—¢)q™

To get a better understanding of this orthogonality we make use of the kernel function
S(Z,z) = (— (1 — ¢)g2’'zq).., Eq. (2.6), for Ky(z). This function has the property that
fb)= (f,S(b,-)) for any feK,(z) and beC. It follows immediately that f€Ky(z) is orthog-
onal to the basis function Af if and only if f(— q‘V2 ) =0. Similarly, f€K,(z) is orthogonal
to the basis function j§ if and only if f((1—gq) ~1¢72/u)=0. To extend this observation we
make use of the following version of Heine’s q—@log of Gauss’ summation formula (Ref. 22,
p. 11).

Lemma 4: Let a,B be complex numbers with B#-0. Then

k

(g:9) ag’\*
(az;q9) = ;_:0 m (7) (g’ /Big)k_r(Balz0) s, k=0,12,...

Setting a= —¢"*/u, k=m, and B=(1— q)ql/ u in Lemma 4 we can express #, as a linear
combmatlon of the functions S(— q‘l/ 2q ,u,z), k=0,1,...,m. Similarly, setting «
=(1—¢)¢"*u, k=m, and B= — ¢"%/u in Lemma 4 we can express j% as a linear combination
of the functlons S((1—q) —lg=V 2 “k/,u,z) k=0,1,...,m. In each case the expansion coefficients
are all nonzero. These expansions yield an independent proof that the elements of the set
B={h, j*: m=0,1,..,} are mutually orthogonal. Moreover, we see that feKy(z) is orthog-
onal to all elements of B if and only if f(z) vanishes for all ze M where M ={— gV Zq‘ ",
(1—gq)~ 1 =12 _"/u, k=0,1,...,}. However, we know from the proof of Theorem 2 that B is
a basis for K,(z). Hence, feK,y(z) vanishes for all zeM if and only if f=0.

Following Bargmann®® we say that a characteristic set D for the Hilbert space Ky(z) is a
subset of C such that if feK,(z) and f(z) =0 for all ze D then f=0.

Theorem 3: The set

{_q——l/zq—k#,(l_q)—lq—l/zq'—k/”’ k=0,1,}

is a characteristic set for the Hilbert space Ky(z).
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