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Abstract

Relationships between spiking-neuron and rate-based approaches to the dynamics of neural assemblies are explored by
analyzing a model system that can be treated by both methods, with the rate-based method further averaged over multiple
neurons to give a neural-field approach. The system consists of a chain of neurons, each with simple spiking dynamics that
has a known rate-based equivalent. The neurons are linked by propagating activity that is described in terms of a spatial
interaction strength with temporal delays that reflect distances between neurons; feedback via a separate delay loop is also
included because such loops also exist in real brains. These interactions are described using a spatiotemporal coupling
function that can carry either spikes or rates to provide coupling between neurons. Numerical simulation of corresponding
spike- and rate-based methods with these compatible couplings then allows direct comparison between the dynamics
arising from these approaches. The rate-based dynamics can reproduce two different forms of oscillation that are present in
the spike-based model: spiking rates of individual neurons and network-induced modulations of spiking rate that occur if
network interactions are sufficiently strong. Depending on conditions either mode of oscillation can dominate the spike-
based dynamics and in some situations, particularly when the ratio of the frequencies of these two modes is integer or half-
integer, the two can both be present and interact with each other.
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Introduction

The brain is a multiscale system, whose dynamics spans from

microscale structures, such as ion-channels and synapses, to

emergent behavior, such as oscillations at the whole-brain scale.

The problem then arises of how to simultaneously incorporate

these diverse scales to make predictions about brain dynamics.

Neuronal dynamics has most often been studied by starting

from single-neuron perspective via Hodgkin-Huxley equations [1]

and their many variants for different neural types (e.g., [2,3]), or

via idealized models such as integrate-and-fire and binary neurons.

Strong nonlinearities are responsible for spiking, with the spike

cycle often described in terms of a nonlinear oscillator [4,5]. Such

approaches have been extremely successful in accounting for

neural dynamics at the single- or few-neuron level.

Single-neuron approaches can also be applied to networks of

many neurons by incorporating their synaptic interconnections.

While very large networks can be simulated if sufficient computer

power is available [3,6,7], the results of brute-force simulations can

be difficult to interpret, especially when emergent network-level

phenomena are involved. Moreover, common misconceptions that

arise from the single-neuron viewpoint sometimes impede

understanding of large-scale dynamics. For example, the start-

ing-point picture of spiking being due to a nonlinear oscillator

often leads to a focus on coupled-oscillator descriptions of neural

interactions. If overemphasized, this can obscure the existence of

(often linear, or near-linear) collective modes of oscillation in the

network, which modulate spike rates at frequencies that are not

related to the spike rate itself [8–10] — in general, both nonlinear-

spiking and collective-oscillation phenomena exist. Some wide-

spread errors in the literature that stem from this standpoint (when

adopted naively) are: (i) that large-scale brain rhythms and

electroencephalographic (EEG) oscillation frequencies must cor-

respond to spike rates of specific neural ‘‘generators’’ or

‘‘pacemakers’’, whereas they are quite different from spike rates

in general, and (ii) that brain rhythms and EEG oscillations must

be highly nonlinear because spikes are, whereas collective

oscillations that modulate firing rates can actually be linear, or

very nearly so [10]. Of course, collective oscillations can also have

their own large-amplitude nonlinearities that survive averaging

over spike generation, or arise through other effects [11–13].

An alternative starting point is to average over neural properties

at the outset to obtain a neural field theory (NFT) [10,14] in which

the average dynamics of large numbers of neurons are modeled. In

this case, instantaneous local firing rates are tracked, but individual

neuronal spike dynamics are not. Such approaches are well suited

to studying large-scale phenomena and bridging across scales and

are much less computationally intensive than corresponding

studies based on direct computation of single-neuron dynamics.

However, as noted, they do not directly incorporate spiking

dynamics of individual neurons.

Two aspects are of particular significance here. One is the

internal dynamics of neurons. In this study, this is discussed in

terms of a comparison between spike events described by changes in
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membrane potential (in the spike-based approach) and spike rates (in the

rate-based approach). Communication between neurons is also

critical. In the spike-based approach spikes travel between neurons

that are coupled pairwise or via a field that carries spike profiles

[14]; in the neural field theory communication is through

propagation of fields that carry the spike rate only. In this work,

we examine two limiting cases, one in which spiking neurons

communicate via spikes, and one in which populations of neurons

with rate-based internal dynamics communicate via rates — and

make the dynamics as similar as possible in all other respects by

having the same type of field carry either spike profiles or spike

rates in the respective cases. In other words, one case involves

spiking dynamics of neurons coupled by spikes carried by fields,

and the second involves rate dynamics of continuous neural matter

coupled by rates carried by fields; the fields obey the same

propagation equations in both cases.

It is important to understand the relationships between the two

limiting approaches, especially because they are complementary,

not mutually exclusive. It is thus essential to understand when each

is appropriate to be used, whether there are phenomena to which

both can be applied, and which is the more convenient and

tractable in given cases. Moreover, there can be situations where a

fuller understanding requires an application of both approaches.

This is analogous to situations arising in many other branches of

science. For example, the properties of materials can be studied

from a molecular viewpoint but, when dealing with large numbers

of molecules, statistical approaches or continuum approximations

are more convenient and appropriate starting points for obtaining

understanding at the scales of most relevance — hydrodynamics is

usually studied in terms of fluids, not molecules, for example.

Likewise, statistical mechanics of particles passes over into

thermodynamics for many applications as the number of particles

becomes large, and there are intermediate regimes that can be

addressed using either formalism, or variants such as nonequilib-

rium thermodynamics.

Some work toward understanding the complementarity of

spiking and mean-field approaches has been done, in part by

developing hybrid models that preserve aspects of both single-

neuron and mean-field approaches. For example, Robinson et al.

[15] and Wu et al. [16] showed how to write the spike rate of

Wilson neurons [2] in terms of the spike rate itself (rather than

instantaneous cellular voltages), thereby eliminating the need to

track individual spikes if rate is all that is desired. This work put

the Wilson model of spiking and bursting neurons [2] in a form

suitable for incorporation into NFT and allowed top-down

systems-level influences on single neurons to be analyzed tractably.

The predictions of this NFT were subsequently investigated for a

model system incorporating a simple delayed feedback loop whose

resonances could interact with natural neural spiking and bursting

frequencies [16]. Robinson and Kim have very recently developed

a series of hybrid methods of treating neural interactions that

combine various aspects of spike- and rate-based neural dynamics

and of the discrete vs. mean-field features of spatial coupling [14].

Bressloff and Coombes have shown how fluctuations in firing rates

consistent with a neural field model can be produced by a network

of integrate-and-fire neurons particularly when slow interactions

are present [17].

There are other approaches to neuronal modeling which we

mention for completeness. The population density approach (e.g.

[18]) moves beyond a model based on mean firing rates alone by

considering the changes in the distribution of neuron properties. In

the population density approach, individual neurons or groups of

neurons are not modeled explicitly, rather the change in the

probability density function of the state of the neurons is modeled.

This approach can be many times faster than a direct Monte Carlo

simulation of neurons or groups of neurons. One can also focus on

the correlations and higher-order moments of a distribution. This

is of significance since correlations in activity may form a

significant part of the mechanism through which neuronal signals

carry information. Recently, Touboul and Ermentrout [19] have

studied the correlation approaches of Bressloff [20] and Buice et

al. [21] and shown them to be equivalent when applied to a system

of infinite size. This allows large networks of neurons to be

analyzed. Significantly, by considering correlations rather that just

mean firing rates, dynamical behaviors can appear that cannot be

accounted for with a lowest order mean field approach alone.

However, the specific aim of this paper is to investigate and

elucidate the complementarity between spike- and rate-based

approaches to neural dynamics by use of an overarching approach

that can accommodate both pictures in the analysis of a test system

that is suited to exposing the key phenomena. Although other

approaches may also be informative, we focus on the comple-

mentarity between spike- and rate-based simulations in the current

work. We begin by reviewing the theoretical background and

developing our model. We then present the numerical methods,

and give the results of our analyses. We analyze, compare and

contrast the dynamics of the spike-based and rate-based

approaches. Finally, we interpret the results and discuss their

applicability and significance. For simplicity, homogeneous models

are used; however, the methods discussed are generalizable to

inhomogeneous situations.

Models

Neural Field Theory
In this section we briefly outline the NFT equations required,

specializing the treatment to a specific, idealized test system. The

model we use is that of a single cortical population, driven by an

external drive and incorporating direct interactions between

neurons and indirect ones via a delayed feedback loop.

We consider the system of interconnected neurons which

includes synaptic input to a set of neurons (labeled by a suffix a)

from an external set of neurons (suffix E). The former set consists of

a one-dimensional chain of neurons with periodic boundary

conditions, and has a feedback both directly waa(x,t) and via a

loop w’aa(x,t), where waa and w’aa are the rates of incoming spikes

at each synapse (i.e. have dimensions of inverse time), and t is time.

The loop features a feedback delay time t0, and the feedback is

assumed to be topographically organized (i.e., each point in space

feeds back most strongly to itself). This idealized system is

Author Summary

We develop and demonstrate a model that allows us to
examine how the predictions of spiking and rate-based
models of neurons and their interactions are related. First,
the behavior of a chain of neurons is explored by
simulating each spiking neuron and spike-mediated
interactions between neurons individually. Second, the
same chain is studied using approximations based on the
firing rate of the neurons. The predictions for these two
approaches are closely compared and it is found that the
simpler, rate-based approach captures the major system
behaviors of the spike-based approach, namely spiking
rates and modulations in those rates. Strong interactions
between these modes take place when the frequency of
one mode is an integer or half-integer multiple of the
frequency of the other mode.

Complementary Spike- and Rate-Based Neural Models

PLoS Computational Biology | www.ploscompbiol.org 2 June 2012 | Volume 8 | Issue 6 | e1002560



sufficiently general to study complementarity between rate- and

spike-based treatments; it is also easily generalized to include more

types of neurons and higher dimensionality [22,23]. Biologically,

such topographical feedback is found in the thalamocortical loop.

Excitatory neurons in the cortex drive the coupled thalamocortical

and thalamic reticular neurons of the thalamus; in turn the

thalamocortical neurons project back to the cortex in a manner

such that a signal returns very close to where it originated [24].

The spiking model is summarized in graphical form in Fig. 1.

When applied to real brain tissue, NFT averages neural

properties over linear scales of a few tenths of a millimeter,

sufficient to embrace many neurons [10,22]. The soma potential

Va, measured relative to its resting potential, responds to spikes via

synaptic dynamics, dendritic signal dispersion, and soma capac-

itance. The resulting response to synaptic input approximately

obeys [10,22,25,26]

DaVa(x,t)~naawaa(x,t)zn’aaw’aa(x,t{t0)znaEwaE(x,t), ð1Þ

where

Da~ 1z
1

a

d

dt

� �2

, ð2Þ

a is the mean response rate of Va to synaptic input, nab~Nabsab is

the mean connectivity strength to neurons of type a from those of

type b~a,E, Nab is the corresponding mean number of synaptic

connections, and sab (with dimensions voltage times time) is the

mean strength of these connections, defined to be the time integral

of the postsynaptic potential change due to a spike afferent on a

neuron a from one of type b.

Action potentials are produced at the axonal hillock when the

soma potential exceeds a threshold [10,22,25]. When averaged

over a local population of neurons, a good approximation to the

firing rate is

Qa(x,t)~
Qmax

1zexp½{CfVa(x,t){hg=s� , ð3Þ

where C~p=
ffiffiffi
3
p

, Qmax is the maximum firing rate, and h and s
are the population mean and standard deviation of the threshold

[10,22], and Va is the mean soma potential averaged over a local

population of neurons. We discuss the origins of this relationship

below.

Prior work has shown that the mean fields of axonal signals, waa,

w’aa, and waE, propagate approximately as if governed by damped

wave equations [22,27,28], one form of which is

Dabwab(x,t)~D’abQb(x,t), ð4Þ

where

Dab~ 1z
1

cab

L
Lt

� �2

{r2
ab

L2

Lx2
, ð5Þ

D’ab~1z
1

cab

L
Lt

, ð6Þ

where cab~vab=rab, with vab the axonal velocity, and rab the

characteristic axonal range [22,27].

Equations (4)–(6) incorporate spatiotemporal coupling between

neurons. This is more easily seen through the corresponding

Green-function (i.e., propagator) formulation [22,26]:

wab x,tð Þ~
ð

dt’
ð

dx’Cab x{x’,t{t’ð ÞQb x’,t’ð Þ, ð7Þ

Cab(X ,T)~
vab

2rab

e{DX D=rab ½d(X{vabT)zd(XzvabT)�, ð8Þ

for T§0, with the Green function satisfying Cab(X ,T)~0 for

Tv0 to ensure causality, and where translation invariance of the

system has been assumed. We choose the form (8), which follows

from (5) and (6), to preserve the timing and shape of narrow pulses

in one dimension, since we want to compare spike-based coupling

with field-theoretic coupling in the present work.

The spatial coupling vs. X is found by integrating (8) over T ,

[22] which gives

Cab(X )~
1

2rab

e{DX D=rab : ð9Þ

Integrating (9) over X yields a normalization of unity, which

reflects the fact that each pulse that enters an axon ultimately

reaches its end. Equations (4)–(6) thus represent signals that

propagate along axons at a uniform velocity vab, but where the

number of axons reaching a distance X decays exponentially as a

function of X , with characteristic range rab. This is a reasonable

first approximation to the coupling of cortical neural populations

by axons in one dimension. If we were to replace (6) by Dab
0~1,

we would recover the form introduced in by Robinson et al. [22],

which yields broader temporal pulses in response to a delta input.

The latter form is actually more realistic in general, especially in

two dimensions, since axons are neither identical in velocity nor

exactly straight, thereby making delta-function propagation of a

mean pulse field very much an idealization. Here we retain (6)–(8)

to obtain (9), which is commonly assumed in spike-based analyses.

Moreover, this form provides a more stringent test of comple-

mentarity with rate-based analyses because it involves no temporal

Figure 1. Detailed schematic of the model system. The gray box
denotes a neuron from population a at a position x. This neuron
communicates with others in the population through axons; the upper
axon in the figure describes waa(x,t); the lower describes w’aa(x,t). The
neuron receives both immediate (top) and loop (bottom) feedback
from the axons. It is also driven by input externally by waE(x,t).
doi:10.1371/journal.pcbi.1002560.g001

Complementary Spike- and Rate-Based Neural Models
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smoothing of the propagated signal, which would tend to make the

two cases more similar.

Delayed integrodifferential equations such as these have been

well studied, both in general and in the context of neuronal

modeling [29–31]. The presence of delayed feedback leads to

Hopf bifurcations and other dynamic phenomena such as

traveling waves [32]. We expect to see such features in the models

discussed here.

Spike Based Theory and Link with Neural Field Methods
We now briefly review the Hindmarsh-Rose fast-spiking neuron

model [2,33,34], and how it can be put in a form compatible and

comparable with NFT. Conductance-based equations for the rate

of change in membrane potential V in a single fast-spiking neuron,

appropriate to the mammalian neocortex, can be written [2,14–

16,25,33,34]

C
dVa

dt
~{INa{IK{IA{ILzI ext

a , ð10Þ

C is the capacitance per unit area, I ext
a is an externally imposed

input current per unit area (e.g., due to synaptic input from other

neurons), IL is a leakage current per unit area, and INa and IK are

the Naz and Kz currents per unit area, respectively, and IA is a

transient potassium current that enables these neurons to fire at

very low spike rates when Iext
a is small. Note that use of the script

font Va indicates a voltage measured relative to the extracellular

fluid (i.e., a membrane potential) rather than a measurement taken

relative to the resting state — there is a constant offset between Vj

and Vj equal to the resting potential Vrest; i.e., Vj{Vj~Vrest.

Each of the currents is assumed to obey Ohm’s law, with

IJ~gJ (Va{VJ ), ð11Þ

where gJ is the conductivity per unit area and VJ is the

equilibrium potential of the ion J.

Numerous authors have investigated Eqs (10) and (11) for fast-

spiking neurons, the main population in the mammalian

neocortex, and have found simplified expressions for their

dynamics, which can be closely approximated by just two

equations that gave an adequate description of spiking dynamics

[2,33–36]. There is one equation for the membrane voltage and

one for a dimensionless recovery variable R that describes the

coupled opening of Kz channels and corresponding closure of

Naz channels [2,34]. The equations are

C
dVa

dt
~{g(Va)(Va{V1){gRR(Va{V2)zI ext

a , ð12Þ

dR

dt
~{

1

tR

½R{R?(Va)�, ð13Þ

where

g(Va)~v0zv1Vazv2V2
a , ð14Þ

R?(Va)~r0zr1Vazr2V2
a , ð15Þ

with V1~48mV being the Naz reversal potential, V2~{95mV

the Kz reversal potential, gR~260Am{2V{1, v0~178:1Am{2,

v1~4758Am{2V{1, v2~3:38|104Am{2V{2, r0~1:26652,

r1~37:98V{1, r2~330V{2, tR~5:6|10{3s, and C~

0:010Fm{2 for fast-spiking neurons.

The dynamics of (12) and (13) have been discussed in detail

elsewhere (e.g., [2]), so we summarize very briefly here. At low Iext
a

they have three steady-state solutions: at I ext
a ~0 these are a stable

node with Va~V0~{75:4mV and R~R?(V0)~0:279, an

unstable saddle point at somewhat higher Va, and an unstable

spiral point at still higher Va. The first of these represents the

resting (non-firing) state. As I ext
a increases, the two lower fixed

points approach one another, then generate a saddle-node

bifurcation when they coalesce at the critical current

I ext
a ~Icr&0:21475Am{2 with Va~Vcr~{68:3mV and R~

Rcr~0:212. This gives rise to a limit cycle that encircles the

resulting spiral point. Each orbit of the limit cycle corresponds to

the generation of one spike; hence the picture of spike generation

being due to a nonlinear oscillator.

The frequency of the limit cycle (i.e., the firing rate) satisfies

[5,15,37]

Qa(I ext
a )~A

I ext
a

Icr

{1

� �1=2

~
A

I
1=2
cr

I ext
a {Icr

� �1=2
, ð16Þ

for I ext
a §Icr and Qa(I ext

a )~0 for Iext
a vIcr, which corresponds to a

continuous increase from zero firing rate as Iext
a increases beyond

Icr. Simulations show A~33s{1 in Eq. (16) [2,15,34].

We next show that we can couple individual model spiking

neurons together in a way that can be compared directly with

NFT of the same system. In NFT, the mean membrane potential

of a population of cells is driven by the incoming axonal pulse rate.

However, in the spike theory, membrane potential is driven

explicitly by current entering the cell body from the dendritic tree.

Standard cable equations imply that this current is proportional to

minus the spatial derivative of the voltage at the soma boundary.

Hence, the functional form of the driving current to a cell Iext
a

induced by a delta function spike at a synapse has the same

temporal dependence as Va, apart from a dimensional constant of

proportionality [15,25]. Thus, it obeys

DaI ext
a (x,t)~yab(x,t), ð17Þ

where yab(x,t) is the time course of the part of the afferent signal

that is above the channel opening threshold and Da is defined in

Eq. (2). This can be approximated as

yab(x,t)~gabnabwab(x,t)~~nnabwab(x,t), ð18Þ

in NFT notation, where the quantities gab (b~a,E) have units of

conductance per unit area and the connection strengths

~nnab~gabnab have been introduced. These incorporate the mem-

brane conductance per unit area and will be used in the model to

control the relative strengths of the direct and loop feedback, and

external drive. Henceforth, we discuss the model in terms of

connection strengths ~nnab rather than the gab. This formulation

allows communication between neurons via the intermediate fields

wab (b~a,E), which can propagate spike profiles, not just average

rates, provided we now replace (4) by

Dabwab(x,t)~BbD’ab(Vb{V0): ð19Þ

where Bb is a constant which we determine shortly. That (19)

reproduces (4) can be seen by averaging (19) over timescales much

Complementary Spike- and Rate-Based Neural Models
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longer than a spike width. Explicitly, averaging Eq. (19) over the

inter-spike interval T (which varies as a function of space and time)

gives

vDabwab(x,t)w~BbD’abvVb{V0w ð20Þ

where the angle brackets denote the average over T . Since wab

changes over time-scales much longer than a spike, we can write

wab~vwabw, leaving

Dabwab(x,t)~BbD’ab
1

T

ð
T

(Vb{V0)dt: ð21Þ

If

B{1
b ~

ð
spike

(Vb{V0)dt, ð22Þ

then it is clear that

Dabwab(x,t)~D’ab
1

T
~D’abQa(x,t) ð23Þ

where Qa(x,t)~1=T(x,t) is the spike rate. Here we have assumed

that the integral over T is only significant within the vicinity of the

spike, i.e. Bb can be caluclated from Eq. (22) by considering a

stereotypical spike profile. We assume (22) henceforth.

In dealing with rates in populations of neurons the idealized

square root form (16) of the response curve discussed earlier must

be convolved with a distribution (e.g., a Gaussian) of some width

DI that encapsulates fluctuations in the properties of the neurons

and their input: e.g., variations in number and strength of synaptic

connections, and in the various channel conductances, especially

from neuron to neuron. Such convolutions smear (16) over a width

DI [15]. A further source of broadening is fluctuation in arrival

rate of spikes and associated changes in membrane voltage [38]. A

good approximation that also captures saturation effects is the

sigmoidal function

Qa(Iext
a )~

Qmax

1zexp½{(I ext
a {Ih)=DI � , ð24Þ

which is equivalent to the rate-voltage relationship (3) via

I ext
a ~mVa ð25Þ

where m&3:0Sm{2 [15] is a conductance per unit area and

s~DI ext
a =m.

Numerical Implementation of Spike Based Equations
We now in a position to write explicitly a set of coupled

differential equations for our 1D chain of identical neurons, in a

form that is consistent with NFT in the relevant limit. For each

neuron at a point x in space, we use the Wilson neuron model to

describe its membrane potential Va and recovery variable R. We

emphasize here that the spikes are carried through a field rather

than through pairwise interactions, which corresponds to the

neuron-in-cell approach recently introduced by Robinson and

Kim [14].

The input I ext
a to the neuron comes from both synaptic input

from other neurons (through a current term Ia, which is explicitly

modeled below), and the input from the external drive term,

labeled Idrive. The set of coupled differential equations is now

obtained from (12) and (13) for the neural dynamics, (17) and (18)

for the synaptic dynamics, and (19) for the propagation of fields

along axons. To model a level of random external inputs, a white

noise current density term j(x,t) is added to the neural dynamics

on a grid, where vj(x,t)wxt~0 and vj(x’,t’)j(x,t)wt~

j2
0dxx’d(t{t’) with j0 a constant. The resulting equations are

C
dVa(x,t)

dt
~{g(Va)(Va{V1){gRR(Va{V2)z

IazIdrivezj(x,t),

ð26Þ

dR(x,t)

dt
~{

1

tR

R{R?(Va)½ �, ð27Þ

1z
1

a

d

dt

� �2

Ia(x,t)~~nnaawaa(x,t)z~nn’aaw’aa(x,t{t0), ð28Þ

1z
1

caa

L
Lt

� �2

{r2
aa

L2

Lx2

" #
waa(x,t)~ 1z

1

caa

L
Lt

� �
Ba(Va{V0), ð29Þ

1z
1

c’aa

L
Lt

� �2

{(r’aa)2 L2

Lx2

" #
w’aa(x,t)~

1z
1

c’aa

L
Lt

� �
Ba(Va{V0),

ð30Þ

where Idrive~~nnaEwaE is a constant external drive. The variables

Va(x,t), R(x,t), Ia(x,t), waa(x,t), and w’aa(x,t) describe the state of

the system, with x distinguishing the locations of the neurons.

Values of constants used in this paper are mostly taken from

previous work [2,23,39] or, in the cases of Ba, V0, A and m,

numerical analysis of the Wilson model neuron [2], and are listed

in Table 1. The level of noise, through the parameter j0, is chosen

so that fluctuations are small and linear approximations are valid

when used. Here we have separated the direct and loop feedbacks

(29) and (30), respectively, to enable the use of raa=r’aa, and

caa=c’aa in general.

Before we discuss the numerical implementation of the

equations we emphasize that we have not proved that there are

well-behaved solutions to these. However, wave equations are well

understood physically and numerically; e.g. [22,27,28,40]. More-

over, numerical simulations as discussed below produce results

that do not diverge with time. In numerical implementation of the

model, the Eqs (23)–(27) are discretized on a 1D spatial grid.

When spatially discretizing, several issues must be considered: (i)

we must ask whether the numbers of neurons and system size are

sufficiently large to ensure results adequately represent real brain

dynamics and are not numerical artifacts. The suitability of the

number of neurons can be estimated by asking the question of how

many input spikes are needed to generate an output spike. In the

human brain this is large, with each neuron receiving input of

order 10 spikes per second at each of thousands of synapses.

Overall, if the effective soma integration time leading to a spike is

*0:01 s, several hundred presynaptic input spikes contribute to

each postsynaptic spike [41]. In our simulations with raa~4cm,

each neuron is locally coupled to neighboring neurons in
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approximately 8 cm of tissue. By placing neurons approximately

0.25 cm apart, this gives us *32 locally coupled neurons.

Typically in the simulations neurons fire at a rate of *10 spikes

per second, giving *320 spikes arriving at each neuron per

second, implying that each spike is generated as a result of a

neuron receiving *3 input spikes during the relevant integration

time. This is much lower than in the cortex; however,

computational demands, which scale linearly with the number of

neurons, necessitate the use of relatively few neurons. However,

we have also carried out some larger runs with considerably more

sampled spikes, to begin to explore the effects of relaxing this

limitation. No qualitative difference is observed, suggesting that

our levels of temporal and spatial discretization are sufficient. (ii)

We also anticipate that a system that is too small would introduce

artifacts: e.g., with periodic boundary conditions if the system is

too small, long-wavelength modes of activity are not captured.

Moreover, a model that is of order raa or smaller in size would be

affected by wrap-around of connections through the periodic

boundary conditions. However, biologically, it should be remem-

bered that the cortex is not of infinite size; the ratio of re to cortical

radius is approximately 0.6?1. A system size of 20 cm is used for

most runs; this is adequate in terms of removing numerical

artifacts and computer resources and does not represent an

implausible size biologically. Some simulations have been carried

out with a larger system size and results are not significantly

different.

Initially, the variables Ia, waa and w’aa are assigned the value

zero for all spatial points. The membrane potential Va and

recovery variable R are assigned the values they would have at

equilibrium when no external current is applied, namely

{74:5mV and 0.279 respectively. The equations are integrated

forward in time with a second-order stochastic predictor-corrector

method [40]. In order to generate initial activity a high driving

current is applied for the first second of simulation and then

removed. The Courant condition requires that the time step Dt
must be smaller than the grid spacing divided by the velocity of a

pulse to ensure numerical stability [42]. The typical step size of

2|10{5 s is comfortably within this limit.

Neural Field Approach
We also treat the system of Fig. 1 using the complementary

neural field approach of coupling neurons using rate of firing,

rather than individual spikes. These rates are propagated using the

same Green functions (and same wave equations) as for spikes in

the spike-based approach, but individual spikes are not tracked.

In the NFT approach, each grid point is taken to represent the

average dynamics of a local population of neurons. To do this we

replace the equations for the membrane potential (26) and

recovery variable (27) with a single equation that relates the firing

rate Qa to the input current, via the square-root function (16),

whose parameters were calibrated to reproduce the dynamics of

fast-spiking neurons in previous work [14–16]. This rate is used to

provide input to the wave equation, rather than using the potential

term explicitly. A small amount of white noise j(x,t) is added

to the current, where Sj(x,t)Tt~0, Sj(xzx’,tzt’)j(x,t)Txt~

j2
0d(x’)d(t’), where j0 is a constant. The noise provides a small

perturbation to the system to allow it to quickly explore phase

space and ensure that no two simulations are identical. Therefore

we obtain the following nonlinear set of four coupled equations for

the variables Qa, waa, w’aa and Ia.

Qa(x,t)~

A

I
1=2
cr

Ia(x,t)zIdrive{Icrzj(x,t)½ �1=2
, IazIdrive{Icrzjw0

0, IazIdrive{Icrzjv0

8<
:

ð31Þ

1z
1

a

d

dt

� �2

Ia(x,t)~~nnaawaa(x,t)z~nn’aaw’aa(x,t{t0), ð32Þ

1z
1

caa

L
Lt

� �2

{r2
aa

L2

Lx2

" #
waa(x,t)~ 1z

1

caa

L
Lt

� �
Qa(x,t), ð33Þ

1z
1

c’aa

L
Lt

� �2

{(r’aa)2 L2

Lx2

" #
w’aa(x,t)~ 1z

1

c’aa

L
Lt

� �
Qa(x,t), ð34Þ

Numerically, this set of neural field equations can be integrated

forward in time using the same approach as for the spike-based

case. In this case, the time step can be made larger than for the

spike based model, although subject to the Courant condition for

numerical stability, because the spike profiles are not modeled

explicitly. This is a major advantage of field-based approaches

over spike-based approaches.

Equation (31) is appropriate rather than Eq. (24) since for

simplicity we will consider homogeneous parameters. Equation

(31) allows us to compare explicitly the firing rates predicted by the

neural-field approach to those of the spike-based approach. If

inhomogeneous parameters were used, Eq. (24), with values of DI ,

Ih and Qmax specific to the parameter distribution used, would be

appropriate.

Equations (31)–(34) can be used to compute the firing rate at

various points in space and time; i.e., the mean firing rate of all

neurons in the vicinity of each grid point vs. time. Hence, for this

to give a good representation of average dynamics, each grid point

should correspond to multiple neurons. In the present case, this

means the separation of grid points in the neural field model must

be much larger than the length scale between neurons, which is

Table 1. Table of constants.

Symbol Value Unit

a 60 s{1

caa~c’aa 80 s{1

raa 0.04 m

r’aa 0.01 m

Naa~N ’aa 4120 –

saa~s’aa 2:4|10{6 V s

Ba 8696 V{1s{1

V0 {75:4|10{3 V

j0 1|10{7 Am{2s1=2

A 33 s{1

m 3.0 Sm{2

Values of the constants used in the spike based equation model of Eqs (26)–
(30). The constants used in the equations for Va and R of the Wilson model [2]
are given by Eqs (12)–(15); the parameters Idrive , t0 , ~nnaa~gaasaaNaa , and
~nn0aa~g’aas’aaN ’aa are varied in the simulations. The constants A and m are used

only in the mean field approximation of these spike based equations. The
constants Ba and V0 come from simulation of the Wilson neuron model [2].
doi:10.1371/journal.pcbi.1002560.t001
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satisfied in the present work. Therefore, in carrying out detailed

comparisons between the spiking model and the field model, the

results of the spiking model need to be coarse-grained (i.e.,

averaged over the appropriate length scale). We again emphasize

that in this work we have carried out simulations at various length

scales and neuron densities, and results are qualitatively unaltered

by changing the scale (i.e. our discretization is fine enough for the

purposes of this work).

Linear Spectrum of NFT
It is found that the system (31)–(34) has at least one spatially

uniform equilibrium state, which is obtained by setting all the

temporal and spatial derivatives to zero. In general there may be

one or three solutions (plus a special case of two solutions);

however if Idrive§Icr as in this work, there is only a single solution.

Equations (33) and (34) can then be solved to obtain equilibrium

values weq
aa~Qeq

a , w’aa
eq~Qeq

a , and so via Eq. (32):

I eq
a ~(~nnaaz~nn0aa)Qeq

a : ð35Þ

Equation (31) gives

Qeq
a ~

A

I
1=2
cr

I eq
a zIdrive{Icr

� �1=2
, ð36Þ

for Ieq
a zIdrivewIcr, and Qeq

a ~0 otherwise. Squaring Eq. (36) and

substituting Eq. (35) for Ieq
a gives a quadratic equation for Qeq

a that

is easily solved for the positive firing rate solution.

By writing the deviations from their equilibrium values of

Qa(x,t), waa(x,t), w’aa(x,t), Ia(x,t), and the noise input j(x,t) in

terms of their Fourier components in both space and time, we can

establish the power spectrum of fluctuations in both temporal

frequency v and spatial frequency q. To calculate these quantities,

we linearize Eqs (31)–(34) in small deviations from equilibrium,

and write the Fourier form

Qa(x,t)~Qeq
a z

X
q,v

DQ(q,v)eiqx{ivt, ð37Þ

with similar expressions for Dwaa(q,v), Dw’aa(q,v), and DIa(q,v).
We also note that the noise has an equilibrium value of zero and omit

the D from Dj henceforth. This gives us the linearized equations

DQa(q,v)~
LQa

LIa

				
I
eq
a

DIa(q,v)zj(q,v)½ � ð38Þ

1{
iv

a

� �2

DIa(q,v)~~nnaaDwaa(q,v)z~nn’aaDw’aa(q,v)eivt0 , ð39Þ

1{
iv

caa

� �2

zr2
aaq2

" #
Dwaa(q,v)~ 1{

iv

caa

� �
DQa(q,v), ð40Þ

1{
iv

c’aa

� �2

z(r’aa)2q2

" #
Dw’aa(q,v)~ 1{

iv

c’aa

� �
DQa(q,v): ð41Þ

These equations can be solved for DIa(q,v) (or any other of the

variables) in terms of the noise input j(q,v) to give us

DIa(q,v)~T(q,v)j(q,v), where the transfer function T(q,v) is

given by

T(q,v)~ 1{
LQa

LIa

				
I
eq
a

1

(1{iv=a)2

~nnaa(1{iv=caa)

(1{iv=caa)2zr2
aaq2

("

z
~nn’aaeivt0 (1{iv=c’aa)

(1{iv=c’aa)2z(r’aa)2q2

)#{1

{1: ð42Þ

In general, Eq. (42) is difficult to analyze further analytically,

especially because of the term eivt0 . However, a useful limiting

case can be seen when the system has only loop feedback whose

time delay is much longer than the timing of the synaptic current

pulses and wave events; i.e., ~nnaa~0, t0&1=a and t0&1=c’aa. In

this case we can make the approximations (1{iv=c’aa)&e{iv=c’aa

and (1{iv=a)&e{iv=a to give us the transfer function at q~0:

T(0,v)&
1

1{
LQa

LIa

				
I
eq
a

~nn0aaeiv(t0z2=az1=c’aa)

{1: ð43Þ

The response (43) will have a resonance when the phase of the

complex exponential is a multiple of 2p, which gives resonances at

angular frequencies of 2p=(t0z2=az1=c’aa) and its harmonics

[16]. When both direct and loop feedback are present, these

resonances modulate the combined spectrum to produce peaks, as

found originally by Robinson et al. [43,44].

Synthesizing a Spike Train from the Neural Field
Calculation

It might appear that use of a neural field model, where only

spike rates are calculated, might remove all information about

individual spike times; however, this is not the case [14]. Neural

field theory yields instantaneous spike rates Qa(x,t) as functions of

position and time, so the integral of the local rate over some time

period T is the expected number of spikes na(x) that occur at that

location in this time period; i.e.,

na(x)~

ðT

0

Qa(x,t)dt: ð44Þ

Moreover, when the integral increments by one, we know that

there must be exactly one spike during this interval, so

1~

ðt2(x)

t1(x)

Qa(x,t)dt, ð45Þ

defines the expected time t2(x) at which the next spike occurs,

given that one occurred previously at t1(x). To construct a

membrane potential time series from the spike timings tj(x), where

j is an integer, one can write the potential Va as a function of the

noninteger part of the integral (44). Therefore,

Va(x,t)~f ½na(x,t){j(x,t)�, ð46Þ

where j(x,t) is the integer part of na(x,t) and f is a function that

describes the spike profile. If required, this profile can be quickly

computed from a look-up table [14]. Since this approach requires
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only the tracking of Qa(x,t) rather than spike profiles, it is

computationally less intense than a spike-based approach, since

larger time steps can be used. Implementing this approach

requires initial phases to be specified for the neurons, or for

enough time to pass that the system loses memory of its initial

conditions.

Before presenting the results, we emphasize that in all cases fields

are used to describe propagation of signals between neurons, either

carrying spikes from neuron to neuron through Eqs. (29) and (30)

or conveying rates fields between spatial locations through Eqs.

(33) and (34).

Results

Simulation of the spike-based equations (26)–(30) generates

output of each of the state variables as a function of position and

time. Particularly useful is the membrane potential Va(x,t) from

which the times of firing of the neurons can be readily extracted. A

plot of membrane potential vs. space and time gives an immediate

representation of the system dynamics (e.g., synchronous firing,

bursting, traveling waves of activity). In the NFT case, simulation

of Eqs. (31)–(34) generates output for the state variables; the time

series of the membrane potential Va(x,t) can then be reconstruct-

ed by the method described above.

Also useful is a Fourier space representation of the results, which

enables robust identification of wave modes and, in particular,

firing rates. One can in principle apply a Fourier transform in

space and time to any one of the five state variables Va, R, waa,

w’aa and Ia (for the spike-based case) or the four state variables Qa,

waa, w’aa and Ia and the reconstructed potential Va (for the NFT

case). In this work we concentrate on the variables Va and Ia. The

former is most directly related to an experimentally measureable

quantity, namely the membrane potential. The disadvantage of

using Va is that the highly nonlinear spike features lead to high

frequencies in the spectrum that can mask the subtleties of

subthreshold fluctuations. The latter is chosen since it is temporally

the smoothest of the state variables and so its Fourier transform

contains fewer features due to the nonlinearities and thus is most

suitable for comparison with a linearized calculation.

The utility of comparing rate- and spike-based approaches via

analysis of Va(x,t) or Ia(x,t) depends on the primary mode of

behavior of the system. Where the spike-based model shows a

spike-dominated behavior (e.g. spiking at a constant frequency) a

Fourier analysis based upon Va provides a meaningful comparison

with the predictions from the NFT; where a rate-based oscillation

dominates (e.g. spike rate fluctuates or depends upon time delay) a

more appropriate comparison would be with the NFT predictions

for Ia.

Typically, simulations are run for a total time of 20 seconds. For

the first second, a high external drive current is used, as this is

sometimes required to initiate spiking in the system; after this time

the drive current is removed. Typically, the first four seconds of

each time series are discarded to exclude initial transients, the

remaining time is split into short periods (typically 4 seconds).

Each period is windowed by applying a Hamming window, then

the spectrum of Ia or Va is calculated, as appropriate. The spectra

are averaged over all the windows to produce a final power

spectrum PI (q,v) or PV (q,v). For the case of PI (q,v),this can be

compared with the power spectra predicted by the mean field

result Eq. (42). In order to show the effect of individual model

parameters on the results, we also show plots of the breathing-

mode power spectrum [i.e., PI (0,v) or PV (0,v)] for various

values of each such parameter of interest. A further analysis is the

evaluation of the spatial correlation function g, which is given by

the inverse Fourier transform of PI (k,0) or PV (k,0) for the cases

of current density and voltage, respectively.

Before exploring the parameter dependences of the model in

detail, we first show a typical case, by way of illustration. In later

subsections, the results of the model are illustrated with a variety of

different cases. In particular, we compare the predictions of the

spike-based analysis with the neural field approach to highlight

similiarities and differences in behavior. We illustrate the change

in behavior of the model system as a function of the key

parameters (time delay t0, external drive current Idrive, and direct

and loop connection strengths ~nnaa and ~nn0aa) by keeping all but one

parameter constant, and varying the others. We also present a

comparison of the spiking events from the spike based model and a

reconstruction from the neural field model.

Illustrative Dynamics and Spectra
To start, we demonstrate typical behavior of the spike-based

state variables Va, waa, w’aa and Ia. For this illustration we use a

small positive loop feedback; i.e., ~nnaa~0, ~nn0aa~0:0025Cm{2. The

external drive current Idrive is chosen to be equal to the critical

current Icr~0:21475Am{2. This external current would put an

individual neuron at the point of spiking, so that the positive

feedback between neurons ensures that they obtain a modest spike

rate; this allows us to explore the interaction between spike-based

and collective oscillations. Biologically, it is reasonable that a

neural system can organize to be near a critical point [45,46]. A

very short time delay is used, t0~0:005 s so that delays between

the direct and delayed feedbacks are negligible compared to the

timescales of the dominant neural activity in this case (i.e., the

interspike interval). Fig. 2 shows the membrane potential Va(x,t)
of each neuron over a typical 1 second period. The spike events

are clearly shown, indicating a spike rate of about 5s{1. There is

clearly evidence of spatial structure in the firing pattern, which we

elucidate through the PI (q,v) spectrum below.

The current Ia(x,t) is plotted in Fig. 3. It is much more

smoothly varying than the spiking voltage. However, firing events

can still be discerned via their associated rapid increases in Ia

versus time, meaning that a firing rate, as opposed to modulation

in rate, will be the most obvious feature on any spectrum.

The variables waa and w’aa are shown in Fig. 4. In order to show

the spatio-temporal structure of these fields, only a small part of

the spatio-temporal domain is shown here. The scales are different

for Figs. 3 and 4. These variables denote the propagation of signals

between neurons. The plots show signals emanating from each

firing event as ‘v’-shaped features. The apex corresponds to the

firing event, while the two arms of the ‘v’ show the propagation of

the signal forward in time at constant speed in both spatial

directions. The gradient of the arms of the ‘v’ for the direct

feedback term waa is 3:2ms{1, corresponding to the signal speed

given by vaa~caaraa; likewise, the gradient of the features for the

loop feedback w’aa is 0:8ms{1, which equals v’aa~c’aar’aa. It is

also clear from the length of the arms that the direct feedback

events in Fig. 4(a) have a longer spatial range than the loop-

mediated ones in Fig. 4(b), in accord with raa~4 cm and r’aa~1
cm here.

We now examine the power spectra for PI (k,f ) and PV (k,f ).
To complete comparisons, we have carried out simulations for the

spike-based model, Eqs. (26)–(30), the NFT, Eqs. (31)–(34), and

evaluated the theoretical field prediction through the transfer

function T of Eq. (42). To consider the effect of the remnants of

spike features on PI (k,f ), we also have constructed the power

spectrum of a series of stereotypical spike features in Ia, which can

be added to the NFT predictions of PI (k,f ). To illustrate these
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spectra, we have carried out simulations for the case of Idrive~

0:24Am{2, ~nnaa~0Cm{2, ~nn0aa~0:0074Cm{2 and t0 = 0.06 s. In

Figs. 5 and 6 we show results for analyses of the current density

term Ia and membrane potential Va, respectively.

In Fig. 5, the four rows, in order, represent analyses of the spike-

based model, the simulations of the NFT equations, the theoretical

analysis of the spectrum of the NFT through Eq. (42), and a

theoretical analysis of NFT as for the third row but augmented

with spike features. The three columns represent the breathing

mode power PI (0,f ), the spatial correlation function g [from the

inverse Fourier transform of PI (k,0)] and the full spatio-temporal

power spectrum PI (k,f ). Panel A shows PI (0,f ) for the spike-based

model. The power is large at zero frequency and falls with

increasing frequency; however, it is dominated in this case by

features related to the spike rate; namely peaks at about 22 Hz and

its harmonics. Panel B shows the correlation function, showing that

there is some significant spatial order in the system; with g decaying

to 1=e in about 2 cm. Panel C shows PI (k,f ); here we see that there

are large features at 22 Hz and 44 Hz associated with spiking

behavior superposed on a more smoothly varying background with

a maximum at (0,0). The spatial frequency extent of these features,

about 40m{1, is equivalent to the correlation length seen in panel B.

Panels D–F show the equivalent for the NFT simulation. The

obvious difference is the lack of spike-features, since the NFT

Figure 2. Typical neural firing pattern in voltage. Here t0~0:005s, ~nnaa~0, ~nn0aa~0:0025Cm{2, and Idrive~Icr~0:21475Am{2 . Colors denote
membrane potential in V.
doi:10.1371/journal.pcbi.1002560.g002

Figure 3. Typical neural firing pattern, showing the current Ia into the neurons for the same case as Fig. 2. Here t0~0:005s, ~nnaa~0,
~nn0aa~0:0025Cm{2 and Idrive~Icr~0:21475Am{2 . Colors denote current density in Am{2 .
doi:10.1371/journal.pcbi.1002560.g003
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simulation does not contain spiking events. Otherwise, the shape

(but not the magnitude) of the behavior is very similar to that of

panels A–C. Panel G shows a theoretical calculation of PI (0,f ) from

Eq. (42); it is evident that it is very similar to that of the simulation of

panel D. Panel H shows the spatial correlation function; it has a

similar correlation length to those of B and E; however, it does not

have the same minimum at approximately 0.07 m that is the case

for panels B and E. This negative correlation in panels B and E may

be attributable to the toroidal boundary conditions in space. Panel I

shows PI (k,f ), which agrees with the simulation of panel F and the

background of the panel C for the spike-based model. Panel J

depicts PI (0,f ) calculated from Eq. (42), with the addition of spike

features arising from the spectrum of spikes. This compares well

qualitatively to Panel A. The major discrepancy is the magnitude of

the power. This is due to the interplay between the spike-based

mode and the rate-based mode. The rate-based oscillation

influences the synchrony of the spike-based mode, thus magnifying

the power PI (0,f ) when resonances occur, such as for this set of

parameters. The size of the major resonance can therefore vary

tremendously as a function of t0. Panel K shows the NFT spatial

correlation function, and panel L the NFT prediction of PI (k,f ) to

which has been added the power spectrum due to a series of spike

remnants in Ia. Panel L compares moderately well with panel C; the

major discrepancy is the greater extent of the resonant features in k,

corresponding to less synchronization of neurons than is seen in the

spike-based simulations in panel C. Overall, for Fig. 5, when

features attributable to spikes are taken into account, we note that

the NFT theory and simulation generally predict well the

underlying shape of the power spectra (though not its magnitude).

In Fig. 6 we show a similar analysis for the membrane potential.

The first row represents the simulation of the spike-based model;

the second the reconstruction of a spike sequence from the

simulations of the NFT model. Note that there is no NFT

linearized prediction in this case since the NFT theory does not

consider Va explicitly. The three columns represent the breathing

mode power PV (0,f ), the spatial correlation function g (from the

inverse Fourier transform of PV (k,0)) and the full spatio-temporal

power spectrum PV (k,f ). Panel A shows PV (0,f ) for the spike-

based model. It is dominated by features related to the spike rate;

namely peaks at about 22 Hz and its harmonics. Fluctuations due

to non-spike (e.g. subthreshold) processes are much lower in

magnitude. Panel B shows the spatial correlation function,

showing, as in Fig. 5, g decaying to 1=e in about 2 cm. Panel C

shows PV (k,f ); here we see that there are large features at 22 Hz

and 44 Hz associated with spiking behavior; the spatial frequency

extent of these (around 40m{1) approximately equals the inverse

of the spatial correlation length. Panels D–F show the equivalent

for the NFT simulation, in which spikes have been generated

through the process described earlier. One notes that Panel D

shows a similar (but not exactly identical) spectrum to Panel A; for

example, the spike rates are slightly different and the spikes are less

broad, consistent with less variation in inter-spike interval. Panel E

shows that there is no discernable correlation between neighboring

neurons in this method. Panels F shows the spectrum PV (k,f ) of

the reconstructed spike sequence; the swaths at the spike rates

represent very distinct firing frequencies that are uncorrelated in

space. There is no equivalent NFT theoretical prediction since the

NFT does not contain spiking events explicitly. Overall, for Fig. 6,

we note that the NFT theory and simulation predict temporal

structure of spiking well, but are not as accurate spatially. This is

attributed to the problem of defining initial conditions from the

reconstruction of spikes. One could in principle, knowing the result

of the spike-based approach, define initial phases to produce a

similar correlation. We have not done this. Spike rates also show

more fluctuation in the spike-based model than the NFT model.

To summarize, we observe with Figs. 5 and 6 that the analysis of

PI shown in Fig. 5 is more appropriate for analyzing the

correspondence between the spike-based model and NFT where

there is specific interest in the behavior of the NFT model (e.g.

where collective modes dominate behavior). However, the latter

Figure 4. Typical axonal pulse field patterns, showing (A) waa and (B) w’aa vs. time for the same case as Fig. 2. Here t0~0:005s, ~nnaa~0,
~nn0aa~0:0025Cm{2 , and Idrive~Icr~0:21475Am{2 . Colors denote rates in s{1.
doi:10.1371/journal.pcbi.1002560.g004
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analysis of PV is likely to be appropriate when spike-rates are the

dominant issue to consider.

We now consider how the behavior of the models change as key

parameters are varied. To do this, we carry out simulations of both

sets of equations (26)–(30) and (31)–(34) for the spike-based and

NFT models, respectively; and use the methods of [14] to

reconstruct spike-sequences from the NFT prediction. The power

spectra PV (0,f ) or PI (0,f ) as appropriate for both situations are

then compared. Plots of the power spectrum against temporal

frequency are then stacked to represent graphically the changes in

resonances and power fluctuations in response to a variation in a

parameter.

Dependence on External Current
Fig. 7 demonstrates the effect of a change in the external driving

current Idrive. Higher Idrive naturally leads to a higher firing rate.

Part A shows the breathing mode power for the spike based model

as a function of drive current. There is an abrupt change in the

spectrum PV (0,f ) at Idrive&0:215Am{2; the maximum of

PV (0,f ) shifts from 5.5 Hz to 11 Hz. From this point, the major

frequency feature increases in frequency as drive current increases,

corresponding to a mean firing rate of the neurons that is in

agreement with neural field theory. Part B shows the predictions of

the neural field model in terms of the power spectrum PV (0,f ) of

the reconstructed voltage trace. The two graphs show that the

resonances occur at similar frequencies, with a trend of increasing

frequency with increasing Idrive. However, these frequencies are

not exactly the same. For example, at Idrive~0:225Am{2, the

spike-based approach in Panel A gives a simulated rate of 11 Hz,

whereas in the NFT model shown in Panel B a rate of 9 Hz is

observed. At Idrive~0:24Am{2, the spike-based and field-based

frequencies are 17 Hz and 14 Hz respectively. In this case the

Figure 5. Comparison of the power spectra for current density for the spike based model and neural field predictions for a fast
firing case. Here, Idrive~0:24Am{2 , ~nnaa~0, ~nn0aa~0:0074Cm{2 , with t0~0:06s. A. Power spectrum of the spike-based simulation at zero spatial
frequency, PI (0,f ). B. Spatial correlation function for the spike-based simulation. C. The spatio-temporal spectrum PI (k,f ) for the spike-based model
on a logarithmic (base 10) scale. One contour represents half an order of magnitude change in power. D. Power spectrum of the NFT simulation at
zero spatial frequency, PI (0,f ). E. Spatial correlation function for the NFT simulation. F. The spatio-temporal spectrum PI (k,f ) for the NFT simulation
on a logarithmic (base 10) scale. G. Theoretical power spectrum at zero spatial frequency PI (0,f ) calculated from the transfer function Eq. (42) for the
NFT at zero spatial frequency, PI (0,f ). H. Theoretical spatial correlation function for the NFT calculated from the transfer function. I. The theoretical
spatio-temporal spectrum PI (k,f ) on a logarithmic (base 10) scale, from the transfer function. J. The theoretical power spectrum PI (0,f ) with spike
features attached. K. The theoretical spatial correlation function. L. The theoretical spatio-temporal spectrum PI (k,f ) with spike features added.
doi:10.1371/journal.pcbi.1002560.g005
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Figure 6. Comparison of the power spectra for soma voltage for the spike based model and neural field predictions for a fast firing
case. Here, Idrive~0:24Am{2 , ~nnaa~0, ~nn0aa~0:0074Cm{2 , with t0~0:06s. A. Power spectrum of the spike-based simulation at zero spatial frequency,
PV (0,f ). B. Spatial correlation function for the spike-based simulation. C. The spatio-temporal spectrum PV (k,f ) for the spike-based model on a
logarithmic (base 10) scale. D. Power spectrum at zero spatial frequency of the NFT simulation where spikes have been reconstructed, PV (0,f ). E.
Spatial correlation function of the reconstructed voltage series from the NFT simulation. F. The spatio-temporal spectrum PV (k,f ) for the
reconstructed voltage from the NFT simulation on a logarithmic (base 10) scale.
doi:10.1371/journal.pcbi.1002560.g006

Figure 7. Comparison of spike-based and NFT models where spike rates are low. Power spectrum PV (0,f ) vs. drive current Idrive on a
logarithmic (base 10) scale. Here t0~0:15s, ~nnaa~0, ~nn0aa~0:0025Cm{2 . A. Spike based prediction. B. NFT prediction.
doi:10.1371/journal.pcbi.1002560.g007
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spike-based model is dominated by the regular spiking behavior

predicted by NFT. Note that the lumpy structure is a result of the

resolution limit of the plot; it is not a chain of discrete peaks.

Dependence on t0 where Spiking Dominates
In Fig. 8 we show the effect of varying the time delay t0 for the

case of a high external drive current Idrive~0:24Am{2 and fairly

high loop feedback ~nn0aa~0:0074Cm{2. Since Idrive is well above

Icr there is a high firing rate and the feedback is not required to

maintain activity. Direct feedback is set to zero. The temporal

frequency spectrum at k~0 is plotted against time delay. Also

shown on the plot are the predictions of resonances from the NFT,

through Eq. (42). These are shown by the solid lines. The half-

integer multiples of these are shown by the dashed lines. The plot

clearly indicates a firing rate of around 22 Hz. A harmonic at

around 44 Hz is also present on the plot. However, the firing rate

is not completely independent of t0, and varies between

approximately 21 Hz and 22 Hz. There are two clear regions,

at about 0:015svt0v0:025s and 0:055svt0v0:075s when the

power is very large, indicating a sharp resonance in activity of the

breathing mode, a property of the network.

A feature of this plot is the dependence on t0 of the magnitude

of the resonance at the spike-rate of 21–22 Hz. A large response

occurs when the firing frequency is 3=2 that of the fundamental

predicted by Eq. (43). A low response occurs when the firing rate is

exactly double that of the prediction of Eq. (43). We emphasize

that in this case synaptic coupling between a neuron and its

neighbors is weak compared with the driving current, implying

that each neuron has a well established limit cycles for its firing,

dominated by Idrive. The reason for the discrepancy between the

predicted resonances of Eq. (42) and the resonances seen in

simulation appears to be the loss of spatial synchrony of the

neurons at the time delays predicted by Eq. (42) to be resonances

(i.e. the solid lines of Fig. 8). Instead of near synchronous firing,

more intricate spatial patterns, e.g. traveling waves [47,48], are

formed causing a reduction in PI (0,f ). This phenomenon is not

seen when spike rates are significantly reduced by lowering Idrive,

as discussed below.

Dependence on t0 where Loop Effects Dominate
Next, the effect of a wide range of time delays is demonstrated

for a low firing case. In order to elucidate the interaction between

the loop resonances captured by the mean field approach and

the effects of spike firings, a small loop connection strength

~nn0aa~0:0025Cm{2 has been chosen, with no direct feedback, and

a drive current equal to the critical current. This ensures that any

positive feedback will result in significant activity. This time, the

appropriate analysis is with the power in the current fluctuations,

PI (0,f ). Part A of Fig. 9 shows the breathing mode power PI (0,f )
as a function of time delay t0, for a simulation of the spike based

equations. Part B shows the same plot, but as predicted by the

rate-based theory through Eq. (42).

One can see three clear regimes in Fig. 9A. For t0v0:07s, the

major feature on the power spectrum is a resonance at about

10 Hz, which is double the neuron spike rate. However, there is a

hint of power at 5 Hz at t0&0:0s. An examination of the neural

firing patterns shows that there are strong correlations between

neighboring neurons (e.g., a neuron firing at 5 Hz out of phase

with its neighbor) leading to the 10 Hz feature being more

prominent than the 5 Hz one. For 0:07svt0v0:23s, the major

feature is the resonance induced by the delay loop. The neurons

adopt a firing rate that is equivalent to the resonance frequency

predicted by the NFT (i.e., the resonances of Fig. 9B). Harmonics

of this frequency are also clearly visible. The key result in this

graph is that the firing rates seen on Panel A for the spike-based

model when t0w0:07s are in the positions predicted by NFT,

while for t0v0:07s the NFT resonance is not strong enough to

capture this mode and the firing rate reverts to that of the spike-

based resonance.

A close-up of part of Fig. 9A is shown in Fig. 10, where the solid

lines show the loop frequency prediction of Eq. (43); the two are

very closely related. At t0~0:23s there is an abrupt change in the

power spectrum PI (0,f ) and for t0w0:23s the lowest frequency

peak falls in magnitude as t0 increases until it vanishes at

t0&0:29s. Here, the neurons are no longer able to fire slowly

enough to follow the loop resonance frequency which is low for

large t0, and instead the firing rate switches to (nearly) double the

loop resonance frequency. However, this transition is subtle and

Fig. 10 shows a very slight downward shift in the frequency

compared to double the loop frequency.

The above behavior is similar to that found for a population-

based neuron model with loop feedback [16]. In that model the

authors found that their system could jump between two regimes

of behavior as the time delay was varied. In one regime, the system

fired with a rate equal to the reciprocal of the time delay, or an

integer multiple of this frequency (i.e., it decreased as the time

delay increased); in the other regime, it produced a firing rate

independent of the time delay. The system alternated between

these regimes as the delay time increased. In our model we also see

this break between a firing rate roughly independent of time delay

(for t0v0:07s), and one where the rate approximately follows the

reciprocal of the delay time (for 0:07svt0v0:23s).

Dependence on Connection Strengths
The other major parameters that can be changed are the

connection strengths. We illustrate this case by studying the effect

of altering the balance between the direct and loop connection

strengths ~nnaa and ~nn0aa, respectively.

The mean field solution for firing rate depends upon the sum of

~nnaa and ~nn0aa. However, fluctuations in firing rate are expected to be

different. By setting ~nnaaz~nn0aa~0:0074Cm{2, we ensure that the

equilibrium firing rate is the same in all cases and we can study

Figure 8. Breathing mode (k~0) power vs. time delay t0 for a
fast-firing case with the spike-based model. A plot of the power
spectrum of PV (0,f ) on a logarithmic (base 10) contour scale for the
breathing mode (k~0) against time delay t0 for a fast firing case. Here
Idrive~0:24Am{2, ~nnaa~0Cm{2 , ~nn0aa~0:0074Cm{2 . The solid lines
show the resonances predicted by Eq. (43); the dashed lines the
frequencies halfway between these.
doi:10.1371/journal.pcbi.1002560.g008
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how the resonances and stability change as the balance between

the terms changes. The other key parameters are selected as

t0~0:1s and Idrive~Icr~0:21475Am{2.

Fig. 11 shows the breathing mode power PI (0,f ) as a function

of the direct (non-loop) connection strength ~nnaa. In Panel A power

is plotted in the form of contours; Panel B shows a three-

dimensional representation of the same information. Note that in

the plot, ~nnaaw0:0074Cm{2, implying that the loop connection

strength ~nn0aa is negative. The most distinctive feature in this plot is a

bifurcation at ~nnaa~0:014Am{2V{1, as a result of a strong loop

negative feedback through ~nn0aa. At ~nnaaw0:014C m{2, the system

oscillates at about 5 Hz between a rapidly firing state and a non-

firing state. For ~nnaav0:014Cm{2, the system fires at about 12 Hz,

as predicted by NFT. Close to bifurcation the system experiences

large fluctuations in firing rate, as expected by NFT [49]. There is

some evidence of an increase in power at about 5 Hz just before

the bifurcation, for 0:0138Cm{2
v~nnaav0:0140Cm{2. This part

of the spectrum is indicated explicitly on both parts A and B of

Fig. 11. The fluctuations for ~nnaa~0:0139Cm{2 are shown

explicitly in Fig. 12 which shows Va against time and space for

one second of time. The plot shows propagating fronts of activity.

The velocity of propagation has a range of approximately 0.4–

1:8ms{1 and a typical value of around 1:1ms{1, and this

variation results in the firing rate of each neuron showing

considerable fluctuation with time.

The point of bifurcation is also presented in more detail through

Fig. 13. Panel A shows PI (0,f ); we see a decrease in power with

increasing frequency, with a hint of a peak at around 4 Hz. Panel

B shows the spatial correlation function g; there is long-range

order here with g dropping to 1=e in about 3 cm. Panel C shows

the PI (k,f ) for the spike based simulation. There is a background

of activity that peaks at (0,0); on top of this there is a diagonal line

of peaks with gradient of approximately 0:85sm{1; corresponding

to a traveling wave with velocity of about 1:2ms{1, consistent with

the typical velocity of a wavefront in Fig. 12.

This is significantly larger than the loop propagation speed

r’aac’aa&0:8ms{1 illustrating that the rate of propagation of

activity along axons is not the sole determining factor for the

wavefront velocity. Indeed, Bressloff has demonstrated that

propagation of waves in a one-dimensional network of integrate-

and-fire neurons is dispersive and dependent upon synaptic

strength and delays in addition to axonal properties [50]. Panels

D, E and F show the equivalent calculations from the NFT

through Eq. (42). In panel D we see a power spectrum with a

strong peak at 3 Hz (similar to the peak of panel A) and then clear

resonances at higher frequencies. Panel E shows the correlation

function g; there is large long range order predicted, consistent

with being on the edge of an instability. Panel F shows the

predicted PI (k,f ). One can see a peak at about 3 Hz and zero

spatial frequency, similar to Panel C for the spike-based

simulation. However, the major feature of this plot are the deep

dips lying on a line of gradient 0:5sm{1. It is interesting to remark

that this gradient is about half that seen for the resonances in Panel

C. In these plots it is clear that the spike-based simulations and

linearized NFT predictions are considerably different. This is not

surprising given that this system lies very close to an instability

Figure 9. Power spectrum PI (0, f ) vs. time delay t0 for a slow-firing case. Here, Idrive~Icr~0:21475Am{2 , ~nnaa~0, ~nn0aa~0:0025Cm{2 . (A)
Spike-based results. (B) Neural field results from linearized theory.
doi:10.1371/journal.pcbi.1002560.g009
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where linear predictions are expected to break down. It is also

possible that the critical point in NFT might be at a slightly

different parameter value than for the spiking model.

Discussion

We have explored the relationships between spiking-based and

rate-based neural models by using both approaches to model the

same test system — a one dimensional array of neurons coupled

both directly and via a delayed feedback loop. The dynamics

predicted by both approaches has been compared predominantly

through the power spectra of the membrane potential PV (k,f ) and

current density PI (k,f ). We have focused on the relationships

between resonances associated with the firing of single cells and

populations of cells, particularly the overlap and transitions

between these two regimes. We have shown how the dynamics,

especially prominent resonant effects, depend on the key

parameters of the model (specifically delay-loop time, loop

connection strengths and drive current density).

The spike-based approach of Eqs (26)–(30) supports two modes

of oscillation. First, there is the highly nonlinear spiking mode in

which each neuron spikes according to its input. This mode, for a

single Wilson neuron, has been well-studied [2,49,51]. Also, a

collective mode can exist, in which the firing rate undergoes small

or large oscillations. The spectrum of these oscillations can be

determined through neural field methods [as in Eq. (42)]. Both

modes can be obtained through an analysis of an equivalent neural

field model: the spiking modes from a reconstruction of the

voltage, and demonstrated most directly through PV (0,f ); the

collective modes through an analysis of the current fluctuations

and demonstrated most directly using PI (0,f ).

At this point we again stress the distinction between the firing

rate and fluctuations in the firing rate. Neural field theory predicts

both, namely the firing rate Qa itself, and how the firing rate

fluctuates with time and space. In an extreme case, this could take

the form of bursting — a neuron fires rapidly for a short period of

time, and then is silent for a period of time. Thus there are two

different time scales here, the inverse of the firing rate, and the

period for the bursting–silent oscillation. Generally, however, the

collective modes are not of this extremely nonlinear bursting form,

but can be modeled by the linear analysis of Eqs. (35)–(42).

Results of spike-based and NFT simulations and predictions can

be compared through plots of the power spectrum in current

density, PI (k,f ) and membrane potential, PV (k,f ). In the latter

case, since the membrane potential does not feature in the NFT

equations explicitly, a sequence must be reconstructed from

knowledge of other variables, either the mean firing rate Qa

through time integration or the current density Ia through a

neuron-in-cell method [14]. Analysis of PI (k,f ), and particularly

the breathing mode power PI (0,f ) proves useful when there is

significant power in the collective modes of oscillation; however,

when spike-based behavior dominates, an analysis of PV (0,f ) gives

more direct insight. A disadvantage of analyzing the membrane

potential is that the reconstruction of spike sequences from the

NFT solution does not produce the spatial correlations that are

predicted through PI (k,f ) or seen in the spike-based model. This

is because in the reconstruction of a voltage from a firing rate,

[e.g., Eq. (46)] spatial effects manifest themselves differently; the

reconstructed spike series depends upon the initial conditions

which are not known a priori as a function of space.

The collective and spike-base modes are not entirely

independent of each other, particularly when the two time

Figure 10. Enlarged view of the region of Fig. 9A for PI (0, f ) around t0~0:23s. Solid lines represent resonances predicted by the neural field
model through Eq. (43); dashed lines show the predicted minimums between resonances. The color denotes the logarithm (base 10) of the power.
doi:10.1371/journal.pcbi.1002560.g010
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scales are the same (or integer or half-integer multiples) of each

other. Indeed, Wu et al. [16] found for a rate-based model of a

Wilson neuron that receives feedback from itself, the behavior

can be dominated by either type of resonance. At certain points

a small change in parameters is sufficient to cause the behavior

to switch between one resonance and the other. In this spatial

model, we see similar behavior. However, the spatial dimension

adds a complexity to the behavior that is not present in simpler

models. This manifests itself for example in the intricate

traveling-wave firing patterns that are demonstrated in Figs. 2

Figure 11. Power spectrum on a logarithmic (base 10) scale for the breathing mode (k~0) vs. direct connection strength ~naa for a
low-firing rate case. Here Idrive~Icr~0:21475Am{2 , t0~0:1s, and ~nnaaz~nn0aa~0:0074Cm{2 . A. Power PI (0,f ) in the breathing mode. B. The same
plot, shown in a three-dimensional form, with power shown on a base-10 logarithmic scale. The ellipses show the increase in power at 5 Hz before
the bifurcation.
doi:10.1371/journal.pcbi.1002560.g011

Figure 12. A section of the voltage Va series in time and space for the case, Idrive~Icr~0:21475Am{2, ~naa~0:0139Cm{2,
~n0aa~{0:0064Cm{2, with t0~0:1s.
doi:10.1371/journal.pcbi.1002560.g012
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and 12 for example, that have been described by Osan et al.

[47].

In some cases, the collective and spike-based modes are both

present in a system, without significant signs of interaction. For

example, Fig. 5 shows that the NFT predicts the underlying power

spectrum, on which features due to spiking events sit. For example,

in this case there is a peak at zero temporal and spatial frequency,

as is frequent for neural field models away from a resonance

condition (e.g., [39]). However, there are situations where one of

the two modes can dominate In Fig. 7 the spiking mode

dominates; neurons fire at a rate that is close to that predicted

by the NFT but show little modulation in this rate — i.e. there is

little collective oscillation present.

In Fig. 9A, and in more detail in Fig. 10, for t0w0:07s, the

collective oscillation dominates to the extent that it captures the

spiking oscillation. This can be seen from the correspondence

between the solid lines in Fig. 10 and the regions of high power. In

this case the firing rate is no longer that predicted by the

equilibrium value of Qa in Eq. (31), specifically 5.5 Hz, but is

equal to the position of the predicted resonance in the rate.

Specifically, the larger t0, the lower the resonant frequency. We

emphasize that this is not a trivial result. Resonances in spike rate

Qa as predicted by NFT (i.e. the peaks in the spectrum PI (0,f ))
are not in general the same as the mean firing rate Qa itself.

Analysis of Fig. 9 requires the use of both the spike-based and rate-

based paradigms in order to fully elucidate the results. Analysis of

the spiking pattern (not shown) shows that the system is also highly

synchronized in space — in other words the collective oscillation

has entrained the spiking oscillation. This is consistent with the

prior result that a particular firing-rate based model agreed with a

corresponding integrate-and-fire spiking model when interactions

were sufficiently slow [17]. In Fig. 9B, the predicted power for the

NFT case shows clearly the NFT resonances moving to lower

frequency as t0 increases. It is also interesting to note the transition

between different dominant modes of behavior in this system. For

t0v0:07s, the strength of the collective oscillation is not sufficient

to entrain the firing rate, which reverts to its equilibrium predicted

value of 5.5 Hz. The major feature on Fig. 9A is at twice this,

11 Hz; analysis of the firing patterns (not shown) show that

neurons are approximately paired; each fires in approximate anti-

phase with its neighbor. Such behavior is common in neural

simulations and its prevalence depends upon the strength of

coupling between neurons, randomness in the couplings, noise and

time delays. An anti-phase mode would be most likely when

coupling strength and randomness are low [17,52], noise is low

[48], but for a small range of time delays [52,53]. In our

simulations we have not used random connections and have kept

connection strengths low in order to ensure firing rates are of

similar magnitude to resonances in the neural field simulations.

Both of these favor the existence of an anti-phase state.

Fig. 9A is similar to the results seen by Wu et al. [16] in which a

simpler spatially uniform model was shown to exhibit similar

transitions between spike-based modes and collective modes of

behavior as the loop delay was changed. In Ref. [16], spiking rates

for one parameter set entrained alternately to either one of the two

modes as t0 was increased. Several switches between the modes

were observed as delay time was increased from 0 to 0.7 s. In the

current study, delay times were limited to what is physical within a

thalamocortical system, and only a single switch between a spike-

based mode and a collective mode is observed. For a different

parameter set, Wu et al. [16] also demonstrated a doubling of the

primary frequency of oscillation with as a result of a small change

in time delay, similar to the doubling observed in this study in

Fig. 9A.

There can also be more complicated interplay between the two

forms of oscillation. For example Fig. 8 demonstrates that the

power in fluctuations in Ia at a particular frequency can be

strongly influenced by the relationship between this frequency (in

this case 22 Hz) and the frequency of a collective resonance

predicted by NFT shown in the figure by the solid and dashed

lines. This variation in power requires particular comment.

Naively, one might expect that where an NFT resonance, with

positive gain, corresponds to the mean spike rate, there would be

an enhancement of power. However, the opposite is the case here;

the power PI (0,f ) is much reduced when the resonance predicted by

Eq. (43) corresponds to the spike rate. There are two points to

Figure 13. Comparison of the power spectra predicted from the spike based and neural field approaches close to the bifurcation.
Here, Idrive~Icr~0:21475Am{2 , ~nnaa~0:0139Cm{2, ~nn0aa~{0:0064Cm{2, with t0~0:1s. A. PI (0,f ) from the spike-based model B. The spatial
correlation function of the spike-based model C. Results for PI (k,f ) for the spike based model on a logarithmic (base 10) scale. D. Theoretical PI (0,f )
predicted by the transfer function Eq. (42) of the NFT model. E. Theoretical spatial correlation function predicted by the NFT model. F. Predictions of
PI (k,f ) from the transfer function of the NFT model.
doi:10.1371/journal.pcbi.1002560.g013
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discuss by way of explanation. First, resonances predicted by Eq.

(43) are weak when t0v0:07s, so interaction between the two

might be expected to be small for this parameter range. Second,

the spatial nature of the model is important. Consider the

propagation of activity in space. When a neuron fires, there is a

time frame 1=c’aa over which an effect is generated on the axon,

through Eq. (30). There is then a delay time t0 for the signal to

traverse the thalamocortical loop, followed by a time 2=a for an

impact to be felt on the receiving neuron through Eq. (28). A signal

therefore takes a time t0z2=az1=c’aa to return to the same

neuron in the cortex; longer times allow for spatial propagation via

the delay loop. At a spike rate of 1=(t0z2=az1=c’aa) each neuron

receives strong input that arose from itself one spike-interval in the

past, and consequently spatial communication between neurons is

relatively weak. The weak communication encourages the

formation of a variety of spatially patterned states [17,47,52]

which are not synchronized in space and therefore lead to a

reduction in PI (0,f ). Such a pattern of alternating synchronous

and asynchronous behavior has been found in previous studies

[17].

It is possible that the dynamics of the spike based system is

unduly influenced by the homogeneity of the parameters used

[52]. For realistic systems, one would expect a wide range of values

for the axonal lengths, synaptic decay times, etc. A system

consisting of identical neurons may be particularly sensitive to

modes of oscillation (e.g., synchronous in-phase or antiphase firing

of all neurons) that are less likely to be seen in practice. Using

homogeneous values in a model has the advantage of increased

analytic tractability; however, implications of such homogeneity

require further study. The methods discussed are easily general-

izable to two dimensions with appropriate choice of wave equation

(6). Results would be less easy to present, since two spatial

dimensions and one temporal dimension would be present. Other

neuron models (e.g. the bursting model used by Robinson et al.

[15]) could be used by changing the forms of Eqs. (12)–(15), and

finding the equivalent rate equation (16). An inhibitory population

could be added with another set of variables.

To conclude, we remark that we have demonstrated consider-

able overlap between the spike-based and the neural-field

approaches. Where neural-field resonances are strong, spiking

rates can be entrained to these resonances. A system that allows

both modes to feature can show interactions between the two.

Both spike-based and rate-based paradigms must be used to fully

analyze the system. A spatial dimension adds complexity to the

situation discussed previously by Wu et al. [16]. The theories can

be considered as complementary methods of approaching the

neural modeling problem, each offering a different physical

emphasis.
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