


Atomic Components

Steve Reeves and David Streader
Department of Computer Science

University of Waikato
Hamilton, New Zealand

�dstr,stever�@cs.waikato.ac.nz

Abstract

There has been much interest in components that com-
bine the best of state-based and event-based approaches.
The interface of a component can be thought of as its spec-
ification and substituting components with the same inter-
face cannot be observed by any user of the components.
Here we will define the semantics of atomic components
where both states and event can be part of the interface.
The resulting semantics is very similar to that of (event only)
processes. But it has two main novelties: one, it does not
need recursion or unique fixed points to model nontermi-
nation; and two, the behaviour of divergence is modelled
by abstraction, i.e. the construction of the observational se-
mantics.

Keywords: state and action, components, refinement, la-
belled transition systems, Z

1 Introduction

Industry is looking to create a market in reliable “plug-
and-play” components. To do this the interface [2] of a
component needs to be defined in a way that makes it safe
to substitute components with the same interface.

Microsoft approaches this issue using Abstract State Ma-
chines (ASM) as a starting point and have noted [4] that
it would be very useful to combine the event-based pro-
cess algebras, which have modular reasoning built in, with
the descriptive ability of the state-based ASM. To this end
some process algebra features have been added to ASM [4]
but many conceptual difficulties remain. An alternative ap-
proach is to start with a process algebra and enrich its de-
scriptive ability to be more like ASM while retaining the
desired modularity. The work of [9] can be interpreted as
an example of this approach.

Here we are going to consider only simple components
with atomic states and atomic actions. Because of the sim-
ple semantics of our components they are easily recognis-

able as a small extension of processes. Our goal is to model
states and events in as direct a style as we can and to de-
fine an equality that is congruent with respect to component
composition and abstraction, where abstraction simplifies
the component while preserving its interface.

To achieve these goals we make the following design de-
cisions:

1 states and events are either in the interface or internal;
2 use operational not denotational semantics;
3 “observational” congruences ignore the internal;
4 model divergence with out chaos;
5 model nonterminating process without using recursion

or unique fixed points.
The first of our design decisions reflects our desire to model
components not processes, the second arises from the well-
known [21, 8, 17] isomorphism between state-based rela-
tional semantics and event-based operational semantics.

We reject models based on bisimulation semantics such
as CCS [16] or ACP [1] as few of the hidden actions, i.e.
�s, can be removed. With models based on failure seman-
tics such as CSP, CFFD [22] and NDFD [14] all � actions
can be removed, although to obtain congruence the denota-
tional semantics is complicated by adding both divergence
and stability. We reject CSP’s failure-divergence semantics
for two reasons: one, it does not attempt to model how di-
vergent processes behave— “once a process can diverge,
we assume (whether it is true or not) that it can then per-
form any trace, refuse anything, and diverge on any later
trace” [19][p. 95]; and two, abstraction does not distribute
through choice. We reject the use of denotational semantics
in CFFD and NDFD, but find that our operational defini-
tions result in an equivalence that, with some small restric-
tions, is equivalent to NDFD.

There is a natural, from an operational perspective, de-
composition of observational equivalences into two parts:
one, abstraction (the construction of the observational se-
mantics); and two, a definition of a strong, i.e. non-
observational, equivalence (see Section 2.3). The main con-
tribution of this work is defining abstraction so that it mod-

1



els what can be seen of a process that diverges.
The separation of observational equivalences into ab-

straction (the construction of an observational semantics)
and a strong equivalence has been well exploited in [16, 1],
where they use bisimulation and a definition of abstraction
that ignores divergence. It is well known that for failure-
equivalence divergence cannot be ignored [3].

To be consistent with our first design decision we have
used choice from [25] not one the more well known process
algebras [12, 19, 11, 16, 1] although for terminating process
this specialise to choice as in [1, 16].

It is possible to take previously defined models, one for
states and one for events, and then glue them together [20, 8,
26]. This has the advantage of making tool reuse easy but
requires accepting each model on an all-or-nothing basis.
We are trying to define a model that treats states and events
on an equal footing by taking what best fits our needs from
a range of models.

This work is novel in two ways: one, we do not use re-
cursion to define nonterminating processes; and two, our
operational semantics models what can be seen of divergent
processes as nondeterminism.

The discussion above has been rather general and con-
ceptual, but our motivation has been to provide a semantics
that permits modular reasoning in practice. So, in an at-
tempt to give some assurance that our framework is of prac-
tical use, we use it (in Section 5) to model and reason about
a simple example and briefly compare our model with other,
more well-known, models from the literature.

2 Component specifications

Components consist of atomic states and events. Both
can either be a part of the component’s interface or are in-
ternal to the component.

We will write A�B � � � for components and will assume a
universe of observable action names div� a� b � � � � Act and

� for internal actions and Act�
���
� Act � ���. We also

assume a universe of state propositions � (see [9]) which
include propositions s for the start and e for end of the com-
ponent. We can now view components as given by certain
transition systems.

Definition 1 Component transition system (CTS)

A ���
� �NA�OsA� TA� is a CTS where

NA is a finite set of nodes
TA � ��n� a�m� � n�m � NA � a � Act��.
OsA � NA � �� (the observable states of A). Æ

As usual we can define eA
���
� �n � e � OsA�n�� and

sA
���
� �n � s � OsA�n��. This shows we allow sets

of ending (final) and starting (initial) states. The intended
meaning of the set of initial states is that the specification
can nondeterministically be started in any of these states.

If OsA�n� � � then n is an internal state, else it is a part
of the interface. We write n

a
	�m for �n� a�m� � TA and

n
a
	� for 
m ��n� a�m� � TA.

Then ��s�
���
� �a � s

a
	�� and ��A� ���

� �a �

n
a
	�m � TA�

2.1 Processes are special components.

A process can easily be seen as a component with state
propositions restricted to propositions for the start and end
of the process. Clearly process �NA�OsA� TA� defines and
is defined by �NA� sA� eA� TA�, which is just a labelled tran-
sition system (LTS) as usually understood. So, we can say
that every CTS can be viewed as an LTS, which we shall do
in the sequel, especially when being able to relate back to
the standard world of LTS is desirable.

Although we regard our atomic components as a minor
extension of processes these processes are slightly different
from those of CSP, CCS and ACP in that they have a set of
start states.

2.2 Component Equivalences

Failures are usually defined with traces that are se-
quences of action names. But we wish to take account of
state observation and the fact that we have a set of start
states.

We write n�
Os�n��x�Os�n��x����xkOs�nk���
																			� nk�� when


n�����nk��
��n�� x�� n	�� � � � �nk� xk� nk��� � TA and let �

range over alternating sequences of state observations
Os�ni� and actions xi.

Tr�A� ���
� �� � m

�
	�n � s � OsA�m��

F�A� ���
� ����X� � m

�
	�n � s � OsA�m� � 
 x�n

x
�	��.

2.3 Component Abstraction

The CTS in Definition 1 take no account of � actions be-
ing unobservable, so we would call it a strong semantics
(�) and an equivalence based on it a strong equivalence
(�X) . From an observational semantics (�a) we define

an abstraction function Absa�A�
���
� �NA�OsA� �n

x
	�m �

n
x

��am�� that builds a strong semantics and define obser-
vational equivalences (�aX) as:

A �aX C ���
� Absa�A� �X Absa�C�

We will use a lower case prefix to depict the abstraction
function and an upper case suffix to depict the strong equiv-
alence (e.g. F for failure below).

2



Definition 2 Observational semantics
a

��o:

s
�

��t
���
� s


�
	�s�� s�

�
	�s	� � � � sn��

�
	�sn � s � s� �

t � sn � 
i�n �Os�s
� � Os�si�

n
a

��om
���
� n

�
��n�� n�

a
	�m��m� �

��m � �a � Act �
Os�n�� �� Os�m���

A �oF C ���
� Abso�A� �F Abso�C� �

A

s Æ e

Æ e

a c
�

b Abso�A�

s Æ e

Æ e

a c
ba

b

Figure 1. Action abstraction

We extend AbsÆ to cope with nonterminating compo-
nents by replacing � loops with nondeterminism. This can
be done assuming divergence is observable or is indistin-
guishable from deadlock.

Process A in

�

�

�

��

�

��

�

�

�

��
�

���
�

���
��

����� ���

� �
�

���

��

�

�

��
�

���
�

���
��

���� ���

� �
�

Figure 2. Divergence

Fig. 2 is an example
of what we call op-
tional divergence,
it could either act
fairly and always
eventually perform
a or alternatively it could stay forever in the s state. What is
more which it does is not determined by any outside agent.

Hence we model this divergence as the nondeterministic
choice between performing a and being trapped in the s �

state (see Fig. 2). If divergence or internal activity is ob-
servable (the green light of [24]) then we would use Abs d� ,
else Abs� .

Definition 3 Let A ���
� �NA�OsA� TA�,

D� �NA� � NA � �d� � s
�

��t�,
D� �TA� � TA � �d

�
	�d� � s

�
��t� and

Dd�TA� � TA � �d�
div
	�d� � d

��

			�d� then

Abs� �A�
���
� �D� �NA��OsA�Abso�D� �TA���

Absd� �A�
���
� �D� �NA��OsA�Dd�Abso�D� �TA���� �

The congruence of process algebraic equivalences give
them their much sought-after modularity. With this in mind
we define component operators, taken from the process lit-
erature, in order that our observational equivalences are
congruent. We adopt the operators from the process liter-
ature: � internal choice; � choice; � sequential composi-
tion; and �� parallel composition. The transitions of non-
terminating components can be defined using a set of linear
recursive equations �X � aX � bY� Y � cZ� (see ACP
[1]).

The above set of equalities can be interpreted as giving
a mutually recursive definition of �X� Y� Z�. Alternatively
�X� Y� Z� can simply be interpreted as a set of states.

An equality can be in-
�

�

��

�
�

�

��
� �

�

�

���
�

���
���

�
��

�

��
Æ

�

��

Figure 3. A and B

terpreted as defining the
set of actions with the
same pre-state. Each
pair of the name and
state on the right of the
equality defines the name and post-state of a transition. For

example B in Fig. 3 can be defined by NB
���
� �X� Y� Z�

(seen as �s� Æ� se�), sB
���
� �X� Z�, eB

���
� �Z� and

TB
���
� �X � aY� Y � cZ� Z � bY�.

3 A component algebra

We are interested in choice, sequential composition and
parallel composition between components. But, how we
would wish these operators to affect the state propositions
depends upon the meaning of the propositions. Thus the ap-
proach in [9], where parallel composition is parameterised
by “proposition rules”, seems appropriate. Because we
wish to compare our operators with those in the process lit-
erature we restrict ourselves to the two propositions, one for
start and one for end, i.e. essentially to LTSs.

Choice has been defined ([1, 25]) on operational seman-
tics with one start state by gluing the two start states to-
gether. Here we glue together two sets of start states.

As a first step we define what it means to have a set of
nodes in a transition:

n
a
	��s� � � � sn�

���
� �n

a
	�s� � � � n

a
	�sn�

and use this to define how to glue together two sets of states
e.g. sA and sB.

Let S�
���
� �s��� s�	 � � � s�m� and S

���
� �s�� s	 � � � sn�

and define the n substitutions �si���si� s���� � � � �si� s�m��� for
si � S to be written ��S�S � S���. Also, we define the
n � m substitutions ��S�S � S��� � ��S��S � S��� to be
written ��SS��S� S���.

Consequently ��sAsB�sA � sB�� will identify the two
sets of nodes sA and sB as sA��sAsB�sA � sB�� and
sB��sAsB�sA� sB�� are both the n�m set of nodes sA� sB.

Definition 4 Operations �, � �A ÆA and �� on LTSs A and
B
NA��B

���
� NA � NB, eA��B

���
� eA � eB, sA��B

���
�

sA � sB and
(where � is a partial function from Act � Act to Act) TA��B

is defined by
n

a
	�An�


x�NB
�n� x�

a
	��n�� x�

m
a
	�Bm�


x�NA
�x�m�

a
	��x�m��

n
a
	�An��m

b
	�Bm�� ��a�b��c

�n�m�
c
	��n��m��

3



NA�S � NA, sA�S � sA,eA�S � eA,

n
a
	�An�� a �� S

n
a
	�A�S n�

n
a
	�An�� a � S

n
�
	�A�Sn

�

NAÆS � NA, sAÆS � sA,eAÆS � eA,
n

a
	�An�� a �� S

n
a
	�AÆS n�

A�B ���
� �NA �NB� sA� eA � eB� �TA � TB����sAsB�sA �

sB��
Let s�B � �s�i � si � sB� and s�e�B � �s�i � si � sB � eB�

A�B ���
� �NA � NB � s�B� sA� eB � s�e�B� TA � TB � �s�i

x
	�n�

si � sB � si
x
	�n����eAs�B�eA � s�B��

A � B ���
� �NA � NB� sA � sB� eA � eB� TA � TB� Æ

Our definition of
�

�

��
��

��

���
��

��
�

�

��
��

��
��

�

���
��

��
��

��

���
��

�

��
�

��

�

�

��
��

��

���
��

��
�

�

��
��

��
��

�

���
��

��
��

��

��

�

��
�

��

Æ

�

		

Æ

�

		

�

�

�

�

��
�

��
��

��



�
��

��
�

���

�

�

��
�

��
��

��



�
��

��
��

�

��

�

�

��

Æ

�





Æ

�

��

Æ

�

��
�

���
��

�

�

��
Æ

�

��

Figure 4. A� B and A�B

choice, see A � B
Fig. 4, is based
on that from [25]
where the start
states of both pro-
cesses are simply
glued together.
This is unlike that
of ACP where the
processes are first
root unwound. We
amend the defini-
tion of [25] in the
obvious way to cope with a set of start states.

In our definition of sequential composition a set of tran-
sitions is added to those of the operands. In the example
A�B Fig. 4 these added transitions are shown with dotted
arrows.

The details of sequential composition is dependent upon
the details of successful termination but CSP and ACP treat
successful termination differently. Our definitions are based
on ACP not CSP (adding the actions �n

x
	�s �e � eA � s �

sB � n
x
	�e� would result in a more CSP-like definition).

For further discussion see Section 4.3 later.
We show that either of our two definitions of abstraction

Abs� and Absd� preserve congruence w.r.t. ��� � ��� ���
(proofs in Appendix).

Lemma 1 If �X is congruent w.r.t. ��� ���� ��� then so are
��X and �d�X.

Lemma 2 ��Fs and �d�Fs are congruent w.r.t. �� � ��� �� .

4 Comparison

Hoare and He say [13][p.198] “The main distinguishing
feature of CSP is to define a hiding operator that succeeds
in total concealment of internal actions.” Here we have con-
structed an operational semantics consistent with this.

4.1 Choice

In CSP (but not CCS/ACP)
� � ��

�

��
��

�����
�

��

� ���

�������

�

��									

Figure 5. CSP �

� actions s
�
	�n	 and s

�
	�n�

can model “the process could
be in state n� or n	 but we can-
not know which” (see a � b
in Fig. 5). We interpret CSP
external choice � and ACP
choice � to be the same and use the different role of � ac-
tions in CSP and ACP/CCS to explain why A�c �� A � c
in Fig. 6.

� �
��

�








��






�

��
Æ

� ��
�

���

��� Æ

�����

������
�

�� � �
��

�








��






�

��
Æ

� ���

��� Æ

�����

������

A from Fig. 5

Figure 6. CSP � and ACP �

The renaming of observable actions as � actions, ��a�,
does not distribute through CSP choice, whereas ��a� does
distribute through CCS/ACP choice and our �.

The internal or � actions are unobservable in that when
performed they cannot synchronise with an (observing) ac-
tion of some context. The denotational semantics of CSP,
CFFD and NDFD all use stability to define congruence
w.r.t. choice whereas our observational semantics and that
of CCS and ACP keep sA

�
	�Æ. Although we believe this to

be of little importance it does introduce small discrepancies
in what would other wise be the same equivalences.

Root unwinding or not. We have motivated our congru-
ence by using distinguishing states that are in the interface
from those that are not. This introduces a question: what
happens if a process returns to one of the start states that is
in the interface?

�

�

�

��

������

� � ��
Æ

�

��

�

� � ��
Æ

��� Æ

� � ��
����

�����

Æ

�

��

���

�

�

��
� ��

Æ

A �F Unw�A� A ��Fs Unw�A� and A ��F� Unw�A�

Figure 7. Choice + or �

Choice on LTS as defined in [23, 1] is � (see Fig. 7). It
first root unwinds the LTS then identifies start states. An
alternative in [3] is to not allow cycles to return to the initial
node, that is to say consider only unwound graphs. Root

4



unwinding allows us to view loops as mere “sugar” for their
true meaning as an acyclic LTS.

Here choice is modelled by gluing together the root
nodes of two LTSs without performing root unwinding.
This is not new: it appears in [25] where such a definition
of choice is given as limits in categories of LTSs and Petri
nets.

By changing the definition of choice, what is required of
a congruence is changed. With the semantics in [25] A ��
Unw�A�, as we would expect from our desire to distinguish
states that are in the interface from those that are not.

We will show later (see Fig. 10) that by not assuming that
cyclic semantics is equivalent to their unwound semantics
allows a natural decomposition of some components; root
unwinding would prevent this.

4.2 Divergence and abstraction

Action-based approaches frequently use a single syntac-
tic class (of actions) and use recursion to define nontermi-
nating components, which are given a fixed point semantics.
The need to have a unique fixed point semantics has had a
strong influence on the semantics of CSP [19, p215] and
unifying theories of programming [13, 2.6, 2.7]. Alterna-
tively, a very powerful argument, for state-based systems,
has been made [10] in support of using refinement seman-
tics rather than fixed point semantics.

When modelling State-and-Action systems it is natural
to use two syntactic classes, one for states and one for ac-
tions. Using such a formalism, recursion and fixed points
are not needed to define nonterminating components.

Both divergence and abstraction have been treated in var-
ious ways in the literature.

CCS and ACP: � actions are not observable nor refusable
and divergence can be ignored. This is quite natural
if we apply a fair choice interpretation, see process
A, Fig. 2. The fact that CCS and ACP need to keep
some of the � actions in their definition of observa-
tional semantics somewhat detract from the claim that
� actions are unobservable. This is needed for observa-
tional bisimulation to be congruent with respect to an
interleaving interpretation of parallel composition. But
these � actions would not be needed had they used fail-
ure equivalence as their strong equivalence (see [22]);

CSP eager abstraction: � actions are not observable nor
refusable and divergence becomes chaos. This has
been described as: “of rather limited use as a means
of abstraction” [19][p. 296] and “not really adequate
with respect to the operational interpretation of this
phenomenon” [15];

CSP lazy abstraction: � actions are not observable but are
refusable and divergence can be ignored (see [19]
[p.297]);

Here: � actions are not observable nor refusable and op-
tional divergence (see Fig. 2) becomes the nondeter-
ministic choice between eventually performing an ac-
tion and remaining for ever live-locked.

4.3 Sequential composition

Sequential composition is defined using an explicit rep-
resentation of the successful termination of a process. In
CSP termination SKIP “can always be chosen” when of-
fered, i.e. SKIP�a � STOP � �SKIP�a � STOP� �
SKIP. This is quite different from ACP termination 	 which
cannot always be chosen. This can be seen in the construc-
tion of ��a�	� � 	� � �a�	� (see [1] [p. 76]) where the ability
of one of the components to initially terminate is simply
lost. Because of these differences we will avoid comparing
congruence w.r.t. sequential composition from CSP and our
definition which follows that of ACP.

4.4 NDFD Divergence without chaos

In [22, 23]1 they construct a denotational semantics with-
out interpreting divergence as chaos. Stability and diver-
gence are defined on the strong operational semantics. Fail-
ure semantics is defined on the observational semantics
(�o) and finally stability, divergence and failures are all
used in the definition of NDFD.

Let A and B be LTSs.

sta�A� ���
� s

�

�	� � s � sA and

div�A� ���
� �� � s

�
��on � s � sA � n

���

			�n�

fail�A� ���
� ����X� � 
n s

�
��on � s � sA � 
x�X n

x
���o�

dfail�A� ���
� ����X� � ���X� � fail�A� � � � div�A��

A �NDFD B ���
� sta�A� � sta�B� � dfail�A� � dfail�B� �

div�A��div�B�
A LTS is well-terminating if n

a
	� implies n �� eA.

Lemma 3 For stable, unwound and well-terminating pro-
cesses.

A �d�F B � A �NDFD B

We have provided an operational interpretation of ac-
tion abstraction that transforms divergence into nondeter-
minism. The above result tells us that computing failure
equivalence on the observational semantics gives the same
result as computing NDFD equivalence on the strong se-
mantics. The restriction to stable, unwound processes is ex-
plained in Section 4.1 and the restriction to well-terminating
processes is explained in Section 4.3.

1We do not need traces as we consider only finite state processes.

5



5 Z components

We will use Z schemas to define both operations and
state. Unfortunately Z leaves as informal any attempt to
localise state or action, so here we informally follow the
convention of simply allowing schemas to be grouped to-
gether. We call a group containing the schemas State, init,
final and OP (a set of named operation schemas) a compo-
nent. We adopt the conventions, from process algebra, that
state is local to a process and � operations are internal, i.e.
under local control and not observable from outside.

As these Z components can be given a LTS semantics
(see [21, 8, 18, 17] for details) we can apply process op-
erators to them to build a LTS specification in a modular
fashion.

5.1 Example

A vending machine ac-
Desp tea

Æ

���� �����
���� ���

��
��

��	
 ��� ���
��

��

init
st

st � s� � st � s	

final
st

st � s� � st � s	

push tea but
	State

st � s� � st� � r

give tea
	State

st � r �
st� � s� � st� � s	

Figure 8. Desp tea

cepts an electronic money
card, then allows the user
to request cups of tea if the
card has sufficient funds, and
finally to remove the card.
We feel it to be natural to
decompose this into these
three parts: one-Insert card;
two-Desp tea; and three-
Remove card. We can then
define the composition of the
whole vending machine as
the sequential composition of
the three components.

After inserting the card the
machine can be in one of two
states, i.e. sufficient funds or
insufficient funds. Because
the next process, Desp tea,
acts differently depending on
which state the machine is in
we choose to model these two
states by giving Desp tea
two initial states and let our
definition of sequential com-
position (Definition 4) intro-
duce the nondeterminism.

For brevity, in Fig. 9 and Fig. 10, we assume State is de-
fined as the obvious enumerated data type and where needed

we assume init ���
� 
State � st � s� and final ���

� 
State �
st � e�.

The definition of Desp tea in Fig. 9 would not be pos-
sible had we used the CCS, ACP or CSP semantics that

equates processes with their root unwinding. We have de-
fined the effect of the process operator on the operational
semantics of the Z processes; what we have not done is de-
fine these operators directly for Z.

Insert card

insert card
	State

st � s � st� � e

Remove card

remove card
	State

st � s � st� � e

Figure 9. Insert card and Remove card

We can construct the operational semantics of
Insert card�Desp tea�Remove card which can be
simplified by pruning unreachable operations and identify-
ing bisimilar nodes, in order to arrive at the LTS Card tea
in Fig. 10. The Z text can then be constructed from the
LTS.

We can define Card tea value(t,v), a value passing ver-
sion of our vending machine. It is easy to verify that, for all
values of v and t, Card tea value(t,v) is a Z data refine-
ment of Card tea. To verify that two cards cannot be in-
serted without an intervening removal of a card we can use
the more abstract Card tea because Z refinement is sin-
gleton failure refinement and hence trace subset refinement.
We can simplify Card tea (as all we are interested in are
the actions insert card and remove card) by abstracting
the other actions. Finally the answer is obvious from the
simplified operational semantics. But we could not have
used CSP’s hiding, i.e. eager abstraction, and obtained the
correct answer. And we would not, in general, wish to use
CSP’s lazy abstraction as we interpret � actions as under
local control, i.e. as not refusable.

6 Conclusion

To model components we give an equal status to states
and events. We require that our components have an inter-
face and that components with the same interface are “ob-
servationally” equivalent. In particular we allow both states
and events to be a part of the interface. To this end we
use two syntactic classes, one for states and one for events,
and consequently we do not need recursion or unique fixed
points to define the semantics of nonterminating compo-
nents.

6



Card tea
�

������ ���	

��
������ ���	









��







��


��� �����


��� ���

��
��

�
�� ��� �
�
��

������ ���	

��

��

������ ���	
������

��������
�

insert card
	State

st � s � st� � s�

push tea but
	State

st � s� � �st� � s	 � st� � s��

give tea
	State

st � s	 � �st� � s� � st� � s��

remove card
	State

st � s� � st� � e

Figure 10. Card tea

In order to preserve a component’s interface we reject
the root unwinding built into the semantics of many process
algebras. In this regard our approach is based on that of
Winskel and Nielson [25]. We demonstrate some practical
advantages of this approach in Section 5.

To take advantage of the well-known [21, 8, 17] isomor-
phism between state-based relational semantics and event-
based operational semantics we use operational rather than
denotational semantics. There is a natural way of defining
observational equivalences in two steps: first, build an ob-
servational semantics from the strong semantics; then, ap-
ply a strong equivalence to the newly built observational
semantics Section 2.3. We take advantage of this and de-
fine an observational semantics that models what can be
observed of divergent processes. This can subsequently be
applied with any strong equivalence.

In [5] they define a singleton failures semantics for
ADTs but hiding has to be restricted to exclude the possibil-
ity of considering divergent ADTs. We can extend this work
to consider nonterminating processes by first applying our
definition of abstraction and then applying their definitions
to the resulting observational semantics. This would result
in a singleton version of NDFD in place of their singleton

Card tea value�t� v�

insert card�v
	State� n�

st � s � st� � s�
n� � v

push tea but
	State
n � �

st � s� � st� � s	 � n 
 t

give tea
	State
n� n� � �

st � s	 � st� � s� � n� � n	 t

remove card
u
	State
n � �

st � s� � st� � e
u � n

Figure 11. Card tea value�t� v�

version of failure semantics.
The work in [17] gives testing characterisations that “ex-

plain” the difference between several known refinements in-
cluding LOTOS’s extension [6], conformance [7], may and
must testing [11], failure refinement and singleton failure
refinement [5]. But all these refinements ignore divergence
and hence apply only to terminating processes. We can con-
struct the observational semantics defined here and subse-
quently apply the work in [17] to the observational seman-
tics. This extends the original work to cover nonterminating
processes where divergence is not ignored.

References

[1] J. C. M. Baeten and W. P. Weijland. Process Algebra. Cam-
bridge Tracts in Theoretical Computer Science 18, 1990.

[2] M. Barnett and W. Schulte. The ABCs of Specification:
AsmL, Behavior, and Components. Informatica, 25(4),
November 2001.

[3] J. A. Bergstra, J. W. Klop, and E.-R. Olderog. Failures with-
out chaos: A new process semantics for fair abstraction.
In M. Wirsing, editor, Formal Description of Programming
Concepts, volume III of IFIP, pages 77–103. Elsevier, 1987.

[4] T. Bolognesi and E. Borger. Abstract State Processes. In
E. Börger, A. Gargantini, and E. Riccobene, editors, Ab-

7



stract State Machines, Advances in Theory and Practice,
10th International Workshop, ASM 2003, Taormina, Italy,
March 3-7, Proceedings, volume 2589 of Lecture Notes in
Computer Science, pages 218–228, 2003.

[5] C. Bolton and J. Davies. A singleton failures semantics
for Communicating Sequential Processes. Research Report
PRG-RR-01-11, Oxford University Computing Laboratory,
2001.

[6] E. Brinksma and G. Scollo. Formal notions of implementa-
tion and conformance in LOTOS. Technical Report INF-86-
13, Twente University of Technology, Department of Infor-
matics, Enschede, The Netherlands, 1986.

[7] E. Brinksma, G. Scollo, and C. Steenbergen. LOTOS speci-
fications, their implementation and their tests. In B. Sarikaya
and G. V. Bochmann, editors, Protocol Specification, Test-
ing and Verification, volume VI, pages 349–360. North-
Holland, 1986.

[8] J. Derrick and E. Boiten. Refinement in Z and Object-
Z: Foundations and Advanced Applications. Formal
Approaches to Computing and Information Technology.
Springer, May 2001.

[9] H. Hansen, H. Virtanen, and A. Valmari. Merging state-
based and action-based verification. In Proceedings of the
Third International Conference on Application of Concur-
rency to System Design (ACSD’03), Guimara es, Portugal,
June 2003. IEEE Computer Society.

[10] E. C. R. Hehner and A. M. Gravell. Refinement semantics
and loop rules. In World Congress on Formal Methods (2),
pages 1497–1510, 1999.

[11] M. Hennessy. Algebraic Theory of Processes. The MIT
Press, 1988.

[12] C. Hoare. Communicating Sequential Processes. Prentice
Hall International Series in Computer Science, 1985.

[13] C. Hoare and H. Jifeng. Unifying Theories of Program-
ming. Prentice Hall International Series in Computer Sci-
ence, 1998.

[14] R. Kaivola and A. Valmari. The Weakest Compositional Se-
mantic Equivalence Preserving Nexttime-less Linear tempo-
ral logic. In International Conference on Concurrency The-
ory LNCS 630, pages 207–221, 1992.

[15] G. Leduc. Failure-based Congruences, Unfair Divergences
and New Testing Theory. In S. T. Vuong and S. T. Chanson,
editors, PSTV, volume 1 of IFIP Conference Proceedings.
Chapman & Hall, 1994.

[16] R. Milner. Communication and Concurrency. Prentice-Hall
International, 1989.

[17] S. Reeves and D. Streader. Comparison of Data and Process
Refinement. In J. S. Dong and J. C. P. Woodcock, editors,
ICFEM 2003, LNCS 2885, pages 266–285. Springer-Verlag,
2003.

[18] S. Reeves and D. Streader. State-based and process-
based value passing. In Proceedings of St.Eve @ FM’03.
2003. Available at www.cs.waikato.ac.nz/˜stever/06-
Reeves-Streader.pdf.

[19] A. Roscoe. The Theory and Practice of Concurrency. Pren-
tice Hall International Series in Computer Science, 1997.

[20] G. Smith. A Fully Abstract Semantics of Classes for Object-
Z. Formal Aspects of Computing, 7(3):289–313, 1995.

[21] G. Smith. A Semantic Integration of Object-Z and CSP for
the Specification of Concurrent Systems. In J. Fitzgerald,
C. B. Jones, and P. Lucas, editors, FME’97: Industrial Ap-
plications and Strengthened Foundations of Formal Meth-
ods (Proc. 4th Intl. Symposium of Formal Methods Europe,
Graz, Austria, September 1997), volume 1313, pages 62–81.
Springer-Verlag, 1997.

[22] A. Valmari and M. Tienari. An improved failure equivalence
for finite-state systems with a reduction algorithm. In Pro-
tocol Specification, Testing and Verification, IFIP XI. North-
Holland, 1991.

[23] A. Valmari and M. Tienari. Compositional Failure-based Se-
mantics Models for Basic LOTOS. Formal Aspects of Com-
puting, 7(4):440–468, 1995.

[24] R. L. van Glabbeek. The linear time - branching time spec-
trum I. the semantics of concrete sequential processes. In
J. Bergstra, A. Ponse, and S. Smolka, editors, Handbook of
Process Algebra, chapter 1, pages 3–99. Elsevier Science,
Amsterdam, The Netherlands, 2001.

[25] G. Winskel and M. Nielsen. Models for concurrency.
Technical Report DAIMI PB 429, Computer Science Dept.
Aarhus Universty, 1992.

[26] J. C. P. Woodcock and A. L. C. Cavalcanti. The Semantics
of Circus. In M. C. H. Didier Ber, Jonathan P. Bowen and
K. Robinson, editors, ZB 2002 Formal Specification and De-
velopment in Z and B LNCS 2272, pages 184–203. Springer-
Verlag, 2002.

Appendix

Lemma 4 For stable, unwound and well-terminating pro-
cesses A and B.

A �d�F B � A �NDFD B Lemma 3 in text

Proof A �NDFD B ���
� dfail�A� � dfail�B� � div�A� �

div�B�

Part1. A �d�F B �
���
� dfail�A� � dfail�B� � div�A� �

div�B�
If � � div�A� � �div � Tr�Absd� �A�� and �div �

Tr�Absd� �B�� � � � div�B�.
Hence div�A� � div�B� 
��
If ���X� � dfail�A�

Case. 1 � �� div�A� clearly ���X � �div�� � fail�Absd��A��
hence ���X � �div�� � fail�Absd� �B�� and ���X� �
dfail�B�.
Case. 2 � � div�A� from 
�� � � div�B� and hence ���X� �
dfail�B�

hence from case 1 and 2 ���X� � dfail�B�

Part 2. A �d�F B �
���
� dfail�A� � dfail�B� � div�A� �

div�B�
If ���X� � fail�Absd� �A��

Case. 1 � �� div�A� � clearly ���X� � dfail�A� hence
���X� � dfail�B� and ���X� � fail�B� and ���X� �
fail�Absd� �B��.

8



Case. 2 � � div�A� � clearly � � div�B� and hence ���X� �
fail�Absd��B��

hence from case 1 and 2 A �d�F B
Finally from parts 1 and 2. �
Properties about �NDFD that can be found from [23, 14]

include the congruence of �NDFD with respect to LOTOS
operators and that it preserves next-time-less linear tempo-
ral logic. Hence �d�F is congruent with respect to LOTOS
operators.

Congruence results for and �Fs

These results are quite standard. Adding Os� � to the trace
changes little for the strong semantics. The only points
of slight interest are that adding sets of start states does
not change the congruence results. nor does adding Os� �
change the congruence result for �.

Lemma 5 Let op � ������ ����
If A �Fs A� and B �Fs B� then AopB �Fs A�opB�

Proof The results follows from �� s�X� � Fs�AopB� �
��s�X� � Fs�A�opB��.
Part 1 - �� . Let � � �. From the construction if �� s�X� �

Fs�A �� B� then �sa� sb�
�s

	��na� nb� and sa
�s

a	�na � TA �

sb
�s

b	�nb � TB where (a) the action of �s are an interleaving

of the action of �s
a and �s

b; and where (b) Os��na� nb��
���
�

Os�na� � Os�nb�.
As ���na� nb�� � ��na� � ��nb� then ��s�X� � Fs�A ��

B� if and only if ��s
a�Xa� � Fs�A�, ��s

b�Xb� � Fs�B� and
X � Xa � Xb

As ��s
a�Xa� � Fs�A� � ��s

a�Xa� � Fs�A�� and
��s

b�Xb� � Fs�B� � ��s
b�Xb� � Fs�B�� hence ��s�X� �

Fs�A� �� B��
Let � �� �. It is easy to see that the existence of any

synchronisation actions can be computed from the failure
sets of the components. Let ��a� b� � c then if �� s�X� �
Fs�A �� B� and ��s

a�Xa� � Fs�A�, ��s
b�Xb� � Fs�B� then

c � X � a � Xa � a � Xb � b � Xa � b � Xb.
Part 2 - �. Let ��s�X� � Fs�A � B� then by case analysis
on � �s � the number of action names in � s.

Case 1. � �s �� � ����X� � Fs�A � B� � 
 s �

sA	B�
 x � X�s
x
�	�� from the construction 
 sa � sA� sb �

sB�
 x � X�sa
x
�	� � sb

x
�	�� . Clearly for � �s �� �

Fs�A� B� � Fs�A� � Fs�B� and the result follows.
Case 2. � �s �
 � Let 
n����ni��

��n�� �s ��
� n	�� � � � �ni� �

s �i� ni��� � TA	B

case-a. If 
	�x�i�� s �� Os�nx� then clearly ��s�X� �
Fs�A� B� implies ��s�X� � Fs�A� or ��s�X� � Fs�B�.

As A �Fs A� and B �Fs B� we have
��s�X� � Fs�A�� or ��s�X� � Fs�B��.
and similarly ��s�X� � Fs�A� � B��.

case-b. If � 
	�x�i�� s �� Os�nx� then because we
only need consider finite traces their we can use �nj � s �
Os�nj�� to impose a finite partition on �s and for each parti-
tion we can reason exactly as for case-a.

Part 3 - �. ��s�X� � Fs�A�B� � 
 n��s
�s

	�n � s � sA �


 x � X�n
x
�	�� and by case analysis on n � NA, n � eA� sB

or n � NB.
Case 1. n � NA Let ��s�X� � Fs�A�B� As a trace can

never have left nodes of A and from the construction of �
��n� in A�B must, in this case, be the same as in A. Hence
��s�X� � Fs�A�. As A �Fs A� we have ��s�X� � Fs�A��
and similarly ��s�X� � Fs�A��B��.

Case 2. n � �e� s� � eA � sB Let ��s�X� � Fs�AopB�
A trace can never have left nodes of A and the only node
that has been changed in the construction of A�B is the last
i.e. n � �e� s� hence the only change to � could be between
Os�e� and Os�n�. We now show that any change is the same
for all failure equivalent B. Clearly Os�e� 	 �e� � Os�n�
unless s � eB then e � Os�n�. But as B �Fs B� we know
s � eB implies 
s� � eB� � sB� hence 
n���e�s�� �e � Os�n��.

Hence if sa �s

		� �e� s� � sa � sA in A�B then sa �s

		�
�e� s�� � sa � sA� in A��B�.

By construction ���e� s�� in A�B must be �A�e� � �B�s�
hence X � Refusal���A�B� then 
XA�XB

�X � XA � XB �
XA � Refusal���A� � XB � Refusal����B�. Hence
X � Refusal���A��B�� and X � Refusal���A��B��� Hence
���X� � Fs�A�opB��

Case 3. n � NB Any trace of A�B that ends at n � NB

can be decomposed into an initial component � in A and a
final component � in B. When �� s�s�X� � Fs�A�B� then

�s��s� ��s� � Ctr�A� � ��s� �X� � Fs�B�.

From A �Fs A� we get �� � Ctr�A�� and from B �Fs B�

we get ��s� �X� � Fs�B��. Finally we have ��s�s�X� �
Fs�A��B��.

sB � eB implies sB� � eB�

Part 4- �. From definition. �

Congruence results for �d�Fs and ��Fs

The main use of Os� � is to give congruence results for the
observational semantics. It does this by preventing abstrac-
tion from removing n

�
	�m where Os�n� �� Os�m�.

Lemma 6 If �X is congruent w.r.t. op and Absx distributed
through op then �xX is congruent w.r.t. op.

Proof Assume Ai �xX Bi then Absx�Ai� �X Absx�Bi� def
�xX

then op�Absx�Ai�� �X op�Absx�Bi�� �X is congruent
w.r.t. op

then �Absx�opAi�� �xX �Absx�op�Bi�� Absx distributed
through op

implies op�Ai� �xX op�Bi� def �xX �

9



Lemma 7 Let op � ��� ���� ���
Abs� �AopB� �oX Abs� �A�opAbs� �B�

Absd� �AopB� �oX Absd� �A�opAbsd� �B�

Proof There is an obvious bijection between the nodes
on the LTS on either side of the equality. Equally obviously
this bijection relates nodes that were divergent to nodes that
were divergent and hence:

D� �AopB� �oX D� �A�opD� �B�
Dd�AopB� �oX Dd�A�opD� �B�

The final step that needs a little thought is:
AbsÆ�AopB� �ÆX AbsÆ�A�opAbsÆ�B�

This can be seen to be true for �and � because all � actions
in A / B that abstraction might use with actions in B / A are
not removed by abstraction and hence can be abstracted in
the computation of �ÆX.
Nothing need to be said about � and �� is standard from the
literature.

�

Lemma 8 If A ��Fs A1 then �I�A� ��Fs �I�A1�

Proof It is well known that: if A �oFs A1 then �I�A� �oFs

�I�A1� is true for terminating processes but problems arise
with � loops. As D� removes all � loops all we need to
show is:

If A �Fs A1 then D� �A� �Fs D� �A1�.
This is clear from definitions. �

Lemma 9 If �X is congruent w.r.t. ��� ���� ��� then so are
��X and �d�X

Lemma 1 in text

Proof from Lemma 6 and Lemma 7. �

Lemma 10 ��Fs and �d�Fs are congruent w.r.t.
�� � ��� �� .

Lemma 2 in text

Proof from Lemma 5, Lemma 9. �

10




