Working Paper Series
ISSN 1170-487X

ATOMIC COMPONENTS

Steve Reeves and David Streader

Working Paper: 01/2004
February 2004

© 2004 Steve Reeves and David Streader
Department of Computer Science
The University of Waikato
Private Bag 3105
Hamilton, New Zealand

Atomic Components

Steve Reeves and David Streader
Department of Computer Science
University of Waikato
Hamilton, New Zealand
{dstr,stever} @cs.waikato.ac.nz

Abstract

There has been much interest in components that com-
bine the best of state-based and event-based approaches.
The interface of a component can be thought of asits spec-
ification and substituting components with the same inter-
face cannot be observed by any user of the components.
Here we will define the semantics of atomic components
where both states and event can be part of the interface.
Theresulting semanticsisvery similar to that of (event only)
processes. But it has two main novelties. one, it does not
need recursion or unique fixed points to model nontermi-
nation; and two, the behaviour of divergence is modelled
by abstraction, i.e. the construction of the observational se-
mantics.

Keywor ds: state and action, components, refinement, la-
belled transition systems, Z

1 Introduction

Industry is looking to create a market in reliable “plug-
and-play” components. To do this the interface [2] of a
component needs to be defined in a way that makes it safe
to substitute components with the same interface.

Microsoft approachesthisissue using Abstract State Ma-
chines (ASM) as a starting point and have noted [4] that
it would be very useful to combine the event-based pro-
cess algebras, which have modular reasoning built in, with
the descriptive ability of the state-based ASM. To this end
some process a gebra features have been added to ASM [4]
but many conceptual difficulties remain. An aternative ap-
proach is to start with a process algebra and enrich its de-
scriptive ability to be more like ASM while retaining the
desired modularity. The work of [9] can be interpreted as
an example of this approach.

Here we are going to consider only simple components
with atomic states and atomic actions. Because of the sim-
ple semantics of our components they are easily recognis-

able as asmall extension of processes. Our goal isto model
states and events in as direct a style as we can and to de-
finean equality that is congruent with respect to component
composition and abstraction, where abstraction simplifies
the component while preserving its interface.

To achievethese goals we make the following design de-
cisions:

1 states and events are either in the interface or internal;

2 use operational not denotational semantics,

3 “observational” congruencesignore the internal;

4 model divergencewith out chaos;

5 model nonterminating process without using recursion

or unique fixed points.
Thefirst of our design decisionsreflects our desire to model
components not processes, the second arises from the well-
known [21, 8, 17] isomorphism between state-based rela-
tional semantics and event-based operational semantics.

We reject models based on bisimulation semantics such
as CCS [16] or ACP [1] as few of the hidden actions, i.e.
TS, can be removed. With models based on failure seman-
tics such as CSP, CFFD [22] and NDFD [14] al 7 actions
can be removed, although to obtain congruence the denota-
tional semantics is complicated by adding both divergence
and stability. We reject CSP's failure-divergence semantics
for two reasons. one, it does not attempt to model how di-
vergent processes behave— “once a process can diverge,
we assume (whether it is true or not) that it can then per-
form any trace, refuse anything, and diverge on any later
trace” [19][p. 95]; and two, abstraction does not distribute
through choice. We reject the use of denotational semantics
in CFFD and NDFD, but find that our operational defini-
tions result in an equivalence that, with some small restric-
tions, is equivalent to NDFD.

There is a natural, from an operational perspective, de-
composition of observational equivalences into two parts:
one, abstraction (the construction of the observational se-
mantics); and two, a definition of a strong, i.e. non-
observational, equivalence (see Section 2.3). The main con-
tribution of this work is defining abstraction so that it mod-

elswhat can be seen of a processthat diverges.

The separation of observational equivalences into ab-
straction (the construction of an observational semantics)
and a strong equivalence has been well exploited in [16, 1],
where they use bisimulation and a definition of abstraction
that ignores divergence. It is well known that for failure-
equivalence divergence cannot be ignored [3].

To be consistent with our first design decision we have
used choice from [25] not one the more well known process
algebras[12, 19, 11, 16, 1] although for terminating process
this specialise to choiceasin[1, 16].

It is possible to take previously defined models, one for
states and onefor events, and then glue them together [20, 8,
26]. This has the advantage of making tool reuse easy but
requires accepting each model on an all-or-nothing basis.
We are trying to define amodel that treats states and events
on an equal footing by taking what best fits our needs from
arange of models.

Thiswork is novel in two ways: one, we do not use re-
cursion to define nonterminating processes; and two, our
operational semantics modelswhat can be seen of divergent
processes as hondeterminism.

The discussion above has been rather general and con-
ceptual, but our motivation has been to provide a semantics
that permits modular reasoning in practice. So, in an at-
tempt to give some assurance that our framework is of prac-
tical use, we useiit (in Section 5) to model and reason about
asimple exampleand briefly compare our model with other,
more well-known, models from the literature.

2 Component specifications

Components consist of atomic states and events. Both
can either be a part of the component’s interface or are in-
ternal to the component.

Wewill write A, B . .. for componentsand will assume a
universe of observable action namesdiv,a,b... € Act and

7 for internal actions and Act™ %' Act U {r}. We dso
assume a universe of state propositions IT (see [9]) which
include propositionssfor the start and e for end of the com-
ponent. We can now view components as given by certain
transition systems.

Definition 1 Component transition system (CTS)

def

A (NA,OSA,TA) isa CTSwhere

Na isafinite set of nodes
Ta C{(n,a,m) | n,me Na Aac Act™}.
Osa : Na — 2T (the observable states of A). o

As usual we can define ey < {n] ee€ Osx(n)} and

s & {n | s € Osa(n)}. This shows we allow sets

of ending (final) and starting (initial) states. The intended
meaning of the set of initial states is that the specification
can nondeterministically be started in any of these states.

If Osa(n) = @ thennisaninternal state, elseitisapart
of the interface. We write n—=sm for (n,a,m) € Ta and
n-2s for3...(n,a,m) € Ta.

Thenn(s) ¥ f{a | sH)anda(d) ¥ {a|
n-Sme Ta}

2.1 Processesare special components.

A process can easily be seen as a component with state
propositions restricted to propositions for the start and end
of the process. Clearly process (Na, Osa, Ta) defines and
is defined by (Na, Sa, €a, Ta), which isjust alabelled tran-
sition system (LTS) as usually understood. So, we can say
that every CTS can beviewed asan LTS, which we shall do
in the sequel, especially when being able to relate back to
the standard world of LTS isdesirable.

Although we regard our atomic components as a minor
extension of processes these processes are slightly different
from those of CSP, CCS and ACP in that they have a set of
Start states.

2.2 Component Equivalences

Failures are usually defined with traces that are se-
guences of action names. But we wish to take account of
state observation and the fact that we have a set of start

states.
. Os(n1)Xx10s(N2) Xs ... XkOs(N,
We write n, ()1 O(). XOS(Mhet1) Ner when

Fne,ng (M XN2), e (NG X, M) € Ta and et 6
range over aternating sequences of state observations
Os(n;) and actions ;.

TA) € 0| mSnAse Osa(m)}

FA) 2 100,X) | m-%5n A s e Osa(m) AVxnsl.

2.3 Component Abstraction

The CTSin Definition 1 take no account of 7 actions be-
ing unobservable, so we would call it a strong semantics
(—) and an equivalence based on it a strong equivalence
(=x) . From an observational semantics (= ,) we define
an abstraction function Absa(A) %' (Na, Osa, {n—5m |
n==,m}) that builds a strong semantics and define obser-

vational equivalences (=ax) as.

A= C % Abs,(A) =x Abs,(C)

We will use alower case prefix to depict the abstraction
function and an upper case suffix to depict the strong equiv-
alence (e.g. F for failure below).

Definition 2 Observational semantics ==
st ¥ 58,555, S-S AS =8 A

t=s AV, -Os(s) = Os(s)

n=som ¥ nZon,n-SHnf,m==m A (a € Act Vv
Os(n') # Os(n))
A= C ' Absy(A) =¢ Abs,(C) .
S— a =9 cC ——e S< a-»o cC—¢e
.
A A a b
No—pee Ab(A) ro-p3e

Figure 1. Action abstraction

We extend Abs, to cope with nonterminating compo-
nents by replacing 7 loops with nondeterminism. This can
be done assuming divergence is observable or is indistin-
guishable from deadlock.

Process A in T
Fig. 2 isan example (
of what we call op-
tional divergence, Ia\f\g 2 1:\\
it could either act % 5*
fairly and aways
eventualy perform Figure 2. Divergence
a or aternatively it could stay forever in the s state. What is
morewhich it doesis not determined by any outside agent.

Hence we model this divergence as the nondeterministic
choice between performing a and being trapped in the s*
state (see Fig. 2). If divergence or interna activity is ob-
servable (the green light of [24]) then we would use Absg,
else Abs, .

Absar(A) Abs-(A)

div.

Definition 3 LetA %' (Na, Osa, Ta),

DT(NA) =Np U {d* | S:T>t},
DT(TA) =TaU {dL)d* | S:T>t} and
Da(Ta) = Ta U {d*-™d* | d—""sd} then
Abs, (A) %' (D, (Na), Osa, Abso (D (Ta)))

Absg, (A) (D, (Na), Osa, Da(Abso(D;(Ta)))) o

The congruence of process algebraic equivalences give
them their much sought-after modularity. With thisin mind
we define component operators, taken from the process lit-
erature, in order that our observational equivalences are
congruent. We adopt the operators from the process liter-
ature: M internal choice; @ choice; ; sequential composi-
tion; and ||, parallel composition. The transitions of non-
terminating components can be defined using a set of linear
recursive equations {X = aX + bY,Y = cZ} (see ACP
[1D).

The above set of equalities can be interpreted as giving
amutually recursive definition of {X,Y,Z}. Alternatively

{X,Y, Z} can simply beinterpreted as a set of states.
Anequality canbein- B
terpreted as defining the T 3\ 5|€

set of actions with the a >

same pre-state. Each i \i

pair of the name and

state on the right of the Figure 3. Aand B
equality defines the name and post-state of atransition. For
example B in Fig. 3 can be defined by Ng def {X,Y,Z}
(seen as {s,o, ®}), S5 def {X,Z}, es ef {Z} and
Te & {X=aY,Y=czZ=bY}.

3 A component algebra

We are interested in choice, sequential composition and
parallel composition between components. But, how we
would wish these operators to affect the state propositions
depends upon the meaning of the propositions. Thusthe ap-
proach in [9], where parallel composition is parameterised
by “proposition rules’, seems appropriate. Because we
wish to compare our operators with those in the process lit-
erature we restrict ourselvesto the two propositions, onefor
start and onefor end, i.e. essentially to LTSs.

Choice has been defined ([1, 25]) on operational seman-
tics with one start state by gluing the two start states to-
gether. Here we glue together two sets of start states.

As afirst step we define what it means to have a set of
nodesin atransition:

a def a a
n—{si...s} = {n—s...n—s}
and use this to define how to glue together two sets of states
e.g. Sy and sg.

LeteS ¥ {g,¢...dladS ¥ {s.s..s}
and define the n substitutions {si/{(s, s;), - - - (S, Sy) } } for
s € Sto be written {{S/Sx S}}. Also, we define the
n + m substitutions {{S/Sx S}} U {{S/Sx S}} to be
written {{SS'/Sx S}}.

Consequently {{saSs/sa x ss}} will identify the two
sets of nodes sy and sg as sa{{saSs/sa X Ss}} and
Ss{{sasSs/sa X Sz} } areboththen x mset of nodessa x Sg.

Definition 4 Operations @, ; 7a da and ||, on LTSs A and

def def
Na X Ng, €a,8 = € X €, Sa|,B =

(where «y isa partial function from Act x Act to Act) Ta|_ g
is defined by
n—25 A0’

(nv x)i>(n’,x) vXENA

mi>Bm
(% m) = (x,)

VXGNB
N5 a0, M55, (ab)=c
(n,m)—=s(n',)

Nars = Na, Sars = Sa,€ars = €n,
n—san,a ¢S n—2san,a €S
N2 arel N arcnV
n—san,a ¢S
-2 s’
(NaUNg, Sa,€aUes, (TaUTg)){{SaS8/5n X

Nass = Na, Sass = Sa,€ass = €a,

AaB X

Ss}}

Lets; = {s' |s €ss}ands'e; = {s' |s € s Nes}
AB = (NAUNg US;, S 83 Us'es, TaU T U {570
s € s As—nh){{eass/en x 51}

o (NaUNg,saUsSg,eaUeg, TaUTg) o
Fig. 4, is based

AMB =
A
on that from [25] \
N\

A®B
where the dtart
states of both pro-
cesses are simply
glued together.
[}

QOur definition of
choice, see A & B

;B
This is unlike that 7, ¢ a
of ACP where the

processes are first \x@v

root unwound. We
Figure 4. A B and AB

amend the defini-
tion of [25] in the
obvious way to cope with a set of start states.

In our definition of sequential composition a set of tran-
sitions is added to those of the operands. In the example
A;B Fig. 4 these added transitions are shown with dotted
arrows.

The detail s of sequential composition is dependent upon
the details of successful termination but CSP and ACP treat
successful termination differently. Our definitions are based
on ACP not CSP (adding the actions {n—+sle € ex A s €
S A ni>e} would result in a more CSP-like definition).
For further discussion see Section 4.3 | ater.

We show that either of our two definitions of abstraction
Abs, and Absy, preserve congruence w.r.t. {M,;,®, |~}
(proofsin Appendix).

Lemmal If =x iscongruentw.r.t. {1, ; &, ||, } thensoare
=X and =drX-

Lemma2 =g and =q,fs arecongruent w.r.t. 1, ;, &, || 4.

4 Comparison

Hoare and He say [13][p.198] “The main distinguishing
feature of CSP is to define a hiding operator that succeeds
intotal concealment of internal actions.” Here we have con-
structed an operational semantics consistent with this.

41 Choice

In CSP (but not CCS/ACP) s
T actions s—n, and s—sn, Sirenl R ¢
can model “the process could T\n
beinstaten; or ny but we can- A=arb N3

not know which” (seeanmnb
in Fig. 5). We interpret CSP
external choice O and ACP
choice + to be the same and use the different role of = ac-
tionsin CSP and ACP/CCS to explain why AOc # A + ¢
inFig. 6.

Figure 5. CSP M

DN~ SN
ADC\OA A+c\o/
A fromFig. 5

Figure 6. CSP O and ACP +

The renaming of observable actions as T actions, 74,
does not distribute through CSP choice, whereas 75, does
distribute through CCS/ACP choice and our .

The internal or T actions are unobservable in that when
performed they cannot synchronise with an (observing) ac-
tion of some context. The denotational semantics of CSP,
CFFD and NDFD all use stability to define congruence
w.r.t. choice whereas our observational semantics and that
of CCS and ACP keep sa—o. Although we believe thisto
be of little importanceit does introduce small discrepancies
in what would other wise be the same equivalences.

Root unwinding or not. We have motivated our congru-
ence by using distinguishing states that are in the interface
from those that are not. This introduces a question: what
happens if a process returnsto one of the start states that is
in the interface?

Unw(A B A+B 0 AD®B

A) 50
<82 S—a—go) S—b—>0 84 :_&32 <52—b—>o

A =g Unw(A) A #gs Unw(A) and A #e+ Unw(A)

Figure 7. Choice + or &

Choice on LTS as defined in [23, 1] is + (see Fig. 7). It
first root unwinds the LTS then identifies start states. An
aternativein[3] isto not allow cyclesto returnto theinitial
node, that is to say consider only unwound graphs. Root

unwinding allows usto view loops as mere“ sugar” for their
true meaning as an acyclic LTS.

Here choice is modelled by gluing together the root
nodes of two LTSs without performing root unwinding.
Thisis not new: it appears in [25] where such a definition
of choiceis given as limits in categories of LTSs and Petri
nets.

By changing the definition of choice, what is required of
a congruence is changed. With the semantics in [25] A #
Unw(A), aswe would expect from our desire to distinguish
states that are in the interface from those that are not.

Wewill show later (see Fig. 10) that by not assuming that
cyclic semantics is equivalent to their unwound semantics
alows a natural decomposition of some components; root
unwinding would prevent this.

4.2 Divergenceand abstraction

Action-based approaches frequently use a single syntac-
tic class (of actions) and use recursion to define nontermi-
nating components, which are given afixed point semantics.
The need to have a unique fixed point semantics has had a
strong influence on the semantics of CSP [19, p215] and
unifying theories of programming [13, 2.6, 2.7]. Alterna-
tively, a very powerful argument, for state-based systems,
has been made [10] in support of using refinement seman-
tics rather than fixed point semantics.

When modelling State-and-Action systems it is natural
to use two syntactic classes, one for states and one for ac-
tions. Using such a formalism, recursion and fixed points
are not needed to define nonterminating components.

Both divergence and abstraction have been treated in var-
ious waysin the literature.

CCSand ACP: T actions are not observable nor refusable
and divergence can be ignored. This is quite natural
if we apply a fair choice interpretation, see process
A, Fig. 2. The fact that CCS and ACP need to keep
some of the 7 actions in their definition of observa-
tional semantics somewhat detract from the claim that
T actionsare unobservable. Thisisneeded for observa-
tional bisimulation to be congruent with respect to an
interleaving interpretation of parallel composition. But
these T actionswould not be needed had they used fail-
ure equivalence as their strong equivalence (see [22]);

CSP eager abstraction: 7 actions are not observable nor
refusable and divergence becomes chaos. This has
been described as. “of rather limited use as a means
of abstraction” [19][p. 296] and “not really adequate
with respect to the operational interpretation of this
phenomenon” [15];

CSP lazy abstraction: 7 actionsarenot observablebut are
refusable and divergence can be ignored (see [19]

[p.297]);

Here: T actions are not observable nor refusable and op-
tional divergence (see Fig. 2) becomes the nondeter-
ministic choice between eventualy performing an ac-
tion and remaining for ever live-locked.

4.3 Sequential composition

Sequential composition is defined using an explicit rep-
resentation of the successful termination of a process. In
CSP termination SKIP “can always be chosen” when of-
fered, i.e. KIPOa — STOP = (XKIPOa — STOP) M
XKIP. Thisis quite different from ACP termination e which
cannot always be chosen. This can be seen in the construc-
tion of ((ase) + €) || (aze) (see[1] [p. 76]) where the ability
of one of the components to initially terminate is simply
lost. Because of these differences we will avoid comparing
congruencew.r.t. sequential composition from CSP and our
definition which follows that of ACP.

4.4 NDFD Divergencewithout chaos

In[22, 23]* they construct adenotational semanticswith-
out interpreting divergence as chaos. Stability and diver-
gence are defined on the strong operational semantics. Fail-
ure semantics is defined on the observational semantics
(=0) and finally stability, divergence and failures are all
used in the definition of NDFD.

Let AandB belTSs.

sta(A) def s7TL> NS € sy and
div(A) def {6 | SN ASE Sy A nT—T*m}

X
fail(A) € {(6,X) | 3,5=26N A SE Sa A Y,y N0}

dfail(A) " {(6,X) | (6,X) € fail(A) v 6 € div(A)}

A =xorp B % sta(A) = sta(B) A dfail(A) = dfail(B) A
div(A) =div(B)
A LTSiswell-terminating if n— impliesn ¢ ex.

Lemma 3 For stable, unwound and well-terminating pro-
Cesses.
A =4, B A=\prp B

We have provided an operationa interpretation of ac-
tion abstraction that transforms divergence into nondeter-
minism. The above result tells us that computing failure
equivalence on the observational semantics gives the same
result as computing NDFD equivalence on the strong se-
mantics. Therestriction to stable, unwound processesis ex-
plained in Section 4.1 and the restriction to well-terminating
processesis explained in Section 4.3.

1We do not need traces as we consider only finite state processes.

5 Z components

We will use Z schemas to define both operations and
state. Unfortunately Z leaves as informal any attempt to
localise state or action, so here we informally follow the
convention of simply alowing schemas to be grouped to-
gether. We call a group containing the schemas Sate, init,
final and OP (a set of named operation schemas) a compo-
nent. We adopt the conventions, from process algebra, that
state is local to a process and operations are internal, i.e.
under local control and not observable from outside.

As these Z components can be given a LTS semantics
(see [21, 8, 18, 17] for details) we can apply process op-
erators to them to build a LTS specification in a modular
fashion.

5.1 Example

A vending machine ac-
cepts an electronic money __Desp_tea
card, then alows the user push_fea_baly
to request cups of tea if the ive_tea
card has sufficient funds, and
findly to remove the card. o
We feel it to be natural to —init
decompose this into these st
three parts: one-Insert_card;
two-Desp_tea; and three-
Remove_card. We can then __final
define the composition of the st
whole vending machine as
the sequential composition of
the three components.

After inserting the card the

give_tea

S<—> se

sSt=s5 Vst=s

sSt=s5 Vst=s

__push_tea_but.

. ; ASate
machine can be in one of two .
states, i.e. sufficient funds or st=s Ast' =7
insufficient funds. Because -
the next process, Desp_tea, —give_tea____
acts differently depending on ASate
which state the machineisin S=rA

we choose to model these two
states by giving Desp_tea
two initial states and let our
definition of sequential com-
position (Definition 4) intro-
duce the nondeterminism.
For brevity, in Fig. 9 and Fig. 10, we assume Sate is de-
fined asthe obvious enumerated datatype and where needed

ef

weassumeinit % [Sate| st = g andfinal % [Sate |
st =¢€.

The definition of Desp_tea in Fig. 9 would not be pos-
sible had we used the CCS, ACP or CSP semantics that

=5 v =%

Figure 8. Desp_tea

equates processes with their root unwinding. We have de-
fined the effect of the process operator on the operational
semantics of the Z processes; what we have not doneis de-
fine these operators directly for Z.

__Insert_card

__insert_card _
ASate

st=sAst =e

__Remove_card __

__remove_card.
ASate

ss=sAst' =e

Figure 9. Insert_card and Remove_card

We can construct the operationa semantics of
Insert_card; Desp_tea; Remove_card which can be
simplified by pruning unreachable operations and identify-
ing bisimilar nodes, in order to arrive at the LTS Card_tea
in Fig. 10. The Z text can then be constructed from the
LTS.

We can define Card_tea value(t,v), avalue passing ver-
sion of our vending machine. It is easy to verify that, for all
values of v and t, Card_tea_value(t,v) is a Z data refine-
ment of Card_tea. To verify that two cards cannot be in-
serted without an intervening removal of a card we can use
the more abstract Card_tea because Z refinement is sin-
gleton failure refinement and hence trace subset refinement.
We can simplify Card_tea (as all we are interested in are
the actions insert_card and remove_card) by abstracting
the other actions. Finally the answer is obvious from the
simplified operational semantics. But we could not have
used CSP's hiding, i.e. eager abstraction, and obtained the
correct answer. And we would not, in general, wish to use
CSP's lazy abstraction as we interpret 7 actions as under
local control, i.e. as not refusable.

6 Conclusion

To model components we give an equal status to states
and events. We require that our components have an inter-
face and that components with the same interface are “ob-
servationally” equivalent. In particular we allow both states
and events to be a part of the interface. To this end we
use two syntactic classes, one for states and one for events,
and consequently we do not need recursion or unique fixed
points to define the semantics of nonterminating compo-
nents.

__Card_tea
>
ush_tea_but

S
2 i
insert_ch insert_card gile_tea
St give_tea s3

| _—

remove_card remove_card

__insert_card
ASate

s=sAs =g

__push_tea_but
AState

s=g5 A (St =Vt =%)

__give_tea
ASate

s=s5A (' =5 Vst' = %)

__remove_card
ASate

St:Sl/\St’:e

Figure 10. Card_tea

In order to preserve a component’s interface we reject
the root unwinding built into the semantics of many process
algebras. In this regard our approach is based on that of
Winskel and Nielson [25]. We demonstrate some practical
advantages of this approach in Section 5.

To take advantage of the well-known [21, 8, 17] isomor-
phism between state-based relational semantics and event-
based operational semantics we use operational rather than
denotational semantics. There is a natural way of defining
observational equivalencesin two steps: first, build an ob-
servational semantics from the strong semantics; then, ap-
ply a strong eguivalence to the newly built observational
semantics Section 2.3. We take advantage of this and de-
fine an observational semantics that models what can be
observed of divergent processes. This can subsequently be
applied with any strong equivalence.

In [5] they define a singleton failures semantics for
ADTshbut hiding hasto be restricted to exclude the possibil-
ity of considering divergent ADTs. We can extend thiswork
to consider nonterminating processes by first applying our
definition of abstraction and then applying their definitions
to the resulting observational semantics. This would result
in a singleton version of NDFD in place of their singleton

__Card_tea_value(t,v)
__insert_card?v
ASate, n’

S=sAs' =g
n=v

—_push_tea_but
ASate
n:N

S=s At =5, An>t

__give_tea
ASate
nn :N

S=s A =5 An=n-t

__remove_card!u
ASate
n: N

sSs=s Ast'=¢e
u=n

Figure 11. Card_tea_value(t,v)

version of failure semantics.

Thework in [17] givestesting characterisationsthat “ ex-
plain” the difference between several known refinementsin-
cluding LOTOS's extension [6], conformance[7], may and
must testing [11], failure refinement and singleton failure
refinement [5]. But al these refinementsignore divergence
and hence apply only to terminating processes. We can con-
struct the observational semantics defined here and subse-
quently apply the work in [17] to the observational seman-
tics. Thisextendsthe original work to cover nonterminating
processes where divergenceis not ignored.

References

[1] J.C. M. Bageten and W. P. Weijland. Process Algebra. Cam-
bridge Tractsin Theoretical Computer Science 18, 1990.

[2] M. Barnett and W. Schulte. The ABCs of Specification:
AsmL, Behavior, and Components. Informatica, 25(4),
November 2001.

[3] J. A.Bergstra, J. W. Klop, and E.-R. Olderog. Failureswith-
out chaos. A new process semantics for fair abstraction.
In M. Wirsing, editor, Formal Description of Programming
Concepts, volume |11 of IFIP, pages 77-103. Elsevier, 1987.

[4] T. Bolognesi and E. Borger. Abstract State Processes. In
E. Borger, A. Gargantini, and E. Riccobene, editors, Ab-

(5]

(6]

(8]

(9]

(10]

(11]
(12]

(13]

(14]

(19]

(16]

(17]

(18]

(19]

[20]

stract State Machines, Advances in Theory and Practice,
10th International Workshop, ASM 2003, Taormina, Italy,
March 3-7, Proceedings, volume 2589 of Lecture Notes in
Computer Science, pages 218-228, 2003.

C. Bolton and J. Davies. A singleton failures semantics
for Communicating Sequential Processes. Research Report
PRG-RR-01-11, Oxford University Computing Laboratory,
2001.

E. Brinksma and G. Scollo. Formal notions of implementa-
tion and conformance in LOTOS. Technical Report INF-86-
13, Twente University of Technology, Department of Infor-
matics, Enschede, The Netherlands, 1986.

E. Brinksma, G. Scollo, and C. Steenbergen. LOTOS speci-
fications, their implementation and their tests. In B. Sarikaya
and G. V. Bochmann, editors, Protocol Specification, Test-
ing and \erification, volume VI, pages 349-360. North-
Holland, 1986.

J. Derrick and E. Boiten. Refinement in Z and Object-
Z: Foundations and Advanced Applications. Formal
Approaches to Computing and Information Technology.
Springer, May 2001.

H. Hansen, H. Virtanen, and A. Vamari. Merging state-
based and action-based verification. In Proceedings of the
Third International Conference on Application of Concur-
rency to System Design (ACSD’03), Guimara es, Portugal,
June 2003. | EEE Computer Society.

E. C. R. Hehner and A. M. Gravell. Refinement semantics
and loop rules. InWorld Congress on Formal Methods (2),
pages 1497-1510, 1999.

M. Hennessy. Algebraic Theory of Processes. The MIT
Press, 1988.

C. Hoare. Communicating Sequential Processes. Prentice
Hall International Seriesin Computer Science, 1985.

C. Hoare and H. Jifeng. Unifying Theories of Program-
ming. Prentice Hall International Series in Computer Sci-
ence, 1998.

R. Kaivolaand A. Vamari. The Weakest Compositional Se-
mantic Equivalence Preserving Nexttime-less Linear tempo-
ral logic. In International Conference on Concurrency The-
ory LNCS 630, pages 207-221, 1992.

G. Leduc. Failure-based Congruences, Unfair Divergences
and New Testing Theory. In S. T. Vuong and S. T. Chanson,
editors, PSTV, volume 1 of IFIP Conference Proceedings.
Chapman & Hall, 1994.

R. Milner. Communication and Concurrency. Prentice-Hall
International, 1989.

S. Reeves and D. Streader. Comparison of Data and Process
Refinement. In J. S. Dong and J. C. P. Woodcock, editors,
ICFEM 2003, LNCS 2885, pages 266—285. Springer-Verlag,
2003.

S. Reeves and D. Streader. State-based and process-
based value passing. In Proceedings of S.Eve @ FM’'03.
2003. Available a www.cswaikato.ac.nz/"stever/06-
Reeves-Streader.pdf.

A. Roscoe. The Theory and Practice of Concurrency. Pren-
tice Hall International Seriesin Computer Science, 1997.
G. Smith. A Fully Abstract Semantics of Classes for Object-
Z. Formal Aspects of Computing, 7(3):289-313, 1995.

[21] G. Smith. A Semantic Integration of Object-Z and CSP for
the Specification of Concurrent Systems. In J. Fitzgerald,
C. B. Jones, and P. Lucas, editors, FME'97: Industrial Ap-
plications and Strengthened Foundations of Formal Meth-
ods (Proc. 4th Intl. Symposium of Formal Methods Europe,
Graz, Austria, September 1997), volume 1313, pages 62-81.
Springer-Verlag, 1997.

[22] A.Vamari and M. Tienari. Animproved failure equivalence
for finite-state systems with a reduction agorithm. In Pro-
tocol Specification, Testing and Verification, IFIP XI1. North-
Holland, 1991.

[23] A.Vamari and M. Tienari. Compositional Failure-based Se-
mantics Models for Basic LOTOS. Formal Aspects of Com-
puting, 7(4):440-468, 1995.

[24] R. L. van Glabbeek. The linear time - branching time spec-
trum 1. the semantics of concrete sequential processes. In
J. Bergstra, A. Ponse, and S. Smolka, editors, Handbook of
Process Algebra, chapter 1, pages 3-99. Elsevier Science,
Amsterdam, The Netherlands, 2001.

[25] G. Winskel and M. Nielsen. Models for concurrency.
Technical Report DAIMI PB 429, Computer Science Dept.
Aarhus Universty, 1992.

[26] J. C. P. Woodcock and A. L. C. Cavalcanti. The Semantics
of Circus. In M. C. H. Didier Ber, Jonathan P. Bowen and
K. Robinson, editors, ZB 2002 Formal Specification and De-
velopment in Z and B LNCS 2272, pages 184—203. Springer-
Verlag, 2002.

Appendix

Lemma4 For stable, unwound and well-terminating pro-
cesses A and B.

A=4,rB< A=nprp B Lemma 3 in text

Proof A=nprp B % dfail(A) = dfail(B) A div(A) =
div(B)
Partl. A =q,r B = % dfail(A) = dfail(B) A div(A) =
div(B)

If 9 € div(A) & 6div € Tr(Absy-(A)) and Odiv €
Tr (Absy, (B)) < 6 € div(B).

Hence div(A) = div(B) [1]

If (6, X) € dfail(A)
Case. 16 ¢ div(A) clearly (9, X U {div}) € fail(Absy (A))
hence (6,X U {div}) € fail(Absy,(B)) and (6,X) €
dfail(B).
Case. 26 € div(A) from[1] 6 € div(B) and hence (8, X) €
dfail(B)

hence from case 1 and 2 (6, X) € dfail(B)
Part 2. A =¢.¢ B« ' dfail(A) = dfail (B) A div(A) =
div(B)

If (6, X) € fail(Absy, (A))
Case. 160 ¢ div(A) : clearly (8,X) € dfail(A) h
(6,X) € dfail(B) and (4,X) € fail(B) and (8, X
fail (Absyr (B)).

ence
) €

Case. 20 € div(A) : clearly § € div(B) and hence (6, X) €
fail (Absg, (B))

hencefromcasel and2 A =4, B

Finally from parts 1 and 2. °

Properties about =n\prp that can be found from [23, 14]
include the congruence of =nprp With respect to LOTOS
operators and that it preserves next-time-less linear tempo-
ral logic. Hence =4, is congruent with respect to LOTOS
operators.

Congruenceresultsfor and =s

These results are quite standard. Adding Os() to the trace
changes little for the strong semantics. The only points
of dight interest are that adding sets of start states does
not change the congruence results. nor does adding Os()
change the congruenceresult for 4.

Lemmab Letop € {||,®,; M}

If A =fs A* and B =fs B* then AopB =fs A*opB*
Proof The results follows from (6%,
(6%,X) € F5(A*opB™).

Partl-|,. Lety = @. From theconsxruction if (65,X) €

FS(A ||, B) then (sa, %)

05
$—>=Np € Tg Where (a) the action of 4 are an interleaving

of the action of 93 and 65; and where (b) Os((na, Ny)) def

Os(na) N Os(Nnp).

As (M) = r(f) U then (8 X) € F¥A I,
B) if and only if (03, Xa) € F3(A), (65, %) € F3(B) an
X =XaN Xy

s (05, Xa) € F5(A) & (65,Xy) € FS(A*) and
(65, %) € F5(B) & (65, %) € F3(B*) hence (6%,X) €
FS(A™ ||, B¥)

Let v # @. Itis easy to see that the existence of any
synchronisation actions can be computed from the failure
sets of the components. Let y(a,b) = c thenif (5, X) €
F(A ||, B) and (63, Xa) € F5(A), (63, %) € F5(B) then
ceXecaeXagvae Xy Vb e XaVbeX,.

Part 2- @. Let (6%, X) € F3(A @ B) then by case analysis
on | 63 | the number of action namesin 65.
Cael | 6°|=0((),X) € FFA@®B) & ds €

X
Saep- VX € X.5—+) from the construction 3s? € s5, & €

X X

$8.VX € X &/ A P43) . Clearly for | 65 |= 0
FS(A @ B) = FS(A) N F3(B) and the result follows.

Case 2. | 65 |> 0 Let E|n1...ni+1 .(n1,65 |1
yN2), .o (M, 0% [i,Nig1) € Tags

case-a IfVy i, S & Os(n) then clearly (6% X) €
FS(A @ B) implies (6%, X) € F5(A) or (6%, X) € F3(B).

ASA =gs A* and B =gs B* we have

(63, X) € FS(A*) or (6%,X) € F5(B*).

and similarly (0%, X) € FS(A* & B*).

X) € F3(AopB) <

(na, ny) and sa—ma € Ta A

caseb. If = Vy i 1S & Os(ny) then because we
only need consider finite traces their we can use {n; | s €
Os(n;) } to impose afinite partition on 65 and for each parti-
tion we can reason exactly as for case-a.
Part 3-; (5X) € FS(AB) < In.(s"=n A S€ sa A

VX e X.n7XL>) and by caseanalysisonn € Na, N € ex X g
orn € Ng.

Case 1. n € Np Let (85, X) € F5(A;B) Asatrace can
never have left nodes of A and from the construction of ;
m(n) in A;B must, in this case, be the same asin A. Hence
(65,X) € FS(A). AsA =gs A* we have (0%, X) € F5(A*)
and similarly (63, X) € FS(A*;B*).

Case2. n = (e,s) € e x g Let (65 X) € F5(AopB)
A trace can never have left nodes of A and the only node
that has been changed in the construction of A;B isthe last
i.e. n = (e, s) hence the only change to p could be between
Os(e) and Os(n). We now show that any changeis the same
for all failure equivalent B. Clearly Os(e) — {e} = Os(n)
unlesss € eg then e € Os(n). But as B =¢s B* we know
s€ egimplies3y € e« Nsg- henced,, _ . 4 -€ € Os(n').

Hence if & -7 (6,9) AN & € spinA;B then & -5
(e,8) A € sp- inA*;B*.

By construction 7((e, s)) in A;B must be wa(€) U 7 (S)
hence X € Refusal(p, A; B) then Iy, Xo X = XaNXg A
Xa € Refusal(p,A) AN Xg € Refusa](() B). Hence
X € Refusal(p, A*;B*) and X € Refusal(p, A*;B*). Hence
(p, X) € FS(A*opB*)

Case 3. n € Ng Any trace of A;B that endsat n € Ng
can be decomposed into an initial component o in A and a
final component p in B. When (5505, X) € F5(A;B) then
J0%6%.0% € Ctr(A) A (85, X) € FS(B).

From A =gs A* weget o’ € Ctr(A*) andfromB =fs B*

we get (5,X) € F5(B*). Findly we have (66 X) €
FS(A*;B*).

Sg € eg impliessg- € ep-
Part 4- 1. From definition. °

Congruenceresultsfor =g,rs and =, ¢s

The main use of Os(_) is to give congruence results for the
observational semantics. It does this by preventing abstrac-
tion from removing n—smwhere Os(n) # Os(m).

Lemma 6 If =x iscongruent w.r.t. op and Abs, distributed
through op then =« is congruent w.r.t. op.

Proof AssumeA; =xx Bj then Abs,(A;j) =x Absy(B;) def
—xX

then op(Absx(Ai)) =x op(Abs(Bi)) =x iscongruent
w.r.t. op

then (Abs,(0pAj)) =«x (Abs(op(B;)) Absy distributed
through op

implies op(Aj) =xx op(Bi) def =xx ®

Lemma7 Letop e {r,;, ®,|,}
Abs, (AopB) =ox Abs: (A)opAbs; (B)
Absg, (AopB) =ox Absy, (A)opAbsy,(B)

Proof There is an obvious bijection between the nodes
onthe LTS on either side of the equality. Equally obviously
this bijection relates nodes that were divergent to nodes that
were divergent and hence:
D, (AOpB) =ox Dr (A) OpDT (B)
Dd(A0opB) =ox Da(A)opD-(B)
Thefinal step that needs alittle thought is:
Abs, (AopB) =,x Abs,(A)opAbs,(B)
This can be seen to be true for ;and & because all = actions
in A/ B that abstraction might use with actionsin B / A are
not removed by abstraction and hence can be abstracted in
the computation of =,x.
Nothing need to be said about M and || is standard from the
literature.
[]

Lemma8 If A = rs Al then 7 (A) =,¢s 71 (AY)

Proof Itiswell knownthat: if A =ors Al then 7 (A) =ors
71(A?) is true for terminating processes but problems arise
with 7 loops. As D, removes al 7 loops al we need to
show is:

If A =ps Al then D, (A) =¢s D, (AY).

Thisis clear from definitions. .

Lemma9 If =x iscongruentw.r.t. {,;, &, ||} thensoare
=X and —drX

Lemma lintext
Proof fromLemma6 and Lemma?. .
Lemmal0 =, and =g, are congruent wr.t.
ﬂa s @7 ||’Y

Lemma2intext

Proof fromLemmab, Lemma. °

10

