
Control Theory and Technology

Progressive events in supervisory control

and compositional verification

Simon Ware 1 Robi Malik† 2

1 School of Electronic and Electrical Engineering, Nanyang Technological University, Singapore

2 Department of Computer Science, University of Waikato, Hamilton, New Zealand

Received xxx; revised xxx; accepted xxx

Abstract:

This paper investigates some limitations of the nonblocking property when used for supervisor synthesis in discrete event systems.

It is shown that there are cases where synthesis with the nonblocking property gives undesired results. To address such cases, the

paper introduces progressive events as a means to specify more precisely how a synthesised supervisor should complete its tasks. The

nonblocking property is modified to take progressive events into account, and appropriate methods for verification and synthesis are

proposed. Experiments show that progressive events can be used in the analysis of industrial-scale systems, and can expose issues that

remain undetected by standard nonblocking verification.

Keywords: Model validation in design methods; Controller constraints and structure; Computational issues

DOI 10.1007/s11768-014-****-*

1 Introduction

In supervisory control theory [1, 2], it is common to use

the nonblocking property to ensure liveness when auto-

matically synthesising supervisors. A discrete event sys-

tem is nonblocking if, from every reachable state, all in-

volved components can cooperatively complete their com-

mon tasks. It is not required that task completion is guar-

anteed on every possible execution path, only that there

exists an execution path to a terminal state. For finite-state

systems, the nonblocking property is equivalent to termi-

nation under the fairness assumption that events that are

enabled infinitely often will be taken eventually [3]. This

weak liveness condition ensures the existence of least re-

strictive synthesis results and has been used successfully in

many applications [1, 4].

On the other hand, the nonblocking property is weaker

than a guarantee of termination, and it is not always expres-

sive enough to give the intended results. Several alterna-

tives and extensions to the standard nonblocking property

have been proposed. Multi-tasking supervisory control [5]

allows the specification of multiple nonblocking require-

ments that must be satisfied simultaneously. The gener-

alised nonblocking property [6] restricts the situations in

which nonblocking is required, which is useful in hierar-

chical interface-based supervisory control [7]. Nonblock-

ing under control [8] changes the fairness assumption of

standard nonblocking by making the assumption that con-

trollable events can preempt uncontrollable events when

completing tasks, facilitating reasoning about supervisor

implementations. The authors of [9] replace the nonblock-

ing property by the requirement of true termination and

perform synthesis using ω-languages.

A different generalisation of the nonblocking property is

proposed in [10]. Here, progressive events are introduced

as the only events that can be used in traces towards task

completion when checking the nonblocking property. Pro-

gressive events make it possible to capture nonblocking re-

quirements in some cases where this is difficult with the

standard nonblocking property, particularly when synthe-

sis is involved, while verification verification and synthe-

sis are still possible in the same computational complexity

as with the standard nonblocking property. This paper is an

extended version of [10]. It includes section 4.3 on compo-

sitional verification with some experimental results, which

†Corresponding author.

E-mail: robi@waikato.ac.nz; Tel.: +64 (0)7 838 4796; Fax: +64 (0)7 858 5095.

c© 2014 South China University of Technology, Academy of Mathematics and Systems Science, CAS, and Springer-Verlag Berlin Heidelberg

S. Ware and R. Malik / Control Theory Tech, Vol. 12, No. 3, pp. 68–78, February 2014

shows that progressive events can be used with industrial-

scale discrete event systems, and that they can help to re-

veal issues that remain undetected by a standard nonblock-

ing check.

In the following, Section 2 introduces the definitions

for discrete event systems and supervisory control theory.

Section 3 shows two examples of discrete event systems,

for which the standard nonblocking property fails to give

a useful synthesis result. Section 4 introduces progres-

sive events to model these examples more appropriately,

and shows how nonblocking verification and synthesis are

adapted for progressive events. The section also includes a

discussion of compositional verification methods, experi-

mental results, and an algorithm for synthesis with progres-

sive events. Afterwards, Section 5 compares nonblocking

with progressive events to the other nonblocking proper-

ties mentioned above, and Section 6 adds some concluding

remarks.

2 Preliminaries

2.1 Events and languages

The behaviour of discrete event systems is modelled us-

ing events and languages [1, 2]. Events represent incidents

that cause transitions from one state to another and are

taken from a finite alphabet Σ. For the purpose of super-

visory control, this alphabet is partitioned into the set Σc

of controllable events and the set Σuc of uncontrollable

events. Controllable events can be disabled by a supervis-

ing agent, while uncontrollable events cannot be disabled.

Independently of this distinction, the alphabet Σ is also

partitioned into the set Σo of observable events and the

set Σuo of unobservable events. Observable events are vis-

ible to the supervising agent, while unobservable events

are not. In this paper, it is assumed that all unobservable

events are also uncontrollable.

Given an alphabet Σ, the term Σ∗ denotes the set of all

finite traces of the form σ1σ2 · · ·σn of events from Σ, in-

cluding the empty trace ε. The concatenation of two traces

s, t ∈ Σ∗ is written as st. A subset L ⊆ Σ∗ is called a lan-

guage. A trace s ∈ Σ∗ is a prefix of t ∈ Σ∗, written s ⊑ t,

if t = su for some u ∈ Σ∗. The prefix-closure of a lan-

guage L ⊆ Σ∗ is L = { s ∈ Σ∗ | s ⊑ t for some t ∈ L },

and L is prefix-closed if L = L.

For Ω ⊆ Σ, the natural projection PΣ→Ω : Σ∗ → Ω∗ is

the operation that removes from traces s ∈ Σ∗ all events

not in Ω. Its inverse image P−1
Σ←Ω : Ω∗ → 2Σ∗

is defined

by P−1
Σ←Ω(t) = { s ∈ Σ∗ | PΣ→Ω(s) = t }. If the source

alphabet is clear from the context, these functions are also

written as PΩ = PΣ→Ω and P−1
Σ = P−1

Σ←Ω.

The synchronous composition of two languages L1 ⊆

Σ∗1 and L2 ⊆ Σ∗2 is L1 ‖L2 = P−1
Σ1∪Σ2

(L1)∩P−1
Σ1∪Σ2

(L2).

2.2 Discrete event systems

In this paper, discrete event systems are modelled as

pairs of languages or as finite-state automata.

Definition 1 Let Σ be a finite set of events. A discrete

event system over Σ (Σ-DES) is a pair L = (L,Lω) where

L ⊆ Σ∗ is a prefix-closed language, and Lω ⊆ L. These

languages are also denoted by L(L) = L and Lω(L) =

Lω .

The prefix-closed behaviour L(L) contains possibly in-

complete system executions. The (not necessarily prefix-

closed) sublanguage Lω(L) ⊆ L(L) is the so-called

marked behaviour and contains traces representing com-

pleted tasks.

Language operations are applied to discrete events sys-

tems by applying them to both components. For exam-

ple, if Li = (Li, L
ω
i) for i = 1, 2, then L1 ‖ L2 =

(L1‖L2, L
ω
1 ‖L

ω
2), and the same notation is used for∪. Dis-

crete event systems form a lattice with inclusion, L1 ⊆ L2,

defined to hold if and only if L1 ⊆ L2 and Lω
1 ⊆ Lω

2 .

Alternatively, it is common to model discrete event sys-

tems as finite-state machines or automata.

Definition 2 A (nondeterministic) automaton is a tu-

ple G = 〈Σ, Q,→, Q◦, Qω〉 where Σ is a finite set of

events, Q is a set of states, → ⊆ Q × Σ × Q is the state

transition relation, Q◦ ⊆ Q is the set of initial states, and

Qω ⊆ Q is the set of marked states.

G is finite-state if the state set Q is finite, and G is de-

terministic if |Q◦| ≤ 1 and x
σ
→ y1 and x

σ
→ y2 always

implies y1 = y2. Here, the transition relation is written

in infix notation, x
σ
→ y, and extended to traces in Σ∗ in

the standard way. Also, G
s
→ x means x◦

s
→ x for some

x◦ ∈ Q◦. The prefix-closed and marked languages of an

automaton G are

L(G) = { s ∈ Σ∗ | G
s
→ y for some y ∈ Q } ; (1)

Lω(G) = { s ∈ Σ∗ | G
s
→ yω for some yω ∈ Qω } . (2)

Using these definitions, an automatonG is also considered

as the Σ-DES G = (L(G),Lω(G)). Conversely, a dis-

crete event system given by two languages is considered as

an automaton by taking the canonical recogniser [11] of its

languages.

S. Ware and R. Malik / Control Theory Tech, Vol. 12, No. 3, pp. 68–78, February 2014

2.3 Supervisory control

Given a plant L and a specification K, supervisory con-

trol theory [1, 2] is concerned about the question whether

and how the plant can be controlled in such a way that the

specification is satisfied. This is dependent on the condi-

tions of controllability, normality, and nonblocking.

Definition 3 Let K be a ΣK-DES, L a ΣL-DES, and

let Σ = ΣK∪ΣL. ThenK is controllablewith respect to L

if

P−1
Σ (L(K))Σuc ∩ P−1

Σ (L(L)) ⊆ P−1
Σ (L(K)) .

Definition 4 Let K be a ΣK-DES, L a ΣL-DES, and

let Σ = ΣK ∪ ΣL. Then K is normal with respect to L if

P−1
Σ (PΣo∩ΣK

(L(K))) ∩ P−1
Σ (L(L)) ⊆ P−1

Σ (L(K)) .

Controllability expresses that a supervisor cannot dis-

able uncontrollable events, and normality expresses that a

supervisor cannot detect the occurrence of unobservable

events. Every controllable and normal behaviour can be

implemented by a supervisor that only uses observable

events as input and only disables controllable events.

In addition to the safety properties of controllability and

normality, it is common to require the nonblocking prop-

erty to ensure some form of liveness.

Definition 5 A Σ-DES L is called standard nonblock-

ing (or simply nonblocking) if, for every trace s ∈ L(L),

there exists a trace t ∈ Σ∗ such that st ∈ Lω(L).

If a given system behaviour K is not controllable, nor-

mal, or nonblocking, then this behaviour cannot be imple-

mented through control or is undesirable due to livelock or

deadlock. The question then arises whether K can some-

how be modified to satisfy the requirements. A key result

from supervisory control theory states that every DES K

has a largest possible sub-behaviour K′ ⊆ K that ex-

hibits the desired properties of controllability, normality,

and nonblocking.

Theorem 1 [1] Let K and L be two DES. There exists

a unique supremal sub-behaviour supCN(K) ⊆ K that is

controllable, normal, and nonblocking:

supCNL(K) =
⋃

{K′ ⊆ K | K′ is controllable

and normal with respect to L,

and K′ ‖ L is nonblocking } .

(3)

Furthermore, if K and L are represented by finite-

state automata, a finite-state representation of the supre-

mal controllable, normal, and nonblocking sub-behaviour

supCN
L
(K) can be computed using a fixpoint iteration.

This computation is called supervisor synthesis, and its

result can be used to implement an appropriate supervi-

sor [1].

3 Applications

This paper is concerned about the nonblocking property

and its use in synthesis. In the following, two examples are

discussed where the synthesis of a least restrictive supervi-

sor using the standard nonblocking property from Defini-

tion 5 gives unexpected and probably undesirable results.

3.1 Computer-controlled board game

A board game is to be controlled, where a computer

player and an opponent are taking moves in turn [6]. The

control objective it to prevent the computer player from

losing, while it is always possible for the game to end, ei-

ther by the computer player winning or by a draw being

declared. This is achieved by marking all states where the

computer player has won, or the game is over without a

winner. A least restrictive nonblocking supervisor can be

synthesised to ensure that the game can always end in the

desired way.

To complicate the example slightly, a reset feature is

added: an additional event reset is introduced, which can

always be executed by the environment and resets the game

to its initial state. With this addition, the standard non-

blocking property is much less expressive. Now, a least

restrictive supervisor may allow the game to enter states

where defeat for the computer player is inevitable, how-

ever due the omnipresent possibility of reset, the system is

still nonblocking as long as there is some way of ending

the game from its initial state. A synthesised supervisor

may exploit this and make bad moves, knowing it is al-

ways possible to restart. In this modified model, it is much

more interesting to synthesise a supervisor to ensure that

“the game can always end, even if reset is not used.”

3.2 Manufacturing cell

Fig. 1 shows a modified version of a manufacturing cell

proposed in [12], which consists of a robot, a machine, two

conveyors, two buffers, and a switch. The machine (plant

machine) can manufacture two types of products. Event

start[k] initiates the manufacturing of a type k product

(k = 1 or k = 2) from a workpiece in input buffer inbuf ,

which upon completion is placed in output buffer outbuf ,

indicated by the uncontrollable event !finish[k]. The robot

S. Ware and R. Malik / Control Theory Tech, Vol. 12, No. 3, pp. 68–78, February 2014

outbufinbuf machine

robot

incon outcon

unload_o[2]

unload_o[1]

switch
!select[1]

!select[2]

!advance_i !advance_o[1]

!advance_o[2]

start[1]

start[2] !finish[2]

!finish[1]

unload_i
load_o[1]

load_o[2]

load_i

inbuf spec machine outbuf spec switch

start

unload_i start[2]

!finish[1] !finish[2]

start[1] !finish[2]

load_o[1] load_o[2]

!finish[1]

!select[2]

!select[1]

incon robot outcon switch spec

load_i

!advance_i load_o[2]

load_iunload_i

unload_o[1]

load_o[1]

unload_o[2]

unload_o[2]

!advance_o[1] !advance_o[2]

unload_o[1]

unload_o[1]

!select[2]

!select[1]
unload_o[1]
unload_o[2]

!select[1]

!select[2]

unload_o[2]

unload_o[2]

unload_o[1]

Fig. 1 Manufacturing cell example. Uncontrollable events are prefixed with !, and all events are observable.

load_i start[1]

unload_o[2]
unload_o[2]

unload_o[1]

load_o[2]

load_i

unload_i
load_o[1]

unload_o[1]

load_o[2]

unload_i start[2]

load_o[1]

Fig. 2 Synthesised manufacturing cell supervisor.

(plant robot) takes workpieces from the input conveyor

(plant incon) on event load i and puts them in inbuf on

event unload i, and it takes type k products from outbuf

on event load o[k] and puts them on the output conveyor

(plant outcon) on event unload o[k]. The conveyors can

be advanced to bring in new workpieces (!advance i), or

to remove completed products (!advance o[k]). Specifica-

tions inbuf spec and outbuf spec request a supervi-

sor that prevents overflow and underflow of two one-place

buffers.

In addition, there is a switch (plant switch) that al-

lows the user to choose the type of products to be deliv-

ered. Specification switch spec requires that, when the

user changes the desired output type to k (!select[k]), at

most one product of the other type may be released from

the cell; after that only type k products may be released

(unload o[k]) until the switch is operated again.

The model in Fig. 1 is not controllable and blocking.

Standard synthesis [1] with supervisor reduction [13] gives

the least restrictive supervisor in Fig. 2. This supervisor

correctly prevents buffer overflow by not allowing the ma-

chine to start before the output buffer is empty, and pre-

vents deadlock by restricting the number of workpieces in

the cell to two.

The supervisor does not distinguish start[1] and start[2],

always allowing both types of products to be manufac-

tured. This works because specification switch spec can

be satisfied by disabling the controllable event unload o[k]

when the robot holds a workpiece of an undesired type k,

delaying delivery until the user changes the switch with

another !select[k] event. While this is the least restrictive

controllable and nonblocking behaviour, it seems unrea-

sonable to delay delivery and override the user’s choice in

this way. A more reasonable supervisor would respect the

user’s choice when starting the machine, instead of relying

on the user to request delivery of what has already been

produced.

4 Nonblocking with progressive events

4.1 Progressive events

To provide a better way of modelling examples such

as those in Section 3, this section proposes to distinguish

events that can be used to establish the nonblocking prop-

erty from other events. Independently of controllability and

observability, the event set Σ is partitioned into the sets Σp

of progressive events and Σnp of non-progressive events.

Definition 6 Let L be a Σ-DES, and let Σp ⊆ Σ. Then

L is Σp-nonblocking if, for every trace s ∈ L(L), there

exists a trace t ∈ Σ∗p such that st ∈ Lω(L).

Nonblocking with progressive events requires that, from

all reachable states, it is possible to reach a marked state

using only progressive events. Non-progressive events are

assumed to occur only occasionally or as external input,

and a supervisor should not rely on them for task comple-

tion.

Definition 7 LetK and L be two DES, and let Σp be a

set of progressive events. The least restrictive controllable,

normal, and Σp-nonblocking sub-behaviour of K with re-

spect to L is

supCNL,Σp
(K) =

⋃

{K′ ⊆ K | K′ is controllable

and normal with respect to L, and

K′ ‖ L is Σp-nonblocking } .

Definition 7 redefines the objective of synthesis to use

S. Ware and R. Malik / Control Theory Tech, Vol. 12, No. 3, pp. 68–78, February 2014

unload_i

load_i

load_o[1]

load_o[2]

start[2]

!select[1]

unload_o[2]

!select[1]

load_i

unload_o[1]

load_o[2]load_o[1]

!select[2]
unload_o[1]

unload_i

start[2]

unload_o[2]

!select[1]

!select[1]

start[1]

!select[2]

load_i
!select[2]

unload_i

!select[1]

start[1]

unload_o[1]

start[2]

unload_i

!select[2]

unload_o[2]

!select[2]

unload_i

load_o[1]

start[1]

!select[1]

unload_i

load_i

load_o[1]

load_iload_o[2]

load_i

unload_o[1]

!select[1]

!select[2]
unload_o[2]

load_o[2]

!select[2]

Fig. 3 Synthesised manufacturing cell supervisor with progres-

sive events.

the modified nonblocking property. It follows from Propo-

sition 2 below that the definition is sound in that it in-

deed defines a controllable, normal, and Σp-nonblocking

behaviour.

In Section 3, events reset and !select[k] would be non-

progressive. Then a Σp-nonblocking supervisor ensures

task completion even if the game is not reset, or the manu-

facturing cell user never changes the requested workpiece

type. Fig. 3 shows a least restrictive reduced supervisor for

the manufacturing cell subject to the !select[k] events being

non-progressive. In addition to preventing buffer overflow

and deadlock, this supervisor prevents the machine from

producing a second workpiece while another is being de-

livered.

4.2 Relationship to standard nonblocking

This section relates the nonblocking property with pro-

gressive events to the standard nonblocking property. As

Definitions 5 and 6 coincide when Σp = Σ, it is clear that

standard nonblocking is a special case of nonblocking with

progressive events. If there are non-progressive events,

then nonblocking with progressive events is a stronger con-

dition.

Yet, nonblocking with progressive events can be ex-

pressed using standard nonblocking by means of an addi-

tional DESP(Σnp, τ) as shown in Fig. 4, which uses a new

event τ that disables all non-progressive events. Initially,

non-progressive events are possible, but τ may be executed

at any time, taking P(Σnp, τ) to state p1 where only pro-

gressive events can occur. When P(Σnp, τ) is composed

with a system to be analysed, all states remain reachable,

yet standard nonblocking can only hold if marked states

can be reached using progressive events only.

Definition 8 Let Σnp be a set of events. The pro-

gressive DES P(Σnp, τ) = (Σ∗npτ ,Σ∗npτ) for Σnp and

τ 6∈ Σnp is the (Σnp ∪ {τ})-DES shown in Fig. 4.

Proposition 2 Let L be a Σ-DES with Σ = Σp ∪̇ Σnp

p0 p1
Σnp

τ

Fig. 4 The DES P(Σnp, τ) to express Σp-nonblocking as stan-

dard nonblocking. The selfloop markedΣnp stands for transitions

with all events in Σnp, and τ /∈ Σ is a new event that does not

appear elsewhere in the system.

and τ /∈ Σ. Then L is Σp-nonblocking if and only if L ‖

P(Σnp, τ) is standard nonblocking.

Proof Let P = P(Σnp, τ).

First assume that L is Σp-nonblocking, and let s ∈

L(L ‖ P). Then first note that PΣnp∪{τ}(s) ∈ L(P) =

Σ∗npτ . Let t = τ if the event τ does not appear in s, and

let t = ε if τ appears in s. It follows that PΣnp∪{τ}(st) ∈

Σ∗npτ = Lω(P) and thus st ∈ P−1
Σ∪{τ}(L

ω(P)). Further-

more, note that PΣ(st) = PΣ(s) ∈ L(L), and as L is

Σp-nonblocking, there exists u ∈ Σ∗p such that PΣ(st)u ∈

Lω(L), This implies stu ∈ P−1
Σ∪{τ}(L

ω(L)). Also since

u ∈ Σ∗p, it holds that PΣnp∪{τ}(stu) = PΣnp∪{τ}(st) ∈

Lω(P), and thus stu ∈ P−1
Σ∪{τ}(L

ω(P)). Therefore stu ∈

Lω(L ‖ P), i.e., L ‖ P is standard nonblocking.

Conversely assume L ‖ P is standard nonblocking, and

let s ∈ L(L). Then sτ ∈ L(L ‖P). As L ‖P is nonblock-

ing, there exists u ∈ Σ∗ such that sτu ∈ Lω(L ‖P). Then

PΣnp∪{τ}(sτu) ∈ Lω(P), which by construction of P im-

plies PΣnp∪{τ}(u) = ε, i.e., u ∈ Σ∗p. Since furthermore

su = PΣ(sτu) ∈ Lω(L), it follows that L is Σp-non-

blocking.

Proposition 2 shows that any nonblocking verification

task with progressive events can be reduced to a standard

nonblocking verification task. However, composition with

the progressive automaton P(Σnp, τ) doubles the state

space and verification time.

The extra effort is not necessary. Standard nonblock-

ing can be checked by searching backwards from marked

states to see whether all states are reached. By changing

the backward search to use progressive events only, non-

blocking with progressive events can be checked on the

original system state space, exploring less transitions than

a standard nonblocking check.

Proposition 2 is of theoretical interest, because it shows

that progressive events do not add to the expressive power

of standard nonblocking, and it can be of practical use, be-

cause it shows that a wide variety of nonblocking verifi-

cation algorithms, particularly compositional verification,

can also be used with progressive events. This is explained

in detail in Section 4.3 below.

It is not immediately clear whether the progressive DES

P(Σnp, τ) can also be used to express synthesis with

S. Ware and R. Malik / Control Theory Tech, Vol. 12, No. 3, pp. 68–78, February 2014

progressive events as standard synthesis. Indeed, if there

are uncontrollable non-progressive events, then P(Σnp, τ)

used as an additional plant will disable some uncontrol-

lable events, and a supervisor could wait for the auxiliary

event τ to occur in order to avoid controllability problems.

This is avoided if τ is unobservable. Then the supervi-

sor cannot distinguish the states of P(Σnp, τ), so it has to

enable uncontrollable events enabled in p0 and at the same

time ensure task completion from p1. Lemma 3 shows for

unobservable τ that controllability and normality are pre-

served by the addition of P(Σnp, τ), which together with

Proposition 2 implies the preservation of synthesis results

as shown in Proposition 4.

Lemma 3 LetK andL beΣ-DES withΣ = Σp∪̇Σnp,

and let τ /∈ Σ be an uncontrollable and unobservable event.

(i) K is controllable with respect to L if and only if K is

controllable with respect to L ‖ P(Σnp, τ).

(ii) K is normal with respect to L if and only if K is

normal with respect to L ‖ P(Σnp, τ).

Proof Let P = P(Σnp, τ).

(i) First assume that K is controllable with respect to

L ‖ P, and let sυ ∈ L(K)Σuc ∩ L(L). Then sυ ∈

Σ∗, and PΣnp∪{τ}(sυ) ∈ Σ∗np ⊆ L(P) by construction

of P, and thus sυ ∈ P−1
Σ∪{τ}(L(K))Σuc ∩ L(L ‖ P) ⊆

P−1
Σ∪{τ}(L(K)) as K is controllable with respect to L ‖P.

It follows that sυ ∈ L(K), which means that K is control-

lable with respect to L. The converse inclusion holds by

Proposition 3 in [14].

(ii) First assume that K is normal with respect to L, and

let s ∈ P−1
Σ∪{τ}(PΣo

(L(K))) ∩ L(L ‖ P). Then clearly

PΣ(s) ∈ P−1
Σ (PΣo

(L(K))) ∩ L(L) ⊆ L(K) as K is nor-

mal with respect to L. Thus, K is normal with respect to

L ‖ P.

Conversely assume K is normal with respect to L ‖ P,

and let s ∈ P−1
Σ (PΣo

(L(K))) ∩ L(L). Then s ∈ Σ∗ and

therefore PΣnp∪{τ}(s) ∈ Σ∗np ⊆ L(P), which implies s ∈

P−1
Σ∪{τ}(PΣo

(L(K)))∩L(L ‖P) ⊆ L(K) as K is normal

with respect to L ‖ P. This shows that K is normal with

respect to L.

Proposition 4 Let K and L be Σ-DES with Σ = Σp ∪̇

Σnp, and let τ /∈ Σ be an uncontrollable and unobservable

event. Then

supCNL,Σp
(K) = PΣ(supCNL‖P(Σnp,τ)(K)) . (4)

Proof Consider an arbitrary sub-behaviour K′ ⊆ K.

In Lemma 3 it has been shown that K′ is controllable and

normal with respect to L if and only if K′ is controllable

and normal with respect to L ‖ P(Σnp, τ), and in Propo-

sition 2 it has been shown that K′ ‖ L is Σp-nonblocking

if and only if K′ ‖ L ‖ P(Σnp, τ) is nonblocking. As this

holds for all sub-behaviours K′ of K, the least restrictive

sub-behaviours must also be equal.

Thus, synthesis with progressive events can be achieved

using standard synthesis methods. However, the introduced

automaton P(Σnp, τ) includes the unobservable event τ ,

making it necessary to use the more complex synthesis

algorithm with unobservable events [2], even if the orig-

inal model only has observable events. Section 4.4 below

presents a direct algorithm for synthesis with progressive

events that does not have these performance issues.

4.3 Compositional verification

This section investigates compositional verification and

shows how the nonblocking property with progressive

events can be verified efficiently for large systems.

The standard method to check whether a system is non-

blocking [2] involves the explicit composition of all the

automata involved, and is limited by the well-known state-

space explosion problem. Compositional verification [15,

16] is an effective alternative that works by simplifying

individual automata of a large synchronous composition,

gradually reducing the state space of the system and allow-

ing much larger systems to be verified in the end. Compo-

sitional verification requires the use of abstraction methods

that preserve the property being verified.

While no abstraction methods have been developed for

nonblocking with progressive events, Proposition 2 shows

that a nonblocking check with progressive events can be

replaced by a standard nonblocking check after the addi-

tion of a single automaton P(Σnp, τ). This makes it possi-

ble to apply all the techniques that exist for compositional

verification of the standard nonblocking property [17–20].

These techniques are based on the preservation of conflict

equivalence, which is the most general process equivalence

for use in compositional nonblocking verification [21]. If a

component of a system is replaced by a conflict equivalent

component, the nonblocking property is guaranteed to be

preserved.

Compositional algorithms verify whether a set G of au-

tomata is nonblocking by taking a subset H ⊆ G of

the automata and composing them to create an automaton

H = ‖H. Then the set of local events of H is identified:

these are events that appear only in H and not in the rest

of the system G \H. The local events are hidden from H ,

i.e., they are replaced by a new event τH /∈ Σ, resulting in

a new automaton H ′. Then abstraction techniques [17–20]

are used to simplify H ′ and obtain a conflict equivalent

S. Ware and R. Malik / Control Theory Tech, Vol. 12, No. 3, pp. 68–78, February 2014

abstraction H ′′. Because H ′′ is conflict equivalent to H ′,

and H ′ is obtained by hiding local events from H , it can

be shown [21] that H synchronised with the automata in

G \ H is nonblocking if and only if H ′′ composed with

the same automata is nonblocking. Therefore, the problem

to verify whether the set of automata G is nonblocking

is replaced by the equivalent problem to verify whether

the simpler set of automata (G \ H) ∪ {H ′} is nonblock-

ing. This procedure is repeated until the set of automata is

simple enough to be composed together in a standard non-

blocking check.

The above algorithm relies on local events. Thus the ad-

dition of a single progressive automaton P(Σnp, τ) can

be problematic, because it increases the coupling between

these events in the model. If there are a lot of non-

progressive events that are used by a lot of automata, then

many automata may have to be composed with P(Σnp, τ)

before events can be removed. The following Proposition 5

suggests a way to avoid this problem by splitting the pro-

gressive automaton P(Σnp, τ) into smaller automata. It is

possible to create separate automata P(Σi
np, τ i) for differ-

ent subsets Σi
np of the set of non-progressive events. The

proposition shows that, no matter what the system T to

be verified is, T ‖ P(Σnp, τ) is nonblocking if and only if

T ‖
∥

∥

i
P(Σi

np, τ i) is nonblocking.

Proposition 5 Let Σ1,Σ2 ⊆ Σ be sets of events, and

let τ, τ1, τ2 /∈ Σ be three distinct events. For every Σ-

DES T, it holds that T ‖ P(Σ1 ∪ Σ2, τ) is nonblocking

if and only if T ‖ P(Σ1, τ1) ‖ P(Σ2, τ2) is nonblocking.

Proof Let Σ12 = Σ1 ∪ Σ2, P12 = P(Σ12, τ), P1 =

P(Σ1, τ1), and P2 = P(Σ2, τ2). Then it is to be shown

that T ‖ P12 is nonblocking if and only if T ‖ P1 ‖ P2 is

nonblocking.

First assume that T ‖ P12 is nonblocking, and let s ∈

L(T ‖ P1 ‖ P2). For i = 1, 2, let ti = τi if the event τi

does not appear in s, and ti = ε if τi appears in s. Then

PΣi∪{τi}(sti) ∈ Lω(Pi) for i = 1, 2 by Definition 8, and

st1t2 ∈ L(T‖P1‖P2). Furthermore, PΣ(s) ∈ L(T‖P12)

as PΣ12
(s) ∈ Σ∗12 ⊆ Σ∗12τ = L(P(Σ12, τ)) = L(P12)

by Definition 8. As τ /∈ Σ, it follows that PΣ(s)τ ∈

L(T‖P12). AsT‖P12 is nonblocking, there exists a trace

u ∈ (Σ ∪ {τ})∗ such that PΣ(s)τu ∈ Lω(T ‖ P12). By

Definition 8, it follows that PΣ12∪{τ}(s)τPΣ12∪{τ}(u) =

PΣ12∪{τ}(PΣ(s)τu) ∈ Lω(P12) = Σ∗12τ and thus u ∈

(Σ\Σ12)
∗, and as τ, τ1, τ2 /∈ Σ it holds that PΣ(st1t2u) =

PΣ(su) = PΣ(PΣ(s)τu) ∈ Lω(T). As u ∈ (Σ \ Σ12)
∗, it

holds that PΣi∪{τi}(u) = ε and thus PΣi∪{τi}(st1t2u) =

PΣi∪{τi}(sti) ∈ Lω(Pi) for i = 1, 2. Hence st1t2u ∈

Lω(T ‖ P1 ‖ P2), i.e., T ‖ P1 ‖ P2 is nonblocking.

Now assume thatT‖P1‖P2 is nonblocking, and let s ∈

L(T ‖ P12). Let t = τ if the event τ does not appear in s,

and t = ε if τ appears in s. Then PΣ∪{τ}(st) ∈ Lω(P12)

by Definition 8, and st ∈ L(T ‖ P12). Furthermore,

PΣ(s) ∈ L(T‖P1‖P2), as PΣi∪{τi}(PΣ(s)) = PΣi
(s) ∈

Σ∗i ⊆ Σ∗i τi = L(Pi) for i = 1, 2 by Definition 8. As

τ1, τ2 /∈ Σ it holds that PΣ(s)τ1τ2 ∈ L(T ‖ P1 ‖ P2). As

T‖P1 ‖P2 is nonblocking, there exists a trace u ∈ (Σ12∪

{τ1, τ2})
∗ such that PΣ(s)τ1τ2u ∈ Lω(T ‖ P1 ‖ P2). By

Definition 8, it follows that PΣi∪{τi}(s)τiPΣi∪{τi}(u) =

PΣi∪{τi}(PΣ(s)τ1τ2u) ∈ Lω(Pi) = Σ∗i τi for i = 1, 2

and thus u ∈ (Σ \ Σ12)
∗, and as τ, τ1, τ2 /∈ Σ it holds

that PΣ(stu) = PΣ(su) = PΣ(PΣ(s)τ1τ2u) ∈ Lω(T).

As u ∈ (Σ \ Σ12)
∗, it holds that PΣ12∪{τ}(u) = ε and

thus PΣ12∪{τ}(stu) = PΣ12∪{τ}(st) ∈ Lω(P12). Hence

stu ∈ Lω(T ‖ P12), i.e., T ‖ P12 is nonblocking.

The compositional nonblocking checker implemented in

the DES software tool Supremica [22] has been used to

check the nonblocking property of five discrete event sys-

tems. One of these is the example given in Section 3.2

above, while the other four are industrial-scale models also

used as benchmarks for compositional verification in [23],

where a reasonable set of non-progressive events was iden-

tified. The following list gives some more information

about these models.

aip0aip Model of the automated manufacturing system

of the Atelier Inter-établissement de Productique [24].

Considered here is an early version based on [25].

big bmw BMW window lift controller model from Petra

Malik’s dissertation [26].

cell switch Manufacturing cell model described in Sec-

tion 3.2. The model considered for the experiments con-

sists of the automata in Fig. 1 and the supervisor in

Fig. 2, and is Σp-blocking.

tip3 Model of the interaction between a mobile client and

event-based servers of a tourist information system [27].

verriegel4 Car central locking system, originally from the

KORSYS project [28].

Table 1 shows the results of compositional verification

of the nonblocking property with progressive events for

the above models. The “Size” column refers to the to-

tal number of states in the full synchronous composition

of each model, without the additional progressive events

automata, and the “Result” column indicates whether or

not the model is nonblocking with progressive events. The

columns “Single P” and “Multiple P” refer to two ways

of performing the compositional nonblocking check. In the

case of “Single P”, only one progressive automaton is cre-

ated for all non-progressive events, whereas in the case

S. Ware and R. Malik / Control Theory Tech, Vol. 12, No. 3, pp. 68–78, February 2014

Table 1 Experimental results

Model Size Result Single P Multiple P

Peak States Time [s] Peak States Time [s]

aip0aip 1.0 · 108 true 392, 767 78.284 45, 740 38.463

big bmw 3.1 · 107 true 1, 532 2.751 2, 847 4.464

cell switch 672 false 118 0.190 148 0.186

tip3 2.3 · 1011 true 184, 238 211.3

verriegel4 4.5 · 1010 false 327 0.192 1, 261, 250 539.8

of “Multiple P”, separate progressive automata are used,

each containing the non-progressive events of a single sys-

tem component. For each experiment, the “Peak States”

column shows the number of states of the largest automa-

ton constructed during the check, and “Time” is the num-

ber of seconds taken to complete the check. The entries for

the tip3 model with the “Multiple P” method are blank,

because the algorithm ran out of memory in this case.

The results show that compositional nonblocking ver-

ification works well to check the nonblocking property

with progressive events of large models. In most cases,

using only one progressive events automaton works better

than splitting it, with the exception of the aip0aip model.

This may be because a larger number of automata means

more work, also for compositional algorithms, or because

the compositional algorithms has no knowledge about the

progressive events automata and may compose them with

other automata than the ones they were created for. It is

possible that performance can be improved using a more

specific composition strategy.

Verification of the central locking system model ver-

riegel4 shows that it is blocking with progressive events,

although it is standard nonblocking. This is an unexpected

result, and investigation of the counterexamples suggests

an issue with the controller in that it exhibits a deadlock-

like situation after two simultaneous requests to unlock the

car, which can only be resolved after the arrival of another

request. This suspected controller bug was not found by

the standard nonblocking checks performed on the model

before.

4.4 Direct synthesis algorithm

This section proposes a direct synthesis algorithm with

progressive events for the case of total observation, i.e.,

when all events are observable. In this case, the unobserv-

able event τ can be avoided, which gives rise to a more

efficient solution. The following synthesis objective is con-

sidered.

Definition 9 Let K and L be Σ-DES, and let Σp ⊆ Σ.

The least restrictive controllable and Σp-nonblocking sub-

behaviour of K with respect to L is

supCL,Σp
(K) =

⋃

{K′ ⊆ K | K′ is controllable

with respect to L, and K′ ‖ L

is Σp-nonblocking } .

(5)

The following Definition 10 defines a synthesis operator

on the sub-behaviours of L, which afterwards is shown to

have the above supCL,Σp
(K) as its greatest fixpoint [29].

Definition 10 Let L be a Σ-DES, and let Σp ⊆ Σ. The

operator ΘL,Σp
on the lattice of Σ-DES is defined by

ΘL,Σp
(K) = (θL,Σp

(K), θL,Σp
(K) ∩ Lω(K)) ; (6)

θL,Σp
(K) = θcont

L,Σp
(K) ∩ θnonb

L,Σp
(K) ; (7)

θcont
L,Σp

(K) = { s ∈ L(K) | for all r ⊑ s and υ ∈ Σuc

such that rυ ∈ L(L), it holds that rυ ∈

L(K) } ;

θnonb
L,Σp

(K) = { s ∈ L(K) | for all r ⊑ s there exists

t ∈ Σ∗p such that rt ∈ Lω(L ‖ K) } .

It is first shown that the post-fixpoints of ΘL,Σp
are ex-

actly the controllable and Σp-nonblocking sub-behaviours

of L.

Proposition 6 LetL andK be aΣ-DES such thatK ⊆

L, and let Σp ⊆ Σ. Then K ⊆ ΘL,Σp
(K), if and only if

K is controllable with respect to L and L ‖ K is Σp-non-

blocking.

Proof First assume K ⊆ ΘL,Σp
(K). To see that K is

controllable with respect to L, let s ∈ L(K) and υ ∈ Σuc

such that sυ ∈ L(L). As s ∈ L(K) and K ⊆ ΘL,Σp
(K),

it holds that s ∈ θcont
L,Σp

(K), which implies sυ ∈ L(K). As

s and υ were chosen arbitrarily, it follows by Definition 3

that K is controllable with respect to L. To see that K ‖ L

is Σp-nonblocking, let s ∈ L(K ‖ L). Then s ∈ L(K) ⊆

θnonb
L,Σp

(K), i.e., there exists t ∈ Σ∗p such that st ∈ Lω(L ‖

K). Thus, K ‖ L is Σp-nonblocking.

Conversely, assume that K is controllable with respect

to L and L ‖ K is Σp-nonblocking, and let s ∈ L(K). Let

r ⊑ s and υ ∈ Σuc such that rυ ∈ L(L). Then r ∈ L(K),

S. Ware and R. Malik / Control Theory Tech, Vol. 12, No. 3, pp. 68–78, February 2014

and as K is controllable with respect to L, it follows that

rυ ∈ L(K) and thus s ∈ θcont
L,Σp

(K). Further, as L ‖ K

is Σp-nonblocking, for r ∈ L(K) ⊆ L(L), there exists

t ∈ Σ∗p such that rt ∈ Lω(L ‖ K), i.e., s ∈ θnonb
L,Σp

(K).

Thus s ∈ θL,Σp
(K), and it follows from (6) that K ⊆

ΘL,Σp
(K).

Furthermore, ΘL,Σp
is a monotonic operator on the lat-

tice of Σ-DES.

Proposition 7 Let L, K1, and K2 be Σ-DES and

Σp ⊆ Σ. If K1 ⊆ K2 then ΘL,Σp
(K1) ⊆ ΘL,Σp

(K2).

Proof Assume K1 ⊆ K2. Considering Definition 10,

it is enough to show that θcont
L,Σp

(K1) ⊆ θcont
L,Σp

(K2) and

θnonb
L,Σp

(K1) ⊆ θnonb
L,Σp

(K2). Firstly, for s ∈ θcont
L,Σp

(K1),

it holds that s ∈ L(K1) ⊆ L(K2) and for all r ⊑ s

and all υ ∈ Σuc such that rυ ∈ L(L) it holds that

rυ ∈ L(K1) ⊆ L(K2), and thus s ∈ θcont
L,Σp

(K2). Sec-

ondly, for s ∈ θnonb
L,Σp

(K1) it holds that s ∈ L(K1) ⊆

L(K2) and for all r ⊑ s there exists t ∈ Σ∗p such that

rt ∈ Lω(L‖K1) ⊆ Lω(L‖K2), and thus s ∈ θnonb
L,Σp

(K2).

Proposition 7 shows that ΘL,Σp
is a monotonic operator

on the lattice of Σ-DES, so it follows by the Knaster-Tarski

theorem [29] that ΘL,Σp
has a greatest fixpoint, which by

Proposition 6 is the least restrictive controllable and Σp-

nonblocking sub-behaviour of L.

To compute the fixpoint in a finite number of steps, it

is next shown that the least restrictive controllable and

Σp-nonblocking sub-behaviour for finite-state determinis-

tic specification K and plant L can be computed using the

states of the synchronous composition L ‖ K. Therefore,

Definition 12 introduces an iteration on the state set of

L ‖ K, which in Proposition 8 is shown to be equivalent

to the above ΘL,Σp
.

Definition 11 The restriction of G = 〈Σ, Q,→, Q◦,

Qω〉 to X ⊆ Q is G|X = 〈Σ,X,→|X , Q◦ ∩ X,Qω ∩ X〉

where →|X = { (x, σ, y) ∈ → | x, y ∈ X }.

Definition 12 Let L = 〈Σ, QL,→L, Q◦L, Qω
L〉 and

K = 〈Σ, QK ,→K , Q◦K , Qω
K〉 be two deterministic finite-

state automata, and let Σp ⊆ Σ. The synthesis step oper-

ator Θ̄L,K,Σp
: 2QL×QK → 2QL×QK for L and K with

respect to Σp is defined by

Θ̄L,K,Σp
(X) = θ̄cont

L,K,Σp
(X) ∩ θ̄nonb

L,K,Σp
(X) ; (8)

θ̄cont
L,K,Σp

(X) = { (xL, xK) ∈ QL ×QK | for all υ ∈ Σuc

such that xL
υ
→L yL there exists yK ∈

QK such that (xL, xK)
υ
→ (yL, yK) ∈

X } ;

θ̄nonb
L,K,Σp

(X) = { (xL, xK) ∈ QL ×QK | (xL, xK)
t
→|X

(yL, yK) for some t ∈ Σ∗p, yL ∈ Qω
L,

and yK ∈ Qω
K } .

Proposition 8 Let L = 〈Σ, QL,→L, Q◦L, Qω
L〉 and

K = 〈Σ, QK ,→K , Q◦K , Qω
K〉 be two deterministic finite-

state automata, let S = L ‖ K, and let Σp ⊆ Σ. For every

state set X ⊆ QL × QK , it holds that ΘL,Σp
(S|X) =

S|Θ̄L,K,Σp (X).

Proof Based on Definition 11 and (2) and (6), it is

enough to show L(ΘL,Σp
(S|X)) = L(S|Θ̄L,K,Σp (X)).

First assume that s ∈ L(ΘL,Σp
(S|X)) = θcont

L,Σp
(S|X) ∩

θnonb
L,Σp

(S|X). Then s ∈ L(S|X), so there exists a path

S|X
s
→ (xL, xK) ∈ X . It will be shown that (xL, xK) ∈

Θ̄L,K,Σp
(X). First, for υ ∈ Σuc such that xL

υ
→L yL,

it holds that sυ ∈ L(L), and since s ∈ θcont
L,Σp

(S|X) it

follows that sυ ∈ L(S|X). As L and K are determin-

istic, this implies (xL, xK) ∈ θ̄cont
L,K,Σp

(X). Second, as

s ∈ θnonb
L,Σp

(S|X), there exists t ∈ Σ∗p such that st ∈

Lω(S|X), which by determinism of L and K implies

(xL, xK)
t
→|X (yL, yK) ∈ Qω

L × Qω
K . This shows

(xL, xK) ∈ θ̄cont
L,K,Σp

(X) ∩ θ̄nonb
L,K,Σp

(X) = Θ̄L,K,Σp
(X).

As the same can be shown for all prefixes r ⊑ s, it follows

that s ∈ L(S|Θ̄L,K,Σp (X)).

Conversely, let s ∈ L(S|Θ̄L,K,Σp (X)), and let r ⊑

s. Then S|Θ̄L,K,Σp (X)
r
→ (xL, xK) ∈ Θ̄L,K,Σp

(X). If

rυ ∈ L(L) for υ ∈ Σuc, then as L is determinis-

tic also xL
υ
→L yL for some yL ∈ QL, which given

(xL, xK) ∈ θ̄cont
L,K,Σp

(X) implies rυ ∈ L(S|X). Thus

s ∈ θcont
L,Σp

(S|X). Further, as (xL, xK) ∈ θ̄nonb
L,K,Σp

(X)

there exists t ∈ Σ∗p such that (xL, xK)
t
→|X (yL, yK) ∈

Qω
L × Qω

K , and thus s ∈ θnonb
L,Σp

(S|X). Therefore, s ∈

θcont
L,Σp

(S|X) ∩ θnonb
L,Σp

(S|X) = L(ΘL,Σp
(S|X)).

By Proposition 8, a language-based step of ΘL,Σp
gives

the same result as a state-based step of Θ̄L,K,Σp
when ap-

plied to a subset of the states of L ‖ K. To synthesise

the least restrictive controllable and Σp-nonblocking sub-

behaviour of specification K with respect to plant L, one

first constructs the composition S = L ‖ K. Then the iter-

ation

X0 = QL × QK Xi+1 = Θ̄L,K,Σp
(Xi) (9)

converges against a greatest fixpoint Xn in a finite num-

ber of n steps, which by Proposition 8 satisfies S|Xn =

supCL,Σp
(K).

S. Ware and R. Malik / Control Theory Tech, Vol. 12, No. 3, pp. 68–78, February 2014

G S1 S2

!u

c
c d

d

!u !u

c d
d

!u !u

c
c d

!u

Fig. 5 A DES G that has no least restrictive supervisor that is

nonblocking under control. Events c and d are controllable, while

!u is uncontrollable.

5 Related work

This section relates nonblocking with progressive events

to other nonblocking conditions studied in the literature.

Multi-tasking supervisory control [5] requires a synthe-

sised supervisor to be nonblocking with respect to several

sets of marked states at the same time. Generalised non-

blocking [6] uses a second set of marked states to spec-

ify a subset of the states, from which marked states must

be reachable. Both conditions are amenable to synthesis

and can be combined with progressive events to further in-

crease modelling capabilities.

The condition of nonblocking under control [8] is more

similar to that of nonblocking with progressive events.

When modelling a supervisor implementation, it is as-

sumed that an implemented supervisor or controller sends

controllable events as commands to the plant. Typically,

the controller can generate several controllable events in

quick sequence, and it is considered unlikely that uncon-

trollable events occur during such a sequence. Then it

makes sense to require the system to complete its tasks us-

ing Σc-complete traces.

Definition 13 [8] Let G = 〈Σ, Q,→, Q◦, Qω〉 and

Σc ⊆ Σ. The path x0
σ1→ x1

σ2→ · · ·
σn→ xn is Σc-complete,

if for each i = 1, . . . , n it holds that either σi ∈ Σc or there

do not exist σ ∈ Σc and y ∈ Q such that xi−1
σ
→ y.

Definition 14 [8] Let G = 〈Σ, Q,→, Q◦, Qω〉 and

Σc ⊆ Σ. Then G is nonblocking under Σc-control if for

all paths G
s
→ x, there exists a Σc-complete path x

t
→ yω

such that yω ∈ Qω .

Nonblocking under control is similar to nonblocking

with progressive events, in that it considers uncontrollable

events as non-progressive in states where a controllable

event is enabled. However, it depends on the state whether

an event is progressive or not, and this dependency means

that in general there do not exist least restrictive supervi-

sors that are nonblocking under control.

For example, Fig. 5 shows a DES G which is not non-

blocking under control. As the uncontrollable !u-transi-

tions are only enabled in states where controllable events

are also enabled, these transitions are considered as non-

progressive and cannot be used to prove that the marked

state is reachable. The two sub-behaviours S1 and S2 are

nonblocking under control, however neither of them is

least restrictive, and their least upper bound, G, is not non-

blocking under control.

It is shown in [26] how the property of nonblocking un-

der control can be verified. Synthesis for this and similar

properties can be achieved using ω-languages [9], however

these methods do not in general produce a state-based su-

pervisor that can be readily implemented.

6 Conclusions

The condition of nonblocking with progressive events

is introduced as an extension of standard nonblocking.

It is shown that there are situations where synthesis us-

ing the standard nonblocking property results in an unex-

pected result, because the synthesised supervisor can com-

plete its tasks only if certain rare or undesirable events

occur. Using progressive events, it can be specified more

precisely how a synthesised supervisor must complete its

tasks. The nonblocking property with progressive events

of some industrial-scale discrete event systems has been

checked using the compositional verification algorithm in

Supremica [22], in one case exposing an issue that remains

undetected when only the standard nonblocking property

is considered. While progressive events increase the mod-

elling capabilities, verification and synthesis can still be

achieved without increase in complexity over the standard

nonblocking property.

References

[1] Peter J. G. Ramadge and W. Murray Wonham. The control of dis-

crete event systems. Proceedings of the IEEE, 1989, 77(1):81–98.

[2] Christos G. Cassandras and Stéphane Lafortune. Introduction to

Discrete Event Systems. New York, NY, USA: Springer Science &

Business Media, 2 edition, 2008.

[3] André Arnold. Finite Transition Systems: Semantics of Communi-

cating Systems. Hertfordshire, UK: Prentice-Hall, 1994.

[4] Yi-Liang Chen, Stéphane Lafortune, and Feng Lin. Design of non-

blocking modular supervisors using event priority functions. IEEE

Transactions on Automatic Control, 2000, 45(3):432–452.

[5] Max H. de Queiroz, José E. R. Cury, and W. M. Wonham. Multi-

tasking supervisory control of discrete-event systems. Proceed-

ings of the 7th International Workshop on Discrete Event Systems,

WODES ’04. Reims, France: IFAC, 2004: 175–180.

[6] Robi Malik and Ryan Leduc. Generalised nonblocking. Proceed-

ings of the 9th International Workshop on Discrete Event Systems,

WODES’08. Göteborg, Sweden: IEEE, 2008: 340–345.

[7] Ryan J. Leduc, Bertil A. Brandin, Mark Lawford, and W. M.

Wonham. Hierarchical interface-based supervisory control—part I:

S. Ware and R. Malik / Control Theory Tech, Vol. 12, No. 3, pp. 68–78, February 2014

Serial case. IEEE Transactions on Automatic Control, 2005,

50(9):1322–1335.

[8] P. Dietrich, R. Malik, W. M. Wonham, and B. A. Brandin. Im-

plementation considerations in supervisory control. B. Caillaud,

P. Darondeau, L. Lavagno, and X. Xie, editors, Synthesis and Con-

trol of Discrete Event Systems. Dordrecht, the Netherlands: Kluwer

Academic Publishers, 2002: 185–201.

[9] Christine Baier and Thomas Moor. A hierarchical control archi-

tecture for sequential behaviours. Proceedings of the 11th Interna-

tional Workshop on Discrete Event Systems, WODES’12. Guadala-

jara, Mexico: IFAC, 2012: 259–264.

[10] Simon Ware and Robi Malik. Supervisory control with progres-

sive events. Proceedings of the 11th IEEE International Conference

on Control and Automation, ICCA 2014. Taichung, Taiwan: IEEE,

2014: 1461–1466.

[11] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Intro-

duction to Automata Theory, Languages, and Computation. Boston,

MA, USA: Addison-Wesley, 2001.

[12] W. M.Wonham. Supervisory control of discrete-event systems. Sys-

tems Control Group, Department of Electrical Engineering, Univer-

sity of Toronto, Ontario, Canada, http://www.control.utoronto.

edu/, 2009.

[13] R. Su and W. Murray Wonham. Supervisor reduction for discrete-

event systems. Discrete Event Dynamic Systems: Theory and Appli-

cations, 2004, 14(1):31–53.

[14] Bertil A. Brandin, Robi Malik, and Petra Malik. Incremental veri-

fication and synthesis of discrete-event systems guided by counter-

examples. IEEE Transactions on Control Systems Technology, 2004,

12(3):387–401.

[15] Susanne Graf and Bernhard Steffen. Compositional minimiza-

tion of finite state systems. Proceedings of the 1990 Work-

shop on Computer-Aided Verification, volume 531 of LNCS. New

Brunswick, NJ, USA: Springer, 1990: 186–196.

[16] Antti Valmari. Compositionality in state space verification meth-

ods. Proceedings of the 18th International Conference on Applica-

tion and Theory of Petri Nets, volume 1091 of LNCS. Osaka, Japan:

Springer, 1996: 29–56.

[17] Hugo Flordal and Robi Malik. Compositional verification in super-

visory control. SIAM Journal of Control and Optimization, 2009,

48(3):1914–1938.

[18] P. N. Pena, J. E. R. Cury, and S. Lafortune. Verification of non-

conflict of supervisors using abstractions. IEEE Transactions on

Automatic Control, 2009, 54(12):2803–2815.

[19] Rong Su, Jan H. van Schuppen, Jacobus E. Rooda, and Albert T.

Hofkamp. Nonconflict check by using sequential automaton abstrac-

tions based on weak observation equivalence. Automatica, 2010,

46(6):968–978.

[20] Simon Ware and Robi Malik. Conflict-preserving abstraction of

discrete event systems using annotated automata. Discrete Event

Dynamic Systems: Theory and Applications, 2012, 22(4):451–477.

[21] Robi Malik, David Streader, and Steve Reeves. Conflicts and fair

testing. International Journal of Foundations of Computer Science,

2006, 17(4):797–813.

[22] Knut Åkesson, Martin Fabian, Hugo Flordal, and Robi Malik.

Supremica—an integrated environment for verification, synthesis

and simulation of discrete event systems. Proceedings of the 8th In-

ternational Workshop on Discrete Event Systems, WODES’06. Ann

Arbor, MI, USA: IEEE, 2006: 384–385.

[23] Robi Malik and Ryan Leduc. Compositional nonblocking verifica-

tion using generalised nonblocking abstractions. IEEE Transactions

on Automatic Control, 2013, 58(8):1–13.

[24] Bertil Brandin and François Charbonnier. The supervisory control

of the automated manufacturing system of the AIP. Proceedings of

Rensselaer’s 4th International Conference on Computer Integrated

Manufacturing and Automation Technology. Troy, NY, USA: IEEE

Computer Society Press, 1994: 319–324.

[25] Ryan James Leduc. Hierarchical Interface-based Supervisory Con-

trol. PhD thesis, Department of Electrical Engineering, University

of Toronto, Ontario, Canada, 2002.

[26] Petra Malik. From Supervisory Control to Nonblocking Controllers

for Discrete Event Systems. PhD thesis, University of Kaiserslautern,

Kaiserslautern, Germany, 2003.

[27] Annika Hinze, Petra Malik, and Robi Malik. Interaction design for

a mobile context-aware system using discrete event modelling. Pro-

ceedings of the 29th Australasian Computer Science Conference,

ACSC ’06. Hobart, Australia: Australian Computer Society, 2006:

257–266.

[28] KORSYS Project, http://www4.in.tum.de/proj/korsys/.

[29] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applica-

tions. Pacific Journal of Mathematics, 1955, 5(2):285–309.

SimonWARE received his Bachelor of Computing and Mathematical

Sciences degree with Honours from the University of Waikato in Hamil-

ton, New Zealand in 2007. Also in 2007, he was involved in a project for

discrete event simulation of port biosecurity procedures at AgResearch in

Hamilton. He received his Ph.D. in computer science from the University

of Waikato in 2014. He is currently a research fellow at Nanyang Techno-

logical University in Singapore. His main research interests are liveness

and fairness properties of discrete event systems.

Robi MALIK received the M.S. and Ph.D. degree in computer sci-

ence from the University of Kaiserslautern, Germany, in 1993 and 1997,

respectively. From 1998 to 2002, he worked in a research and develop-

ment group at Siemens Corporate Research in Munich, Germany, where

he was involved in the development and application of modelling and

analysis software for discrete event systems. Since 2003, he is lecturing

at the Department of Computer Science at the University of Waikato in

Hamilton, New Zealand. He is participating in the development of the

Supremica software for modelling and analysis of discrete event systems.

His current research interests are in the area of model checking and syn-

thesis of large discrete event systems and other finite-state machine mod-

els.

