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Properties of Mass-Loading Shocks 
1. Hydrodynamic Considerations 

G. P. ZANK AND S. OUGHTON 

Bartol Research Institute, University of Delaware, Newark 

The one-dimensional hydrodynamics of flows subjected to mass loading are considered anew, with 
particular emphasis placed on determining the properties of mass-loading shocks. This work has been 
motivated by recent observations of the outbound Halley bow shock (Neubauer et al., 1990), which 
cannot be understood in terms of simple hydrodynamical or magnetohydrodynamical descriptions. By 
including mass injection at the shock, we have investigated the properties of the Rankine-Hugoniot 
conditions on the basis of a geometric formulation of the entropy condition. Such a condition, which 
is more powerful than the usual thermodynamical formulation, serves to determine those solutions to 
the Rankine-Hugoniot conditions which correspond to a physically realizable downstream state. On 
this basis a concise theoretical description of hydrodynamic mass-loading shocks is obtained. We 
show that mass-loading shocks have more in common with combustion shocks than with ordinary 
nonreacting gas dynamical shocks. It is shown that for decelerated solutions to the Rankine-Hugoniot 
conditions to exist, the upstream flow speed u0 must satisfy u0 > Ucrit > Cs, where Cs is the sound 
speed. Besides the Usual supersonic-subsonic transition, mass-loading fronts can also admit a 
decelerating supersonic-supersonic transition, the structure of which consists of a sharp decrease in 
the flow velocity preceding a recovery and an increase in the final downstream flow speed. We suggest 
the possibility that such structures may describe the inbound Halley bow shock (Coates et al., 1987a). 
Both parallel and oblique shocks are considered, the primary difference being that oblique shocks are 
subjected to a shearing stress due to mass loading. It is conjectured that such a shearing may 
destabilize the shock. 

1. INTRODUCTION 

Ever since the pioneering work of Axford [1964]; Bier- 
mann et al. [1967] (hereinafter referred to as BBS), and 
Wallis [1971, 1973], research into the interaction of the solar 
wind with a comet has tended to emphasize the large-scale 
global dynamics of the flow. Although the bulk of this and 
subsequent work was given over to the debate concerning 
the existence or nonexistence of a cometary bow shock, 
little attention was focused on investigating the properties of 
shocks dominated by mass loading. This may have been 
simply a consequence of the uncertainty surrounding the 
existence of such a structurel BBS used a hydrodynamical 
description in the presence of a cometary "fluid source" to 
argue for the existence of a strong bow shock. Wallis [1971] 
argued, however, that general mass loading of the solar wind 
may instead allow for the existence of a smooth supersonic- 
subsonic transition (a "bow wave") or, at least, a shock 
much Weaker than that advocated by BBS. 

With the recent flyby missions to comets Giacobini-Zinner 
(GZ) in 1985 and Halley in 1986 it was hoped that the 
existence (or nonexistence) of a cometary bow shock would 
at last be confirmed and some of its properties determined. 
Unfortunately, the International Cometary Explorer mea- 
surements at GZ were not particularly Conclusive [Bame et 
al. 1986], although Smith et al. [1986] did conclude eventu- 
ally that a weak shock existed. On the other hand, observa- 
tions made during the Halley encounter provide much 
clearer evidence for the existence of a shock [Neubauer et 
al., 1986; Galeev et al., 1986; Mukai et al., 1986; Neuge- 
bauer et al., 1987; Coates et al., 1987a, b]. 

The cometary bow shock observations provide an exciting 
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opportunity to investigate in detail the structure and proper- 
ties of shocks experiencing significant mass loading. Such a 
study can be initiated at various levels of sophistication and 
approximation, ranging from the one-fluid to the multifluid 
[e.g., Sauer, 1988; Zank, 1990] and kinetic descriptions 
[Omidi and Winske, 1987]. In this and subsequent papers 
(G. P. Zank and S. Oughton, manuscript in preparation, 
1991; G. P. Zank et al., Mass-loading and parallel magne- 
tized shocks, submitted to Geophysical Research Letters, 
1991), we use the simple one-fluid model introduced origi- 
nally by BBS extended to MHD. Our main concern in these 
papers is to elucidate the properties of mass-loading shocks 
and to distinguish these properties from those of classical 
shock theory. It is not widely recognized that with the 
inclusion of a mass-loading source term in the continuity 
equation, the nature of the gas dynamic equations is changed 
from convex to nonconvex (for which definitions are given 
later). This makes the equations of gas dynamics with mass 
loading extremely interesting, especially as regards deter- 
mining the conditions under which shocks can exist without 
violating the "entropy" condition. In this respect, mass- 
loading gas dynamics resembles more closely the fluid dy- 
namics of combustion [e.g. Landau and Lifshitz, 1979] than 
of ordinary nonreactive gas dynamics. 

Our motivation for this work originated with the surprising 
Giotto observations data obtained on the outbound leg of the 
Halley encounter presented by Neubauer et al. [1990] and 
Coates et al. [1990]. It was found that the transverse 
magnetic field in the shock plane possessed the characteris- 
tics of a switch-on shock even though the plasma beta 
(the ratio of the total plasma pressure to the magnetic 
pressure) was very high (in excess of 5). This is in marked 
contrast to classical MHD shock theory in which the exist- 
ence of a switch-on shock is permitted only when/3•, < 2/ 
where •, is the adiabatic index of a perfect gas. Neubauer et 
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al. [ 1990] argued that the strong rotation of the magnetic field 
could be understood on the basis of mass-loading modified 
Rankine-Hugoniot (R-H) conditions. Unfortunately, their 
paper was more observationally oriented, and no detailed 
analysis of this problem was undertaken. An immediate and 
obvious question that arises concerns the existence of 
shocks in which the magnetic field is strongly rotated: a 
strongly rotated downstream magnetic field implies that the 
downstream gas pressure need not be as large as that for 
classical MHD shocks (in fact, if the magnetic field is 
sufficiently strongly rotated, solutions to the mass-loading 
modified R-H conditions can be found for which the down- 

stream gas pressure is less than that upstream of the shock; 
that is, the shock is noncompressive (G. P. Zank et al., 
1991)). Can these shocks possibly exist, and how does one 
decide on the admissibility of a solution to the modified R-H 
conditions? In this paper we describe an approach to decide 
on such issues and apply these methods to the simpler 
hydrodynamic problem. We defer for subsequent papers the 
question of MHD. Even for the hydrodynamical problem, 
there exist significant differences between nonreactive gas 
dynamical and mass-loading shocks. Thus it is crucial that 
care be exercised in applying results obtained from classical 
gas dynamics to mass-loading structures such as cometary 
bow shocks. 

This paper is organized as follows. In section 2 a mathe- 
matical treatment of the theory of shocks is presented in a 
way that seems plausible, but proofs are omitted. A simpli- 
fied form of the one-dimensional gas dynamics equations 
with mass loading is presented in section 3, and an analysis 
for parallel and oblique planar shocks is carried out in 
sections 3.1 and 3.2. The results and implications are dis- 
cussed briefly in section 4. 

2. PRELIMINARIES 

The second law of thermodynamics asserts that an "en- 
tropy" S per unit volume exists for which the property 
dS/dt -> 0 holds; that is, S increases when energy is 
converted from kinetic to internal energy. For ordinary gas 
dynamics it can be shown [e.g., Landau and Lifshitz, 1979] 
that only compressive shocks are thermodynamically admis- 
sible. Compressible shocks are equivalent, in gas dynamics, 
to shocks which undergo a supersonic-subsonic transition. 
For complicated reacting flows, such as combustible flows or 
mass-loading flows, where the thermodynamic properties 
are either extremely complicated or only partially under- 
stood, the physical notion of entropy is unlikely to be of 
much help in determining which solutions of the R-H condi- 
tions are physically sensible. Fortunately, however, the 
subject of weak or distribution solutions to hyperbolic sys- 
tems of equations is a topic of considerable interest in the 
mathematical community, and a rigorous mathematical the- 
ory for systems of conservation laws has been developed 
[Lax, 1973]. 

Consider the simple scalar conservation law 

//t +f(//)x = 0, (1) 

with initial data 

/t(X, 0) = /t r if X --> 0 

u(x, O) = ut ifx < 0, 
(2) 

where it is assumed that f(u) is a genuinely nonlinear 
function (i.e., f"(u) • O, thereby implying that f is convex). 
Typically, the problem (1), (2) has a continuum of solutions, 
so some principle is required to isolate the "physically 
relevant" solution. Equation (1) can be rewritten as 

II t + f' (U)Ux = 0, (3) 

indicating that u is constant along the characteristics 

dx/dt = f'(u). (4) 

A piecewise continuous solution is a solution in the distri- 
bution sense if the Rankine-Hugoniot relation 

s[u] = [f(u)] (5) 

is satisfied across the discontinuity, where brackets denote 
the difference across the discontinuity, and s is the velocity 
at which the discontinuity propagates. Clearly, if the piece- 
wise continuous distribution solution is to be determined 

uniquely, then it is necessary that the characteristics on 
either side of the discontinuity impinge in the forward t 
direction on the discontinuity (see, for example, John [1982, 
p. 16]). Given that the signal velocities on the left and right 
sides of the discontinuity aref' (ut) andf' (Ur) (equation (3)), 
we can express this condition in terms of the inequality 

where, from (5), 

f• (U l) > S > f• (U r), (6) 

f( U l) -- f( ll r) 
s = = f'(s•). (7) 

/t I -- /t r 

The entropy inequality (6) states that the shock speed is 
intermediate to the characteristics on both sides of the 

shock, and for the simple scalar conservation law (1) this 
additional criterion is sufficient to ensure that the initial 

value problem is determined uniquely. A graphical depiction 
of the entropy condition for f = u2/2 appropriate to the two 
sets of initial data 

u(x, 0)=0 if x->0 

u(x, 0)= 1 if x<0 

and 

u(x, 0)= 1 if x->0 

u(x, 0)=0 if x<0 

is to be found in Figure 1. 
Consider now the linear scalar equation 

II t + au x = 0, x > 0, t > 0, (8) 

in the quarter plane, a -- const. Suppose that we are given 
the initial conditions u(x, 0) in x -> 0 and the boundary 
conditions u(0, t) in t -> 0. Can these initial values deter- 
mine u in the entire quarter plane? Since u is constant along 
the lines x - at - const, if a < 0, then u is determined along 
x = 0 by its initial values (see Figure 2a) and no boundary 
conditions can therefore be given. Conversely, for a > 0, it 
is clear from Figure 2b that the boundary conditions along 
x = 0 must be given in order to determine u in the full 
quarter plane. 
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Fig. 1. Examples of the conservation law u t + (uT•/2)x = 0with 
the two sets of initial data u(x, 0) = 0 if x -> 0 and u(x, 0) = I if 
x < 0 (Figures la and lb) and u(x, 0) = I ifx >- 0 and u(x, O) = 
0 if x < 0 (Figures I c-I e). To prevent the characteristics in Figure 
l a from crossing, a shock must be introduced with propagation 
speed s = [u2/2]/[u] = 1/2. Thus a globally defined weak solution 
is given by u = I on the left of the shock and u = 0 on the right. For 
the second set of initial data, the characteristics do not fill out the (x, 
t) plane (Figure l c). Two approaches to defining a globally valid 
weak solution are illustrated in Figures I d and I e. A criterion is 
given in the text which excludes solutions of the kind illustrated in 
Figure I d. The solution exhibited in Figure l e corresponds to a 
rarefaction fan (the shaded region) and is often utilized in the 
construction of compound wave fronts. 

course, u +- c, u). Let Ul, u r denote the state vectors on 
either side of the discontinuity and suppose that Al(Ur) 
< ''' < •.k(Ur) < S < •.k+l(Ur) < ''' < •.n(Ur). Extend- 
ing the reasoning used for the scalar equation, but now for 
the region (x - st) > 0, t > 0, if i -< k, then since Ai(ttr) 
< s, the u i(O, t) are determined by the initial data. If i > k, 
then Ai(Ur) > s and we must specify ui(O, t), i = k + 
1, ß ß ß , n. Thus we should specify (n - k) conditions on the 
right boundary of the discontinuity. Similarly, for the left 
boundary, if •.j(Ul) < S < •.j+l(Ul), we must specify j 
conditions on the left boundary of the discontinuity (Figure 
2c). The jump conditions 

s[u] = [f(u)] 

provide n algebraic equations connecting the values on both 
sides of the discontinuity with s. But since u t • u r, this 
reduces to (n - 1) conditions between ut and Ur. Thus it is 
required that 

(n-k)+j=n- 1 (9a) 

OF 

j = k- 1. (9b) 

In the light of this discussion we should admit a discontinuity 
(Ul, Ur; s) provided that for some index k, 1 < k < n, the 
following inequalities hold: 

Ak(lir) < S < A k + l(Hr); (10) 
Ak_ l(U/) < S < •.k(Ul). 

These inequalities define an entropy condition (sometimes 
called the Lax inequalities and here called the geometrical 
entropy condition), and any discontinuity satisfying (10) is 
called a shock (sometimes a k shock). The entropy condition 
can also obviously be written in the equivalent form 

The extension of these ideas to a hyperbolic system of n 
equations is readily accomplished. Suppose that instead of 
the quarter-plane problem above, we have a discontinuity 
which moves with speed s (s = 0 for the quarter-plane 
problem) and let Al(u) < -" < An(U) denote the eigenval- 
ues, i.e., the characteristic speeds of the system (e.g., for 
one-dimensional gas dynamics, the three eigenvalues are, of 

t t = const. 
x-at = const. >0 

• o<o 

(o) (b) 

t 

(c) 

Fig. 2. Graphical determination of the boundary conditions appro- 
priate to a stationary shock. See text for details. 

A k(lir) < S < A k(lil); 
(11) 

Ak_ I(H/) < S < Ak+ l(Hr), 

which is often an easier form to use. Thus for only one index 
k is the shock speed s intermediate to the characteristic 
speeds A k on both sides of the shock. A discussion relating 
(9) and (10) to the stability of shocks is given by Liberman 
and Velikovich [1986]. 

Lax [1973] has shown that for an ideal gas a shock is 
compressive if and only if it satisfies the entropy condition 
(10). Thus for ideal gases the geometric entropy condition 
and the "physical" entropy condition obtained from ther- 
modynamic arguments happen to coincide. This need not 
always be the case. The geometric entropy condition is 
stronger and may be needed for the construction of a unique 
solution, even under circumstances where thermodynamics 
has little to say. 

The utility of the entropy condition (11) lies in its simple 
graphical representation in the (x, t) plane. At this stage, 
some definitions are in order. A family of characteristics is 
said to cross a discontinuity that satisfies the R-H conditions 
if through every point of the discontinuity in the (x, t) plane 
one can draw only one characteristic of that family, with the 
property that it is traceable backward in time on one side of 
the discontinuity and forward on the other. This corresponds 
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to a family of characteristics crossing a discontinuity that is 
not required to prevent intersection of the characteristics. A 
family of characteristics is linearly degenerate if a disconti- 
nuity that satisfies the R-H conditions happens to coincide 
with a member of that family. The Co characteristic of gas 
dynamics is an example. A discontinuity separates a family 
of characteristics if through every point of the shock trajec- 
tory in the (x, t) plane, there exists a pair of characteristics 
which can be traced either backward or forward in time. The 

entropy condition (11) can therefore be reformulated as 
follows: A discontinuity satisfies the entropy condition if, 
when it separates the characteristics of a family, the char- 
acteristics on each side can be traced back to the initial data. 

A family of characteristics is convex if a discontinuity 
satisfying the R-H conditions is either crossed by the family 
or separates the family. The C+ and C_ characteristics of 
ideal gas dynamics are examples of convex families. 

A system of conservation laws is classified as convex if all 
families of characteristics are convex and if all the disconti- 

nuities admitted by the R-H conditions separate one and 
only one of the families. The isentropic gas dynamics equa- 
tions are convex. If, however, at least one of the families is 
linearly degenerate and the others convex, then the system 
of conservation laws is linearly degenerate. The ideal gas 
dynamics equations represent the standard example. For 
any other possibilities the system is described as nonconvex, 
and compound waves are often needed to connect states and 
certainly to construct a solution of the Riemann problem. 
The most studied example of a nonconvex system is that of 
gas dynamics with combustion. 

3. MASS-LOADING SHOCKS 

As a comet approaches the Sun, neutral molecules and 
dust are liberated from the nucleus with a typical speed of 1 
km s -1. After some 106 s the particles are ionized, where- 
upon they begin to gyrate about the interplanetary magnetic 
field. Since the gyration begins almost instantaneously on 
ionization, a common velocity of the plasma components is 
established (within the plane of gyration) very rapidly via 
pitch angle scattering [Neugebauer et al., 1987]. Thus be- 
sides validating the assumption of a common bulk velocity 
for all plasma components, it also suggests that one should 
choose the ratio of specific heats 3' to be 5/3, appropriate to 
3 degrees of freedom, rather than the commonly used 3' = 2 
(BBS) which takes into account only 2 degrees of freedom. 
In principle, because the ions cannot completely share their 
energy with the electrons, we assume that the electron 
component is cold and does not influence the large-scale 
flow. Finally, since the newly ionized particles have a very 
small initial velocity, they add negligibly to the overall 
energy and momentum balance so we need account for their 
presence only in the total mass flux equation. This assump- 
tion is relaxed by G. P. Zank et al. (submitted manuscript, 
1991), who show explicitly that the additional terms are 
unimportant. Thus, as recognized by Axford [1964] and 
BBS, it is the addition of mass that tends to dominate the 
solar wind-comet interaction. However, if one works in a 
frame of reference different from the cometary reference 
frame, momentum and energy source terms may well need to 
be retained under certain circumstances (see Neubauer et al. 
[1990] and Section 3.2). 

Two important points for our analysis emerge from the 

observations presented by Neubauer et al. [1990] (data 
obtained on the outbound leg of the Giotto mission). The first 
is that the thickness of the "outbound" shock in the normal 

direction is d = 120,000 km, which implies that the shock is 
still relatively thin when compared to typical length scales in 
the system. Thus we may assume a one-dimensional model 
when investigating properties of the shock. Second, using 
the gas production rates of Krankowsky et al. [1986] and a 
106 s lifetime for the dissociation products of cometary 
neutral molecules gives an injected mass-loading mass flux 
of the order of 1.4 x 107 amu/cm 2 s. On the other hand, 
Coates et al. [1990] have measured the upstream mass flux to 
be 2.3 x 108 amu/cm 2 s, giving a significant mass loading to 
upstream mass flux ratio of---0.01. For the inbound Halley 
shock the measured shock thickness was found to be 

---40,000-45,000 km instead [Coates et al., 1987a, b], which 
yields a mass loading to upstream mass flux ratio of---0.005. 

On the basis of the observations above, we can write down 
an idealized mathematical model describing mass loading in 
a flow. We assume that at some location in the shock frame 

of the flow, new particles are injected continuously into the 
fluid in such a way that mass is added but not energy or 
momentum. The one-dimensional idealized gas dynamics 
equations with mass loading can then be written as 

Op 0 
m+ (pUx) = a•(x- st); (12) 
Ot Ox 

0 0 

at (pUx) + (pUx2 + p) 0 (13) ox 

0 0 

Ot (ptly) -Jr (ptlxtly) 0; (14) Ox 

Oe 0 

--+ -- ((e + p)Ux) = 0, (15) 
Ot Ox 

where e = pu2/2 + pe and e is the internal energy of the 
fluid. Here p denotes the fluid density, u = (Ux, Uy) the 
velocity field, p the gas pressure, and a -- qmcd the 
"averaged" source term (q -- average production rate of 
cometary ions, m c is the mass of a cometary ion, and d is the 
shock thickness) and, finally, s represents the speed of 
propagation of the shock. For an ideal gas (the case we 
consider), 

1 p 
e = • - (16) 

y-lp' 

so that 

e + p = « pu 2 + • p. 
3'-1 

The shock configuration is illustrated in Figure 3 for a 
left-facing shock propagating with velocity s. 

Some comments regarding our mathematical formulation 
(12)-(15) are in order. It should be recognized that in a 
"real" mass-loading system, such as occurs at comets, 
Venus, Mars, etc., mass loading is omnipresent over very 
extensive scales. Thus the upstream supersonic unshocked 
flow is already decelerated as a consequence of mass load- 
ing, and the flow velocity is therefore nonconstant ahead of 
the shock. To determine the location of the subshock, it is 
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Fig. 3. Schematic of a left-facing shock propagating with speed s 
in the (x, t) plane. 

necessary to consider the full global problem, which includes 
mass loading far upstream [e.g., BBS; Wallis, 1971, 1973]. 
To fit a gas subshock in order to affect a transition to the final 
downstream state, one needs to know only the state of the 
fluid immediately ahead of the shock and thereafter to apply 
the usual gas dynamic Rankine-Hugoniot conditions. A very 
clear exposition of this procedure as applied to cosmic ray 
mediated shocks is given by Axford et al. [1982]. Thus a 
typical calculation will neglect mass loading within the 
subshock and use the standard gas dynamical shock analysis 
to determine properties of the (sub)shock [e.g., Coates et 
al., 1987a, b, 1990]. As indicated in section 1, our intention 
is not to perform a global analysis of mass-loading flows (and 
thereby establish both the necessity and possible location of 
the subshock) but rather to investigate in detail the nature of 
the subshock when mass loading is assumed to occur within 
the transition. As we show below, this yields shock proper- 
ties quite different from those of nonreacting gas dynamics. 
We do, however, make the assumption that the mass-loading 
term a is constant throughout the transition, but since the 
thickness of the shock is expected to vary as a function of 
incident gas Mach number M0, it is possible that a = 
a(Mo). We do not address this additional complication here. 
The other important assumption implicit in our analysis is 
that the actual thickness of the subshock transition is much 

less than the length scale of deceleration induced by mass 
loading in the foreshock region. This is equivalent to assum- 
ing that no steep gradients are present in the foreshock 
region, an assumption which is supported observationally at 
Halley but perhaps less clearly at comet GZ. We draw 
attention to one final point concerning the downstream state 
of the shocked fluid. Since, in reality, mass loading of the 
solar wind continues downstream of the shock, the shocked 
fluid will obviously continue to evolve in response to the 
additional cometary ion injection. Therefore the calculated 
downstream states admitted by the subshock are most likely 
valid for only a short distance beyond the location of the 
sharp flow transition. 

Provided that • = (p, u, p)t is c l(•/•, t > 0), the 
conservation law (15) can be reduced to 

Op Op OUx 3'- 1 
• + Ux • + 3'p • = au21•(x - st) (17) 
Ot Ox Ox 2 ' 

illustrating that mass loading can be interpreted as a "dissi- 
pative process." Thus, for ß smooth, equations (12)-(15) 
can be expressed as the hyperbolic system 

-- + A(•) • = B(•), (18) 
Ot Ox 

where A and B are defined to be 

ux P 0 0 

0 ux 0 • . A(,•,) = 0 0 u• ' 
0 3'p 0 

Ux uy 3'- 1 2 
B(•) = al•(x- st) 1, ---, , u , (19) 

p p 2 

t indicating transpose. The characteristics of (3.7) are simply 
those of ordinary gas dynamics 

C+' 

dx/dt = ux + c; 

dx/dt = Ux- c; (20) 

C 0 ß 

dx/dt = u x, 

where c = (3'p/p)1/2 is the sound speed. 
In the frame of the shock (i.e., s = 0) we can write the 

jump conditions as 

POUxO -- /9 lUxl -- Cg; 

2 2 
poUxo + Po = pluxl + Pl; 

(21) 

(22) 

POUxOUyO = p lUxlUyl; (23) 

(eo + po)uxo = (el + p l)uxl. (24) 

For the present, we regard a as constant. The above 
integrated conservation laws resemble those given by Neu- 
bauer et al. [1990]. 

3.1. Parallel Shocks 

Most of the points we wish to emphasize can be made by 
considering the less general case of flows whose velocity is 
normal to the one-dimensional planar mass-loading front. 
Thus we consider uy = 0, and for notational convenience we 
set u•c = u for this subsection. It should be noted, however, 
that for MHD mass-loading shocks, obliquity determines 
some of the most important properties. Some simple but 
useful algebraic identities for a mass-loading hydrodynamic 
shock can be derived from the R-H relations. Let rn = poUo 
and introduce the specific volume r = 1/p. Then using u0 = 
mro and u l = m(1 + &)r 1 -: m•l, & -- a/m, in the 
momentum relation (22) yields 

Pl -Po 
m -- 

u0- (1 + &)u 1 

2 m Pl -Po 

r 0 - (1 + 

The total energy relation (24) reduces to 

(25) 



9444 ZANK AND OUGHTON: MASS-LOADING SHOCKS 

e0r0 - el• 1 = P1•1 -- p0•-0 ' 

We can further show that 

eoro- ½1•1 = EO- •1 + 
Pl -Po & 

(TO + •1) + -- m2r0•l, 
2 2 

where • = (1 + 5)e. Thus we may introduce the mass- 
loading form of the Hugoniot function 

H(•, p)-= •(•, p)- e(ro, Po) 

P+Po & 
+ (•- r o) m2ro •, (26) 

2 2 

and the Hugoniot equation is H(•-i, p 1) = 0. Expression (26) 
differs from the standard gas dynamic Hugoniot function 
both in the term (1 + &)e and in &m 2 r0 ?/2. For an ideal gas, 
(26) can be rearranged as 

2/x2H(•, p) = (3 - /X2ro) p - (r 0 - /x2•)p0 

- 5/x 2m2r0 •, (27) 

and ix 2 = (3'- 1)/(3' + 1). Note that a state cannot be 
connected to itself by a mass-loading front since H(•'0, P0) 
• 0. This has important implications for the development of 
a theorem analogous to that given by Weyl [1949] for 
ordinary gas dynamics, and this provides a different perspec- 
tive on the inability of the physical entropy condition to 
select the physically relevant R-H solutions. This is dis- 
cussed by Zank [1991]. For a given •, H(•-, p) = 0 is the 
locus of all possible states that can be connected to the given 
state (r 0, P0). Observe also that unlike the usual gas 
dynamic Hugoniot, the mass-loading form is a function of 
the upstream Mach number through m 2. This is evident if 
one introduces 

M2= u2/c2= u2/3'pr, 

since then H(•-, p) = 0 reduces to 

p 1 - tx2•/ro •/r 0 
Po •/ro- /x2 + 5/x23'Mø2 •/ro- /x2' (28) 

Thus P/Po is hyperbolic in •'/ro with asymptotes 
2 

r 0 l+a 

P --=-/x 1-53' 
p0 

(29) 

Clearly, depending on how supersonic the upstream flow is, 
the ?/ro -• o• asypmtote can lie either in the p > 0 or the 
p < 0 half plane. The initial state (r0, P0) can also lie above 
or below the Hugoniot, depending on the value of M02. By 
considering H(•'0, P0), it is easily seen that if 

1 2 

M02 > (30) 
1+53'-1' 

then (%, P0) lies below the Hugoniot, otherwise (%, P0) is 
above the Hugoniot curve. 

Solutions to the R-H conditions can be obtained by solving 
(28) simultaneously with the total momentum equation 

p • 
-- = (1 + 3'M02) - 3'M02(1 + a) --, (31) 
P0 r0 

now written in terms of the upstream Mach number. The 
R-H conditions are solved graphically for three different 
cases in Figure 4. In Figures 4a and 4c, (r0, P0) lies below 
the Hugoniot by virtue of our choices of & and M02. Not all 
points on the Hugoniot correspond to physically admissible 
downstream states. On rewriting expression (25) in terms of 
the upstream Mach number, 

1 P/Po- 1 

3'Mø2 = (1 + 5) 2 1/(1 + 5) 2- r/to' 
it is evident that in the quarter plane defined by 

P/Po > 1; P/Po < 1 

1 1 

r/to> •' r/r < (1 + &)2, o (1 + 5) 2' 

we have M02 < 0, which is clearly an invalid solution of the 
R-H conditions. On the Hugoniot, M02 < 0 corresponds to 
the segment marked m 2 < 0 in Figure 4a, so we reject any 
downstream states corresponding to this region. 

To determine which sections of the Hugoniot correspond 
to subsonic or supersonic downstream flows, we have in- 
cluded the sonic or acoustic line u •2 = c 12 in Figures 4. The 
downstream sound speed relation assumes the form 

P -(1 +a)2Mo 2 r -- - --. (32) 
P0 r0 

In Figure 4a, where M02 - 10, we see that two possible 
downstream states are admitted by the mass-loading R-H 
conditions, both of which are compressive and whose den- 
sity increases. Only the most compressive state, however, 
corresponds to subsonic flows downstream of the shock, 
whereas the second corresponds to supersonic downstream 
flows. Conversely, for the subsonic upstream flow example 
illustrated in Figure 4b, two expansive downstream states 
with decreasing density can be found to solve the R-H 
conditions. Here, we use the terms expansive/compressive 
in the sense that either (1 + •)r I > r 0 or < r0. As in the 
previous example, one of these states is subsonic and the 
other supersonic downstream of the discontinuity. Thus we 
see that mass loading slows and compresses supersonic 
flows, whereas subsonic flows are accelerated and ex- 
panded. This can also be seen if one considers a steady flow, 
close to equilibrium, and expands the R-H conditions appro- 
priately (see the appendix for the general oblique case). The 
fractional change in velocity after mass loading is then given 
by 

8u 3'+ 1 M02 
--= 5 (33) 
u0 2 1 - M02' 

Thus if the incident flow is supersonic, i.e., M 0 > 1, then 
8u < 0 indicating deceleration, whereas for flows initially 
subsonic, 8u > 0, illustrating that mass loading can accel- 
erate a subsonic flow. This point was noted already by BBS. 
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Fig. 4. Examples of the Hugoniot function together with graph- 
ical solutions of the Rankine-Hugøniøt conditions, for a parallel 
shock. (a) M02 = 10. (6)/I//02 = 1/2, 4 = 0.01, T = 5/3. (c),/I//02 
= 9 but • = 1/2 and D' = 5/3. Possible downstream states correspond 
to the points of intersection of the total momentum graph and the 
Hugoniot and the acoustic graph separates subsonic downstream 
solutions from supersonic. Only for Figure 4c do no downstream 
states exist. 

It is not at all clear, however, that all these flows are 
dynamically admissible. This has also been emphasized by 
Wallis [1971, 1973] but from a somewhat different point of 
view. 

To proceed further, we need to classify the Hugoniot more 
precisely. To this end we can combine equations (28) and 
(31) to obtain a quadratic equation in • = 3/% 

(l+&)• 2 27 ( lo2 ) 7-1 2 1 l+ •+•+ -0. 
7+ 1 7M 7+ 1 7+ 1Mo 2 

(34) 

Equation (34) closely resembles an equation of BBS [see Ip 
and Axford, 1989, equation (2.6)] used to show that a 
(sub)shock must form in the cometary accretion flow before 
the condition 

2 

pu •> • PoUo 
72--1 

is met. It must be emphasized that (34) does not represent a 
generalization of BBS to flows for which M02 :• •. The work 
of BBS may be viewed as a shock structure problem in 
which the source term for mass loading is a prescribed 
function of x, whereas we are investigating the admissible 
boundary conditions for a flow in which particles are injected 
continuously at the shock. Thus unlike BBS we use an 
averaged, constant source term a so that the solutions of (34) 
represent possible downstream states which satisfy the R-H 
conditions rather than a condition on the continuously 
varying mass flux for the insertion of a subshock in the 
smoothly decelerating flow. 

Solutions to (34) correspond to the points of intersection 
of the Hugoniot and momentum curves in Figure 4 and these 
can be written explicitly as 

T O y + 1 (1 + &)2 1 + + 1 + 7M 7M 

__(1+•) y2--1 ( 2 1)] 1/2 } 7 2 1 + , . (35) 
We reiterate that in principle, a = a(M0). The momentum 
line and the Hugoniot are clearly tangential provided M0 2 
satisfies our version of BBS's celebrated condition 

7 2 (1 + 1/7M02) 2 
(1 +&)= 2 (36) 7 -1 2 ' 

1 + 1/Mo 2 
•-1 

and, obviously, downstream solutions can exist only if (1 + 
•) is less than the right-hand side of (36). Observe that M0 
can never be 1. The point at which the momentum line and 
the Hugoniot are tangent has, however, an added signifi- 
cance. By considering the downstream sound speed relation 
(32), it is seen that the sonic line and the momentum line 
intersect at 

TO 7 + 1 (1 + •)2 1 + 7M 
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I I 

ro ro 
(1+•)2 

Fig. 5. The classification of the mass-loading Hugoniot. Only 
the solid lines correspond to possible admissible downstream states. 
See text for details. 

Thus when (36) is satisfied, the point of intersection of the 
sonic line, the momentum line, and the Hugoniot all coin- 
cide. This is sufficient then to provide us with a complete 
characterization of the mass-loading Hugoniot. 

Our results can be summarized in terms of a general 
representation for the mass-loading Hugoniot (Figure 5). 
Figure 5 is general in the obvious sense that not all of the 
marked regions are necessarily present and depends on the 
location of the two asymptotes (see (29)). In Figure 4c, for 
example, it is evident that the region corresponding to B and 
downward in Figure 5 is completely absent. Clearly, from 
(29) Figure 5 is completely general provided M02 < (1 + 
•2)/(•.y/•2), which, given the parameters quoted above, 
should hold for mass loading at comets. One portion of the 
Hugoniot curve, the dashed section from A to B, is inadmis- 
sible since the states it represents correspond to negative 
Mo 2. The remaining curve can be separated into two 
branches, the upper corresponding to a compressive front 
(P > P o) (in combustion theory, this region would corre- 
spond to the detonation branch), whereas the lower portion 
of the Hugoniot corresponds to an expansive front (p < Po) 
(equivalent to the deflagration branch for combustion). The 
lines through (%/(1 + 5)2, P o) tangent to the Hugoniot at 
points I and II are the mass-loading versions of the "Ray- 
leigh" lines, and points I and II correspond to the Chapman- 
Jouguet points of combustion theory. Points I and II serve 
further to divide the Hugoniot curve. The strong compres- 
sion branch above I corresponds to subsonic flows down- 
stream of the discontinuity. The weak compression regime 
between I and A corresponds to downstream states with 
supersonic flows. The branch between B and II describes the 
weak expansion regime and has subsonic flows downstream 
of the front. The final branch, the dot-dashed segment from 
II onward, represents the strong expansion regime with 
supersonic downstream flows. We will discuss each branch 
separately and exclude some branches on the basis of the 
geometric entropy condition discussed in section 2. 

Co c_ 
I 

Fig. 6. Geometry of the characteristics corresponding to strong 
compression branch of the Hugoniot curve. 

As a final point, consider the relations (derived below) 

- = - - cb; 
(37) 

-2 
'r0'r 1 

UO 2 -- c'2 = m2ro(ro- •1) + •m2 _ , 

T O -- 

where a quantity c. similar to a critical sound speed has 
been introduced. Equations (37) show that 
u01 > Ic01, from which we infer that shock solutions lie on 
the Hugoniot above the point B (Figure 5) provided u 0 > Co, 
and below B if u 0 < c 0. Thus the strong branch corresponds 
to supersonic-subsonic transitions, for example. 

Let us now consider a constant state S which corresponds 
to a point (r•, p•) lying on the mass-loading Hugoniot. Then 
it is possible to connect S and (r0, P0) by means of a 
mass-loading front. Depending on the location of S, we need 
to consider five cases. 

1. For S on the strong compression branch, p• > Pt- 
From (35) and (36) it is clear that for solutions to exist on the 
compressive branch it is necessary that M0 > 1. Further- 
more, we have proven that the flow speed downstream of 
strong compressive fronts is subsonic. Therefore the C+' 
dt/dx = 1/(u _+ c)and Co' dt/dx = 1/u characteristics 
assume the geometry depicted in Figure 6 for a stationary 
left-facing shock (there is no additional difficulty in consid- 
ering nonstationary shocks). The front separates the C_ 
characteristics, whereas the other two families simply cross 
it. The geometry of the characteristics for this case resem- 
bles that of compressive shocks in ordinary gas dynamics. 
Clearly, the C_ characteristic can also be traced back to the 
initial data, so the strong compression solutions satisfy the 
entropy condition. Hence the downstream state is deter- 
mined uniquely from the upstream state. 

2. For the case S = I, P l = P•, and the velocity relative 
to the mass-loading front is supersonic ahead (u0 > Co) and 
sonic behind (u• = c•). Thus one of the downstream 
characteristics, in our case C_, when viewed from down- 
stream, corresponds to the mass-loading front. The charac- 
teristics are illustrated in Figure 7. Therefore the sonic 
condition downstream allows us to determine the down- 
stream state from the upstream without further assumption. 

3. The weak compression solutions S to the R-H condi- 
tions lie on the weak compression branch for which Pt > P• 
> PA- Since the momentum line always passes through the 
point (%/(1 - •)2, P0) in the (r, p) plane, we always have 
P• > P0. As we have noted, the gas flow on either side of the 
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Fig. 9. Same as for Figure 6, except for weak expansion. 
Fig. 7. Same as for Figure 6, except for downstream sonic case. 

mass-loading front is supersonic, although mass loading does 
decelerate the incident flow. Each family of characteristics 
crosses the front, as illustrated in Figure 8. As discussed 
above, this implies that the system is nonconvex, and so S 
and (r0, P0) cannot be connected by a single wave front. In 
order to exclude discontinuities that move faster than the 
characteristics on both sides, it is necessary to use a com- 

pound wave to connect upstream and downstream states 
[Ole[nik, 1965]. To construct the compound wave, connect 
(r0, P0) first to the S = I front and then follow by an 
isentropic centered rarefaction wave to reach the down- 
stream state S. Such a compound wave is possible because 
the S = I front moves at the downstream sound speed. If we 
adopt this compound wave to connect the states, then the 
downstream state is determined completely by the upstream 
state. If weak compression discontinuities were not ex- 
cluded, then the solution of the initial value problem would 
not be unique. 

4. In the case of weak expansion, p0 >- P l > PH, and the 
flow is subsonic on either side of the mass-loading front. As 
discussed, mass loading accelerates a subsonic flow so u0 < 
Co, u• < c• and u• > u0. Consideration of the character- 
istics, illustrated in Figure 9, indicates that this is an inde- 
terminate case. The solution for this case can presumably be 
determined uniquely only by considering a nonconstant 
mass-loading term and investigating the shock structure 
problem. 

5. For S on the strong expansion branch, p l < PH, and 
the gas flow is subsonic ahead of the mass-loading front and 
supersonic behind. From Figure 10 it is evident that the front 
separates the C_ characteristics, but this separation does 
not satisfy the geometrical entropy condition even though S 

is consistent with the R-H conditions. Accordingly, we 
exclude strong mass-loading expansions. 

In conclusion, we have excluded weak mass-loading com- 
pressions and strong mass-loading expansions on the basis of 
purely geometrical entropy conditions. It is not at all clear 
how one might have arrived at this conclusion simply on the 
basis of thermodynamic entropy arguments (see Zank 
[ 1991] for further discussion on this point). Furthermore, 
we have established the existence of a compound wave 
consisting of an S = I shock followed by an isentropic 
centered rarefaction wave which enables us to connect a 
supersonic upstream state to a supersonic downstream state 
provided p• > p 1 >- pA. 

In closing this section, let us investigate the properties of 
mass-loading shocks as a function of the upstream Mach 
number. This has the added benefit of further clarifying the 
above analysis. The total energy relation (24) can be rewrit- 
ten as 

/Z2Uo 2 + (1 - /z2)Co 2 = (1 + &)(/z2u• + (1 - /x2)½•), (38) 
for parallel shocks. If we denote by c,2 the common value of 
both sides, then 

(1-/z:)(Uo 2 -Co 2 ) = Uo 2 -c,2; 

(1 + &)(1 - /z2)(u• - c•)= (1 + &)ul 2 - c, 2, (39) 
so that 

lu0[ > co lu0 > c,= 

u, > c, [u,I > c,/(1 + &)l/2 

t C_ 

•-o C_ 

Fig. 8. Same as for Figure 6, except for weak compression. Fig. 10. Same as for Figure 6, except for strong expansion. 
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Thus, because 5 • 0, c, no longer defines a critical sound 
speed as in the case of gas dynamics. By considering p•c, 2 
and poc, 2 together with the relation pouo 2 + Po - P•U• 2 + 
p•, we obtain 

Pl -Po 

1/3 • - 1/r 0' 

It follows then from (25) that 

UoU, & M•2(•/Mo 2 + 1) 
c* 2 = 1 + (40) l+& Mo2-M12 ' 

which is the generalization of the well-known Prandtl rela- 
tion 

HOH 1 = C, 2, 

for & • 0. An expression relating the upstream Mach number 
to the downstream Mach number can be obtained either 
from (39) and (40) or directly from the quadratic (34). 

- Mo)(M•[2•,M o - (•, - 1)]- [2 + (•, - 1)Mo•]• 

+ & (2 + (•/- 1)Mo2)M02(1 + 'ymf) 2 = 0. (41) 

Notice that the expression in the braces corresponds to the 
usual classical expression relating M02 and M• 2 for gas 
dynamics [e.g., Landau and Lifshitz, 1979, p. 331]. In 
deriving (41) we used the fact that the ratios of pressure and 
of density can be expressed in terms of the upstream and 
downstream Mach numbers as 

p• 1 + 3,M02 
Po 1 + TM• 2' (42) 

p• 1 + 1/•/M• 2 
--= (1 + &)2 
Po 1 + 1/YMo 2' 

(43) 

Equation (41) can be solved numerically for some param- 
eters of interest. In order to contrast the properties of gas 
dynamic shocks with those of mass-loading shocks, in Fig- 
ure 11 we present plots of the square of the downstream 
Mach number, pressure, and density as functions of the 
square of the upstream Mach number for the case of ordi- 
nary gas dynamics. As usual, M•2 is hyperbolic in Mo 2 , p •/p o 
is linear in M02, and P•/Po tends asymptotically to (•/+ 1)/(•/ 
- 1) = 4 (for •/ = 5/3) as M02 ---> oo. The modifications 
introduced by a nonzero • = 0.01 are illustrated in Figure 12, 
and those for • = 0.001 are illustrated in Figure 13. Branches 
CB and EF (B and E are the points at which M• 2 = 1) 
resemble the upper and lower branches of the M02 - M• 2 
hyperbola for the • = 0 case shown in Figure 1 l a. It is 
evident from Figure 12a that, as we know already from the 
Hugoniot function, for a given M02 there exist two possible 
downstream states (except at points B and E). Also, as 
discussed above, not all the downstream states are physi- 
cally realizable. On the basis of our analysis of the mass- 
loading Hugoniot, we can classify the Mo 2 - M• 2 mass- 
loading shock relation in a similar way. Points B and E 
correspond to sonic points I and II of the Hugoniot. Branch 
AB corresponds to accelerated subsonic-subsonic flows the 
existence of which we can neither prove nor disprove. 
Branch BC corresponds to strong expansion fronts, which 

(a) 

(b) 

(c) 

I I I 

4 6 8 

JO I I I 
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0.0 m m 
o.o 2 4 6 8 

2.5 

2 

.,,ø 1.5 
I 

0.5 

0.0 
0.0 

! I 

I I 

Fig. 11. Functions of the square of the incident Mach number 
for ordinary gas dynamics (• = 0, 0 = 0 ø, 3' = 5/3): (a) the square of 
the downstream flow Mach number, (b) the downstream pressure, 
and (c) the downstream density. 

have been shown to be inadmissible solutions of the Rank- 
ine-Hugoniot conditions. The strong compression branch is 
EF, and these represent unique, stable mass-loading shocks. 
The compound wave solutions corresponding to weak com- 
pressions lie on the locus DE. The corresponding behavior 
of the pressure and density ratios as a function of M02 is 
easily seen on Figures 12b and 12c. It is evident that the 
strong compression mass-loading shocks behave very like 
ordinary strong gas dynamic shocks. 

3.2. Oblique Shocks 

The results of section 3.1 are extended easily to oblique 
shocks for which Uyo • O. The main differences are a 
consequence of (24), since we now use u 2 2 2 = H x q- Hy, as 
well as (23). Nevertheless, obliquity does introduce an 
important change in the Hugoniot function, which now 
becomes 
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Fig. 12. Same as Figure 11, except mass loading is not neglected 
= 0.01, 0 = 0 ø, 7 = 5/3). See text for the interpretation of the 
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Fig. 13. Same as Figure 12 but with a reduced mass-loading rate 
(& = 0.001, 0 = 0 ø, 7 = 5/3). This parameter regime may be more 
appropriate to the inbound Halley bow shock. 

H(•, p)= g(•, p)- e(r o, Po) + 
P+Po 

(• - 

m2'rø• 2 1 + & uyø' (44) 
Equation (44) demonstrates that unlike the Hugoniot of 
ordinary gas dynamics, the mass-loading Hugoniot is not 
invariant with respect to tangential flows. While of interest 
here, its true significance is to be found in MHD with mass 
loading, and it is precisely this lack of invariance that 
induces the strong rotation of the magnetic field downstream 
of a mass-loading front such as a cometary bow shock. The 
lack of invariance is a consequence of the fact that the 
tangential velocity components in front of and behind the 
shock are unequal unless • = 0, i.e., 

1 

Uyz =1 + & Uyo. 

This indicates that the bow shock is subjected to a shearing 
stress as a consequence of mass-loading, something that sets 
it apart both from ordinary nonreactive gas dynamical 
shocks and combustion shocks. We conjecture that such a 
sheafing stress must lead eventually to the spontaneous 
destabilization of the shock front, presumably when the 
averaged mass-loading term • exceeds some critical value. It 
would be of interest to explore this question further and, in 
particular, to determine the relationship of an instability 
criterion to the oblique tangency condition (50) below. For 
an ideal gas, (44) reduces to 

2/x2H(}, p) = (• - /X2ro)p - (r 0 - /x2})po- &/x2m2ro? 

-- /.l, 2 m2To 2 tan 2 0, (45) 
l+& 

where 0 is the angle the incident flow makes with the shock 
normal, so Uy o = Uxo tan 0. The Hugoniot relation can 
therefore be expressed as 
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acoustic line 
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p/pelO' 
8' 

. 

i 
momentum line 

Fig. 14. Example of the mass-loading Hugoniot, together with 
graphical solutions of the R-H conditions, for oblique shocks (M02 = 
10, & = 0.01, 0 = 80 ø, T = 5/3). Compare this figure with Figure 
4a. 

p 1 -/x2•/r0 2,YMo2 ?/r0 P0 •/r 0 - /x 2 + 5/x ?/r 0 -/x 2 
5 tan2 0 

+/x27Mo 2 1 + 5 •/ro -/x2' (46) 
where Mo 2 = Ux2o/7poro is the square of the Mach number 
normal to the shock. The condition (30) which determines 
whether (to, Po) lies above or below the Hugoniot is relaxed 
somewhat, with the condition now given by 

1 2 1 
Mo2> • (47) 1 + 5 T- 1 1 + tan 2 0/(1 + 5) 2' 

The asymptotes of the Hugoniot remain unchanged. An 
example of the oblique Hugoniot, together with graphical 
solutions of the R-H conditions, is illustrated in Figure 14. 
Other than using 0 = 80 ø, all the remaining parameters are 
identical to those used in plotting Figure 4a. For the oblique 
Hugoniot a much larger branch is inadmissible (i.e., where 
M02 < 0), and the strong compression fronts experience a 
comparatively smaller compression than their parallel coun- 
terparts, whereas the weak compression fronts are more 
strongly compressed. 

As before, the R-H conditions can be combined as a 
quadratic equation in ? = ?/•0, 

(1 + 5)3 2 27 1 + • 
T+I 

1 + tan 2 0 
7+1 1+5 

2 1 

T+IMo 2 
=0, (48) 

with solutions 

y+ 1 (1 +5) 2 1 + TM 

T2 1 -t + • tan 2 0 . T-1Mo 2 1+5 

(49) 

The tangential condition for the momentum line and the 
Hugoniot is now slightly more stringent in that we require 

2 T (1 + 1/TM02) 2 
(1 +5)= 2 (50) 

T -1 2 
1 + 1/Mo 2+•tan 2 0 

T-1 1+5 

to hold. As for the case of parallel shocks, the points of 
intersection of the downstream sonic line, the normal mo- 
mentum line, and the Hugoniot all coincide at the point of 
tangency defined by (50). Thus the analysis presented for 
parallel mass-loading fronts goes through unchanged for the 
case of oblique mass-loading fronts. 

It is convenient to explore the properties of the R-H 
solutions as a function of M02 , as was done earlier. To obtain 
an equation relating M• 2 to M02, one follows essentially the 
same procedure as outlined above to obtain 

(M• 2 - Mo2){M•[2TMo 2 - (T - 1)] - [2 + (T - 1)Mo2]} 

+ 5(2 + (T- 1)Mo 2 sec2 0)Mo2( 1 + TM•2) 2=0. (51) 

Note that the "Prandtl relation" is yet more complicated 
than before and is given by 

"xO"xl Mo 2 -M• + Mi2('YMo 2 + l) 
1+5 

+ p, 2 tan 2 0 
Mo2(TM• 2 + 1) 

2 2 
Ml(yM o + 1) 

1 

Mo2(TM• + 1) M•2(TMo 2 + 1) 
1+5 

(52) 

The relations (42) and (43) hold without change. 
Numerical solutions of (51), (42), and (43) are presented in 

Figure 15 (for 0 = 30 ø) and 16 (for 0-- 80ø). The interpreta- 
tion of these figures is substantially the same as that for the 
parallel mass-loading front case, and the differences in 
properties are readily perceived. 

4. CONCLUSIONS 

Mass loading is ubiquitous, occurring throughout the solar 
system. It is of importance both at the large-scale (magne- 
to)hydrodynamic level as well as at the microphysical. With 
the in situ exploration of comets Halley and G-Z, as well as 
of Venus and Mars, we now have a unique opportunity to 
investigate the physics and properties of shocks subjected to 
mass loading. In this paper we have considered the simplest 
possible hydrodynamical model for both parallel and oblique 
shocks with a view to laying the foundations for future 
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Fig. 15. Functions of square of incident Mach number for 
oblique mass-loading shocks (& = 0.01, 0 = 30 ø, • = 5/3): (a) square 
of downstream flow Mach number, (b) downstream pressure, and 
(c) downstream density. 

extensions to MHD. To ascertain which of the possible 
downstream states represent a physically acceptable solu- 
tion to the boundary conditions, we found it necessary to 
abandon familiar thermodynamical arguments in favor of a 
geometrical entropy condition. The geometrical entropy 
condition is a consequence of requiring that a shock be 
determined uniquely from its initial data and that, for ordi- 
nary gas dynamics, both the thermodynamical and the 
geometrical entropy conditions coincide. It turns out that the 
entropy condition is surprisingly simple to use and admits a 
very nice geometrical interpretation. 

As usual, the properties of mass-loading gas dynamic 
shocks can all be understood in terms of the Hugoniot 
function. From the Hugoniot we have established that the 
gas dynamics of mass-loading flows resembles more closely 
that of gas dynamics with combustion than of nonreacting 
gas dynamics. Thus the Hugoniot has been shown to possess 
two distinguished points, which correspond to the Chapman- 
Jouguet points on the combustion Hugoniot. These distin- 
guished points (points I and II of Figure 5) separate super- 
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Fig. 16. The same as in Figure 14, except with 0 = 80 ø. 

sonic from subsonic downstream states. It is interesting that 
points I and II correspond to turning point solutions of an 
equation which has close similarities to one derived first by 
Biermann et al. [1967] to show that a shock must form 
eventually in a sufficiently strongly accreting flow. However, 
as we have discussed, both equations have quite different 
interpretations, BBS having considered effectively a shock 
structure problem, whereas we consider instead the effects 
of averaged, steady mass injection at the shock. 

What we have called the strong compression shock is 
fairly similar to an ordinary gas dynamic shock in that the 
flow velocity across the mass-loading front is decelerated 
from supersonic to subsonic velocities. Nevertheless, there 
are differences, one being that the upstream flow can never 
be sonic but instead must exceed some critical downstream 

Mach number Mcrit > 1, defined by the tangency condition 
for the Hugoniot. Furthermore, there is no gas dynamical 
analog of the weakly compressive mass-loading shock for 
which the incident supersonic flow velocity, although decel- 
erated, nevertheless remains supersonic downstream. We 
have shown that as a consequence of the geometrical en- 
tropy condition, a weakly compressive mass-loading front 
has a compound wave structure. The flow velocity profile of 
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such a shock is that of an initially uniform supersonic 
velocity with a sharp dip at which the flow velocity drops to 
Ux = c, followed by an increasing velocity which tends 
asymptotically from below to Ux = Ux• • c •, Ux• < Uxo. 
Qualitatively similar structures have been observed at the 
inbound Halley bow shock, with Coates et al. [ 1987b, p. 60] 
reporting that "the [shock] structure is complicated with a 
short-lived decrease preceding a more permanent decrease 
in speed." The same data are illustrated again by Coates et 
al. [1990, Figure 3] (between the labels S• and $2), and the 
shock profile is quite dramatic. The solar wind speed drops 
off from about 300 km s -• to less than 200 km s -• (their 
point A) before recovering to achieve a speed of-275 km 
s -•. The solar wind flow maintains this speed for a short 
distance (although greater than the thickness of the initial 
deceleration) before dropping off to almost the identical 
downstream speed of 200 km s -• (their point B) as before. 
Again, the fluid recovers, but this time to achieve a speed of 
only 230 km s -•. Indeed, continuous mass loading down- 
stream of a compound shock must eventually induce the still 
supersonic downstream flow to undergo a further shock 
transition. Whether such observed features can be explained 
in terms of successive compound mass-loading fronts needs 
to be resolved both numerically and by more detailed 
observational tests. For example, do the points labeled A 
and B by Coates et al. [1990] on Figure 3 correspond to 
downstream sonic points at which u = c, and are the 
subsequent recovery speeds in excess of the local sound 
speed? Unfortunately, the observations may be complicated 
somewhat by the presence of a magnetic field. Nevertheless, 
it may be of interest to recast the data in terms of the 
variables used in section 3 in order to use the results 

developed here to classify and clarify the observed shock 
structures. Finally, we have discussed the shock properties 
in terms of the incident Mach number, and this reveals, 
given the shock Mach numbers cited by Coates et al. [ 1990], 
that supersonic-supersonic transitions should not be dis- 
counted. 

The properties of the oblique incident flow case are readily 
understood and interpreted in much the same way as are 
parallel shocks. An important difference, however, is that 
mass loading subjects an oblique shock to shearing stresses. 
This certainly has important consequences for magnetohy- 
drodynamic shocks (as will be discussed elsewhere), and we 
have conjectured that such shearing stresses may lead, 
under some circumstances, to unstable shocks. This remains 
to be investigated. 

APPENDIX 

If & is regarded as a small parameter, then linearization of 
the oblique Rankine-Hugoniot conditions (21)-(24) yields 

P0 

• ll x 

lt x 0 

2 
P OU xO 

• ll x 

lt x 0 

Y 

llyO 

llxO•ll x d- llyO•lly d- •W-- --•(« 11• -I- WO) , 

where w = 3d(3• - 1)p/p and 

y- 1 po • •p ' 
It then follows that 

•U x 
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from which we see that 

3•+1 Mo • 
& 

2 1 -Mo •' 

Moe> 1 • 

Mo2 < 1 • •Sux > O. 
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