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Abstract ~

The Geroch/Stephani transformation is a solutionsgenerating trans-
formation, and may generate spiky solutions. The spikes,infsolutions
generated so far are either early-time permanent, spikes oritransient
spikes. We want to generate a solution with.a latestime permanent
spike. We achieve this by applying Stephani’s transformation with
the rotational Killing vector field of the locally rotationally symmet-
ric Jacobs solution. The late-time permamnent spike occurs along the
cylindrical axis. Using a mixed Killing/vector field#the generated solu-
tion also features a rich variety of transient structures. We introduce
a new technique to analyse these,structures! Our findings lead us
to discover a transient behaviour, which we call the overshoot transi-
tion. These discoveries compel us towreviserthe description of transient
spikes.

Keywords: Geroch’s. transformation, Stephani’s transformation, spike,
stiff fluid, cylindrical

1 Introduction

Spikes are small-scale/spatial structures that form and then either remain
there (permanent spikes)ior disappear (transient spikes). Spikes were dis-
covered incidentallysby Berger and Moncrief [1], whose original goal was to
understand/the nature of generic singularities. The well-known BKL conjec-
ture by Lifshitz, Khalatnikov and Belinskii [2, 3, 4] are heuristic arguments
that the approachto generic spacelike singularities is vacuum dominated, lo-
cal and oscillatory. The non-local nature of spikes brings the the local nature
of the conjecture into doubt. See [5] for a comprehensive introduction. Since
2012 the focus has shifted to the possible role of spikes in the formation of
large-scale structures as the Universe expands [6, 7, 8].

In‘aseries of four papers [9, 10, 11, 12], spiky solutions were generated us-
ing Geroch’s and Stephani’s transformations [13, 14, 15] in order to study the



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - CQG-107795.R1

dynamics of spikes. One of the goals is to undestand the role of spikes in the
formation of filamentary structures. The spikes in solutions generated so/far
are either early-time permanent spikes or transient spikes. In the conclusien
section of [12], the authors hoped to generate solutions with a late-time per-
manent spike, which is more suitable for formation of permanent structuzes.
This became the initial goal for the PhD thesis of the first auther [16]. The
goal was achieved by applying Stephani’s transformation with _the rotational
Killing vector field (KVF) of the locally rotationally symmetric (LRS)alacobs
solution. With a mixed KVF, the generated solution unexpectedly features
a rich variety of transient structures. A new technique' was.dntroduced to
analyse these structures, leading to the discovery of a tramsient,behaviour,
which we call the overshoot transition, and also leading to the resexamination
of the definition of transient spikes. This paper is an abridged, version of the
thesis.

2 The metric and the Iwasawa frame

Assume zero vorticity (zero shift). The spatial metric components are given

by the formula g;; = €*;€”;0,5, whete Romanyindices i, j = 1..3 are spatial
coordinate indices, and Greek indices @y = 1..3 are spatial orthonormal
frame indices. The Iwasawa frame [17]is a ¢hoice of orthonormal frame that
makes e (and equivalently’ e,“ymupper triangular, as follows. The frame
coefficients e®; simplify from 9 components to 6 components, represented by
b, b, b3, ny, ny and nsi

1
el ely lels e 0 0

2 I ny ny
e =1 €% €5 £ 0 e 0 0 1 ng
e}, €y £°; 0 0 e 0 0 1
€7b1 eibl’I’Ll e blng
= 0 et e ng, (1)
0 0 eV’
el &y esl 1 —ny ning — no e’ 00
e = [ e1” ea®es =10 1 —ng 0 e 0
613 623 633 0 0 1 O O €b3
e —etn, ebg(nlng — ng)
= 0 e’ —et’ng (2)
0 0 e’
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The frame derivative operators ey = N 10y, e, = €,'0; in the Iwasawa frame

are

1
€y — Nao (3)
e = eblﬁl (4)
ey = ' [—n10;, + s] (5)
€3 — €bd [(n1n3 — n2)81 - ngag + 83] (6)

In the Iwasawa frame, the metric components in terms of thesb’s and n’s

are given by

goo
g1
922
933

—2b! __—2b! _ =2t ]

€ , Ji2=2¢€ ny, gi13 =€ ng ( )
—2b2 —2b1 2 —2b* —2b2

e +e ¥ ni, gus=e . nng+e - ng (9)
_9p3 _9pl _9p2

e 47 ng—l—e 2b n§ (10)

2 4

If the metric is given, we can compute the b’s'and n’s as follows.

b = —% In g1y (11)
912

! g1 ( )
913

Ng = — 13

? g1 ( )

b* = =4 In(g22 — gr12m1) (14)

n3i= (923 N 912n2)62b2 (15)

br==1 1u(gss — gisne — e nd). (16)

3 Geroch’s and Stephani’s transformations

Consider a golution. g, of the vacuum Einstein’s field equations with a KVF
£, Geroch's transformation [13, 14] (see also [18, Section 10.3]) is an algo-
rithm for'generating new solutions, by exploiting the KVF &%, The algorithm
involves solving the following partial differential equations

Vaw - gabcdébvcgda (17)
1
v[aab] = §€abcdvcgda Saa/a =w, (18)
ViaBy = 2AValy + weapeaVE?, €90y = XN +w’ — 1 (19)
3
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for w, a, and B,, where A = £%¢,. Next, define X and Ny as
- -1
A=A [(cos 0 —wsind)® + \*sin’ 0| | (20)
Ne = A1, + 201, cos Osin 0 — B, sin? 6, (21)

for any constant 6. Then the new metric is given by

gab = (gab - A_lfagb) + S‘Uanb (22)

> >

This new metric is again a solution of the vacuum Einstein’s field equations
with the same KVF. 6 = 0 gives the trivial transformation gg = gas-

Notice from (21) that «, appears in the new metri¢only through 7,, and
if 6 is chosen to be /2 then «, does not appear at all. Weishall exploit this
simplification. In this case the new metric simplifies:to

_ A
Jab = Fgab =+ Fﬁaﬁb - gaﬁb - 6a£b7 (23)
where
F =X+’ y (24)
Stephani [15] generalised Geroch’s transformation to the case of comoving
stiff fluid if the KVF is spacelike (and tothe case of perfect fluid with equation

of state p = —p/3 if the KVF is timelike, which we do not study here). The
algorithm is the same as before;swith the new stiff fluid density given by

N (25)

Before applying Geroch’s,or Stephani’s transformation, we set up the
coordinates such that the KVF te be used has the form

Noang4=(0, 1, 0, 0), (26)

to adapt to the Iwasawa frame for simplicity.
In simpler-eases, if thesseed metric has the form

-N> 0 0 0

0 gu gz O
b = 27
Jab 0 gi2 g2 O (27)

0 0 0 gs3

i.e. if na= 0 = ng, then the generated metric has the form

—FN?2 0 0 0
~ 0 A g12 — 52:\ 0
b = ; ~ 28
Jab 0 Gia Fgeo— 291262+ 0830 0 (28)
0 0 0 Fggg
4
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Expressing the metric gy, in (28) in b’s and n’s gives

N =NVF (29)
- 1

b' =b' + S F (30)
- 1

b =b* — S F (31)
- 1

b3:b3—§1nF (32)
’ﬁl = TL1F — ﬁz ~ (33)
fig =0 (34)
fiz = 0. (35)

4 LRS Jacobs seed solution with rotational
KVF

Spacelike KVFs can be classified into two kinds — translational and rotational.
The four papers [9, 10, 11, 12] uged a linear combination of translational
KVFs. In this paper, we will use a linear combination of KVF's that includes
a rotational KVF. Stephani’s transformation requires the matter to be a stiff
fluid, so we start by looking atlecally rotationally symmetric (LRS) solutions
with a stiff fluid. The simplest such solution is the flat FLRW solution, but
it does not generate as much structure as the next simplest solution, the LRS
Jacobs (Bianchi type I) selution, which we shall use as the seed solution.
The Jacobs solution [19][205 page 189] is given by the line element

ds? = —\dt2 + 21 da?® + t?P2dy? 4 P2 d 2P (36)
where the coordinates are (¢,x,y, z), and
P = %(1 + 10+ V3Z_y), (37)
p2 = %(1 + 40— V3% ), (38)
b= 5(1-250) (39)

Thenon“zero Hubble-normalised shear components [20, Sections 1.1.3, 6.1.1]

are Y., o and X_, and they are constant, with Eio +32, < 1. The comoving

stiff fluid has pressure p and density p given by

-2, 32,
3t?

p=p= (40)
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To impose the LRS condition, it is simplest to set ¥_y = 0, so the pa=
rameter Xy takes values from —1 to 1. X,y = —1 gives the LRS Kas-
ner solution [20, page 132] with (py,pe2,p3) = (0,0,1) (also known aS the
Taub form of flat spacetime); ¥,o = 1 gives the LRS Kasner solutien with
(p1,p2,13) = (3,2, —3); 1o = 0 gives the flat FLRW solution withsstiff fluid.

The LRS Jacobs solution admits four KVFs, namely

aﬂ?v ay7 827 _yaiﬂ + Ia@n (41)

where the fourth one is rotational. We intend to apply Stephar{’s transfor-
mation with the general linear combination of the KVF's:

10, + 20y + 30, + c4(—y0, + x0y) = (c1 — 4y) 0y + (c2 Fea2)8, + 30, (42)

Observe that ¢; and ¢y can be eliminated without loss of generality by a
translation in x and y directions. We set ¢4 # 1 and ¢35 = k, so the KVF
reads

—y0, + 20, +k0y (43)

This KVF forms an Abelian orthogonally transitix’e (OT) G4 group with
exactly one other KVF (namely a linear combination of 0, and —y0, + z0,).
By Geroch’s theorem [14, Appendix Bljithe generated metric will admit an
Abelian OT G5 group.

There is a rotational symmetrysabout the z-axis, so we adopt cylindrical
coordinates (7,1, z), but we wantito arrange the coordinates in the following
order: (t,1,z,r), due to _the way we,adapt the orthonormal frame to the
coordinates. In these coordinates, the KVF reads

8, + k.. (44)

N
We want to simplify the KVF to just d, for the application of Stephani’s
transformation, so wednake a further change of coordinates, by introducing

7 =z— k. (45)

Then, in ghe coordinates (¢,v, Z,r), the KVF is simply 0y, but the line
element_now reads

ds? = dt? 4= (k2203 + 2?7 )dep? + 2kt*P3dypd Z + 7322 + t%Prdr?. (46)

This shallibe the seed solution to which we apply Stephani’s transformation.
[t has the simple form (27).

The'state space orbits of a solution, projected onto the (X, ,3_) plane,
can provide some insight into the dynamics of the solution. Recall that

6
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Figure 1: State space orbits of the rotated LRS Jacobsselution projected on
the (X4,%_) plane for various values of Y4p; assuming & # 0. The r = 0
orbits are fixed points. As t increases, r/## 0/ orbitgymove away from these
fixed points for ¥,y > 0, and towards these fixed points for ¥, < 0.

(34,%_) are defined in terms of theidiagenal components of the Hubble-
normalised expansion shear as
1 211 — oo

E—i— — __2337 2 =

5 23 (47)

which gives

1 N 2-%
Zh = —5f, xzﬁ(l—T*“

5 ) , l=tIn)\),.  (48)

The solution is undefined at » = 0 if £ = 0 (coordinate singularity). It is
straightforwardito analyse [. If £k = 0 then [ = 2p;. If k # 0, then [ = 2p3 at
r = 0. For_r # 0 write

I Z=ps( =3 +pi(1+7), 7=tanh(X,o(Int)+In|k| —1Inr). (49)

For. 5.9 > 0,/ goes from 2ps to 2p; as t goes from 0 (early times) to oo
(late times). For ¥,o < 0, [ goes from 2p; to 2p3. For ¥, =0, [ = % So
[ has a simple sigmoid transitional dynamics. It has a discontinuous limit
along = 0 (at late times for ¥, > 0, at early times for ¥,9 < 0). This
creates a permanent false spike along the cylindrical axis » = 0 at late times
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for X9 > 0, and at early times for X3 < 0. The false spike is entirely.a
coordinate effect, due to the rotating Iwasawa frame. Figure 1 shows that
state space orbits projected on the (3, 3_) plane for various values of ¥4,
assuming k # 0. The r = 0 orbits are fixed points. As t increasesy, r # 0
orbits move away from these fixed points for ¥,9 > 0, and towards these
fixed points for ¥y < 0.

5 The generated cylindrical solution

~
We now carry out Stephani’s transformation with the general KVF 9,,. We
obtain

2k
= k2P 2 = U L S ot g, (50)
1+ps

4w + 2k(1 — p3)r?
1+ p3

_ 2 4
B2 = 2prwor”+p1Xiokr +< (L +ps)?
(51)
The generated metric is then given through 0’s and s by the formulas (29)—
(35), dropping tildes for brevity.

N=F'" (52)
1. A
bl=——Ins
510 % (53)
1 Fr22eit2ps
b =—Snp—"F— 4
1
b = — In(Ft*) (55)
FLt2ps
\TLl = \ — ﬁg (56)
[ts -7 areaselement
A= Ttp1+p3 (59)

is the same as,the seed solution’s, and is always expanding. Its volume
element

V =rtVF (60)

ig different from the seed solution’s and is not always expanding. This
means the Hubble scalar H can become negative for some parameter val-
ues, and Hubble-normalised variables would blow up. In this case we use
p-normalisation, which is based on the ever-expanding area element [21].

8

> t1+p3—|—k3t4p3+it2+2p3.

Page 8 of 25
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1
2
3
4
5
6
7 L] L] L] L] L]
8 6 The initial goal — late-time permanent spikes
9
1(1) For the special case k = 0 (that is, the KVF is purely rotational), (X,4%. )
12 reduces to
13 - Z-i—()_’_f _\/§(2+0_f)

Sy=—— 5 L=, (61)
14 2+ f 2+ f
12 where Ly g |

P17t P
17 =t(nF)y = —F———, = (14 X49). 62
8 f ( n )t rAtan W(Q) D1 3( +0> ( )
19 Along r = 0, we have f =0 and e
20
21
1 V3
22 (Z+, E,) - <—§E+0, 7E+0) . (63)
23
24
25 Along r # 0, provided that p; # 0 < X9 > —1, we have
26
27 0 ast=nl
28 f— N (64)
29 Ap;  as't oo,
30
31 so there is a late-time permanent spike along the cylindrical axis » = 0, for
32 the case k =0, —1 < X5 < 1, wy # 0. Figure 2 shows the state space orbits
33 projected on the (X, %_) plane for various values of ¥ for k = 0, wy # 0.
gg The r = 0 orbits are fixed peints, while the r # 0 orbits move away from
36 these fixed points as ¢ increases, mimicking the orbits of Taub (Bianchi type
37 IT) solutions [20, page 136].
38 Following [22], we obtain the coordinate and physical radii of the spike:
39
. ! 1,

2(1) coordln{te radius = |wpl|2t pll, (65)
jé physical radius = |w0|% / VvV 1+ u*du. (66)
44 0
45 i.e. the physical radius of the spike is time-independent.
2? This is the firstigenerated solution with a late-time permanent spike, and
48 the first generated solution with a spike along a line.! The spike produces
49 an overdensity along the axis at late times, which is conducive to large scale
50 structure formation. Thus the generated solution can serve as a prototypical
51 model for formation of galactic filaments along web-like strings.
gg What is'special about the rotational KVF? Its length vanishes along the
c4 rotation axis. As the universe expands, the length squared of the KVF A\
33 1Such features can also be achieved through silent LTB and Szekeres models [8] without
g ? using solution-generating transformations.
58
59 9
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Figure 2: State space orbits projected on the (X3, ) plane for various
values of ¥, for k = 0, wy # 0. A circle represents the orbit along r = 0,
which is a fixed point. r # 0 orbits move away, from these fixed points as t
increases, mimicking the orbits of Taub solutions. y

typically increases and dominates the magnitude of its vorticity w, as seen
in [9, 10, 11, 12]. For a rotational KV, thewrotation axis is the exceptional
points where this does not happen.. This creates a discontinuous limit for f
at late times — a late-time permanent spike.

7 A new techmique to analyse the transient
dynamics

While the k = 0 case (rotational KVF) has simple dynamics, the k # 0 case
(mixed KVF)shas rich transient dynamics which requires the introduction of
a new technique to.analyse them. We have

L2+ S s \/g(l—f—%(Q—Z+0))
2+ f 7 2+ f ’

where ff = #(In F);, | = t(In \);. If f becomes less than —2, then it is more
appropriate touse Benormalised® (X, Y ), which are
S+ Vai-f) 1

, U= — —=. 68
2—X40 2—Y4 V3 (®8)

2 Analogous to Hubble-normalisation, S-normalisation is based on the area element .A.
B=35N"10,InA, and is related to H through 3 = H + o, [21].

2+:

(67)

E+:

10
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Figure 3: Power of ¢ of the terms in (69) against Y.

[ is a coordinate effect, so we focus on f. f consists ofsterms involving A
and terms involving w. A contains two different powersterms, t?”* and 23,
while w contains t'77% and a time-independent term. We group them into

four terms on the basis of the power of ¢: .
2,2 2,2 2k 44 2
lertpl, ngktps, T3:1+ t psj T4:k2+07“ + wp. (69)
P3

Figure 3 plots the power of ¢ of each term in (69) against the parameter
Yy0. In general, the four powers are,distinct, except for 3 special values
of ¥,g. For ¥,y = —1, there arextwo distinct powers; for ¥,y = 0, three
distinct powers; and for X, = %, two distinct powers. The term with the
largest power of ¢ dominatesiat late times; the term with smallest power of
t dominates at early times; and the terms with intermediate power of ¢ may
or may not dominate for\a finite time interval, depending on how big their
coefficient is.

Expressed in terms‘of T3, 15, T3, Ty,

(Ty + T2)% + (T3 + T4)? '

Observe that

4pq when T} dominates

P 4dps when T, dominates (71)
2(1+ps) when T3 dominates
0 when Ty dominates.

Thatis; f is approximately twice the value of the power of the dominant term.
Furthermore the powers depend only on the parameter >, (. Its independence

11
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of coordinates gives the graph of f a cascading appearance. An equilibrivum
state corresponds to a dominant term. Therefore, there are up to 4 distinct
equilibrium states for general ¥,¢; 3 for ¥,9 = 0 and 2 for ¥, = —1 and
Yijo = % The value of f at successive equilibrium states is strictly ingreasing
in time. Among the four values, 4p3 is negative for % < Yo </, with a
minimum value of —% at X9 = 1, which is still greater than4=2, so the
Hubble scalar H is positive at each equilibrium state. But wewill see. later
that f can become less than —2 during so-called overshoot transitions.

We define the transition time between two equilibrium states.or dominant
terms to be the time when both terms are equal in magnitude.«For example,

solving T? = T3 for t yields the transition time

2\ T

Comparing the transition times will determine how many transitions an ob-
server with fixed r undergoes. The coefficients of 77 and T, have spatial
dependence. They can even vanish for certain worldline (r = 0 for 7, and

r=,/ k_z“fo for Ty, provided that k;(j-o < 0),/whigh create spikes along these

worldlines. The spikes are called ‘tramsient if the term dominates for an
intermediate, finite time interval. Some tramsition times have spatially de-
pendence as a consequence of thesspatially dependent coefficient. This means
there are inhomogeneities in tramsition times except to3.

The transition time,between two,dominant terms can be regarded as
roughly the boundary between the two corresponding equilibrium states.
We say “roughly” because theéstransition is a smooth, continuous process,
so there is no sharp boundary. If a transition time has spatial dependence, it
also gives the spatialdocation.of the boundary at a fixed time. The spacetime
is partitioned into regions offequlibrium states, separated by transition times.
When viewedsatea fixed time, we can regard space as being partitioned into
cells of equilibrium states, separated by walls (around which spatial gradi-
ent is large)d Ifstwo walls are near each other, we see a narrow cell. The
neighbourhood of the narrow cell shall be called a spike if certain additional
conditions.are met.. We will discuss these conditions in Section 9.

We'now give a. number of examples to show the various features.

741 Example 1

Forithe case —1 < ¥,y < 0, Figure 3 gives the ordering T}, T}, Ts, T3, in
increasing power of t. We have up to 4 distinct equilibrium states, and along

12
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general worldlines there are 4 possible sequences of dominant equilibrium
states, which we shall refer to as scenarios:

1. T, — 1T, — Ty, — Tj
2. Ty — Ty, — 13

3. Ty — 17 — 1T

4. Ty — T;.

There are two special worldlines where a term vanishes. Thefirst one is
r = 0, where T} vanishes. The possible scenarios along, this'worldline are:

1. T, —)TQ —)Tg
2. Ty —>T3,

which are qualitatively the same as scenariés 2 and 4 above. Because of
this, » = 0 is not really special. This suggests.that transient spikes do not
occur along a special worldline, but rathér requirésa’scenario in which some
intermediate term is always sub-dominant. [The second special worldline is

o
k¥ o

possible scenarios along this worldline are:

r =

where T} vanishes, giving an early-time permanent spike. The

1. T1 —)TQ —)Tg
2. 11 —)Tg.

The two special worldlinés coingide if wy = 0. In this case the only possible
scenarios along this worldline is

N
TQ — Tg.

We now irtreduce auseful diagram. From (69), we see that the logarithm
of the square ‘'of ‘each term is a linear function of Int. Figure 4 shows a
qualitative plot efithe log of each term squared against Int for the scenario

T4—>T1—>T2—)T3.

The plot is useful forydetermining the order of the transition times. It is clear
frommthe diagram that the transition times
1

RS 0r2 + wol | 1 K\ =5 k12 — B40)\ 71
tar = 2 ; tiz = ) ,  log =
T r 3
(73)

13
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InT,2

2
InT2

2
InT1
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InT4/t/ T 7 " —Int
41 12 23

~

Figure 4: Qualitative plot of the log of each term squated against In ¢ for the
scenario Ty — 17 — Ty, — T5.

must satisfy the condition
t41 < tlg < t23 (74)

in this scenario. The condition then detefmines the‘r intervals (the world-
lines) where the scenario occurs. ty < ti5 implies

rP3

2
k;pl >
S 01 + ol (' | ) (75)

which gives one or more intervals. of 7. #19 < to3 gives an upper bound on r:

S0

o] (ﬁ) (76)

So the condition (74)"restricts(r to one or more intervals. As a concrete
example, take the parameter values

E+O — —05, k= 10, Wo = 5. (77)
(75) can befsolvedmumerically to give the intervals
0.9794 < r < 1.0226 and 111.7900 < r. (78)

Note that » = 1 is the second special worldline, so it must be excluded from
this scenarior (76) gives r < 240.5626. Together, the scenario occurs for the
intervals

09794 <r <1, 1<r<1.0226 and 111.7900 < r < 240.5626. (79)

14
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Int - 0.99999 r

Figure 5: f against Int and r, showing the intervalsiwhere the scenario
Ty — 17 — T5 — T3 occurs. The interval 0.99999 < r <.1.00001 shows
four distinct states along r # 1. The interval 100 << 250 shows only two
visible distinct states because the transition times are tod close together.

We plot f against Int and r in Figure 54showing, the intervals where the
scenario occurs. The interval 0.99999 < r & 1.00001 shows four distinct
states along r # 1. Along the cylindrical shell /= 1, there is a permanent
spike at early times. The interval 100, < r <250 shows only two visible
distinct states because the transition times are too close together. So if
transition times are too closestogether, we see fewer visible distinct state
than the actual number of states, predieted by the scenario.

What happens in other intervals of 7 From (78), we know that t4
becomes greater than t15 for values of r just beyond the boundaries. From
the diagram in Figure 4, #his happens if the graph of In T? becomes too low,
as shown in Figure 6. Now, the diagram in Figure 6 shows the scenario

ol T, T, (80)

with transition times

1 1
kX or? + wol | 3 E(2-% Py
t42 = (| +0k2 0’) , t23 — (| ’( 3 +0)) . (81)

They must satisfy the condition
t1o < tyo < log. (82)

The eondition ¢, < t4o is equivalent to t15 < t41, so it gives (75) with the
opposite inequality direction:

klP1\ =0
kX or? + wp| > <| | ) o (83)

rP3

15



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - CQG-107795.R1

2
InT3

2
InT2

2
InT1

t
nT,2 12 Sint
t
%/ 23

Figure 6: Qualitative plot of the log of each term squated against In ¢ for the
scenario Ty — Ty — T53.

~

t42 < t23 1mphes

P3
1 (22— P1
|k:2+0r2 + wo| < |k|P (TJFO) , (84)

which gives rise to one interval of 4. Together, the condition restricts r to
one or more intervals. (83) gives the intervals

r < 0.9794 and 1.0226 < #< 111.7900, (85)

while (84) gives the interval r <:810.5666. Together, the scenario occurs for
the intervals

0 <r <0:9794 and 1.0226 < r < 111.7900. (86)

We plot f against Int and r on these intervals showing the scenario T, —
T, — Ty in Figure'7." Fhesinterval 0 < r < 0.9794 shows three distinct
states. The interval 1.4 r{< 120 shows three 3 distinct states for small r
which fade awaysto two visible states as the transition times become closer
together as r increases.

To complete the example, we now look at what happens beyond r =
240.5626, where t15 becomes larger than t53. From the diagram in Figure 4,
this happensiif the graph of InT? becomes too low, as shown in Figure 8.
Now, the diagramyin Figure 8 shows the scenario

T, — T — Tg, (87)

with transition times

k¥ 407 + wol W r2(2 — ¥40) s
tyy = —M—————— tz = ———= . 88

16
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10000

~

Figure 9: f against Int and r, showing the scenario Ty — T{ — T3 for
r > 240.5626.

The condition t4; < t13 implies

1+p 2 —_ E 11371
|k’2+07”2 +CUO| <r p33 <3|—]{5|+0> ’ ) (91)

which restricts r to one or more intervals. “(90) gives the interval r >
240.5626, while (91) gives the intervals

0.9514 < < 1:0605.and r > 86.5794. (92)

Together, the scenario é¢eurs for r >240.5626. We plot f against In¢ and r
showing 3 distinct states with,a lower bound on r in Figure 9.

This completes the [scenariosnin this example. We summarise them in
another useful diagram, where we plot the transition times of each scenario,
and label the dominant term in each cell. See Figure 10. Are there transient
spikes? Not at first, sight. - Equation (86) gives the two r intervals where
the worldlines undergothe scenario Ty, — T — T3. The first one could
be called a transient spike, even though it looks wide in comparison to the
narrow permanentispike around r = 1. The second one however is too wide
to be considered a spike. Perhaps we should shift our focus from spikes to
cells of wariousilength scales. Very narrow cells are obvious candidates for
spikes; but/thesvisual distinction fades for wider cells.

Plotting the state space orbits reveals that the solution is future asymp-
totic to a_state with the following values:

17 173 27 15
" 32’ 32 7“7 256’ F 64’ (93)

18
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L L L
0.9794 1 1.0226 1 111.79 240.5626
~

Figure 10: Plot of the cells and transition times, showing the different sce-
narios along each fixed r. Each cell is labelled with®he index of the dominant
term. Dashed line indicates the transition time#ygnfor €.

a presently unidentified non-vacuum stateswith megative spatial curvature
parameter ). See Figure 11. Figure 10 shows that#he transition time of [,
which is t15, happens to be close to a transition time of f in this example, so
the state space orbits in Figure 11 do not have ardistinctive vertical segments
like in Figure 1.

8 Example 2

The second example showeases a transient spike and an overshoot transition.
For ¥,y = 0, we have

3k
Tl = T2t§7\T2 - k2t%a T3 = 775%’ T4 = Wy-

There are only three distingt powers of ¢, with 7 dominating at early times,
T3 dominating at,late times, and 77 and 75 possibly at intermediate times.
The first scenario is the'3-state sequence

T, — T & T — T3 (94)

with transition times

2 3 A(r* 1 kY 3
w "+
la(1&2) = (ﬁ) , o tage)s = (T) ) (95)

which are required to satisfy the condition

ta&2) < t(1&2)3- (96)
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Figure 11: State space oerbitstalong representative worldlines.
The condition gives a lower,.bound on r

N> <;|kw0| _ k4) | (97)

If the lower bound ‘is.positive, then for r less than this we have the second
scenario, the 2-state sequence

T, —> T3 (98)
with transition.time ,
2&)0 4

tia = | —2 99

o= (99)

For example, given k = 0.5 and wy = +2, for » > 1.0950 we have the scenario
(94) and for r < 1.0950 we have the scenario (98). We plot f against Int and
r, showing both scenarios in Figure 12. The T, — T3 transition is sigmoid
for wg = 2, but has overshoots for wy = —2.

20
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W =2 w,=-2

Figure 12: f against Int and r for Example 2, showingyscénario (94) for
r > 1.0950 and scenario (98) for r < 1.0950. The T, — T4 transition is
sigmoid for wy = 2, but has overshoots for wy ==2.

We noted earlier that f has a cascading.appearance. Despite this, f can
fluctuate wildly with overshoots. Under awhat eondition does this happen?
If we examine f from (70):

2(Ty + To)(2p1Th + 2p3Ts) + 2(T5 + Tu) (1 + p3) T
(Ty + T2)2+ (Tt Ty)? 7

f= (100)
we see that the magnitude of" f,becomes large if the denominator becomes
small due to cancellation. Among Ty3.15, T, Ty, only Ty can become negative,
so cancellation is only pessible if T, is‘negative. Cancellation happens when

w=15+1T, =~ 0. (101)
Its effect is most preminentiwhien cancellation occurs during the
Ty — 13 (102)

transition in_a.scenario. Heuristically, when T3 4+ Ty = €, where |e| is small,
and supposé 1) and T% are o(e) at that instant, then (100) implies

Ts. (103)
Theny/ Becomeés negative in the first stage of the transition (when e < 0), then
positive in the second stage (when ¢ > 0). This produces two overshoots,
whose amplitude can be large if 77 and 75 are much smaller than T3 and
T, when this happens. We therefore call such a transition an overshoot
transition.
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In Example 2, both wy = £2 cases have a transient spike for the space-
time region r < 2, —2 < Int < 3. The transient spike transition occuring
around Int ~ 0.7 is sigmoid in the case wy = 2, and is an overshoot tran-
sition in the case wy = —2. This example illustrates that a transient spike
and an overshoot transition are two different phenomena, and an overshoot
transition can occur inside a transient spike.

9 Example 3

~
The third example shows a narrow cell near the local extremaum of the tran-
sition time. Take

Yio=-1, k=10, wy=10.1. (104)
The only scenario for the case X,y = —1 is
T1 & T4 — T2 & T3. (105)

Solving the equation
TP+ TisT +T5

for t yields the transition time

ey’ o

t(1&4)(2&3) = ( k2<k2 + 1)

which has a global minimum at » = 1 for our example. We plot f against
Int and r in Figure 13] showing the cell becoming narrow near the global
minimum of the transitienstime. Does this count as a transient spike? No.
The wordlines in this example all undergo the same scenario. In the orig-
inal context where  transient spikes were first named, the worldlines in a
small neighbourhood undergo a different scenario than what worldlines fur-
ther away undergo. Adding this criterion rules out the feature in this example
as a transient spike:

The examples have led us to re-examine the definition for transient spikes.
Through Example'1, we realise that unlike permanent spikes, transient spikes
do not occtir along aspecial worldline, but only require a scenario where some
intermediate term is always sub-dominant. Such a scenario may occur on
spatial intervals or cells with various length scales, and only the very narrow
ones are yisually distintive enough to be called a spike. Transient spikes are
therefore visually less distinctive than permanent spikes. Through Example
2, we discover a new phenomenon, an overshoot transition, which should not

22
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~

Figure 13: f against In¢ and r for Example 3. The cellis narrow near the
global minimum of the transition time, but is not a transient, spike.

be confused with transient spike. Through Example 3, we rule out certain
narrow cells as transient spike, because the worldlines all undergo the same
scenario.

For more examples, see [16]. [16] shows that a late-time permanent spike
forms along the cylindrical axis infthe case % </>.9 <1, k# 0. In other
words, in order to generate a solution with a late-time permanent spike, it is
not necessary for the KVF to be purely rotational.

10 Conclusion

To summarise, we have feund, the first non-silent solution with a late-time
permanent spike; found the first spike along a line; introduced a new tech-
nique to analyse a key: fu&ction, f: revised the description of transient spikes;
discovered and desgribed overshoot transitions. Late-time permanent spikes
are more suitable than transient spikes and early-time permanent spikes in
modelling structure formation. Spikes along a line can be used to model
formation of galactie filaments along web-like strings. The new technique to
analyse f veveals the cell-like structure of inhomogeneous spacetimes, and
the possible transition dynamics (regular sigmoid transition, overshoot tran-
sition) between cells.

We conclude by,commenting on future research. Firstly, the family of
exact. solutions we found make up only a set of measure zero in the class
of cylindrically symmetric solutions. How does a typical cylindirically sym-
metric solution evolve? To answer this question, it is necessary to conduct
a numerical study of the class of cylindrically symmetric solutions, like the
numerical study done for the class of non-OT G5 vacuum solutions [23]. Sec-
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ondly, we have used the rotational KVF of the LRS Jacobs solution. Exact
solutions that admit a rotational KVF include the LRS Taub solution, the
NUT (LRS Bianchi type VIII) solution, and the Taub-NUT (LRS Bianchi
type IX) solution [20, page 198]. It would be interesting to see what spiky
solutions are generated from these solutions. Thirdly, our exact solutionsiare
OT G5 solutions. In principle, non-OT G5 solutions and G; selutions can
be generated from a rotational KVF. Are there simple enough seed solutions
that generate spiky solutions with such isometries? Lastly, we are working on
applying the new technique to the exact vacuum non-OT G5 spike solution
from [9] and the stiff spike solution from [10], to help improve.tlie numerical
simulation and matching in an upcoming paper that is amextension of [24]

and [5].
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