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Abstract: Zinc oxide (ZnO) nanoparticles have gained widespread interest due to their unique
properties, making them suitable for a range of applications. Several methods for their production
are available, and of these, controlled synthesis techniques are particularly favourable. Large-scale
culturing of Chlorella vulgaris produces secretory carbohydrates as a waste product, which have been
shown to play an important role in directing the particle size and morphology of nanoparticles. In this
investigation, ZnO nanorods were produced through a controlled synthesis approach using secretory
carbohydrates from C. vulgaris, which presents a cost-effective and sustainable alternative to the
existing techniques. Fourier transform infrared (FTIR) spectroscopy, X-ray powder diffraction (XRD)
analysis, transmission electron microscopy (TEM), and UV-Vis spectroscopy were used to characterise
the nanorods. The prepared nanorods exhibited a broad range of UV absorption, which suggests that
the particles are a promising broadband sun blocker and are likely to be effective for the fabrication
of sunscreens with protection against both UVB (290–320 nm) and UVA (320–400 nm) radiations.
The antimicrobial activity of the prepared nanorods against Gram-positive and Gram-negative
bacteria was also assessed. The nanostructures had a crystalline structure and rod-like appearance,
with an average length and width of 150 nm and 21 nm, respectively. The nanorods also demonstrated
notable antibacterial activity, and 250 µg/mL was determined to be the most effective concentration.
The antibacterial properties of the ZnO nanorods suggest its suitability for a range of antimicrobial
uses, such as in the food industry and for various biomedical applications.

Keywords: controlled synthesis; zinc oxide nanorods; secretory compounds; Chlorella vulgaris;
broadband UV blocker; antimicrobial activity

1. Introduction

Nanoparticles have widespread applications in various fields such as science, technology,
and medicine, due to their unique physicochemical and biological properties. Zinc oxide (ZnO)
nanoparticles, in particular, have gained considerable interest due to their generally recognised
as safe (GRAS) status, large bandwidth, high exciton binding energy, and novel surface chemical
properties [1–4]. These features make them suitable for a vast range of industrial and other applications,
such as in the field of electronics, optics, and biomedicine, as well as in the food, cosmetic, and chemical
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industries [1–4]. The nanoscale size of ZnO particles provides a large surface-area-to-volume ratio
and confers unique chemical, biological, mechanical, electrical, structural, morphological, and optical
properties that are not observed in the bulk material, and these play a fundamental role in their
suitability for an assortment of novel applications [3].

As a result of the high demand for ZnO nanoparticles, several methods have been developed
for their production, and variation in the prominent chemical and physical parameters such as
the pH, solvent type, precursors, and temperature enables the production of nanoparticles with
different morphologies and properties that can be tailored to specific applications [3]. The shape, size,
and morphology of ZnO nanostructures are largely attributable to the method of production and the
presence of controlling agents that are used during the synthesis procedure. To date, ZnO nanoparticles
have been successfully fabricated in a vast range of shapes and sizes such as microstars [5], microrods [6],
micro-octahedrons [7], microflowers [8], nanowires [9], nanorods [2,10–14], nanosheets [15,16],
nanobelts [17,18], nanorings, nanosprings, nanocombs, nanosaws, and nanopropellers [15]. Different
methods have been frequently used for the synthesis of such nanoparticles, and these include
the sol–gel technique [11,19], microemulsion synthesis [20], mechanochemical processing [21],
sonochemical synthesis, microwave-assisted synthesis [14,22,23], vapour transport process [24],
spray pyrolysis, spray drying [9], supercritical water processing [25], thermal decomposition of
organic precursors [26,27], radio frequency (RF) plasma synthesis [28], direct and homogenous
precipitation [7,29], self-assembling [30], hydrothermal processing [8,31], and precipitation [5,32].

Precipitation synthesis is one of the facile approaches in this regard that is at a new stage
of development, where it is a common requirement to control the properties of the obtained
nanostructures. A diverse range of compounds have been implemented to control the synthesis
reactions. These compounds drive the crystal growth pattern and enable the production of ZnO
nanostructures with unique shapes. The suitability of surface-active agents [33], polymers [34],
and carbohydrates [35] to control the ZnO synthesis reaction has been widely investigated. It has been
shown that, by employing increasing concentrations of polyethylene glycol (PEG), the transformation
into rod-shaped structures can be achieved [2,34]. Controlling agents can also be obtained from
microbial sources. Microorganisms have been vastly employed for the synthesis of nanoparticles,
the majority of which are bacteria and fungi; however, the use of such microorganisms has several
drawbacks [1]. The primary disadvantages are the requirement for careful monitoring to avoid
contamination, the high cost of the growth media, the potential for the microorganisms to have
an adverse effect on human health, and the need to screen suitable microbes, which tends to be a
time-consuming process [1,36]. Consequently, the use of algae for the synthesis of nanoparticles is a
favourable alternative in the microbial realm, as it offers several advantages and is a more sustainable
option [36]. Algae have simple energy and nutrient requirements, because they use sunlight as an
energy source, carbon dioxide as a carbon source, and ammonium salts as a nitrogen source; therefore,
they present a highly economic alternative for large-scale processes [36].

To date, algae have been employed for the synthesis of silver and gold nanoparticles, but their
potential for the production of ZnO nanoparticles has not yet been investigated [1]. Among microalgae,
C. vulgaris is one of the most favourable species for the production of ZnO nanoparticles. Recently,
the large-scale culturing of C. vulgaris for the production of biomass has gained considerable interest [36].
This process produces large quantities of culture supernatant as a waste stream, which results in
environmental pollution [36]. Carbohydrates are the primary secretory bioactive compound present in
the culture supernatant that can be employed in the synthesis of ZnO nanoparticles [37]. These secretory
carbohydrates play a key role in controlling the particle size and morphology during the synthesis
process [1,37]. This is an important advantage, as several studies have noted that particle agglomeration
and the production of particles with a non-uniform size and shape tend to be some of the most prominent
issues associated with the currently available synthesis techniques [37]. Other compounds such as
polyethylene glycol (PEG) have also been used for the shape-controlled synthesis of ZnO nanoparticles,
and it has been observed that varying the concentration of PEG can modify the morphology and
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size of the resulting particles [2,10]. However, the use of natural secretory carbohydrates from C.
vulgaris for the shape-controlled synthesis of ZnO nanoparticles is likely to be more beneficial, as it
provides an opportunity to utilise the waste material generated from the production of C. vulgaris
biomass. Therefore, the aim of this study was to produce ZnO nanoparticles using secretory compounds
(carbohydrates) from C. vulgaris via a controlled synthesis approach. This approach is likely to result
in distinct, non-aggregated particles, and presents a more cost-effective and sustainable alternative to
the existing production techniques.

2. Materials and Methods

2.1. Chemicals

Zinc acetate dihydrate (Zn(OAc)2·2H2O, ACS grade) was purchased from Merck Millipore
(Darmstadt, Germany) and ammonium hydroxide (NH4OH, 25%) was purchased from Sigma-Aldrich
(St. Louis, MO, USA). The water used for media preparation and chemical reactions was Millipore
water (Millipore Corp., Bedford, MA, USA, conductivity range = 0.055−0.294 l S/cm). BG -11 broth
(M1541) was purchased from Himedia (Himedia Laboratories, Mumbai, India). The illumination was
provided by cool white fluorescent lamps (20W FL T10 230V G13) from Pars Shahab Lamp Co. (Tehran,
Tehran Province, Iran).

2.2. C. Vulgaris Culture Conditions

The C. vulgaris culture supernatant was prepared based on our previous reports [37]. During
this process, the C. vulgaris cells (107 cells/mL) were inoculated in a BG-11 broth medium, which is a
universal medium for the cultivation and maintenance of blue cyanobacteria and freshwater algae, and
incubated at 28 ◦C in a 16 h light/8 h dark cycle. At the end of the logarithmic growth phase (after 20
days of incubation), the culture was centrifuged (4000 g, 20 min), and the supernatant was harvested.
The resulting clear and colourless solution was utilised for the synthesis of the ZnO nanorods.

2.3. Synthesis of the ZnO Nanorods

The ZnO nanorods were synthesised at room temperature via a controlled reaction. As part of
this process, 1 g of Zn(OAc)2·2H2O was dissolved in 140 mL of the C. vulgaris culture supernatant.
Subsequently, 1.5 mL of ammonium hydroxide (NH4OH, 25%) was added dropwise to the mixture,
and the solution was then kept under reflux at 80 ◦C. After 6 h, the product was washed with deionised
water and further refluxed for another 9 h. Finally, the fabricated particles were washed several times
with deionised water and dried at 60 ◦C in an oven for 24 h.

2.4. Analytical Methods

The morphology and size of the fabricated ZnO nanorods were characterised using transmission
electron microscopy (TEM) (Philips, Eindhoven, Netherlands, CM10, HT 100 KV). Fourier transform
infrared (FTIR) spectroscopy (PerkinElmer Spectrum One, Waltham, MA, USA) in the range of
400–4000 cm−1 was used for the verification of the ZnO nanorods. The crystal structure of the sample
was evaluated by a Siemens D5000 diffractometer (Siemens, Germany, CuKα radiation, 10◦ ≤ 2Θ ≤
80◦). A UV-Vis absorption spectrum was also recorded in the range of 200-800 nm using a Chrom Tech
(CT-8200) double-beam spectrometer (Chrom Tech, Inc. Singapore 608780).

2.5. Antimicrobial Activity

The antimicrobial activity of the prepared nanorods was evaluated using the microdilution
technique, which was developed according to the guidelines of the Clinical and Laboratory Standards
Institute (CLSI) [38].
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3. Results and Discussion

3.1. Characterisation of the ZnO Nanorods

3.1.1. FTIR Spectra Analysis

The FTIR spectrum of the synthesised ZnO nanorods is provided in Figure 1. The absorption peak
at 3374.61 cm−1 can be assigned to the stretching vibrations of the OH groups [5]. The band located
at 1645.77 cm−1 can be correlated with the stretching vibration of the carbonyl groups. The peak at
1238.89 cm−1 can be attributed to the C–C bond [36]. The two intense peaks at 1510.81 cm−1 and
1391 cm−1 are indicative of nitro groups. The peak located at 567.34 cm−1 is the characteristic peak for
ZnO, which corresponds to the stretching mode of the Zn–O bond [5].
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Figure 1. Fourier transform infrared (FTIR) spectrum of the zinc oxide (ZnO) nanorods.

3.1.2. X-ray powder diffraction (XRD) Analysis

The X-ray diffraction pattern of the prepared nanorods is illustrated in Figure 2. The characteristic
diffraction peaks observed at 31.9◦, 34.4◦, 36.2◦, 47.5◦, 56.5◦, 62.8◦, 66.1◦, 67.9◦, and 69◦ are in agreement
with previous studies that have focused on the development of ZnO nanostructures [2,5,8,10,20,39–41].
The crystallite size of the manufactured nanorods was estimated to be 3.4 nm using the Scherrer
calculator from X’Pert HighScore version 3.0.5 (Philips, Eindhoven, Netherlands).
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3.1.3. TEM Analysis

The size distribution and morphology of the ZnO nanorods were evaluated using TEM analysis
(Figure 3). The synthesised nanostructures had a rod-like shape, with an average length of 150 nm
(Figure 4a) and an average width of 21 nm (Figure 4b). The aspect ratio (defined as the ratio of the
length to the width) was calculated to be 7.14. The prepared particles were not uniform in shape and
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size and it can also be observed that, while the variation in the length of the nanorods is approximately
normally distributed, the width is not (the distribution is slightly skewed to the right).Nanomaterials 2018, 8, x FOR PEER REVIEW  5 of 12 
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This study employed secretory compounds from C. vulgaris for the bio-assisted synthesis of ZnO
nanorods. It can be observed from the TEM photograph (Figure 3) that the resulting ZnO nanorods
were distinctly separate particles. This was achieved through the use of secretory compounds from
C. vulgaris, which play an important role in controlling the growth pattern of the ZnO nanocrystals [37].
Therefore, the nature of the synthesised ZnO nanorods illustrates the success of the implemented
approach. These results are in close agreement with previous reports that illustrate the shape-controlling
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role of biological compounds from C. vulgaris. In this regard, biomolecules from C. vulgaris can be
grouped into two separate categories, namely cell extract compounds and secretory compounds.
Each of these compounds can provide different nanostructures with different characteristics. Previous
investigations indicated that proteins are the active compound in the C. vulgaris cell extract that is
responsible in the bio-assisted synthesis of metal (particularly silver) nanoparticles [42]. Xie et al.
showed that certain functional groups in the protein residues have a primary role in the fabrication
of metal nanostructures [42]. In particular, they found that the hydroxyl groups present in tyrosine
residues were the sites for metal ion reduction, and the carboxyl groups in the aspartic acid and
glutamic acid residues play a shape-controlling role. These acidic residues facilitate the anisotropic
growth of nanocrystals and are responsible for the formation of silver nanoplates [42]. Zhang et al.
reported identical results in the bio-assisted synthesis of ZnO nanoparticles using C. vulgaris cell
extract [43]. They found that using C. vulgaris extract as an additive in the synthesis reaction resulted in
the formation of plate-like nanostructures. On the other hand, investigations focusing on the secretory
compound of C. vulgaris interestingly indicated that carbohydrates are the effective compound in
the formation of silver nanoparticles. The prepared nanostructures were uniform spherical particles
that represented an isotropic growth pattern [36]. Similar results were also reported in the controlled
synthesis of FeOOH nanospheres using secretory compounds from C. vulgaris [37]. However, the results
from the current experiment revealed that secretory compounds from C. vulgaris do not always drive
the isotropic growth of metal nanocrystals. The shape-controlling role of carbohydrates polymers in
the growth of ZnO nanocrystals was also reported elsewhere [44]. Particularly, xanthan gum and PEG
were reported as efficient shape-controlling agents [2,5,34]. It has been shown that by increasing the
PEG concentration, the transformation of ZnO nanoparticles into rod-like structures occurred [2,34].
Hence, without any controlling agent, ZnO nanoparticles were formed [2,34,45].

3.1.4. UV-Vis Spectra

The potential for the prepared ZnO nanorods to absorb UV-Vis irradiation was investigated,
and the spectrum is depicted in Figure 5. The prepared nanorods exhibited an absorption peak at
362 nm, which exemplifies the characteristic absorption behaviour of ZnO nanostructures. This key
property is a unique characteristic of ZnO particles, which makes them suitable for the production of
valuable pharmaceutical compounds such as sunscreens. ZnO particles as an efficient sun blocker can
provide protection against the adverse effects of UV light. ZnO particles are effective against UVA
radiation, and broadband UV protection is commonly achieved by a combination of ZnO with particles
of titanium dioxide (TiO2) [46]. Furthermore, the shoulder in the UV-Vis spectrum proves that the
prepared nanorods are effective against both UVB (290–320 nm) and UVA (320–400 nm) radiations.
The UV illumination effect also influences the biological activity of ZnO nanostructures [3]. ZnO
possesses high photocatalytic efficiency, and its ability to absorb UV light significantly enhances its
interaction with bacterial cells, facilitating growth inhibition or cell death through the generation of
reactive oxygen species (ROS) [3].
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3.2. Antimicrobial Activity

The antimicrobial activity of the ZnO nanorods was investigated against both Gram-positive
(Staphylococcus aureus and Enterococcus faecalis) and Gram-negative (Escherichia coli and Pseudomonas
aeruginosa) bacterial strains, and the results are illustrated in Figure 6. In all of the tested strains, except
for E. faecalis, the antimicrobial activity of the ZnO nanorods was concentration-dependent, up to
a concentration of approximately 250 µg/mL. At higher concentrations, a gradual reduction in the
antimicrobial activity was observed, which may be due to the aggregation of the nanorods. Interestingly,
high concentrations of the nanorods seem to promote the growth of E. faecalis, which appears to show
resistance to the ZnO nanorods.
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These observations are in contrast to those from various other studies, in which it has been noted
that an increase in the nanoparticle concentration correlates with an increase in the antimicrobial
activity [3,47–50]. Increasing the concentration of the nanorods may result in aggregation, which could
alter both the morphology and the size of the resulting aggregates, in comparison to the individual
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particles. The aggregates are likely to have different shapes and a larger size relative to the discrete
particles. This may reduce their antibacterial properties, as it has been observed that the antimicrobial
properties depend on both the shape and size of the particles. Certain shapes sustain greater
antimicrobial activity and larger particles, particularly in the micro size range, are not as potent
as their nano-sized counterparts [3,5]. Furthermore, the increase in the nanoparticle concentration
could potentially lead to a saturation effect, which could be another explanation for the observed
behaviour. The inhibitory effects of the nanorods were enhanced as their concentration was raised
to 250 µg/mL, at which point the maximum antimicrobial activity was observed. Consequently,
above this concentration, any further increase in the nanoparticle concentration did not enhance the
antimicrobial effects.

The trend observed in the antimicrobial activity of the ZnO nanorods for E. faecalis is considerably
different to that observed for the other three bacterial strains that were investigated. The optical density
(OD) at 600 nm was fairly consistent for a nanoparticle concentration from 0 µg/mL to 250 µg/mL,
which suggests that the nanoparticle concentration within this range has little or no effect on the cell
viability. An increase in the OD, and hence the cell viability, was noted as the nanoparticle concentration
exceeded 250 µg/mL, which was similar to that observed for the other investigated bacterial strains.
However, the results obtained for E. faecalis also suggest that a nanoparticle concentration greater than
250 µg/mL promotes cell growth.

The ZnO nanorods also appear to have a similar impact on the cell viability for both the
Gram-positive and Gram-negative bacterial strains, as the variation in the cell viability in response to
the nanoparticle concentration is comparable for all of the investigated strains, except for E. faecalis
(as alluded to previously). This observation is in contrast to the findings of other studies, which suggest
that Gram-positive bacteria are more susceptible to the antibacterial activity of ZnO nanoparticles,
in comparison to Gram-negative bacteria, as a result of the differences in their cell wall structure,
cell physiology, metabolism, and degree of contact [48,51]. However, these studies measured the
zone of inhibition to quantify the antimicrobial activity, whereas the present study used absorbance
measurements to assess the antibacterial activity. Hence, the different approaches used to evaluate
the antimicrobial activity of the ZnO nanostructures may have an impact on the results obtained.
Furthermore, those studies only compared the antimicrobial effects of ZnO nanostructures on S. aureus
and E. coli, as opposed to the present study, which considered four different species. Thus, it is possible
for the response of different Gram-positive and Gram-negative bacterial strains to vary. If only the
S. aureus and E. coli strains are considered from the present study, then the results are comparable to
those of previous investigations, as S. aureus is more sensitive to the nanorods in comparison to E. coli.

It has been determined that the antimicrobial properties of metallic nanoparticles are attributable
to their physicochemical properties [5,52,53]. The antibacterial activity of ZnO nanostructures varies
considerably in the literature, and while numerous studies [39,41,47,48,50,53–56] have demonstrated
that ZnO nanostructures have an adverse effect on microbial growth and metabolism, the study
conducted by Ebrahiminezhad et al., has reported the synthesis of biocompatible xanthan gum-coated
microstars, which exhibited no antimicrobial activity [5]. The variation in the antimicrobial activity of
ZnO particles is largely due to the particle size, and it has been established that reduction of the particle
size from the micro to the nano range results in nanoparticles that demonstrate potent antibacterial
activity [3,5]. Furthermore, the use of biocompatible and other coatings is also likely to have an impact
on the antimicrobial properties of the resulting particles [5].

Several means have been proposed for the antimicrobial activity of ZnO nanostructures, as the
particles can interact with either the surface or the core of bacterial cells to induce various antibacterial
mechanisms [3]. The three most probable mechanisms of the antibacterial activity include the
generation of ROS, the release of zinc ions (Zn2+), and changes in the permeability of the bacterial cell
membrane [3,4,56]. The generation of ROS is often considered to be the primary mechanism responsible
for the antibacterial activity of ZnO nanostructures [3]. ROS target and destroy important cellular
components such as DNA, phospholipids, and proteins, which results in either growth inhibition or
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cell death [3,50]. The release of Zn2+ into the surrounding medium is another prominent source of
the antibacterial activity of ZnO nanostructures, as the released Zn2+ can bind to biomolecules such
as proteins and carbohydrates, disrupt enzyme systems, and inhibit active transport and amino acid
metabolism in bacterial cells, which has a detrimental effect on cell viability [3,50]. The penetration
and accumulation of nanostructures in the cell membrane is another potential source of toxicity, as this
results in the dissipation of the proton motive force and causes changes in the permeability of the
plasma membrane, which results in the progressive release of lipopolysaccharides, membrane proteins,
and intracellular factors from the bacterial cell, reducing cell viability [3].

4. Conclusions

An efficient method for the synthesis of ZnO nanorods was developed using secretory compounds
from C. vulgaris. FTIR spectroscopy, XRD analysis, UV-Vis spectroscopy, and TEM were employed to
characterise the synthesised nanostructures. The prepared particles were 150 nm and 21 nm in average
length and width, respectively. Furthermore, the synthesised nanorods were able to block irradiations
in both the UVB and UVA ranges. This unique property makes the particles a promising material
for the fabrication of sunscreens with a broadband protection. The antimicrobial activity of the ZnO
nanorods against both Gram-positive and Gram-negative bacterial strains was also assessed using the
micro-dilution method. It was observed that the ZnO nanorods demonstrated notable antibacterial
activity, and a concentration of 250 µg/mL was determined to be the most effective. The antibacterial
properties of the synthesised ZnO nanorods enable it to be employed in food packaging and in
the medical field, as well as a range of other antimicrobial applications. It also is worthwhile to
mention that secretory compounds from C. vulgaris are available as culture supernatant, which is a
by-product of microalgae biomass-producing plants. The use of this inexpensive material can reduce
the costs associated with the process and can provide a more economical alternative to the chemicals
that are commonly employed in the synthesis of nanostructures. Additionally, it is obvious that the
concentration of controlling agents has a significant impact on the prepared nanostructures. Therefore,
by employing diluted culture supernatant, nanostructures with different properties may be obtained.
This aspect presents an interesting research opportunity that can be investigated in future experiments.
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