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Abstract. We present and investigate ensembles of randomized model
trees as a novel regression method. Such ensembles combine the scal-
ability of tree-based methods with predictive performance rivaling the
state of the art in numeric prediction. An extensive empirical investiga-
tion shows that Random Model Trees produce predictive performance
which is competitive with state-of-the-art methods like Gaussian Pro-
cesses Regression or Additive Groves of Regression Trees. The training
and optimization of Random Model Trees scales better than Gaussian
Processes Regression to larger datasets, and enjoys a constant advantage
over Additive Groves of the order of one to two orders of magnitude.

Keywords: regression, ensembles, supervised learning, randomization

1 Introduction

Simple linear regression can work very well for arbitrary regression problems,
especially when sample sizes are small and when good attributes are provided.
Its performance usually breaks down when the relationship between the input
and output contains significant non-linearity, and also in linear cases when there
is strong collinearity present between pairs of inputs. Non-linear regression al-
gorithms try to overcome these issues of simple linear regression. Still, on small
data samples the main effect to be predicted is usually well modeled by a single
global linear regression model, even if that effect or relationship in itself is not
completely linear. Only when more data becomes available can non-linearity be
extracted in a reliable and robust way. Samples sizes of 500 or even several thou-
sand samples might be necessary. Non-linear methods include neural networks,
support vector regression, gaussian process regression (GP) [10], and Additive
Groves (AG) [12], among others. In this paper we introduce a new tree-based
algorithm called Random Model Trees (RMT). We will compare RMTs with
linear regression, GPs and AGs. We do not include support vector regression or
neural networks in this comparison, as we have found GPs using so-called Radial
Basis function kernels to perform as well, and their parameter optimization is
simpler involving only two tuning parameters. We also only include AGs and
no other tree-based methods like e.g. boosting, as AGs have been shown to per-
form as least as good as these tree-based alternatives. We will show that RMTs



are competitive in terms of predictive performance to both GPs and AGs, but
that they can be an order of magnitude faster than AGs. Furthermore, being
tree-based, RMTs scale with O(NlogN), where N is the number of training
examples. Therefore they can be applied to much larger problems than GPs.

In the following we will describe the new algorithm in Section 2, in Section
3 we will discuss the algorithms used for comparison, and will focus on param-
eter optimization. Parameter optimization is important, as the optimal values
vary strongly depending on the specific datasets, and therefore no good default
values exist. Section 4 will present results for both UCI data [1] as well as some
regression problems from an application in Near Infrared Spectroscopy (NIR)
[8]. The final section summarizes and present directions for future research.

2 Random Model Trees

Random Model Trees are essentially the combination of two existing algorithms
in Machine Learning: single model trees [9] are combined with Random Forest [3]
ideas. Model trees are decision trees where every single leaf holds a linear model
which is optimised for the local subspace described by this leaf. This works well
in practise, as piece-wise linear regression can approximate arbitrary functions as
long as the single pieces are small enough. For differentiable functions piece-wise
linear regression can also be viewed as a crude one-step Taylor series expansion
of such a function. Decision trees split the data into a number of small axis-
parallel hypercubes, each of which will have its own local linear model. Issues
with learning model trees include high training times searching for optimal splits
and optimizing local linear models, potential strong discontinuities in prediction
at the borders between hypercubes, and erroneously overshooting extrapolation
in sparse areas inside the hypercubes. Smoothing [14] inside a single tree and
bagging of multiple trees [2] are standard ways to address these shortcomings.

Trees are also unstable, meaning that small changes in the training data can
lead to the construction of trees that differ greatly in structure. While this may
be problematic for a single tree, it is possible to take advantage of this effect
in an ensemble. Random Forests [3] have shown to improve the performance
of single decision trees considerably: tree diversity is generated by two ways of
randomization. First the training data is sampled with replacement for each
single tree like in Bagging. Secondly, when growing a tree, instead of always
computing the best possible split for each node only a random subset of all
attributes is considered at every node, and the best split for that subset is
computed. Such trees have been used both for classification and for regression,
but in the regression setting so far only trees with constant leaf prediction were
used, i.e. a regression tree, but a model tree. Random model trees for the first
time combine model trees and random forests.

The success and efficiency of Random Model Trees critically depends on some
specific engineering features. Determining the best split point for an attribute is
expensive: the data must be sorted according to this attribute, and then a linear
scan can determine the best split for minimizing the weighted sum squared error



(or a similar numeric loss function). Furthermore best splits are usually not
balanced thus leading to potentially very skewed trees, i.e. trees where leaves
can have vastly different numbers of examples. This in turn causes issues for the
local model generation: to prevent against overfitting some form of regularization
is needed. We use ridge regression [7], which like all such regularization methods
depends on a user parameter, in this case the ridge value. The problem with large
differences in leafsizes is that such regularization parameters strongly depend on
the number of training examples. Thus no single good value exists that would
work well for such skewed trees. Therefore they would need separate independent
optimization at every single leaf, which is expensive.

Random model trees use an alternative approach: trees are approximately
balanced by only splitting on the median of some attribute. An approximate
procedure for median computation was recently described in [13]. This procedure
needs only two linear scans over the data to approximate the median. Random
model trees employ this produce for split selection and thus induce reasonably
balanced trees where one global setting for the ridge value works across all leaves,
thus simplifying the optimization procedure.

Additionally, to prevent against extreme cases of extrapolation, each leaf
(or hypercube) records the local minimum and maximum value for the target.
Predictions from the local model are then compared to these thresholds and
capped, if necessary. This simple procedure has proved very effective, as single
extreme values can have a large influence on measures like root mean squared
error, even after averaging multiple predictions from an ensemble of model trees.

Finally, as the trees are semi-random and therefore definitely not optimal in
isolation, averaging an appropriate number of such trees is essential for good
predictive performance. At least 30 trees should always be computed, and com-
puting more (and sometimes a lot more) trees does further improve performance.
Of course, due to the random nature of the process, adding more trees to an en-
semble will never significantly degrade performance, but as for most ensemble
methods any improvements diminish eventually.

Another method for improving a single model is additive regression [4, 6],
which iteratively fits the residuals of a predictor or model. As a single model
tree usually fits the training data quite well, there is not much scope for additive
regression when using model trees. Still, for some datasets a vey small number of
additive regression iterations can improve performance. This is usually the case
for more shallow trees, where the linear models cover larger areas and thus do
not fit every single example well, therefore leaving residuals of reasonable size
such that additive regression can extract some more signal from them.

3 Experiments

Random model trees are compared to linear regression, gaussian process regres-
sion, and additive groves. This comparison comprises a good number of UCI
datasets as well as a number of datasets from an application in Near Infrared
(NIR) spectroscopy. We have only included datasets which have at least 950



examples. The names and sizes of the UCI datasets are listed in Table 1, and
the info for the NIR datasets is given in Table 2. The NIR data is an interesting
addition to the UCI data, as it has substantially different characteristics: first
of all the NIR data has more attributes, between 163 and 445 for the processed
data we use here, but the raw output of the spectrometers can have up to a
thousand attributes. Secondly, as the attributes describe spectrograms which
are continuous including peaks but not large discontinuous jumps, attributes
are by construction strongly correlated with their neighboring attributes. Such
collinearity can be problematic for regression algorithms.

Table 1. Numeric UCI dataset characteristics: the name, the number of numeric at-
tributes, the number of categorical attributes, and the number of examples.

Name #num |#cat|#examples
stock 9 0 950
quake 3 0 2178
abalone 7 1 4177
delta_ailerons 5 0 7129
bank32nh 32 0 8192
bank8FM 8 0 8192
cpu-act 21 0 8192
cpu_small 12 0 8192
kin8nm 8 0 8192
pumad2H 32 0 8192
puma8NH 8 0 8192
delta_elevators 6 0 9517
ailerons 40 0 13750
pol 48 0 15000
elevators 18 0 16599
cal_housing 8 0 20640
house_16H 16 0 22784
house_8L 8 0 22784
2dplanes 10 0 40768
fried 10 0 40768
mv 7 3 40768
layout 31 0 66615
colorhistogram 31 0 68040
colormoments 8 0 68040
cooctexture 15 0 68040
elnino 9 0 178080
census 67 0 2458285

The different algorithms deal differently with either categorical or missing
values, therefore all data was preprocessed by replacing categorical values with
multiple binary indicator attributes; missing values were imputed using the re-
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Table 2. NIR dataset characteristics: the name, the number of (numeric) attributes,
and the number of examples.

Name|#num|#examples
omd 171 982
rmd 171 3694
na 171 6363
n 171 7500
tc 439 9849
ph 445 16253
phe 445 16253
p5 163 25904

spective attribute’s mean value. This preprocessing should ensure that different
algorithm-internal procedures do not impact the comparison.

All of the four algorithms have one or more tuning parameters which need
careful optimization for good performance. Additive groves need an explicit val-
idation set for tuning parameters, and the other three algorithms can be paired
with some optimization procedure based on a validation set. Therefore the exper-
iments reported here were run by splitting each dataset into three folds, where
one third would be used for training, one third for validation, and the final third
as an independent test set. The results reported in the next section are accuracies
on the independent test set, and total runtimes of the respective optimization
procedure over the combined training and validation data. Here are more details
for every algorithm:

3.1 Linear Regression

We use the Weka [5] implemementation of Linear (Ridge) Regression, do no
internal attribute selection, but vary the ridge parameter from 10728 to 10'°
in exponential steps of 10, selecting the value with the lowest squared error
sum (SSE) on the validation set. Note that the complexity of linear regression is
O(N % K3), where N is the number of examples, and K the number of attributes.

3.2 (Gaussian Process Regression

For Gaussian Process Regression we have replaced the generic Weka implemen-
tation by a specialized version which firstly hard-codes a Radial Basis function
kernel, and secondly uses a conjugate gradient descent solver [11]. These changes
result in substantial speedups, usually between one and two orders of magnitude
when compared to the standard Weka version. The implementation comprises
two tuning parameters: the bandwidth of the kernel, and again a ridge value
for the regression. Optimization employs a hill-climbing procedure over a grid
of possible pairs of values: starting from some initial point all neighboring grid
points are explored until a plateau is reached in terms of SSE on the validation



set. The factor defining the grid for both the bandwidth and the ridge parameter
is 2.0, i.e. doubles for going up, and halves for going down are used. Note that
the complexity of the conjugate gradient descent solver is only O(K x N2), i.e.
quadratic in the number of examples and linear in the number of attributes,
as it is limited to atmost 100 iterations. Usually 100 iterations are enough for
full convergence, or at least for getting very close to full convergence. The real
problem that GP faces is its memory consumption: as the kernel matrix needs
to be precomputed, it takes O(N?) memory. Thus GPs become infeasible for the
largest dataset employed, and also need on the order of about 28 gigabytes of
memory for the second largest dataset.

3.3 Additive Groves

We use the C++ implementation as supplied by the authors. That implemen-
tation supplies both a “fast” and a “slow” training mode, as well as a Python
script for iterative training improvements. As the results in the next section show,
this implementation is substantially slower than the other three Weka-based al-
gorithms. Therefore only the “fast” training mode was used. Better prediction
would be achieved with more training, but is not feasible here. Even “fast” mode
could not finish on the largest dataset. [12] do not discuss the theoretical com-
putational complexity of additive groves, but one would expect O(K x N xlogN)
behavior from a tree-based algorithm. The results further down seem to confirm
this hypothesis, but also show a high constant factor when comparing to the
new algorithm, random model trees.

3.4 Random Model Trees

A Weka-based Java implementation is used here. Unfortunately Random Model
Trees comprise too many possible tuning parameters. Therefore, in the interest of
speed, only a crucial subset of these parameter is optimised, all other paramters
used reasonable defaults. The number of randomly chosen attributes to evaluate
is set to 10%, but thresholded to be at least 2 and at most 5. Allowing a value of 1
would lead to completely random trees, which are fast to generate, but which also
perform worse than semi-random trees. Limiting the maximum ensures diversity
of the trees in the ensemble. A low limit of 5 would probably cause break down of
tree performance when a large percentage of the attributes is irrelevant or very
noisy, but even in these cases the trees would still be reasonably balanced, and the
linear leaf models should be able to extract some signal from the useful subset of
attributes. Ensemble size is fixed to 100 trees for parameter optimization search.
The final ensemble then comprises 300 trees, which usually slightly increases
performance again. The two parameters that need optimizing are tree-depth
and the ridge value. Optimization uses hill-climbing along one dimension, and
switches between dimensions after reaching a plateau in one dimension. Tree
depth is modified by +1 or —1, the ridge is multiplied by either 0.5 or 2.0, similar
to the GP search parameters described above. Finally, when a global plateau for
both tree depth and ridge is found, these parameters are fixed to their best



value, and additive regression is tried for an increasing number of models as
long as SSE on the validation set decreases. In all experiments reported below
optimization chose either no additive regression, or at most two iterations. The
complexity of building random model trees is O(N*logN +NxK?). The first term
accounts for tree construction, which is independent of the number of attributes,
as only a constant number of attributes will be considered for each split. The
second term accounts for training of the local linear models and indicates a
potential weakness of random model trees: large number of attributes can slow
done training considerably. The results further down clearly confirm this.

4 Results

In this section we compare all four algorithm both with respect to predictive
performance as well as to efficiency, measured as build time. The results are split
into two parts each, one for UCI data, and one for NIR data, as these datasets
have quite different characteristics, which in turn cause qualitative differences of
the results.

4.1 Correlation

Correlation is used here as a measure of accuracy, as it is upper-bounded by 1.0
and therefore can be compared in a meaningful way across different datasets. To
be precise, 72 is used, which also allows for direct estimation of the amount of
variance in the data that is captured by each model or algorithm.

Figure 1 shows correlation for all four algorithms over the UCI datasets.
The datasets have been sorted by the correlation value of linear regression from
low to high to facilitate comparison. All three non-linear algorithms usually im-
prove over linear regression or are at least as good. This is absolutely true for
Gaussian Processes regression, but both tree-based methods show the occasional
catastrophic failure, random model trees on the “elevator” dataset, and additive
groves on the “elnino” and the “colorhistogram” data. We have investigated the
first of these failures, random model trees on “elevator”: basically the optimiza-
tion procedure goes astray in this case. A more complete grid search is able to
find a set of parameters leading to R? = 0.9, which would be competitive with
GP and AG on that dataset. We suppose that using more complete search (using
the “slow” setting or the iterative method) for AG on both “elnino” and “col-
orhistogram” would yield similar improvements. Also noteworthy in this figure
is the spectacular success of AG on “puma32H”.

The one dataset missing from Figure 1 is the largest set “census”’. Both
GPs and AGs cannot process this data within reasonable amounts of resources.
Table 3 displays the results on this dataset for linear regression and for random
model trees. RMT provides a small improvement over linear regression, and does
so within about 5.5 hours. Given a partial AG training run it is estimated that
AG in “fast mode” would need about 25 days to complete. Note however, that
AG also supports some parallelism, which was not used here. Similarly, search



RA2 for UCI data

Ir
——=rmt

9P

ag

0.2 +—/

/
0 —’l/ — . . . . . T T T T
2 X XD v > & & & CEPN J & O o+ o N
ER I A U S S P P S g e § & S S
ISP PP 2GRS R N I RV R & F &S
S FEE S F 0 O o &8 N > & & F
DAV L el S S
b& ¥ & &

Fig. 1. R? for UCI datasets, sorted by the linear regression result.

and ensemble construction of random model trees could be parallelized as well,
so parallelism is really an orthogonal issue, which can safely be ignored in this
comparison. GPs, or at least our implementation, cannot be employed for this
dataset, as it would need about five terabytes of main memory to store the kernel
matrix for the 800000 examples training set.

Table 3. Partial results for the UCI Census dataset, 2458285 examples in total, there-
fore about 800000 in the training fold.

LR|RMT GP AG
Time (secs)| 1205{19811|(need 5 Terabyte of RAM) ?| 25 days
R? 0.912] 0.932 ? ?

Figure 2 shows results for the NIR data, again sorted by the performance of
linear regression. The number of datasets is smaller here, so conclusions might be
more questionable. Still, there are definite differences present when comparing to
the UCI data. First of all there is one dataset where all the non-linear methods
are outperformed by simple linear regression, namely the “p5” dataset. Currently
we have no good explanation for this behavior. Also, GPs and RMTSs seem to
perform very similarly, with the exception of the “phe” dataset. AG on the other
hand shows more variance, being the best algorithm twice, but also being the
worst four times. This is surprising as one would not expect regression trees to



be affected by collinearity in attributes, but that may be a consequence of the
strong additive component in AGs, which due its similarity to boosting might
overfit correlated attributes.
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Fig. 2. R? for NIR datasets, sorted by the linear regression result.

4.2 Efficiency

While the previous subsection investigated predictive performance, and did not
produce a clear winner at all, this subsection looks at build times as the most
important resource factor. This aspect produces a very clear ordering of the
competing algorithms. Again results are separated into two groups, one for UCI
data, and one for NIR data.

Figure 3 plots logarithmic build time in seconds for all algorithms over the
UCI datasets being sorted by number of instances, as this is the main complexity
factor for most of the algorithms. Linear regression is the fastest for two reasons:
all these datasets have 67 or fewer attributes, so the dominating factor is still
the number of instances, and its influence is only linear; furthermore optimiza-
tion concerns only one tuning parameter, looking at only 19 different values.
Both tree-based methods RMT and AG show the expected O(NlogN) behavior,
but RMTs are consistently one to two order of magnitude faster. The varia-
tions visible are explainable by two factors: different numbers of attributes, but
more importantly different number of steps in the hill-climbing search, which at
times terminates very quickly, and at other times explores a lot more parameter
combinations. GPs start very fast for the smallest datasets, but their quadratic
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Training time in seconds for UCI data
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Fig. 3. Training time in seconds for UCI datasets, sorted by the number of instances
in each dataset; note the use of a logarithmic y-scale.

complexity is very apparent for larger datasets. For the “elnino” dataset a GP
is four orders of magnitude slower than linear regression.

Figure 4 finally present runtimes for the NIR data. Again we see clear rela-
tionships, but a reversal when compared to UCI data: GPs are now consistently
faster than both tree-based methods, and the gap between the tree-based meth-
ods has also narrowed. Again this nicely reflects the theoretical computational
complexity of each algorithm: the largest dataset has only about 25000 exam-
ples, but all datasets have at least 163 attributes. So RMTs, where the number of
attributes has a much larger influence than the number of examples, fall behind
GPs, which are linear in the number of attributes.

5 Conclusions

We have introduced a new general regression method that combines model trees
with random forests and some engineering details in a novel way. A comparison
to linear regression and to two other state-of-the-art regression algorithms over
a substantial set of datasets of a wide range of properties has shown that the
new algorithm can be competitive to the state of the art regarding predictive
performance, but that it is considerably more efficient on datasets with rela-
tively few attributes, and that it can scale reasonably to datasets of hundreds of
thousands of examples. Still, when outmost predictive performance is needed in
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Training time in seconds for NIR data

100000

10000 /‘/X//.\\\\:
1000

/ ——mt
ap
——1r
—¥—ag
100 ./ AN

N

AN
N\
N\

omd rmd na n tc ph phe p5

Fig. 4. Training time in seconds for NIR datasets, sorted by the number of instances
in each dataset; note the use of a logarithmic y-scale.

an application, an ensemble of well-tuned GPs, AGs, and RMTs would be the
method of choice, provided enough computing resources are available.

There are a number of promising directions for future research. The most
important one for random model trees is the issue of its complexity in the number
of attributes. Either some form of local feature space reduction at each leaf in
isolation, or some more global form of feature space reduction either per single
tree or for the full ensemble can be explored. Local feature space reduction
will have to be very careful with regard to runtime, but also potential loss of
information. Another interesting direction will be investigating the possibility
of a hybrid of the random model trees and additive groves ideas. And last but
not least investigating efficient gaussian process regression for large datasets is
a very challenging endeavour. Sparsification and gradient descent methods are
potential candidates, but in regression settings they seem to trade off too much of
the GP’s predictive power for speed and memory savings. Again maybe a hybrid
between Gaussian process regression and random model trees might provide a
viable alternative.
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