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Abstract

Despite rapid growth in continuous monitoring of dissolved oxygen for lake metabolism studies, the current
best practice still relies on visual assessment and manual data filtering of sensor observations by experienced sci-
entists in order to achieve meaningful results. This time consuming approach is fraught with potential for incon-
sistency and individual subjectivity. An automated method to assure the quality of data for the purpose of
metabolism modeling is clearly needed to obtain consistent results representative of collective expertise. We used
a hybrid approach of expert panel and data mining for data filtration. Symbolic Aggregate approXimation (SAX)
treats discretized numerical timeseries segments as symbolic indications, creating a series of strings which are lit-
erally comparable to human words and sentences. This conversion allows established text mining techniques,
such as classification methods to be applied to timeseries data. Half-hourly frequency surface dissolved oxygen
data from 18 global lakes were used to create day-long segments of the original time series data. Three hundred
sets of 1-d measurements were provided to a group of seven anonymous experts, experienced in manual filtering
of oxygen data for metabolism modeling studies. The collective results were treated as expert panel decisions, and
were used to rank the data by confidence level for use in metabolism calculations. While considerable variation
occurred in the way the experts perceived the quality of the data, the model provides an objective and quantita-
tive assessment method. The program output will assist the decision making process in determining whether data

should be used for metabolism calculations. An R version of the program is available for download.

Ecosystem metabolism is an important and fundamental eco-
logical concept. Many attempts have been made to numerically
quantify its key components, productivity and respiration, for
lake ecosystems across the world (Cole et al. 2000; Solomon
et al. 2013). Ecosystem metabolism may be a proxy for trophic
status and can be used to understand whether a lake is a source
or sink of carbon (Hanson et al. 2003). As lake monitoring has
become increasingly intensive and automated around the world
(Weathers et al. 2013; Hamilton et al. 2015), the use of metabo-
lism models to assess ecosystem functioning will likely grow.
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Metabolism models in lakes typically assume that a
change in free-water dissolved oxygen (DO) through time is
driven primarily by the balance between photosynthesis
(or primary production) and mineralization of organic car-
bon (often called “respiration” for simplicity), as well as equili-
bration of DO with the atmosphere (Staehr et al. 2010). When
these three processes are dominant, diel DO patterns will be
nearly sinusoidal, with increases during daylight due to primary
production exceeding respiration and decreases at night due to
respiration. However, additional processes, such as inflow and
outflow to and from a lake, vertical and horizontal mixing, and
advective movement of water mass can affect the balance of
DO within specific lake strata (Antenucci et al. 2013; Rose
et al. 2014) or between littoral and pelagic zones (Lauster
et al. 2006; Van de Bogert et al. 2007; Batt and Carpenter
2012). When DO is measured using in situ sensors, these pro-
cesses can impart patterns on the DO data that obscure the sig-
nal from biological processes and that, if left unaccounted, can
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introduce noise and bias into the estimate of metabolism (Rose
et al. 2014).

Generalizable approaches are needed for separating signals
due to biological processes from those derived from physical
processes to better quantify and debias lake metabolism esti-
mates. For high frequency lake sensor observations, some
attempts have been made to automate and standardize the
methods of QA/QC (e.g., general QA/QC—Horsburgh
et al. 2015) and calculation protocols (e.g., physical stability—
Read et al. 2011; energy flux—Woolway et al. 2015; lake
metabolism—Winslow et al. 2016). Experts have commonly
removed data considered to be irrelevant noise or error, by
visual assessment (e.g., Solomon et al. 2013), and in some
cases have developed formalized approaches for evaluating
uncertainty in metabolism predictions, as well as model
parameters, and have identified the circumstances associated
with those uncertainties (Cremona et al. 2014; Rose
et al. 2014; Giling et al. 2017). While the aforementioned
approaches have proven useful in evaluating metabolism pre-
dictions, they are subject to the overhead and constraints of
coding parametric process-based models, and in some cases,
the undocumented criteria of expert opinion. An alternative is
to formalize the inclusion of expert knowledge on metabolism
and use that knowledge, along with data-driven approaches,
in efficient, flexible, and reproducible ways for data QA/QC.

Time series analysis, filtering, and data mining offer a set of
solutions that may be particularly useful for evaluation of DO
data intended for metabolism modeling (Niennattrakul
et al. 2010; Rakthanmanon et al. 2011). Preparation for time
series analysis should be comprised of three components oper-
ating either independently or simultaneously: QA/QC, data
dimensionality reduction, and data representation/approxima-
tion. Increasing dimensionality (information), which is inher-
ent in increased sampling frequency from sensors, decreases
performance of similarity, or distance-based discovery algo-
rithms (e.g., more difficult to build a robust model; Aggarwal
et al. 2001; Zimek et al. 2012). This can be circumvented by
removing some data or compressing the amount of informa-
tion processed (Cannata et al. 2011) or by representing data in
a simpler form (Keogh et al. 2001). Spectral analysis, such as
Discrete Fourier Transformation (DFT) and Discrete Wavelet
Transformation (DWT) are two examples that have been used
in recent limnological contexts (e.g., Cengiz 2011; Kara
et al. 2012; Cox et al. 2015). Techniques to accurately define
“suitable data” have not been generalized but any methods
needs to be robust and repeatable.

A promising technique that enables simplification of data
while retaining key properties is Symbolic Aggregate approXi-
mation (SAX; Lin et al. 2003). SAX has similarities to Piecewise
Linear Approximation (PLA) and Piecewise Aggregate Approxi-
mation (PAA), which extract key information from complex
time series data (Ralanamahatana et al. 2005). PLA and PAA
divide time series into segments of equal or unequal length,
and calculate segment trends or means for each segment. SAX
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uses arithmetic mean values of even length segments (PAA),
and further bins the segmented values into defined categories,
creating a series of discrete letter sequences (words) from the
original numeric time series (Lin et al. 2003, 2007). The SAX
transformation enables the user to create a dictionary of time
series subsequences similar to DNA sequences, making it possi-
ble to rapidly search for coherence in the time series vocabu-
lary space. SAX analysis, due to its piecewise approach, is
suitable for noisy and/or variable time series data common in
environmental settings. SAX has been used in multiple disci-
plines such as vision based detection (e.g., Ma et al. 2016) and
has recently been used in limnology to identify fluorescence
signal patterns (Ruan et al. 2017).

The main objective of this study is to identify procedurally
meaningful DO time series patterns from high frequency sen-
sor data and provide a filter enabling identification and
removal of complex data to improve the accuracy and consis-
tency of lake metabolism calculations. The approach is
designed to be reproducible and allow for automated classifica-
tion of data quality that is consistent with expert opinion. To
achieve this, the steps involved were: (1) generation of time
series labels through expert evaluation, (2) transformation of
time series data using the SAX method, and (3) supervised
classification. We used a subsampled dataset from 18 lakes to
generate and test the classification model.

Methods

Eighteen lakes with suitable datasets (e.g., high-frequency
preliminary QA/QCed surface DO, temperature profiles, and
wind speed) for model training were selected from the Global
Lake Ecological Observatory Network (GLEON) lakes. The
majority of the data were reused from Solomon et al. (2013)
(Table sA). The parent dataset contained 4852 d with dissolved
oxygen data, ranging from 132 d to 434 d for individual lakes.
To make labeling by experts feasible, random subsampling
was used to obtain 300 d of data from the parent dataset,
including 7-30 d (median 18 d) from individual lakes. For
consistency, all time series data were downsampled to 30-min
frequency.

Seven scientists at a conference were approached for their
expertise in lake metabolism studies, i.e., experience with
screening these datasets. The 300 d of subsampled data were
provided to the experts as time series of DO over each day.
Also included were supplementary figures comprising time
series of water column temperature profile, wind speed, and
photosynthetically active radiation (PAR), as well as the tim-
ing of sunrise and sunset, as these data could be used to fur-
ther inform the experts about the quality of the data and the
relevant processes. The group members were asked to evaluate
which specific days of DO time series data were suitable for
lake metabolism analysis, based on their experience and
inspection of the visualized dataset. Three questions were
asked of the experts in relation to each dataset: (Q1) “Would
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Fig. 1. The workflow for generation of the classification model. Three hundred days of dissolved oxygen concentration (DO) at 30 min frequency were
provided (1) to seven independent experts, along with supplementary data (2). Experts labeled the data (3), which was then collated and allocated
according to classes (Y7-Y0) representing the number of experts that said “Yes” to the data being useful (4; answers “maybe yes” and “maybe no” were
aggregated to Yes and No, respectively). The identical 300 d of DO time series data were also transformed (5) by Symbolic Aggregate approXimation
(SAX), and (6) a classification model was created using (5) to reproduce the labels (4). Sun cycle includes sunrise and sunset timing.

you use this DO data for metabolism studies?”, (Q2) “Did bio-
logical processes dominate the metabolism signal represented
in DO?”, and (Q3) “Other than DO, what data influenced
your Q1 decision?”. Four choices were provided as options to
Q1, namely [Yes], [Maybe Yes], [Maybe No], and [No]. The
responses of the experts were aggregated and turned into
labels for each day, based on eight possible classes: YO, Y1, Y2,
Y3, Y4, Y5, Y6, and Y7. For example, data were labeled as Y7
(best class) if all seven scientists selected either options [Yes]
or [Maybe Yes], and as YO (worst class) if all scientists selected
[No] or [Maybe No]. This method was used to provide an inde-
pendent quantitative expert evaluation of the level of confi-
dence in the quality of the data. The survey results were
analyzed according to: (Q1l) frequency of expert agreement,
(Q2) whether usability of DO data was related to the domi-
nance of biological processes in the DO signal, and
(Q3) whether experts indicated additional data would have
helped to refine Q1.

Labels YO-Y7 from the expert panel assessment were used to
build classification models after SAX transformation of each day
of data. A diagram of this process is shown in Fig. 1. The classifi-
cation models used R libraries tWeka (ver. 0.4-34; Witten et al.
2016; Hornik et al. 2009), RWekajars (ver. 3.9.1-3; Hornik
2018), RJava (Simon Urbanek 2017) and shiny (ver. 1.0.3;
Chang et al. 2017) on R (ver. 3.4.1). R was selected as the main
framework since it is widely used in ecology and data mining
disciplines and is open-source software. WEKA (Waikato Envi-
ronment for Knowledge Analysis) is specialized data mining
and machine learning software (Hall et al. 2009). Both rWeka
and RWekajars are APIs (application program interface) in the R
language platform that enable use of a variety of data mining
resources through WEKA toolsets. Shiny is a library allowing
the creation of a user-friendly front-end for the models.

To prepare data for the supervised classification, we fol-
lowed the protocol described by Lin et al. (2007) for the SAX
transformation. The SAX transformation combines two time

series transformation methods that reduce the dimensionality
of the data: piecewise averaging and data binning (Fig. 2). The
piecewise averaging method, also known as Piecewise Aggre-
gate Approximation (PAA), segments the original time series
data (measured at a 30-min resolution) into n equal time
periods for which an average value is derived. For example,
PAA applied to a 24-h DO dataset with n = 4 will contain an
average value for each of the four 6-h time segments. Simi-
larly, data binning (into m bins) was used to segment DO
values. For example, with m = 2 data bins, DO values can be
defined as being > or < a specified breakpoint value (Table sB).
The binned data therefore holds ordinal information rather
than nominal or numeric values. Each bin is represented by a
letter in the processed version of the time series so that the
original numeric times series becomes an alphabetic string.

The SAX transformation was carried out after normalizing
the original DO daily timeseries using a standard mean
transformation:

DO_norm = (DO-yu)/c (1)

(1)where DO_norm is the normalized DO time series, y is the
arithmetic mean of DO and o is the standard deviation of DO
for the day. Breakpoints were identified by splitting the
DO_norm values into equal percentile probabilities assuming
a standard normal distribution (see Table sB). Once the m-1
breakpoints were identified using PAA, and thus a mapping
from DO_norm values to letters of an alphabet with m letters
established, DO_norm was averaged for each of the n time
periods and turned into alphabetic representation by looking
up the appropriate bin in the list of m bins. The lowest numer-
ical values of DO_norm were given the letter “a.” Assuming,
for example, m = 3, the largest numerical values would be
given the letter “c.” We express a SAX transformation with
n PAA segments (corresponding to the size of the “words” that
will represent each time series) and m bins (the size of the
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Fig. 2. Schematic of the SAX transformation. The graph (middle) shows an example of normalized dissolved oxygen (DO_norm) data at 30 min intervals
(black line with dots), its PAA results at 6 h intervals (thick vertical gray dashed lines) and SAX letters according to the breakpoints given in Table sB
(dashed lines; 0.43 and —0.43). In this example, the SAX word length (n) is 4 and there are 3 letters (m) corresponding to the two breakpoints. The right
histogram shows the distribution of the data with the gray line representing an idealized normal distribution. The SAX transformation processes are
shown on the left- hand side. In this case, the data consists of the following SAX letter combinations and counts (shown by numbers): [A (2), B (1), C (1),
AC (1), BA (1), CB (1), ACB (1), CBA (1), ACBA (1)]. The classification model uses the set of subsequence counts as input variables for logistic regression.

alphabet) as SAX(n,m). We deployed 25 SAX parameter sets
(n =2-6; m=2-6) to examine performance of SAX against
expert opinion. An R algorithm by Ruan et al. (2017), which
uses the classic SAX technique, was used.

In our study, we use the SAX-transformed time series to formu-
late a classification problem by associating each transformed
series with one of the eight labels (YO-Y7) generated from expert
input. More specifically, we created an ordinal classification prob-
lem because the eight labels exhibit a natural order. Standard
supervised learning algorithms cannot exploit this ordering infor-
mation without converting the classes into numeric values. To
overcome this issue, our model creates the following seven two-
class problems: [YO | Y1 -Y7], [YO-Y1|Y2-Y7], [YO-Y2]|Y3-
Y7], [YO-Y3|Y4-Y7], [YO-Y4]|Y5-Y7], [YO-Y5|Y6-Y7],
and [YO - Y6 | Y7] where the threshold “|” separates the first and
second binary class, i.e., unsuitable and suitable data respectively.
For brevity, we use the notation YO-1 to refer to the two-class
problem [YO | Y1 - Y7], and so on for other classes. Based on this
model setting, class probability estimates from the seven two-
class models, one for each threshold, were combined to obtain
multi-class probability estimates for all eight categories for each
test sequence, assigning the sequence to the class with maximum
probability. The method proposed by Frank and Hall (2001), in
conjunction with the smoothing method from Schapire
et al. (2002), was used to combine the two-class probability esti-
mates into multi-class probability estimates. This process was
implemented in the OrdinalClassClassifier procedure that is avail-
able in R via RWeka. To compare the sensitivity of SAX parame-
ters to the model performance, we examined the model
performance using the seven two-class problems.

Logistic regression, the classification technique we apply to
our data, requires numeric input rather than strings of letters.
We established the numeric features by computing subse-
quence frequencies for each sequence of letters to be classified.
More specifically, for a SAX(n,m) model, which generates

strings of length n consisting of m letters, we count how often
each of the Y I m’ theoretically possible subsequences occurs
in the sequence to be classified (as we only considered subse-
quences consisting of consecutive letters). The set of subse-
quence counts are used as the predictor variables in the
logistic regression model.

Due to the available SAX parameter combinations, twenty-
five candidate models were generated and tested for their per-
formance. The model performance was evaluated in the form
of the binary classes (suitable and unsuitable) for each of the
seven two-class problems discussed above. To measure perfor-
mance, we used Area Under the ROC Curve (AUC), and Mat-
thews Correlation Coefficient (MCC). We also considered a
confusion matrix for the classification problem to obtain addi-
tional insight. A confusion matrix is a frequency distribution
table of the test data instances, illustrating how instances of
class X are assigned to class Y by the classification model. A
confusion matrix for a two-class problem shows the following
frequencies: TP (True Positives), TN (True Negatives), FP (False
Positives), and FN (False Negatives).

A receiver operating characteristics (ROC) curve shows the
true positives rate (TPR = TP/(TP + FN)) and false positives rate
(FPR = FP/(FP + TN)) in two-dimensional space (Bradley 1997;
Witten et al. 2016). Each TPR/FPR point in this space is
obtained by applying a different classification threshold on
the class probability estimates obtained from the classification
model. To summarize the information in the curve, the area
under the curve (AUC) is used as a performance measure. It
can be shown that AUC corresponds to the estimated proba-
bility that a randomly chosen positive test instance is ranked
above a randomly chosen negative test instance when the
classifier’s class probability estimates for the positive class are
used to rank the test instances. AUC is less sensitive to the rel-
ative frequency of the two classes (positive and negative) than
simple TPR or FPR measures, allowing direct comparison
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Fig. 3. The 10 most frequently recurring sequences of daily DO SAX letters from 18 lakes as well as parent and training (subsampled 300 d) datasets are
shown in proportion to the entire data used (Y axis: frequency of occurrence). For this, SAX transformation was parameterized with SAX(4,3); three letters
(a, b, ¢) and four segments a day. Theoretically there are 3* = 81 possible sequences. The seven sequences that occurred most frequently across the set
are highlighted with colors to aid intuitive recognition of their frequency of detection (aacc-red; abcc-pink; abcb-green; cbba-orange; acca-violet; abbc-
yellow; ccaablue). Parent (all lake) and training datasets are also shown. Two sequences abbc-yellow and cbba-orange that did not show up in the top
10 training data have instances of seven and eight, respectively appearing in the training data.
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Table 1. (A) Percentages (%) of full day DO SAX(n,m) sequences that appeared in the parent dataset (N = 4582) in comparison to all
the possible combination of letters (m") in various number of word size (n) and alphabet (m) settings. (B) Percentages of full day DO
SAX(n,m) unique sequences that appeared in the training dataset in comparison to parent dataset patterns in various number of word
size (n) and alphabet (m) settings. (C) Percentages of parent data incidents (i.e., number of days of N = 4582) covered by training data-
set in terms of SAX sequence.

Alphabet size
2 3 4 5 6

A: Parent dataset coverage (sequence)

Word size 2 75.0 77.8 50.0 52.0 333
3 75.0 70.4 39.1 43.2 27.3
4 87.5 66.7 47.7 36.0 26.2
5 93.8 63.8 38.4 22.2 13.1
6 92.2 48.8 21.0 9.0 4.1

B: Training dataset coverage (sequence)

Word size 2 66.7 71.4 62.5 61.5 50.0
3 100.0 94.7 92.0 72.2 78.0
4 100.0 72.2 57.4 45.3 38.2
5 76.7 49.7 31.8 22.8 19.0
6 61.0 28.7 18.4 15.3 12.5

C: Training dataset coverage (incidents)

Word size 2 100.0 99.9 99.9 99.9 99.8
3 100.0 99.8 99.6 96.7 96.3
4 100.0 96.8 90.2 82.2 76.7
5 97.7 87.9 75.4 58.5 52.6
6 96.8 78.7 60.2 46.8 29.1

across different threshold settings. Model performance is con-
sidered to be perfect if AUC = 1, and random if AUC = 0.5.
Matthews correlation coefficient (MCC, proposed by Mat-

The results are from the SAX(4,3) transformation (“candidate
models” section explores different SAX transformation
results), i.e., with 6-h resolution (n = 4) and two thresholds

thews 1975) is an alternative accuracy classification that is not
affected by imbalanced class distributions. MCC is a discrete
version of the Pearson correlation coefficient, varying from
1 (perfect fit) to O (no fit). Negative values are also possible if
“anti-learning” has occurred. MCC is calculated as:

MCC— TPx TN-FP x FN @)
/(TP +FP)(TP + FN) (TN + FP) (TN + FN)

Both AUC and MCC information were used to determine
appropriate models. Evaluation of AUC and MCC was carried
out in a 10-fold cross-validation process to estimate perfor-
mance of the full data model; i.e., they were estimated by the
average of the 10 results obtained from a rotated 10% data split
validation (Kohavi 1995). These model evaluations were exam-
ined in the two-class models, while the full confusion matrix
provided insights into the combined multi-class model.

Results

Data exploration and subsampling
The 10 most frequently recurring daily DO SAX sequences
of the parent dataset (4582 d of DO data) are shown in Fig. 3.

(m = 3). Recurrent patterns occur across several of the lakes
and most of these patterns start with the letter “a” (i.e., the
bin with the lowest normalized DO). The sequence “aacc”
[i.e., DO is low in the first half of the day (0-12 h) and high
in the second half of the day (12-24 h)] is the most fre-
quently occurring pattern in nine lakes and “abcb” [i.e., DO
rises through the first three quarters of the day (0-18 h), and
then decreases in the fourth quarter (18-24 h)] is the most
frequent pattern in three lakes. The letters are not randomly
distributed, suggesting the feasibility of categorization of
daily DO observations based on letter sequences alone.
While the SAX(4,3) transformation theoretically results in
3* =81 possible full day sequences, the parent dataset
includes only 54 (66.7%) of these patterns (Table 1A). Con-
sidering the substantial size of the parent data used, the par-
ent data patterns in small SAX parameters are thought to
include all idealized DO curves driven by biological activi-
ties, and therefore those theoretical patters that did not
appear in the parent datasets are primarily “noisy.” This cov-
erage decreases as the number of possible SAX strings
increases. The lowest coverage is found in SAX(6,6), where
4% of the available sequences appeared in the parent data.
An exception occurs for m = 2, where the parent dataset
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Fig. 4. (a) Scatter diagram: number of experts indicating that daily data is biologically dominated vs. data adequacy (YO-Y7) based on number of
experts indicating “Yes.” Circles are plotted with a small degree of randomness (0.25 jitter) to reduce visual data overlap of the discrete values, and size
of the circles reflects the number of experts who were confident with their individual decision (Pearson’s correlation coefficient: 0.87; p < 0.01). Histo-
grams complement the scatterplot to indicate frequency distribution of experts indicating that DO data were adequate (b) and that DO data were bio-

logically dominated (c).

coverage generally increases when n increases. It is notewor-
thy that the differences in coverage are primarily determined
by alphabet size rather than word length.

The coverage of sequences observed in the subsampled
parent dataset (300 d) is summarized in Table 1B. For SAX
(4,3), 39 (72%) of the 54 sequences identified in the parent
dataset are present. A higher proportion of parent data pat-
terns are covered in the subsampled data when both SAX
parameters are small. Both alphabet size and word length
similarly affect the training (subsampled 300 d) data coverage
of the parent data. Table 1C shows the proportion of parent
data full-day SAX sequences represented in the training data.
For the SAX(4,3) setting, over 95% of parent data sequences
are represented, leaving 149 instances not represented in the
training data. Similarly, the majority of parent data
sequences are included for most of the SAX parameter set-
tings, while two SAX parameter settings (SAX(6,5) = 47%;
SAX(6,6) = 29%) fail to represent more than one-half of the
instances.

Survey results

The seven experts rated 34-80% (average 60%) of the
300 daily training data as suitable for lake metabolism analy-
sis. For the threshold separation Y3-4 ([YO - Y3 | Y4 - Y7]), an
average of 62% of the training data was labeled as “suitable”
(Fig. 4). The highest number of data instances was recorded in
Y7 (n = 73), with 32 instances on average for the other classes
(min = 23, max = 48, Fig. 4). Figure S illustrates “suitable”
30-min DO data according to the expert panel results and
assigned thresholds. The available “suitable data” reduces as
the threshold level increases, but it is evident that noise in the
data are filtered out through the expert panel evaluation pro-
cess. The experts chose options [Yes] and [No] without
“maybe” 85% of the time, while classes Y3-Y5 contained more
“maybe” responses. Survey results for Q1 (Would you use this
DO data for metabolism studies?) and Q2 (Did biological pro-
cesses dominate the metabolism signal represented in DO?)
were strongly positively correlated. The survey results for Q3
(Other than DO, what data influenced your Q1 decision?)
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Fig. 5. The “good data” consisting of 30 min interval timeseries over 1 d and classified according to the expert panel decision. Seven thresholds are
shown. N represents number of days that were classified as having “good data.”

indicated that 29.6% of the time, the majority of the experts
used one or more supplementary data sources for their assess-
ment, but the type and number of supplementary data varied.
The number of times the panel requested additional data was
20 for PAR, 37 for wind speed, 1 for diel solar radiation, O for
surface temperature, 48 for temperature profile, and O for
other information. On 13 occasions, the panel cited two addi-
tional sources of supplementary data as being required to
make their decision on Q1.

Candidate models

Parameter selection and threshold analysis were attempted
through a model selection process. Twenty-five models were
created based on different SAX parameter combinations (SAX
(n, m)), i.e., n = 2-6 corresponding to 12-4 h intervals, respec-
tively, and m = 2-6 corresponding to one to five threshold
values to separate DO data. Tables 2-4 show 10-fold cross vali-
dation results of the model performance using MCC and AUC
metrics. We examined all possible combination of SAX param-
eters as well as thresholds, while shown here are what we

consider useful information. Table 2 gives the results of vari-
ous models when the threshold was set to Y5-6. Table 3 pro-
vides the results with the SAX alphabet number fixed to
3, i.e., SAX(n, 3), and Table 4 indicates the results with SAX
word length fixed to 4, i.e., SAX(4, m). For Y5-6 ([YO-YS |
Y6-Y7]), only SAX(4,3) appeared among the top five results
based on both MCC and AUC analyses. For the different
threshold settings using SAX(n, 3), n = 4 performed better in
both MCC and AUC analyses. For the models with SAX(4,m),
m = 3 results ranked in top five performance in both MCC
and AUC analysis.

An extended confusion matrix using SAX(4,3) is shown in
Fig. 6. For example, for the threshold Y3-4 ([YO-Y3 | Y4-Y7]),
174 instances were correctly classified as “suitable data”
(TP) and 13 instances were wrongly classified as “unsuitable
data” (FN). This means that of the 187 instances of “suitable
data” (for the Y3-4 threshold), the model correctly labeled
93% instances. Conversely, TN =85 and FP =28, which
means 75% of the “unsuitable data” was correctly classified as
unsuitable.
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Table 2. Ten-fold cross validated model performances in terms
of Mathews correlation coefficient (MCC, top) and area under
the receiver operating characteristic curve (AUC, bottom) with
various SAX word sizes and size of SAX alphabet, where threshold
was fixed to Y5-6 ([YO-Y5 | Y6-Y7]). Numbers in bold represent
the top five results in the table.

Lake DO classification for metabolism analysis

Table 3. Ten-fold cross validated model performances in terms
of Mathews correlation coefficient (MCC, top) and area under
the receiver operating characteristic curve (AUC, bottom) with
various SAX word sizes and threshold settings, where size of SAX
alphabet was fixed to 3. Numbers in bold represent the top five
results in the table.

MCC Alphabet size MCC Threshold
2 3 4 5 6 YO-1 Y1-2  Y2-3 Y34 Y45 Y56 Y6-7
Word size 2 0.53 0.45 0.35 0.44 0.40 Wordsize 2 0.13 034 049 0.51 043 045 0.00
3 0.28 0.41 0.44 0.41 0.34 3 030 051 046 043 050 0.41 0.00
4 0.47 0.63 0.56 0.47 0.55 4 029 050 052 061 063 063 0.36
5 0.53 0.59 0.51 0.51 0.64 5 023 048 046 058 059 059 0.26
6 0.64 0.49 0.52 0.58 0.53 6 034 042 047 059 050 049 0.27
AUC Alphabet size AUC Threshold
2 3 4 5 6 YO-1 Y1-2  Y2-3 Y34 Y45 Y56 Y6-7
Word size 2 0.72 0.73 0.76 0.74 0.75 Wordsize 2 0.65 0.71 0.74 077 074 0.73 0.71
3 0.72 0.73 0.77 0.75 0.72 3 074 081 078 075 072 073 0.67
4 0.79 0.88 0.87 0.80 0.82 4 071 0.71 082 084 086 088 0.77
5 0.81 0.84 0.81 0.80 0.88 5 071 077 077 083 081 084 0.76
6 0.83 0.85 0.85 0.82 0.84 6 065 062 071 076 081 085 0.77

Figure 7 shows six normalized DO time series of instances
with extreme errors (i.e., expert labels YO — Y2 were classified as
Y7). The fact that the classifier mis-classifies these SAX sequences
(aacc, abcb, beca) implies that they appeared repeatedly in the
training dataset and their corresponding DO time series were fre-
quently identified by the expert panel as Y7. Inspection of the
plots in Fig. 7 shows that the likely reasons for the mis-
classifications are: (1) appearance of repeated values over a part
of the day, (2) low variations of DO values, and (3) obvious
increase in DO before sunrise. Figure 8 illustrates DO data at
30-min intervals for days when data are classified as “suitable”
according to the SAX(4,3) model. The SAX(4,3) model generally
overestimated the amount of “suitable data” in each threshold
compared with the expert panel labels (Fig. 5). The number of
instances of “suitable data” classified into the higher threshold
levels was greater than the expert panel decisions in favor of
those thresholds (i.e., errors for Y5-6 and Y6-7 were 31 and
45, respectively), but the number of classifications is similar for
the lower thresholds (mean error for YO-1 to Y4-5 was 14).

Discussion

Humans have a great capacity for detecting visual patterns
(e.g., Cox et al. 1997), and our approach to evaluating the suit-
ability of DO data for metabolims models exploits that capac-
ity. As previous work has shown, DO time series are often
messy and have complex patterns, and teasing-apart the under-
lying causes of noise and bias in metabolism estimates made
from DO signals is extremely challenging (Cremona et al. 2014;
Rose et al. 2014; Giling et al. 2017). Our method provides an
alternative to the more classical approach of parametric analysis
by basing the classification of DO signals on expert knowledge,

as well as the patterns inherent in the DO data. The aforemen-
tioned approaches focus on the suite of processes, whereas our
approach focuses on the suite of patterns.

A framework for labeling data

Our primary goal was to design a framework to provide
simple labeling of suitable and unsuitable (i.e., suitable and
unsuitable for free surface metabolism models) segments in
high frequency autonomous DO data. Black-and-white expert
panel decisions were not made, as the experts had different
interpretations and expectations about the data provided to
them. Consequently, our model provides a semi-qualitative,
but informative judgment about: “how many experts would
support the quality of data,” by reproducing labels YO-Y7. A
user is then given the freedom to choose a threshold decision
level based on their expectation of confidence in the data
quality and the number of suitable data available for analysis.
While this leaves a degree of variation in the data products,
scientists may have different expectations for cleaning data.
For a metabolism model study, for example, if a higher thresh-
old (such as Y6-7) is used, the classification model may output
data that has mostly idealized shapes of DO over a diurnal
cycle (i.e., alternation of dominance by production and respi-
ration). Such a case may be expected to occur where changes
from transport and mixing are of lesser significance than bio-
logical processes. The selection of high levels of confidence
might, however, restrict the number and frequency of data
available for use by the metabolism model, and may well dis-
regard specific features that occur in reality. Conversely, if a
lower threshold such as Y3-4 is used, more data will be avail-
able, but the user will need to take a cautious approach to the



Muraoka et al.

Lake DO classification for metabolism analysis

Table 4. Ten-fold cross validated model performances in terms of Mathews correlation coefficient (MCC, top) and area under the
receiver operating characteristic curve (AUC, bottom) with various size of SAX alphabet and threshold settings, where SAX word size
was fixed to 4. Numbers in bold represent the top five results in the table.

MCC Threshold
YO-1 Y1-2 Y2-3 Y3-4 Y4-5 Y5-6 Y6-7
Number of alphabets 2 0.24 0.54 0.57 0.59 0.46 0.47 0.07
3 0.29 0.50 0.52 0.61 0.63 0.63 0.36
4 0.17 0.48 0.49 0.58 0.67 0.56 0.30
5 0.24 0.37 0.42 0.52 0.49 0.47 0.36
6 0.25 0.36 0.46 0.33 0.53 0.55 0.26
AUC Threshold
YO-1 Y1-2 Y2-3 Y3-4 Y4-5 Y5-6 Y6-7
Number of alphabets 2 0.62 0.72 0.78 0.82 0.77 0.79 0.74
3 0.71 0.71 0.82 0.84 0.86 0.88 0.77
4 0.63 0.71 0.82 0.84 0.83 0.87 0.79
5 0.69 0.63 0.75 0.82 0.80 0.80 0.78
6 0.72 0.74 0.76 0.75 0.80 0.82 0.74
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Fig. 6. All training data model results for eight classes YO-Y7 in relation
to the extent of expert agreement, where Y7 (y-axis) corresponds to the
full consensus on the use of the data. Red lines illustrate the binary class
threshold settings, and for each threshold, True Positive (TP), False Posi-
tive (FP), True Negative (TN), and False Negative were calculated. The
schematic figure at the bottom right shows the basic structure of a confu-
sion matrix for a two-class problem. TH stands for class threshold, and
extreme errors (orange dashed box) are explored in Fig. 7. The color was
added to provide visual realization of the number.

interpretation of results since by definition, reducing the Y
value reflects reduced levels of expert panel confidence in the
data quality.

SAX as transformation for data QA/QC and analysis
With increasing use of autonomous in situ sensors, and the
resulting large volume and high complexity of observations, it
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is increasingly difficult to manage, archive and analyze data.
Ecologists would therefore benefit from embracing approaches
that meld simple models with machine learning. The conven-
tional QA/QC approach for evaluating data from autonomous
sensor networks is no longer practical due to the rapid expan-
sion of sensors, networks and “big data” generally (Campbell
et al. 2013). Common QA/QC tasks typically focus on network
or sensor malfunctions, such as missing values, sensor drift, or
inconsistency. Observations of DO can be susceptible to these
types of malfunctions, but further filtering is necessary for
more complex tasks, for example, assessment of lake metabo-
lism. SAX is a simple transformation of time series data. The
transformed data also provides a different way to think about
environmental data as a sequence of words, and the unique
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Fig. 8. Dissolved oxygen data classified as “good” for 30-min interval timeseries over 1 d according to the SAX(4,3) model results and with seven thresh-

olds. N is the number of data classified as “good data.”

approach opens up opportunities for additional analytical
tools, such as a text sequence mining approach to analyze
(dis)similarity of sequence patterns.

DO signal variations are known in both intra-lake data
(driven mostly by seasonality) and inter-lake data (driven
mostly by latitude, trophic status, and geology) (e.g., Richard-
son et al. 2017). These variations might be evident as different
magnitudes of variation and frequency of peaks and troughs
in the data, and could also be influenced by differences in sun-
rise/sunset timing, or complex balances of productivity, respi-
ration, transportation, diffusion, and surface gaseous fluxes.
The latter information (i.e., magnitude and rate of a change)
was explicitly not used to filter out the data in our classifica-
tion model, as this would potentially give bias to the metabo-
lism model. Many other variables may also require complex
QA/QC processes, as well as filtering, to make sense of the
data. For example, phycocyanin sensors require consideration
of factors that affect the assumed linearity between cyanobac-
teria biomass and phycocyanin, such as the proportion of
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colonial or filamentous populations, temperature or species-
specific signals (Chang et al. 2012). In other words, relation-
ships between environmental sensor readings and the data of
interest may require specific knowledge or sensor conversions
to assess and extract information relevant to the variable of
interest (Kara et al. 2012).

Classification of time series data is challenging as the data
usually exhibit high dimensionality and are inherently noisy
(Keogh and Kasetty 2002; Hanson et al. 2008). To overcome
this, a classification model should only be provided with
appropriate information extracted from the data. For our case,
the essence of the data is the shape of the time series. The vari-
ations of DO peaks and troughs and the timing of these
requires a robust analytical procedure. The SAX transforma-
tion is simple in concept but has proven useful in many appli-
cations (Lin et al. 2007). In essence, SAX removes quantitative
uncertainties and only preserves the general shape of time
series data. Symbols, as a result of data normalization and bin-
ning in SAX, are equiprobable. In other words, the probability
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of occurrence of each symbol is likely to be equal, on the
assumption that the values in the time series are normally dis-
tributed. This provides good coverage when using SAX to
detect shapes and trends in sequences by applying string
sequence classification methods (Ralanamahatana et al. 2005).
SAX symbols are robust and clean due to the segmented
approximation process (PAA). As a result, most of the variabil-
ity in the observed data can be represented semi-quantita-
tively. PAA also reduces the computational memory and run
time used for classification, and thus allows for comparison of
multiple models in a computationally efficient way. In the
most extreme case in this study, data were reduced in number
from 1440 samples per day to 4 [in case of SAX(4,3)].

Generalizability of the SAX and expert opinion approaches

The SAX transformation of DO for 18 lakes resulted in dis-
covery of relatively consistent diurnal DO sequences across
most lakes. We emphasize that our evaluation is not of the
lakes, per se, but of the collection of DO patterns likely to be
encountered at the daily scale that have relevance to metabo-
lism. To be clear, we are not evaluating the mean or variance
of DO, but rather the specific patterns. Given a dimensionality
of SAX(4,3) which was found to be most effective at reprodu-
cing expert classification, there are 81 possible patterns. Only
about one half of the patterns were found in the data, and of
these, 7-10 patterns accounted for most of the occurrences
(Fig. 3). Put another way, a relative few patterns account for
most of the patterns found in daily DO across a broad range of
lakes, and our model training data cover most of the available
patterns. Thus, we can expect that our analysis will apply to
lakes not in this study if they present patterns that are in the
diverse collection herein, which we feel is likely.

Having verified that SAX is appropriate for the globally dis-
tributed lakes in our study, it may be appropriate in the future
to examine the drivers of differences in DO patterns among
lakes, using, for example, environmental and morphological
drivers such as season, lake trophic state, climate, location,
lake shape, and depth. In addition, the data used in our study
is localized to the level of time zone that a lake is within, but
not precisely to geographical location. This may have caused a
minor inconsistency in the temporal alignment of the pat-
terns, and if a lake’s longitude differs from the time zone lon-
gitude, a small adjustment to the observation time may be
required to apply the model appropriately.

Like all methods, the combined use of expert opinion with
SAX transformation has limitations. String similarity discovery
models use multiple combinations of letters in a word as the
model attribute. For example, in a four-letter word, one can
examine the frequency of occurrence of two-letter (e.g., [a][a],
[c][b]) or four-letter sequences (e.g., [a][a][c][b]) or the occur-
rences of two separated letter combinations in the word
(e.g., [a][*][c]). When the size of the words or available alpha-
bet size increases, the number of possible patterns used as
model attributes increases exponentially. This results in a need
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for greater computational memory and runtime. To limit this
from happening, models often deploy n-gram tokenizers that
provide a minimum and maximum number of letter combina-
tions for model inputs (Whitelaw et al. 2009). In our study, the
SAX letter length and alphabet size for daily DO transformations
did not create a major demand on computing resources, as the

maximum resource demanded was for SAX(6,6) with Z?:16i =
55,986 predictor variables. For larger datasets, one would
require further consideration of the maximum SAX sequences
relevant to the frequency and length of the data of interest.

When there was unanimity (YO or Y7) among the experts,
decisions were generally made without “maybe.” This con-
firms similar underlying logic that the experts used to deter-
mine the data quality. The Y7 label (full consensus; indicating
suitable-quality data) was by far the largest populated class,
indicating a high occurrence of “textbook quality” data in the
observations. The survey also revealed, however, that experts
had different expectations about the quality of data. This was
evidenced in the large variation between experts in the data
that was selected to be suitable (ranging between 34% and
80%). Without a full consensus among the expert panel, it is
difficult to make a strong judgment about what is suitable and
unsuitable data. It is also unreasonable to disregard any
expert’s opinion simply because it is in the minority, hence
ordinal type expert panel decisions YO-Y7 were created from
the survey instead of a majority decision, to express confi-
dence in the data by the expert panel.

Model performance assessment metrics require careful con-
sideration. For example, for habitat niche distribution model
evaluation practices, Lobo et al. (2007) suggest stating the true
positive rate (TPR) and true negative rate (INR) in addition to
the AUC values, to further reduce the chance of class imbal-
ance biases. We adapted two different metrics of AUC and
MCC together when choosing the model, where the MCC
method contains concepts of both TPR and TNR. Both metrics
suggested that SAX(4,3) gives the appropriate set of transfor-
mation parameters, providing validation in the use of this
model. With a training data set of 300 d, higher orders in the
SAX transformation, e.g., SAX(6,6), would raise concerns
regarding over-fitting of the model. While overfitting may be
a concern even with SAX(4,3), the 10-fold cross-validation
suggests this complexity of SAX is a reasonable compromise
between goodness-of-fit and generalizability. The confusion
matrix provided useful insights about the model, and it also
identified a few extreme error occurrences. The causes of
extreme errors may be due to simple QA/QC type issues
(e.g., appearance of partially repeated values and low levels of
DO variation; Fig. 7a,c,f), or lack of information to drive the
model (e.g., DO increased before sunrise; Fig. 7b,e). While the
former QA/QC issue can be easily filtered out, the latter type
of error requires additional information to help identify the
specific nature of the problem. It should also be noted that
the tool identifies repeated values or the occurrence of no data
for an entire day as a specific sequence (i.e., aaaa), which is
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likely to be classified as YO. One extreme error instance was
not caused by such errors, but was most probably due to sim-
plification made by SAX(4,3) (Fig. 7d). Identification of
extreme errors (if they exist) can be helped by comparing class
differences between the model outputs of SAX(4,3) and other
parameter sets such as SAX(6,6). Nevertheless, the occurrence
of such extreme errors related to a lack of information or SAX
simplification was minimal (< 1%).

Conclusions

Hutchinson (1957) wrote that a “skilful limnologist can
probably learn more about the nature of a lake from a series of
oxygen determinations than from any other kind of chemical
data. If these oxygen determinations are accompanied
[by additional variables], a very great deal is known about the
lake.” This quote illustrates how a highly complex lake system
can be evaluated with a series of dissolved oxygen observa-
tions, integrating both biogeochemical and physical processes.
Most numerical modeling practices involve attempting to cap-
ture the majority of these processes using a highly complex
set of equations and wusing a comprehensive dataset
(e.g., Robson 2014), but such models themselves demand con-
siderable time, effort and expertise. Theory-guided data sci-
ence (e.g., Karpatne et al. 2016) tries to capture the essence of
the system (i.e., the information contained within the system)
by using a less complex model structure, which may be appro-
priate when the dataset is incomplete. The DO data provided
to the classification model in our study effectively represented
a minimum level of information (DO shape) but the training
dataset was complemented by an expert survey process which
involved supplementary data. The use of classes together with
additional information commonly requested by the experts
(PAR, wind speed, and surface water temperature) is supported
by the model performance. The expert survey results tended
to confirm that the removal of data was predominantly due to
the influence of non-biological processes. Most lake metabo-
lism models assume that biological processes of oxygen pro-
duction and consumption dominate DO fluxes (e.g., Peeters
et al. 2016). However, a variety of non-biological processes
can be important in redistributing DO, and these difficult to
distinguish phenomena can appear in sensor observations
(e.g., Brand et al. 2008). A data mining procedure represents
an intermediate level of complexity to capture “suitable” and
“unsuitable” observations and the dominant biological and
non-biological features of the high-frequency DO sensor data.

The source code can be accessed at: https://github.com/
kohjim/DOClassifier.
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