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In the presence of an externally supported, mean magnetic field, a turbulent, conducting medium, such as
plasma, becomes anisotropic. This mean magnetic field, which is separate from the fluctuating, turbulent
part of the magnetic field, has considerable effects on the dynamics of the system. In this paper, we examine
the dissipation rates for decaying incompressible magnetohydrodynamic (MHD) turbulence with an
increasing Reynolds number and in the presence of a mean magnetic field of varying strength. Proceeding
numerically, we find that, as the Reynolds number increases, the dissipation rate asymptotes to a finite
value for each magnetic-field strength, confirming the Kármán-Howarth hypothesis as applied to MHD.
The asymptotic value of the dimensionless dissipation rate is initially suppressed from the zero-mean-field
value by the mean magnetic field but then approaches a constant value for higher values of the mean-field
strength. Additionally, for comparison, we perform a set of two-dimensional (2DMHD) and a set of
reduced MHD (RMHD) simulations. We find that the RMHD results lie very close to the values
corresponding to the high-mean-field limit of the three-dimensional runs while the 2DMHD results admit
distinct values far from both the zero-mean-field cases and the high-mean-field limit of the three-
dimensional cases. These findings provide firm underpinnings for numerous applications in space and
astrophysics wherein von Kármán decay of turbulence is assumed.

DOI: 10.1103/PhysRevX.8.041052 Subject Areas: Astrophysics, Fluid Dynamics,
Plasma Physics

I. INTRODUCTION AND BACKGROUND

Turbulence is a ubiquitous, although incompletely
understood, phenomenon. In turbulent astrophysical plas-
mas, velocity and magnetic fields are often equally impor-
tant, and magnetohydrodynamic (MHD) turbulence, the
case considered here, becomes an appropriate description.
The energy supply for turbulence usually originates at large
scales due to some type of stirring or driving mechanism,
after which the energy cascades to smaller scales, finally
reaching the dissipation scale where the energy is dissi-
pated into heat by viscosity and resistivity. For incom-
pressible hydrodynamics, the single scalar viscosity ν
parametrizes microscopic nonideal effects such that for
laminar flows the energy-dissipation rate vanishes when
ν → 0. However, for turbulent flows, following the hypoth-
esis stated by Taylor [1] and von Kármán and Howarth [2]

and later employed byKolmogorov [3], in the zero-viscosity,
infinite Reynolds number Re ∼ 1=ν → ∞ limit, the energy-
dissipation rate approaches a constant, nonzero limit [4].
[The renowned Kolmogorov theory of universal scaling in
the inertial range (K41) [5] in essence assumes this limiting
behavior.] This so-called “dissipative anomaly” is well
supported in experiments and computations [6,7].
For the case of incompressible MHD, there are two

relevant dissipation coefficients, viscosity (ν) and resistivity
(μ), associated with the velocity and magnetic field,
respectively. The limit of zero viscosity and resistivity
ðν; μ → 0Þ is again of interest with regard to fully devel-
oped turbulent systems. In practice, one finds that, for
essentially all astrophysical as well as terrestrial turbulent
systems, the mechanical and magnetic Reynolds numbers
(inverse of viscosity and resistivity in nondimensional
units) are of large and sometimes colossal magnitude,
justifying the success of turbulence phenomenologies like
K41. For example, the effective mechanical and magnetic
Reynolds number, in the solar wind, are of the order of 105

or more [8] (also see Ref. [9]) and much larger in the
interstellar medium. Therefore, one might be tempted to
assume ν, μ ¼ 0 as an approximation. However, in analogy
to the hydrodynamics case, the limit ν, μ → 0 is very
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different from the ν, μ ¼ 0 case. This difference is
manifested in the counterintuitive phenomena that, as the
limit ν, μ → 0 is approached, the total turbulent energy-
dissipation rate does not vanish but remains finite. MHD
energy dissipation is exactly zero for the ideal case
ðν; μ ¼ 0Þ. Onsager [10] conjectures that this problem of
an energy-dissipation anomaly arises due to the lack of
smoothness in the velocity field increments in the context
of three-dimensional hydrodynamic turbulence. Based on
this idea of a lack of smoothness in the velocity field,
Duchon and Robert [11] derive a local form of dissipation
which is generalized to incompressible Hall MHD by
Galtier [12]. An apparent explanation of anomalous dis-
sipation is given in a work by Cichowlas et al. [13], who
show that, even for ideal Eulerian flows, the large-
wave-number modes play the role of an effective eddy
viscosity leading to an approximate Kolmogorov scaling at
the inertial scales. This idea is further extended to two-
dimensional MHD by Krstulovic, Brachet, and Pouquet
[14]. Here, we examine this apparently singular behavior
(see, e.g., Refs. [15–18]) not from a rigorous mathematical
perspective but from an empirical perspective based on
accurate spectral-method computations.
Taylor first suggested, based on empirical arguments,

that the dissipation rate in a fully developed turbulent
system becomes independent of viscosity. Kármán and
Howarth [2] established Taylor’s results more rigorously,
assuming that the shape of the two-point correlation
function remains unchanged. The first experimental veri-
fication of Kármán and Howarth’s result comes from an
experiment performed by Batchelor and Townsend [19–22]
using wind-tunnel measurements. Politano and Pouquet
[23] generalize the von Kármán–Howarth equations for
isotropic MHD. Wan et al. [24] investigate nonuniversality
of Kármán-Howarth-like decay in MHD in the presence of
factors like mean magnetic field, helicity, etc.
Recently, Wu et al. [25] and Parashar et al. [26] have

shown using particle-in-cell simulations that, even in the
case of weakly collisional plasmas, the von Kármán decay
law remains valid. Most of these studies are interested in
the temporal behavior of the fluctuation amplitude and its
relationship with the large-scale fluctuations and an energy-
containing length scale. For neutral fluids, the variation
of dimensionless dissipation rate Cϵ with the Reynolds
number is studied experimentally in shear flows [27],
numerically in homogeneous incompressible flows [28],
and in weakly compressible flows [29]. In all cases, an
asymptotic value of Cϵ ≈ 0.5 is found. We remark here that
the dimensionless dissipation rateCϵ, as defined by Pearson
et al. [29], is proportional to one of the constants in von
Kármán decay phenomenology (see Appendix B in
Ref. [30]). Mininni and Pouquet [18] carry out direct
numerical simulations of decaying isotropic MHD turbu-
lence, demonstrating that the mean dissipation rate per unit
mass, ϵ, remains finite and becomes independent of viscos-
ity and resistivity as the Reynolds number (Taylor-scale

Reynolds number Rλ in this case) increases. Dallas and
Alexakis [31] perform a similar analysis showing the
variation of the dimensionless dissipation rate with a
Taylor-scale Reynolds number with the initial velocity
and current density being highly correlated. A comparison
with Ref. [18] reveals that the dimensionless dissipation rate
saturates to a finite value but the level of saturation depends
on the strength of the initial cross-correlation. Recently,
Linkmann et al. [32,33] have performed a series of inves-
tigations for a similar analysis in isotropicMHD.By fitting a
model equation, an asymptotic value of the dimensionless
dissipation rate, Cϵ;∞ ¼ 0.265� 0.013, is found for non-
helical decaying MHD with no mean field. This value is
considerably different from the fluid case. McComb and
Fairhurst [34] derive a similar model equation for fluid
turbulence.
The presence of a mean magnetic field suppresses the

decay rate in MHD systems and renders the system
anisotropic. Early studies by Hossain et al. [35,36] at a
low Reynolds number demonstrate that the mean field
initially inhibits dissipation, but the effect of Alfvénic
propagation soon saturates for sufficiently large values of
the mean field. More recently, Bigot et al. [37–39]
investigated the energy decay in the presence of a strong
uniform magnetic field. Zhdankin, Boldyrev, and Mason
[40] also study the effect of a mean field at dissipation sites
in MHD turbulence. Naturally, one expects a decrease of
the dimensionless dissipation rate (or the von Kármán
decay constant) with an increasing strength of the mean
field. We present here a further analysis of the dissipation
rate for increasing values of the mean field. We find that, for
each value of the mean field, the dissipation rate asymp-
totes to a finite value in the limit of a large Reynolds
number. These results are relevant for systems in which the
anisotropy due to the presence of a mean magnetic field
cannot be neglected. Such situations are often realized in
astrophysical plasmas near stellar objects. Our results show
that the value of the dimensionless dissipation rate is well
separated from the isotropic value for a strong mean field.
We first reestablish the isotropic case by comparing with
results from Ref. [33] and then proceed in a similar fashion
to anisotropic cases.

II. EQUATIONS AND APPROACH

The equations of three-dimensional incompressible
MHD, in the absence of external forcing, are written as

∂u
∂t þ ðu · ∇Þu ¼ −∇Pþ ðj ×BÞ þ ν∇2u; ð1Þ

∂B
∂t þ ðu · ∇ÞB ¼ðB · ∇Þuþ μ∇2B; ð2Þ

∇ · u ¼ 0; ð3Þ
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∇ ·B ¼ 0; ð4Þ

where u is the fluctuating velocity field and B is the total
magnetic field, which we assume can be decomposed into a
spatially uniform mean and a fluctuating part: Bðr; tÞ ¼
B0 þ bðr; tÞ. Without any loss of generality, we choose
B0 ¼ B0ẑ. P is the total (thermalþmagnetic) pressure
field, j¼ð∇×BÞ=μ0 is the current density, ν is the kinematic
viscosity, and μ is the magnetic diffusivity. Equation (3)
enforces incompressibility. For simplicity, we assume the
fluid density ρ is constant and set it to unity. For this study,
we consider a unit magnetic Prandtl number ðPm ¼ ν=μÞ,
i.e., equal viscosity and resistivity:

ν ¼ μ: ð5Þ

With this constraint, the MHD equations (1)–(4) can be
written in terms of the Elsasser variables z� ¼ u� b as

∂z�
∂t ¼ �vA · ∇z� − z∓ · ∇z� − ∇Pþ ν∇2z�: ð6Þ

Here, vA is the Alfvén velocity defined as vA ¼ B0=
ffiffiffiffiffiffi
4π

p
.

The Elsasser energies are given by

Z2
� ¼ hjz�j2i ¼ hju� bj2i: ð7Þ

Following the argument associated with the preservation
of the functional form of the two-point correlation
functions, one can generalize the von Kármán–Howarth
[2] result to isotropicMHD [23] orMHD isotropic in a plane
perpendicular to a strong mean field [24]:

dZ2
�

dt
¼ −α�

Z2
�Z∓
L�

; ð8Þ

dL�
dt

¼ β�Z∓; ð9Þ

where α� and β� are constants and L� are the
energy-containing scales corresponding to the two
Elsasser variables. Precise definitions of L� depend on
the phenomenology used. We come back to the definition
of energy-containing scale later in the paper. For a small cross
helicity ðHc ≃ 0Þ, the “þ” and “−” variables remain almost
equal so that one can write

dZ2

dt
¼ −α

Z3

L
; ð10Þ

dL
dt

¼ βZ; ð11Þ

where Z ≃ Zþ ≃ Z−. It is apparent from these equations that
the sequence of assumptions (especially, self-preservation
of the correlations) leading to this point implies that the

energy-dissipation rate becomes independent of the dissipa-
tion coefficients ν ¼ μ. It is one of the main goals of this
paper to measure the finite energy-dissipation rate in the
asymptotic limit of a large Reynolds number forMHD in the
presence of a mean field at zero magnetic and cross helicity.
The mean turbulent energy-dissipation rate per unit mass

in incompressible MHD, for the unit magnetic Prandtl
number (Pm), can be written as

ϵðtÞ ¼ νhω2 þ j2i; ð12Þ

where ω ¼ ∇ × u is the vorticity and h� � �i denotes spatial
averaging.
Linkmann et al. [32,33] propose a definition of the non-

dimensional energy-dissipation rate in MHD turbulence as

CϵðtÞ ¼ Cþ
ϵ ðtÞ þ C−

ϵ ðtÞ; ð13Þ

where

C�
ϵ ðtÞ ¼

ϵðtÞL�ðtÞ
W�ðtÞ2W∓ðtÞ

; ð14Þ

where

L�ðtÞ ¼
3π

8E�ðtÞ
Z

k−1hjz�ðk; tÞj2idk; ð15Þ

where z�ðk; tÞ denotes the Fourier transform of the
respective Elsasser variables. Assuming isotropy, the rms
values of the Cartesian components of Z2

� are given by

W2
� ¼ Z2

�=3: ð16Þ

The W� are the Elsasser variable analogs of the u0 in
Eu ¼ 3ðu0Þ2=2, which is the classical definition often
employed in isotropic hydrodynamic work [19]. Here,
we use

E�ðtÞ ¼ 2EðtÞ � 2HcðtÞ≡ Z2
�; ð17Þ

where EðtÞ is the total energy

EðtÞ ¼ 1

4

Z
hjzþðk; tÞj2 þ jz−ðk; tÞj2idk ð18Þ

and HcðtÞ is the cross helicity

HcðtÞ ¼
1

4

Z
hjzþðk; tÞj2 − jz−ðk; tÞj2idk: ð19Þ

For Hc ≃ 0, one expects Cþ
ϵ ≃ C−

ϵ . Furthermore, Linkmann
et al. [32,33] also suggest a generalized Reynolds number
defined as
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R− ¼ W−Lþ
ðνþ μÞ : ð20Þ

In this paper, we study the variation of the dimensionless
dissipation rate, as defined by Eqs. (13) and (14) with the
generalized Reynolds number defined in Eq. (20). For
comparison, we also report the integral scale Reynolds
number defined as

RL ¼ u0Lint

ν
; ð21Þ

where

Lint ¼
�
3π

4

�R
k−1EuðkÞdkR
EuðkÞdk ð22Þ

and u0 denotes the rms speed with Eu ¼ 3ðu0Þ2=2. Here,
EuðkÞ denotes the omnidirectional kinetic-energy spectrum,
and Eu ¼ R

EuðkÞdk is the total kinetic energy. Similarly,
the Taylor microscale Reynolds number is defined as

Rλ ¼
u0λ
ν

; ð23Þ

where

λ ¼
�
5
R
EuðkÞdkR

k2EuðkÞdk
�
1=2

¼ u0
ffiffiffiffiffiffiffiffi
15ν

ϵ

r
: ð24Þ

The effect of a mean magnetic field on magnetohydro-
dynamic turbulence was first investigated and quantified by
Shebalin, Matthaeus, and Montgomery [41] in two dimen-
sions and generalized to three dimensions by Oughton,
Priest, and Matthaeus [42]. Spectral anisotropy in three
dimensions is quantified by defining Shebalin angles θQ as

tan2 θQðtÞ ¼
P

k2⊥jQðk; tÞj2P
k2kjQðk; tÞj2 ; ð25Þ

where kk is the wave-vector component along the direction
of the mean magnetic field, k⊥ is the wave vector in the
plane perpendicular to the mean field, and the summations
extend over all values of wave vector k. In the present
notation, kk ¼ kz and k2⊥ ¼ k2x þ k2y. In general, Q can be
any vector field, although here we consider only velocity
field u and magnetic field b.
We define

r ¼ 2Eb

B2
0

; ð26Þ

where Eb ¼ δb2=2 is the total magnetic-field fluctuation
energy. Therefore,

ffiffiffi
r

p
is the ratio of fluctuation amplitude

and mean magnetic-field strength:

r ¼
�
δb
B0

�
2

: ð27Þ

III. NUMERICAL METHOD

We solve the MHD equations in a periodic box of
dimension ð2πÞ3 using a pseudospectral method in a
Fourier basis. We employ the second-order Runge-
Kutta scheme for time advancement and the 2=3 rule for
dealiasing. Instead of using an automatically adjustable
time step, in this study the time step is held constant for a
set of runs but halved when instabilities occur. All the
runs are initialized with a modal spectrum proportional to
1=½1þ ðk=k0Þ11=3�, where the “knee” of the spectrum is
k0 ¼ 4 and only Fourier modes within the band 1 ≤ k ≤ 15
are excited. The total kinetic and magnetic energy are both
normalized to 0.5 initially. All the measurements are made
at the time of highest dissipation. In all runs, the kinetic,
magnetic, and cross helicities are small initially and remain
so during the simulation times considered. Furthermore,
since velocity and magnetic fields are generated independ-
ently, we may assume that cross-correlations involving
higher derivatives [31] are suitably small throughout.
In all runs, the maximum resolved wave number kmax is

greater than the dissipation wave number (reciprocal of the
Kolmogorov length scale η) defined as

kdiss ¼
1

η
¼

�
ϵ

ν3

�
1=4

: ð28Þ

Wan et al. [43] show that the ratio kmax=kdiss ¼ kmaxη
should be at least three for sufficient numerical accuracy of
the fourth-order moments. However, for studies of the
present kind, as earlier reported by Pearson et al. [29], we
find that kmaxη ≥ 1 suffices and increasing the resolution
further does not substantially change the results. Recall that
the more strict requirement proposed by Wan et al. [43]
pertains mainly to higher-order statistics and coherent
structures, while an accurate portrayal of lower-order
quantities such as energy spectra, which control instanta-
neous dissipation, has less stringent requirements. This
requirement can also be seen from Table II in Ref. [43],
where kdiss becomes accurate in the range 1 ≤ kmaxη ≤ 1.9.
Since k4diss ¼ ϵ=ν3, this result implies that the dissipation
rate also becomes accurate in this range.
The details of the simulations used in this study are

found in Table I. Measurements are made at the instant of
peak dissipation, and shortly after this time the simulations
are stopped. Ideally, one should consider performing an
ensemble of runs and then calculate the statistics. However,
the computational cost being prohibitively expensive,
particularly for the high-mean-field cases, we defer such
refinements to a later time.

IV. RESULTS

The dimensionless dissipation rates, obtained from the
runs in Table I, are plotted as a function of the generalized
Reynolds number in Fig. 1. Linkmann et al. [32,33] show

RIDDHI BANDYOPADHYAY et al. PHYS. REV. X 8, 041052 (2018)

041052-4



that for isotropic MHD one can fit a simple model equation
to Cϵ, provided R− ≥ 80:

Cϵ ¼ Cϵ;∞ þ A
R−

þOðR−2
− Þ; ð29Þ

where Cϵ;∞ is the asymptotic value of Cϵ as R− tends to∞,
A is a time-dependent coefficient, and OðR−2

− Þ represents
terms of higher order, which we are neglecting here. For
lower Reynolds numbers, second-order and higher terms

cannot be neglected and may be important to derive model
equations such as those described in Refs. [32,33]. Since
the main goal of this paper is not to build such model
equations but to measure the asymptotic value of the
dimensionless dissipation rate and investigate its variation
with the mean magnetic field, we consider only high
Reynolds numbers ðR− ≥ 80Þ and work only with the
leading-order term.
We fit Eq. (29) to each set of runs; see Table I. The solid

lines in Fig. 1 are obtained from this fitting. We use a

TABLE I. Parameters for three-dimensional spectral simulations: mean magnetic-field strength B0, grid resolution N3, viscosity and
resistivity ν and μ (set equal), Taylor scale Reynolds number Rλ, integral scale Reynolds number RL, generalized Reynolds number R−,
dimensionless dissipation rate Cϵ, Shebalin angles for velocity field θu and for magnetic field θb, square of the ratio of the fluctuation
amplitude and mean magnetic field r ¼ ðδb=B0Þ2 (not applicable for the B0 ¼ 0 case), time step dt, and ratio of maximum resolved
wave number and dissipation wave number kmaxη. See the text for definitions of the quantities. All measurements are made near the time
of maximum dissipation.

B0 N3 ν¼μ ð×10−3Þ Rλ RL R− Cϵ θu θb r dt ð×10−4Þ kmaxη

0 2563 2.0 32.53 116.09 89.05 0.456 54.7 54.8 10.0 1.83
0 5123 1.0 48.07 216.26 166.82 0.382 54.7 54.6 5.0 2.24
0 5123 0.5 68.44 394.21 308.21 0.330 54.8 54.7 5.0 1.36
0 7683 0.4 76.06 483.43 382.76 0.316 54.6 54.4 4.0 1.73
0 7683 0.3 87.68 622.84 496.21 0.300 54.6 54.5 4.0 1.40
0 10243 0.2 105.7 886.04 713.61 0.285 54.9 55.0 2.5 1.39
0 15363 0.15 121.68 1126.96 910.97 0.270 54.7 54.6 1.5 1.69
0 20483 0.1 145.63 1605.56 1313.66 0.261 54.6 54.7 1.25 1.66

1 2563 2.0 40.59 121.5 88.59 0.356 60.2 61.8 0.7550 10 1.92
1 5123 1.0 59.94 228.62 168.50 0.298 62.8 63.9 0.7377 5.0 2.36
1 5123 0.5 86.22 413.14 303.21 0.264 64.9 65.7 0.7209 5.0 1.43
1 7683 0.4 96.17 506.29 374.40 0.254 58.0 59.9 0.7138 4.0 1.82
1 7683 0.3 110.80 656.66 485.14 0.249 66.1 66.8 0.7074 4.0 1.47
1 10243 0.2 135.28 931.42 688.66 0.236 66.6 67.1 0.7029 2.5 1.45
1 15363 0.15 159.67 1273.54 932.60 0.238 67.3 67.6 0.7060 2.0 1.77
1 20483 0.1 190.99 1811.17 1331.78 0.234 67.0 67.3 0.6986 1.25 1.73

3 2563 2.0 59.15 137.51 96.14 0.216 64.6 65.3 0.0953 2.5 2.18
3 5123 1.0 90.3 256.40 183.8 0.160 69.8 70.3 0.0899 1.0 2.77
3 5123 0.5 134.42 463.69 331.23 0.132 74.0 74.5 0.0870 1.0 1.72
3 5123 0.4 157.05 572.75 408.17 0.120 75.1 75.5 0.0882 1.0 1.48
3 7683 0.3 177.78 738.42 524.07 0.122 76.7 77.2 0.0871 9.0 1.77
3 10243 0.2 216.76 1054.46 752.93 0.116 78.2 78.6 0.0846 0.8 1.77
3 10243 0.15 247.75 1367.76 977.78 0.114 79.1 79.4 0.0839 0.8 1.42
3 15363 0.1 299.74 1961.17 1406.34 0.111 80.0 80.3 0.0838 0.5 1.57

8 2563 2.0 67.45 141.86 99.52 0.169 63.2 63.5 0.013 1.0 2.35
8 5123 1.0 98.98 247.13 176.00 0.131 69.3 69.7 0.0125 0.5 2.96
8 5123 0.5 159.41 459.39 327.15 0.094 73.8 74.0 0.0124 0.5 1.86
8 5123 0.4 190.30 572.86 407.77 0.082 74.8 75.0 0.0126 0.5 1.61
8 5123 0.3 225.92 725.48 514.83 0.074 76.6 76.7 0.0124 0.5 1.33
8 7683 0.2 284.55 1014.84 726.54 0.064 78.3 78.4 0.0123 0.3 1.49

15 2563 2.0 66.5 138.08 96.15 0.173 63.7 64.0 0.0037 0.65 2.34
15 5123 1.0 101.34 249.22 178.09 0.125 69.6 69.8 0.0036 0.3 2.99
15 5123 0.5 163.05 461.06 327.82 0.090 73.9 74.3 0.0036 0.3 1.88
15 5123 0.4 184.57 556.69 397.84 0.084 74.8 74.9 0.0035 0.3 1.61
15 5123 0.3 228.77 727.64 519.81 0.072 76.4 76.6 0.0035 0.3 1.33
15 7683 0.2 292.14 1023.87 730.58 0.062 78.4 78.4 0.0035 0.25 1.51
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least-square fitting technique to fit the polynomial Eq. (29)
to the data for each value of the mean magnetic field, which
ranges over values of 0, 1, 3, 8, and 15. In all cases, we see
that the fits agree reasonably well with the sets of individual
data points, and in some cases the agreement is excellent.
The asymptotic values, i.e., the values of Cϵ;∞, obtained by
this procedure are reported in Table II. The value for the
isotropic case is in agreement with the one reported in
Ref. [33], within uncertainty. The values of Cϵ;∞ for B0 > 0

decrease first with an increasing strength of the mean field
but then saturate. This agreement can be seen by comparing
the two sets of data obtained for B0 ¼ 8.0 and B0 ¼ 15.0,
which almost lie on top of each other. Quantitatively, it can
be seen from Table II that the two values of Cϵ for the
B0 ¼ 8.0 and B0 ¼ 15.0 cases lie within their limits of
simulation uncertainty. This result is reminiscent of the
Hossain et al. [36] study that observes a suppression of the
dissipation rate due to a mean field of moderate strength
compared to the dissipation rate in the isotropic case.
This effect, however, saturates at higher mean-field
strengths. This result is explained by noticing that the

mean magnetic field suppresses spectral transfer parallel to
the mean field so that the spectrum becomes progressively
more anisotropic, saturating at an anisotropy determined by
the parallel bandwidth of the initial data (or forcing)
[39,41,42]. Once saturated, a further increase of the mean
field has negligible effect. Thus, at strong mean-field
values, the Alfvén time does not play a dominant role in
determining the triple decorrelation time that establishes the
spectral transfer rates (see, e.g., Ref. [44]).We note here that
for the simple case of a unit Alfvén ratio ðrA¼Eu=Eb¼1Þ
and zero cross helicity ðHc ¼ 0Þ, as considered here, a
similar convergence is obtained if the traditional, hydro-
dynamic, definition of the dimensionless dissipation
rate, Cϵ ¼ ϵu03=Lint, is used instead of Eqs. (13) and (14).
However, this convergence may not be necessarily true for
any general condition.
To compare the convergence of the nondimensional

dissipation rate in three-dimensional MHD in the presence
of a strong mean field with two-dimensional MHD
(2DMHD), we perform a set of 2DMHD simulations with
decreasing viscosity and resistivity (see Ref. [41] for
governing equations and other details). The two-dimen-
sional simulations are performed in almost identical con-
ditions as the three-dimensional ones. Here, the box
dimension is ð2πÞ2, and the initial spectrum is excited in
the 1 ≤ k ≤ 15 band, with the modal spectrum proportional
to 1=½1þ ðk=4Þ8=3� so that the omnidirectional spectrum is
approximately k−5=3 at large k. As can be seen in Fig. 1, the
values corresponding to 2DMHD are close to neither the
B0 ¼ 0 case nor the B0 ¼ 8, 15 limit. This result demon-
strates the unique nature of the two-dimensional decay of
magnetofluids. Although spectral transfer becomes progres-
sively two-dimensional as the mean magnetic field is
increased, the limit is not identical with the perfectly two-
dimensional system. This discontinuity is presumably due to
the additional invariant in 2DMHD, namely, the mean-
squared magnetic potential which is not conserved for
3DMHD, even in the presence of a strong mean field. This
extra invariant puts additional constraints on the dynamics of
decay of energy-containing eddies in 2DMHD. In particular,
with regard to the presence of a second ideal invariant in 2D,
we note that the mean-squared potential is expected to be
backtransferred to longer wavelengths during the cascade.
This process induces the growth of large magnetic islands,
which contribute at most very weakly to the direct cascade.
Therefore, one might view the standard estimate of the
similarity scale (i.e., energy-containing scale), given in
Eq. (15), as somewhat of an overestimate, which may point
the way to understanding the overestimate given by Eq. (15)
when applied to the 2D case.
To investigate the issue of reduction of dimensionality

further, we also employ a set of reduced MHD (RMHD)
simulations. RMHD is often used as a simpler model of
plasma in the presence of an energetically strong mean
magnetic field (see Ref. [45] for governing equations and

FIG. 1. Dimensionless dissipation rate ðCϵÞ plotted as a
function of generalized Reynolds number R− for three-
dimensional runs with different values of mean field B0, one
set of two-dimensional runs, and one set of reduced MHD runs
along with fitted polynomials represented by continuous lines of
the same color as the corresponding runs.

TABLE II. Summary of the asymptotic nondimensional dis-
sipation rate Cϵ;∞ from different simulation sets of Table I and
sets of RMHD and 2DMHD runs. Additionally, we report the
value of the constant A in Eq. (29).

B0 Cϵ;∞ A

0.0 0.260� 0.007 18� 1
1.0 0.224� 0.002 11.8� 0.4
3.0 0.100� 0.002 11.0� 0.5
8.0 0.053� 0.006 12� 1
15.0 0.051� 0.005 12.1� 0.9
RMHD 0.036� 0.005 11.5� 0.8
2DMHD 0.132� 0.007 14� 1
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other discussions). Again, the RMHD runs have almost
identical conditions as the 3DMHD ones except that, here,
the measurements are made near the instant of maximum
dissipation associated with the kk ¼ 1 modes. Here, we
solve the RMHD equations in rescaled “code” units, with
B0 ¼ 1 and δbðt ¼ 0Þ ¼ 1. Note, however, that in unscaled
units these values correspond to physical situations with
δb ≪ B0, as must be the case for RMHD (see, e.g.,
Ref. [45]). Figure 1 shows that, contrary to the 2DMHD
results, the RMHD values almost superimpose on the
3DMHD values for high-mean-field cases. These results
show that, at least for the problem of global dissipation,
RMHD may be a more realistic approximation to the full
three-dimensional system in the presence of a strong mean
magnetic field than 2DMHD is.
An additional view of the approach to asymptotic values of

the dissipation rate is provided inFig. 2. Figure 2(a) shows the
empirical estimate of the asymptotic decay rate Cϵ;∞ plotted
against the mean-field strength B0, and Fig. 2(b) showsCϵ;∞
plotted versus 1=

ffiffiffi
r

p ¼ B0=δb. Still another view is provided
by examining how the asymptotic decay rate varies with the
spectral anisotropy measured by the value of the Shebalin
angle θb at the time of peak dissipation; this view is shown in
Fig. 2(c). Here, we see that the anisotropy saturates at large
mean-field values so that the subsequent values of the
dissipation rate cluster near the associated saturated
Shebalin angle. Since the values of the Shebalin angles also
loosely depend on the Reynolds number, the values of θb
corresponding to ν ¼ 0.0002 are considered here.
In Fig. 2, we also show the values of Cϵ;∞ extrapolated

from the 2DMHD and RMHD runs. The values of δb=B0

and the ratio of perpendicular to parallel characteristic
length scales l⊥=lk are small but somewhat arbitrary for
RMHD, and there are an infinite choice of values. The
2DMHD values are only for comparison. Therefore, we
plot the Cϵ;∞ corresponding to the 2DMHD and RMHD
simulations at the right edge of the horizontal axes of the
three subplots, arbitrarily.

V. SUMMARY

We have performed a quantitative measurement of
variation of the nondimensional dissipation rate in MHD
turbulence in the presence of a mean magnetic field using
Fourier pseudospectral simulations. We find that the dis-
sipation rate approaches a nonzero asymptotic value for
increasing Reynolds numbers (mechanical and magnetic)
and for an increasing mean dc magnetic-field strength. This
finding confirms the generalizations of the von Kármán–
Howarth theory of hydrodynamics to the case of magneto-
hydrodynamics [35,36].
This conclusion provides an essential confirmation of

the underlying theory, normally assumed, upon which
research is based in several key areas of space and
astrophysics. Two prominent examples are the derivation
and use of so-called “third-order laws” or Yaglom rela-
tions, such as the well-studied Politano-Pouquet relations
[23], and the estimation of decay rates in turbulence
transport theories [46]. Generalized Yaglom laws have
been widely employed in studies of interplanetary turbu-
lence [47–49], while turbulence-based global models
have found important applications (as well as agreement
with observations) in the simulation of the outer helio-
spheric plasma [46,50,51] and in the inner solar wind and
corona [30].
We note that the saturation of the dimensionless dis-

sipation rate is obtained for low values of δb=B0 where
weak turbulence could become important in certain circum-
stances [52,53]. For weak turbulence, the leading-order
behavior is that of waves, and energy transfer across scales
is achieved through resonant interactions among wave
modes, mediated by interaction with 2D (nonpropagating)
modes or quasi-2D modes. Although the present simulation
results, including the RMHD cases, fall within the strong-
turbulence regime (due to nonpropagating fluctuations; see
Ref. [54]), one might expect a similar dissipation anomaly

(a) (b) (c)

FIG. 2. Asymptotic value of the dimensionless dissipation rate Cϵ plotted against different measures of anisotropy. (a) Cϵ;∞ versus
mean magnetic-field strength B0; (b) Cϵ;∞ versus 1=

ffiffiffi
r

p ¼ B0=δb; (c) Cϵ;∞ versus Shebalin angles θb. The square, cross, and diamond
symbols represent results from the 3DMHD, RMHD, and 2DMHD runs, respectively. The RMHD and 2DMHD values are plotted at the
edge of the horizontal axes.
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in weak turbulence. However, we have not examined the
weak turbulence regime here.
Clearly, there is scope for the application of the present

findings to numerous astrophysical plasmas. As discussed
before, the Reynolds numbers in these systems are very
large, and often these systems have a strong mean magnetic
field along with the turbulent component. For example, the
ratio of the rms fluctuation to the mean magnetic field in the
solar wind at 1 AU is approximately 0.5. Other astrophysi-
cal systems can be even more anisotropic. The solar corona
has an even stronger mean magnetic field, which makes the
plasma highly anisotropic in those regions. The Parker
Solar Probe (PSP) mission, which was launched on August
12, 2018, will make in situ measurements close to the Sun,
in the solar corona. The results presented in this paper will
be helpful to investigate PSP data and for modeling the
solar corona.
The analysis presented here also enables one to directly

probe the validity of the dissipative anomaly for anisotropic
MHD, that is, the assumption of finite dissipation in the
limit of infinite Reynolds number for anisotropic MHD.
The same may not be true for pure hydrodynamic turbu-
lence [17], since two-dimensional hydrodynamic turbu-
lence, unlike its MHD counterpart, does not maintain finite
dissipation in the limit of vanishing viscosity.
Beyond the explanation based on anisotropic spectral

transfer given above, the saturation of the dissipation rate
may also be related to the reconnection rate in the system,
especially since magnetic reconnection provides an effi-
cient mechanism of dissipation. We note that, as the mean
magnetic field becomes stronger, the system becomes
quasi-two-dimensional and the islands may begin to form
thin current sheets, facilitating reconnection in the classical
sense. It would be interesting to investigate further how the
statistics of the reconnection rates change as the strength of
the mean field increases (see Ref. [55]).
It may be interesting to perform a study similar to the

current one for other systems that become anisotropic. One
example is rotating turbulence. It has been shown that,
under rotation, a turbulent fluid system becomes aniso-
tropic and approaches a two-dimensional state, similar to
anisotropic MHD [56].
Another important direction of further investigation is

eddy viscosity, which is often used in global and homo-
geneous turbulence simulations as an approximation to
represent effects of unresolved scales. In order for the
results of an eddy viscosity or any other such model to be
physical, it is important that the results presented in this
paper are maintained in such approximations, at least
qualitatively. We plan to address these problems using
large-eddy simulations in the future.
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