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Abstract

Nested dichotomies are a standard statistical technique for tackling
certain polytomous classification problems with logistic regression. They
can be represented as binary trees that recursively split a multi-class clas-
sification task into a system of dichotomies and provide a statistically
sound way of applying two-class learning algorithms to multi-class prob-
lems (assuming these algorithms generate class probability estimates).
However, there are usually many candidate trees for a given problem and
in the standard approach the choice of a particular tree is based on do-
main knowledge that may not be available in practice. An alternative is to
treat every system of nested dichotomies as equally likely and to form an
ensemble classifier based on this assumption. We show that this approach
produces more accurate classifications than applying C4.5 and logistic
regression directly to multi-class problems. Our results also show that
ensembles of nested dichotomies produce more accurate classifiers than
pairwise classification if both techniques are used with C4.5, and compa-
rable results for logistic regression. Compared to error-correcting output
codes, they are preferable if logistic regression is used, and comparable in
the case of C4.5. An additional benefit is that they generate class proba-
bility estimates. Consequently they appear to be a good general-purpose
method for applying binary classifiers to multi-class problems.

1 Introduction

A system of nested dichotomies is a binary tree that recursively splits a set of
classes from a multi-class classification problem into smaller and smaller sub-
sets. In statistics, nested dichotomies are a standard technique for tackling
polytomous (i.e. multi-class) classification problems with logistic regression by
fitting binary logistic models to the individual dichotomous (i.e. two-class)
classification problems at the tree’s internal nodes. However, this technique is
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only recommended if a “particular choice of dichotomies is substantively com-
pelling” (Fox, 1997) based on domain knowledge. There are usually many possi-
ble tree structures that can be generated for a given set of classes, and in many
practical applications—namely, where the class is truly a nominal quantity and
does not exhibit any structure—there is no a priori reason to prefer one partic-
ular tree structure over another one. However, in that case it makes sense to
assume that every hierarchy of nested dichotomies is equally likely and to use
an ensemble of these hierarchies for prediction. This is the approach we propose
and evaluate in this paper.

Using C4.5 and logistic regression as base learners we show that ensem-
bles of nested dichotomies produce more accurate classifications than applying
these learners directly to multi-class problems. We also show that they com-
pare favorably to three other popular techniques for converting a multi-class
classification task into a set of binary classification problems: the simple “one-
vs-rest” method, error-correcting output codes (Dietterich & Bakiri, 1995), and
pairwise classification (Fürnkranz, 2002). More specifically, we show that en-
sembles of nested dichotomies produce more accurate classifiers than the one-vs-
rest method for both C4.5 and logistic regression; that they are more accurate
than pairwise classification in the case of C4.5, and comparable in the case of
logistic regression; and that, compared to error-correcting output codes, nested
dichotomies have a distinct edge if logistic regression is used, and are on par
if C4.5 is employed. In addition, and in contrast to all three of these other
popular techniques, they have the nice property that they do not require any
form of post-processing to return proper probability estimates. They do have
the drawback that they require the base learner to produce class probability
estimates but this is not a severe limitation given that most practical learning
algorithms are able to do so or can be made to do so.

This paper is structured as follows. In Section 2 we describe more pre-
cisely how nested dichotomies work. In Section 3 we present the idea of using
ensembles of nested dichotomies. In Section 4 this approach is evaluated and
compared to other techniques for tackling multi-class problems. Related work
is discussed in Section 5. Section 6 summarizes the main findings of this paper.

2 Nested Dichotomies

Nested dichotomies can be represented as binary trees that, at each node, divide
the set of classes A associated with the node into two subsets B and C that are
mutually exclusively and taken together contain all the classes in A. The nested
dichotomies’ root node contains all the classes of the corresponding multi-class
classification problem. Each leaf node contains a single class (i.e. for an n-class
problem, there are n leaf nodes and n − 1 internal nodes). To build a classifier
based on such a tree structure we do the following: at every internal node we
store the instances pertaining to the classes associated with that node, and no
other instances; then we group the classes pertaining to each node into two
subsets, so that each subset holds the classes associated with exactly one of
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Figure 1: Two different systems of nested dichotomies for a classification prob-
lem with four classes.

the node’s two successor nodes; and finally we build binary classifiers for the
resulting two-class problems. This process creates a tree structure with binary
classifiers at the internal nodes.

We assume that the binary classifiers produce class probability estimates.
For example, they could be logistic regression models. The question is how
to combine the estimates from the individual two-class problems to obtain
class probability estimates for the original multi-class problem. It turns out
that the individual dichotomies are statistically independent because they are
nested (Fox, 1997), enabling us to form multi-class probability estimates simply
by multiplying together the probability estimates obtained from the two-class
models. More specifically, let Ci1 and Ci2 be the two subsets of classes gener-
ated by a split of the set of classes Ci at internal node i of the tree (i.e. the
subsets associated with the successor nodes), and let p(c ∈ Ci1|x, c ∈ Ci) and
p(c ∈ Ci2|x, c ∈ Ci) be the conditional probability distribution estimated by
the two-class model at node i for a given instance x. Then the estimated class
probability distribution for the original multi-class problem is given by:

p(c = C|x) =
n−1∏
i=1

(I(c ∈ Ci1)p(c ∈ Ci1|x, c ∈ Ci) +

I(c ∈ Ci2)p(c ∈ Ci2|x, c ∈ Ci)),
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where I(.) is the indicator function, and the product is over all the internal
nodes of the tree.

Note that not all nodes have to actually be examined to compute this prob-
ability for a particular class value. Evaluating the path to the leaf associated
with that class is sufficient. Let p(c ∈ Ci1|x, c ∈ Ci) and p(c ∈ Ci2|x, c ∈ Ci)
be the labels of the edges connecting node i to the nodes associated with Ci1

and Ci2 respectively. Then computing p(c|x) amounts to finding the single path
from the root to a leaf for which c is in the set of classes associated with each
node along the path, multiplying together the probability estimates encountered
along the way.

Consider Figure 1, which shows two of the 15 possible nested dichotomies for
a four-class classification problem. Using the tree in Figure 1a the probability
of class 4 for an instance x is given by

p(c = 4|x) = p(c ∈ {3, 4}|x) ×
p(c ∈ {4}|x, c ∈ {3, 4}).

Based on the tree in Figure 1b we have

p(c = 4|x) = p(c ∈ {2, 3, 4}|x)×
p(c ∈ {3, 4}|x, c ∈ {2, 3, 4})×
p(c ∈ {4}|x, c ∈ {3, 4}).

Both trees represent equally valid class probability estimators—like all other
trees that can be generated for this problem. However, the estimates obtained
from different trees will usually differ because they involve different two-class
learning problems. If there is no a priori reason to prefer a particular nested
dichotomy—e.g., because some classes are known to be related in some fashion—
there is no reason to trust one of the estimates more than the others. Conse-
quently it makes sense to treat all possible trees as equally likely and form overall
class probability estimates by averaging the estimates obtained from different
trees. This is the approach we investigate in the rest of this paper.

3 Ensembles of Nested Dichotomies

The number of possible trees for an n-class problem grows extremely quickly.
It is given by the following recurrence relation:

T (n) =
1
2

n−1∑
i=1

(
n

i

)
× [T (n− i) × T (i)] ,

where T (1) = 1.
For two classes we have T (2) = 1, for three T (3) = 3, for four T (4) = 15,

and for five T (5) = 95. A lower bound T ∗(n) for T (n) is given by

T ∗(n) = n × T ∗(n − 1) = n!/2,
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where T ∗(1) = 1.
This means the growth in the number of trees is at least exponential, making

it impossible to generate them exhaustively in a brute-force manner even for
problems with a moderate number of classes. This is the case even if we cache
models for the individual two-class problems that are encountered when building
each tree.1 There are (3n − (2n+1 − 1))/2 possible two-class problems for an n-
class dataset. The term 3n arises because a class can be either in the first subset,
the second one, or absent; the term (2n+1 − 1) because we need to subtract all
problems where either one of the two subsets is empty; and the factor 1/2 from
the fact that the two resulting subsets can be swapped without any effect on
the classifier. Hence there are 6 possible two-class problems for a problem with
3 classes, 25 for a problem with 4 classes, 90 for a problem with 5 classes, etc.

Given these growth rates we chose to evaluate the performance of ensembles
of randomly generated trees. (Of course, only the structure of each tree was
generated randomly. We applied a standard learning scheme at each internal
node of the randomly sampled trees.) More specifically, we sampled uniformly
with replacement from the space of all distinct trees for a given n-class prob-
lem, and formed class probability estimates for a given instances x by averaging
the estimates obtained from the individual ensemble members. Because of the
uniform sampling process these averages form an unbiased estimate of the esti-
mates that would have been obtained by building the complete ensemble of all
possible distinct trees for a given n-class problem.

4 Empirical Comparison

We performed experiments with 21 multi-class datasets from the UCI reposi-
tory (Blake & Merz, 1998), summarized in Table 1. Two learning schemes were
employed: C4.5 and logistic regression.2 We used these two because (a) they
produce class probability estimates, (b) they inhabit opposite ends of the bias-
variance spectrum, and (c) they can deal with multiple classes directly without
having to convert a multi-class problem into a set of two-class problems (in the
case of logistic regression, by optimizing the multinomial likelihood directly).
The latter condition is important for testing whether any of the multi-class
“wrapper” methods that we included in our experimental comparison can actu-
ally improve upon the performance of the learning schemes applied directly to
the multi-class problems.

To compare the performance of the different learning schemes for each dataset,
we estimated classification accuracy based on 50 runs of the stratified hold-out
method, in each run using 66% of the data for training and the rest for testing.
We tested for significant differences in accuracy by using the corrected resam-
pled t-test at the 5% significance level. This test has been shown to have Type
I error at the significance level and low Type II error if used in conjunction with
the hold-out method (Nadeau & Bengio, 2003).

1Note that different trees may exhibit some two-class problems that are identical.
2As implemented in Weka version 3.4.1 (Witten & Frank, 2000).
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Dataset Num. % Miss. Num. Nom. Num.
insts atts atts class.

anneal 898 0.0 6 32 5
arrhythmia 452 0.3 206 73 13
audiology 226 2.0 0 69 24
autos 205 1.1 15 10 6
bal.-scale 625 0.0 4 0 3
ecoli 336 0.0 7 0 8
glass 214 0.0 9 0 6
hypothyroid 3772 6.0 23 6 4
iris 150 0.0 4 0 3
letter 20000 0.0 16 0 26
lymph 148 0.0 3 15 4
optdigits 5620 0.0 64 0 10
pendigits 10992 0.0 16 0 10
prim.-tumor 339 3.9 0 17 21
segment 2310 0.0 19 0 7
soybean 683 9.8 0 35 19
splice 3190 0.0 0 61 3
vehicle 846 0.0 18 0 4
vowel 990 0.0 10 3 11
waveform 5000 0.0 40 0 3
zoo 101 0.0 1 15 7

Table 1: Datasets used for the experiments

In the first set of experiments, we compared ensembles of nested dichotomies
(ENDs) with several other standard multi-class methods. In the second set we
varied the number of ensemble members to see whether this has any impact on
the performance of ENDs.

4.1 Comparison to other approaches for multi-class learn-
ing

In the first set of experiments we used ENDs consisting of 20 ensemble members
(i.e. each classifier consisted of 20 trees of nested dichotomies) to compare
to other multi-class schemes. As the experimental results in the next section
will show, 20 ensemble members are often sufficient to get close to optimum
performance. We used both C4.5 and logistic regression to build the ENDs.
The same experiments were repeated for both standard C4.5 and polytomous
logistic regression applied directly to the multi-class problems. In addition,
the following other multi-class-to-binary conversion methods were compared
with ENDs: one-vs-rest, pairwise classification, random error-correcting output
codes, and exhaustive error-correcting output codes.

6



D
at

as
et

(#
cl

as
se

s)
E

N
D

C
4.

5
1-

vs
-r

es
t

1-
vs

-1
R

E
C

O
C

s
E

E
C

O
C

s
an

ne
al

(5
)

98
.0

5±
0.

67
98

.4
5±

0.
72

97
.6

4±
0.

78
97

.8
1±

0.
86

98
.0

8±
0.

56
98

.3
5±

0.
70

ar
rh

yt
hm

ia
(1

3)
72

.9
1±

2.
36

65
.3

7±
3.

09
•

57
.6

2±
3.

38
•

66
.2

4±
3.

04
•

71
.2

4±
2.

55
au

di
ol

og
y

(2
4)

78
.6

8±
3.

32
77

.9
1±

3.
19

59
.1

5±
7.

47
•

77
.0

3±
4.

11
80

.4
9±

3.
68

au
to

s
(6

)
73

.3
2±

4.
72

73
.2

0±
5.

56
58

.8
7±

5.
80
•

65
.7

9±
6.

29
69

.1
8±

6.
34

75
.0

9±
5.

06
ba

la
nc

e-
sc

al
e

(3
)

80
.2

8±
2.

18
78

.4
7±

2.
34

78
.6

2±
2.

43
79

.3
8±

2.
18

78
.8

2±
2.

76
78

.6
2±

2.
43

ec
ol

i(
8)

84
.3

3±
2.

73
81

.3
6±

3.
09

80
.6

7±
3.

41
82

.6
2±

3.
33

82
.8

0±
3.

08
85

.2
2±

2.
26

gl
as

s
(6

)
70

.8
9±

4.
42

67
.2

9±
5.

51
59

.3
7±

5.
91
•

68
.7

7±
4.

72
67

.1
0±

5.
08

70
.9

5±
5.

06
hy

po
th

yr
oi

d
(4

)
99

.5
1±

0.
20

99
.4

9±
0.

13
99

.4
5±

0.
21

99
.4

1±
0.

19
99

.4
3±

0.
23

99
.4

8±
0.

20
ir

is
(3

)
94

.0
4±

3.
17

94
.1

2±
3.

19
93

.9
2±

3.
18

94
.1

2±
3.

19
94

.0
0±

3.
20

93
.9

2±
3.

18
le

tt
er

(2
6)

94
.8

6±
0.

29
86

.3
4±

0.
52

•
84

.9
9±

0.
43
•

90
.1

0±
0.

36
•

94
.6

2±
0.

29
ly

m
ph

og
ra

ph
y

(4
)

77
.2

9±
5.

48
76

.3
0±

4.
98

76
.7

5±
5.

43
77

.0
3±

5.
23

75
.7

1±
4.

10
76

.9
4±

5.
51

op
td

ig
it
s

(1
0)

97
.4

3±
0.

33
89

.4
5±

0.
67

•
89

.2
8±

0.
72
•

94
.0

1±
0.

55
•

95
.8

2±
0.

56
•

98
.1

3±
0.

27
◦

pe
nd

ig
it
s

(1
0)

98
.7

5±
0.

21
95

.9
0±

0.
31

•
94

.7
7±

0.
39
•

96
.4

1±
0.

34
•

98
.3

2±
0.

30
99

.1
2±

0.
14

◦
pr

im
ar

y-
tu

m
or

(2
1)

45
.6

1±
3.

46
38

.9
8±

2.
59

•
26

.1
5±

3.
42
•

42
.3

7±
2.

94
45

.5
8±

3.
81

se
gm

en
t

(7
)

97
.1

5±
0.

70
95

.8
6±

0.
81

•
94

.9
3±

0.
77
•

95
.9

0±
0.

75
•

96
.3

5±
0.

88
97

.4
4±

0.
70

so
yb

ea
n

(1
9)

94
.1

6±
1.

38
88

.7
5±

2.
14

•
89

.4
1±

1.
79
•

92
.3

2±
1.

51
93

.4
3±

1.
45

sp
lic

e
(3

)
94

.2
2±

0.
95

93
.3

4±
0.

89
94

.1
6±

0.
80

94
.1

7±
0.

72
92

.4
6±

2.
33

94
.1

6±
0.

80
ve

hi
cl

e
(4

)
73

.7
3±

2.
20

71
.2

7±
2.

15
70

.3
0±

2.
56

70
.2

7±
2.

3
70

.0
3±

3.
34

72
.8

6±
2.

22
vo

w
el

(1
1)

88
.5

7±
2.

34
75

.8
2±

2.
59

•
72

.5
3±

3.
19
•

75
.6

0±
3.

06
•

86
.0

8±
2.

50
93

.1
7±

1.
98

◦
w

av
ef

or
m

(3
)

78
.6

2±
1.

61
75

.0
0±

0.
98

•
72

.4
9±

1.
18
•

75
.8

0±
1.

02
•

72
.8

6±
1.

04
•

72
.4

9±
1.

18
•

zo
o

(7
)

92
.5

9±
3.

33
93

.1
4±

2.
94

92
.2

7±
2.

66
91

.2
2±

3.
29

90
.0

4±
4.

38
92

.0
2±

3.
92

•,
◦s

ta
ti

st
ic

al
ly

si
gn

ifi
ca

nt
im

pr
ov

em
en

t
or

de
gr

ad
at

io
n

T
ab

le
2:

C
om

pa
ri

so
n

of
di

ffe
re

nt
m

ul
ti

-c
la

ss
m

et
ho

ds
fo

r
C

4.
5.

7



D
at

as
et

(#
cl

as
se

s)
E

N
D

L
R

1-
vs

-r
es

t
1-

vs
-1

R
E

C
O

C
s

E
E

C
O

C
s

an
ne

al
(5

)
99

.3
6±

0.
60

98
.9

3±
0.

78
98

.0
1±

1.
04

99
.1

0±
0.

68
98

.8
6±

0.
88

99
.2

7±
0.

60
ar

rh
yt

hm
ia

(1
3)

59
.2

8±
2.

72
52

.7
6±

4.
06

•
44

.6
5±

3.
94
•

60
.8

4±
3.

11
47

.6
6±

4.
07
•

au
di

ol
og

y
(2

4)
80

.7
7±

4.
11

75
.4

4±
4.

36
72

.3
5±

5.
11
•

74
.6

4±
4.

15
•

73
.0

3±
4.

27
•

au
to

s
(6

)
71

.8
2±

4.
96

64
.7

4±
5.

46
•

57
.7

7±
5.

73
•

70
.8

3±
6.

15
61

.5
6±

5.
38
•

66
.3

1±
5.

14
ba

la
nc

e-
sc

al
e

(3
)

87
.4

9±
1.

42
88

.7
8±

1.
19

87
.1

1±
1.

27
89

.2
5±

1.
26

87
.9

1±
1.

62
87

.1
1±

1.
27

ec
ol

i(
8)

85
.7

2±
2.

37
84

.5
7±

2.
59

85
.2

8±
2.

44
84

.2
8±

2.
72

84
.6

9±
3.

29
85

.9
8±

2.
31

gl
as

s
(6

)
64

.0
8±

4.
75

63
.0

6±
5.

09
48

.3
3±

5.
26
•

62
.2

9±
5.

59
61

.0
9±

4.
20

62
.7

3±
4.

31
hy

po
th

yr
oi

d
(4

)
96

.7
0±

0.
61

96
.6

6±
0.

42
95

.2
8±

0.
43
•

97
.4

0±
0.

40
94

.8
5±

0.
93
•

95
.4

2±
0.

40
•

ir
is

(3
)

95
.8

8±
3.

07
95

.2
5±

3.
32

95
.4

9±
2.

78
95

.8
0±

2.
96

87
.8

8±
8.

65
95

.3
7±

2.
96

le
tt

er
(2

6)
75

.9
5±

0.
71

77
.2

1±
0.

34
◦

72
.1

7±
0.

41
•

84
.1

4±
0.

34
◦

47
.5

1±
2.

32
•

ly
m

ph
og

ra
ph

y
(4

)
78

.3
1±

5.
40

77
.1

2±
6.

16
76

.9
7±

5.
41

78
.5

0±
6.

21
76

.1
0±

5.
71

76
.7

8±
5.

64
op

td
ig

it
s

(1
0)

96
.9

8±
0.

36
93

.1
7±

0.
58

•
94

.2
8±

0.
56
•

96
.9

6±
0.

33
91

.6
8±

1.
13
•

94
.4

7±
0.

46
•

pe
nd

ig
it
s

(1
0)

95
.4

4±
0.

62
95

.4
7±

0.
34

93
.5

3±
0.

40
•

97
.5

7±
0.

28
◦

83
.7

4±
2.

33
•

88
.9

0±
0.

55
•

pr
im

ar
y-

tu
m

or
(2

1)
44

.4
8±

3.
24

35
.5

6±
3.

79
•

31
.0

9±
3.

42
•

38
.2

5±
3.

86
•

45
.4

1±
2.

98
se

gm
en

t
(7

)
94

.4
6±

0.
78

95
.2

8±
0.

59
92

.0
5±

0.
67
•

95
.6

7±
0.

64
◦

88
.6

0±
2.

58
•

91
.4

1±
0.

71
•

so
yb

ea
n

(1
9)

93
.0

8±
1.

39
89

.9
9±

3.
04

89
.9

6±
2.

80
•

90
.6

2±
1.

45
•

92
.3

2±
1.

52
sp

lic
e

(3
)

92
.3

2±
1.

21
89

.0
1±

1.
23

•
90

.8
2±

1.
00

89
.2

0±
0.

97
•

90
.3

7±
1.

66
91

.6
6±

1.
00

ve
hi

cl
e

(4
)

80
.0

7±
1.

75
79

.2
7±

1.
97

78
.6

2±
2.

11
79

.1
5±

1.
81

75
.9

2±
3.

99
78

.9
3±

1.
80

vo
w

el
(1

1)
81

.2
7±

3.
31

78
.0

9±
2.

99
65

.2
3±

2.
62
•

88
.4

2±
1.

86
◦

39
.5

5±
4.

63
•

46
.4

5±
2.

86
•

w
av

ef
or

m
(3

)
86

.3
5±

0.
77

86
.4

7±
0.

71
86

.5
7±

0.
71

86
.1

6±
0.

70
83

.6
2±

2.
52

86
.5

7±
0.

71
zo

o
(7

)
95

.1
8±

2.
95

90
.2

3±
6.

85
92

.1
9±

5.
40

94
.7

3±
3.

21
91

.3
6±

6.
01

93
.1

0±
5.

00
•,

◦s
ta

ti
st

ic
al

ly
si

gn
ifi

ca
nt

im
pr

ov
em

en
t

or
de

gr
ad

at
io

n

T
ab

le
3:

C
om

pa
ri

so
n

of
di

ffe
re

nt
m

ul
ti
-c

la
ss

m
et

ho
ds

fo
r

lo
gi

st
ic

re
gr

es
si

on
.

8



One-vs-rest creates n dichotomies for an n-class problem, in each case learn-
ing one of the n classes against all the other classes (i.e. there is one classifier
for each class). At classification time, the class that gets maximum probability
from its corresponding classifier is predicted. Pairwise classification learns a
classifier for each pair of classes, ignoring the instances pertaining to the other
classes (i.e. there are n × (n − 1)/2 classifiers). A prediction is obtained by
voting, where each classifier casts a vote for either one of the two classes it was
built from. The class with the maximum number of votes is predicted.

In error-correcting output codes (ECOCs), each class is assigned a binary
code vector of length k, which make up the row vectors of a code matrix. These
row vectors determine the set of k dichotomies to be learned, corresponding to
the column vectors of the code matrix. At prediction time, a vector of classifi-
cations is obtained by collecting the predictions from the individual k classifiers
learned from the dichotomies. The original approach to ECOCs predicts the
class whose corresponding row vector has minimum Hamming distance to the
vector of 0/1 predictions obtained from the k classifiers (Dietterich & Bakiri,
1995). However, accuracy can be improved by computing the distance based on
predicted class probabilities rather than 0/1 values: each 0/1 prediction is re-
placed by the predicted probability that the class is 1, and the distance becomes
the sum of the absolute differences between the elements of the corresponding
row vector and the vector of predicted probabilities. (In the case where the base
learner never generates probabilities different from 0 and 1 the two approaches
are identical.)

Random error-correcting output codes (RECOCs) are based on the fact that
random code vectors have good error-correcting properties. We used random
code vectors of length k = 2 × n, where n is the number of classes.3 Code
vectors consisting only of 0s or only of 1s were discarded. This results in a code
matrix with row vectors of length 2 × n and column vectors of length n. Code
matrices with column vectors exhibiting only 0s or only 1s were also discarded.
In contrast to random codes, exhaustive error correcting codes (EECOCs) are
generated deterministically. They are maximum-length code vectors of length
2n−1 − 1, where the resulting dichotomies (i.e. column vectors) correspond to
every possible n-bit configuration, excluding complements and vectors exhibit-
ing only 0s or only 1s. We applied EECOCs to benchmark problems with up to
11 classes.

Table 2 shows the results obtained for C4.5 and Table 3 those obtained for
logistic regression (LR). They show that ENDs produce more accurate classifica-
tions than applying C4.5 and logistic regression directly to multi-class problems.
In the case of C4.5 the win/loss ratio is 18/3, in the case of logistic regression
16/5. ENDs compare even more favorably with one-vs-rest, confirming previous
findings that this method is not competitive. More importantly, the experi-
ments show that ENDs are more accurate than pairwise classification (1-vs-1)
with C4.5 as base classifier (win/loss ratio: 20/1), and comparable in the case
of logistic regression (win/loss ratio: 13/8).

3This is the default in Weka.
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ENDs outperform RECOCs for both base learners: the win/loss ratio is 19/2
for both C4.5 and logistic regression. However, in the case of C4.5 only two of
the differences are statistically significant, and for exhaustive codes (EECOCs)
the win/loss ratio becomes 8/8 (with 3 significant wins for EECOCs and only
one significant win for ENDs). In contrast, both RECOCs and EECOCs appear
to be incompatible with logistic regression. Even for EECOCs the win/loss
ratio is 14/2 in favor of ENDs for logistic regression (and ENDs produce five
significant wins and no significant loss). We conjecture that this is due to
logistic regression’s inability to represent non-linear decision boundaries—an
ability which may be required to adequately represent the dichotomies occurring
in ECOCs. Sometimes logistic regression+ECOCs performs very poorly (see,
e.g., the performance on vowel, optdigits, and pendigits). This appears to be
consistent with previous findings (Dekel & Singer, 2002).

The results show that ENDs are a viable alternative to both pairwise classi-
fication and error-correcting output codes, two of the most widely-used methods
for multi-class classification, and their performance appears to be less dependent
on the base learner.

4.2 Effect of changing the size of the ensemble

In a second set of experiments we investigated how the performance of ENDs
depends on the size of the ensemble. The results are shown in Tables 4 and 5.
The first observation is that using more members never hurts performance. Also,
and perhaps not surprisingly, more classes require more ensemble members.
However, 20 members appear to be sufficient in most cases to obtain close-to-
optimum performance. Moreover, the results show that the required ensemble
size is largely independent of the learning scheme.

5 Related Work

There is an extensive body of work on using (variants of) error-correcting output
codes and pairwise classification for multi-class classification. For this paper we
used error-correcting codes that can be represented as bit vectors. Allwein et
al. (2000) introduced extended codes with “don’t care” values (in addition to 0s
and 1s), but they did not observe an improvement in performance over binary
codes. Interestingly, the learning problems occurring in nested dichotomies can
be represented using these extended codes. For example, Table 6 shows the
code vectors corresponding to the tree from Figure 1a (where “X” stands for
a “don’t care”). However, the “decoding process” used in ensembles of nested
dichotomies is quite different and has the advantage that it generates class
probability estimates.

Other approaches on improving ECOCs are based on adapting the code
vectors during or after the learning process. Crammer and Singer (2001) present
a quadratic programming algorithm for post-processing the code vectors and
show some theoretical properties of this algorithm. Dekel and Singer (2002)
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c1 c2 c3

1 1 1 X
2 1 0 X
3 0 X 1
4 0 X 0

Table 6: Code vectors for the tree in Figure 1a.

describe an iterative algorithm called “Bunching” that adapts the code vectors
during the learning process, and show that it improves performance for the
case of logistic regression. Along similar lines, Rätsch et al. (2002) propose an
algorithm for adaptive ECOCs and present some preliminary results.

There is also some work on generating probability estimates based on ECOCs
and pairwise classification. Kong and Dietterich (1997) introduce a post-processing
step for ECOCs that recovers probability estimates. However, this step only
finds an approximate solution because the underlying problem is over-constrained.
Similarly, Hastie and Tibshirani (1998) proposed a method called “pairwise cou-
pling” as a post-processing step for pairwise classification. Again, the problem
is over-constrained but an approximate solution can be given, and this work has
recently been extended by Wu et al.(2003).

Platt et al. (2000) show that the n × (n − 1)/2 classifiers in pairwise classi-
fication can be arranged into a directed acyclic graph (DAG), where each node
represents a model discriminating between two classes: if we discriminate be-
tween two classes A and B at an inner node, then we just conclude that it is not
class A if the model decides for B and vice versa. In the leaves, after excluding
all classes except two, a final decision is taken. Compared to voting, this process
improves classification time and does not appear to negatively affect accuracy.

Finally, in a very recent paper, Rifkin and Klautau (2004) claim that the
one-vs-rest method works as well as pairwise classification and error-correcting
output codes if “the underlying binary classifiers are well-tuned regularized clas-
sifiers such as support vector machines”. Hence it may be possible to improve
the poor performance of one-vs-rest that we observed in our experiments by
optimizing the pruning parameter in C4.5 and using a carefully tuned shrinkage
parameter in logistic regression.

6 Conclusions

In this paper we introduced a new, general-purpose method for reducing multi-
class problems to a set of binary classification tasks, based on ensembles of
nested dichotomies (ENDs). The method requires binary classifiers that are
able to provide class probability estimates and in turn returns class probability
estimates for the original multi-class problem. Our experimental results show
that ENDs are a promising alternative to both pairwise classification and error-
correcting output codes; in particular, and in contrast to both these other meth-
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ods, they appear to significantly improve classification accuracy independent of
which base learner is used. As future work, we plan to investigate deterministic
methods for generating ENDs and the use of ENDs for ordinal classification
problems.
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