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Abstract 
 

Following the diversion of the Kaituna River from Maketū Estuary, out to sea at 

Te Tumu in 1956, the local community has continually voiced concerns over the 

estuary’s increased sedimentation rates and decreasing ecological health. These 

concerns led to the partial re-opening of Fords Cut in 1996. However, this has 

only resulted in a slight improvement in water quality, and no measurable 

reduction in sedimentation. The Bay of Plenty Regional Council is currently 

investigating a number of different re-diversion options to partially or fully restore 

the flow of the Kaituna River into Maketū Estuary, with the aim of restoring the 

estuary’s health. However, a consequence of re-diversion is the possible reduction 

in discharge through the inlet at Te Tumu. Significantly reducing the discharge 

would likely cause a large amount of sedimentation in, and around the cut, which 

could ultimately lead to the closure of the channel. 

In order to predict the geomorphic response to the proposed options of lowering 

the Ford’s Cut Culverts to RL -1.6 m (Option J), or reopening Papahikahawai 

Channel (Option N) a coupled 2-dimensional, wave, hydrodynamic and sediment 

transport model was developed. Despite being unable to calibrate the 

hydrodynamic model due to the highly variable nature of the ADCP data collected, 

the coupled model was entirely calibrated through the sediment transport model. 

Comparisons between five transects extracted from a survey conducted in 2008 

and from the model results of a simulation run over the same time period, showed 

predicted bed levels to match on average within 0.35 m. Bed levels inside the 

river were predicted almost exactly, however, the error increased over the ebb 

delta, although, the same overall shape was still recreated. 

Through simulations of average and low river flows, and average and twice the 

average wave height conditions the morphological response of the Te Tumu Cut 

to various potential re-diversion options were found. Simulations of Option J 

showed that the majority of increased water entering the estuary through Ford’s 

Cut occurred during the incoming tide. This therefore increased the flood tidal 

volume and sediment transport capacity entering the cut, and caused the ebb 

channel to become shorter by approximately 20 metres. Similarly, reopening 

Papahikahawai Channel with one-way flapgated culverts caused an increase in the 

flood tidal volume entering the Cut. However, unlike Option J there was no 

corresponding increase in sedimentation around the river mouth. This was 

attributed to dredging required to install the flapgates, resulting in a loss of 

sediment from the system and the inlet not yet reaching a new equilibrium. When 

Papahikahawai Channel is reopened without flapgated culverts both the peak 

flood tidal discharge and peak ebb discharge increased. The increased ebb flows 

resulted in a small increase in size of the ebb channel through the delta, with the 

increase in size varying between the different river flow and wave condition 

simulations. 

The effect of adding parallel twin jetty structures to the Te Tumu Cut was also 

assessed at a preliminary level. Model simulations showed jetties spaced either 45 

or 35 metres apart would aid in increasing the navigability through the river 

mouth. The 35 metre spaced jetties produced a more uniform and deeper channel 
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compared to the 45 metre spaced option. However, further investigation is 

required to determine the ideal jetty configuration and long term effects on the 

surrounding coastlines. 
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1 Chapter 1 
 

 Introduction 
 

 Introduction 1.1

This thesis describes the creation and application of a 2-dimensional spectral 

wave, hydrodynamic and sediment transport model of the Te Tumu Cut, Bay of 

Plenty, New Zealand. This model was used to investigate the morphological 

response of the Te Tumu Cut, to various potential re-diversion options for the 

lower Kaituna River, which have been proposed by the Bay of Plenty Regional 

Council.  

 

 

Figure ‎1.1: Aerial Photograph of the Te Tumu Cut in its current configuration (EBoP, 2010). 

 

 Nature of the Problem 1.2

The Kaituna River naturally discharged to the sea through Papahikahawai 

Channel, and into the Maketū Estuary. However, over the past six decades, the 

lower Kaituna River has undergone extensive changes. As a result of frequent 
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flooding of the surrounding plains, which at the time were predominantly used for 

agriculture, various engineering works have been undertaken on the lower river. 

The most significant of these was the construction of a large rock causeway in 

1956 – 1957, which blocked off Ford’s Cut and Papahikahawai Channel (Figure 

1.1), permanently diverting the river straight out to sea. 

Following the diversion of the Kaituna River from Maketū Estuary, the local 

community has continually voiced concerns over the estuary’s deteriorating health. 

A major concern has been the increased sedimentation, which in turn is associated 

with ecological impacts such as the smothering of shellfish beds. A secondary 

concern has been the change in water quality associated with the reduced 

freshwater inflow to the estuary (EBoP, 2009). These concerns led to a partial re-

opening of Fords Cut in 1996. At present approximately 4% of the average 

Kaituna River flow is diverted back into the Maketū Estuary. However, this has 

only resulted in a slight improvement in water quality and shellfish population 

health (Bates, July 2010, Memorandum to C. Meadowcroft; Goodhue, 2007). 

The Bay of Plenty Regional Council is currently investigating a number of 

potential re-diversion options to partially or fully restore the flow of the Kaituna 

River into Maketū Estuary, in order to restore the estuary’s health (EBoP, 2008). 

However, a consequence of such re-diversion is the possible reduction in the 

discharge through the inlet at Te Tumu. Significantly reducing the discharge 

through the inlet is likely to cause a large amount of sedimentation in and around 

the cut, which could ultimately lead to the closure of the inlet channel. However, 

loss of access through Te Tumu Cut is undesirable. 

The main opposing parties to any diversion option that would result in the loss of 

the inlet are the Te Tumu Land Owners Group and local recreational boat users. In 

the rivers present configuration the Te Tumu Cut is a commonly used access point 

to the sea for many local boat owners. Removing this access point would also 

remove a key selling point of the land to the west of the river, which has been 

identified as an area for significant growth in the near future (SmartGrowth, 2008). 

Although restoring the ecological health of the Maketū Estuary is the primary goal 

of the proposed diversion options, full closure of the Te Tumu Cut could also 

possibly have a negative impact on some of the surrounding wildlife. The Maketū 
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barrier sand dunes to the east of the Cut are an important nesting and breeding 

ground for the New Zealand Dotterel and many other birds. Closure of the Te 

Tumu inlet would increase the ease of access to this area, which at the moment is 

fairly limited.  
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 Description of the Study Area 1.3

The Kaituna River is located in the central Bay of Plenty region. The rivers 

headwaters begin at the Okere arm of Lake Rotoiti, from which it runs 53 km to 

the sea, at Te Tumu (Figure  1.2). The river can be classified into two distinct 

sections based on its gradient. The first 25 km of the river are fast flowing with 

several waterfalls, and drops approximately 260 m below its start point. The 

remaining 28 km meander across the Te Puke Lowlands and drop a further 20 m 

to reach sea level (Park, 2007). The total catchment area of the river, including the 

lakes is approximately 1,218 km
2
. Of the total catchment approximately 48% 

feeds directly into the Kaituna River, and these are known as the lower Kaituna 

sub-catchments (Park, 2007). 

 

 

Figure ‎1.2: Location of the Kaituna River and Maketū Estuary (From Goodhue, 2007). 
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 Te Tumu Cut – The Present River Mouth 1.3.1

At present the Kaituna River discharges into the sea at Te Tumu (Figure  1.1). 

However, it has only discharged at this location since 1957, when the Te Tumu 

Cut was created, and a concrete training wall put in place to stabilise the mouth’s 

position. The complete history of the river mouth is further discussed in Chapter 2.  

The Te Tumu Cut is located on the western side of the Maketū Estuary and is a 

“cut” through very low and fragile sand dunes that have been subjected to several 

natural breaches throughout history. The Te Tumu area consists of a wide zone of 

Holocene sandy progradation, formed from the influx of inner shelf sediments 

during the post glacial marine transgression. The resulting dune belt is 

approximately 1,300 m wide at Papamoa beach and narrows towards Maketū, 

where the belt forms the barrier spit enclosing Maketū Estuary (Wigley, 1990; 

Healy et al., 1997). 

 

 Maketū Estuary 1.3.2

Maketū Estuary is 1.5 km
2
 in size and is classified as a micro-tidal lagoon. It 

formed following the inundation of the Kaituna River basin, as a result of 

Holocene sea level transgression. Since its formation, and following sea level 

becoming stable (c. 7200 yrs. B.P.), the estuary has continually been subjected to 

infilling with sediment from numerous sources, such as: fluvially-transported, 

volcanogenic sediments derived from the Okatina and Taupo Volcanic Centres, 

erosion of fan deposits from the Town Point headland, marine sands from spit 

erosion and sediment within the littoral drift system (Burton & Healy, 1985; 

Wigley, 1990). However, the rate of infilling has increased as a result of human 

modification, through the addition of engineering structures on the lower Kaituna 

River over the last 60 years. 

 

 Climate and River Flow Conditions 1.3.3

The Te Puke lowlands receive on average 1500 – 1700 mm yr
-1

 of rainfall. 

However, in the upper catchment the Kaimai Ranges receive an average of 2500 – 



 

6 

 

2600 mm yr-
1 

(Quayle, 1984). The base flow of the Kaituna River is primarily 

from Lakes Rotorua and Rotoiti with small inputs from several tributaries, leading 

to a mean flow at Te Matai of 39.5 m
3
/s. Conversely the majority of the flood 

flows come from the tributaries downstream of the lakes such as: the Mangorewa 

River, the Waiari, Ohineangaanga, Raparapahoe and the Kopuaroa streams 

(BOPRC, 2011). Based on recordings from 1968 – 2005 peak flows of 170, 230 

and 405 m
3
/s have been assessed for 5, 10 and 50 year return periods respectively 

(EBOP, 2007). 

 

Table ‎1.1: Flow Statistics for the Kaituna River at Te Matai (EBoP, 2007).  

Kaituna River at Te Matai 

Flow (m
3
/s) 

Minimum Flow 20.6 

Mean Annual Minimum Flow 29.2 

Mean Flow 39.5 

Median Flow 37.6 

Mean Specific Flow (/km
2
) 0.04 

 

 Wave Climate and Tides 1.3.4

Due to the sheltering of waves from the East Cape and northern part of the North 

Island, waves are limited to directions from the north through to the east for the 

Bay of Plenty Region (Pickrill & Mitchell, 1979). The wave climate ranges in 

height (Hs) from 0.5 – 1.5 m with periods (Ts) of 5 – 9 s for typical conditions. 

Storm conditions can reach up to 2 – 5 m with periods of 7 – 9 s (Foster et al., 

1994).  

Based on analysis of a three year long time series (1991 – 1993) from a wave 

buoy in 34 m water depth, offshore of the Katikati inlet, Macky et al. (1995) 

calculated a mean significant wave height of 0.8 m, and a maximum of 4.3 m, 

with wave heights less than 1 m occurring 70% of the time. The peak spectral 

density of wave energy occurred at 10 – 11 s and the wave steepness indicated 

that majority of the waves originated close to the wave buoy. However, the data 

was collected during an El Nino phase, which typically produces fewer storms 

and therefore, may not be an accurate analysis of the long-term wave climate.   
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On the east coast of New Zealand the tides are predominantly semidiurnal with a 

small diurnal component, with a spring and neap tidal range of 1.62 m and 1.27 m 

respectively for the Bay of Plenty Region (Bell & Goring, 1998). 

 

 Littoral Drift and Sediment Transport 1.3.5

The combination of waves and currents in the nearshore zone act to produce a 

transport of beach sediment, with the mass movement of sediment in a single 

direction known as littoral drift. There have been no direct measurements of the 

littoral drift in the Bay of Plenty region. Several estimates have been determined, 

although, there is considerable variation between them. However, it is agreed the 

net littoral drift occurs in a north-west to south-east direction.  

Burton & Healy (1985) estimated the littoral drift along the Maketū coastline to 

be approximately 40,000 m
3
/year. This was based on Wallingford’s (1969) 

estimate of 102,510 m
3
/year and Healy’s (1980) estimate of 70,000 m

3
/year 

±20,000 along the Bay of Plenty coastline, and reduced to allow for a decrease in 

the littoral drift rates further along the coast, at Maketū. Hicks & Hume (1996) 

estimated an annual littoral drift of 70,000 m
3
/year, at the Ohiwa, and Tauranga 

Harbours, which are located 65 and 25 km east, and west respectively of the Te 

Tumu Cut. Although, it was not mentioned how this was derived. The net littoral 

drift at Pukehina Beach (~10 km east of Te Tumu) was estimated at 22,000 

m
3
/year by Easton (2002) through numerical modelling. This is likely smaller than 

Burton & Healy’s (1985) estimate due to Maketū Town Point partially impeding 

the littoral drift system to Pukehina. 

The other main source of sediment for the Kaituna region is from the Kaituna 

River itself. It has been estimated the River provides approximately 4.07 x 10
5
 

tonnes of suspended sediment to the surrounding ocean annually (Griffiths & 

Glasby, 1985). Assuming this material is predominately quartz and feldspar with 

an average density of 2650 kg/m
3
, this is the equivalent to approximately 150,000 

m
3
 of sediment per year. However more recent estimations from NIWA’s (2011) 

WRENZ GIS based web application suggest sediment additions of 68.1 
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kilotonnes of suspended sediment per year. Following the same assumptions as 

above, this is equivalent to 25,698 m
3
 per year.  

 

 

Figure ‎1.3:  Mean annual suspended sediment discharge at Te Matai in Tonnes/Year (Recreated 

from Easton (2002). Data originally provided by NIWA) and annual volume 

estimated from the assumption that all of the material is quartz and feldspar with a 

density of 2650 kg/m
3
. 

 

Figure ‎1.3 shows that the suspended sediment data from 1955 – 1982 recorded at 

Te Matai is considerably lower than the estimates from Griffths & Glasby (1985) 

and NIWA’s WRENZ web based GIS tool. However, Easton (2002) suggested 

that sediment discharged from the Kaituna River may be higher than Figure ‎1.3 

shows, due to sediment abrasion. Easton (2002) also suggested that the high 

suspended sediment discharges in 1962 and 1971 could possibly be linked to the 

large scale afforestation of Pinus radiata in 1962 by Tasman Forestry, primarily 

in the Tarawera catchment, but also in part of the Kaituna catchment. The heaviest 

planting occurred in 1969 and 1975 and the use of heavy machinery may have led 

to the increased sediment discharges during these periods. 

There is considerable variation and uncertainty between the two estimates of 

suspended sediment yields, with Griffiths & Glasby’s estimate an order of 

magnitude larger than NIWA’s WRENZ estimate, and the Te Matai data. 

However, it is thought that the majority of the suspended sediment discharged 

would be fine particles, which would be transported as wash load out to sea, and 
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therefore not affect the Te Tumu inlet (Tuckey, pers. Comm, 2011). This is also 

consistent with data from numerous South Island rivers, with Kirk (1991) stating 

that for rivers he investigated, the majority of the sediment load delivered to the 

ocean was fine sand and silt which was lost out to the continental shelf.   
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  Aims and Objectives 1.4

This thesis addresses the main aim of modelling the morphological response of 

the Te Tumu Cut to the various potential Kaituna River re-diversion options, and 

to evaluate whether river training structures could be used to stabilise the channel. 

To achieve this aim the project was broken down into three smaller objectives: 

1. To conduct a single beam survey of the lower Kaituna river bed and ebb 

delta area surrounding the Te Tumu inlet. 

2. To create a MIKE 21 model using the bathymetry collected from the 

single beam survey and from data supplied by the Bay of Plenty Regional 

Council of the lower Kaituna River and coastal area seaward of the inlet. 

3. To use the model created in Objective 2 to assess the morphological 

response of the inlet to the different re-diversion options and to assess at a 

preliminary stage the potential for river training structures. 
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 Thesis Outline 1.5

Following this introductory chapter, the historic natural variation in the Kaituna 

River mouth’s position, and subsequent engineering works undertaken in order to 

fix the mouths location are described, along with the proposed re-diversion 

options for the Kaituna River and Maketū Estuary in Chapter Two.  

Chapter Three summarises the literature surrounding inlet classification, stability, 

mechanisms of closure and the main types of engineering structures used to keep 

inlets open. 

Bathymetry data were collected inside the river and over the delta using a single 

beam echosounder, over the intertidal zone with an RTK GPS and collated from 

multiple studies for inside Maketū Estuary. Current velocities and sediment 

samples were also collected using an ADCP and drop sampler respectively. The 

full methodology used, and the locations where data were collected are described 

in Chapter Four. 

Chapter Five describes the setup and application of a Mike 11 1-dimensional 

hydrodynamic river flow model and the 2-dimensional Mike 21 FM spectral wave, 

hydrodynamic and sediment transport models used to simulate the various 

scenarios, which are also outlined within Chapter Five. 

The results from the various simulations are presented in Chapter Six by 

comparing simulations of the various diversion options against simulations of the 

existing river configuration. 

Chapter Seven expands on the results from Chapter Six and presents 

explanations as to why the resulting bed level changes occurred. Following this, a 

summary of the conclusions drawn from this project and recommendations for 

further research are given. 
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2 Chapter 2  
 

History of the Lower Kaituna River & 
 Te Tumu Cut 

 

 Natural Variation Before Diversion  2.1

According to the document titled “Maketū Estuary Environmental Issues and 

Environment” prepared by the Commission for the Environment in 1984, the 

Upper Kaituna Catchment has remained stable in its present configuration over 

the last 9,000 years. However, throughout the literature it is apparent that the river 

mouth has experienced considerable variation as to where it enters the sea. This 

has been a result of repeated cycles of spit breach near Te Tumu, followed by 

gradual migration eastwards towards Okurei (Town) Point, due to the 

predominantly easterly littoral drift (KRTA, 1986). 

Historic recounts by Wi Matene te Hukai to the Maori Land Court report that the 

Maori canoe, Te Arawa, landed at the Kaituna River mouth at Te Awahou, near 

Te Tumu (Stafford, 1967). Although this is only anecdotal evidence it suggests 

that c.600 years ago during the arrival of the Arawa Canoe the Kaituna River was 

located near Te Tumu.  

As time has progressed the location of the Kaituna River mouth has become 

documented in increasing detail. The first detailed account dates back to 1907 

when it is known a large flood broke through the sand dunes at Te Tumu, 

allowing the Kaituna River to discharge directly out to sea. The gradual eastward 

migration following the spit breach in 1907 is illustrated in Figure ‎2.1, with the 

successive eastward movements of location indicated in 1907, 1908 and 1912. By 

1920 - 1924 the river mouth had entered into the Maketū Estuary through 

Papahikahawai Channel and migrated approximately halfway to the Maketū 

Estuary inlet. By 1939 the river mouth reached its former location again, at the 

eastern inlet of the Maketū Estuary.  
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Figure ‎2.1: Locations of the Kaituna River Outlet between 1907 and 1978, from KRTA (1986). 

 

 Engineering Works 2.2

The first major engineering work undertaken on the lower Kaituna River was the 

excavation of Ford’s Cut, as a result of the breach at Te Tumu in 1907. It was 

hoped this would divert part of the Kaituna River into Maketū Estuary before 

Papahikahawai Channel to prevent further breaching of Maketū Spit. Due to the 

limited reach of the excavation machinery used, Ford’s Cut consisted of two 

channels due to being excavated from both sides. It was thought that once the cut 

was open, the water flowing through would scour out the middle ridge. However, 

this was unsuccessful and it appears that over the following years the mouth 

migrated back eastward into Papahikahawai Channel. At present, Ford’s Cut still 

remains as a pair of channels, leading to it also being known as Ford’s Twin Cut. 

The exact date in which Ford’s Cut was excavated is unknown, with some reports 

stating 1922 (Wildland Consultants, 2007 & Titchmarsh, 1998). However, a hand 

drawn map by Stokes (1980, as cited in KRTA, 1986) showing the lower Kaituna 

River in 1925 does not include Ford’s Cut, while Oliver Bain was quoted as 

saying the Cut was made in 1928 (Bay of Plenty Times, 1 July 1978, as cited in 

KRTA, 1986).   
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Figure ‎2.2: Historic aerial photographs of the lower Kaituna River from Wallace et al. (2008). 

 

Between 1926 and 1927 a number of engineering works were completed near the 

mouth of the Kaituna River. This included the closing of the Te Tumu mouth, 

returning the flow to the Maketū Estuary Mouth, through which flow had not 

occurred since 1907. However, shortly after in March 1928 the Te Tumu Mouth 

opened again and the Maketū Outlet closed during a storm by natural processes 

(Acheson, 1953, as cited in KRTA, 1986).  

In the following years, flooding of the surrounding hinterland frequently occurred. 

As a result the Kaituna River Board employed consultants to advise on a solution 

to the flooding problem. After much debate, the Soil Conservation and Rivers 

Control Council approved a scheme to divert the Kaituna River out of Maketū 

1948 

1959 
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Estuary in 1954, against the recommendation of an engineering report by A. 

Murray (1951, as cited in KRTA, 1986). However, government approval was not 

gained. As a result, it was suggested a cut at Te Tumu would provide immediate 

relief and lower river levels up stream at an acceptable price, allowing time to 

investigate alternatives to the problem properly (KRTA, 1986; Wallace et al., 

2008) 

In February 1957 the diversion works were completed by the Kaituna River Board 

with the establishment of a new outlet at Te Tumu. This outlet was fixed by a 

solid rock barrier on the eastern side to prevent further eastward migration, as had 

occurred in the past under natural conditions (KRTA, 1986). As a result of the 

diversion in 1957 the Kaituna River no longer discharged into the Maketū Estuary. 

This lead to deterioration of the estuary’s health, and is further explained in 

Section ‎2.2.1. 

In 1973 the Kaituna Catchment control scheme was devised with the aims to 

straighten, widen, and deepen the lower Kaituna River. It was hoped that this 

would ease the flow to the sea, allowing the river to handle 100 year flood events. 

The majority of the work for this scheme was undertaken between 1981 and 1985 

and included 67 km of stopbanking (Figure ‎2.3), 88 km of canals, construction of 

the rock rubble groyne at Te Tumu, 7 pump stations and 5 flood gate structures. 
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Figure ‎2.3: Schematic showing the straightening, stopbank and canal development on the lower 

Kaituna River (Goodhue, 2007). 

 

Following concerns over Maketū Estuary’s deteriorating health as a result of the 

diversion, the Department of Conservation applied for resource consent to divert 

flow through culverts at Ford’s Cut. Consent was granted by Environment Bay of 

Plenty, although, this decision was appealed following a Planning Tribunal 

hearing in 1993. Consent was finally granted in 1994 and four flapgate culverts 

were installed in 1995. However, as a result of legal action by the Bain family the 

gates remained closed until February 1996, when they were opened illegally by a 

member of the public. The High Court then ruled against the Bain Family and the 

gates have remained open since (Wallace, et al., 2008).  
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 Effects of the Diversion 2.2.1

Increased sedimentation within Maketū Estuary has continually been outlined as 

one of the most significant concerns of local residents. Historic accounts and 

reports suggest that in the past that the estuary channels were significantly deeper, 

with residents estimating that depths had decreased by about 5 metres in parts. 

Reports also mention boats as large as 60 tonnes with one metre drafts entering 

the estuary, suggesting the channels must have been much deeper in the past 

(Domijan, 2007). 

 It has been estimated that between 1985 and 1996 the inter-tidal storage volume 

of the estuary decreased by 0.15 x 10
6
 m

3
 (17.3%). This was attributed to 

sedimentation at a rate of 13,640 m
3
 per year by Domijan (2007). There is a 

possibility that similar sedimentation rates were also occurring prior to the 

diversion, with reports of blasting to deepen the entrance as early as 1926 (Murray, 

1978). However, it is generally agreed that the diversion has played a part in 

increasing the sedimentation rate. 

The other main concern of local residents is the effect the diversion has had on 

shellfish populations. Shellfish populations, especially the Pipi, have decreased 

due to a combination of smothering due to increased sedimentation, changing 

salinities from reduced freshwater inflows and eutrophication of the estuary water 

(Richmond & Forbes, 1990; Park, 2003). In the absence of quantitative data on 

the ecology of the estuary prior to the diversion, there is no direct measurement of 

the effect the diversion has had on the shellfish populations. However, it is agreed 

that shellfish populations have declined.  
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 Present State 2.3

At present the lower Kaituna River is in the configuration shown in Figure ‎1.1. 

The original pathway of the river through Papahikahawai Channel (Figure ‎2.2, top) 

is completely blocked off by a causeway and several earthen blocks. Ford’s Cut is 

controlled by gated one way culverts. The current consent and flapgate structures 

allow for 100,000 m
3
 of net inflow into the estuary per tidal cycle. At present the 

net inflow through Ford’s Cut is approximately 4% of average river flow (40 

m
3
/s). With the net inflow of freshwater into the estuary varying between 100,000 

– 115,000 m
3
, the percentage of freshwater within the estuary ranges from 6-10% 

(Bates, 2010 Memorandum to C. Meadowcroft).  

 

 Potential Re-diversion Options 2.4

At present (2011) five different re-diversion options have been identified as the 

most likely options from which the final option will be chosen. These five options 

were chosen based on four preliminary criteria of: (1) volume of water added to 

Maketū Estuary, (2) effects on local drainage and flooding, (3) cost and (4) 

flexibility (EBoP, 2008). These five options are outlined below and shown in 

Figure ‎2.4. 

 

Option H – Complete Make Over: 

This option is for the complete makeover from the present configuration. It 

includes blocking the Te Tumu Cut, removing the culverts and causeway that 

currently block the river from entering the estuary, removal of the block in the old 

river channel which is upstream of Te Tumu and reopening Papahikahawai 

Channel allowing the river to flow into the estuary. Numerical Modelling has 

shown this would increase the net inflow volume in to Maketū Estuary from the 

present 105,000m
3 

to 2,887,000 m
3
 per tidal cycle. 
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Option N – Increased flow through Papahikahawai Channel: 

Option N includes creating an opening in the causeway, the removal of the blocks 

in Papahikahawai Channel and the subsequent addition of two large one-way 

flood gated culverts to allow flood relief, but prevent backflow into the river. 

Numerical modelling has shown this would increase the net inflow volume to 

449,000 m3. 

Option J – Alteration of Ford’s Cut (A): 

Lower the height of the culverts to -1.6 m RL so they are submerged at mid-tide 

to allow increased river flow into the estuary. Numerical modelling has shown 

this would increase the net inflow volume to approximately 200,000 m3. 

Option L – Alteration of Ford’s Cut (B): 

Option L includes the removal of the Ford’s Cut culverts and causeway between 

the river and the estuary, and the subsequent construction of an opening between 

the cut and estuary controlled by a flood gate culvert to prevent backflow into the 

river. Numerical modelling has shown this would increase the net inflow volume 

to 383,000 m3. 

Option R – Change Ford’s Cut and Te Tumu Cut: 

Option R is to insert control gates at both the Te Tumu Cut and Ford’s Cut with 

the control gates at Te Tumu open and Ford’s Cut closed during flood events, and 

the opposite during normal conditions. Numerical modelling has shown this 

would increase the net inflow volume to 2,856,000 m3. 

 

Options H and R are the most effective options in terms of restoring flow into the 

Maketū Estuary as they re-divert all normal flow into the estuary. However, both 

of these options will increase the adverse effects of river flood levels, drainage 

and sedimentation within the Te Tumu Cut. Mitigation of such effects would 

likely be costly, but essential to protect the surrounding landowners. In terms of 

flood relief and drainage Option N is the best as it would increase the inflow 

volume to the estuary by four-fold. Option N is also favoured as it offers 
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flexibility to later be transformed into H, J, L or R if required (EBoP, 2008; 

Wallace et al, 2008). 

 

 

 

Figure ‎2.4: The five most likely re-diversion options outlined by the BOPRC (modified from 

EBoP, 2008). 
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 Summary 2.5

The Kaituna River historically discharged into Maketū Estuary through 

Papahikahawai Channel. However, it also spent considerable amounts of time 

discharging straight out to sea at Te Tumu, as a result breaching of Maketū spit 

during times of large storm and flood events. In response to a large breaching 

event in 1907, an artificial channel known as Ford’s Cut was created with the aim 

of diverting part of the river into the estuary earlier to prevent further breaching. 

Ford’s Cut was later reclosed in 1956, by the construction of a rock causeway. 

This permanently diverted the Kaituna River straight out to sea at Te Tumu, away 

from Maketū Estuary, with the aim of alleviating the flood susceptibility of the 

surrounding farmland. In response to concerns over the estuary’s health Ford’s 

Cut was reopened with a series of one way flapgates in 1996. However, this had 

little effect in remediating the estuary, and as a result the Bay of Plenty Regional 

Council is currently investigating a number of potential options to partially or 

fully restore flow of the Kaituna River, back into Maketū Estuary.
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3 Chapter 3 
 

Literature Review 
 

 Introduction 3.1

The majority of research on inlet stability, especially in New Zealand, has 

primarily focused on tidal inlets in the form of harbours and estuaries, rather than 

river mouths. However, many of the principles applied to estuary and harbour 

inlets can be applied to the Kaituna River mouth, as the inlet is also influenced by 

tidal flow, in addition to river discharge. 

In regards to the influence of reduced river flow on inlets, research has 

predominantly focused on the seasonal closure of inlets in response to periods of 

low river flow, and the effect various wave conditions have on inlet closure times. 

Examples of such situations include the Wilson Inlet in Western Australia 

(Ranasinghe & Pattiaratchi, 1999, 2003), the Narrabeen, Wamberal and 

Wollumboola Lagoons in New South Wales, Australia (Gordon, 1990) and the 

Hue Inlets on the Central Coast Vietnam (Lam et al., 2007). In New Zealand 

research has primarily focused on South Island rivers, such as the work of Kirk 

(1991); Kirk & Lauder (2000) and Hart (2009).  

 

 Inlet Classification 3.2

The morphology and sediment depositional patterns at river mouths and inlets are 

some of the most varied of all coastal depositional forms in the world (Wright, 

1977; Siegle, et al., 2004). Therefore, there is not one sole classification system 

applicable to all inlets. This has led to a wide variety of classification schemes 

based on factors such as the inlets oceanography (wave height, period, tidal range 

etc.), processes that formed the inlet and descriptions of the inlet’s features. The 

two most commonly used classification schemes in New Zealand are the Hayes 
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(1979) classification based on tidal range and wave height, and the Hume & 

Herdendorf (1988) classification schemes. However, the use of estuary type 

classification schemes for river mouths is disputed by Kirk (1991), who suggests 

they are better described as coastal lagoons. 

 

 Estuary Inlet Classifications 3.2.1

Hayes (1979) proposed a classification scheme which divides inlets into five 

classes, based on their mean tidal range as follows: 

 

 Class Mean Tidal Range 

• Microtidal < 1.0 m 

• Low Mesotidal 1.0 – 2.0 m 

• High Mesotidal 2.0 – 3.5 m 

• Low Macrotidal 3.5 – 5.5 m 

• High Macrotidal > 5.5 m 

 

Hayes (1979) also defined a classification based on the mean annual wave height 

(Hm), with the following three classes: 

 

 Class Mean Wave Height 

• Low Wave Energy < 0.6 m 

• Medium Wave Energy 0.6 – 1.5 m 

• High Wave Energy > 1.5 m 

 

Based on an average tidal range of 1.45 m and a mean annual wave height of 0.8 

m (Section ‎1.3.4) the Te Tumu Cut can be classified according to the Hayes (1979) 

scheme as a low mesotidal, medium wave energy inlet.  
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Another way of classifying inlets is by the primary processes that shaped the 

deposition basin. This method was applied by Hume & Herdendorf (1988) for 

New Zealand estuaries (Table ‎3.1). This classification scheme divides inlets into 

five primary modes of origin, and then further subdivides them into 16 categories 

based on geomorphic and oceanographic characteristics. Based on this 

classification the Te Tumu Inlet is categorised as a Type 8 Straight Banked, River 

Mouth. These types of inlets are typically characterised by parallel or funnel 

shaped entrances and a marked salinity structure (Hume & Herdendorf, 1988). 

However, prior to the Kaituna River mouth being fixed at Te Tumu in 1956 the 

river would have been classified as a Type 9 or 10 Spit-lagoon River Mouth. 

 

Table ‎3.1: Classification of New Zealand estuaries (after Hume & Herdendorf, 1988b), recreated 

from Hume & Herdendorf (1993). 

 

 

Hume et al. (2007) developed an estuary environment classification (EEC) based 

on a graded class of physical factors that largely influence estuary environments. 

The classification was based on a range of indices such as the estuaries total 

volume, tidal prim, estuary elongation and a shoreline complexity index, and 

calculated for a range of estuaries in New Zealand using a Geographic 

Information System (GIS) application. Although information was not available to 

calculate all of the indices used for the classification of Hume et al. (2007) the Te 

Tumu Cut closely matches the description of a Level 2, Category B estuary. These 
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types of estuaries are characterised by simple shaped, elongated basins with a 

predominantly subtidal estuarine area, with freshwater inflows accounting for a 

significant proportion of the basins volume. 

 

 Coastal Lagoons  3.2.2

Kirk (1991) debates the classifications of river mouths as a type of estuary by 

Hume & Herdendorf (1988), on the basis that river mouths are primarily 

dominated by freshwater outflow rather than tidal flows. Therefore unlike 

estuaries, river mouths are inadequately explained by tidal hydraulics as suggest 

by Hume & Herdendorf (1988 & 1993). It is also suggested that the term ‘outlet’ 

is better suited than ‘inlet’ to describe river mouths (Kirk, 1991). However, both 

terms are used interchangeably within this thesis.   

The term ‘coastal lagoon’ was described by Kjerfve (1994, pp. 2-3) as: 

 “… an inland body of water, usually oriented parallel to the coast, 

separated from the ocean by a barrier, connected to the ocean by one or 

more restricted inlets, and having depths which seldom exceed a couple of 

meters. A lagoon may or may not be subject to tidal mixing, and salinity 

can vary from that of a coastal freshwater lake to a hypersaline lagoon, 

depending on the hydrologic balance. Lagoons formed as a result of rising 

sea level during the Holocene or Pleistocene and the building of coastal 

barriers by marine processes.”   

With the added restriction, that the tidal force is not the dominant process Kirk & 

Lauder (2000) further subdivided this definition in to two lagoon types which are 

common in the South Island of New Zealand: Coastal Lakes and River Mouth 

Lagoons. 

Coastal Lakes have small or infrequent exchanges of water with the ocean and 

thus predominantly have fresh or brackish waters. They are also commonly closed 

from the sea, leading to the name ‘choked lagoons’. However, periodically they 

may burst their barrier to become open to the sea. Examples of coastal lakes in 

New Zealand are Waihora/Lake Ellesmere and Waituna in the South Island. 
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River Mouth Lagoons, also often referred to by their Maori name of Hapua, are 

generally shore-parallel bodies of freshwater separated from the ocean by a 

narrow spit,  that formed by the offsetting of the river mouth from longshore drift. 

Examples of Hapua from the South Island, New Zealand include the Hurunui, 

Rakaia, Ashburton, Opihi and Waitaki Rivers.  

As described in Section 2.1 and Figure ‎2.1, prior to the Kaituna River mouth 

becoming fixed at Te Tumu in 1976, the river flowed eastward parallel to the 

coast, separated from the ocean by a spit, until it discharged out to sea though an 

area of spit breach. This fits the description of a River Mouth Lagoon described 

above. However, following the construction of the Te Tumu Cut and causeway to 

fix the Kaituna River mouth at Te Tumu, the river could no longer flow parallel to 

the coast before discharging out to sea.  
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 Inlet Features 3.2.3

Figure ‎3.1 depicts the typical features of an idealised ebb delta on an open sandy 

coast system, such as the Te Tumu area. The main ebb channel is the deepest part 

of the delta and extends out to the end of the delta. At the end of the main channel 

is the terminal lobe, which is a steep sloping, compared to the other features, lobe 

of sand that indicates the seaward edge of the delta. Flanking either side of the ebb 

channel are the marginal flood channels, which are created by the inflow of the 

flood tide into the inlet. The relatively flat area between the ebb channel, terminal 

lobe and flood channel is known as a swash platform and often includes swash 

bars, created by the swash action of waves (Hayes, 1980). 

The cross-sectional area of the ebb channel and volume of sediment within the 

ebb delta show a strong relationship to the inlets tidal prism. These relationships 

are further explained in Sections ‎3.3.2 and ‎3.3.3 respectively.  

 

 

Figure ‎3.1: Typical features of an ebb delta on an open sandy beach system (Hayes, 1980). 

 

Figure ‎3.2 shows the Te Tumu Cut ebb delta in March 2008. During this time 

there was well defined ebb channel, which formed along the path of the river 

discharge axis, and ends at the terminal lobe. Flanking either side of the ebb 

channel is two large swash platforms. Swash bars exist on both swash platforms, 

with the western swash bar being much larger due to its location on the updrift 
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side of the predominant littoral drift direction. Inside the swash bar on the western 

side is a marginal flood channel, and it appears there is also a much smaller 

marginal flood channel inside the eastern swash bar. 

 

 

Figure ‎3.2:  Aerial photograph showing the main features of the Te Tumu Cut ebb delta, in March 

2008. 

  



 

30 

 

 Inlet Stability 3.3

Inlet stability was defined by Bruun et al. (1978 p. 245) as “a dynamic stability by 

which elements involved attempt to maintain a situation characterized by 

relatively small changes in inlet geometry including, location, planform and cross 

sectional areas and shape.”  

The stability of an inlet is controlled by a number of factors such as the tidal prism, 

littoral drift, wave climate, freshwater discharge, sediment grain size, and the time 

period over which stability is being considered (Hubbard et al., 1979; Hayes, 

1980; Hume & Herdendorf, 1992, 1993; FitzGerald et al., 2000). 

Tidal inlet stability has been the subject of numerous studies since the 1930s 

following O’Brien’s (1931) discovery that there is a relationship between the inlet 

channel area and the tidal prism. This relationship has since been further applied 

around the world and shown to hold true for many inlets (Section ‎3.3.2). Another 

simple, yet commonly used empirical relationship is that of Bruun & Gerritsen 

(1960) who proposed the ratio between the local longshore sediment transport 

volume and tidal prism as an indicator of inlet stability.  

However, although many researchers have noted river flow to be a potential 

component of inlet stability, surprisingly little work has been conducted on the 

influence of river flow on inlet stability. The majority of research has focused 

around tidally dominated inlets where river flows have little effect (Walker, 2003). 

Research that has taken into account the effect of river flow has predominately 

been in the area of seasonally closed inlet, where there is a significant seasonal 

decrease in river flow (Shuttleworth et al., 2005). This section will review the 

mechanisms of inlet closure and the applicable inlet stability relationships for the 

Te Tumu inlet.  

 

  Bruun Ratio 3.3.1

The Bruun Ratio is the ratio of the tidal prism (Ω - in m
3
) to the net annual littoral 

drift arriving at the inlet (Mtot - in m
3
/yr). It is based on the concept of whether 

there is sufficient tidal flushing to remove the sediment transported into the inlet 
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from the littoral drift system. Based on this ratio overall inlet stability can then be 

classified on a scale from “relatively good, little bar and good flushing (Ω/Mtot > 

150)”, to cases where “entrances become unstable and overflow channels form 

rather than permanent inlets (Ω/Mtot < 20)” (Bruun, et al., 1978 pp. 261 ) 

Hume & Herdendorf (1992) modified the Bruun stability ratio classification for 

the northeast coast of the North Island of New Zealand and defined the 

classifications of inlet stability and navigability shown in Table ‎3.2. 

 

Table ‎3.2:  Classification of inlets based on the tidal prism to littoral drift ratios (Ω/Mtot) after 

Bruun (1978), recreated from Hume & Herdendorf (1992). 

Ω/Mtot Ratio Entrance Condition 

Ω/Mtot > 300 

Little or no ocean bar outside gorge (ocean shoal may 

occur further out), good entrance conditions and 

flushing 

150 < Ω/Mtot < 300 Little ocean bar 

100 < Ω/Mtot < 150 Low ocean bar, navigation problems usually minor 

50 < Ω/Mtot < 100 
Wider and higher ocean bar, increasing navigation 

problems 

20 < Ω/Mtot < 50 Wide and shallow ocean bar, navigation difficult 

Ω/Mtot < 20 
Very shallow ocean bar, navigation very difficult, 

entrance unstable 

 

In the case of the Te Tumu Cut, which is a river dominated inlet, the tidal prism 

also includes the freshwater discharge (Q) over the ebb tide (from here on referred 

to as the effective tidal prism). The Bruun ratio can be modified to include river 

discharge as: (Ω + Q) / Mtot. 

No direct measurements have been made of the effective tidal prism for the Te 

Tumu Cut. However, based on average flow conditions for the Kaituna River (40 

m
3
/s) and its tributaries (1.85 m

3
/s for Raparapahoe and using the assumptions 

outlined in Section 5.2.1) an average volume of 2,240,000 m
3
 has been estimated 

to discharge from the river mouth during an ebb tide, via the 1-dimensional Mike 

11 river flow model described in Section 5.3.  

Based on an average ebb discharge through the Te Tumu Cut of 2,240,000 m
3
 per 

tidal cycle and an Mtot of 40,000 m
3
 per year along the Maketū coast (Burton & 

Healy, 1985) the modified Bruun stability ratio is equal to 56. This corresponds to 
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the entrance condition of a wide and high ocean bar with increasing navigation 

problems (Table ‎3.2). Observations during field work for this project also closely 

matched this classification description, with access over the delta dangerous at 

low tide. 

It can be seen from the modified Bruun ratio and Hume & Herdendorf’s (1992) 

classification that any significant reduction in the discharge through the Te Tumu 

Cut, will lead to a decrease in the Bruun stability ratio, and thus likely further 

decreasing the navigability of the Te Tumu Cut.  
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 Cross-sectional Stability of the inlet 3.3.2

Numerous studies have shown that there is a relationship between the cross-

sectional area of an inlets throat and its tidal prism (O’Brien, 1969; Heath, 1975; 

Jarrett, 1976 and Hume and Herdendorf, 1988, 1992, 1993), with the relationship 

having the following form: 

A = C Ω
n  

Equation. 3.1 

where A is the inlet throat cross-sectional area (m
2
), Ω is the tidal prism (m

3
) and 

C and n are constants.  

Hume & Herdendorf (1992) collated a range of parameters, including cross-

sectional area and tidal prism data for 16 inlets along the northeast coast of New 

Zealand. The relationship between the cross-sectional area and tidal prism for 

these 16 inlets is shown in Figure ‎3.3. The position of the Te Tumu inlet, based on 

the average ebb flow volume and bathymetry data collected in Section 4.4, is also 

indicated, although it is not accounted for in either of the trend lines. 

 

 

Figure ‎3.3:   Inlet cross-sectional area vs. tidal prism relationships. The data points and solid trend 

line represents data of 16 inlets from Hume & Herdendorf (1992). The grey dashed 

line represents the relationship for River Mouth type inlets from Hume & 

Herdendorf (1993). 
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Following on from this work, Hume & Herdendorf (1993) classified 82 New 

Zealand inlets into 16 different inlet categories based on the Hume & Herdendorf 

(1988) scheme. It was found that for the river mouth inlet classification C = 4.39 

× 10
-3

 and n = 0.757, giving a relationship with an r
2
 value of 0.94 based on a 

sample size of 4. However, from Figure ‎3.3 (dashed line) it is evident that this 

river mouth inlet relationship does not hold true for the Te Tumu Cut, 

overestimating the cross-sectional area by slightly over 200%. However, the Te 

Tumu inlet fits closely within the relationship of the 16 inlets on the northeast 

coast (solid line) from Hume & Herdendorf (1992).  

Hume & Herdendorf (1993) note that at river mouth inlets large variations in 

throat cross-sectional area exist due to large variations in river flow, and therefore 

river mouth inlets are perhaps not well described by A - Ω relationships. Kirk 

(1991) and Kirk & Lauder (2000) also agree, stating that tidal prism to inlet cross-

sectional area relationships are inappropriate for river mouth lagoon systems, due 

to the inlet being primarily freshwater dominated rather than tidally dominated.  

Despite the concerns of Kirk (1991) and Kirk & Lauder (2000) the tidal prism - 

cross-sectional area relationship has been included and calculated here as it has 

been applied successfully to similar situations in the Bay of Plenty region in the 

past.  Healy (1985) showed that for the Whakatane River when the mean daily 

river discharge was multiplied by the ebb tidal duration of 6.5 hours, and added to 

the tidal prim, a cross-sectional area of 238 m
2
 was predicted, matching closely to 

the measured cross-sectional area of 246 m
2
.  

The relationship was also used by Dahm & Kench (2004) for the Opotiki entrance. 

They measured cross-sectional area and tidal prism on two separate occasions, 

and compared them against the tidal prism cross-sectional area relationship for 

New Zealand Inlets. On both occasions the data points were situated above the 

equilibrium slope, suggesting the cross-sectional area was too large for the 

measured tidal prism. However, they observed flood scour prior to the 

measurements being collected and attributed the observed differences to this. 
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 Ebb Delta Stability 3.3.3

In New Zealand the tidal prism is the primary control on ebb delta volume, with 

the angle of outflow in relation to the shoreline being the main secondary factor 

(Hicks & Hume, 1996). It was also shown that wave energy had some impact, 

with deltas on the West Coast tending to be smaller than those on the East Coast, 

for inlets with similar tidal prisms. Based on 17 inlets around New Zealand Hicks 

& Hume (1996) devised the following relationship between the inlets tidal prism 

and volume of the delta: 

V = 1.9 x 10
-4

 x Ω
1.41

  Equation 3.2 

Again assuming an effective tidal prism of 2,240,000 m
3 

for the Kaituna River 

mouth
 
(Section ‎3.3.1), the volume of sediment within the delta is 170,845 m

3
. 

This relationship further reiterates the point that any significant decrease in the 

effective tidal prism will lead to an increase in sedimentation around the inlet, as 

excess sediment from the smaller delta would likely move onshore and into the 

inlet, due to wave action. 

 

Figure ‎3.4:  Relationship between spring tidal prism and ebb delta volume for 17 North Island 

inlets, from Hicks & Hume (1996). The Te Tumu inlet’s position (calculated above) 

is also added and indicated by the black star. 
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Based on the methodology of Hicks & Hume (1996) the length / breadth ratio was 

determined using bathymetry data where available (2008, 2011), and aerial 

photographs when bathymetry data was unavailable (2003, 2007). Where aerial 

photographs were used, breaking waves were taken as an indication of the delta 

edge. The length was measured along the outflow axis and breadth was measured 

parallel to the shore. The average length / breadth ratio for the delta measurements 

shown in Figure ‎3.5 was 0.27 which fits the Type 1, free-form delta category of 

Hicks & Hume (1996). 

 

 

Figure ‎3.5:  Schematic showing the ebb delta location, 2003 – 2011. The 2003 & 2007 locations 

were digitised from aerial photographs while 2008 & 2011 were digitised from 

hydrographic soundings. 

 

From Figure ‎3.5 it is evident that in general the ebb delta at the Te Tumu entrance 

has remained relatively stable in regards to size, location and orientation between 

2003 and 2011. The main variation away from the “normal” condition appears to 

be in 2007, where the delta becomes narrower, longer and orientated more to the 

north east.  
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 Mechanisms of Inlet Closure 3.4

It can be seen from Section ‎3.3.2 than any significant reduction in flow through an 

inlet leads to a decrease in the inlet’s cross-sectional area, as a result of increased 

deposition. If the decrease in flow is significant enough the inlet may completely 

close up. Ranasinghe & Pattiaratchi (2003) reviewed the theories on inlet closure 

mechanisms and stated they fall into two main categories. Mechanism 1 is the 

interaction between the inlet currents and longshore currents, whereas Mechanism 

2 is the interaction between inlet currents and onshore sediment transport.  

 

Figure ‎3.6:   Schematic depiction of inlet closure by longshore and cross-shore mechanisms, from 

Ranasinghe & Pattiaratchi (2003). 

 

Mechanism 1 is the result of the inlet interrupting longshore sediment transport 

and as a result, the formation of an up-drift shoal. Persistent supply of sediment to 

the shoal will result in the growth of a spit across the inlet mouth. If currents 

through the inlet mouth are strong enough to scour away deposited sediments then 

the spit will no longer grow. However, if the current velocities are not strong 

enough then the spit will continue to prograde until the inlet is completely closed 

(Figure 3.6, left). 
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Mechanism 2 only occurs when current velocities through an inlet mouth are 

small, for example inlets with a low tidal range and thus small tidal prism. This 

mechanism is the result of the interaction between low current velocities and 

onshore sediment transport conditions under calm swell wave conditions. When 

ebb flow currents are low, calm swell wave conditions will result in the onshore 

movement of sediment from the offshore bar region; providing the ebb flow 

currents are weak enough this onshore movement of sediment will lead to the 

closure of the inlet (Figure 3.6, right).  

It is speculated that the Te Tumu Cut would conform to Ranasinghe & 

Pattiaratchi’s (2003) Mechanism 1 of inlet. This speculation is based on the 

repeated cycles of spit breach and subsequent spit growth prior to the Kaituna 

River mouth becoming fixed at Te Tumu in 1956 as discussed in Section 2.2. 

Google Earth images in Figure ‎3.7 also show the partial development across the 

mouth, however, the river flows are strong enough to maintain the gorge channel 

and prevent complete closure.  

 

Figure ‎3.7: Historic images from Google Earth showing spit growth across the river mouth. 

 

Hart (2009) developed a theoretical model of the different morphodynamic states 

of river mouth lagoons, and the drivers between the different states, based on a 

range of non-estuarine river mouth lagoons on the eastern South Island of New 

Zealand. Figure ‎3.8 illustrates Hart’s (2009) model and the links between each 

state. States a: primary and e: secondary breaches of new outlets occur as a result 

of high energy river and or sea events. Under moderate river and sea conditions 

outlet migration (b and c) dominates, while outlet closure (d) or stable outlet 
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configurations (b, c and e) occur during times of low energy river and sea 

conditions. 

 

Figure ‎3.8:  River mouth lagoon states and state changes (modified from Hart, 2009). 

 

Based on the observed river mouth lagoons assessed in Hart’s (2009) study it was 

found that the most common lagoon state and stage changes occur during periods 

of wave dominance. These conditions induced stable or migrating outlets, closed 

outlets and barrier overtopping by waves. River conditions dominated outlet 

dynamics only occasionally to rarely, and resulted in primary and secondary 

breaching. It was also noted that lagoons with moderate river flows (mean <50 

m
3/

s, 7-day low <16 m
3
/s and annual floods of <500 m

3
/s) typically experience 

longer periods of wave dominance, while lagoons with higher flows (mean >50 

m
3/

s, 7-day low >16 m
3
/s and annual floods of >500 m

3
/s) typically experience 

less frequent state changes. From this it was concluded that stronger river flows 

do not lead to more frequent river-induced behaviours, but rather more stable 

outlets, which experience less frequent lagoon closures and intermediate stages. 

The main difference between the river mouth lagoons observed in Hart’s (2009) 

study and the Kaituna River mouth is that the Te Tumu Cut is fixed by a rock 

causeway, and therefore, no longer experiences outlet migration as do the outlets 

Hart’s (2009) model is based upon. The Bay of Plenty coastline also experiences a 

much lower energy wave climate than that of the South Island’s east coast, with 

hindcast model results from Gorman et al. (2003) showing an Hs of 0.86 m for the 
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Bay of Plenty compared to 1.99 m for Banks Peninsula on the east Coast of the 

South Island. 

 

 Engineering Structures to Maintain Inlet Stability 3.5

Jetty structures or training walls at the mouth of inlets act to give the inlet 

positional stability and deepen the main channel by directing current flow and by 

inhibiting the natural littoral drift system. This is achieved by confining the flow 

to a limited channel and making the flow paths more hydraulically efficient, thus 

increasing flow velocities and scour potential (Kieslich, 1981). There are two 

main types of jetties: single jetties and twin jetties, each of which can vary in 

shape, size, height and design. 

 

 Single Structure Jetties 3.5.1

Single jetties are single structures that can be straight or curved and either 

perpendicular or at an angle to the shore. Depending on the predominant wave and 

littoral drift conditions, they are typically located on the updrift side of the inlet. 

Single updrift jetties act as a barrier to the littoral drift system, minimising the 

influx of sediment from littoral drift system from entering the inlet (Figure 3.6). 

With sediment inflow minimised tidal and freshwater inflow current scour 

becomes more effective (Kieslich, 1981). 

 

Figure ‎3.9: Schematic showing the current flow paths around a single updrift jetty structure 

(USCAE, 1995). 

 



 

41 

 

The current rock causeway structure at Te Tumu is an example of a single straight 

jetty, which is located on the downdrift side of the inlet. However, the causeway 

only extends to the edge of the river mouth, rather than out into the surf zone.  

This provides positional stability for the river mouth and channel, without 

interfering with sediment bypassing the inlet within the littoral drift system. 

Although single jetties have been widely used in the past, it is now generally 

accepted that single updrift jetties are not a good protection measure for inlets. 

Based on data from 12 entrances along the Atlantic, Gulf and Pacific Coasts 

where single jetties have been used Kieslich (1981) concluded that construction of 

single jetty systems do not appear to be practical solutions to improving inlet 

entrances.  

Their effects are beneficial updrift as they promote an area of deposition 

immediately against the jetty. However, single jetties lead to three main problems 

downdrift:  

 Erosion of the downdrift beachface as a result of the littoral system 

becoming blocked off.  

 Deposition within a lee side eddy (Figure ‎3.9) which may expand into 

the navigation channel. 

 It has been shown that regardless of position and orientation of the jetty 

in relation to the net longshore sediment transport the seaward portion 

of the thalweg migrates towards the jetty often resulting in a channel in 

an unsafe proximity to the jetty (Bruun, 1978). 

 

In attempts to minimise the negative effects often associated with single jetty 

structures two basic variations were designed, the weir section and the Haupt Jetty. 

A weir jetty (Figure ‎3.10) is similar to a single jetty structure; however, it must 

always be located on the updrift side to function. The weir section is a lower 

section on the shoreward portion of structure that typically has a crest level close 

to mean sea level. This allows sediment to be transported by waves and currents 

over the weir section to be deposited into the sheltered deposition basin. The 

deposition basin can then be periodically dredged with the sediment being 

deposited on the downdrift coast (USCAE, 1995).  
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Figure ‎3.10: Schematic of a weir section in a jetty system (Recreated from USCAE, 1995). 

 

The Haupt jetty (Figure ‎3.11) design is a single jetty that is detached from the 

shoreline and located on the updrift side of the inlet. The structure is concave to 

the main ebb currents, forcing them against the structure and thus scouring out a 

channel along the length of the jetty (USCAE, 1995). 

 

 

Figure ‎3.11: Schematic of a Haupt jetty system (Recreated from USCAE, 1995). 
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 Twin Jetty Structures 3.5.2

Twin jetties are solid structures placed on either side of the inlet (Figure ‎3.12). 

They can be perpendicular or at an angle to the shore; diverging, converging or 

parallel; and of equal or different lengths depending on the predominant wave and 

littoral drift conditions. Twin jetties force the flood and ebb currents to become 

more channelized and constrict the entrance, therefore creating a deeper channel, 

while also blocking longshore sediment transport into the inlet (Komar, 1976; 

Kieslich, 1981).  

The advantage of twin jetty structures over single jetties is that the jetty on the 

downdrift side prevents the formation of a deposition shoal in the lee side eddy as 

typically seen in single jetty systems. However, just like single jetty structures, 

twin jetties typically cause erosion on the downdrift side of the inlet as a result of 

impeding the littoral drift system (Bruun, 1978). 

 

 

Figure ‎3.12: Schematic of a twin jetty system 

 

The spacing between twin jetties can be crudely estimated using the tidal prism 

cross-sectional area relationship from Section ‎3.3.2 if the desired average channel 

depth is known. However, this relationship uses the tidal prim as a proxy for other 

factors that directly affect the inlets cross-sectional area, such as peak discharge 
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and velocity, and therefore, should only be used as an initial estimate (Hughes, 

1999).  

More recently, work by the United States Army Corps of Engineers (USACE) has 

developed another empirical relationship that can be used to determine the 

equilibrium scour depth (he) between training walls (Hughes, 1999). The 

relationship is based on sediment grain size (de), density (Ss – specific density) 

and maximum discharge per unit width through the inlet (qe), and is given by: 

 

           

 

           
 

     

 

    Equation 3.3 

 

This relationship has been used on a number of twin jetty inlets in the USA and 

has shown to provide an exaggerated estimate of equilibrium scour depth (more 

scour than may actually occur for a given discharge), representing the outer bound 

of the field data (Hughes, 1999). This relationship can be solved for qe to 

determine the spacing between two jetties based on the required channel depth 

and inlet discharge conditions. 

 

 Opotiki Harbour Example 3.5.3

The Opotiki Harbour Inlet, much like the Te Tumu Cut, is a dynamic and 

continually changing inlet that responds to a complex interaction of wave induced, 

river flow and tidal currents along with a constantly varying sediment transport 

regime. During low river flows, the tidal flow through the inlet is insufficient to 

maintain the channel through the inlet. As a result the inlet becomes difficult, or at 

times impossible to navigate due to increased sedimentation. For example, in 

2007 the inlet was unnavigable for 64 days, due to decreased depths within the 

channel (Pedersen et al., 2008).  

As a result of such problems, the Opotiki District Council commissioned DHI to 

investigate the significance of the different processes that shape the Opotiki 
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Harbour Inlet and assess various measures that could be taken to stabilise and 

deepen the channel through the inlet (Pedersen et al., 2008). 

Through extensive field data collection and the use of DHI’s numerical modelling 

software it was concluded that: 

(1) The entrance is dominated by fine sediments transported within the littoral 

drift system, with an estimated 700,000 – 900,000 m
3
 passing the inlet 

each year, with the direction varying in time depending on the wave 

conditions. Overall the net transport is estimated at about 7,600 m
3
 each 

year to the west. 

(2) Preliminary assessments concluded that twin jetty structures would 

provide much better results than a single jetty would. Through sediment 

transport modelling of various jetty configurations it was found that the 

construction of twin breakwaters (jetties), spaced 120 metres apart would 

provide increased navigational conditions. 

 

 

Figure ‎3.13:  Aerial photograph showing the twin jetty structures that DHI (2008) concluded 

would provide the best navigation improvements, based on the required cost and 

flooding impacts (Modified from Pedersen et al., 2008). 

 

The proposed design consists of twin jetties spaces 120 metres apart, 400 m to the 

east of the current inlet. The jetties are aligned approximately 19˚ west of normal 
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to the coast, following the direction of the channel and extend out to a depth of 4 

m. However, it was noted that their lengths were restricted due to costs, and that 

an ideal solution would extend further out to sea. Modelling showed that these 

structures would maintain a minimum channel depth 4.3 m under typical river 

flow and wave conditions.  

 

 

 Summary 3.6

The Te Tumu Cut is classified as a low mesotidal, medium wave energy inlet 

according to Hayes (1979), and a straight banked river mouth according to Hume 

& Herdendorf (1988). However, the use of Hume & Herdendorf’s (1988) 

classification of estuary types for river mouths is disputed by Kirk (1991) who 

instead suggests a separate classification of coastal lagoons, which would classify 

the Te Tumu Cut as a river mouth lagoon. 

Based on number of widely used empirical relationships between an inlet’s tidal 

prism and cross-sectional area, ebb delta volume and inlet stability when 

compared to the net annual littoral drift of the region it was shown any significant 

reduction in freshwater discharge out of the river mouth would lead to increased 

sedimentation around the Te Tumu inlet. However, Kirk (1991) and Kirk & 

Lauder (2000) suggest that such relationships are not appropriate for river mouth 

lagoon systems, as they are primarily controlled by freshwater discharges rather 

than tidal flows. However, tidal prism cross-section relationships have been used 

successfully in the past for the Whakatane River mouth and also applied to the 

Opotiki entrance in the Bay of Plenty and therefore were also calculated for the Te 

Tumu Cut. It has also been speculated that if there was a significant decrease in 

freshwater discharge the Te Tumu Cut would begin to close via the Type 1 

Ranasinghe & Pattiaratchi (2003) mechanism of inlet closure. 
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4 Chapter 4 
 

 Field Data & Bathymetry Measurements 
 

 Introduction 4.1

In order to model hydrodynamic problems accurately, detailed bathymetric 

measurements are required (Ramming & Kowalik, 1980; Papanicolaou et al., 

2008). Inadequate bathymetry can cause difficulty in the calibration and 

validation stages of modelling and also lead to incorrect model results. This 

chapter will outline the different methods used to collect bathymetric data, 

sediment samples and current velocities in, and around the Te Tumu Cut and 

Maketū Estuary for this project.  

 

 RTK GPS Set Up 4.2

RTK (Real Time Kinematic) GPS is a form of GPS technology enabling accuracy 

in the order of 10 mm + 1 ppm (rms) in the horizontal, and 20 mm + 1 ppm (rms) 

in the vertical direction. It is based on the principal of a carrier phase-based 

relative positioning technique, which uses two (or more) receivers to track 

satellites simultaneously. A base station receiver remains stationary over a known 

point (benchmark) and the rover receiver can be manually moved around or 

attached to a vehicle such as a boat. The base station receiver transmits its 

coordinate and height measurements to the rover receiver, which then using built-

in software combines and processes the coordinates and heights of both receivers 

to obtain an accurate position for the rover receiver (El-Rabbany, 2006). 

Benchmark positions were provided by the BoPRC in the New Zealand Map Grid 

coordinate system and converted to the NZGD2000 Bay of Plenty Circuit using 

the online LINZ conversion tool, as this was the coordinate system used for this 

project. All elevation data used and recorded were relative to the Moturiki Datum. 



 

48 

 

A TrimbleMS 750 base station was set up on the BoPRC KN2R benchmark 

(Figure ‎4.1). The RTK GPS system was then verified against the BoPRC KN3R 

benchmark to check the accuracy of the system. The Northing and Elevation were 

accurate to within 2 cm, while the Easting was off by approximately 0.4 m. 

However, it was decided that the accuracy was sufficient for the requirements of 

this survey. 

 

 

Figure ‎4.1: Location of the benchmarks used in the RTK GPS system. 

 

 Land Based Survey 4.3

For approximately one hour either side of low tide, on February 21
st
, a land based 

RTK GPS survey was conducted over the intertidal area around the river mouth. 

This was achieved by attaching the RTK GPS rover receiver to a metal staff, and 

setting it to record coordinates and elevation every 5 m. This was then carried by 

hand, holding the bottom of the staff so it was just scratching the beach face. 

Initially a transect was walked along the low tide water line on the western 

riverbank. A zigzag pattern from the water’s edge, to above the high tide line, was 

then walked to gain bathymetry measurements of the intertidal zone. This process 

was then repeated on the eastern riverbank. However, the area surveyed on the 

eastern side was limited as approximately 150 metres inside the river mouth as 

there was not enough beach face exposed to walk over, as the river bank against 

the causeway is below the water’s surface, even at low tide. The area over which 

the land based survey was conducted is shown in Figure ‎4.2. 
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The main source of error associated with this land based survey technique was 

human error. Due to the weight of the rover and the staff it was attached to, it was 

difficult to make sure the bottom of the pole was just scraping the sand at all times, 

especially over the highly variable topography. It was noted during the survey that 

these factors would have caused an error of approximately ±5 cm in elevation. 

 

 

Figure ‎4.2: Map showing where the various survey methods were used, excluding the digitised 

hydrographic chart, which was used for the offshore region. 
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 Single Beam Survey 4.4

A Knudsen 320 MP single beam echo sounder (SBES) was used to survey inside, 

and outside the river mouth over the ebb delta. The surveys were conducted using 

the University of Waikato’s Tai Tumu boat. The SBES and RTK GPS were 

attached to the boat’s stern, and linked into a computer running Trimble’s 

HYDROpro
TM

 software. HYDROpro
TM

 was used to compute and navigate 

transect lines, record the SBES and RTK GPS data and to calculate the heave and 

tidal elevations.  

The survey was conducted in two parts, due to a small swell making it difficult to 

survey outside of the river during the initial survey. The first survey was 

conducted during a spring tide on the 22
nd

 of February 2011. The second survey 

was then conducted 20
th

 of May, where data was collected just inside the river 

mouth to provide an overlap with the first survey, and outside the river mouth 

over the ebb delta. 

There were two main potential sources of error associated with the SBES set up 

used for this survey. The first potential error was from the GPS system. Prior to 

starting both surveys, the RTK GPS was checked against the temporary 

benchmark created on the wharf next to the boat ramp. During the first survey it 

was found to match perfectly, however, on the second survey the Northing was 

off by 0.6 m. However, due to time constraints and needing to start the survey 

before the high tide, this was deemed acceptable. 

The second potential source of error arose from the constantly varying water 

density around the river mouth. Echo sounders are based on the principle of how 

long an acoustic pulse takes to travel from the transducer to the sea floor and back 

again, and thus rely on an accurate representation of the speed of sound in water. 

The Te Tumu Cut is an environment with a constantly changing water density due 

to the interaction of freshwater from the Kaituna River and saltwater entering 

through tidal currents. This results in a varying speed of sound, both spatially and 

temporally, within the river mouth. In order to simplify the process a constant 

speed of sound in water was assumed. The echo sounder recorded depth values to 

one decimal place, therefore an estimate of the SBES depth accuracy during the 

survey was ± 0.2 m.  
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 Post Processing 4.4.1

Post processing of the SBES data was undertaken using the Trimble NavEdit
TM 

software. There was some random noise present in the raw SBES data, with some 

points showing depths deeper than 10 metres. However, it was known this was 

unrealistic, and was likely due to the presence of suspended sediment within the 

water column. These points were removed using the batch filter function, which 

removed all depths greater than 10 m, as it is known that there are no depths 

exceeding this depth in the areas surveyed. The tidal heights recorded from the 

RTK GPS were then checked against readings from the BoPRC tide gauge located 

next to the boat ramp. The tidal curves were shown to match within 5 – 10 cm and 

follow the same general shape (Figure ‎4.3). The cleaned data was then exported as 

an ASCII text file with the tide and heave subtracted from the raw depths to 

generate a file containing Northing, Easting and Depth data points. 

 

 

Figure ‎4.3: Comparison between the Ford's Cut tide gauge readings and the tide level obtained 

using the RTK GPS through the HydroPro software, on the 20/5/2011. 
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 Digitised Hydrographic Chart 4.5

Regional bathymetric data were required in order to transform offshore wave data 

to their nearshore equivalent using the MIKE 21 Spectral Wave (SW) module. 

Due to the size of the mesh required it was unrealistic to complete a hydrographic 

survey of the entire Bay of Plenty, and therefore a hydrographic chart from LINZ 

was digitised.  

 

Figure ‎4.4: LINZ Chart NZ5413 - Approaches to Tauranga (LINZ, 2008), which was 

digitised to obtain the offshore bathymetry. 

 

The NZ5413 – Approaches to Tauranga, 1:50,000 map from LINZ was chosen as 

it is freely available on the LINZ website, and covers the Western Bay of Plenty 

region, out to approximately 400 m water depth. ESRI’s ArcMap software was 

used to digitise the hydrographic chart in the WGS84 coordinate system, as that is 

what the chart was produced in. The contour lines were traced using the Polyline 

tool and then converted into point data which consisted of X, Y and Z coordinates. 

Individual spot heights were then digitised using the point tool, which created xyz 

points like the contour line points. The digitised data were then transformed in to 

the BOP2000 circuit coordinate system in order to match the other bathymetric 

data. The contour and point height files were then combined using the Merge 

(Data Management) Tool into a single file and exported as an ASCII text file. 

Kaituna River 
Maketu Estuary 

Tauranga 

Harbour 
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 Maketū Estuary Bathymetry Data 4.6

Bathymetry measurements inside Maketū Estuary were required in order to model 

the diversion Option N, which includes the reopening of Papahikahawai Channel. 

Due to the large and shallow nature of Maketū Estuary, conducting a SBES 

survey was beyond the scope of this study. Therefore, bathymetry data were 

collated from various sources, to provide full coverage of the estuary. The 

different data sources are briefly described below. 

Discovery Marine Limited was employed by the BoPRC in February 2008 to 

conduct a SBES survey of the Te Tumu and Maketū entrances. This was achieved 

using a Garmin Etrex GPS and echo sounder, and was determined to have a 

vertical error of less than ± 0.15 m (DHI, 2009). The data used from this survey 

covered the ebb delta outside the Maketū entrance to approximately 400 m inside 

the entrance. Discovery Marine Limited was further commissioned by the BoPRC 

in August 2008 to survey Papahikahawai Channel. A series of zigzag patterns and 

transects perpendicular to the channel were surveyed along the length of 

Papahikahawai Channel (DHI, 2009). The main channel, to Ford’s Cut was 

surveyed by Goodhue (2007) using an RTK GPS and echo sounder set up similar 

to the one described in Section ‎4.4. 

Bathymetry measurements over the intertidal flats, in the middle of the estuary, 

were determined through image rectification by Goodhue (2007). The image 

rectification was achieved using a camera set up on an elevated location to the 

east of Maketū Estuary, and recording a series of still images over a tidal cycle. 

The water-sand bank interface was then digitised and rectified on each image. 

Given that the water elevation was known at the time each photograph was taken, 

a series of proxy depths could obtained. The error associated with the image 

rectification technique was estimated at less than ± 0.2 m.  
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 ADCP Measurements 4.7

An Acoustic Doppler Current Profiler (ADCP) was used to collect current 

measurements around the Kaituna River mouth. A boat mounted ADCP was 

chosen because the river mouth and delta were too shallow and regularly 

navigated by recreational fisherman, to safely leave a current meter deployed on 

the bottom. Measurements were collected to calibrate the Mike 21 Hydrodynamic 

model, and determine whether the river water disperses out relatively evenly in a 

fan shape or if it discharges as a jet. Originally it was hoped a transect parallel to 

the shoreline, just in front of the river mouth could be sampled throughout a tidal 

cycle. However, it became too shallow to cross over the ebb delta at low tide. 

Instead semi-circular transects were driven slightly further offshore, for the 

duration of the survey.  

ADCP measurements were collected on the 19
th

 of May 2011 using the University 

of Waikato’s RDI 1200 kHz ADCP mounted downward on the Tai Timu vessel. 

A semi-circular transect ranging from approximately 150 m either side of the river 

mouth was driven from 9:30 am to 5:30 pm, covering the time from just after high 

tide until approximately half way through the incoming tide (Figure ‎4.5). 

 

 

Figure ‎4.5:  Tidal elevation plot from the 19
th

 of May 2011, indicating the duration of the ADCP 

survey. 
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The ADCP was set up to record the υ and ν velocity at 25 cm depth increments 

directly below the instrument. However, the top 1.03 m of the water column was 

missed as the instrument was mounted below the water surface and there is a 

blanking zone before measurements can be obtained. 

 

 Sediment Samples 4.8

Surficial sediment samples were collected using a small hand held drop sampler 

from the locations shown in Figure ‎4.6. The samples were then processed through 

the University of Waikato’s Malvern Laser Sizer (MS2000). The Laser Sizer 

calculates the particle size distribution through the diffraction and diffusion of the 

grains passing through a focused laser beam. Sample 4 contained large amounts of 

irregular shaped shell fragments which had to be removed prior to it being 

processes in the Laser Sizer. Therefore, it was first passed through a 1.4 mm sieve, 

in order to avoid any potential blockage of the Laser Sizer.  

 

 

Figure ‎4.6: Locations of the sediment samples collected. 
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 Summary 4.9

The field data outlined in this chapter was crucial for creating, calibrating and 

validating the Spectral Wave, Hydrodynamic and Sediment Transport models 

described in the subsequent chapter. A SBES and RTK GPS survey was 

conducted around the Te Tumu Cut, and a hydrographic chart of the Bay of Plenty 

region was digitised specifically for this project. Additional bathymetry 

measurements in the form of LIDAR and SBES data was provided by the BoPRC 

in addition to RTK GPS and image rectification data which were collected as part 

of Goodhue’s MSc thesis (2007). The various bathymetry data sets were all 

converted to the BOP2000 circuit coordinate system and saved as ASCII text files, 

allowing them to be imported into the Mike 21 Mesh Generation module. 

Sediment samples were also collected inside the Kaituna River and around the ebb 

delta and analysed using a Malvern Laser Sizer. ADCP measurements were 

collected by driving a semi-circular transect around the river mouth which were to 

be used to calibrate the Hydrodynamic Model. 
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5 Chapter 5 
 

 Numerical Modelling 
 

 Introduction 5.1

This chapter describes the setup and calibration of the DHI Mike 21 Spectral 

Wave, Hydrodynamic and Sediment Transport models used to investigate the 

morphologic response of the Te Tumu Cut to a range of scenarios. By altering the 

boundary conditions and bathymetry files used, the effects of different river flow 

and wave conditions on various proposed diversion options for the Kaituna River / 

Maketū Estuary were able to be investigated. 

With the exception of the 1-dimensional Mike 11 model, all models used were 2-

dimensional, run over unstructured triangular meshes and solved using a cell-

centred finite volume solution technique (DHI, 2011a). A large regional scale 

wave model was used to transform offshore wave conditions into the nearshore 

environment. Smaller scale and more detailed local scale Spectral Wave (SW), 

Hydrodynamic (HD) and Sediment Transport (ST) models were then run and 

coupled together within the Mike 21 environment. This allowed changes in bed 

level, water level and current conditions at each time step to be taken into account 

in each successive time step for the SW, HD, and ST models. 

 

 Time Series Data Used to Force the Models 5.2

Discharge data from the Te Matai and Raparapahoe river flow gauges, wave data 

from the Pukehina wave buoy and tidal heights from the Moturiki tide gauge were 

supplied by the BOPRC, and wind data was obtained from the Tauranga Airport, 

through NIWA’s CLiFlo database (Station #: 1615). The data sets were provided 

in the following forms: 
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 The Te Matai and Raparapahoe discharge data spanned from 01/01/2006 

to 01/06/2011 and were provided as 15 minute averaged discharges in 

litres per second.  

 The wave buoy data included hourly averaged significant, mean and peak 

wave heights, mean and peak periods and mean direction, covering the 

time period between 01/01/2006 to 17/7/2011.  

 Tidal heights were provided as 5 minute averaged water level heights 

relative to the Moturiki datum and spanned the same time period as the 

wave data.  

 Wind speed and direction data were obtained as hourly averages from the 

Tauranga Airport, measured 4 m above mean sea level.  

 

 

Figure ‎5.1: Locations of the various time series data recording gauges. 

 

All data sets, excluding tidal height (which was interpolated using the Mike Zero 

piecewise cubic interpolation function), were run through the linear interpolation 

tool in the Mike Zero toolbox to fill in small periods of missing data. They were 

then re-saved at the same sampling frequency in which they were provided and 

exported as .dsf0 files, allowing them to be used as model boundary conditions.  
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 River Flow Model 5.3

A pre-existing DHI Mike 11, 1-Dimensional river flow model of the lower 

Kaituna River was supplied by the Bay of Plenty Regional Council. This model 

was originally developed in 1991 by the BOPRC to assess inflows into the 

Maketū Estuary. In 1999–2000 Matthew Surman updated the model and expanded 

its coverage to upstream of the Maungarangi Bridge, and included the canals and 

drains of the lower catchment into the existing lower floodplain and the Maketū 

Estuary model. Individual models of the Waiari and Kopuaroa streams and the 

Raparapahoe and Ohineangaanga Canals were developed in 2007. These were 

then connected to the Kaituna Model, creating a 1-dimensional model of the lower 

Kaituna Catchment as shown in Figure ‎5.2 (Wallace, 2009). 

 

 

Figure ‎5.2: Annotated screenshot from the Mike 11 network editor showing the extent of the 

model, and the location of the different boundaries. 
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The model was edited to include a node at the upstream boundary (BOP2000 

Circuit – 395379.62, 801178.64) of the Mike 21 model used. This allowed 

discharge values to be extracted from the Mike 11 model to be used as input 

conditions for the upstream boundary of the Mike21 2-Dimensional model.  

 

 Boundary Conditions 5.3.1

The upstream boundary of the Kaituna river model was at the Te Matai river flow 

recording site. This was forced by 15 minute averaged discharge data from the Te 

Matai monitoring station. The downstream boundaries (Te Tumu Cut & Maketū 

Estuary Inlet), which represent tidal flows from the sea, were forced by 5 minute 

averaged water level data from the Moturiki tide gauge.  

 

 

Figure ‎5.3: 15 minute discharge readings from the Bay of Plenty Regional Councils Te Matai and 

Raparapahoe recording gauges. 

 

The lower Kaituna River also has a range of smaller input sources such as the 

tributaries of the Raparapahoe, Ohineangaanga, Kopuaroa and Waiari streams and 

various pumped and non-pumped drains from the surrounding farmland. However, 

of these input sources the Raparapahoe tributary is the only one that has a 

permanent long term monitoring site. This allowed the Raparapahoe Stream to be 
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forced by 15 minute averaged data. However, the other tributaries are too small to 

justify permanent monitoring sites, and therefore approximations were required.  

The approximations used for the smaller tributaries were devised from several 

studies by the BOPRC and outlined by Wallace (2009) in his Hydraulic modelling 

of the Kaituna River report. The approximations were based on slope-area 

calculations and scale discharges from the Raparapahoe stream in relation to the 

catchment area of the other tributaries. The approximations were (where QR is the 

discharge from the Raparapahoe stream): 

 Ohineangaanga Q  =  0.508 x QR 

 Waiari Q  =  1.389 x QR 

 Kopuaroa Q  =  0.51 x QR 

The use of these assumptions was justified by the fact that any slight error (e.g. ± 

1 – 2 m
3
/s) in the above relationships would be largely insignificant compared to 

the on average 40 m
3
/s entering from the upper Kaituna River. 
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 Flexible Mesh Generation 5.4

The Mesh Generator is module within the Mike Zero package, and is an 

environment for creating digital flexible meshes (FM). The main advantage, and 

reason why a flexible mesh was chosen over a rectilinear grid for this project, is 

that it allows for greater control of the node resolution in specified areas (DHI, 

2011a). This method allows smaller elements to be used over areas where the 

bathymetry is more variable and greater detail is required (e.g. the river mouth) 

and larger elements where the bathymetry is more uniform, and less detail is 

required (e.g. the inner shelf zone) and thus optimizes computational time. 

Three separate meshes were generated. The first was a large regional scale mesh 

(Figure ‎5.4), which covered the area from Papamoa Beach, to the northern (~400 

m water depth) and eastern extent of the LINZ 542 chart shown in Figure ‎4.4. A 

mesh this size was required to include the effects of wave sheltering from Motiti 

Island and is shown in Figure ‎5.4. The second mesh was smaller and only 

extended out to approximately 25 – 35 m water depth, and 10 km less in the 

western direction. This smaller local scale mesh (Figure ‎5.5) was used for the 

coupled Spectral Wave, Hydrodynamic and Sediment Transport model.  

The third mesh created was exactly the same as the local scale mesh, but also 

included Maketū Estuary, and a reopened Papahikahawai Channel (Figure ‎5.6). 

Papahikahawai Channel was reopened by opening up the land boundary between 

the Kaituna River and Maketū Estuary parallel to the spit. The bathymetry was 

then manually edited to create a channel 30 m wide and 1 m deep, as outlined in 

Tuckey (2009). 
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Figure ‎5.4:   Interpolated mesh showing the bathymetry used for the regional scale, spectral wave 

simulations. Depths were obtained from a mixture of a SBES survey, RTK GPS 

survey and a digitised hydrographic chart.  

 

 

 

Figure ‎5.5:   Interpolated mesh showing the bathymetry and mesh elements used for the coupled 

local Hydrodynamic, Spectral Wave and Sediment Transport modelling of the Status 

Quo and Option J scenarios. Depths were obtained from a mixture of a SBES survey, 

RTK GPS survey and a digitised hydrographic chart. 

Kaituna River 

Motiti Island 

Kaituna River 
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Figure ‎5.6: Interpolated mesh showing the bathymetry used for the coupled local Hydrodynamic, 

Spectral Wave and Sediment Transport modelling of Option N. Depths were obtained 

from a mixture of SBES surveys, an RTK GPS survey, a digitised hydrographic chart 

and tidal levels from orthorectified photographic images. 

 

Six separate zones of the mesh were defined, and given varying mesh resolutions. 

The finest mesh resolution zone contained the area inside the Te Tumu Cut and 

along the sand dunes, as this was the area of primary interest, and with the most 

variable bathymetry. The remaining zones formed progressively larger semicircles 

with coarser mesh resolutions radiating out from the river mouth. 

The constraints for each zone were that the smallest allowable angle for any of the 

triangular mesh elements was 26˚, and that the maximum area of any one triangle 

within the respective zone was 150, 250, 500, 10,000 and 200,000 m
2
 for zones 1 

– 5 respectively. An example of the local scale triangular flexible mesh used is 

shown in Figure ‎5.5. For the second local scale mesh that included Maketū 

Estuary, the same constraints as above were used along with a zone containing 

Maketū Estuary which had a maximum allowable area of 150 m
2
.  Although the 

above resolutions may sound large, they are the maximum areas allowed, and the 

mesh generation algorithm creates smaller elements around the more complex 

boundaries. 

The very coarse mesh resolutions used for the offshore regions are justified by the 

fact that the bathymetry data covering this area was also of coarse resolution, with 

large distances between contour lines due to the low slope of offshore region, and 

Kaituna River 

Maketu Estuary 

Ford’s Cut 

Papahikahwai Channel 
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sparse point depth coverage from the digitised bathymetric chart. Therefore a finer 

mesh resolution would not add any detail. 

Once the mesh had been generated ASCII text files from the SBES surveys (‎4.4), 

RTK GPS land survey (Section ‎4.3), LiDAR data (Section ‎4.6) and the digitised 

hydrographic chart (Section ‎4.5), were imported into the Mesh Generator. These 

points were then interpolated onto the mesh using the built in Triangular Natural 

Neighbour Interpolation function. The three meshes were then used to run the 

models described in Sections ‎5.5, ‎5.6 and ‎5.7.  
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 Simulation Time Scales 5.5

Initial model runs showed that long period (30+ days) simulations produced 

unrealistic results, with significant erosion occurring at the western boundary 

shoreline and around the Kaituna River mouth. Through simulations of varying 

time scales it was found that simulations over a 2 week period produced the most 

accurate results. Therefore two week simulations were used for the simulations 

described in Section 5.9 

 

 

Figure ‎5.7: Time and spatial scale compatibility for nearshore morphodynamic modelling. The 

shaded area indicates the time and spatial scales that processes that can realistically 

be evaluated while the white areas indicate temporal and spatial scales unfeasible for 

modelling, from Ranasinghe et al. (1999). 

 

Figure ‎5.7 shows the spatial, and corresponding temporal scales required to model 

a range of nearshore morphodynamic processes. Nearshore scour is located near 

the start of both the meso spatial and temporal classes, indicating that scour can 

occur over a few meters and within hour time scales. Conversely channel infilling 

is shown to occur towards the outer extent of the of the meso spatial and temporal 

time scales, indicating this processes acts on scales up to one kilometre and over a 

day to multiple days. Both scour and channel infilling fall within the meso time 
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scale and therefore should be able to be successfully represented in the two week 

model simulations used for this project. 

 

 Spectral Wave Modelling 5.6

The BOPRC wave buoy is located at a depth of 64 m, approximately 16 km to the 

east of the Te Tumu Cut, 13 km offshore from Pukehina Beach (Figure ‎5.1). A 

regional wave model was developed to transform offshore wave data from 

BOPRC’s wave buoy, into the nearshore region. This was achieved using DHI’s 

2-dimensional Spectral Wave (SW) Model. The SW model simulates the growth, 

transformation and decay of wind and swell waves in the open coast and 

nearshore environment (DHI, 2011b). The SW simulations for this project used 

the directionally decoupled parametric formulation, which is based on a 

parameterization of the wave action conservation equation of Holthuijsen (1989). 

 

 Wave Model Resolution 5.6.1

In selecting the resolution of directional discretisation for the wave model a 

tradeoff between resolution and computational time was required. For swell 

waves with a small directional distribution of wave energy, a resolution of < 10˚ is 

recommended. For wind waves with a larger directional distribution of energy, 

resolution values of < 30˚ are recommended (DHI, 2011b). A value of 22.5˚ was 

used for the SW simulation in this project as this falls between recommended 

values for swell and wind waves and allowed for realistic computational times and 

is also the same value used in the nearby Opotiki Entrance study by Pedersen et al. 

(2008), previously mentioned in Section ‎3.5.4. The spatial resolution for the 

regional scale, and local scale meshes are described in Chapter ‎5.4.  

 

 Wave Model Parameters 5.6.2

The wave data used to force the open ocean boundary of the regional Spectral 

Wave model was hourly averaged significant wave height (Hs), mean direction 
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and peak wave period (Tp) from the BOPRC’s wave buoy. As shown by 

Figure ‎5.8 this data closely matched wave conditions from the literature cited in 

Section ‎1.3.4. The wave buoy is located at a depth of approximately 62 m and 

thus the waves have not likely undergone any significant transformations, such as 

shoaling and therefore could be applied as an open boundary condition for the 

Spectral Wave Model. This was confirmed through the SW model validation in 

Section ‎5.6.3. 

As there was no information on the standard deviation on the directional 

spreading of waves from the wave buoy, a constant value of 23.28˚ was assumed, 

as this is typical of wind-waves (DHI, 2011b). This value was chosen as the mean 

wave period of the wave buoy data was 7 seconds, which typically represents 

wind generated waves. All other parameters used in setting up the spectral wave 

model are outlined in Table ‎5.1 

 

Figure ‎5.8: Rose Plot of Significant Wave Height from the BOPRC's wave buoy, 2006 – 2011. 
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Table ‎5.1: Parameters used for the regional scale, Spectral Wave Model. 

Parameters Value 

Basic Equations 

 Spectral Formulation 

  

 Time Formulation 

 

Directionally decoupled parametric 

formulation 

Quasi stationary formulation 

Spectral Discretization 

 Discretization Type 

 Number of Directions 

 

360 degree rose 

16 

Water Level Conditions 

 Type 

 

None 

Current Conditions 

 Type 

 

None 

Diffraction 

 Type 

 Smoothing Factor 

 Number of Smoothing Steps 

 

Diffraction 

1 

1 

Wave Breaking 

 Model 

 Type of Gamma 

 Gamma Data 

  Format 

  Constant Value 

 Alpha 

 Gamma (wave steepness) 

 

Wave breaking 

Specified gamma 

 

Constant 

0.8 

1 

0.9 

Bottom Friction 

 Model 

 Format 

 Constant Value 

 

Sand grain size, d50 

Constant 

0.000493 m 

 

  



 

70 

 

 Wave Model Validation 5.6.3

A 20 day significant wave height and peak wave period time series, from the 

location of the BOPRC wave buoy, was extracted from the regional wave model 

results and plotted against the raw data from the wave buoy. The Mean Absolute 

Error (MAE) and Root Mean Square Error (RMSE) were also evaluated for both, 

using the following formulas from Winter (2007), where yi and xi are the 

predicted and observed values respectively. 

     
 

 
∑ |       |

 
        Equation 5.1 

 

      √
 

 
∑         

  
     Equation 5.2 

The MAE is a measure of the average magnitude of the error for a set of 

predictions without considering their direction. The RMSE is also a measure of 

the average magnitude of the error. However, as the errors are squared before they 

are averaged it gives a higher weighting to larger errors. Used together the MAE 

and RMSE provide an indication of the variance within the errors. When the MAE 

is equal to the RMSE, the variance is zero, and the larger the variance within the 

individual errors, the larger the difference between the MAE and RMSE 

(Willmott & Matsuura, 2005).  

The significant wave height was shown to match with a MAE and RMSE of 0.09 

and 0.11 metres respectively and is shown in top panel of Figure ‎5.9. A MAE and 

RMSE of 0.04 and 0.05 seconds respectively were calculated between the 

modelled and wave buoy peak period. The largest differences between observed 

and predicted Hs occur between the 4
th

 and 11
th

 of February during which time 

there was no measured wave buoy data, and values were estimated through linear 

interpolation. All predicted peak period values matched almost exactly to the 

measured values.  
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Figure ‎5.9:  Modelled and observed significant wave height and average wave period at the 

location of the BOPRC wave buoy over 21 days in February 2008. 

 

As the observed and predicted Hs and Tp values match closely this provides 

justification for using the wave buoy data as an open boundary condition, further 

offshore than the wave buoy is located. Although the predicted and observed data 

match closely this does not provide complete validation of the model. As the wave 

buoy is located in deep water (compared to the average wave height and wave 

length), waves propagating from the ocean boundary to the wave buoy have 

undergone very little transformation. Therefore Figure ‎5.9 and the error statistics 

calculated provide justification for using the wave buoy data as open boundary 

conditions, but do not validate wave transformation processes. 
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 Local Scale Spectral Wave Model 5.6.4

A time series of significant wave height, peak period, mean wave direction and 

directional spreading index were extracted from the regional scale spectral wave 

model results and applied as a boundary condition to the local scale coupled 

model. The local scale spectral wave model was run with same parameters as 

described in Table ‎5.1, with the exception of the Water Level and Current 

Conditions which were included from the Hydrodynamic Model. This local scale 

model was coupled with the hydrodynamic and sediment transport models 

described in subsequent sections. It was this coupled, local scale model that was 

used to run the various simulations described in Section 5.8. 

 

 Spectral Wave Model Limitations 5.6.5

The main limitation of spectral wave modelling was the use of a constant, large 

standard deviation for the directional spreading angle. A constant value was used 

as the wave buoy did not contain the information required to calculate the 

directional spreading standard deviation.  A large directional spreading standard 

deviation is usually associated with wind waves, and smaller directional spreading 

standard deviations with swell waves. The use of a constant standard deviation of 

23.28° in all simulations assumes that all of the wave conditions represented wind 

generated waves, rather than swell waves. This causes a decrease in the driving 

forces of any swell waves, and as a consequence results in weaker longshore 

currents and less sediment transport (DHI volume 4, 2008). However, analysis by 

Macky et al. (1995) of wave steepness data from the Katikati wave buoy between 

1991 and 1993 suggested many of the measured waves originated close to the 

wave buoy and thus indicates a predominance wind generated waves along the 

Bay of Plenty Coastline. 
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 Hydrodynamic Modelling 5.7

The Mike 21 Hydrodynamic Model (HD) simulates changes in water level and 

flow conditions as a result of various forcing conditions such as tides, waves, 

wind and river or point source inflows. This is achieved through solving the depth 

integrated, incompressible, Reynolds averaged Navier-Stokes equations, also 

known as the 2-dimensional shallow water equations (DHI, 2011c). 

The single largest limitation of the 2-dimensional models used is that stratification 

is neglected. 2-Dimensional hydrodynamic models simplify 3-dimensional 

environments by solving the depth-integrated incompressible Reynolds averaged 

Navier-Stokes equations (Papanicolaou, et al., 2008; DHI, 2011c). However, river 

mouth environments, such as the Kaituna River mouth, represent areas of 

complex interaction between fresh riverine and saline marine waters. The different 

densities between the fresh and saline water can lead to hypopycnal outflows, 

where the freshwater discharges as a layer above the salty sea water (Wright, 

1977). However, despite the assumption of negligible stratification and the 

application of a 2-dimensional hydrodynamic model the sediment transport model 

was shown to recreate measured bed levels accurately, especially inside the river, 

as described in Section 5.8.3. 

 

 HD Boundary Conditions and Model Parameters 5.7.1

The HD model was run using the local scale meshes described in Section ‎5.4. The 

upstream river boundary was forced by a time series of discharge values extracted 

from a node in the Mike 11 river flow model at the same location as the river 

boundary of the HD model. Wave driven currents from the Spectral Wave Model, 

in the form of Sxx, Sxy and Syy radiation stresses, were applied over the entire 

domain. Similarly wind data was forced over the entire domain. However, the 

wind was assumed to be spatially constant, changing only in time. The northern 

open boundary was forced by the Moturiki water level data, and varied in time, 

but was constant along the length of the boundary.  
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Table ‎5.2: Parameters used for the Mike 21 Hydrodynamic model. 

Parameter Value 

Flood and Dry 

Drying depth 

Flooding depth 

Wetting depth 

 

0.005 m 

0.05 m 

0.1 m 

Density Barotropic 

Eddy Viscosity 

Type 

Format 

Value 

 

Smagorinsky Formulation 

Constant 

0.28 

Bed Resistance 

Type 

Format 

Value 

 

Manning Number 

Constant 

26 m(1/3)/s 

Coriolis Forcing Varying in domain 

Wind Forcing 

Type 

Wind Friction Factor 

 

Constant 

0.001255 

Wave Radiation 

 Type 

 

From SW simulation 

 

 

 Hydrodynamic Model Calibration 5.7.2

In order to calibrate the current velocities produced by the model, an ADCP 

survey was conducted over the majority of a tidal cycle (Section ‎4.7). Vector plots 

of each ADCP transect were then created using Matlab’s built in Quiver command. 

The top 0.5 m of vectors (-1.03 – -1.53 m below MSL) were plotted separately 

from the readings below -1.53 m in order to determine whether there were 

different current vectors for the fresh surface water and the saline bottom waters. 

Quiver plots of every reading along each transect were highly variable, possibly 

due to turbulence over the ebb tidal delta associated with the combination of wave 

action and tidal currents, so it was decided to use the mean of every six points 

along each transect. A subset of these averaged transects is shown in Figure ‎5.10 

and compared against the current vectors produced by the Hydrodynamic model 

over the same time period. 
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Figure ‎5.10: A subset of the vector diagrams from the ADCP transects, compared to the current 

vectors predicated by the Hydrodynamic model. The red vector arrows represent the -

1.53 m and deeper currents, while the blue vectors represent the currents between -

1.03 – -1.53 m depth. The blue vectors are offset in the North direction from the red 

vector arrows for easier viewing. A full comparison of all the ADCP transects 

measured is shown in Appendix 2 (Note: vector arrow lengths are not to the same 

scale between the ADCP and modelled vectors).  
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Originally it was planned to extract the υ and ν velocities from a model simulation 

over the same time period as the ADCP data collection. Statistics such as the 

MAE and RMS could then be calculated to provide a quantitative indication of 

how well the model predicted current vectors compared to the measured current 

vectors. However, this was unsuccessful due to the highly variable nature of the υ 

and ν velocities in the ADCP data. Instead the quiver plots were used to provide a 

visual qualitative justification for the modelled current directions. 

It appears from the modelled current vectors shown in Figure ‎5.10 and Appendix 

2, that the river discharge currents decelerate fairly rapidly outside of the river 

mouth, just prior to the location where the ADCP transects were collected. 

Therefore a possible explanation for the highly variable ADCP data, especially in 

the transects taken during the incoming tide, is due to the fact that the transects 

were taken outside the area of river discharge dominance. Thus the variable 

ADCP data represents the complex interaction of tides, waves and any remaining 

river discharge currents which had not yet completely decelerated into the ambient 

water. However, the water depth was insufficient to run transects at any 

significant distance closer to the river mouth as it would become to hazardous, 

particularly around low tide. 
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 Bed Resistance Values 5.7.3

Due to the highly variable nature of the ADCP data collected the hydrodynamic 

model could not be calibrated or validated to a quantifiable number. This caused 

difficulty and uncertainty in choosing the appropriate bed resistance value for the 

hydrodynamic model. 

Mehta & Joshi (1988) note that a major complication with determining bed 

resistance values for tidally influenced inelts is that the flow depth and bedforms 

present such as ripples, dunes, or a flat bed can change within a tidal cycle. 

However, it was concluded for many engineering purposes a tide-averaged bed 

resistance is usually acceptable. 

The DHI (2011c) Mike 21 Flow Model FM – Hydrodynamic User Guide states 

that Manning numbers of 20 - 40 m
1/3

/s are common, and a value of 32 m
1/3

/s is 

reccomended if no other information is avaliable. This corresponds well with the 

work  of Mehta & Joshi (1988) who stated  Manning’s  , which is the reciprocal 

of the Manning Number, can be estimated by the empirical relationship of: 

  
  
   

            
  Equation: 5.3 

where hc is the throat depth, α2, α3 are coefficients of 30 and 5 respectively and Ac 

is equal to the throat cross-sectional area. Based on a cross-sectional area of 97 m
2
 

and a throat depth of 3.5 m from the bathymetric survey conducted for this project, 

a Manning’s   of 0.031 is predicted using Equation 5.3. This is the equivalent of a 

Manning’s Number of 32.5 m
1/3

/s. 

The model was entirely calibrated on the results of the Sediment Transport model 

as further explained Sections 5.8.2 and 5.8.3. Serveral simulations were run using 

various bed resistance values, wave breaking parameters, slightly different grain 

sizes and it was found that a Manning’s Number of 27 m
1/3

/s and the sediment 

properties calculated in Section ‎6.2 produced the most accurate results, and thus 

was used for all of the various simulations. Although a Manning’s Number of 27 

m
1/3

/s is smaller (increased bed resistnace) than the 32 m
1/3

/s reccomended in the 

DHI user manual, and predicted by the equation of Mehta & Joshi (1988) it 
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matches the values used for the offshore region of the Mike 11 model developed 

by the BOPRC (Figure ‎7.11). 

 

 

Figure 5.11: Map showing the Manning Numbers from BOPRC's Mike 11 Kaituna River flow 

model. 
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 Sediment Transport Modelling 5.8

The DHI Mike 21 Non-cohesive Sediment Transport (ST) model was used to 

predict the sediment transport associated with the currents predicted by the 

Spectral Wave and Hydrodynamic models. The ST model simulates the erosion, 

transport and deposition of non-cohesive sediments under the effect of currents 

and waves (DHI, 2011d). It was dynamically linked to the HD and SW model, 

and any bed level changes were reflected in the successive time step of the HD 

and SW model. 

 

 Model Parameters & Forcing 5.8.1

Simulating sedimentation around the Te Tumu Cut was the main objective for the 

sediment transport modelling. Therefore, the model was set up with sediment 

properties representative of the river mouth. The ST model has the ability to use 

spatially varying sediment characteristics; however, this would have required 

extensive sediment sampling in order to accurately map the entire model domain. 

Instead uniform sediment characteristics have been used throughout the model. 

A mean grain size (d50) and geometrical spreading ((d84/d16)
1/2

) of 0.493 mm and 

1.64 respectively (Section ‎6.2) were used as the representative sediment 

characteristics. As no information was available on the relative sediment density 

and porosity, typical values for quartz and feldspar rich sediments of 2650 kg/m
3
 

and 40% were assumed. 

Sediment transport rates under the combined effect of waves and currents in the 

ST model are found through linear interpolation of Quasi 3D (Q3D) Sediment 

Transport Tables. These Q3D Sediment Transport Tables were created using the 

DHI STP Q3D application. The STP Q3D application is a detailed infra-wave 

sediment transport programme, which uses a Q3D description of the 

hydrodynamic and sediment transport conditions to determine sediment transport 

rates under a range of predefined conditions (DHI, 2011e). The settings used for 

the generation of the Q3D Sediment Transport Tables, used for all sediment 

transport modelling in this thesis are outlined in Appendix 3. The parameters used 

in the ST model itself are given in Table ‎5.3. 
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Table ‎5.3: Parameters used in the Mike 21 Sediment Transport model. 

Parameters Value 

Model Definition 

Model Type 

 

Wave and Current 

Time Parameters 

Start Time 

Time Step Factor 

 

5 

1 

Sediment Properties 

Format 

Porosity 

Grain Diameter 

Grading Coefficient 

 

Constant 

0.4 

0.493 mm 

1.65 

Forcings 

 Waves 

 

Wave field from SW simulation 

Morphology 

Model definition 

Max Bed Level Change 

Speed Up Factor 

Time Parameter 

Start Time Step 

Bank Erosion 

Type 

Format 

Value 

 

 

2 m/day 

1 

 

0 

 

Slope Failure 

Constant 

30˚ 

 

 

 Sediment Transport Model Calibration  5.8.2

A critical requirement of the Sediment Transport Model was for it to be able to 

successfully recreate the bathymetry in and around the Te Tumu Cut. In order to 

ensure that the Sediment Transport Model was able to produce realistic and 

reliable results the model needed to be calibrated. This was achieved by 

comparing model results from a two week simulation over the same time period 

during which a previous bathymetry survey was conducted. Bathymetry data 

inside the river mouth and over the delta was collected by Discovery Marine 

Limited for the Bay of Plenty Regional Council on the18
th

 and 19
th

 of February 

2008. 
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To assign a numerical value to the accuracy of the model, a simulation was run 

from the 5
th

 of February to the 20
th

. Five transects were extracted from the model 

results on the 19
th

 of February and compared to transects of the same positions 

from the Discovery Marine Limited survey. The location of the five transects are 

shown in Figure ‎5.12. 

 

 

Figure ‎5.12: Location of the 5 transects used to compare the Sediment Transport Model results 

against the 2008 DML survey. The transects are of varying lengths and angles to the 

shoreline in order to obtain the largest transects possible from the 2008 Discovery 

Marine Limited survey. 
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Figure ‎5.13: Transects within the Kaituna River comparing the Sediment Transport Model results 

against the 2008 DML survey. 

 

Transects 1 and 2 were taken across the main river channel. Both transects 

showed an accurate recreation of the bed levels within the channel, which in both 

transects occurred on the eastern side of the river, along the edge of the rock 

causeway.  

Transects 3, 4 and 5 were taken from outside the river mouth, over the ebb delta.  

Transect 3 shows the movement off the channel through the delta is successfully 

recreated, with the model showing the channel has moved to the east compared to 

the starting bathymetry. However, the model predicted a slightly narrower and 

shallower channel within this transect. Transect 4 was not recreated very 

accurately, with a difference of slightly over 1 m between the modelled bed level, 

and the 2008 DML survey on the western part of the transect. The model 

recreated the shape of transect 5 over the western half almost completely 

accurately, however, it predicted a higher bed level than the survey over the 

eastern half, indicating  excess deposition in this area. 
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Figure ‎5.14: Transects outside the Kaituna River over the ebb delta comparing the Sediment 

Transport Model results against the 2008 DML survey. 

 

Table ‎5.4 shows the MAE and RMSE calculated for each transect and the average 

MAE and RMSE of all five transects. In general the model tends to over predict 

the bed level outside the river mouth over the delta, but matches fairly accurately 

within the river mouth.  
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Table ‎5.4:  Error statistics comparing the bed level from the model results against the 2008 survey 

along the five transects shown in Figure 5.10. 

Transect Mean Absolute Error 

(MAE) (m) 

Root Mean Square 

Error (RMSE) (m) 

1 0.27 0.40 

2 0.28 0.34 

3 0.14 0.16 

4 0.87 0.96 

5 0.21 0.28 

Average 0.35 0.43 
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 Sediment Transport Model Limitations 5.8.3

As the hydrodynamic model could not be calibrated against the ADCP 

measurements, and there was no shallow water wave buoy to compare wave 

conditions against, the coupled spectral wave, hydrodynamic and sediment 

transport model was entirely calibrated through the sediment transport model. 

This meant that any errors within the spectral wave and hydrodynamic model 

were accounted for and included in the calibration error of the sediment transport 

model in Section ‎5.8.2.  

The Mike 21 FM Sediment Transport Model does not include sediment inflow 

boundaries under the combined effects of waves and currents. However, sediment 

inflows can be included when the effect of waves are not taken into account. 

Therefore one possible cause of error within the sediment transport modelling 

stems from the fact that sediment inflows from Kaituna River were excluded. It 

was assumed that the effects of wave driven sediment transport were more 

important than sediment inflows from the Kaituna River itself. It was thought the 

majority of suspended sediment from the Kaituna River would be lost as washload 

out to sea. This was based on the personal communication with Ben Tuckey (2011) 

and results from Kirk (1991) on various South Island rivers.  

Suspended sediment yields also generally follow a power function in the form of 

L = aS
b
, where (L) is equal to the suspended sediment load, (S) is equal to the 

streamflow and (a) and (b) being rating curve parameters (Crawford, 1991). This 

means that a significant proportion of the suspended sediment discharging out of 

the Kaituna River would likely occur during high flows, which were not looked at 

during this thesis. 

It must also be noted, that there is uncertainty involved with the use of any 

numerical model. Studies have shown large differences can occur between 

modelled results for identical forcing conditions between various 2D modelling 

packages (de Vriend et al., 1993). This was largely attributed to the different 

sediment transport formulas used (Nicholson, et al., 1997). However, despite this, 

the coupled morphological model developed for this project was shown to 

sufficiently recreate the bed levels in response to the natural forcing conditions of 

the calibration period, especially inside the river mouth. 
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  Modelled Scenarios 5.9

Five different re-diversion scenarios were assessed. They were all forced by the 

same tidal curve (Figure ‎5.15), which was the tidal curve observed during the 

sediment transport modelling calibration period. This tidal curve was used for all 

simulations as it represents a natural spring – neap cycle. Simulations of various 

river flow and wave conditions were run for each scenario. 

 

 

Figure ‎5.15: Tidal elevations recorded at the Moturiki tide gauge during the calibration period. 

This tide curve was also used for all of the other simulations. 

 

The five scenarios and how they were set up are explained in the bullet points 

below. Following this, the subsections outline the simulations run representing the 

various combinations of river and wave conditions each scenario was run with.  

 

 Status Quo  

For the Status quo – or normal scenario, the bathymetry obtained from 

the February 2011 survey conducted for this project, and resulting 

mesh file created were used. The upstream river boundary was forced 

by the results of the Mike 11 Kaituna River model which was set up to 

simulate the river’s present configuration.  
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 Option J  

Simulations representing the Kaituna River / Maketū Estuary re-

diversion Option J (lowering Ford’s Cut culverts to -1.6 RL) were also 

run using the mesh file created from the 2011 bathymetry data. As 

Ford’s Cut is upstream of the river boundary of the Mike 21 model, 

the Ford’s Cut culverts were lowered in the Mike 11 model.  The 

Mike 11 model was then rerun and a time series of discharge values 

were extracted from a node at the location of the Mike 21 boundary.  

 

 Option J with twin jetty structures 

The same setup as described above for Option J was used with the 

addition of twin jetty structures extending out through the surfzone. 

Two trials were run, the first with the jetties spaced 45 m apart and a 

second run with jetties spaced 35 m apart. In both cases the jetties 

extended out to sea a distance of 200 m from the shoreline at a 

direction of 15° from North, along the rivers natural outflow axis. The 

eastern sub-tidal riverbank that has accumulated along the side of 

wharf / training wall structure at the river mouth was also removed, 

editing the bed levels to match the surrounding riverbed levels.  

 

 Option N with and without flap gated culverts 

For the Kaituna River / Maketū Estuary re-diversion Option N, unlike 

the re-diversion Option J, the river configuration is changed 

downstream of the Mike 21 Model Boundary. Therefore, the mesh 

that included Maketū Estuary and the re-opened Papahikahawai 

Channel (Figure ‎5.6) was used. The upstream river boundary was 

forced by the same Mike 11 discharge results as the status quo option.  

 

Simulations were run with and without the addition of one way flap 

gates, which allowed water to flow from the Kaituna River into 

Maketū Estuary, but not in the opposite direction. For simulations 

where the flap gate culverts were enabled they were added in as one-

way culverts in the Mike 21 HD module. The dimensions used for the 

culverts were based on a report by Wallace et al. (2008), which stated 
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that Papahikahawai Channel would be reopened to 30 m wide in the 

upstream portion, with twin 10 m wide culverts with an invert level of 

-1 m RL. 

  

 Calibration Time  5.9.1

The first simulation run was over the same time period during which the Sediment 

Transport model was calibrated (05/02/2008 – 20/02/2008).  This time period was 

chosen as it was a time of typical summer time conditions with an average Hs and 

Tp of 1.15 m and 7.9 s respectively over the two week period and an average flow 

of 27 m
3
/s at Te Matai. Individual simulations were run using these conditions for 

each of the scenarios outlined above. 

 

 Average Wave & River Flow Conditions 5.9.2

These simulations were run using constant, long term average conditions over a 

two week period. The average wave conditions simulated were a Hs and Tp of 0.8 

m and 10 s respectively propagating 20° from North (Section ‎1.3.4) with a 

directional spreading standard deviation of 23.28°.  

The river boundary was forced from the results of a Mike 11 river flow simulation 

of average conditions. These were a constant discharge of 39.5 m
3
/s at Te Matai 

and 1.8 m
3
/s for the Raparapahoe stream. The smaller tributaries were also 

included and scaled based on the assumptions outlined in Section  5.3.1. 

 

 7-Day Annual Low Flow & Average Wave Conditions  5.9.3

These simulations were run using constant, long term average wave conditions 

over a two week period. The average wave conditions simulated were a Hs and Tp 

of 0.8 m and 10 s respectively propagating 20° from North (Section ‎1.3.4) with a 

directional spreading standard deviation of 23.28°.  



 

89 

 

The river boundary conditions were forced from the results of a Mike 11 river 

flow simulation that was run using 7 day Annual low flow conditions. These were 

28.95 m
3
/s at Te Matai and 0.67 m

3
/s for the Raparapahoe stream, based on values 

taken from the EBoP (2007) Meteorological Summary Report.  

 

 2 x Average Height & Average River Flow Conditions 5.9.4

These simulations were run using a constant significant wave height twice that of 

the long term average significant wave height, over a 2 week period. The average 

wave conditions simulated were a Hs and Tp of 1.6 m and 10 s respectively 

propagating 20° from North (Section ‎1.3.4) with a directional spreading standard 

deviation of 23.28°.  

The river boundary was forced from the results of a Mike 11 river flow simulation 

of average conditions. These were a constant discharge of 39.5 m
3
/s at Te Matai 

and 1.8 m
3
/s for the Raparapahoe stream. The smaller tributaries were also 

included and scaled based on the assumptions outlined in Section  5.3.1 
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 Summary 5.10

This chapter described the creation and setup of three flexible meshes and the 

creation and calibration of a coupled spectral wave, hydrodynamic and sediment 

transport model. Comparing simulated bed levels from a two week model run in 

2008, to a bathymetry survey which was conducted during the same time period 

showed the sediment transport model successfully recreated the bed level with a 

mean absolute error of 0.35 m. Bed levels within the river channel were recreated 

almost exactly, however, bed levels over the delta were in general, over predicted. 

Following this, the various model scenarios (the different re-diversion options) 

and simulations (the different forcing conditions) to be investigated were 

described, the results of which are presented in the subsequent chapter. 
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6 Chapter 6 
 

Results 
 

 Introduction 6.1

This chapter presents the results obtained throughout this project. Firstly the 

results of the sediment sample analysis are described and then the results of the 

morphology modelling are presented. The results of the different modelled 

scenarios are described as comparisons to the bed levels predicted by the model 

for the Kaituna River mouth’s present configuration, which is referred to as the 

Status Quo scenario.  

 

 Sediment Sample Analysis 6.2

The sediment samples collected, ranged in mean grain size from 0.32 mm to 0.76 

mm; with all samples exhibiting similar geometrical spreading values of 

approximately 1.65 (Figure ‎6.1; Table ‎6.1). Sample 4 contained significant 

amounts of irregular shaped particles. Therefore, it had to be passed through a 1.4 

mm sieve before it was run through the Laser Sizer, in order to avoid potential 

blockage. Despite this, Sample 4 was still shown to be significantly coarser than 

the other samples. According to the Wentworth scale, Samples 2, 3 and 5 are 

classified as medium sands while Samples 1 and 4 are coarse sands. The full 

Laser Sizer results sheets for each sample are presented in Appendix 1. 
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Figure ‎6.1: Particle size distributions for the five sediment samples collected. 

 

Table ‎6.1:  Sediment sample statistics, where d50 = mean grain size and ((d16/d84)
1/2

) = geometrical 

spreading. 

Sample # d50 (mm) 
Geometrical 

Spreading  

1 0.53 1.70 

2 0.32 1.76 

3 0.46 1.62 

4 0.76 1.60 

5 0.40 1.56 

      

Average 0.49 1.65 

 

The Mike 21 Sediment Transport model can solve simulations with spatially 

varying sediment properties. However, creating a sufficiently detailed sediment 

map of the Te Tumu area would require a vast amount of samples to be collected 

on, and offshore, which was beyond the scope of this thesis. Therefore, the mean 

grain size and geometrical spreading of the five samples was used as a constant 

value across the entire domain. It has also been noted in previous studies using the 

Mike 21 Sediment Transport model, that the use of varying sediment properties 

generally tends to confuse the interpretation of results (DHI, 2008 vol. 4).  
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 Morphological Modelling Results 6.3

The following subsections present the results of the various model simulations 

outlined in Section ‎5.8, with bed levels shown for each of the diversion scenarios 

after a two week simulation. Comparisons for each of the diversion options are 

then made in contrast to the Status Quo option, subjected to the same forcing 

conditions as the corresponding diversion options. 

 

 Calibration Time – Varying Conditions 6.3.1

Comparing the Option J bed level map to the Status Quo bed levels (Figure 6.2), it 

can be seen that there is a change in bed level in a number of regions around the 

river mouth. The most prominent area of change is indicated by the (A) marker. 

Here the main channel is approximately 35 metres shorter than predicted in the 

Status Quo simulation. The channel is also slightly narrower at the location of 

marker (C) under Option J. The swash bar on the western side of the delta split 

into three smaller swash bars under Option J (B). Despite these changes over the 

delta, there was no significant change in bed level inside the river mouth. 

Comparing the results of Option N – with flapgates included to the Status Quo 

scenario, there are two main areas of difference. The first is indicated by the 

Marker (A), and highlights the channel through the delta becoming longer, with 

the -1 and -1.25 metre contours surrounding the channels becoming 40 and 20 

metres longer respectively. Marker (B) indicates the area inside the river mouth 

which became deeper by 0.25 metres.   

When the flapgates were removed from Papahikahawai Channel, the predicted 

bed levels through the main channel of the Te Tumu Cut were very similar to the 

simulation with flapgates included. However, the -1 metre contour around the ebb 

channel (A) became 50 metres longer and the -1.5 metre contour extended 40 

metres further seaward than in the Status Quo simulation. Similarly to the Option 

N – with flapgates simulation the bed level upstream of Papahikahawai Channel 

(B) became 0.25 metres deeper compared to the Status Quo simulation. 
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Figure ‎6.2:  Predicted bed levels after a 14 day simulation run over the same time in which the 

sediment transport model was calibrated. 
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 Constant Average Wave and River Flow Conditions 6.3.2

Figure ‎6.3 shows the predicted changes in bed level around the Kaituna River 

mouth for Option J, and Option N with and without one way flapgates installed, 

after a two week simulation forced by average waves and river flow conditions, as 

described in Section 5.8.2 

Comparing the Option J bed level map to the Status Quo bed levels it can be seen 

that there is a change in bed level in a number of regions around the river mouth. 

The most prominent area of change is indicated by the (A) marker. Here the -0.75 

m contour, indicating the main channel through the delta, extends approximately 

45 metres further seaward. However, the -1 m and -1.25 m contours do not extend 

as far as the Status Quo option. A small scour depression is also present in the 

main channel, just below the (A) marker, which was not seen in the Status Quo 

simulation. Markers (B) and (C) highlight changes in the bed level within the 

swash platforms. Compared to the status Quo simulation the western swash 

platform containing marker (B) is slightly larger and shows the development of a 

small marginal flood channel which has cut through the -0.25 m contour, resulting 

in a small detached swash bar. Conversely the swash platform on the eastern side 

(C) became deeper. Marker (D) indicates a small area of increased deposition 

along the inner eastern river bank. 

The main difference observed between the Status Quo simulation and Option N, 

with the addition of one way flapgates, is that the main channel extends further 

seaward through the ebb delta. This is indicated by marker (A), where the -1 

metre contour extends 60 m further seaward compared to the status Quo Option. 

Bed levels upstream of Papahikahawai Channel have also become slightly deeper, 

with a maximum bed level change of -0.25 m. A marginal flood channel has also 

developed, with the -0.5 metre contour on the western side of the delta becoming 

detached from the shoreline and moving seaward. 

When Papahikahawai Channel is opened without floodgates the main channel 

grew significantly. The -1 metre contour extended a further 40 metres seaward 

and became twice as wide. Similarly the -0.75 metre contour grew 20 metres in 

length and approximately doubled in width. The channel also became deeper 
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inside the river mouth as indicated at location (B), where the bed level became 

deeper by 0.25 metres.  

 

 

Figure ‎6.3: Predicted bed levels after a 14 day simulation of constant average river flow and wave 

conditions. 
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 Constant Average Wave and Average Annual 7 Day Low River 6.3.3

Flow Conditions 

Figure ‎6.4 shows the predicted changes in bed level around the Kaituna River 

mouth for Option J and Option N with, and without one way flapgates installed 

after a two week simulation forced by average waves and average annual 7 day 

low river flow conditions, as described in Section 5.8.2. Although these 

simulations were forced by seven day low flow river conditions, they were still 

run for a two week period. Therefore they can be thought of as an extreme case of 

prolonged low flow conditions. 

Compared to the Status Quo option the bed levels predicted for the Option J 

scenario are fairly similar. The main difference is that the -0.75, -1 and -1.25 

metre contours around the ebb channel (A) are 20 metres shorter and slightly 

narrower than the Status Quo simulation. The -0.5 m contour on the western 

swash platform is larger (B), and represents sediment deposition, creating a 

shallower swash platform.  

The main difference observed between the Status Quo simulation and the Option 

N – with the addition of one way flapgates, is that the channel through the delta 

became longer and deeper. The -1.5, -1.25 and -1 metre contours  surrounding the 

channel, extended approximately 40 metres further seaward (A & B). Bed levels 

upstream also became deeper, with a maximum decrease in bed level of 0.5 m 

indicated by marker (C). 

Comparing Option N – without flapgates to the Status Quo simulation it can be 

seen that the -1.25 and -1 metre contours both extend 20 metres further seaward 

(A), and the -0.75 metre contour 40 metres further offshore, in addition to 

becoming a lot broader. The channel also became deeper inside the river mouth as 

indicated at location (B), where the bed level became deeper by approximately 0.5 

m. 
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Figure ‎6.4:  Predicted bed levels after a 14 day simulation of constant average annual 7 day low 

river flow and average wave conditions. 
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 Constant 2x Times the Average Wave and Annual Average River 6.3.4

Flow Conditions 

Figure ‎6.5 shows the predicted changes in bed level around the Kaituna River 

mouth for Option J and Option N with, and without one way flapgates installed 

after a two week simulation forced by average river flow, and twice the average 

significant wave height conditions.  

Comparing the Option J bed level map to the Status Quo bed levels it can be seen 

that there is a change in bed level in a number of regions around the river mouth 

(Figure 6.4). The main area of change is indicated by the (A) marker. Here the -

0.75 m contour, indicating the main channel through the delta, extends 

approximately 40 metres further seaward. The -1, -1.25 and -1.5 metre contours 

all extend slightly further out (< 20 m) as well. Markers (B) and (C) highlight 

changes in the bed level over the swash platforms. Compared to the status Quo 

simulation the western swash platform containing marker (B) decreased in size, 

indicating erosion in this area. Conversely the swash platform on the eastern side 

(C) has become larger, indicating deposition.  

The main difference observed between the Status Quo simulation and the Option 

N, with the addition of one way flapgates, is that the main channel through the 

delta (A) became a lot larger. The -0.75 and -1 metre contours became 

significantly wider, more than doubling in width, and the -0.75 metre contour 

extended 30 metres further seaward. The sand mound on the western side of the 

delta (B) became detached from the shoreline and decreased in size, and indicates 

a deepening of the western marginal flood channel. 

When the flapgates were removed from Papahikahawai Channel the main channel 

became slightly wider, with the -1 and -1.25 metre contours increasing in size. 

However, not to the extent seen in Option N – with the addition of flapgates. The 

accumulation of sand seen on the western swash platform of the Status Quo 

simulation was seen to move offshore (B) and likely indicates the formation, and 

increasing size of the marginal flood channel. 
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Figure ‎6.5:  Predicted bed levels after a 14 day simulation of constant average river flow and 2x 

wave conditions. 
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 Decreased River Flows Compared to Average Conditions 6.3.5

In all four scenarios, the main channel through the river mouth and delta extended 

further seaward, and became slightly wider in the constant average 7 day low river 

flow simulations, compared to the average river flow conditions simulations. The 

largest increase in channel size occurred in the Option N – with flapgates scenario 

where the -1.25 and -1 metre contour lines surrounding the channel, extended 60 

and 20 metres further seaward respectively, than seen in their respective average 

river flow simulations. Similar changes were also seen in the other three scenarios, 

however, at a lesser extent. 

 Increased Wave Heights Compared to Average Conditions 6.3.6

Comparing the four modelled simulations of average river flow and wave 

conditions scenarios to their respective modelled simulations for the average river 

flow and 2x average wave height scenario, the effects of wave conditions can be 

analysed. In three of the four scenarios (Status Quo, Option N with, and Option N 

without flapgates) the channel through the river mouth became shorter and 

narrower, each to varying extents. The Option N – without flapgated culverts 

scenario showed the largest decrease in channel size with the -1 and -1.25 metre 

contours around the channel becoming much shorter and narrower, whereas the 

other two scenarios exhibited much smaller changes. Conversely, the Option J 

scenario showed an increase in channel length through the river mouth and into 

the delta under the 2x average wave conditions simulation. 
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 Addition of Twin Training Walls 6.3.7

Figure ‎6.6 shows the predicted bed levels when twin training wall structures 

spaced 35 and 45 metres apart are added to the Te Tumu Cut. The simulations 

were run for 14 days and subjected to average river flow and wave conditions. 

When the training walls were spaced 45 metres apart, the channel was seen to 

form along western wall until ~100 m from the seaward end, where the bed level 

then became relatively even. A 40 m long by 45 m wide ebb delta sediment 

deposit was also observed at the seaward end of the structures  

Conversely, when the training walls were spaced 35 metres apart the bed level 

became uniform perpendicular to the training walls, indicating a uniform channel 

between the two walls. The 35 metre spaced training walls also resulted in a 

deeper bed level towards the seaward end, compared to the 45 metre spaced 

training walls. A narrower (35 m), but longer (50 m) ebb delta sediment deposit 

was seen to form at the seaward end of the twin training wall structures. 
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Figure ‎6.6:  Predicted bed levels with the addition of twin training wall structures places 35 and 

45 m apart. The simulations were run for 14 days and forced by average river flow 

and wave conditions as described in Section 5.8. 
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7 Chapter 7  
 

Discussion & Conclusion 
 

 Introduction 7.1

A morphological model of the Te Tumu Cut was developed to assess the effects 

of various potential re-diversion options for the Kaituna River in to Maketū 

Estuary. The change in bed levels were predicted as a result of the different 

diversion options under a range of conditions, the results of which are described in 

Chapter 6. 

This chapter expands on the results chapter and explains why such results were 

observed, the validity of the results, and considerations for further developing the 

morphological model used. This is then concluded by a summary of the findings 

of this project and how they relate to the aims stated in Section ‎1.4. 
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 Analysis of Model Results 7.2

The following subsections provide further analysis on the results obtained in 

Chapter 6 and offers explanations as to why such results were observed. 

 

 Option J 7.2.1

Comparing each of the simulations run for Option J to the corresponding 

simulations for the Status Quo – existing river / estuary configuration it is evident 

that in general the lowering of the culverts at Ford’s Cut tends to cause increased 

sedimentation around, and within the Kaituna River mouth. This was shown in all 

four of the simulations looked at, when the channel is classified as everything 

deeper than the -1 metre contour surrounding the channel.   

The increased sedimentation can be attributed to the increase in the flood tide 

volume of water entering the river. Figure ‎7.1 illustrates the differnces in 

discharges at the Mike 21 model boundary (Figure ‎7.2) between the Status Quo 

and Option J scenarios, produced by the Mike 11 river flow model.  There is no 

difference in peak ebb discharges. However, under all three river flow conditions 

(calibration time, mean annual flow and mean annual 7 day low flow conditions) 

the peak flood discharges increased (became more negative) by on average 10 

m
3
/s under diversion Option J.  
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Figure ‎7.1:  Discharge time series from the Mike 11 model used to force the upstream model 

boundaries of the coupled Mike 21 model for the Status Quo and Option J scenarios. 
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Figure ‎7.2: Map showing the two transects where discharge values were extracted from the model 

results for Option J and Option N. 

 

The increase in flood discharge into the river under Option J is a result of the 

majority of increased flow into the estaury through Ford’s Cut, occuring during 

the incomming tide (Figure ‎7.3). The tidal prism of a tidal basin is a function of 

the basins intertidal area (Heath, 1975). Therefore, lowering the invert level of the 

Ford’s Cut culverts for Option J, effectively increases the intertidal area and thus 

the tidal prism on the incoming tide. However, as the culverts only allow water to 

flow from the river into the estuary and not back into the river, the ebb discharges 

through the river mouth remain the same as the present configuration. 

 

Figure ‎7.3: Plot showing the predicted increased discharge through Ford’s Cut under the diversion 

Option J, compared to the existing inflows. Taken from the Mike 11 model with a 

constant annual average discharge of 39.5 m3/s.  
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Wright (1977) stated that tides have three basic effects on tidally influenced river 

mouths: (1) tidal mixing removes vertical density gradients, reducing the effects 

of buoyancy; (2) creates bidirectional sediment transport paths, with tides 

accounting for a greater fraction of sediment transport than the river for at least 

part of the year; and (3) creates a constantly varying land-sea boundary in both the 

vertical, and horizontal directions during the rise and fall of the tide. 

Lowering the culverts at Ford’s Cut increases the flood tidal volume and thus also 

the flood sediment transport carrying capacity within the river. This acts to alter 

equilibrium bidirectional sediment transport, causing increased flood 

sedimentation until a new equilibrium bed level is formed. 

However, it is during the ebb tide, when river flow and tidal currents are acting in 

the same direction, when peak discharges and current velocities occur. Therefore 

it is the ebb flows which have the predominant influence on erosion and 

deposition within the throat of the river mouth. As the ebb flows remained 

unaltered by Option J there was no significant, large scale changes in bed level. 

  



 

110 

 

 Option N – With Flapgated Culverts 7.2.2

On average, during the 14 day simulation, 220,000 m
3
 of water per tidal cycle 

entered Maketū Estuary through the floodgates in Papahikahawai Channel. In 

addition to this, 139,000 m
3
 entered the estuary through the Ford’s Cut culverts 

(same as the Status Quo scenario). The change in discharges through the river 

mouth, downstream of Papahikahawai Channel, compared to the Status Quo 

scenario is shown in Figure ‎7.4.  Similarly to Option J, although to a greater 

extent, there is an increase in the flood tidal prism through the river mouth, of 

approximately 10 – 30 m
3
/s. As expected there is no corresponding change in ebb 

flow volume. 

 

Figure ‎7.4: Comparison of discharge values taken from the average river flow and wave condition 

simulations for the Status Quo and the Option N - with flapgates scenarios. The 

discharge values were extracted from a transect downstream of Papahikahawai 

Channel (Figure ‎7.2). 

 

Contrary to the results of Option J, where the increased peak flood tidal discharge, 

volume, and corresponding increase in sediment transport carrying capacity 

caused sedimentation within the channel, this was not seen for Option N – with 

flapgates. A possible explanation for this is that when mesh was edited to reopen 

Papahikahawai Channel, the bathymetry on the river side, immediately 

surrounding the opening, had to be edited to match the invert level of the culverts. 



 

111 

 

This simulated a dredging event, which would be required for the culverts to be 

installed.  Therefore, this caused a loss of sediment from the river mouth system.  

It was expected sediment from the surrounding coastline would enter the inlet and 

replace the “dredged sediment” fairly rapidly, returning the inlet back in to an 

equilibrium state, as rapid morphological readjustment of river entrances and tidal 

inlets is well documented (Kench & Parnell, 1991; Dahm & Kench, 2004). 

However, it is possible an equilibrium state had not been reached at the end of the 

14 day simulation due to: the assumption of no river derived sediment inputs, as it 

was deemed insignificant, and low longshore sediment transport rates associated 

with a constant large directional spreading standard deviation for the waves 

(Section 7.3.3). A combination of these factors may have resulted in the 

unexpected increase ebb channel size. 
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 Option N – Without Flapgated Culverts 7.2.3

When Option N was run without the flapgated culverts, both the peak flood tidal 

discharges and peak ebb flow discharges increased compared to the Status Quo 

scenario (Figure ‎7.5). However, in general the flood tidal discharges increased 

more than the ebb flows. This indicates that not all of the water entering Maketū 

Estuary through Papahikahawai Channel, exits the estuary back through 

Papahikahawai Channel. This extra volume of water must therefore discharge out 

through the Maketū Estuary inlet instead. 

 

 

Figure ‎7.5: Comparison of discharge values taken from the average river flow and wave condition 

simulations for the Status Quo and the Option N - without flapgates scenarios. The 

discharge values are taken from a transect downstream of Papahikahawai Channel 

(Figure ‎7.2).‎ 

 

Similarly to the Option N – with flapgated culverts scenario, the increase in 

channel size could partially be attributed to a loss of sediment from the river 

mouth system when the bathymetry was edited to reopen Papahikahawai Channel. 

However, for this scenario, the channel became even longer than the scenario with 

flapgates. This extra increase in depth, and size, of the channel can be explained 

by the increase in peak ebb discharges and corresponding increase in current 

speeds that occur.  
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This corresponds with the inlet cross-sectional area – tidal prism relationship 

discussed in section Chapter 3.3.2, which describes the positive relationship 

between effective tidal prism, and inlet throat cross-sectional area. The change in 

cross-section area is shown in Figure ‎7.6. Although the deepest point in the cross-

section became shallower by 0.2 metres under Option N – Without flapgates, the 

channel became much wider on the eastern side, leading to an increase in the 

cross-sectional area. 

 

 

Figure ‎7.6: Inlet throat cross-section comparison between the Status Quo and Option N - Without 

Flapgates options for average river flow and wave conditions. The cross-section areas 

are calculated from the bed level to MSL (0 m) and were extracted from the last time-

step in each of 14 day simulations. 
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 Decreased River Flow Conditions 7.2.4

In contrast to expectation, and similar situations reported in the literature, the ebb 

channel was seen to extend further through the delta and become slightly deeper 

under the constant average annual 7 day low flow river conditions, compared to 

the constant average discharge conditions. Figure ‎7.7 compares the discharge time 

series extracted from the Mike 11 river model, used to force the upstream 

boundary for the Status Quo and both Option N scenarios, between average 

conditions and average annual 7 day low flow conditions. Based on Figure ‎7.7 it 

was expected that the increased peak flood discharge values would cause an 

increase in the shoreward sediment transport carrying capacity, and the associated 

decrease in peak ebb flow values would lead to a decrease in the scour and 

offshore sediment transport capacity.  

This hypothesis was also in line with the literature, with a similar model created 

by Siegle et al., (2004), who also used the DHI, Mike 21 Sediment Transport 

module. They showed that for the Teign Inlet (Teignmouth, UK) increases in river 

discharge resulted in larger quantities of offshore directed sediment displacement. 

Thus the converse of their results indicates that decreases in river discharge 

should lead to a decrease in the offshore transport of sediment. However, this was 

not seen in any of the simulations run for this project, with each scenario resulting 

in an increase in ebb channel size through the delta, and no areas of decreased 

erosion within the inlet, which would indicate a decrease in offshore sediment 

transport. 
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Figure ‎7.7:  Discharge time series from the Mike 11 model used to force the upstream model 

boundaries for the coupled Mike 21 model for the Status Quo and Option N 

scenarios. Similar differences between average and 7 day low flow discharges were 

also seen in the time series used to force the Option J scenario. However, they are 

not shown here for the sake of clarity in this figure. 

 

 

 Increased Wave Height Conditions 7.2.5

In three out of the four scenarios (all except Option J), forced by average river 

flows and twice the average wave height conditions, the channel through the ebb 

delta became shorter compared to their respective simulations of average river 

flow and wave height conditions (although, the channel in the Option N – with 

flatgates scenario, became wider). These three scenarios are in accordance with 

the general literature, which state that inlets that are subjected to high wave 

energy climates, tend to have smaller ebb deltas than inlets of similar tidal prisms, 

but lower energy wave climates (Komar, 1976, 2006; Hicks & Hume, 1996). This 

is due to the waves “pushing” sand shoreward over the delta, and at times in 

through the inlet, causing an increase in the size of the flood delta, or in the case 

of the scenarios for the Te Tumu Cut, a decrease in size of the channel.  
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Alternatively to the idea of Komar (1976, 2006) and Hicks and Hume (1996), 

Ranasinghe et al., (1999) showed for an idealised seasonally closed inlet, the 

effect of wave action depended on wave steepness. Through various model 

simulations of an idealised seasonally closed inlet Ranasinghe et al. (1999) 

concluded that their results reflected Dean’s (1973) condition for on-offshore 

sediment transport (Equation. 7.1).  

Dean’s (1973) condition states that onshore sediment transport occurs when wave 

steepness (Ho (offshore wave height) / Lo (offshore wave length)) is less than (Ho/Lo)crit, while 

offshore transport occurs otherwise. Dean’s condition is given as: 

(
  

  
)       

   

  
  Equation: 7.1 

where A is a constant (taken as 4.5 after Larson, 1988) and W is the sediment fall 

velocity. 

Their model results showed when wave steepness was greater than (Ho/Lo)crit, 

cross-shore processes helped to keep the inlet open, as expected due to offshore 

sediment transport. Conversely wave steepness values less than Deans criterion 

promoted onshore sediment movement and helped inlet closure.  

Figure 7.8 shows Dean’s (1973) critical conditions for onshore and offshore 

sediment transport based on the mean grain size of 0.943 mm found in Chapter 

6.2 and the corresponding settling velocity of 0.0599 mm/s (based on the equation 

of van de Graaff, 1994). According to this criterion the average wave conditions 

for the Te Tumu Cut should promote onshore sediment transport, whereas when 

the wave height is doubled but the wave period remains the same (i.e. the 2x 

average wave height simulations) offshore sediment transport should occur. 

Therefore, under the 2x average wave height conditions offshore sediment 

transport should increase due to the combined effect of ebb tidal flows and 

undertow associated with waves steeper than Dean’s criterion. However, as the 

ebb channel was only seen to increase in one of the four simulations (Option J), 

the effect of increased wave height cannot be explained by the same processes as 

the results of (Ranasinghe et al., 1999).  
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Figure ‎7.8:   Dean's criterion for onshore - offshore sediment transport. The average wave (below 

the line) and 2x average wave heights (above the line) used in the model simulations 

are indicated by the grey dots. 

 

A possible explanation for no general consensus on the effect of increased wave 

heights within the four scenarios is that the inlet is in different stages of inlet 

sediment bypassing. 

Bruun & Gerritsen (1959) described three methods through which sand can move 

past tidal inlets: (1) by wave induced sand transport along the terminal lobe, (2) 

transport of sand in channels by tidal currents and (3) the migration of channels 

and sandbars (Figure ‎7.9). They also showed that the type of bypassing that 

occurs could be determined from the Bruun Ratio, with ratios of > 200 – 300 

associated with the inlet bypassing type 1, and low ratios (< 10 – 20) associated 

with type 2 and 3 bypassing (FitzGerald, 1982).  

According to the Bruun Ratio calculated for the Te Tumu Cut (Ω/Mtot = 56) in 

Section ‎3.3.1 sediment should bypass the inlet by the processes of transport 

through channels by tidal currents and by the migration of channels and sandbars. 

This is further reinforced when the results of the sediment transport modelling are 

viewed as a movie, or frame by frame. This clearly shows the movement of 

mounds of sediment becoming detached from the western side of the shoreline 

and swash platform, moving into, and, or around the ebb channel and then onto 

the eastern swash platform. Therefore it is possible that the inlet is in different 
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stages of inlet sediment bypassing in each of the scenarios between the average 

wave and twice the average wave height simulations, thus confusing 

interpretations of the results. 

 

 

Figure ‎7.9:   Schematic of the ebb tidal delta breaching process of inlet sediment bypassing from 

FitzGerald et al. (2000). 
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 Twin Jetty Structures 7.2.6

Training walls inhibit a large proportion of the sediments transported to inlets and 

therefore lead to a dominance of ebb-directed sediment transport. In addition to 

this training confine the flow to a limited channel and make the flow paths more 

hydraulically efficient, thus increasing flow velocities and scour potential 

(Kieslich, 1981). 

Figure ‎7.10 shows the equilibrium scour depth predicted for a range of jetty 

spacing’s based on the USACE equation (Equation 3.3), when a sediment grain 

size of 0.000496 m (‎6.2) and an equilibrium maximum discharge of 82m
3
/s 

(Figure ‎7.1) are used to represent the end of the 14 day simulation. 

 

 

Figure ‎7.10:   Estimated scour depth of the Kaituna River mouth using the USACE formula for 

annual average flow conditions with varying training wall spacing. 

 

In both the 45 metre and 35 metre spaced simulations the effect of the twin 

training wall structures were seen with the prediction of lower bed levels after a 

two week simulation, with and without the training walls. As expected the 35 

metre spacing simulation produced lower bed levels of the two.  

When comparing the bed levels predicted by the sediment transport model and the 

USACE equation for equilibrium scour depths no matches were seen. This was 

due to the channel depths becoming progressively shallower seaward from the 

river mouth and therefore there was not one bed level for the length of the channel 

as suggest by the USACE equation. However, it must be noted that the USACE 
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equation tends to predict maximum equilibrium scour depths as it is based on 

peak discharges, which in reality may not exist long enough to allow the predicted 

equilibrium scour depth to occur (Hughes, 1999; Dahm & Kench, 2004). 

Another possible explanation for this is that both the 35 m and 45 m spaced 

training wall simulations were orientated at 15° from north which was deemed to 

be the typical orientation of the channel through the delta based on a series of 

aerial photographs. However, both simulations were also forced by wave 

conditions that were deemed to represent the average conditions, which for the 

propagation direction was 20° from north. This meant that the waves were of 

almost ideal conditions to enter into between the two training walls, thus also 

allowing sediment to be transported into inside the twin structures by wave action, 

whereas the USACE equation does not take into account the effect of wave 

induced currents (Hughes, 1999). 

Despite the disparity between the USACE equation and the morphological model 

developed for this project, both the 35 metre and 45 metre spaced training wall 

simulations indicate the potential of such structures to create a deeper channel 

than the Status Quo simulation. However, to fully assess the suitability and ideal 

configuration of such structures a much more specialised and specific study is 

required to assess factors such the ideal width, orientation and length of the 

structures, their effects of flood releases, scour potential from flood events, the 

magnitude of currents produced within and around the structures and their effects 

of vessels entering the entrance and the long term effects on the neighbouring 

shorelines (Komar, 1976; Dahm & Kench, 2002, 2004). 
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 Summary & Conclusions 7.3

Following the diversion of the Kaituna River from Maketū Estuary out to sea in 

1956, there have been concerns over the estuary’s deteriorating health. The 

primary concerns have surrounded the increased sedimentation which has been 

estimated at 13,640 m
3
 per year by Domijan (2007). Although, this is not entirely 

attributed to the diversion, with reports of sedimentation occurring prior to the 

diversion as well, it is accepted that the diversion has played a role in increasing 

the sedimentation rate. 

In response to these concerns the Bay of Plenty Regional Council has outlined a 

number of potential re-diversion options to partially or fully restore the Kaituna 

River back in to Maketū Estuary. However, the options which aim to completely 

restore flow into the estuary require the Te Tumu Cut to be blocked off. 

Ultimately, the loss of the Te Tumu Cut is undesirable as at present it is a 

frequently used access point for recreational boat users and fisherman. The 

advantage of the options to partially restore the river flow into Maketū Estuary is 

that the Te Tumu Cut can remain unblocked. However, a consequence of partially 

re-diverting the river is the alteration of the discharge and flood currents through 

the Te Tumu Cut, and thus also the sedimentation patterns, which could 

potentially leave the Cut unnavigable.  

In order to investigate the morphological response to three of the outlined 

potential re-diversion options, a 2-dimensional morphological model was created 

using the DHI modelling suite. This consisted of a regional spectral wave model 

to transform offshore wave data into the nearshore region, which in turn was used 

to force a local scale, coupled, spectral wave, hydrodynamic and sediment 

transport model of the Te Tumu Cut Region. This was then used to predict the 

response of the Te Tumu Cut to the Diversion Option J (lowering of the Ford’s 

Cut Culverts) and Option N (reopening Papahikahawai Channel with and without 

oneway flapgated culverts).  

Simulations were run for: (1) average river flow and wave conditions, (2) 7-day 

low river flows with average wave conditions, (3) average river flow conditions 

with twice the average significant wave height conditions and (4) over the time in 

which the model was calibrated, which was classified as typical summer 
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conditions. Simulations of these conditions were run for each of the three different 

potential re-diversion diversion options and the Status Quo simulation. 

Based on the results of the simulations described above the following conclusions 

were drawn: 

(1) Option J was shown to increase the flood tidal volume of water through 

the Te Tumu Cut, however, the ebb flows remained unchanged. This 

resulted in an increase in the shoreward sediment transport carrying 

capacity, leading to the main channel through the ebb delta becoming 

shorter by approximately 20 metres in the four simulations run. 

 

(2) Option N – with flapgated culverts also caused an increase in the volume 

of water entering the Te Tumu Cut during the flood tide, while peak ebb 

discharges remained unaltered. However, unlike Option J, this caused an 

increase in the size of the channel. A possible explanation for this was that 

a loss of sediment occurred from the river mouth system when the bed 

level was decreased in order to reopen Papahikahawai Channel and an 

equilibrium state had not yet been reached again. 

 

(3) Option N – without flapgated culverts caused an increase in the flood and 

ebb tidal discharges. However, a larger increase in flood discharges 

compared to ebb flows was seen. This indicated that not all of the water 

entering Maketū Estuary through Papahikahawai Channel exits back 

through Papahikahawai Channel, but instead discharges through the 

Maketū Estuary mouth. However, the water that did exit through 

Papahikahawai Channel and subsequently discharged through the Te 

Tumu Cut during the ebb tide caused an increase in peak ebb flow and 

volume, and resulted in a small increase in the size of the channel through 

the river mouth. 

 

(4) The modelled results showed that none of the re-diversion options 

investigated, under average conditions, and conditions thought to promote 

increased sedimentation, i.e. increased wave height and low river flows 

(Despite the lack of consensus on the effect of increased wave height 
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between scenarios, and the lack of explanation for the increase in channel 

size seen in the low flow simulations) resulted in dramatic changes in the 

bathymetry or morphology of the Te Tumu Cut.  Therefore, all of the 

scenarios looked at in this project are viable options for the re-diversion of 

the Kaituna River into Maketū Estuary, based solely on the resulting 

effects to the Te Tumu Cut. 

 

(5) Preliminarily simulations with the addition of twin jetty structures 

extending through the ebb delta showed that they can be successfully used 

at the Te Tumu Cut to create a deeper channel through the delta. However, 

a more thorough investigation is required to determine the ideal 

configuration and effects on neighbouring coastlines, which was beyond 

the ability of the coupled morphological model created for this project. 

 

Based on the results of this project I personally recommend that Option N – 

without flapgated culverts is the best option in terms of increasing the inflow of 

water into Maketū Estuary while at the same time having minimal effect on the 

morphology of the Te Tumu Cut. However, this is solely based on the 

morphodynamic effects on the Te Tumu Cut and increasing the inflow of water in 

to Maketū Estuary, and does not consider effects such as the salinity or water 

quality of the additional water entering the estuary.  
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 Recommendations for Further Research 7.4

Suggestions for future work involving the application of the coupled 

morphological model developed for this project include the following: 

(1) Collection of another current velocity dataset from within the vicinity of 

the river mouth. This could be achieved by deploying an array of current 

meters inside the river channel or by completing another ADCP survey, 

but this time inside the river to gain an estimate of discharges. Such 

datasets could then be used to specifically calibrate the hydrodynamic 

model and aid in the choice of bed resistance values. 

 

(2) Collection of another bathymetry survey, preferably following a period of 

low flow condition, which could be used to further validate the sediment 

transport model.  

 

(3) Investigate why simulations longer than two weeks produced excessive 

erosion around the Te Tumu Cut. This would allow the various 

simulations to assess the long term effects of the different re-diversion 

option.    

 

(4) Using the long term simulation model recommended for development 

above, to assess the effects of various river training structures on the 

neighbouring coastlines, and determine the ideal structure type and 

configuration in regards to minimal downdrift erosion for maximum 

channel depths within the Te Tumu Cut.  
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Appendix 1: Sediment Sample Laser Sizer Results 
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Appendix 2: ADCP and Modelled Current Vector Plots 
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Appendix 3: Q3D ST Tables 

Table A3: Settings used for Q3D Sediment Transport Table generation. 

Parameters Value 

General Parameters 

Tolerance in calc. of concentration 

Max number of wave periods 

Steps per wave period 

Relative density of sediment 

Critical Shields parameter 

Water Temperature 

 

0.0001 

100 

140 

2.65 

0.05 

14 

Additional Parameters 

Ripples 

Bed slope 

Bed concentration 

Streaming 

Density currents 

Centrifugal Acceleration 

 

Include effects 

Include effects 

Empirical 

Include effects 

Exclude 

Exclude 

Wave Parameters 

Wave theory 

Order of solution 

Breaking Wave Parameters 

Gamma 1 

Gamma 2 

 

Stokes 

3 

 

1 

0.8 

Sediment Table Axis 

Current speed 

Wave height 

Wave period 

Wave height / water depth 

Angle current / waves 

Grain size 

Sediment grading 

Bed slope, current direction 

Bed slope, normal to current 

First Value Spacing No. of points 

0.05 0.3 7 

0.01 0.75 7 

1 3 7 

0.01 0.2 4 

0 30 12 

0.2 2 4 

2.01 0.2 5 

-0.01 0.01 3 

-0.02 0.02 3 
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