Correspondence to:

Professor W. Henderson,
Department of Chemistry,
University of Waikato,
Private Bag 3105,
Hamilton,
New Zealand
e-mail w.henderson@waikato.ac.nz
FAX 0064-7-838-4219

Synthesis and characterisation of adducts of $\left[\mathrm{Pt}_{2}\left(\mu-\mathrm{S}_{\mathbf{2}}\left(\mathrm{PPh}_{3}\right)_{4}\right]\right.$ with organo-palladium and platinum-hydride substrates

Bradley C. White, ${ }^{\text {a }}$ Dylan Harrison, ${ }^{a}$ William Henderson, ${ }^{\text {a, }}{ }^{*}$ Brian K. Nicholson ${ }^{\text {a }}$, and T.
S. Andy Horb,*
${ }^{a}$ Department of Chemistry, University of Waikato, Private Bag 3105, Hamilton, New Zealand
${ }^{b}$ Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543

Received:

Abstract

The reactions of $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ towards a range of palladium(II) complexes containing organometallic ligands (cyclopalladated N-donor ligands, η^{3}-allyl, phenyl) have been explored, leading to the formation of a series of cationic, trinuclear sulfidobridged aggregates containing $\left\{\mathrm{Pt}_{2} \mathrm{PdS}_{2}\right\}$ cores. $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ also reacts with the platinum(II) hydride complex trans- $\left[\mathrm{PtHCl}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ giving the adduct $\left[\mathrm{Pt}_{2}(\mu-\right.$ $\left.\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{PtH}\left(\mathrm{PPh}_{3}\right)\right]^{+}$. X-ray crystal structure determinations on the complexes $\left[\mathrm{Pt}_{2}(\mu-\right.$ $\left.\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{PdPh}\left(\mathrm{PPh}_{3}\right)\right] \mathrm{PF}_{6}$ and $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{PtH}\left(\mathrm{PPh}_{3}\right)\right] \mathrm{PF}_{6}$ are reported, and show the expected bis μ_{3}-sulfido aggregates with three square-planar metal centres.

Keywords: Platinum complexes; Palladium complexes; Trinuclear complexes; Sulfido ligands; Electrospray mass spectrometry; Crystal structure

Introduction

The metalloligand $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ displays considerable and varied reactivity towards a wide variety of metal- and organic-based electrophiles. ${ }^{1}$ A range of palladium adducts of $\left\{\mathrm{Pt}_{2} \mathrm{~S}_{2}\right\}$ metalloligands have been previously reported, ${ }^{\mathbf{2 , 3 , 4 , 5 , 6}}$ but few are organometallic derivatives. The pentafluorophenyl adducts $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2} \mathrm{~L}_{4} \mathrm{Pd}_{(}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right][\mathrm{L}=$ $\mathrm{PPh}_{3}, \mathrm{PMe}_{2} \mathrm{Ph}$ or $\left.\mathrm{L}_{2}=\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)_{2}\right]$ have been prepared by reaction of the appropriate $\left\{\mathrm{Pt}_{2} \mathrm{~S}_{2}\right\}$ metalloligand with the labile palladium precursor $\left[\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{NCMe})_{2}\right] .{ }^{7} \quad$ The cyclo-octa-1,5-diene (cod) adducts $\left[\mathrm{Pt}_{2}(\mu-\right.$ $\left.\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{M}(\operatorname{cod})\right]^{2+}(\mathrm{M}=\mathrm{Pd}, \mathrm{Pt})$ have been prepared by reaction with $\left[\mathrm{MCl}_{2}(\operatorname{cod})\right]$ substrates, resulting in displacement of chloride ligands and coordination of the $\mathrm{M}(\operatorname{cod})^{2+}$
group. ${ }^{8}$ The related triplatinum complex $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}(\mathrm{dppp})_{2} \operatorname{Pt}(\operatorname{cod})\right]^{2+} \quad[\mathrm{dppp}=$ $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}$] has interestingly been found to undergo deprotonation of a CH_{2} group instead of the more usual nucleophilic attack of solvent-derived methoxide ion at a coordinated alkene. ${ }^{9}$

In developing the chemistry of $\left\{\mathrm{Pt}_{2} \mathrm{~S}_{2}\right\}$ metalloligands, the technique of electrospray ionisation mass spectrometry (ESI MS) ${ }^{\mathbf{1 0}}$ has proved to be extremely useful, being rapid and only requiring only miniscule amounts of material. Information on the range of species present in solution is then used to target subsequent macroscopic syntheses. ${ }^{\mathbf{1 1 , 1 2 , 1 3 , 1 4}}$ We have recently used ESI MS to screen the reactivity of $\left[\mathrm{Pt}_{2}(\mu-\right.$ $\left.\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ towards a range of palladium(II) and platinum(II) halide substrates. ${ }^{8}$ In this contribution we report on the application of this methodology to the synthesis of some organo-palladium(II) complexes, including complexes containing cyclometallated ligands. Previously we have reported analogous derivatives of $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ with gold(III) centres containing various cycloaurated N, C-donor ligands. ${ }^{\mathbf{1 5}, 16}$

Results and discussion

$\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ reacts readily with a series of chloride- and acetate-bridged dinuclear palladium(II) substrates containing cyclopalladated ligands (C, N) $[\mathrm{PdCl}(\mathrm{dmamp})]_{2}(\mathrm{dmamp}=$ dimethyaminomethyphenyl) and substituted analogues, $[\mathrm{PdCl}(\text { phimid })]_{2}($ phimid $=2$-phenylimidazolyl $),[\mathrm{PdCl}(\text { bzpy })]_{2}($ bzpy $=2$-benzylpyridyl $)$ and $\left[\mathrm{Pd}(\mathrm{OAc})\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{PPh}_{2}=\mathrm{NPh}-C, N\right)\right]_{2}$, in methanol to give solutions containing the trimetallic aggregates $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{Pd}(C, N)\right]^{+} \mathbf{1 - 4}$ respectively. $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ also reacts readily with the palladium η^{3}-allyl complex $\left[\mathrm{PdCl}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]_{2}$, the 2-pyridyl
complex trans- $\left[\operatorname{PdBr}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\left(\mathrm{PMePh}_{2}\right)_{2}\right]$ and the phenyl derivative trans$\left[\operatorname{PdBrPh}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ in methanol to give the mixed-metal aggregates $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{Pd}\left(\eta^{3}-\right.\right.$ $\left.\left.\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]^{+}$5, $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{Pd}\left(\mathrm{NC}_{5} \mathrm{H}_{4}\right)\left(\mathrm{PMePh}_{2}\right)\right]^{+} 6$ and $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{PdPh}\left(\mathrm{PPh}_{3}\right)\right]^{+}$ 7 respectively. Precipitation of the cations was achieved by addition of excess $\mathrm{NH}_{4} \mathrm{PF}_{6}$, yielding the appropriate salts in reasonably good yields. The complexes are all stable and soluble in chlorinated hydrocarbon solvents such as $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and CHCl_{3}, and represent an addition to the wide range of trinuclear complexes containing $\left\{\mathrm{M}_{3}(\mu-\mathrm{S})_{2}\right\}$ cores $(\mathrm{M}=\mathrm{Pt}$, Pd). ${ }^{\mathbf{3}, 17,18,19,20}$

Using the same methodology, reaction of $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ with trans$\left[\operatorname{PtHCl}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ gave the new platinum-hydride adduct $\left[\mathrm{Pt}_{2}\left(\mu-\mathrm{S}_{2}\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{PtH}\left(\mathrm{PPh}_{3}\right)\right]^{+}\right.$, though the reaction proceeded slowly, and a considerable amount of unreacted $\left[\mathrm{Pt}_{2}(\mu-\right.$ $\left.\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ remained (as the bright yellow methanol solvate ${ }^{21}$). Refluxing the reaction mixture resulted in moderate conversion of the reactants, and the complex $\mathbf{8} \cdot \mathrm{PF}_{6}$ was isolated from the reaction filtrate by precipitation with $\mathrm{NH}_{4} \mathrm{PF}_{6}$ as a cream powder in modest (34\%) yield.

The complexes - with one exception - all show a single intense $[\mathrm{M}]^{+}$ion in their positive-ion ESI MS spectra at low cone voltages (e.g. 20 V). The exception is complex $\mathbf{6}$ which shows an M^{2+} ion due to protonation of the pyridine nitrogen, however, microelemental analytical data support the formulation of the isolated product as being unprotonated, with a single hexafluorophosphate anion overall. At high cone voltages (e.g. 100 V) complex 6 showed the base peak at $m / z 1887$ for the $[\mathrm{M}]^{+}$ion, together with [$\left.\mathrm{M}-\mathrm{PMePh}_{2}\right]^{+}$at m / z 1687. The selective loss of the palladium-bound phosphine is consistent with the greater lability of palladium(II) compared to platinum(II). The other
monocations are generally stable up to moderate cone voltages of $60-80 \mathrm{~V}$, with the first fragmentations being either a loss of PPh_{3} from the $\left\{\mathrm{Pt}_{2} \mathrm{~S}_{2} \mathrm{PdL}\right\}$ core $(\mathrm{L}=$ supporting palladium ligand), or the loss of the palladium supporting ligand and a PPh_{3} resulting in $\left[\mathrm{Pt}_{2} \mathrm{~S}_{2}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Pd}\left(\mathrm{Ph}_{2} \mathrm{PC}_{6} \mathrm{H}_{4}\right)\right]^{+}$through cyclometallation of a PPh_{3} ligand. To illustrate this, the effect of increasing cone voltage on complex $\mathbf{1} \mathbf{c} \cdot \mathrm{PF}_{6}$ is shown in Figure 1.

The ${ }^{31} \mathrm{P}$ NMR spectra of complexes $\mathbf{1 a}, \mathbf{1 b}, \mathbf{2}$ and $\mathbf{3}$ give a single phosphorus signal with the characteristic satellites due to coupling to ${ }^{195} \mathrm{Pt}$. Even though the organopalladium centres in these complexes are not symmetrical with respect to the $\left\{\mathrm{Pt}_{2} \mathrm{~S}_{2}\right\}$ ring the asymmetry is not sufficient to give rise to two distinct sets of phosphorus signals, though in each case one of the ${ }^{195} \mathrm{Pt}$ satellites is broader than the other, suggesting slightly different coupling constants. However, the chiral derivative 1c appears to show four distinct P environments (though still with considerable overlapping of peaks) as a result of all four PPh_{3} ligands being inequivalent in this complex. The presence of the chiral CHMe group therefore appears to have a significant effect on the environments of the PPh_{3} phosphorus atoms. The pyridyl and phenyl complexes $\mathbf{6}$ and 7 also show distinct PtPPh_{3} resonances for the $\mathrm{Pt}_{2} \mathrm{~S}_{2}\left(\mathrm{PPh}_{3}\right)_{4}$ core, with two different couplings to ${ }^{195} \mathrm{Pt}$ (e.g. 3081 and 3121 Hz for 7). Complex 4 also shows inequivalent PPh_{3} groups [with $J(\operatorname{PtP})$ couplings of 3073 and 3152 Hz] together with a slightly broad singlet at $\delta 43.2$ due to the iminophosphorane PPh_{2} group, this chemical shift being indicative of phosphorus in a five-membered ring. ${ }^{22}$ Complexes 6, $\mathbf{7}$ and 8, containing an additional phosphine ligand on the adducted metal, also show an additional resonance for this phosphine, with the Pthydride complex 8 showing the expected satellites [${ }^{1}$ JPtP 4094 Hz]. The observation of
distinct resonances indicates that these complexes are not undergoing any fluxional exchange process involving the adducted metal at room temperature.

The ${ }^{1} \mathrm{H}$ NMR spectra of the complexes show the expected features, with characteristic resonances for the palladium-bound ligands being observed in addition to a suite of complex signals for the various aromatic protons. For example, the complex 1a showed the expected singlet peaks due to the CH_{2} and NCH_{3} protons of the palladium adduct, at $\delta 3.87$ and 2.37 , respectively. In the chiral analogue $\mathbf{1 c}$, the two N-methyl groups are inequivalent singlets ($\delta 2.67$ and 2.01), with the chiral CHMe group giving the characteristic quartet and doublet features for the CH and Me protons respectively.

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ shows a complex set of signals due to the triphenylphosphine protons along with other signals due to the benzylpyridyl protons, which were fully assigned via the use of ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$-COSY experiments. A variable temperature ${ }^{1} \mathrm{H}$ NMR study on $\mathbf{3}$ showed a sharp singlet at 330 K for the CH_{2} protons at δ 4.38. Upon cooling this gradually broadens (e.g. at 233 K) and then resolves into two broad singlets at 223 K , consistent with the known fluxional processes in the palladiumbenzylpyridyl ring system. ${ }^{23}$

The platinum-hydride complex $\mathbf{8}$ shows the characteristic signal for the hydride at $\delta-12.50$ in the ${ }^{1} \mathrm{H}$ NMR spectrum, as a doublet of triplets (due to phosphorus coupling), together with platinum satellites [${ }^{1} J_{\mathrm{PtH}} 1295 \mathrm{~Hz}$]. These values compare favourably with the chemical shift and ${ }^{1} J_{\mathrm{PtH}}$ of -12.06 and 1075 Hz respectively, in the trinuclear complex $\left[\mathrm{CH}_{3} \mathrm{C}\left\{\mathrm{CH}_{2} \mathrm{SPtH}\left(\mathrm{PPh}_{3}\right)\right\}_{3}\right] .{ }^{24}$

X-ray structure determinations

The structures of $\quad\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{PdPh}^{2}\left(\mathrm{PPh}_{3}\right)\right] \mathrm{PF}_{6} \quad\left(7 \cdot \mathrm{PF}_{6}\right)$ and $\quad\left[\mathrm{Pt}_{2}(\mu-\right.$ $\left.\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{PtH}\left(\mathrm{PPh}_{3}\right)\right] \mathrm{PF}_{6}\left(\mathbf{8} \cdot \mathrm{PF}_{6}\right)$ were determined. The structure of the cation 7 is shown in Figure 2 with the atom numbering scheme, and selected bond lengths and angles in Table 1. The structure of $\mathbf{8}$ is shown in Figure 3, with selected bond lengths and angles in Table 2. The structures confirm the identity of the complexes as adducts of $\left[\mathrm{Pt}_{2}(\mu-\right.$ $\left.\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ with $\mathrm{PdPh}\left(\mathrm{PPh}_{3}\right)^{+}$and $\mathrm{PtH}\left(\mathrm{PPh}_{3}\right)^{+}$moieties.

Complex 7 has the expected trimetallic assembly with two Pt and one Pd centre triply-bridged by two sulfido ligands. The S-M-S bond angles are very similar for $\operatorname{Pd}(1)$ $\left[78.68(3)^{\circ}\right], \operatorname{Pt}(1)\left[80.01(3)^{\circ}\right]$ and $\operatorname{Pt}(2)\left[79.86(3)^{\circ}\right]$. The palladium centre has the expected approximately square-planar geometry, though the presence of asymmetricallysized ligands $\left[\mathrm{PPh}_{3}\right.$ and Ph$]$ on $\mathrm{Pd}(1)$ results in a widening of the $\mathrm{S}(2)-\mathrm{Pd}(1)-\mathrm{P}(5)$ bond angle to $105.30(3)^{\circ}$. The asymmetry also causes variation in the $\mathrm{Pt}-\mathrm{S}-\mathrm{M}(\mathrm{M}=\mathrm{Pd}, \mathrm{Pt})$ angles, e.g. for $\mathrm{S}(1)$: $\mathrm{Pt}(2)-\mathrm{S}(1)-\mathrm{Pd}(1)$ 81.24(3); $\mathrm{Pd}(1)-\mathrm{S}(1)-\mathrm{Pt}(1) 83.99(3) ; \operatorname{Pt}(2)-\mathrm{S}(1)-$ $\operatorname{Pt}(1) 86.40(3)^{\circ}$. The same order in bond angles is observed for the angles about $\mathrm{S}(2)$: $\operatorname{Pt}(2)-\mathrm{S}(2)-\mathrm{Pd}(1) 79.67(3) ; \operatorname{Pd}(1)-\mathrm{S}(2)-\operatorname{Pt}(1) 82.81(3) ; \operatorname{Pt}(2)-\mathrm{S}(2)-\operatorname{Pt}(1) 86.28(3)^{\circ}$. In each case the largest angle is between the two $\operatorname{Pt}\left(\mathrm{PPh}_{3}\right)_{2}$ groups, as expected. The dihedral angle, between the least-squares planes defined by the Pt coordination spheres, is 126.9°, which is typical for such adducts. ${ }^{\mathbf{1 6}}$ The corresponding dihedral angle between the $\operatorname{Pd}(1)$ and $\operatorname{Pt}(2)$ coordination planes is 114.4°. Finally, the high trans-influence ${ }^{25} \sigma$-phenyl ligand causes a marked lengthening of the trans $\operatorname{Pd}(1)-\mathrm{S}(2)$ bond $[2.4157(8) \AA$] relative to the $\mathrm{Pd}(1)-\mathrm{S}(1)$ bond $\left[2.3531(9) \AA\right.$], trans to the PPh_{3} ligand on palladium. Similar effects have been seen in adducts of $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ with cycloaurated gold(III) moieties,
such as 9 , where the Au-S bond trans to C $[2.386(4) \AA$] is again significantly longer than the $\mathrm{Au}-\mathrm{S}$ bond trans to $\mathrm{N}[2.366(4) \AA] .{ }^{16}$ For comparison, the palladium(II) dithiophosphinate complex $\left[\mathrm{Pd}\left(\mathrm{S}_{2} \mathrm{PPh}_{2}\right)(\mathrm{Ph})\left(\mathrm{PPh}_{3}\right)\right]$ also shows longer and shorter $\mathrm{Pd}-\mathrm{S}$ bond distances [2.4571(11) and 2.4029(10) \AA] trans to higher and lower trans-influence Ph and PPh_{3} ligands, respectively. ${ }^{26}$

The same general trends are also observed in the structure of $\mathbf{8}$; the structure contains three approximately square-planar Pt centres, triply bridged by two sulfido ligands in a similar asymmetric fashion to 7 [e.g. $\operatorname{Pt}(3)-\mathrm{S}(1)-\mathrm{Pt}(2) 82.77(12) ; \operatorname{Pt}(3)-\mathrm{S}(1)-$ $\left.\operatorname{Pt}(1) 81.54(11) ; \operatorname{Pt}(2)-\mathrm{S}(1)-\operatorname{Pt}(1) 89.04(11)^{\circ}\right]$. The dihedral angle between the $\operatorname{Pt}\left(\mathrm{PPh}_{3}\right)_{2}$ coordination planes is 135.6°. The hydride ligand was not found, but its presence can easily be inferred by both the presence of a 'vacant' coordination position on $\operatorname{Pt}(3)$, and by the significant asymmetry of the $\operatorname{Pt}(3)-\mathrm{S}$ bond distances, with $\operatorname{Pt}(3)-\mathrm{S}(2)$ [2.427(4) \AA] being considerably longer than $\mathrm{Pt}(3)-\mathrm{S}(1)$ trans to $\mathrm{P}(5)$ [2.350(4) \AA], consistent with the presence of a high trans-influence hydride on $\operatorname{Pt}(3)$. The complex $\left[\mathrm{CH}_{3} \mathrm{C}\left\{\mathrm{CH}_{2} \mathrm{SPtH}\left(\mathrm{PPh}_{3}\right)\right\}_{3}\right]$ also contains the $\mathrm{PtH}\left(\mathrm{PPh}_{3}\right) \mathrm{S}_{2}$ coordination sphere, and provides a useful comparison with $\mathbf{8} ;{ }^{\mathbf{2 4}}$ the Pt-S bonds trans to hydride are significantly longer [e.g. 2.387(5) Å] compared to those trans to phosphine [2.344(4) Å]. Complex 8 also shows a widening of the $\mathrm{S}(2)-\mathrm{Pt}(3)-\mathrm{P}(5)$ bond angle involving the adduct $\mathrm{PtH}\left(\mathrm{PPh}_{3}\right)$ group, to $106.07(12)^{\circ}$.

Experimental

Instrumentation

ESI mass spectra were recorded in positive-ion mode on a VG Platform II instrument, using methanol as the mobile phase and solvent, and a cone voltage of 20 V unless otherwise stated. Samples of isolated hexafluorophosphate salts were prepared for analysis by dissolution in a few drops of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by dilution with methanol. Assignment of ions was aided by use of the ISOTOPE simulation program. ${ }^{27}$

NMR spectra were recorded on a Bruker AC300P spectrometer at 300.13 MHz $\left({ }^{1} \mathrm{H}\right)$ or $121.51 \mathrm{MHz}\left({ }^{31} \mathrm{P}\right)$ in CDCl_{3} solution, and were referenced relative to residual $\mathrm{CHCl}_{3}\left({ }^{1} \mathrm{H}\right)$ or external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}\right)$.

Materials

Reactions were carried out in LR grade methanol. Products were recrystallised from dichloromethane and diethyl ether that were dried and distilled (from CaH_{2} and sodium-benzophenone ketyl respectively) under a nitrogen atmosphere prior to use. Petroleum spirits refers to the fraction of boiling point $40-60^{\circ} \mathrm{C}$.

The compounds $\quad \mathrm{NH}_{4} \mathrm{PF}_{6} \quad$ (Aldrich) and $(S)-(+)$-di- μ-chlorobis[\{2-(1dimethylamino)ethyl $\}$ phenyl- $C, N]$ dipalladium(II), $\quad\left[\mathrm{PdCl}\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CHMeNMe}_{2}-C^{2}, N\right)\right]_{2}$ (Precious Metals Online) were used as received. The following complexes were prepared by the literature procedure, or a minor variation thereof: $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right],{ }^{28}\left[\mathrm{PdCl}\left(\eta^{2}-\right.\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}-\mathrm{C}, \mathrm{N}\right)\right]_{2},{ }^{29} \quad\left[\mathrm{PdCl}\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OMe}-3) \mathrm{CH}_{2} \mathrm{NMe}_{2}-\mathrm{C}, N\right)\right]_{2},{ }^{30} \quad[\mathrm{PdCl}(\text { phimid })]_{2},{ }^{31}$ $[\mathrm{PdCl}(2 \text {-benzylpyridyl })]_{2},{ }^{23}\left[\mathrm{PdCl}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]_{2},{ }^{\mathbf{3 2}}$ trans- $\left[\mathrm{PdBr}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\left(\mathrm{PMePh}_{2}\right)_{2}\right],{ }^{33}$ trans-
$\left[\mathrm{PdBrPh}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{34}$ and trans- $\left[\mathrm{PtHCl}\left(\mathrm{PPh}_{3}\right)_{2}\right] .{ }^{35}\left[\mathrm{Pd}(\mathrm{OAc})\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{PPh}_{2}=\mathrm{NPh}-C, N\right)\right]_{2}$ was prepared from palladium(II) acetate and $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{NPh}$ following the method of Vicente et $a l .{ }^{36}$

Synthesis of $\left[\mathrm{Pt}_{2}(\mu-S)_{\mathbf{2}}\left(\mathrm{PPh}_{3}\right)_{4} \mathbf{P d}\left(\boldsymbol{\eta}^{\mathbf{2}}-\mathrm{C}_{6} \mathbf{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}-C, N\right)\right] \mathrm{PF}_{6} \mathbf{1 a} \cdot \mathrm{PF}_{6}$

$\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right](204 \mathrm{mg}, 0.136 \mathrm{mmol})$ and $\left[\mathrm{PdCl}\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}-C, N\right)\right]_{2}(40 \mathrm{mg}$, $0.072 \mathrm{mmol})$ were stirred in methanol $(30 \mathrm{~mL})$ at room temperature for 19 h . The resulting clear yellow solution was filtered to remove a trace of insoluble matter. $\mathrm{NH}_{4} \mathrm{PF}_{6}$ ($300 \mathrm{mg}, 1.84 \mathrm{mmol}$) was added, followed by water $(40 \mathrm{~mL})$ to precipitate a cream solid. This was filtered and washed successively with water ($2 \times 20 \mathrm{~mL}$) and petroleum spirits $(10 \mathrm{~mL})$, and dried under vacuum giving $\mathbf{1 a} \cdot \mathrm{PF}_{6}$ as a cream powder $(179 \mathrm{mg}, 70 \%)$. Found: C, 50.9; H, 3.7; N, 0.8. $\mathrm{C}_{81} \mathrm{H}_{72} \mathrm{~F}_{6} \mathrm{NP}_{5} \mathrm{PdPt}_{2} \mathrm{~S}_{2}\left(\mathrm{M}_{\mathrm{r}} 1889\right)$ requires $\mathrm{C}, 51.5 ; \mathrm{H}, 3.8$; $\mathrm{N}, 0.7 \%$. ESI MS, [1a] ${ }^{+} m / z 1743 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR, $\delta 18.6\left(s,{ }^{1} J_{\mathrm{PtP}} 3135\right) .{ }^{1} \mathrm{H}$ NMR, $\delta 7.37-$ $5.76\left(m\right.$, aryl-H), $3.88\left(s, \mathrm{CH}_{2}\right)$ and $2.37\left(s, \mathrm{CH}_{3}\right)$.

Synthesis of $\left[\mathrm{Pt}_{2}(\mu-S)_{2}\left(\mathrm{PPh}_{3}\right)_{4} \mathbf{P d}\left(\eta^{2}-\mathrm{C}_{6} \mathbf{H}_{3}(\mathbf{O M e}-3) \mathrm{CH}_{2} \mathrm{NMe}_{2}-\boldsymbol{C}, N\right)\right] \mathrm{PF}_{6} \mathbf{1 b} \cdot \mathrm{PF}_{6}$

Following a similar procedure for $\mathbf{1 a},\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right](415 \mathrm{mg}, 0.277 \mathrm{mmol})$ and $\left[\mathrm{PdCl}\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{3}(\mathrm{OMe}-3) \mathrm{CH}_{2} \mathrm{NMe}_{2}-\mathrm{C}, N\right)\right]_{2}(89 \mathrm{mg}, 0.145 \mathrm{mmol})$ in 30 mL methanol, with $\mathrm{NH}_{4} \mathrm{PF}_{6}(300 \mathrm{mg}, 1.84 \mathrm{mmol})$ gave $\mathbf{1 b} \cdot \mathrm{PF}_{6}(382 \mathrm{mg}, 72 \%)$ as a cream powder. Found: C, 50.0; $\mathrm{H}, 3.9 ; \mathrm{N}, 0.8 . \mathrm{C}_{82} \mathrm{H}_{74} \mathrm{NF}_{6} \mathrm{OP}_{5} \mathrm{PdPt}_{2} \mathrm{~S}_{2}\left(\mathrm{M}_{\mathrm{r}} 1919\right)$ requires $\mathrm{C}, 51.3 ; \mathrm{H}, 3.9 ; \mathrm{N}, 0.7 \%$. ESI MS, [1b] ${ }^{+} m / z 1773 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR, $\delta 18.2\left(m,{ }^{1} J_{\mathrm{PtP}} 3112\right) .{ }^{1} \mathrm{H}$ NMR, δ 7.37-6.46 (m, aryl-H), $3.82\left(s, \mathrm{CH}_{2}\right), 3.39\left(s, \mathrm{OCH}_{3}\right)$ and $2.29\left(s, \mathrm{NMe}_{2}\right)$.

Synthesis of $\left[\mathrm{Pt}_{2}(\mu-S)_{2}\left(\mathrm{PPh}_{3}\right)_{4} \mathbf{P d}\left(\boldsymbol{\eta}^{2}-\mathrm{C}_{6} \mathbf{H}_{4} \mathbf{C H M e N M e} \mathbf{2}_{2}-C, N\right)\right] \mathrm{PF}_{6} \mathbf{1 c} \cdot \mathrm{PF}_{6}$

Following a similar procedure for 1a, $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right](416 \mathrm{mg}, 0.277 \mathrm{mmol})$ and (S)-$(+)-\left[\mathrm{PdCl}\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CHMeNMe} 2-\mathrm{C}, N\right)\right]_{2}(85 \mathrm{mg}, 0.147 \mathrm{mmol})$ in 30 mL methanol, with $\mathrm{NH}_{4} \mathrm{PF}_{6}(300 \mathrm{mg}, 1.84 \mathrm{mmol})$ gave $\mathbf{1 c} \cdot \mathrm{PF}_{6}(384 \mathrm{mg}, 73 \%)$ as a cream powder. Found: C, 51.4; H 4.0; $\mathrm{N}, 0.7 . \mathrm{C}_{82} \mathrm{H}_{74} \mathrm{NF}_{6} \mathrm{P}_{5} \mathrm{PdPt}_{2} \mathrm{~S}_{2}\left(\mathrm{M}_{\mathrm{r}} 1903\right)$ requires $\mathrm{C}, 51.8 ; \mathrm{H}, 3.9 ; \mathrm{N}, 0.7 \%$. ESI MS, [1c $]^{+} m / z 1757 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR, $\delta 20.2\left(m,{ }^{1} J_{\mathrm{PtP}} 3172\right.$ and 3115) and 17.5 (m, $\left.{ }^{1} J \mathrm{PtP} 3091\right) .{ }^{1} \mathrm{H}$ NMR, $\delta 7.38-5.68$ (m, aryl-H), 3.55 (q, CHMe, $J_{\mathrm{HH}} 6.3$), $2.67(s, \mathrm{NMe})$, $2.01(s, \mathrm{NMe})$, and $1.71\left(d, \mathrm{CHMe}, J_{\mathrm{HH}} 6.3\right)$.

Synthesis of $\left[\mathrm{Pt}_{2}(\mu-S)_{2}\left(\mathrm{PPh}_{3}\right)_{4} \mathbf{P d}\left(\eta^{2}-\mathrm{C}_{6} \mathbf{H}_{4} \mathrm{C}_{3} \mathbf{H}_{5} \mathbf{N}_{2}-C, N\right)\right] \mathrm{PF}_{6} \mathbf{2} \cdot \mathbf{P F}_{6}$

$\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right](98 \mathrm{mg}, 0.0652 \mathrm{mmol})$ and $\left[\mathrm{PdCl}\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{2}-\mathrm{C}, N\right)\right]_{2}(37 \mathrm{mg}$, $0.0653 \mathrm{mmol})$ were stirred in methanol $(30 \mathrm{~mL})$ at room temperature for 24 h . Insoluble material was removed by filtration through Celite and washed successively with methanol until the washing were colourless. The washings and filtrate were combined to give a clear red solution. $\mathrm{NH}_{4} \mathrm{PF}_{6}(15 \mathrm{mg}, 0.092 \mathrm{mmol})$ was added and the resulting suspension stirred for a further 30 min . Water (20 mL) was added to complete precipitation of the brick red powder, which was filtered, washed with water $(2 \times 5 \mathrm{ml})$, methanol ($2 \times 5 \mathrm{~mL}$) and diethyl ether ($2 \times 5 \mathrm{~mL}$) and dried in vacuo. Recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ diethylether gave $2 \cdot \mathrm{PF}_{6}$ as a brown powder of the dichloromethane solvate ($84 \mathrm{mg}, 62 \%$). Found: $\mathrm{C}, 48.0 ; \mathrm{H}, 3.7 ; \mathrm{N}, 2.2 . \mathrm{C}_{81} \mathrm{H}_{69} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{P}_{5} \mathrm{PdPt}_{2} \mathrm{~S}_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{M}_{\mathrm{r}} 2070\right)$ requires C, 48.2; H, 3.6; N, 1.4\%. ESI MS, [2] ${ }^{+} m / z 1754 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR, $\delta 19.2\left(s,{ }^{1} J_{\mathrm{PtP}}\right.$ 3116). ${ }^{1} \mathrm{H}$ NMR, $\delta 8.22\left(d, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{4,3} 7.3, \mathrm{H}-4\right), 7.55\left(t, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{3,2 / 4} 7.4, \mathrm{H}-3\right), 7.34-6.96(\mathrm{~m}$, $\left.60 \mathrm{H}, \mathrm{PPh}_{3}\right), 6.77\left(t, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{2,1 / 3} 7.4, \mathrm{H}-2\right), 6.10\left(d, 1 \mathrm{H},{ }^{3} \mathrm{~J}_{1,2} 7.3, \mathrm{H}-1\right), 5.69(s, \mathrm{NH}), 3.73(t$,
$\left.2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{B}, \mathrm{A}} 9.4, \mathrm{CH}_{2 \mathrm{~B}}\right)$, and $3.04\left(t, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{A}, \mathrm{B}} 9.4, \mathrm{CH}_{2 \mathrm{~A}}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}, \delta$ 134.9-128(m, aryl-C), $56.4\left(d, \mathrm{CH}_{2 \mathrm{~B}}\right)$, and $43.5\left(d, \mathrm{CH}_{2 \mathrm{~A}}\right)$.

NMR numbering scheme, $\mathrm{S}-\mathrm{S}=\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right]$:

Synthesis of $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{\mathbf{2}}\left(\mathrm{PPh}_{3}\right)_{4} \mathbf{P d}\left(\boldsymbol{\eta}^{2}-\mathrm{C}_{6} \mathbf{H}_{4} \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-\mathrm{C}, \mathrm{N}\right)\right] \mathrm{PF}_{6} \mathbf{3} \cdot \mathrm{PF}_{6}$

$\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right](100 \mathrm{mg}, 0.066 \mathrm{mmol})$ and $\left[\mathrm{PdCl}(2 \text {-benzylpyridyl) }]_{2}(44 \mathrm{mg}, 0.066\right.$ $\mathrm{mmol})$ were stirred in methanol $(30 \mathrm{~mL})$ at room temperature for 24 h to give a clear yellow solution. $\mathrm{NH}_{4} \mathrm{PF}_{6}(20 \mathrm{mg}, 0.123 \mathrm{mmol})$ was added and the suspension stirred for a further 1 h resulting in the formation of a yellow-brown precipitate, which was filtered and washed successively with water ($2 \times 10 \mathrm{~mL}$), methanol ($2 \times 5 \mathrm{~mL}$), and diethyl ether $(10 \mathrm{~mL})$ and dried under vacuum giving $3 \cdot \mathrm{PF}_{6}(104 \mathrm{mg}, 81 \%)$. Found: C, $52.0 ; \mathrm{H}, 3.7 ; \mathrm{N}$, 0.8. $\mathrm{C}_{84} \mathrm{H}_{90} \mathrm{~F}_{6} \mathrm{NP}_{5} \mathrm{PdPt}_{2} \mathrm{~S}_{2}\left(\mathrm{M}_{\mathrm{r}}\right.$ 1943) requires C, 51.9; H, 4.7; $\mathrm{N}, 0.7 \%$. ESI MS, $[3]^{+} \mathrm{m} / \mathrm{z}$ 1774. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}, \delta 18.8\left(m,{ }^{1} J_{\mathrm{PtP}} 3106\right) .{ }^{1} \mathrm{H}$ NMR, $\delta 7.71\left(t, 1 \mathrm{H},{ }^{3} J_{2,1 / 3} 7.3, \mathrm{H}-2\right), 7.51$ $\left(d, 1 \mathrm{H},{ }^{3} J_{1,2} 7.7, \mathrm{H}-1\right), 7.32-6.98\left(m, 60 \mathrm{H}, \mathrm{PPh}_{3}\right), 7.18\left(d, 1 \mathrm{H},{ }^{3} J_{7,8} 7.2, \mathrm{H}-7\right), 7.14(d, 1 \mathrm{H}$, $\left.{ }^{3} J_{4,3} 4.7, \mathrm{H}-4\right), 6.91\left(t, 1 \mathrm{H},{ }^{3} J_{8,7 / 9} 7.2, \mathrm{H}-8\right), 6.69\left(t, 1 \mathrm{H},{ }^{3} J_{3,2 / 4} 6.2, \mathrm{H}-3\right), 6.44\left(t, 1 \mathrm{H},{ }^{3} J_{9,8 / 10}\right.$ 7.0, H-9), 5.98 ($\left.d, 1 \mathrm{H},{ }^{3} J_{10,9} 7.2, \mathrm{H}-10\right)$, and $4.39\left(s, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$.

NMR numbering scheme, $\mathrm{S}-\mathrm{S}=\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right]$:

Synthesis of $\left[\mathrm{Pt}_{2}(\mu-S)_{2}\left(\mathrm{PPh}_{3}\right)_{4} \mathbf{P d}\left(\eta^{2}-\mathrm{C}_{6} \mathbf{H}_{4} \mathrm{PPh}_{2}=\mathbf{N P h}-C, N\right)\right] \mathrm{PF}_{6} 4 \cdot \mathrm{PF}_{6}$

$\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right](100 \mathrm{mg}, 0.066 \mathrm{mmol})$ and $\left[\mathrm{Pd}(\mathrm{OAc})\left(\eta^{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{PPh}_{2}=\mathrm{NPh}-C, N\right)\right]_{2}(68.3$ $\mathrm{mg}, 0.066 \mathrm{mmol})$ were stirred in methanol $(30 \mathrm{~mL})$ at room temperature for 24 h . The resulting orange solution was filtered through Celite and washed until the washings were colourless, to give a clear orange solution. $\mathrm{NH}_{4} \mathrm{PF}_{6}(18 \mathrm{mg}, 0.110 \mathrm{mmol})$ was added and the suspension stirred for a further 1 h resulting in the formation of a brown precipitate, which was filtered and washed successively with water ($2 \times 10 \mathrm{~mL}$), methanol (2×5 $\mathrm{mL})$, and diethyl ether (10 mL) and dried under vacuum giving $4 \cdot \mathrm{PF}_{6}$ as yellow-brown plates ($90 \mathrm{mg}, 65 \%$). Found: C, 54.2; H, 4.1; N, 1.2. $\mathrm{C}_{96} \mathrm{H}_{79} \mathrm{~F}_{6} \mathrm{NP}_{6} \operatorname{PdPtS}_{2}\left(\mathrm{M}_{\mathrm{r}}\right.$ 2107) requires C, 54.7; H, 3.8; N, 0.7\%. ESI MS, [4] ${ }^{+} m / z ~ 1962 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR, $\delta 43.2(s$, $\left.\mathrm{N}=\mathrm{PPh}_{2}\right), 18.3\left(m,{ }^{1} J_{\mathrm{PtP}} 3073\right), 16.4\left(m,{ }^{1} J_{\mathrm{PtP}} 3152\right)$.

Synthesis of $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4} \mathbf{P d}\left(\eta^{3}-\mathrm{C}_{3} \mathbf{H}_{5}\right)\right] \mathrm{PF}_{6} \mathbf{5} \cdot \mathrm{PF}_{6}$

$\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right](100 \mathrm{mg}, 0.066 \mathrm{mmol})$ and $\left[\mathrm{PdCl}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]_{2}(25 \mathrm{mg}, 0.066 \mathrm{mmol})$ were stirred in methanol $(30 \mathrm{~mL})$ at room temperature for $3 \mathrm{~h} . \mathrm{NH}_{4} \mathrm{PF}_{6}(17 \mathrm{mg}, 0.104$ mmol) was added and the suspension stirred for a further 1 h , after which time water (20
mL) was added, resulting in the formation of a pinkish precipitate, which was filtered through a fine glass frit, washed successively with water $(2 \times 10 \mathrm{~mL})$, methanol $(2 \times 5$ $\mathrm{mL})$, and diethyl ether (10 mL) and dried under vacuum giving $5 \cdot \mathrm{PF}_{6}$ as pale pink powder (56 mg, 47\%). Found: C, 49.1; H, 3.7. $\mathrm{C}_{75} \mathrm{H}_{65} \mathrm{~F}_{6} \mathrm{P}_{5} \mathrm{PdPt}_{2} \mathrm{~S}_{2}\left(\mathrm{M}_{\mathrm{r}} 1796\right)$ requires $\mathrm{C}, 50.2 ; \mathrm{H}$, 3.7\%. ESI MS, $[5]^{+} m / z 1650 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR, $\delta 19.6\left(s,{ }^{1} J_{\mathrm{PtP}} 3121\right) .{ }^{1} \mathrm{H}$ NMR (selected signals only), $\delta 5.17\left(q n, 1 \mathrm{H},{ }^{3} J_{\mathrm{B}, \mathrm{A} / \mathrm{C}} 4, \mathrm{CH}\right), 3.54\left(d, 2 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{A}, \mathrm{B}} 7, \operatorname{syn}-\mathrm{CH}_{2}\right), 2.70(\mathrm{~d}, 2 \mathrm{H}$, ${ }^{3} J_{\mathrm{C}, \mathrm{B}} 12$, anti- $\left.-\mathrm{CH}_{2}\right)$.

Synthesis of $\left[\mathrm{Pt}_{\mathbf{2}}(\mu-\mathrm{S})_{\mathbf{2}}\left(\mathbf{P P h}_{3}\right)_{\mathbf{4}} \mathbf{P d}\left(\mathrm{C}_{5} \mathbf{H}_{\mathbf{4}} \mathbf{N}\right)\left(\mathbf{P M e P h}_{2}\right)\right] \mathrm{PF}_{6} \mathbf{6} \cdot \mathbf{P F}_{6}$

$\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right](100 \mathrm{mg}, 0.066 \mathrm{mmol})$ and trans-[PdBr$\left.\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\left(\mathrm{PMePh}_{2}\right)_{2}\right](44 \mathrm{mg}$, $0.066 \mathrm{mmol})$ were stirred in methanol $(30 \mathrm{~mL})$ at room temperature for 12 h . The resulting yellow solution was filtered through Celite and the filter washed with methanol until the washings were colourless, resulting in a clear yellow solution. ESI MS analysis of the solution showed the $[6+\mathrm{H}]^{2+}$ ion of the product at $m / z ~ 944.5 . \mathrm{NH}_{4} \mathrm{PF}_{6}(20 \mathrm{mg}$, 0.123 mmol) was added and the suspension stirred for a further 1 h , after which time water (20 mL) was added, resulting in the formation of a light yellow precipitate, which was filtered and washed successively with water $(2 \times 10 \mathrm{~mL})$, methanol ($2 \times 5 \mathrm{~mL}$), and diethyl ether $(10 \mathrm{~mL})$ and dried under vacuum giving $\mathbf{6} \cdot \mathrm{PF}_{6}$ as an off-white powder (109 $\mathrm{mg}, 80 \%)$. Found: C, 52.9; H, 3.7; N, 0.8. $\mathrm{C}_{90} \mathrm{H}_{77} \mathrm{~F}_{6} \mathrm{NP}_{6} \mathrm{PdPt}_{2} \mathrm{~S}_{2}\left(\mathrm{M}_{\mathrm{r}}\right.$ 2033) requires C, 53.2; H, 3.8; N, 0.7\%. ESI MS, $[6+\mathrm{H}]^{2+} m / z ~ 944.5 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR, $\delta 21.4\left(\mathrm{~s}, \mathrm{PMePh}_{2}\right)$, $18.4\left(m,{ }^{1} J_{\operatorname{PtP}} 3204\right), 16.5\left(m,{ }^{1} J_{\mathrm{PtP}} 3140\right)$.

Synthesis of $\left[\mathbf{P t}_{\mathbf{2}}(\boldsymbol{\mu}-\mathbf{S})_{\mathbf{2}}\left(\mathbf{P P h}_{\mathbf{3}}\right)_{\mathbf{4}} \mathbf{P d P h}\left(\mathbf{P P h}_{\mathbf{3}}\right)\right] \mathbf{P F}_{\mathbf{6}} \mathbf{7} \cdot \mathbf{P F}_{\mathbf{6}}$

$\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right](259 \mathrm{mg}, 0.172 \mathrm{mmol})$ and trans $-\left[\mathrm{PdBrPh}\left(\mathrm{PPh}_{3}\right)_{2}\right](144 \mathrm{mg}, 0.183$ $\mathrm{mmol})$ were stirred in methanol $(40 \mathrm{~mL})$ at room temperature for 24 h . The mixture was filtered giving a clear yellow solution. $\mathrm{NH}_{4} \mathrm{PF}_{6}(300 \mathrm{mg}, 1.84 \mathrm{mmol})$ was added to the filtrate giving a cream precipitate. After 10 min . water (20 mL) was added to assist precipitation. The product was filtered, and washed successively with water $(20 \mathrm{~mL})$, and diethyl ether ($2 \times 10 \mathrm{~mL}$) and dried under vacuum giving $7 \cdot \mathrm{PF}_{6}$ as a cream powder (250 $\mathrm{mg}, 69 \%)$. Found: C, 54.8; H, 3.8. $\mathrm{C}_{96} \mathrm{H}_{80} \mathrm{~F}_{6} \mathrm{P}_{6} \mathrm{PdPt}_{2} \mathrm{~S}_{2}\left(\mathrm{M}_{\mathrm{r}}\right.$ 2094) requires C , 55.1; H , 3.9%. ESI MS, [7] ${ }^{+} m / z 1948 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR, $\delta 21.4\left(m, \mathrm{Pd}^{2}-\mathrm{PPh}_{3}\right), 18.4\left(m,{ }^{1} J_{\mathrm{PtP}} 3081\right)$, and $16.4\left(m,{ }^{1} J_{\mathrm{PtP}} 3121\right)$.

Synthesis of $\left[\mathrm{Pt}_{\mathbf{2}}(\mu-\mathbf{S})_{\mathbf{2}}\left(\mathrm{PPh}_{3}\right)_{\mathbf{4}} \mathbf{P t H}\left(\mathrm{PPh}_{3}\right)\right] \mathrm{PF}_{6} \mathbf{8} \cdot \mathrm{PF}_{6}$

$\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4}\right](423 \mathrm{mg}, 0.281 \mathrm{mmol})$ and trans $-\left[\mathrm{PtHCl}\left(\mathrm{PPh}_{3}\right)_{2}\right](120 \mathrm{mg}, 0.159$ mmol) were stirred and refluxed in methanol (30 mL) for 3 h , giving a yellow suspension. The mixture was filtered and excess $\mathrm{NH}_{4} \mathrm{PF}_{6}(300 \mathrm{mg}, 1.84 \mathrm{mmol})$ was added to the filtrate giving a cream precipitate. This was filtered, washed with water (2×10 mL) and petroleum spirits ($2 \times 10 \mathrm{~mL}$) and dried under vacuum to give $\mathbf{8} \cdot \mathrm{PF}_{6}$ as a cream powder (204 mg, 34\%). Found: C, 50.6; H, 3.6. $\mathrm{C}_{90} \mathrm{H}_{76} \mathrm{~F}_{6} \mathrm{P}_{6} \mathrm{Pt}_{3} \mathrm{~S}_{2}\left(\mathrm{M}_{\mathrm{r}} 2107\right)$ requires C, 51.3; H, 3.6\%. ESI MS, [8] ${ }^{+} m / z 1961 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR, $\delta 16.6$ ($m, \mathrm{PtHPPh}_{3},{ }^{1} J_{\mathrm{PtP}} 4094$), $15.2\left(m,{ }^{1} J_{\mathrm{PtP}} 3130\right)$ and $14.1\left(m,{ }^{1} J_{\mathrm{PtP}} 3209\right) .{ }^{1} \mathrm{H}$ NMR, $\delta 7.21-6.83(m, \mathrm{Ph})$ and -12.50 ($\left.d t,{ }^{1} J_{\mathrm{PtH}} 1295\right)$.

X-ray structure determinations

X-ray data were collected on a Bruker Apex II CCD diffractometer, and corrected for absorption by a multi-scan procedure (SADABS). ${ }^{37}$ Structures were solved and refined using the SHELX programs. ${ }^{38}$ Crystal and refinement data are summarised in Table 3.
$\left[\mathrm{Pt}_{2}(\mu-S)_{2}\left(\mathrm{PPh}_{3}\right)_{4} P d P h\left(\mathrm{PPh}_{3}\right)\right] P F_{6}\left(7 \cdot P F_{6} \cdot 0.75 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecules in the lattice are disordered over two partially occupied sites.
$\left[P t_{2}(\mu-S)_{2}\left(P P h_{3}\right)_{4} P t H\left(P P h_{3}\right)\right] P F_{6}\left(\boldsymbol{8} \cdot P F_{6}\right)$
Only thin plate crystals were obtained, giving a weak data set and a difficult absorption correction. Agreement indices are therefore higher than usual, and some appreciable, though chemically insignificant, residual peaks remained. The hydride on $\operatorname{Pt}(3)$ could not be located in the analysis, but its position trans to $S(2)$ could be readily inferred.

Supplementary data

Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre, CCDC Nos. 769419 (7) and 769420 (8). Copies of this information can be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: +44-1223-336033; e-mail deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

Acknowledgements

We thank the University of Waikato (UW) and the National University of Singapore (NUS) for financial support of this work. WH and BCW thank the Asia:NZ Foundation for a grant to visit NUS, and Pat Gread for technical support with the mass spectrometry instrumentation. Dr. Jan Wikaira (University of Canterbury) is acknowledged for collection of the X-ray data sets, and Oguejiofo Ujam is thanked for recording some of the NMR spectra.

Table 1 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{PdPh}\left(\mathrm{PPh}_{3}\right)\right] \mathrm{PF}_{6} 7 \cdot \mathrm{PF}_{6}$

$\operatorname{Pt}(1)-\mathrm{P}(2)$	$2.2804(8)$	$\mathrm{Pt}(1)-\mathrm{P}(1)$	$2.3003(9)$
$\operatorname{Pt}(1)-\mathrm{S}(2)$	$2.3472(8)$	$\mathrm{Pt}(1)-\mathrm{S}(1)$	$2.3560(8)$
$\mathrm{Pt}(2)-\mathrm{P}(3)$	$2.2760(9)$	$\mathrm{Pt}(2)-\mathrm{P}(4)$	$2.2871(9)$
$\operatorname{Pt}(2)-\mathrm{S}(1)$	$2.3482(8)$	$\mathrm{Pt}(2)-\mathrm{S}(2)$	$2.3620(8)$
$\operatorname{Pd}(1)-\mathrm{C}(1)$	$2.034(3)$	$\mathrm{Pd}(1)-\mathrm{P}(5)$	$2.2713(9)$
$\operatorname{Pd}(1)-\mathrm{S}(1)$	$2.3531(9)$	$\mathrm{Pd}(1)-\mathrm{S}(2)$	$2.4157(8)$
$\mathrm{P}(2)-\mathrm{Pt}(1)-\mathrm{P}(1)$	$99.54(3)$	$\mathrm{S}(2)-\mathrm{Pt}(1)-\mathrm{S}(1)$	$80.01(3)$
$\mathrm{P}(3)-\mathrm{Pt}(2)-\mathrm{P}(4)$	$97.70(3)$	$\mathrm{S}(1)-\mathrm{Pt}(2)-\mathrm{S}(2)$	$79.86(3)$
$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{P}(5)$	$87.17(10)$	$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{S}(1)$	$89.78(10)$
$\mathrm{P}(5)-\mathrm{Pd}(1)-\mathrm{S}(2)$	$105.30(3)$	$\mathrm{S}(1)-\mathrm{Pd}(1)-\mathrm{S}(2)$	$78.68(3)$

Table 2 Selected bond lengths (\AA) and angles $\left(^{\circ}\right)$ for $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{PtH}\left(\mathrm{PPh}_{3}\right)\right] \mathrm{PF}_{6} \mathbf{8} \cdot \mathrm{PF}_{6}$

$\operatorname{Pt}(1)-\mathrm{P}(4)$	$2.270(4)$	$\mathrm{Pt}(1)-\mathrm{P}(3)$	$2.284(4)$
$\operatorname{Pt}(1)-\mathrm{S}(2)$	$2.344(4)$	$\mathrm{Pt}(1)-\mathrm{S}(1)$	$2.368(3)$
$\operatorname{Pt}(2)-\mathrm{P}(2)$	$2.275(3)$	$\mathrm{Pt}(2)-\mathrm{P}(1)$	$2.278(4)$
$\operatorname{Pt}(2)-\mathrm{S}(1)$	$2.351(4)$	$\mathrm{Pt}(2)-\mathrm{S}(2)$	$2.380(3)$
$\operatorname{Pt}(3)-\mathrm{P}(5)$	$2.219(4)$	$\mathrm{Pt}(3)-\mathrm{S}(1)$	$2.350(4)$
$\mathrm{Pt}(3)-\mathrm{S}(2)$	$2.427(4)$		
$\mathrm{P}(4)-\mathrm{Pt}(1)-\mathrm{P}(3)$	$99.68(14)$	$\mathrm{S}(2)-\mathrm{Pt}(1)-\mathrm{S}(1)$	$79.29(12)$
$\mathrm{P}(2)-\mathrm{Pt}(2)-\mathrm{P}(1)$	$99.60(13)$	$\mathrm{P}(5)-\mathrm{Pt}(3)-\mathrm{S}(2)$	$78.92(12)$
$\mathrm{P}(5)-\mathrm{Pt}(3)-\mathrm{S}(1)$	$174.35(13)$	$106.07(12)$	
$\mathrm{S}(1)-\mathrm{Pt}(3)-\mathrm{S}(2)$	$78.00(12)$		

Table 3 Crystal data and refinement details for $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{PdPh}\left(\mathrm{PPh}_{3}\right)\right] \mathrm{PF}_{6} 7 \cdot \mathrm{PF}_{6}$ and $\left[\mathrm{Pt}_{2}(\mu-\right.$ $\left.\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{PtH}\left(\mathrm{PPh}_{3}\right)\right] \mathrm{PF}_{6} \mathbf{8} \cdot \mathrm{PF}_{6}$

	$7 \cdot \mathrm{PF}_{6} \cdot 0.75 \mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathbf{8} \cdot \mathrm{PF}_{6}$
Molecular formula	$\mathrm{C}_{96.75} \mathrm{H}_{81.5} \mathrm{Cl}_{1.5} \mathrm{~F}_{6} \mathrm{P}_{6} \mathrm{PdPt}_{2} \mathrm{~S}_{2}$	$\mathrm{C}_{90} \mathrm{H}_{76} \mathrm{~F}_{6} \mathrm{P}_{6} \mathrm{Pt}_{3} \mathrm{~S}_{2}$
Formula weight	2157.81	2106.72
Temperature (K)	93(2)	93(2)
Wavelength (\AA)	0.71073	0.71073
Crystal system	Monoclinic	Orthorhombic
Space group	C2/c	Pbca
Unit cell dimensions		
$a(\AA)$	49.9819(19)	23.978(4)
$b(\AA)$	15.1532(6)	25.180(2)
$c(\AA)$	26.5295(10)	27.590(4)
$\beta\left({ }^{\circ}\right)$	119.597(2)	90
$V\left(\AA^{3}\right)$	17471.3(12)	16658(4)
Z	8	8
$\mathrm{D}_{\text {(calc) }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.641	1.680
$\mu\left(\mathrm{Mo}-\mathrm{K} \alpha\right.$) (mm^{-1})	3.662	5.250
$F(000)$	8524	8208
Crystal size (mm)	$0.26 \times 0.20 \times 0.13$	$0.50 \times 0.40 \times 0.04$
θ range for data collection (${ }^{\circ}$	2.70 to 31.95	2.02 to 26.00
Reflections collected	118062	67979
Independent reflections	27546	15760
$\mathrm{R}_{\text {(int) }}$	0.0503	0.0802
Max and min. transmission	0.6475 and 0.4494	0.8175 and 0.1788
Data/restraints/parameters	27546 / 0 / 1069	15760 / 0 / 928
GOF on F^{2}	1.020	1.050
Final R indices		
$R_{1}[I>2 \sigma(I)]$	0.0330	0.0641
R_{1} (all data)	0.0605	0.1353
$\mathrm{w} R_{2}[I>2 \sigma(I)]$	0.0743	0.1559
$\mathrm{w} R_{2}$ (all data)	0.0857	0.2095
Largest peak and	2.119	3.510
hole (e \AA^{-3})	-1.539	-2.465

1a; $R_{1}=R_{2}=H$
1b; $R_{1}=H, R_{2}=O M e$
1c; $R_{1}=M e, R_{2}=H$

Figure 1 Positive ion ESI mass spectra of complex $\mathbf{1 c} \cdot \mathrm{PF}_{6}$ at cone voltages of 50,90 and 100 V ; m / z values of major ions are given in italics.

Figure 2 Molecular structure of the cation of $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{PdPh}_{\left.\left(\mathrm{PPh}_{3}\right)\right]}\right] \mathrm{PF}_{6}\left(7 \cdot \mathrm{PF}_{6}\right)$; phenyl rings of the platinum-bonded PPh_{3} ligands have been omitted for clarity.

Figure 3 Molecular structure of the cation of $\left[\mathrm{Pt}_{2}(\mu-\mathrm{S})_{2}\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{PtH}\left(\mathrm{PPh}_{3}\right)\right] \mathrm{PF}_{6}\left(8 \cdot \mathrm{PF}_{6}\right)$

References

${ }^{1}$ S.-W. A. Fong and T. S. A. Hor, J. Chem. Soc. Dalton Trans. (1999) 3103.
${ }^{2}$ C. E. Briant, T. S. A. Hor, N. D. Howells and D. M. P. Mingos, J. Chem. Soc., Chem. Commun. (1983) 1118.
${ }^{3}$ B.-H. Aw, K. K. Looh, H. S. O. Chan, K. L. Tan and T. S. A. Hor, J. Chem. Soc., Dalton Trans. (1994) 3177.
${ }^{4}$ Z. Li, H. Liu, K. F. Mok, A. S. Batsanov, J. A. K. Howard and T. S. A. Hor, J. Organomet. Chem. 575 (1999) 223.
${ }^{5}$ M. Capdevila, Y. Carrasco, W. Clegg, R. A. Coxall, P. González-Duarte, A. Lledós and J. A. Ramírez, J. Chem. Soc., Dalton Trans. (1999) 3103.
${ }^{6}$ S. Narayan and V. K. Jain, Transition Met. Chem. 25 (2000) 400.
${ }^{7}$ J. Ruiz, V. Rodríguez, A. Pérez, G. López and D. Bautista, J. Organomet. Chem. 689 (2004) 2080.
${ }^{8}$ S.-W. A. Fong, T. S. A. Hor, S. M. Devoy, B. A. Waugh, B. K. Nicholson, and W. Henderson, Inorg. Chim. Acta 357 (2004) 2081.
${ }^{9}$ R. Mas-Ballesté, P. A. Champkin, W. Clegg, P. González-Duarte, A. Lledós and G. Ujaque, Organometallics 23 (2004) 2522.
${ }^{10}$ Mass Spectrometry of Inorganic, Coordination and Organometallic Compounds -Tools-Techniques-Tips, W. Henderson and J. S. McIndoe, John Wiley \& Sons, 2005.
${ }^{11}$ Z. Li, S.-W. A. Fong, J. S. L. Yeo, W. Henderson, K. F. Mok, and T. S. A. Hor, in Modern coordination chemistry: The contributions of Joseph Chatt, Royal Society of Chemistry, Cambridge, 2002, 355.
${ }^{12}$ S. L. Rose, W. Henderson, B. K. Nicholson and T. S. A. Hor, Inorg. Chim. Acta 362 (2009) 5237.
${ }^{13}$ S.-W. A. Fong, K. Evans, W. Henderson, B. K. Nicholson and T. S. A. Hor, Inorg. Chim. Acta 363 (2010) 301.
${ }^{14}$ B. J. Deadman, W. Henderson, B. K. Nicholson, L. E. Petchell, S. L. Rose and T. S. A. Hor, Inorg. Chim. Acta 363 (2010) 637.
${ }^{15}$ S.-W. A. Fong, J. J. Vittal, W. Henderson, T. S. A. Hor A. G. Oliver, and C. E. F. Rickard, Chem. Comm. (2001) 421.
${ }^{16}$ S.-W. A. Fong, W. T. Yap, J. J. Vittal, T. S. A. Hor, W. Henderson, A. G. Oliver, and C. E. F. Rickard, J. Chem. Soc., Dalton Trans. (2001) 1986.
${ }^{17}$ M. Capdevila, W. Clegg, R. A. Coxall, P. González-Duarte, M. Hamidi, A. Lledós and G. Ujaque, Inorg. Chem. Commun. 1 (1998) 466.
${ }^{18}$ J. S. L. Yeo, G. Li, W.-H. Yip, W. Henderson, T. C. W. Mak and T. S. A. Hor, J. Chem. Soc., Dalton Trans. (1999) 435.
${ }^{19}$ K. Matsumoto, K. Takahashi, S. Hada and Y. Nakao, Polyhedron 18 (1999) 1811.
${ }^{20}$ B.-C. Tzeng, S.-C. Chan, M. C. W. Chan, C.-M. Che, K.-K. Cheung and S.-M. Peng, Inorg. Chem. 40 (2001) 6699.
${ }^{21}$ W. Henderson, S. Thwaite, B. K. Nicholson and T. S. A. Hor, Eur. J. Inorg. Chem. (2008) 5119.
${ }^{22}$ P. E. Garrou, Chem. Rev. 81 (1981) 229.
${ }^{23}$ K. Hiraki, Y. Fuchita and K. Takechi, Inorg. Chem. 20 (1981) 4316.
${ }^{24}$ C. A. Ghilardi, S. Midollini, A. Orlandini, G. Scapacci and A. Vacca, J. Organomet. Chem. 461 (1993) C4.
${ }^{25}$ T. G. Appleton, H. C. Clark and L. E. Manzer, Coord. Chem. Rev. 10 (1973) 335.
${ }^{26}$ C. Esterhuysen, G. J. Kruger, G. Blewett and H. G. Raubenheimer, Inorg. Chim. Acta 359 (2006) 609.
${ }^{27}$ L. J. Arnold, J. Chem. Educ. 69 (1992) 811.
${ }^{28}$ R. Ugo, G. La Monica, S. Cenini, A. Segre and F. Conti, J. Chem. Soc. A (1971) 522.
${ }^{29}$ A. D. Ryabov, V. A. Polyakov and A. K. Yatsimirsky, J. Chem. Soc., Perkin Trans. II (1983) 1503.
${ }^{30}$ A. C. Cope and E. C. Friedrich, J. Am. Chem. Soc. 90 (1968) 909.
${ }^{31}$ C. Navarro-Ranninger, F. Zamora, I. López-Solera, A. Monge and J. R. Masaguer, J. Organomet. Chem. 506 (1996) 149.
${ }^{32}$ B. T. Khan, K. M. Mohan, S. R. A. Khan, K. Venkatasubramanian and T. Satyanarayana, Polyhedron 15 (1996) 63.
${ }^{33}$ A. Mantovani and B. Crociani, J. Organomet. Chem. 236 (1982) C37.
${ }^{34}$ W. R. Moser, A. W. Wang and N. K. Kildahl, J. Am. Chem. Soc. 110 (1988) 2816.
${ }^{35}$ J. C. Bailar, Jr. and H. Itatani, Inorg. Chem. 4 (1965) 1618.
${ }^{36}$ J. Vicente, J.-A. Abad, R. Clemente, J. López-Serrano, M. C. R. De Arellano, P. G. Jones and D. Bautista, Organometallics 22 (2003) 4248.
${ }^{37}$ R. H. Blessing, Acta Cryst. Sect. A 51 (1995) 33.
${ }^{38}$ G. M. Sheldrick, Shelx-97-Programs for the Solution and Refinement of Crystal Structures, University of Göttingen, Germany, 1997.

