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Almost all research on superintegrable potentials concerns spaces of constant cur-
vature. In this paper we find by exhaustive calculation, all superintegrable poten-
tials in the four Darboux spaces of revolution that have at least two integrals of
motion quadratic in the momenta, in addition to the Hamiltonian. These are two-
dimensional spaces of nonconstant curvature. It turns out that all of these potentials
are equivalent to superintegrable potentials in complex Euclidean 2-space or on the
complex 2-sphere, via ‘‘coupling constant metamorphosis’’~or equivalently, via
Stäckel multiplier transformations!. We present a table of the results. ©2003
American Institute of Physics.@DOI: 10.1063/1.1619580#

I. INTRODUCTION

In a previous paper1 we have studied superintegrability in a two-dimensional space of n
constant curvature, in particular one of the so-called Darboux spaces, given by Koenigs.2 In this
paper we study the remaining three spaces of nonconstant curvature from the point of v
superintegrability. This involves the addition of a potential to each of the spaces given by Ko
We recall that classical superintegrability relating to a HamiltonianH(x1 ,...,xn ,p1 ,...,pn)
5H(x,p) implies the existence of 2n21 globally defined constants of the motion. For the p
poses of this paper we restrict this definition to require that there exist 2n21 globally defined
functionally independent constants of the motionXi , i 51,...,2n21 that are quadratic in the
canonical momentapi . This clearly implies the relations

$H,X,%5(
i 51

n S ]X,

]xi

]H

]pi
2

]X,

]pi

]H

]xi
D50 , i 51,...,2n21 .

The concepts of integrability and superintegrability also have their analog in quantum
chanics. A superintegrable quantum mechanical system is described by 2n21 ~independent! quan-
tum observablesĤ5X̂1 ,X̂2 ,...,X̂2n21 that satisfy the commutation relations

@Ĥ,X̂i #5ĤX̂i2X̂i Ĥ50, i 51,...,2n21.

a!Electronic mail: e.kalnins@waikato.ac.nz
b!Electronic mail: jonathan@maths.unsw.edu.au
c!Electronic mail: miller@ima.umn.edu
d!Electronic mail: wintern@crm.umontreal.ca
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The analog of quadratic superintegrability in this case is that each of the quantum observa
a second order partial differential operator. Systematic studies of superintegrable system
been conducted in spaces of constant curvature in two dimensions.3–7

In this paper we solve the following problem. Given a Riemannian space in two dimen
with infinitesimal distance ds25( i , j 51

2 gi j (u)dui duj , andu5(u1,u2), the classical Hamiltonian
has the form

H5 (
i , j 51

2

gi j pipj1V~u!

and the corresponding Schro¨dinger equation is

ĤC5
1

Ag
]ui~Aggik]ukC!1V~u!C5EC,

whereAg5det(gij). Koenigs found all free HamiltoniansH5(gi j pipj admitting at least two extra
functionally independent constants of the motion of the form

L5 (
i , j 51

2

ai j ~u!pipj , ai j 5aji .

He obtained a number of families of solutions; in particular, spaces that admitted three
quadratic constants. There must then be a functional relation between these and, furtherm
each case there is a Killing vector, i.e., a functionm5( i 51

2 ai(u)pi that satisfies$H,m%50. One
of the three quadratic constants is a square of the Killing vectorm.

The problem we solve here is supplemental to that of Koenigs: Suppose we have a H
tonianH5(gi j pipj1V(u) that admits a Killing vector. We determine thepotentialsthat corre-
spond to superintegrability, i.e., potentials such that we can find at least two extra functio
independent quadratic constants of the form

L5 (
i , j 51

2

ai j ~u!pipj1l~u! .

A necessary condition that this be possible is that the Riemannian space be one of the fou
by Koenigs:

~1! ds25(x1y)dx dy,
~2! ds25(a/(x2y)2 1b)dx dy,
~3! ds25(ae2(x1y)/21be2x2y)dx dy,
~4! ds25 @a(e(x2y)/21e(y2x)/2)1b#/(e(x2y)/22e(y2x)/2)2 dx dy.

The first of these spaces, type one, orD1 , has been treated in detail in an earlier paper.1 Here
we treat the remaining three Darboux spaces in a similar and unified way. Sections II, III, a
are devoted to the spacesD2 , D3 , andD4 , respectively. In each space we follow the same patt

~1! We first consider a classical free particle system and give the free HamiltonianH0 , the Killing
vector K, and the two Killing tensorsX1 and X2 in a space with a conformally Euclidea
metric ~real or complex!. We choose coordinatesu andv in which the first order constant i
K5pv , henceu is an ignorable variable, not appearing in the metric or in the Hamilton

~2! We present an embedding of the two-dimensional Darboux space into a three-dimensio
space.

~3! We present a polynomial relation between the four integrals of motionH, K, X1 , andX2 , and
also the polynomial algebra generated by these integrals.
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~4! We consider the quantum mechanics of a free particle in the corresponding Darboux
i.e., write the corresponding Hamiltonian and integrals of motion as linear operators. We
establish that the relations between these operators are the same as those between the
quantities.

~5! We use the fact that the Killing vectorK generates a one-dimensional Lie transformat
group to classify all integrals of motion

l5aX11bX21cK2 ~1.1!

into conjugation classes. Each class gives rise to a coordinate system in which the Ham
Jacobi and Schro¨dinger equations allow the separation of variables. We construct these
rable coordinate systems explicitly and solve the corresponding separated equations~classical
and quantum!.

~6! By construction, the free classical and quantum systems in Darboux spaces are all qu
cally superintegrable: they have three functionally independent integrals of motion. We
duce potentials that do not destroy this superintegrability. Thus we present systematica
superintegrable classical and quantum systems of the form

H5H01V~u,v!, ~1.2!

whereH0 is the free Hamiltonian in the spaceD2 , D3 , or D4 . To obtain this result we make
use of the fact that to be quadratically superintegrable, a Hamiltonian in a Darboux spac
allow the separation of variables in at least two coordinate systems.

A separate section, Sec. V, is devoted to the relation between superintegrable syst
Darboux spaces and two-dimensional spaces of constant curvature.

II. DARBOUX SPACES OF TYPE TWO

A. The free particle and separating coordinate systems

If we allow rescaling of the variablesx and y, as well as the HamiltonianH then we can
always takeH to be of the form

H05
~x2y!2

~x2y!221
pxpy . ~2.1!

In the coordinatesx5 1
2 (v1 iu), y5 1

2 (v2 iu) this Hamiltonian becomes

H05
u2~pu

21pv
2!

u211
.

Associated with the Hamiltonian are three integrals of the free motion

K5pv , X15
2v~pv

22u2pu
2!

u211
12upupv , X25

~v22u4!pv
21u2~12v2!pu

2

u211
12uvpupv .

These three integrals satisfy the following polynomial algebra relations:

$K,X1%52~K22H0!, $K,X2%5X1 , $X1 ,X2%54KX2 . ~2.2!

They are functionally dependent via the relation

X1
224K2X214H0X224H0

250 . ~2.3!

The corresponding problem in quantum mechanics can be obtained via the usual quan
rules and symmetrization:
23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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Ĥ05
u2

u211
~]u

21]v
2!, K̂5]v , X̂15

2v
~u211!

~]v
22u2]u

2!12u]u]v1]v ,

X̂25
1

u211
~~v22u4!]v

21u2~12v2!]u
2!12uv]u]v1u]u1v]v2

1

4
,

where the constant in the last expression is taken for convenience. The commutation relati
identical with those of the corresponding classical algebra,

@K̂,X̂1#52~K̂22Ĥ0!, @K̂,X̂2#5X̂1 , @X̂1 ,X̂2#52$K̂,X̂2%.

Here $K̂,X̂2%5 1
2(K̂X̂21X̂2K̂). The operator relation~that exists in analogy with the functiona

relation in the classical case! is

X̂1
222$K̂2,X̂2%14Ĥ0X̂224Ĥ0

22Ĥ014K̂250.

The line element ds25(du21dv2)(u211)/u2 can be realized as a two-dimensional surfac
embedded in three dimensions by

X5
vAu211

u
, Y2T5

Au211

u
, Y1T52

~2u415u218v2!Au211

8u
2

3

8
arcsinhu ,

in which case,

ds25dX21dY22dT25
u211

u2 ~du21dv2! .

We wish to determine all the essentially different separable coordinate systems for th
classical or quantum particle. In order to do this we need to consider a general quadratic c
of the form l5aX11bX21cK2. Under the adjoint action of exp(aK), X1 and X2 transform
according to

X1→X112a~K22H0!, X2→X21aX11a2~K22H0!.

From these transformation formulas we see that ifbÞ0 we can always takel in the form l
5X21bK2. If b50 then there are two representatives possible:X1 or K2. We have the following
cases:

X21bK2 , X1 , K2 . ~2.4!

We now demonstrate the explicit coordinates for each of these representatives using m
of our previous paper.1

1. Coordinates associated with X 2¿bK 2

If we chooseb5b2, bÞ0 suitable coordinatesv, w are

u5b coshv cosw, v5b sinhv sinw , ~2.5!

the standard form of elliptical coordinates in the plane. The classical Hamiltonian has the

H05
pv

2 1pw
2

sec2 w2sech2 v1b2~cosh2 v2cos2 w!
.

The corresponding quadratic constant, expressed in these coordinates is
23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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X21b2K25
~sec2 w1b2 sin2 w!pv

2 1~sech2 v2b2 sinh2 v!pw
2

~sec2 w2sech2 v!1b2~cosh2 v2cos2 w!
.

The Hamilton–Jacobi equation is

S ]S

]v D 2

1S ]S

]w D 2

sec2 w2sech2 v1b2~cosh2 v2cos2 w!
5E ,

with solutions of the form

S~v,w!5
bAE

2 S E 1

V
A~V1b1!~V1b2!

V21
dV1E 1

F
A~b12F!~F2b2!

12F
dF D ,

where b11b252l/Eb2, b1b2521/b2, F5cos2 w, V5cosh2 v. The corresponding Schro¨-
dinger equation

~]w
21]v

2 !C

sec2 w2sech2 v1b2~cosh2 v2cos2 w!
5EC

has solutions of the form

C5Acosw coshv Sn
m( j )~ i sinhv,2 1

4Eb!Psn
m~sinw,2 1

4Eb! , j 51,2,

whereSn
m( j )(z,k) andPsn

m(t,k) are spheroidal functions8 andE5m22 1
4.

2. Coordinates associated with X 2

Here we use polar coordinates

u5r cosu , v5r sinu . ~2.6!

The classical Hamiltonian has the form

H05
r 2pr

21pu
2

r 21sec2 u

and the corresponding quadratic constant is

X25
r 2 sec2 u pr

22pu
2

r 21sec2 u
.

The Hamilton–Jacobi equation in these coordinates is

r 2S ]S

]r D 2

1S ]S

]u D 2

r 21sec2 u
5E ,

with solution
23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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S~r ,u!5AEr21l2Al arctanhAEr21l

l
2Al log~Al sinu1AE2l cos2 u!

1
1

2
AE arccoshS ~E1l!cos2 u22E

~E2l!cos2 u D .

The corresponding Schro¨dinger equation is

r 2
]2C

]r 2 1sinu
]

]u S 1

sinu

]C

]u D
r 21sec2 u

5EC ,

and has solutions of the form

C5Ar sinu C,1 1/2~A2E r !P,
m~cosu! , E5m22 1

4 ,

whereCn(z) is a Bessel function andP,
n(cosu) is an associated Legendre polynomial.8

3. Coordinates associated with X 1

A suitable choice of coordinates is

u5jh, v5 1
2 ~j22h2! . ~2.7!

The classical Hamiltonian in these coordinates has the form

H05
pj

21ph
2

j21h21
1

j2 1
1

h2

.

The corresponding quadratic constant is

X15

S h21
1

h2D pj
22S j21

1

j2D ph
2

j21h21
1

j2 1
1

h2

.

The Hamilton–Jacobi equation has the form

S ]S

]j D 2

1S ]S

]h D 2

j21h21
1

j2 1
1

h2

5E ,

which has the solution

S~j,h!52
AEj41E2lj2

j2 2
l

2AE
arctanhS lj222E

2AEAEj41E2lj2D 1AE log~AE~2Ej22l!

12EAEj41E2lj2!2
AEh41E1lh2

h2 2
l

2AE
arctanhS lh212E

2AEAEj41E1lj2D
1AE log~AE~2Ej21l!12EAEj41E1lj2! .
23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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The corresponding Schro¨dinger equation is

]j
2C1]h

2C

j21h21
1

j2 1
1

h2

5EC .

Typical solutions are

C5
1

Ajh
Mx,m~AEj2!M 2x,m~AEh2!,

whereMx,m(z) is a Whittaker function9 andE54m22 1
4.

4. Coordinates associated with K 2

The representativeK2 has associated with it the coordinatesu andv, in which the ignorable
variable has a fundamental role to play. The Hamiltonian and constant associated with this
ration have already been given. The Hamilton–Jacobi equation has the form

u2

u211 S S ]S

]uD 2

1S ]S

]v D 2D5E ,

which has solution, with separation constantc,

S~u,v !5Au2~E2c2!1E2AE arctanhAu2~E2c2!1E

E
1cv .

The corresponding Schro¨dinger equation has the form

u2

u211
~]u

2C1]v
2C!5EC.

Typical solutions are

C5Au Cn~Am22E u!emv,

whereE5n22 1
4.

It is no surprise that the Hamiltonian is separable in elliptic, parabolic, and polar coordin
since, if we write the classical equationH5E in u,v coordinates we obtain

pu
21pv

22ES 1

u2 11D50.

This equation is essentially the same form as a flat space superintegrable system with Ca
coordinatesu,v and potentiala/u2, viz.,

pu
21pv

21
a

u2 2E50.

It is known to be solvable via the separation of variables ansatz in elliptic, Cartesian, pola
parabolic coordinates. This correspondence between flat space superintegrable systems a
curved analogs is essentially the way all the curved superintegrable systems can be obtain
is discussed in more detail in Sec. V.
23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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B. Superintegrability for Darboux spaces of type two

In this section we address the problem of superintegrability for the Hamiltonian

H05
u2~pu

21pv
2!

u211
. ~2.8!

This is done in exactly the same manner as it was for the Darboux space of type 1 in a pr
paper.1 The free space Hamiltonian is given and we compute the possible potentials that
spond to superintegrability. There are four possibilities:

@A# H5
u2

u211 S pu
21pv

21a1S 1

4
u21v2D1a2v1

a3

u2D .

A basis for the additional constants of the motion is

R15X11
a1

2
vS u21

u214v2

u211 D1
a2

2 S u21
4v2

u211D2
2a3v
u211

,

R25K21a1v21a2v .

These, along withR5$R1 ,R2%, form a quadratic algebra

$R,R1%52
1

2

]R2

]R2
, $R,R2%5

1

2

]R2

]R1
~2.9!

that is determined by the identity

R2516R2
324a1R1

2232HR2
228a2R1R218a2HR1116~H21a1H2a1a3!R214a2

2H24a2
2a3 .

The classical equation of motionH2E50 is

pu
21pv

21a1S 1

4
u21v2D1a2v1

a32E

u2 2E50.

The basic form of this equation is a superintegrable system in flat space, but with rearr
constants, which is solvable via separation of variables in Cartesian and parabolic coordin

This accords with the fact that the leading part of a quadratic constant for this Hamilto
will be an element of the orbits represented byX1 andK2. So this Hamiltonian also separates
the ‘‘parabolic’’ coordinatesj, h ~2.7! and in these coordinates takes the form

H5

pj
21ph

21
1

4
a1~j61h6!1

1

2
a2~j42h4!1a3S 1

h2 1
1

j2D
j21h21

1

j2 1
1

h2

.

Adding the same potential and coordinate functions to the quantum HamiltonianĤ0 and its
corresponding commuting operatorsX̂1 and K̂2, we obtain the operators

Ĥ5Ĥ01
u2

u211 S a1S 1

4
u21v2D1a2v1

a3

u2D ,

R̂15X̂11
a1

2
vS u21

u214v2

u211 D1
a2

2 S u21
4v2

u211D2
2a3v
u211

,

23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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R̂25K̂21a1v21a2v .

R̂1 and R̂2 commute withĤ and along withR̂5@R̂1 ,R̂2#, obey the corresponding quantu
quadratic algebra relations

@R̂,R̂1#5224R̂2
214a2R̂1132ĤR̂228Ĥ228a1Ĥ16a118a1a3 ,

@R̂,R̂2#524a1R̂124a2R̂214a2Ĥ

and the operator identity

R̂2516R̂2
324a1R̂1

2232ĤR̂2
224a2$R̂1 ,R̂2%18a2ĤR̂1116Ĥ2R̂2116a1ĤR̂224a1~4a3211!R̂2

14~a2
218a1!Ĥ24b2

2~a31 3
4! .

@B# H5
u2

u211 S pu
21pv

21b1~u21v2!1
b2

u2 1
b3

v2D .

The additional constants of the motion have the form

R15X21
u21v2

u211 S b1~u21v2!2b22b3

u2

v2D , R25K21b1v21
b3

v2 .

The corresponding quadratic algebra relations can be determined, using~2.9!, from the identity

R2516R1R2
2216b1R1

2216HR1R2132b1~H2b22b3!R1116~H1b32b2!HR2

216~b11b3!H2132b1~b22b3!H216b1~b22b3!2 .

The equation of motionH2E50 becomes

pu
21pv

21b1~u21v2!1
~b22E!

u2 1
b3

v22E50 .

This is a superintegrable system in flat space, but with rearranged constants, which is solva
separation of variables in Cartesian, polar, and elliptic coordinates. Again, this agrees w
observation that for this Hamiltonian we have quadratic constants with leading partsK2, X2 , and
X21bK2. In the latter two coordinate systems, the Hamiltonian takes the following forms:

~i! Elliptical coordinates~2.5!,

H5
pv

21pw
211

4b1b
2~sinh2 2v1sin2 2w!1b2~sec2 w2sech2 v!1b3~cosec2 w1cosech2 v!

sec2 w2sech2 v1b2~cosh2 v2cos2 w!
.

~ii ! Polar coordinates~2.6!,

H5
r 2pr

21pu
21b1r 41b2 sec2 u1b3 cosec2 u

r 21sec2 u
.

The corresponding quantum algebra relations are

@R̂,R̂1#528$R̂1 ,R̂2%18ĤR̂1112R̂228Ĥ218~b22b32 3
4!Ĥ ,

@R̂,R̂2#58R̂2
2216b1R̂128ĤR̂2116b1Ĥ216b1~b21b31 3

4! ,
23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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R̂258$R̂1 ,R̂2
2%28Ĥ$R̂1 ,R̂2%116Ĥ2R̂2216b1R̂1

2276R̂2
2132b1ĤR̂128b1~4~b31b2!13!R̂1

116~b32b21 19
4 !ĤR̂2216~b11b31 3

4!Ĥ
228b1~4~b32b2!13!Ĥ

1b1~36148b32~4~b32b2!13!2!.

@C# H5

pj
21ph

21c11
c2

j2 1
c3

h2

j21h21
1

j2 1
1

h2

.

The additional constants of the motion are

R15X11
c1j2~h411!1c2~h411!2c3~j411!

~j2h211!~j21h2!
,

R25X21
c1~j21h2!2c2~h421!2c3~j421!

4~j2h211!
.

The corresponding Poisson algebra can be determined from the identity

R254R1
2R22~c21c3!R1

2116HR2
224c1R1R212c1c3R1216H2R214~c21c3!H2

1~c1
224c2c3!H2c1

2c3 .

The Hamiltonian can be written in separable form for the following coordinate systems:

~i! Displaced elliptic coordinatesj5b8 coshv8 cosw8, h5b8 sinhv8 sinw8,

H5
pv8

2
1pw8

2
1c1b82~cosh2 v82cos2 w8!1c2~

2 w82sech2 v8!1c3~cosec2 w81cosech2 v8!

b84~cosh4 v82cos4 w82cosh2 v81cos2 w8!1sec2 w81cosec2 w81cosech2 v82sech2 v8
.

These coordinates are not those given in~2.5! and are related tou andv by

u5 1
4 b82 sinh 2v8 sin 2w8 , v5 1

4 b82~cosh 2v8 cos 2w811! .

~ii ! Polar coordinatesj5r 8 cosu8, h5r 8 sinu8,

H5
r 82pr 8

2
1pu8

2
1c1r 821c2 cosec2 u81c3 sec2 u8

r 841sec2 u81cosec2u8
.

These coordinates are not those given in~2.6! and are related tou andv by

u5 1
2 r 82 sin 2u8 , v5 1

2 r 82 cos 2u8 .

The corresponding quantum algebra relations are

@R̂,R̂1#522R̂1
222c1R̂1216ĤR̂218Ĥ226Ĥ,

@R̂,R̂2#52$R̂1 ,R̂2%2~c21c3!R̂122c1R̂21c1c3 ,

R̂252$R̂1
2 ,R̂2%116ĤR̂2

22~c21c314!R̂1
222c1$R̂1 ,R̂2%12c1~c312!R̂1216Ĥ2R̂2112ĤR̂2

14~c21c3!Ĥ21~c1
224c2c323~c21c3!!Ĥ2 1

4 ~314c3!c1
2.

The equation of motionH2E50 is
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pj
21ph

21c12E~j21h2!1
~c22E!

j2 1
~c32E!

h2 50.

This is a superintegrable system in flat space, but with rearranged constants, which is solva
separation of variables in Cartesian, polar, and elliptic coordinates.

@D# H5
u2~pu

21pv
21d!

u211
.

The additional constants of the motion are

R15X11
2 dv

u211
, R25X21

d~u21v2!

u211
, K5pv .

The corresponding Poisson algebra relations are

$K,R1%52K222H12d , $K,R2%5R1 , $R1 ,R2%524KR2 .

The functional relation between these constants is

R1
224K2R214~H2d!R224H214 dH50 .

The Hamiltonian can be written in separable form for all the possible types of separable c
nates we have discussed, viz.,

~i! Elliptic coordinates~2.5!,

H5
pv

21pw
21b2 d~cosh2 v2cos2 w!

b2~cosh2 v2cos2 w!1sec2 w2sech2 v
.

~ii ! Polar coordinates~2.6!,

H5
r2pr

21pu
21dr 2

r 21sec2 u
.

~iii ! Parabolic coordinates~2.7!,

H5
pj

21ph
21d~j21h2!

j21h21
1

j2 1
1

h2

.

The corresponding quantum algebra relations have the form

@K̂,R̂1#52K̂222Ĥ12d, @K̂,R̂2#5R̂1 , @R̂1 ,R̂2#52$K̂,R̂2%.

The operator identity satisfied by the defining operators of the quantum algebra is

R̂1
222$K̂2,R̂2%14ĤR̂224 dR̂214K̂224Ĥ21~4d21!Ĥ50 .

The equation of motionH2E50 is

pu
21pv

21d2E2
E

u2 50.

This is a superintegrable system in flat space, but with rearranged constants, which is solva
separation of variables in Cartesian, polar, elliptic, and parabolic coordinates.
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III. DARBOUX SPACES OF TYPE THREE

A. The free particle and separating coordinate systems

With rescaling and translation of the variablesx andy the HamiltonianH has the form

H05
e(x1y)/2

11e2(x1y)/2 pxpy . ~3.1!

In coordinatesx5u2 iv, y5u1 iv we can write this Hamiltonian in positive-definite form

H05
1

4

e2u~pu
21pv

2!

eu11
.

Associated with the Hamiltonian are three integrals of the free motion

K5pv , X15
1

4

e2u

eu11
cosv pu

22
1

4

eu~eu12!

eu11
cosv pv

21
1

2
eu sinv pupv ,

X25
1

4

e2u

eu11
sinv pu

22
1

4

eu~eu12!

eu11
sinv pv

22
1

2
eu cosv pupv .

The integrals satisfy the polynomial algebra relations

$K,X1%52X2 , $K,X2%5X1 , $X1 ,X2%5KH0 .

They are functionally dependent via the relation

X1
21X2

22H0
22H0K250.

The corresponding problem in quantum mechanics can readily be obtained via the
quantization rules and symmetrization,

Ĥ05
1

4

e2u

eu11
~]u

21]v
2! , K̂5]v ,

X̂15
1

4

e2u

eu11
cosv]u

22
1

4

eu~eu12!

eu11
cosv]v

21
1

2
eu sinv]u]v1

1

4
eu cosv]u1

1

4
eu sinv]v ,

X̂25
1

4

e2u

eu11
sinv]u

22
1

4

eu~eu12!

eu11
sinv]v

22
1

2
eu cosv]u]v1

1

4
eu sinv]u2

1

4
eu cosv]v .

The commutator algebra obtained has the same form as the Poisson algebra, and the
relating the operators is

X̂1
21X̂2

22Ĥ0
22Ĥ0K̂21 1

4Ĥ050 .

The line element ds25(e2u1e22u)(du21dv2) can be realized as a two-dimensional surfa
embedded in three dimensions by

X5vAe2u1e22u , Y2T5Ae2u1e22u,

Y1T5~12v2!Ae2u1e22u1 log~112e2u12Ae2u1e22u!1 1
2 arctan~2Ae2u1e22u! ,

in which case,
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ds25dX21dY22dT25~e2u1e22u!~du21dv2! .

Just as we have done in other cases, we wish to determine all the essentially differen
rable coordinate systems for the free classical or quantum particle. To do this we need to co
a general quadratic constant of the forml5aX11bX21cK2. Under the adjoint action of
exp(aK), X1 andX2 transform according to

X1→cosa X12sina X2 , X2→sina X11cosa X2 .

From this transformation law we see thatl can take five different forms

K2, X1 , X11gK2, X11 iX2 , X11 iX22K2. ~3.2!

We now demonstrate the explicit coordinates in the case of each of these representati

1. Coordinates associated with K 2

These are the coordinates associated with the ignorable coordinatev and the Hamiltonian has
already been given in theu,v coordinates. The Hamilton–Jacobi equation is

1

4

e2u

eu11 S S ]S

]uD 2

1S ]S

]v D 2D5E ,

with solutions

S~u,v !52
A4E~11eu!2c2e2u

ceu 2
AE

c
arctanhS AE~eu12!

A4E~11eu!2c2e2uD
1 i log~ i ~c2eu22E!1cA4E~11eu!2c2e2u!1cv .

The corresponding Schro¨dinger equation is

1

4

e2u

eu11
~]u

21]v
2!C5EC,

with solutions of the form

C5e2u/2M 21/A2E, 6m~4A2E e2u!eimv.

2. Coordinates associated with X 1

For the second representative in~3.2!, a suitable choice of variables is

j52e2u/2 cos
v
2

, h52e2u/2 sin
v
2

. ~3.3!

In terms of these coordinates the classical Hamiltonian has the form

H05
pj

21ph
2

41j21h2

and the corresponding quadratic constant is

X15
~21h2!pj

22~21j2!ph
2

2~41j21h2!
.
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In j, h coordinates the classical Hamilton–Jacobi equation is

S ]S

]j D 2

1S ]S

]h D 2

41j21h2 5E ,

which has the solution

S5
1

2
jAEj212E2l1S 2E2l

2AE
D log~E1AEj212E2l!

1
1

2
hAEh212E1l1S 2E1l

2AE
D log~E1AEh212E1l! .

The Schro¨dinger equation is

~]j
21]h

2 !C

41j21h2 5EC ,

which has typical solutions

C5D (l22E)/A4E~6~4E!1/4j!D2(l1E)/A4E~6~4E!1/4h! ,

in terms of parabolic cylinder functionsDn(z).8,9

3. Coordinates associated with X 1¿gK 2

For the third case it is convenient to take the representative asb2X112K2. Here we identify
coordinates via

j5b coshv cosw , h5b sinhv sinw . ~3.4!

The classical Hamiltonian has the form

H05
pv

2 1pw
2

2b2~cosh 2v2cos 2w!1 1
4 b4~cosh2 2v2cos2 2w!

and the corresponding quadratic constant in these coordinates is

b2X112K25
~8 cos 2w2b2 sin 2w!pv

2 1~8 cosh 2v1b2 sinh 2v!pw
2

8b2~cosh 2v2cos 2w!1b4~cosh2 2v2cos2 2w!
.

In the w, v coordinates the classical Hamilton–Jacobi equation has the form

S ]S

]v D 2

1S ]S

]w D 2

2b2~cosh 2v2cos 2w!1 1
4 b4~cosh2 2v2cos2 2w!

5E ,

and has the solution

S~v,w!5
1

4
b2AES EA~V2a1!~V2a2!

V221
dV1EA~b12F!~F2b2!

12F2 dF D ,
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wherea11a252b12b2528/b2, a1a252b1b224l/Eb2, V5cosh 2v, F5cos 2w. The cor-
responding Schro¨dinger equation,

]v
2 C1]w

2C

2b2~cosh 2v2cos 2w!1 1
4 b4~cosh2 2v2cos2 2w!

5EC ,

separates withC5F(w)V(v) in the equations

~]w
212b2E cos 2w1 1

8 b4E cos 4w1l1 1
8 b4E!F50 ,

~]v
2 22b2E cos 2v2 1

8 b4E cos 4v2l2 1
8 b4E!V50 ,

which has typical solutions

C15gcm~w,bA2E,2bA2E!gcm~ iv,bA2E,2bA2E!,

C25gsm~w,bA2E,2bA2E!gsm~ iv,bA2E,2bA2E!,

with corresponding separation constant given bylm5mmb2(11b2)E/8. The functions appearing
here are even and odd Whittaker Hill functions.10

4. Coordinates associated with X 1¿ iX 2

In the case of a system specified by the fourth representative there are, in fact, no se
coordinates. However, in the coordinates

x5j1 ih , y5 1
2 ~j2 ih!2 ,

the classical Hamiltonian takes the form

H05
2pxpy

2y21/21x

and the corresponding constant is

X11 iX252yH02px
2 .

The solution of the Hamilton–Jacobi equation

2
]S

]x

]S

]y

2y21/21x
5E

is

S5xAEy2l1AE logS AE y2
l

2AE
1AEy22lyD .

The corresponding Schro¨dinger equation is

2]x]yC

2y21/21x
5EC,

which has solutions
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C5
~2E3/2y2E1/212EAEy22ly!AEexAEy2l

AEy2l
.

5. Coordinates associated with X 1¿ iX 2ÀK 2

In the case of a system specified by the fifth representative an appropriate choice of c
nates is

j5
m2n

2Amn
1Amn , h5 i S m2n

2Amn
2Amn D . ~3.5!

The corresponding classical Hamiltonian has the form

H05
m2pm

2 2n2pn
2

~m1n!~21m2n!
,

and the quadratic constant is

X11 iX22K25
n2~m12!mpn

22m2~n22!npm
2

~m1n!~21m2n!
.

In the m, n coordinate system the classical Hamilton–Jacobi equation has the form

m2S ]S

]m D 2

2n2S ]S

]n D 2

~m1n!~21m2n!
5E ,

which has the solution

S~m,n!5AEm212Em1l1AE log~AE~11m!1AEm212Em1l!

2Al arctanhS l1Em

AlAEm212Em1l
D 1AEn222En1l1AE log~AE~12n!

1AEn222En1l!2Al arctanhS l2En

AlAEn222En1l
D .

The Schro¨dinger equation

m]m~m]mC!2n]n~n]nC!

~m1n!~21m2n!
5EC

separates withC5A(m)B(n) into the equations

~m]m~m]m!2Em222Em2r2!A~m!50 , ~n]n~n]n!2En222En2r2!B~n!50 ,

and has solutions, in terms of the Whittaker functionMl,x , of the form9

1

Amn
M AE,r~2AE m!M 2AE,r~2AE n!.

If we write the classical equationH5E in j, h coordinates, we obtain
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pj
21ph

22E~41j21h2!50.

This is in the form of a flat space superintegrable system which can be solved by separa
variables in Cartesian, polar, hyperbolic, and elliptic coordinates.

B. Superintegrability for Darboux spaces of type three

In this section we address the problem of superintegrability for the Hamiltonian

H5
1

4

e2u~pu
21pv

2!

eu11
. ~3.6!

We arrive at five possibilities:@A#, @B#, @C#, @D#, @E#.

@A# H5
pj

21ph
21a1j1a2h1a3

41j21h2 .

The additional constants have the form

R15X11
2a1j~21h2!22a2h~21j2!1a3~h22j2!

4~41j21h2!
,

R25X21
a1h~h22j214!1a2j~j22h214!22a3jh

4~41j21h2!
.

The corresponding quadratic algebra can be determined from the identity

R25HR1
21HR2

21 1
8 ~a2

22a1
2!R12 1

4 a1a2R22H31 1
2 a3H2

1 1
16 ~2a2

212a1
22a3

2!H2 1
32 a3~a1

21a2
2! .

This Hamiltonian separates in a family of coordinate systems obtained by translating the
separable system viaj→j1a, h→h2a. The corresponding quantum algebra relations are

@R̂,R̂1#52ĤR̂21 1
8 a1a2 , @R̂,R̂2#5ĤR̂11 1

16 ~a2
22a1

2! ,

R̂25ĤR̂1
21ĤR̂2

21 1
8 ~a2

22a1
2!R̂12 1

4 a1a2R̂22Ĥ31 1
2 ~a31 1

2!Ĥ
2

1 1
16 ~2a1

212a2
22a3

2!Ĥ2 1
32 a3~a1

21a2
2!.

As in the case of free motion, the equationH5E becomes

pj
21ph

21a1j1a2h1a32E~41j21h2!50 .

Again, this is a superintegrable system in flat space but with rearranged constants.

@B# H5

pj
21ph

21
b1

j2 1
b2

h2 1b3

41j21h2 .

The additional constants are

R15X11
2b1h2~h212!22b2j2~j212!1b3~h22j2!

4~41j21h2!
, ~3.7!
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R25K21
b1h2

4j2 1
b2j2

4h2 . ~3.8!

The corresponding quadratic algebra relations are determined by

R2524R1
2R22~b11b2!R1

214HR2
212~b12b2!HR11 1

2 b3~b22b1!R114H2R222b3HR2

1 1
4 b3

2R22~b11b2!H21~ 1
2 b3~b11b2!2b1b2!H2 1

16 b3
2~b11b2!.

This Hamiltonian separates in all the separable coordinate systems given in Sec. II A. The H
tonian has the following explicit forms:

~i! In u, v coordinates,

H5

e2uSpu
21pv

21 1
4 b1 sec2

v
2

1 1
4 b2 cosec2

v
2

1b3e2uD
4~eu11!

.

~ii ! In the elliptical coordinates~3.4!,

H5
pv

2 1pw
21b1~sec2 w2sech2 v!1b2~cosec2 w1cosech2 v!1b3b2~cosh2 v2cos2 w!

2b2~cosh 2v2cos 2w!1 1
4 b4~cosh2 2v2cos2 2w!

.

The corresponding quantum algebra relations have the form

@R̂,R̂1#52R̂1
224ĤR̂222Ĥ21~b31 1

2!Ĥ2 1
8 b3

2,

@R̂,R̂2#522$R̂1 ,R̂2%2~b11b211!R̂11~b12b2!Ĥ1 1
4 ~b22b1!b3 ,

R̂2522$R̂1
2 ,R̂2%2~b11b215!R̂1

214ĤR̂2
212~b12b2!ĤR̂11b3~b22b1!R̂114Ĥ2R̂2

2~2b321!ĤR̂21 1
4 b3

2R̂22~b11b222!Ĥ21~ 1
2 ~b31 3

2!~b11b2!2b32b1b22 1
2!H

2 1
16 b3

2~b11b222!.

As in the case of free motion, we observe that equationH5E becomes

pj
21ph

21
b1

j2 1
b2

h2 1b32E~41j21h2!50.

This is a superintegrable system in flat space, with rearranged constants, that separates var
Cartesian, polar, and elliptic coordinates.

@C# H5

m2pm
2 2n2pn

21c1~m1n!1c2

m1n

mn
1c3

m22n2

m2n2

~m1n!~21m2n!
.

The additional constants of the motion have the form

R15X11 iX22
c1m2n21c2mn12c3~11m2n!

mn~21m2n!
, R25K22c2

m2n

mn
2c3

~m2n!2

m2n2 .

The corresponding quadratic Poisson algebra relations can be determined from

R2524R2R1
218c2HR124c1c2R1116c3HR2116c3H214~c2

224c1c3!H14c1
2c3 .
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The quantum algebra relations are

@R̂,R̂1#52R̂1
228c3Ĥ , @R̂,R̂2#522$R̂1 ,R̂2%2R̂114c2Ĥ22c1c2 ,

R̂2522$R̂1
2 ,R̂2%18c2ĤR̂1116c3ĤR̂225R̂1

224c1c2R̂1

116c3Ĥ214~c31c2
224c1c3!Ĥ14c1

2c3 .

As in the case of free motion, equationH5E becomes

pj
21ph

212c11
8c2

~j1 ih!2 1
16c3~j2 ih!

~j1 ih!3 2E~41j21h2!50,

a superintegrable system in flat space with rearranged constants, that separates variables
and hyperbolic coordinates.

@D# H5
m2pm

2 2n2pn
21d1m1d2n1d3~m21n2!

~m1n!~21m2n!
.

The additional constants of the motion have the form

R15X11 iX22K22
mn~d1~n22!1d2~m12!12d3~n2m1mn!!

~m1n!~21m2n!
,

R25X12 iX22
~m2n!~~m2n!~d1m1d2n!22d3~m21n21mn~21m2n!!!

4mn~m1n!~21m2n!
.

The corresponding quadratic Poisson algebra can be determined from

R254R1R2
224HR1R21d3

2R124H2R212~d11d2!HR22d1d2R214H322~d11d2!H2

1 1
4 ~~d11d2!21d3~d22d1!!H2d3~d1

22d2
2!.

This classical system also separates in elliptical coordinates obtained by choosing new va
defined by the roots of the characteristic equation ofR11R2 , that is, the elliptical coordinate
~3.4! with b52i . In these variables the Hamiltonian has the form

H5
pv

2 1pw
212~d11d2!~cos 2w2cosh 2v!12~d12d2!~2i sin 2w1sinh 2v!12d3~sinh 4v12i sin 4f!

8~cos 2w2cosh 2v!14~cosh2 2v2cos2 2w!
.

The corresponding quantum algebra relations are

@R̂,R̂1#522$R̂1 ,R̂2%12ĤR̂11R̂212Ĥ22~d11d21 1
2!Ĥ1 1

2 d1d2 ,

@R̂,R̂2#52R̂2
222ĤR̂21 1

2 d3
2,

R̂252$R̂1 ,R̂2
2%25R̂2

222Ĥ$R̂1 ,R̂2%1d3
2R̂124Ĥ2R̂21~2d112d215!ĤR̂22d1d2R̂214Ĥ3

2~2d112d211!Ĥ21~ 1
4 ~d11d2!21d3~d22d1!!Ĥ2 1

4 d3~d32d1
21d2

2!.

As in the case of free motion we observe that equationH5E becomes
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pj
21ph

21d11d224d31
~d22d1!~j2 ih!

A~j2 ih!214
1

8d3~j1 ih!

A~j2 ih!214~j2 ih1A~j2 ih!214!2

5~E2d3!~41j21h2! ,

a superintegrable system in flat space with rearranged constants that separates variables i
and hyperbolic coordinates.

@E# H5
pj

21ph
21c

41j21h2 .

The additional constants of the motion are

R15X11
c

4

h22j2

41j21h2 , R25X22
c

2

jh

41j21h2 ,

andK. The corresponding Poisson algebra relations have the form

$K,R1%52R2 , $K,R2%5R1 , $R1 ,R2%5HK ,

and the functional relation between these constants is

R1
21R2

22HK22H21
c

2
H2

c2

16
50 .

This Hamiltonian separates in all of the four types of separable coordinate systems ava
and the corresponding expressions for the Hamiltonian can be deduced from Ref. 2 by
b35c, b15b250.

The quantum algebra relations are

@K̂,R̂1#52R̂2 , @K̂,R̂2#5R̂1 , @R̂1 ,R̂2#5ĤK̂ ,

and the associated operator identity is

R̂1
21R̂2

22ĤK̂22Ĥ21S c

2
1

1

4D Ĥ2
c2

16
50 .

IV. DARBOUX SPACES OF TYPE FOUR

A. The free particle and separating coordinate systems

With rescaling of the variablesx andy, the HamiltonianH can be taken in the form

H05
~ex2y2ey2x!2

ex2y1ey2x1a
pxpy . ~4.1!

In coordinatesx5v1 iu, y5v2 iu, we can write the Hamiltonian as

H052
sin2 2u~pu

21pv
2!

2 cos 2u1a
.

It admits constants of the motion

K5pv , X15e2v~2H01cos 2u pu
21sin 2u pupv!,
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X25e22v~2H01cos 2u pv
22sin 2u pupv!.

These integrals satisfy the polynomial algebra relations

$K,X1%52X1 , $K,X2%522X2 , $X1 ,X2%528K324aKH0 .

They are functionally dependent via the relation

X1X22K42aK2H02H0
250.

The corresponding quantum operators are

Ĥ05
2sin2 2u

2 cos 2u1a
~]u

21]v
2! , X̂15e2v~2Ĥ01cos 2u~]v

21]v!1sin 2u~]u]v1]u!! ,

K̂5]v , X̂25e22v~2Ĥ01cos 2u~]v
22]v!2sin 2u~]u]v2]u!! .

Their algebra is determined by the relations

@K̂,X̂1#52X̂1 , @K̂,X̂2#522X̂2 , @X̂1 ,X̂2#528K̂324aK̂Ĥ024K̂,

and the operator identity is

1
2 $X̂1 ,X̂2%2K̂42aĤ0K̂225K̂22Ĥ0

22aĤ050 .

The line element ds25(2 cosu1a)(du21dv2)/sin2 2u can be realized as a two-dimension
surface embedded inE(2,1) by ~assuminga.2)

X5Aa12 cos 2uv, Y2T5Aa12 cos 2u,

Y1T5
~a22!

A2~a12!
FPS x,Aa22

a12

2

~r 111!
,pD 1PS x,Aa22

a12

2

~r 211!
,pD G2Aa12 cos 2uv2,

where

sinx5A~a12!~cos 2u11!

2~a12 cos 2u!
, p5

2

Aa12
,

andP is an elliptic integral of the third kind.8 Then ds25dX21dY22dT2.
Just as we have done in other cases, we wish to determine all the essentially differen

rable coordinate systems for the free classical or quantum particle. To do this we need to co
a general quadratic constant of the forml5aX11bX21cK2. Under the adjoint action of
exp(aK), X1 andX2 transform according to

X1→exp~22a!X1 , X2→exp~2a!X2 .

If we regard two such quadratic expressions as equivalent if they are related by a combina
group motions and the discrete transformation observed above, then the equivalence cla
these expressions can be chosen to have the following representatives:

K2 , X2 , gX21K2 , X11X21gK2. ~4.2!

In the last of these are three cases to distinguish:g50, g52, andgÞ0,2. The various separabl
systems involved can now be computed.
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1. Coordinates associated with K 2

These are the coordinates associated with the ignorable coordinatev and the Hamiltonian has
already been given in theu,v coordinates. The Hamilton–Jacobi equation is

2
sin2 2u

2 cos 2u1a S S ]S

]v D 2

1S ]S

]uD 2D5E .

It has typical solutions

S~u,v !52 i log~ i ~c2 cos 2u2E!1cAE~a12 cos 2u!1c2 sin2 2u!

1
1

2c
AE~a12! arctanhS E~a11!1c21~E2c2!cos 2u

AE~a12!~E~a12 cos 2u!1c2 sin2 2u
D

1
1

2c
AE~a22! arctanhS E~a21!1c21~E1c2!cos 2u

AE~a22!~E~a12 cos 2u!1c2 sin2 2u
D 1cv .

The corresponding Schro¨dinger equation is

sin2 2u

2 cos 2u1a S ]2C

]v2 1
]2C

]u2 D5EC ,

which has the solution

C52F1~ 1
2 ~l2e12e2!, 1

2 ~l1e11e2!,e11 1
2 ,sin2 u!elv ,

where

e65 1
2 1 1

2A12~a62!E , ~4.3!

and2F1 is a Gaussian hypergeometric function.11

2. Coordinates associated with X 2

If we choose new coordinates

x5 log~ 1
2 ~m2 in!! , y5 log~ 1

2 ~m1 in!! , ~4.4!

then the Hamiltonian takes the rational form

H052
4m2n2~pm

2 1pn
2!

~a12!m21~a22!n2 .

In this case the corresponding choice of coordinates has already been given, and the qu
constant in these coordinates is

X25
4~a12!m2pm

2 24~a22!n2pn
2

~a12!m21~a22!n2 .

The Hamilton–Jacobi equation

2

m2n2S S ]S

]m D 2

1S ]S

]n D 2D
~a12!m21~a22!n2 5E,
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has solution

S~m,n!5 iA~a22!E1lm22 iA~a22!E arctanhA~a22!E1lm2

~a22!E

1A~a12!E2ln22A~a12!E arctanhA~a12!E2ln2

~a12!E
.

The corresponding Schro¨dinger equation has Bessel function solutions of the form

C5Amn C1/2A12E(a22)~
1
2Alm! C1/2A12E(a12)~

1
2Al in! .

3. Coordinates associated with gX2¿K 2

In the case of the third representative the transformation

m5c coshv cosw , n5c sinhv sinw ~4.5!

gives the classical Hamiltonian

H5
4~pv

2 1pw
2 !

~a22!~sech2 v2sec2 w!2~a12!~cosech2 v1cosec2 w!
.

The classical constant associated with this coordinate system is

2
c2

4
X21K25

~~a22!sec2 w1~a12!cosec2 w!pv
2 1~~a22!sech2 v2~a12!cosech2 v!pw

2

~a22!~sech2 v2sec2 w!2~a12!~cosech2 v1cosec2 w!
.

The Hamilton–Jacobi equation in these coordinates is

4~pv
2 1pw

2 !

~a22!~sech2 v2sec2 w!2~a12!~cosech2 v1cosec2 w!
5E

and has solutions of the form

S~v,w!5
1

4
Al log~Al ~l cos 2w12aE!1lA8E14aE cos 2w2l sin2 2w!

2
1

4
A~a12!E arctanhS 2Ea18E2l1cos 2w~l12Ea!

2A~a12!E~8E14aE cos 2w2l sin2 2w!
D

2
1

4
A~a22!E arctanhS 22Ea18E2l1cos 2w~2l12Ea!

2A~a22!E~8E14aE cos 2w2l sin2 2w!
D

1
1

4
Al log~Al ~l cosh 2v24E!1lAl sinh2 2v28E cosh 2v24aE!

1Aa12 arctanS 4E1l14aE1cosh 2v~4E2l!

2A~a12!E~l sinh2 v28E cosh 2v24aE!
D

1Aa22 arctanS 24E1l14aE1cosh 2v~4E1l!

2A~a22!E~l sinh2 v28E cosh 2v24aE!
D .

The Schro¨dinger equation has the form
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4S ]2C

]v2 1
]2C

]w2 D
~a22!~sech2 v2sec2 w!2~a12!~cosech2 v1cosec2 w!

5EC

with corresponding solutions

C5~sinw sinhv!e2~cosw coshv!e1
2F1S e11e22l

2
,
e11e21l

2
,e21

1

2
,sin2 w D

32F1S e11e22l

2
,
e11e21l

2
,e21

1

2
,2sinh2 v D

with e6 defined by~4.3!.

4. Coordinates associated with X 1¿X2¿gK 2

For the coordinates corresponding to the fourth representative we make the transfor
u5arctan(expa), v5b/2, so our Hamiltonian has the form

H524
pa

21sech2 apb
2

a22 tanha
. ~4.6!

This can be realized in terms of projective coordinates on a two-dimensional complex sphe
s15cosha coshb, s25 i cosha sinhb, s35 i sinha wheres1

21s2
21s3

251. The Hamiltonian can be
written as

H54
J1

21J2
21J3

2

2is3

As1
21s2

2
1a

.

These two ways of realizing the classical Hamiltonian are useful in determining the va
possible separable coordinate systems.

We consider the most general case first, i.e.,gÞ0,2. We make use of the transformatio
equations

sinha5 i
XY11

2AXY
,

tanhb5
2A~A1X1A2!~A2X1A1!~A1Y1A2!~A2Y1A1!

~A1
2 1A2

2 !~XY11!12A1A2~X1Y!
,

applied to~4.6! to give classical Hamiltonian in the form

H5216XY
X~A1X1A2!~A2X1A1!pX

22Y~A1Y1A2!~A2Y1A1!pY
2

A1A2~X2Y!~~a12!XY2a12!
.

The corresponding classical constant associated with this coordinate system is
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X11X212
A1

2 1A2
2

A1
2 2A2

2
K2

516
~A1X1A2!~A2X1A1!~a~A1Y1A2!~A2Y1A1!22A1A2~Y221!!X2pX

2

A1A2~A1
2 2A2

2 !~X2Y!~~a12!XY2a12!

216
~A1Y1A2!~A2Y1A1!~a~A1X1A2!~A2X1A1!22A1A2~X221!!Y2pY

2

A1A2~A1
2 2A2

2 !~X2Y!~~a12!XY2a12!
.

The Hamilton–Jacobi equation has the form

216XY

X~A1X1A2!~A2X1A1!S ]S

]XD 2

1Y~A1Y1A2!~A2Y1A1!S ]S

]YD 2

A1A2~X2Y!~~a12!XY2a12!
5E

and solutions

S~X,Y!5
1

AA1A2

S lXE 1

X
A aX2X

~b2X!~c2X!
dX1lYE 1

Y
A aY2Y

~b2Y!~c2Y!
dYD ,

where lX2lY52(a12)EA1A2/16, aX5(a22)ElX/16, aY5(a22)ElY/16, b52A1 /A2 ,
c52A2 /A1 .

A further change of coordinates

X52
1

k
sn2~a81 iK 8,k! , Y52

1

k
sn2~b81 iK 8,k! , k5

A1

A2

is convenient for writing the Schro¨dinger equation

16S ]2C

]a82 1
]2C

]b82D
~a12!k4~sn2~a8,k!2sn2~b8,k!!1k2~a22!

5EC .

The separated equations are versions of Lame´’s equation.12 Indeed if we look for solutions of the
form C5A(a8)B(b8) then

]2A~a8!

]a82 1S 2
1

16
k4E~a12!sn2~a8,k!2l1DA~a8!50 ,

]2B~b8!

]b82 1S 2
1

16
k4E~a12!sn2~b8,k!2l2DB~b8!50,

wherel12l252E(a22)k2/16. Solutions of these separation equations can be represent
RiemannP functions13 of the form

P~z!5S 0 0 k22 `

0 0 0 1
4~12 1

2A41k2E~a12!! sn2~z,k!

1
2

1
2

1
2

1
4~11 1

2A41k2E~a12!!
D

for z5a8,b8.
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The caseg50 can easily be deduced by settingA15 iA2 , as can be seen from the expressi
for the associated classical constant.

If g52 then a convenient choice of coordinates is

x5 log~ tan~w82 iv8!! , y5 log~ tan~w81 iv8!! . ~4.7!

The corresponding classical Hamiltonian has the form

H52
pw8

2
1pv8

2

a12

sinh2 2v8
1

a22

sin2 2w8

.

The classical constant is

X11X212K25aH1
~a12!sin2 2w8pw8

2
2~a22!sinh2 2v8pv8

2

~a12!sin2 2w81~a22!sinh2 2v8
.

The Hamilton–Jacobi equation in these coordinates is

2

S ]S

]w8D
2

1S ]S

]v8D
2

a12

sinh2 2v8
1

a22

sin2 2w8

5E,

which has solutions

S~w8,v8!5
i

2
Al arctanA~a22!E

l
sec2 2w81tan2 2w8

2
i

2
A~a22!E arctanhAsec2 2w81

l

~a22!E
tan2 2w8

1
i

2
Al arctanA~a12!E

l
sech2 2v82tanh2 2v8

2
i

2
A~a12!E arctanhAsech2 2v82

l

~a12!E
tanh2 2v8.

The corresponding Schro¨dinger equation is

2

]2C

]w82 1
]2C

]v82

a12

sinh2 2v8
1

a22

sin2 2w8

5EC ,

which has solutions of the form

C5Asin 2w8 sinh 2v8 Pn
1/2A12(a22)E~cos 2w8!Pn

1/2A12(a12)E~cosh 2v8!,

wherePn
m(z) is a solution of Legendre’s equation.

This completes the list of possible coordinate systems which are inequivalent and sep
for this particular Hamiltonian. We notice in particular that the equationH2E50 can be written
in the equivalent forms
23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



horo-

alence
ice of

ian in

5837J. Math. Phys., Vol. 44, No. 12, December 2003 Superintegrable systems in Darboux spaces

Downloaded 
m2~pm
2 1pn

2!1
1

4
ES a221~a12!

m2

n2 D50, J1
21J2

21J3
22ES 2is3

As1
21s2

2
1aD 50 ,

both superintegrable systems on the complex two-sphere, the first of which is written in
spherical coordinates.

B. Superintegrability for Darboux spaces of type four

There are various possibilities for the potential in this case:@A#, @B#, @C#, @D#.

@A# H52
4m2n2

~a12!m21~a22!n2 S pm
2 1pn

21a11a2S 1

m2 1
1

n2D1a3~m21n2! D .

The additional constants of the motion have the form

R15K21a1~m21n2!1a3~m21n2!2 ,

R25X21
2a1~~a12!m22~a22!n2!116a214a3~~a12!m42~a22!n4!

~a12!m21~a22!n2 .

The corresponding quadratic algebra relations are determined by

R2516R1R2
22256a3R1

2264a1R1R22256aa3HR121024a2a3R1

164a1HR22256a3H2264a1~a12!H2256a1
2a2 .

This Hamiltonian admits a separation of variables in coordinates corresponding to the equiv
first, second, and third classes of Sec. IV A. For the second this is covered by the cho
coordinatesm,n.

~i! For coordinates corresponding to the first equivalence class, we obtain the Hamilton
the form

H52
sin2 2u~pu

21pv
214a1e

2v14a2cosec2 2u14a3e4v!

2 cos 2u1a
.

~ii ! For coordinates corresponding to the third representative~4.5! the Hamiltonian takes form

H5
4~pv

21pw
2!14a1c

2~cosh2 v2cos2 w!

~a22!~sech2 v2sec2 w!2~a12!~cosech2 v1cosec2 w!

1
16a2~cosech2 2v1cosec2 2w!1a3c4~sinh2 2v1sin2 2w!

~a22!~sech2 v2sec2 w!2~a12!~cosech2 v1cosec2 w!
.

The quantum algebra relations are

@R̂,R̂1#528$R̂1 ,R̂2%216R̂2232a1Ĥ ,

@R̂,R̂2#58R̂2
22256a3R̂12128aa3Ĥ232~a1

214a3116a2a3!

together with the operator relation

R̂258$R̂1 ,R̂2
2%2256a3R̂1

2280R̂2
22256aa3ĤR̂1264~16a2a31a1

214a3!R̂1164a1ĤR̂2

2256a3Ĥ2164a~4a32a1
2!Ĥ1128~a1214a318a2a322a1

2a2!.

As in the case of free motion we observe that the equationH5E is
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pm
2 1pn

21a11
a22 1

4 ~a22!E

m2 1
a22 1

4 ~a12!E

n2 1a3~m21n2!50 ,

a superintegrable system in flat space with rearranged constants, that separates in ellip
hyperbolic coordinates.

@B# H52

sin2 2uS pv
21pu

21
b2

sinh2 v
1

b3

cosh2 v D1b1

2 cos 2u1a
.

The additional constants are

R15X11X21

2b1 cosh 2v1~b21b3!~42a2!1~cos 4u12a cos 2u13!S b2

sinh2 v
2

b3

cosh2 v D
2 cos 2u1a

,

R25K21
b2

sinh2 v
1

b3

cosh2 v
.

The quadratic algebra is given by

R2516R1
2R2264R2

3264aHR2
2164~2b322b22b1!R2

2132a~b21b3!R1R2264H2R2

164~b21b3!HR11128a~b32b2!HR2216~~42a2!~b21b3!218b1~b22b3!!R2

1128~b32b2!H2264b1~b21b3!2 .

This Hamiltonian admits a separation of variables in coordinate systems corresponding
first and fourth equivalence classes of~4.2!. The defining expressions have already been give
terms of coordinates for the first. For the fourth, we distinguish two cases.

~i! gÞ2,

H516XY
X~A2X2A1!~A1X2A2!pX

21Y~A2Y1A1!~A1Y1A2!pY
2

A1A2~X2Y!~a222~a12!XY!

1

b1~XY11!1
4b2~A2

2 2A1
2 !XY

~A1Y1A2!~A1X1A2!
1

4b3~A2
2 2A1

2 !XY

~A2Y1A1!~A2X1A1!

a222~a12!XY
.

~ii ! g52,

H52

pw8
2

1pv8
2

1b1S 1

sinh2 2v8
1

1

sin2 2w8D1 4b2

cos2 2w8
1

4b3

cosh2 2v8

a12

sinh2 2v8
1

a22

sin2 2w8

.

The corresponding quantum algebra relations are

@R̂,R̂1#528R̂1
2196R̂2

2164aĤR̂2216a~b21b3!R̂1164~2b222b31b113!R̂2132Ĥ2

132a~2b222b311!Ĥ164b1~b22b3!28~a224!~b21b3!2132~b112b222b3! ,

@R̂,R̂2#58$R̂1 ,R̂2%116a~b21b3!R̂2216R̂1132~b21b3!Ĥ216a~b21b3! ,
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R25264R̂2
318$R̂1

2 ,R̂2%264aĤR̂2
2264Ĥ2R̂2280R̂1

2264~2b222b31b117!R̂2
2116a~b21b3!

3$R̂1 ,R̂2%164~b21b2!ĤR̂1164a~2b322b221!ĤR̂22160a~b21b3!R̂1116~~a224!

3~b21b3!218~b111!~b32b2!24b1132!R̂21128~b32b211!Ĥ21128a~b22b311!Ĥ

1~b21b3!2~128280a2264b1!2128~b112!~b32b221!2256.

As in the case of free motion, equationH2E50 is

J1
21J2

21J3
21

2b1

As1
21s2

2~s11As1
21s2

2!
1

2b2

As1
21s2

2~s12As1
21s2

2!
1b32ES 2is3

As1
21s2

2
1aD 50 ,

a superintegrable system on the complex sphere that separates variables in spherical, ellip
degenerate elliptic type 1 coordinates.

@C# H52

pw8
2

1pv8
2

1
c1

cos2 w8
1

c2

cosh2 v8
1c3S 1

sin2 w8
2

1

sinh2 v8D
a12

sinh2 2v8
1

a22

sin2 2w8

.

These are coordinates associated withg52 in the fourth representative from~4.2!. The constants
of the motion associated with this Hamiltonian are

R15X11X212K21aH1

a12

sinh2 2v8 S c3

sin2 w8
1

c1

cos2 w8D1
a22

sin2 2w8 S c3

sinh2 v8
2

c2

cosh2 v8D
a12

sinh2 2v8
1

a22

sin2 v8

,

R25X12X21
1

a12

sinh2 2v8
1

a22

sin2 v8

3F a12

sinh2 2v8 S c1 cosh 2v8 tan2 w82c2 cos 2w8

2
c3~2 cos2 w8~sinh2 v82sin2 w8!!11

sin2 w8 D1
a22

sin2 2w8 S c2 cos 2w8 tanh2 v81c1 cosh 2v8

2
c3~2 cosh2 v8~sinh2 v82sin2 w!11!

sinh2 v8 D G .

They satisfy the quadratic algebra determined by the identity

R2516R1
3216R1R2

2232aHR1
2132~c22c1!R1

2116~a224!H2R1132~~a12!c12~a22!c2

14c3!HR1216~2c3
22c1

22c2
216c3~c11c2!14c1c2!R1232~c22c3!~c12c3!R2

216~~a12!~c12c3!21~a22!~c22c3!2!H232~c12c2!~3c3
22c1c22c3~c11c2!!.

The Hamiltonian admits a separation of variables in a number of coordinates systems
sponding to various combinations of the operatorsR1 andR2 . We exhibit the various possibilities
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~i! For the constantR12R2 , the associated separable coordinates are those correspond
the third representative in~4.2! with g51. In these coordinates, the Hamiltonian is

H5

4~pv
21pw

2!1
c11c212c3

2 sinh2 2v
2

~c11c2!cosh 2v

2 sinh2 2v
1

c3 cos 2w

sin2 2w

~a22!S 1

cosh2 v
2

1

cos2 wD2~a12!S 1

sinh2 v
1

1

sin2 wD .

~ii ! In coordinates corresponding to rotations of the fourth representative in~4.2! with g
Þ0,2, that is,B1

2 X11(B1
2 2B2

2 )X21(2B1
2 2B2

2 )K2, the corresponding Hamiltonian ha
the form

H516F2X~B71X!~B61X!pX
21Y~B71Y!~B61Y!pY

21
c1

4 S 1

Y
2

1

XD1
c2

4
~X2Y!

1
c3

4
~B7

2 2B6
2 !S 1

11B7Y
2

1

11B7X
1

1

11B6Y
2

1

11B6XD G Y F ~B7
2 2B6

2 !

3S a22

11B6X
2

a22

11B6Y
1

a12

11B7Y
2

a12

11B7XD1S a22

X
2

a22

Y
1~a12!~X2Y! D G .

Here,B65B1 /B2 andB75B2 /B1 . The Hamiltonian associated withR2 can be obtained
from this last case by takingB25&B1 .

The quantum algebra relations are

@R̂,R̂1#58$R̂1 ,R̂2%116R̂2116~c12c3!~c22c3! ,

@R̂,R̂2#524R̂1
228R̂2

2232aĤR̂118~a224!Ĥ2132S c12c22
3

2D R̂1116~~a12!c12~a22!c2

1a164c3!Ĥ18c1
218c2

2216c3
2232c1c2248c3~c11c2!116~c12c2! .

The operator identity is

R̂2516R̂1
328$R̂1 ,R̂2

2%132S c22c12
7

2D R̂1
2280R̂2

2116~a224!Ĥ2R̂1132~~a12!c12~a22!c2

14c31a!ĤR̂1116~c1
21c2

222c3
226c3~c11c2!24c1c212~c12c2!28!R̂1232~c22c3!

3~c12c3!R̂2116~a224!Ĥ2216~~a12!~~c12c3!222c1!1~a22!~~c22c3!212c2!

28c324a!Ĥ232~c12c2!~3c3
22c1c22c3~c11c2!!132~c1

21c2
224c3~c11c2!22c1c2

12c122c2!.

As in the case of free motion, the equationH5E is

J1
21J2

21J3
22

i ~c11c212c3!s1

4As2
21s3

2
1

i ~c12c2!~s11 is22s3!

4&A~s11 is2!~s32 is2!
1

~2c32c12c2!~s11 is21s3!

A~s11 is2!~s31 is2!

1
i ~c12c2!

4&
2ES a1

2is1

As2
21s3

2D 50,

which is a superintegrable system on the complex sphere, with rearranged constants, that s
variables in elliptic and degenerate elliptic coordinates of type 1.
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@D# H52

4m2n2Fpm
2 1pn

21dS 1

m2 1
1

n2D G
~a12!m21~a22!n2 .

This Hamiltonian admits three classical constants of the motion

R15X11
d~m21n2!2

~a12!m21~a22!n2 , R25X21
16d

~a12!m21~a22!n2 , K5mpm1npn .

The Poisson quadratic algebra satisfies the relations

$K,R1%52R1 , $K,R2%522R2 , $R1 ,R2%528K324aKH216 dK.

These three extra constants are related via the identity

2R1R21K41aHK214 dK21H250 .

This Hamiltonian admits a separation of variables in all the coordinate systems tha
possible. We need only give the expressions in terms of the fourth representatives. In the
nate system associated with the fourth representative and for whichgÞ2 the Hamiltonian can be
written as

H516XY
X~A1X2A2!~A2X2A1!pX

22Y~A1Y1A2!~A2Y1A1!pY
2

~X2Y!~a222XY~a12!!A1A2

2
4dA1A2~X2Y1Y1XY21X!

~X2Y!~2a121XY~a12!!A1A2
,

and for the caseg52 this Hamiltonian has the form

H5

pw8
2

1pv8
2

1dS 1

sinh2 2v8
1

1

sin2 2w8D
a12

sinh2 2v8
1

a22

sin2 2w8

.

The corresponding quadratic algebra relations are

@K̂,R̂1#52R̂1 , @K̂,R̂2#522R̂2 , @R̂1 ,R̂2#528K̂324aĤK̂216 dK̂24K̂,

subject to the operator identity

2 1
2 $R̂1 ,R̂2%1Ĥ21aĤK̂21K̂41aĤ1~514d!K̂214d50 .

This completes the analysis of the superintegrable potentials associated with the four m
of Darboux.

V. RELATIONSHIP TO CONSTANT CURVATURE SUPERINTEGRABLE POTENTIALS

In Secs. II–IV we have found, by means of exhaustive calculation, all superintegrable p
tials in the Darboux spaces of revolution having two or more quadratic integrals. Once the
expressed in suitable coordinates, it is clear that each is simply a multiple of one of the su
tegrable potentials on the complex Euclidean plane or 2-sphere, that have been enumerated
7, though that was by no means evident in advance.

In each case we can start with a Hamiltonian of the form
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H5H01aV0 , ~5.1!

whereV0 is a function of the coordinatesx andy, anda is a constant. Dividing the Hamilton–
Jacobi equation,H5E, throughout byV0 and rearranging gives a new Hamilton–Jacobi equa
in which the roles of the energyE and parametera have been exchanged,

H85
H0

V0
2

E

V0
52a . ~5.2!

Clearly, the integrability and separability of one system guarantees that of the other. It i
relationship between the harmonic oscillator potential written in Cartesian coordinates an
Coulomb potential in parabolic coordinates that has been discovered by many authors. Tr
mations of this type relating integrable systems were described in a more general cont
Hietarintaet al. in Ref. 14 and calledcoupling constant metamorphosis. See also Ref. 15 wher
the Stäckel transformand its close connection with variable separation was emphasized.

The preservation of integrability under such a transformation can be demonstrated exp
by noting that if$H0 ,L0%50 and

H5H01aV0 and L5L01a,0 ~5.3!

are in involution, i.e.,$H,L%50, then so are

H85
H0

V0
and L85L02,0H8 . ~5.4!

Any identities involving integrals associated with~5.1!, give rise to corresponding identitie
involving integrals associated with~5.2! and are obtained by the replacements

a→2H8 and H→0 . ~5.5!

A. Generating the Darboux spaces of revolution by coupling constant metamorphosis

Taking each of the degenerate potentials from Ref. 7, that is, the potentials with Hamilto
having one first order and two quadratic integrals and performing a coupling constant me
phosis we arrive at a Hamiltonian having one first orderK and two quadratic constants,X1 and
X2 . These must be free Hamiltonians either on one of the four Darboux spaces of revolut
one of the constant curvature spaces,E2(C) or S2(C). After comparing the Hamiltonians s
generated, it can be seen that this approach generates all of the Darboux spaces of revol

Knowing the Poisson algebra for each Hamiltonian involved and how coupling con
metamorphosis modifies this algebra, we can determine which Hamiltonian has been gen
even if it appears in unfamiliar coordinates. Note that some transformations reproduce th
Hamiltonian onE2(C) or S2,C , and some Darboux spaces can be generated from two dis
constant curvature potentials.

For each Hamiltonian we have four linearly independent constants of the motion. T
however, cannot be functionally independent and there is always a polynomial identity inK, X1 ,
X2 , andH that is of fourth order in the momenta. We can use this identity to classify the pos
Hamiltonians. Up to freedoms in choosingX1 and X2 , scalings ofK and coupling constan
metamorphosis, we find that there are five classes of identities that involve all of the con
The correspondences between these identities, degenerate superintegrable potentials from
and the Darboux spaces of revolution are summarized in Table I. Note that because we
coupling constant metamorphosis,H has the same status as parameters in the potential an
coefficientsA andB appearing in the representative identities may be functions ofH. The labels
in bold ~e.g.,E3, S3,...! refer to Ref. 7. Those Hamiltonians in Table I on the complex 2-sph
that is,S3, S5, andS6, are represented with three coordinatess1 , s2 , ands3 constrained bys1

2
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1s2
21s3

251 andJ15s2ps3
2s3ps2

, J25s3ps1
2s1ps3

, andJ35s1ps2
2s2ps1

. The potentialsE12,

E14, E4, and E13 are functions ofx2 iy and hence division ofpx
21py

2 by these potentials
reproduces the flat space Hamiltonian.

For example, starting from the algebraic identity for constants associated with the H
tonian and integrals

H5px
21py

21
a

x2 1a ~E6! ,

X15~xpy2ypx!px2
ay

x2 , X25~xpy2ypx!
21

ay2

x2 , K5py , ~5.6!

that is Ref. 7,

X1
21K2X22~H2a!X21aK250 ,

we find that applying the transformation~5.4! gives

TABLE I. Correspondences between constant curvature superintegrable potentials and Hamiltonians for Darboux s
revolution.

Degenerate superintegrable
potential onE2(C) or S2(C)

Hamiltonian for Darboux
space of revolution Representative identity

E5: 4x D1 :
pu

21pv
2

4u
X1

21AX21K41B50

E6:
1

x2 11 D2 :
u2~pu

21pv
2!

u211
X1

21K2X21AX21B50

S5:
1

~s12 is2!2 21

E12:
a~x2 iy !

A~x2 iy !21c2
1b

E2(C) X1
21K2X21A50

E14:
a

Ax2 iy
1b

E3: x21y214 D3 :
pu

21pv
2

41u21v2
X1X21AK21B50

E18:
2

Ax21y2
11

S3:
a12

s3
2 2a12 D4 :

pu
21pv

2

a12

u2 1
a22

v2

X1X21K41AK21B50

S6:
2is3

As1
21s2

2
1a

E4: a~x2 iy !1b E2(C) K2X11AX21B50

E13:
a

Ax2 iy
1b
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H85
px

21py
2

1

x2 11

, X185~xpy2ypx!px2
y

x2

px
21py

2

1

x2 11

5
y~py

22x2px
2!

x211
1xpxpy ,

X285~xpy2ypx!
21

y2

x2

px
21py

2

1

x2 11

5
~x21x42y2!py

21x2y2px
2

x211
22xypxpy , K85K ,

and using~5.5!,

X18
21K82X282H8X282H8K8250 .

Then

X1952X18 , X2952X281H8 , H95H8 , K95K8 ,

gives

X19
224K92X2914H9X2924H9250 ,

the identity~2.3! associated with the Darboux space of type two~2.1!.

B. Generating superintegrable potentials on Darboux spaces

The H0 in Eq. ~5.3! may itself contain potential terms and if these are chosen so thatH is
superintegrable, then so will beH8.

For example, taking the superintegrable Hamiltonian on the complex two-sphereS1,7

H5J1
21J2

21J3
21

a

~s12 is2!2 1
bs3

~s12 is2!3 1
g~124s3

2!

~s12 is2!4 1d

and dividing though by (s12 is2)2221 gives, after a change of coordinates, the superintegr
potential@A# in a Darboux space of type 2. The same Hamiltonian can be generated by div
E2 throughout byx2211.

Each potential in Table I is compatible with the addition of further terms while maintain
superintegrability, and in using the method demonstrated above, all superintegrable Hamilt
found in Secs. II–IV can be generated. The correspondences are given below.

1. Darboux spaces of type 1

The potentialE5, V054x, appears in each of

E2 : a~4x21y2!1bx1
g

x2 1d,

E38 : a~x21y2!1bx1gy1d,

E9 :
a

Ax2 iy
1bx1

g~2x2 iy !

Ax2 iy
1d .

The potential labeledE38 is a translation ofE3. Adding these potentials toH05px
21py

2 and
dividing by 4x produces the two real nondegenerate potentials found in Ref. 1 and an add
complex one given in this paper.@The details of the quadratic algebra and defining operators
the Hamiltonian derived fromE9 can be computed using~5.2!.#
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2. Darboux spaces of type 2

The potentialsE6 andS5 appear in each of the following:

E1 @B# : a~x21y2!1
b

x2 1
g

y2 1d,

E2 @A# : a~4x21y2!1bx1
g

y2 1d,

E16 @C# :
1

Ax21y2 S a1
b

x1Ax21y2
1

g

x2Ax21y2D 1d,

S1 @A# :
a

~s12 is2!2 1
bs3

~s12 is2!3 1
g~124z2!

~x2 iy !4 1d,

S2 @B# :
a

s3
2 1

b

~s12 is2!2 1
g~s11 is2!

~s12 is2!3 1d,

S4 @C# :
a

~s12 is2!2 1
bs3

As1
21s2

2
1

g

~s12 is2!As1
21s2

2
1d.

The superintegrable system generated after dividing byx2211 or (s12 is2)2221 as appropriate
is indicated by label the@A#, @B#, or @C#. The apparent over abundance of superintegrable po
tials generated in this way forD2 is resolved by noting that the same potential can appear in m
than one coordinate system.

3. Darboux spaces of type 3

The potentialsE3 andE18 appear in each of

E1 @B# : a~x21y2!1
b

x2 1
g

y2 1d,

E38 @A# : a~x21y2!1bx1gy1d,

E7 @D# :
a~x2 iy !

A~x2 iy !22c2
1

b~x1 iy !

A~x2 iy !22c2~~x2 iy !1A~x2 iy !22c2!2
1g~x21y2!1d,

E8 @C# :
a~x1 iy !

~x2 iy !3 1
b

~x2 iy !2 1g~x21y2!1d,

E16 @B# :
1

Ax21y2 S a1
b

x1Ax21y2
1

g

x2Ax21y2D 1d,

E17 @C# :
a

Ax21y2
1

b

~x1 iy !2 1
g

~x1 iy !Ax21y2
1d,

E19 @D# :
a~x2 iy !

A~x2 iy !224
1

b

A~x1 iy !~x2 iy12!
1

g

A~x1 iy !~x2 iy22!
1d,
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E20 @A# :
1

Ax21y2
~a1bAx1Ax21y21gAx2Ax21y2!1d.

As before, once the possibility of changes of coordinates in taken into account, the abo
produces only those superintegrable potentials found in Sec. III B.

4. Darboux spaces of type 4

The potentialsS3 andS6 appear in each of

S2 @A# :
a

s3
2 1

b

~s12 is2!2 1
g~s11 is2!

~s12 is2!3 1d,

S4 @A# :
a

~s12 is2!2 1
bs3

As1
21s2

2
1

g

~s12 is2!As1
21s2

2
1d,

S7 @B,C# :
as1

As2
21s3

2
1

bs2

s3
2As2

21s3
2

1
g

s3
2 1d,

S8 @C# :
as1

As2
21s3

2
1

b~s11 is22s3!

A~s11 is2!~s32 is2!
1

g~s11 is21s3!

A~s11 is2!~s31 is2!
1d,

S9 @B# :
a

s1
2 1

b

s2
2 1

g

s3
2 1d.

As before, once the possibility of changes of coordinates in taken into account, the abo
produces only those superintegrable potentials found in Sec. IV B.

VI. CONCLUSION

In this paper we have discussed in some detail three of the four Darboux spaces of rev
that have at least two integrals of classical motion quadratic in the momenta in addition
Hamiltonian. In each case we have also presented an exhaustive list of potentials for each o
spaces which when added to the Hamiltonians of these spaces preserve this property, i
there are still two extra integrals of the classical motion. These are the superintegrable s
associated with the systems of Darboux. The property of extra integrals also extends easily
case of the corresponding quantum systems. For each of these systems we have calcul
corresponding quadratic algebra relations and have shown that in each case the Hamiltoni
we obtain arise from constant curvature systems via a coupling constant transformation. W
also discussed the solutions of the corresponding classical and quantum problems in eac
inequivalent coordinate systems and have also given some of the embeddings of these sp
three dimensions. In the last section we have shown how the free Hamiltonians of Darbo
related to the superintegrable Hamiltonians on spaces of constant curvature via coupling c
transformations. We also list how the corresponding superintegrable systems of spaces of c
curvature are related in this way to the superintegrable systems that we have found. This
fication is comprehensive and complete.

Let us very briefly review the current status of superintegrability in two-dimensional sp
Most of the published work3–7 concerns quadratic superintegrability for classical, or quan
Hamiltonians of the form kinetic energy plus a scalar potential. Once a specific space is c
superintegrable systems in the space can be classified under the action of the corresp
isometry group. Systems in the same class are not only mathematically equivalent, but als
the same physical properties. In classical mechanics they will have the same trajectories
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trajectories will be periodic, if they are bounded. Similarly, in quantum mechanics superinteg
systems in the same class will have the same energy levels and eigenspaces.

Quadratically superintegrable systems exist in spaces of constant curvature and also
boux spaces. A Darboux space is defined by the fact that it allows one Killing vector and
~irreducible! Killing tensors. This paper completes the task of classifying all quadratically su
integrable systems in all of the above spaces.

The results are quite rich. Indeed, in the real Euclidean spaceE2 , we have fourE(2) classes
of superintegrable systems.3,4 They are physically quite diverse. One is an isotropic harmo
oscillator with additional terms, calledE1 in Sec. V. A second is an anisotropic harmonic oscilla
with additional terms~calledE2!. The third and fourth are Kepler~or Coulomb! systems with two
different types of additional terms, respectively. In complex Euclidean spaceE2(C), or corre-
spondingly in the pseudo-Euclidean spaceE(1,1), one obtains six more classes.5

Two classes of superintegrable systems exist on the real sphereS2 , four more on the complex
sphereS2(C).6 On the real Darboux spacesD1 ,...,D4 we have obtained 3, 4, 4, and 4 classes
systems, respectively. One more for the complex spaceD3(C).

From the mathematical point of view the situation is much more unified. As was stre
above, superintegrable systems that may correspond to quite different physical situations
related by coupling constant metamorphosis. Once we allow this type of equivalence, many
equivalence classes exist. For instance, in real Euclidean space we only have two classes,
the Kepler potentials with additional terms are equivalent to isotropic harmonic oscillators~in one
case with the additional terms!. All superintegrable systems in Darboux spaces are related
coupling constant metamorphosis to systems in spaces of constant curvature. ForD1 , D2 , andD3

this is always flat space, complex or real. Two of the systems inD4 are related to systems in rea
Euclidean space. The other two are related to systems on a complex sphere. The relatio
course not unique and depends on the choice of coordinates~see Sec. V!.

A typical feature of quadratic superintegrability for scalar potentials is that quantum
classical superintegrable potentials coincide. They allow separation of variables in at lea
coordinate systems in the Schro¨dinger and Hamilton–Jacobi equation, respectively.

Superintegrability involving third order integrals of motion has also been considered16,17

There the situation is quite different. Multiseparability is lost. More interestingly, quantum su
integrable systems exist~in real Euclidean space! that have no classical analog~in the classical
limit they reduce to free motion!.
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