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Almost all research on superintegrable potentials concerns spaces of constant cur-
vature. In this paper we find by exhaustive calculation, all superintegrable poten-
tials in the four Darboux spaces of revolution that have at least two integrals of
motion quadratic in the momenta, in addition to the Hamiltonian. These are two-
dimensional spaces of nonconstant curvature. It turns out that all of these potentials
are equivalent to superintegrable potentials in complex Euclidean 2-space or on the
complex 2-sphere, via “coupling constant metamorphos@” equivalently, via
Stackel multiplier transformations We present a table of the results. ZD03
American Institute of Physics[DOI: 10.1063/1.1619580

I. INTRODUCTION

In a previous papérwe have studied superintegrability in a two-dimensional space of non-
constant curvature, in particular one of the so-called Darboux spaces, given by Ko#nids
paper we study the remaining three spaces of nonconstant curvature from the point of view of
superintegrability. This involves the addition of a potential to each of the spaces given by Koenigs.
We recall that classical superintegrability relating to a Hamiltonk(x,... X, ,p1,---.Pn)
=H(x,p) implies the existence ofr?—1 globally defined constants of the motion. For the pur-
poses of this paper we restrict this definition to require that there erist12globally defined
functionally independent constants of the moti¥p, i=1,...,20—1 that are quadratic in the
canonical momentg@; . This clearly implies the relations

n

H,X,}= —— — — =0, i=1,...02—-1.
HXd =2 | 5 op ap, o !

The concepts of integrability and superintegrability also have their analog in quantum me-

chanics. A superintegrable quantum mechanical system is described-by @hdependentquan-
tum observable$i=X;,X,,...,.X,,_1 that satisfy the commutation relations

[H,X]=HX;—XH=0, i=1,.. -1
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The analog of quadratic superintegrability in this case is that each of the quantum observables is
a second order partial differential operator. Systematic studies of superintegrable systems have
been conducted in spaces of constant curvature in two dimersions.

In this paper we solve the following problem. Given a Riemannian space in two dimensions
with infinitesimal distance sf=37;_,g;;(u)du’ du!, andu=(u*,u?), the classical Hamiltonian
has the form

2
H=iJZ:l g'pip;+V(u)

and the corresponding Schiiager equation is

. 1 .
AW = —0,(Jog*ou¥)+V(u) ¥ =EV,

Vg

where\g= det(;). Koenigs found all free Hamiltoniarid=>g" pip; admitting at least two extra
functionally independent constants of the motion of the form

2
A= 2 al(upp;, al=al.
i

He obtained a number of families of solutions; in particular, spaces that admitted three extra
quadratic constants. There must then be a functional relation between these and, furthermore, in
each case there is a Killing vector, i.e., a functjior =2_,al (u)p; that satisfie{H,u}=0. One
of the three quadratic constants is a square of the Killing vegtor

The problem we solve here is supplemental to that of Koenigs: Suppose we have a Hamil-
tonianHzEg”piijrV(u) that admits a Killing vector. We determine tpetentialsthat corre-
spond to superintegrability, i.e., potentials such that we can find at least two extra functionally
independent quadratic constants of the form

2
A= 2 al(u)pip;+r(u).

i,j=1

A necessary condition that this be possible is that the Riemannian space be one of the four listed
by Koenigs:

(1) ds?= (x+y)dx dy,

(2) ds?=(a/(x—y)?+b)dxdy,

(3) ds?=(ae” *™V24pe X Y)dx dy,

(4) ds?=[a(e* "2+ ely=2/2) 1 p]/(e*~2—ey=x)/2)2 g4x dy.

The first of these spaces, type one[Xr, has been treated in detail in an earlier pdpdere
we treat the remaining three Darboux spaces in a similar and unified way. Sections Il, Ill, and IV
are devoted to the spacBs, D5, andD,, respectively. In each space we follow the same pattern.

(1) We first consider a classical free particle system and give the free Hamiltdgiathe Killing
vectorK, and the two Killing tensors(; and X, in a space with a conformally Euclidean
metric (real or complex We choose coordinatasandv in which the first order constant is
K=p,, henceu is an ignorable variable, not appearing in the metric or in the Hamiltonian.

(2) We present an embedding of the two-dimensional Darboux space into a three-dimensional flat
space.

(3) We present a polynomial relation between the four integrals of métiol, X, , andX,, and
also the polynomial algebra generated by these integrals.

Downloaded 23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



J. Math. Phys., Vol. 44, No. 12, December 2003 Superintegrable systems in Darboux spaces 5813

(4) We consider the quantum mechanics of a free particle in the corresponding Darboux space,
i.e., write the corresponding Hamiltonian and integrals of motion as linear operators. We then
establish that the relations between these operators are the same as those between the classical
quantities.

(5) We use the fact that the Killing vectdt generates a one-dimensional Lie transformation
group to classify all integrals of motion

A=aX;+bX,+cK? (1.1

into conjugation classes. Each class gives rise to a coordinate system in which the Hamilton—
Jacobi and Schobnger equations allow the separation of variables. We construct these sepa-
rable coordinate systems explicitly and solve the corresponding separated eq(cdissisal
and quantumn

(6) By construction, the free classical and quantum systems in Darboux spaces are all quadrati-
cally superintegrable: they have three functionally independent integrals of motion. We intro-
duce potentials that do not destroy this superintegrability. Thus we present systematically alll
superintegrable classical and quantum systems of the form

H=Ho+V(Uu), (1.2

whereH, is the free Hamiltonian in the spaés,, D5, or D,. To obtain this result we make
use of the fact that to be quadratically superintegrable, a Hamiltonian in a Darboux space must
allow the separation of variables in at least two coordinate systems.

A separate section, Sec. V, is devoted to the relation between superintegrable systems in
Darboux spaces and two-dimensional spaces of constant curvature.

II. DARBOUX SPACES OF TYPE TWO

A. The free particle and separating coordinate systems

If we allow rescaling of the variables andy, as well as the Hamiltoniahl then we can
always takeH to be of the form

_ )2
x y_lpxpy- 2.1

Ho=(x=y)?

In the coordinatex= 3 (v +iu), y= 3(v—iu) this Hamiltonian becomes
ui(pi+p?)
o ui+1
Associated with the Hamiltonian are three integrals of the free motion

~ 2u(p;—u’p}) (v”—u"pi+u*(1-v?)pj

K:pvv Xl_ U2+1 +2upupv! X2: U2+1 +2uvpupu'

These three integrals satisfy the following polynomial algebra relations:
{KX}=2(K?=Ho), {KXz}=Xy, {X1,Xo}=4KX,. (2.2)
They are functionally dependent via the relation
X2—4K?X,+4HX,—4H2=0. (2.3

The corresponding problem in quantum mechanics can be obtained via the usual quantization
rules and symmetrization:
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2

~ u ~ v
— 2 2 _ 2 292
HO_Jz_l(a”+(9“)’ K=d,, Xl—(ui l)((gv u=dy) +2udyd, +d, ,

5\(2:

2 2
T 1((vz—u4)av+u2(1—v2)au)+2uvauav+uau+vav— 7

where the constant in the last expression is taken for convenience. The commutation relations are
identical with those of the corresponding classical algebra,

[K,X1]=2(K2=Fp), [KX]=X1, [X1,X]=2{K,X,}.

Here {K,X,}=3(KX,+X,K). The operator relatiofithat exists in analogy with the functional
relation in the classical capés

X2—2{K2,X,} +4HoX,— 4H3— Ho+ 4K2=0.

The line element sF = (du?+ dv?)(u?+ 1)/u® can be realized as a two-dimensional surfaced
embedded in three dimensions by

vuP+1 Ju?+1 (2u*+5u?+8v?)Jyu’+1 3 _
X:T’ Y-T= T Y+T=- U —garcsmm,

in which case,

u?+1

ds?=dX*+dY?—dT?=—
u

(du’+dv?) .

We wish to determine all the essentially different separable coordinate systems for the free
classical or quantum patrticle. In order to do this we need to consider a general quadratic constant
of the form A=aX;+bX,+cK?. Under the adjoint action of expK), X; and X, transform
according to

Xi—=X1+2a(K2=Hyp), Xp,—Xp+aX;+a?(K2—Hy).

From these transformation formulas we see thdt#0 we can always taka in the form\
=X,+ BK2. If b=0 then there are two representatives possi¥jeor K2. We have the following
cases:

Xo+BK2, Xy, K2, (2.4
We now demonstrate the explicit coordinates for each of these representatives using methods

of our previous papér.

1. Coordinates associated with X ,+ BK?

If we chooseB=b?, b+0 suitable coordinates, ¢ are
u=b coshw cosg, v=bsinhwsing, (2.5
the standard form of elliptical coordinates in the plane. The classical Hamiltonian has the form

- P2 +p?
~ sed ¢—secl w+b?(cosif w—cos @)

Ho

The corresponding quadratic constant, expressed in these coordinates is
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(se€ @+Db?sir? @) p’ + (sech w—Db?sintf w)p?

212 _
Xp+b°KE= (se€ ¢—secl w)+b?(cosif w—cog ¢)

The Hamilton—Jacobi equation is

( 9S\? ( aS) 2

R J’_ —_—

Jw e _
se€ ¢—sech w+b?(cosif w—cos ¢)

with solutions of the form

. bf“ \/m/sl)(mﬂz f \/(/31 <<1> B o

where B+ B,=—NEb?, B.8,=—1b? ®=cog ¢, Q=costfw. The corresponding Schro
dinger equation

2 2
(2+ )W

se@ p—secR w+b%(cosfw—cof ¢) Ev

has solutions of the form
W= /cose coshw SM(i sinhw, — tEb)PSM(sing,—Eb), j=1,2,

whereS™)(z,«) and Ps(t,x) are spheroidal functiondandE=m?— %

2. Coordinates associated with X

Here we use polar coordinates
u=rcosf, v=rsinf. (2.6

The classical Hamiltonian has the form

22 2
r pr+p0

H,=
0 121 sed g
and the corresponding quadratic constant is

r2seé 6 p?—
27 r24seCo

The Hamilton—Jacobi equation in these coordinates is
dS\? [aS\?

r2l—| +|—
ar a6
r’+se¢g '

with solution
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S(r,0)=VErZ+x—\ arctan — I\ log(y/X sin@+ JVE—\ co 6)

(E+\)cog 0—2E)
(E—\)cos 6

+§ E arccosl6

The corresponding Schdimger equation is

L, g0 L oY
o TIN5 sing g ew
r’+sec o S

and has solutions of the form

W=1rsind C, 1o(V—E r)P{(cosf), E=m’- g,
whereC,(2) is a Bessel function anB}(cos#) is an associated Legendre polynonfial.

3. Coordinates associated with X
A suitable choice of coordinates is

u=£én, v=35(8-79°). 2.7
The classical Hamiltonian in these coordinates has the form

2, .2
PP
Ho= & Moy

1 1
249’4 >+ —
&+ &2 772

| gl

§2+n2+—12+—12
& 7

The corresponding quadratic constant is

1
772+

X]_:

The Hamilton—Jacobi equation has the form

ERE

E+ n°+ L2 -
7 52 772
which has the solution
Se = VEEEEMT A MR ) ElogVEREE—N)
s =— - arctan (0]
7 & 2\E 2JEVEE +E—\ &2 J
VE*+E+N72 A A%+ 2E
+2EVEE+E—NE%) — 7 U arctan 7
7 C2E 2JVEVEE+E+\E

+Elog(VE(2EE2+\) + 2EVEE*+E+ N\ ED).
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The corresponding Schdmger equation is

P2V + 9>
£ 7 —EV.

1 1
§2+ 7]2+ ? + ?
Typical solutions are

1

Vén

. . . _ 2
whereM, ,(2) is a Whittaker functiohandE=4u’— 1.

4 M, (VEEM _, (VE7?),

4. Coordinates associated with K 2

The representativi? has associated with it the coordinatesindv, in which the ignorable
variable has a fundamental role to play. The Hamiltonian and constant associated with this sepa-
ration have already been given. The Hamilton—Jacobi equation has the form

2 &SZ
e

which has solution, with separation constant

2 [{aS

au

u
u+1

us(E-c9)+E

S(u,v)=JUAE-c?)+E—+E arctanhy/—————+cv.

E

The corresponding Schdimger equation has the form

2

u2+1(a3xp+aqu)=5w.

Typical solutions are
V=\u C,(Jm?’—E uye™,

whereE=12— 1.
It is no surprise that the Hamiltonian is separable in elliptic, parabolic, and polar coordinates,
since, if we write the classical equatiéf=E in u,v coordinates we obtain

pﬁ+pf—E =0.

1+1
u

This equation is essentially the same form as a flat space superintegrable system with Cartesian
coordinatess,v and potentiake/u?, viz.,

a
pa+pZ+ 2 -E=0.

It is known to be solvable via the separation of variables ansatz in elliptic, Cartesian, polar, and
parabolic coordinates. This correspondence between flat space superintegrable systems and their
curved analogs is essentially the way all the curved superintegrable systems can be obtained and
is discussed in more detail in Sec. V.
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B. Superintegrability for Darboux spaces of type two

In this section we address the problem of superintegrability for the Hamiltonian

u2 2+ 2
0= (P p”). (2.9
ul+1

This is done in exactly the same manner as it was for the Darboux space of type 1 in a previous
papert The free space Hamiltonian is given and we compute the possible potentials that corre-
spond to superintegrability. There are four possibilities:

_ u? 2, .2 1 2, .2 a3
[A] H——2—u 1 putp,+a; 2! +v +azv+az .
A basis for the additional constants of the motion is
2 2 2
_ a, , U tdv az[ , 4 2a3v
AR R LT e R ) R Y R TR
R2:K2+ a1U2+a2U .
These, along wittR={R;,R,}, form a quadratic algebra
— 1 9R? R R _10R? ”g
{R, 1}__§a_R2' {R, 2}_§a_R1 (2.9

that is determined by the identity
R?=16R3—4a,R?— 32HR5— 8a,R;R,+ 8a,HR; + 16(H?>+a;H —a,a;3)R,+ 4a5H — 4a3a; .
The classical equation of motidd—E=0 is

a;—E
+a.2U+ U2 —E=0.

2. 2
putp,tag

1
ZU2+ 02

The basic form of this equation is a superintegrable system in flat space, but with rearranged

constants, which is solvable via separation of variables in Cartesian and parabolic coordinates.
This accords with the fact that the leading part of a quadratic constant for this Hamiltonian

will be an element of the orbits representedXyandK?2. So this Hamiltonian also separates in

the “parabolic” coordinates, » (2.7) and in these coordinates takes the form

1 1 1

Pi+P5+ 721(E%+ 7°)+ Saa(£0— ') +ag 7t

"= 2 2 1 1 .
f +77 +?+?

Adding the same potential and coordinate functions to the quantum Hamilték@iamd its
corresponding commuting operatofs andK?, we obtain the operators

2

|:|—|:| +u— a —u2+v2 +a v+%
0 U2+1 1 4 2 u2 ’
SN P ul+4v?\ a, 2, 4y 2azv
= —vlu“+———|+—=|u — ,
) u?+1 2 u?+1/ u+1
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§2:R2+ all)2+ azv .

R, and R, commute withH and along withR=[R;,R,], obey the corresponding quantum
quadratic algebra relations

[R,R;]=—24R2+4a,R; +32AR,— 8A%—8a;H + 6a, + 8a,a5,

[R,R,]=—4a;R,—4a,R,+4a,H
and the operator identity
R?=16R3—4a,R?— 32HR3— 4a,{R, ,R,} + 8a,AR; + 16H%R, + 16a,;HR,— 4a;(4a;— 11)R,
+4(a5+8a;)H—4b3(az+ 3).

u2

U+l

[B]

b, b
p2+p2+by(u?+v?)+ u—§+ U—g)

The additional constants of the motion have the form
2+ 2 2

b
R1:X2+ bl(u2+l}2)_b2_b3?) y R2:K2+b1U2+U_g-

u’+1
The corresponding quadratic algebra relations can be determined,(@9hgrom the identity

R?=16R;R5— 16b;R?— 16HR;R,+32b;(H—b,—b3)R; + 16(H+bs—b,)HR,
—16(b;+b3)H?+32b,(b,— bg)H —16b,(b,—bg)?.

The equation of motiotd —E=0 becomes

2

b
P2+ p2+by(u2+v?)+ —5-

b,—E)
(2—2 + E = O .
u v
This is a superintegrable system in flat space, but with rearranged constants, which is solvable via
separation of variables in Cartesian, polar, and elliptic coordinates. Again, this agrees with the
observation that for this Hamiltonian we have quadratic constants with leading{gars,, and

X,+ BK2. In the latter two coordinate systems, the Hamiltonian takes the following forms:
(i) Elliptical coordinateq2.5),
P2+’ + 101b%(Sint? 2+ sir? 2¢) +bj(seé o —seck w)+by(cosed ¢+ cosech )
H= sec ¢—sech w+b?(cosit w—cos ¢) '

(i)  Polar coordinate$2.6),

y r2p?+p3+br*+b,seé 6+ bz coseé ¢
- r’+sec o

The corresponding quantum algebra relations are
[R,R;]=—8{R;,R,} +8AR; +12R,— 8A2+8(b,—bs— HA,

[R,R,]=8R3—16b;R,;— 8AR,+ 160,;H— 160, (b, +bs+ ),
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R?=8{R;,R3} —8H{R;,R,} + 16H?R,— 16b,R?— 76R5+ 32b,;HR, — 8b;(4(b3+b,) + 3)R,
+16(bg—b,+ AR, — 16(b; +bs+ 3)AH2—8b,(4(bs—b,)+3)H
+b,(36+480;— (4(b3—by) +3)?).

C3

Co
2 2
p§+ p7I+C1+ ?4‘ —

[C] H= . , 1 1
§+7]+?+?

The additional constants of the motion are

C &4+ 1)+ e p*+ 1) —ca(£4+1)

Rui=Xat E7P+ D E+ 1) :

C1(E2+ n?) —Co(n*—1)—c3(€-1)

Rp=X,+
2 A&7+ 1)

The corresponding Poisson algebra can be determined from the identity
R?=4R2R,— (C,+ C3)RI+ 16HR5— 4c;R;R,+ 2¢,C3R; — 16H?R,+ 4(c,+ c5) H?
+(c2—4c,cy)H—c2cy.

The Hamiltonian can be written in separable form for the following coordinate systems:

(i) Displaced elliptic coordinateé=b’ coshw’ cose’, 7=b’ sinhw’ sing’,
pi,+pi,+clb’2(cosr? o' —cog @' )+cy(? ¢ —sech w')+ cz(cosed ¢’ +cosechw’)

" b’%(cost o' —cod ¢’ —cosi w' +co ¢')+se ¢’ +cosed ¢’ +cosech o’ —secR o’
These coordinates are not those giveridrb) and are related ta andv by
u=1b'?sinh 2w’ sin2’, v=21b'?(cosh 2’ cos 2’ +1).
(i)  Polar coordinateg=r"' cosé¢’, n=r'sind’,

r'2p% +p2, +cyr'2+c,coseé 0 +cgseé o’
B r'4+sec ¢’ +cosec o’

These coordinates are not those giveridré) and are related ta andv by
u=3r'?sin2¢’, v=3r'2cos29’ .
The corresponding quantum algebra relations are
[R,R,]=—2R2-2¢c,R,;— 16AR,+8H%—6H,
[R,R,]=2{R;,R,} — (c,+C3)R —2¢,Ry+C1C3,
R?=2{R? ,R,} + 16AR5— (C,+ C3+4)R3—2¢,{R; R} +2¢1(C3+ 2) R, — 16H2R,+ 12AR,
+4(cy+cz)H2+ (c2—4c,c5—3(Co+c3) )H— 2(3+4cs)c?.

The equation of motiotd —E=0 is
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(c;—E) (c3—E) o,

pi+potci—E(&%+ 99+ 7t

This is a superintegrable system in flat space, but with rearranged constants, which is solvable via
separation of variables in Cartesian, polar, and elliptic coordinates.

_uX(pgtpi+d

B u?+1

[D]

The additional constants of the motion are

d(u?+v?)

R]_:Xl'i‘m, R2=X2+W, KZpU.

The corresponding Poisson algebra relations are
{K,R}=2K?-2H+2d, {K,R)}=R;, {R;{,R}=-4KR,.
The functional relation between these constants is
RZ—4K?R,+4(H—d)R,—4H?+4 dH=0.

The Hamiltonian can be written in separable form for all the possible types of separable coordi-
nates we have discussed, viz.,
(i) Elliptic coordinateq2.5),
p;,+p;+b? d(cosi w—cos ¢)
" bAcosFw—cof ) +seCo—secR o’
(i)  Polar coordinate$2.6),

r?p?+pa+dr?
" r’+sedd
(i)  Parabolic coordinate@.7),
pe+p;+d(E2+ 7?)
H=
2+ 2+i+i
7 52 772

The corresponding quantum algebra relations have the form
[K,R;]=2K?-2H+2d, [K,R,]=R;, [R;,R,]=2{K,R,}.
The operator identity satisfied by the defining operators of the quantum algebra is
RZ—2{K?,R,} +4HR,— 4 dR,+4K?—4H?+ (4d—1)H=0.
The equation of motiotd —E=0 is
p2+p2+d—E— §=0.

This is a superintegrable system in flat space, but with rearranged constants, which is solvable via
separation of variables in Cartesian, polar, elliptic, and parabolic coordinates.

Downloaded 23 Oct 2008 to 130.217.76.77. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



5822 J. Math. Phys., Vol. 44, No. 12, December 2003 Kalnins et al.
Ill. DARBOUX SPACES OF TYPE THREE

A. The free particle and separating coordinate systems
With rescaling and translation of the variabkesindy the HamiltonianH has the form

e(x+y)/2
Ho= T a=wrym PxPy - 3.9

In coordinatesx=u—iv, y=u+iv we can write this Hamiltonian in positive-definite form

_1eM(pi+pd)
0T el

Associated with the Hamiltonian are three integrals of the free motion

K « 1 e , le'(e'+2) , 1

=p,, l—Z—eU+lCOSv pu—ZeuTCOSU pv+ Ee Sinv PyPy »
x—l et o, leYe'+2) 1
Z—Z msmv pu—ZWsmv pv—ze Ccosv pyp, -

The integrals satisfy the polynomial algebra relations
{K.Xb==Xa, {KXa}=Xy, {X1,Xz}=KHy.
They are functionally dependent via the relation
XZ+X3—H5—HK?=0.

The corresponding problem in quantum mechanics can readily be obtained via the usual
quantization rules and symmetrization,

2u

~ 1 e 5 .

H0=ZeU+1(¢9u+&U), K=d,,
.1 e , le'(e"+2) , 1 1 1
Xlzzmcoswu—zW005v00+§e“5|nvéuav+Ze“c03v0u+ze”smvav,
L, 1oe o leYe'+2) 1 1, 1,
XZZZ euTlsmv&u—ZeuTsmuav—Ee cosvd,d,+ Ze Slnvﬂu—ze cosvd, .

The commutator algebra obtained has the same form as the Poisson algebra, and the identity
relating the operators is

The line element &= (e~ Y+ e~ 2")(du?+ dv?) can be realized as a two-dimensional surface
embedded in three dimensions by

X=vVe U+te M, Y-T=Je U+e
Y+T=(1-v?)e U+e Z+log(1+2e U+2\e "+e )+ farctari2 e U+e V),

in which case,
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ds?=dX?+dY2—dT?=(e Y+ e 2)(du’+dv?) .

Just as we have done in other cases, we wish to determine all the essentially different sepa-
rable coordinate systems for the free classical or quantum particle. To do this we need to consider
a general quadratic constant of the fomm=aX;+bX,+cK?. Under the adjoint action of
exp(K), X; and X, transform according to

Xi—cosa X;—sina X,, X,—sina X;+cosa X,.
From this transformation law we see thatan take five different forms
K2, Xy, Xi+9yK2  Xi+iX,, Xi+iX,—K2 (3.2

We now demonstrate the explicit coordinates in the case of each of these representatives.

1. Coordinates associated with K 2

These are the coordinates associated with the ignorable coordiaaie the Hamiltonian has
already been given in the,v coordinates. The Hamilton—Jacobi equation is

aSZ_E
% - ]

1 e2u

3S\?
4¢e'+1\\gu

Ju

with solutions

~ JAE(1+eY) —c%? |E y( JE(e'+2)

S(u,v)= e - Tarctan L) -

+ilog(i(c%e"—2E) +cV4E(1+e")—c%e®) +cv .
The corresponding Schdmger equation is

1 e g
1 m(ﬁﬁ ) V=EV¥,
with solutions of the form
VT=e UM _y—¢ .m(4/—Ee Yem,
2. Coordinates associated with X

For the second representative($12), a suitable choice of variables is

u/2

—2a—UR2 2 —29a— i z
&=2e cosz, n=2e S|n2. (3.3

In terms of these coordinates the classical Hamiltonian has the form

__Pitp,
0" 44 &4 472

and the corresponding quadratic constant is

2+ p)pi-(2+8)p5
Y 204+ 8+ 7))
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In ¢, 7 coordinates the classical Hamilton—Jacobi equation is

2

IS (78)2
—_ + —_

23 an)
4+ 8+ 2

which has the solution

s 15 E&2+ 2E— N+ ZE_)‘)| (E+ JEEZ+2E—\)
= —_— —_ 0 —
2 2JE 9
+1 En’+2E+\+ 2E+A log(E+ VE7®+2E+\)
—a 0 N .
> ME7 2 JE g 7
The Schrdinger equation is
(95+32)W
A+ 8+ 2

which has typical solutions

W=D\ _2g)e( £ (AE) D _ (1 gy ae( = (4E) ),

in terms of parabolic cylinder functior® (z).8*°

3. Coordinates associated with X 1+ yK?

For the third case it is convenient to take the representativéXs+ 2K2. Here we identify
coordinates via

é=bcoshw cose, n=bsinhwsing. (3.9
The classical Hamiltonian has the form
pa+p
HO:
2b?(cosh 2w—cos 2p) + +b*(costf 2w —cos 2¢)

and the corresponding quadratic constant in these coordinates is

(8 cos 2p—b?sin 2¢) p2 + (8 cosh 2+ b? sinh 20) p?

2 2_
b“X,+2K 8b?%(cosh 2w —cos 2p) + b*(coslt 2w —cos 2¢)

In the ¢, w coordinates the classical Hamilton—Jacobi equation has the form
s

_ J’_ _
Jw 1%

2b2(cosh 20— cos 20) + 1b*(cosi 2w —cog 2¢)

and has the solution

5(‘*’"1’):41‘1*’2@(J <Q—al><n—a2>dﬂ+f \/(ﬂl—cbxcb—ﬁz) i

0%-1 1- P2
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wherea;+ a,=— 81— B,=—8/b?, aja,=— B18,— 4N/Eb?, Q=cosh 2, ® = cos 2p. The cor-
responding Schidinger equation,
VA A
2b?(cosh 2v—cos 2p) + +b*(costt 2w —cos 2¢)

EV,

separates withl = ®(¢)Q(w) in the equations
(9%+2b%E cos 2p+ §b*E cosdp+ N+ 3b'E)d=0,
(9% —2b%E cos 2w— tb*E cosdw—\— :b*E)Q=0,
which has typical solutions
W1=gCn(¢,bV—E,20V=E)gcn(iw,by—E20V=E),
V,=gsn(¢,bV=—E,20/=E)gsy(iw,by—E2b\=E),

with corresponding separation constant giver\y= unb?(1+b?)E/8. The functions appearing
here are even and odd Whittaker Hill functiois.

4. Coordinates associated with X 1+iX,

In the case of a system specified by the fourth representative there are, in fact, no separable
coordinates. However, in the coordinates

x=E&+in, y=3(é—in)?,
the classical Hamiltonian takes the form

2pypy
Hfm

and the corresponding constant is
X1 +iX,=2yHo—p2.
The solution of the Hamilton—Jacobi equation
dS 9S
X ay

A
S=x\Ey— A+ E log| VE y—ﬁﬂL\/Eyz—)\y .

The corresponding Schdimger equation is

20,0,V

2y Tk

which has solutions
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. (2E3/2y_ E1/2+ ZE\/EyZ_)\y)v‘FeXV‘Ey—)\

VEY—A

5. Coordinates associated with X +iX,—K?

In the case of a system specified by the fifth representative an appropriate choice of coordi-

nates is
m—V | p—v
= +Vur, =il —— 3.
N A PR @9

The corresponding classical Hamiltonian has the form

o w2ps—v?p’
O (utv)(2+p—v)’

and the quadratic constant is

VA(pt+2)upi— u(v—2)vpk,

X, +iX,—K2=
e (u+v)(2+p—v)

In the u, v coordinate system the classical Hamilton—Jacobi equation has the form
aS\? [ dS|?
u v v
(p+v)(2+pu—v)

2

which has the solution

S(u,v)=VEu?+2Eu+ N+ VElog(VE(1+ u) + VEuZ+2Ep+\)

AN+E
—\/Xarctam(\/X = 2+:E — +\Evr2—2Ev+\+Elog(VE(1—v)
" I

AN—Ev
UWVEZ—2Ev+2\

+VEvZ—2Ev+N)— \/Xarctamé

The Schrdinger equation

Iu’(?,u,(lua,uq,)_ VO’)V( VO’)V\P) _
(at@ra—n oV

separates withl = A(«)B(v) into the equations
(wd,(1d,)—Ep?~2Eu—p?)A(n)=0, (vd,(vd,)—Er’—2Ev—p?)B(»)=0,

and has solutions, in terms of the Whittaker functidp , , of the forn?

1
J:VMVEP(zE M _ g ,(2VE v).

M

If we write the classical equatiod =E in &, » coordinates, we obtain
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pi+p2—E(4+ £+ 7)) =0.
This is in the form of a flat space superintegrable system which can be solved by separation of

variables in Cartesian, polar, hyperbolic, and elliptic coordinates.

B. Superintegrability for Darboux spaces of type three
In this section we address the problem of superintegrability for the Hamiltonian
1 e®(pi+p)
R 39
We arrive at five possibilitiedA], [B], [C], [D], [E].

2 2
pet+ps,taétantas
4+ £+ 7?

[A] H=

The additional constants have the form

2a,£(2+ 7°) —28,m(2+ £) +ag(n*— &%)

Ry=X;+ 4(4+ €+ 9P ’

(= E+4) + a2~ n°+4)—2a3én
A(4+E+ 7P '

R2:X2+

The corresponding quadratic algebra can be determined from the identity
RZ=HRI+HR5+ 3(a5—a?)R,;— ja;2,R,—H3+ 3agH?
+ £ (2a5+2ai—a3)H— Has(aj+aj) .

This Hamiltonian separates in a family of coordinate systems obtained by translating the given
separable system vig— ¢+a, »— np—a. The corresponding quantum algebra relations are

[R,R]=—FRy+ 3a18,, [RR;]=HRy+ (a3—ad),
§2:H§i+ﬂ§%+ %(ag—ai)ﬁl— %alazl’:\ez_ﬂs'f' %(a3+ %)HZ
+ &(2a%+2a5—a3)H— Sag(a’+a3).
As in the case of free motion, the equatidr=E becomes
2,42 _ 24 2y
pet+p5,taétaptaz—E(4+£°+799)=0.
Again, this is a superintegrable system in flat space but with rearranged constants.

b; b
p§+p§]+?+ ?erg
[B] H=

4+ 2+ 72
The additional constants are

20y (7 +2) = 20,8%(£2+ 2) + by(7°— &)
4(4+ £+ 7% :

R]_:Xl“l‘ (37)
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bin?  by&?
R2=K2+—2—4§ +—Z477 . (3.9

The corresponding quadratic algebra relations are determined by
R?=—4RIR,— (b1 +b,)Ri+ 4HR5+2(by—b,)HR; + 3bg(b,—by)R; +4H2R,— 2bsHR,
+ §b5R,— (by+0,) HZ+ (5ba(by +by) —byby)H— f5b5(bs +by).

This Hamiltonian separates in all the separable coordinate systems given in Sec. Il A. The Hamil-
tonian has the following explicit forms:
(i) In u, v coordinates,
v v
e p2+p2+ b, set?z +1b, cose&i +bye Y
H=

4(e"+1)
(i)  In the elliptical coordinate$3.4),

" p2+p2+by(sed ¢ —sech w)+b,(cosed ¢+ cosech ) +bzb?(costt w—cos ¢)
2b?(cosh 20— cos 2p) + 1b*(cosif 2w—cof 2¢) '

The corresponding quantum algebra relations have the form
[R,R;]=2Ri—4HR,— 2M2+ (bs+ 3)H— b3,
[R.Rp]= —2{Ry,Ro} — (by+ byt 1)R; + (b —by)H+ F (b~ by)by,
R?=—2{R2 R,}— (b; +b,+5)R3+4HR3+2(b;—b,)HR; + bs(b,— by) R, + 4H?R,
—(2b3=1)HRy+ §b3R,— (by +by—2)H2+ (3 (bg+ $)(b1+by) —bz—bib,— 3)H
— £b3(by+b,—2).

As in the case of free motion, we observe that equatlenE becomes
by by
pi+ps+ g+ themE(4r &+ 7% =0.

This is a superintegrable system in flat space, with rearranged constants, that separates variables in
Cartesian, polar, and elliptic coordinates.

+v 22
202 _ 2.2 H K
P, = VP, Ci(putv)+Cy w +C3 077

(€] H= (a2t =)

The additional constants of the motion have the form

Ci v+ Cour+2c3(1+ u—v) 5 m—v (u—v)?
y R2:K _C2 _Cg .

uv(2+pu—v) 787 w?v?

R1=Xl+iX2—

The corresponding quadratic Poisson algebra relations can be determined from

R?= —4R,R?+8c,HR; — 4¢,C,R; + 16c3HR, + 16c3H2 + 4(c5— 4cqc3)H + 4c3cy .
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The quantum algebra relations are
[R,R]=2R2—8csH, [R,Ry]=—2{R;,R,}—R;+4c,H—2c;cC,,
R?=—2{R? R,} +8¢,HR, + 16c;HR,— 5R?— 4c,C,R,
+16c3H2+4(cg+c5—4c,c3)H+4c%cy.
As in the case of free motion, equatiéh=E becomes

8c, | 16ca(é-in)

2. 2\ _
Erig? " @R S ATETT0

pE+po+2c,+

a superintegrable system in flat space with rearranged constants, that separates variables in polar
and hyperbolic coordinates.

p2p% =125+ dypu+ dyv+ dy( w2+ %)

(D] H= (wt )2+ =)

The additional constants of the motion have the form

pv(di(v=2)+dy(pu+2)+20(r—p+uv))

Ry=X;+iX,—K?— ,
Lo (utv)(2+u—v)

(=) v)(dypet+dpv) —205(u+ 12+ pr(2+ u—)))
duv(p+v)(2+u—v)

Rzle_iXZ

The corresponding quadratic Poisson algebra can be determined from
R?=4R;R3— 4HRR,+ d3R; — 4H?R,+2(d; + dy) HR, — dy dy R, + 4H3 — 2(d; + dy) H?
+ 3((dy+dp)*+ dg(dp— i) ) H — da(df— ).
This classical system also separates in elliptical coordinates obtained by choosing new variables

defined by the roots of the characteristic equatiorRef-R,, that is, the elliptical coordinates
(3.4) with b=2i. In these variables the Hamiltonian has the form

y P2+ P2+ 2(dy+d,)(cos 2p—cosh 2)+2(d;—d,)(2i sin 2p-+sinh 2w)+ 2dy(sinh 4o+ 2i sin 4¢)
B 8(cos 2p—cosh 2v)+4(coslf 2w—cos 2¢) '

The corresponding quantum algebra relations are
[R,R]=—2{R;,R,} + 2HR; + R, + 2%~ (d; + dp+ )H + 2y,
[R,R,]=2R%3-2HR,+ 12,
R?=2{R;,R3} —5R5—2H{R; ,R,} + d3R; — 4H?R,+ (20, + 2d,+ 5)HR, — d,d,R, + 4H3
= (20 + 20+ A%+ (5 (dy + dp) *+ dy(dp — ch) ) H — Glg(dg—df+ ).

As in the case of free motion we observe that equatienE becomes
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d—d)(E—in) N 8 (£+in)
V(E=im?+4  J(E—in?+a(é—int(E—in?+4)°
=(E—d3)(4+ &+ 77),

p§+ pf]+ di+dy—4ds+ (

a superintegrable system in flat space with rearranged constants that separates variables in elliptic
and hyperbolic coordinates.

2 2
- p2+p2+c
4+§2+ 172'

The additional constants of the motion are

2 g2
c 7§ c ¢&n
Rl_X1+Z—4+§2+7]2! Rz—xz_§—4+§2+_7]z,

andK. The corresponding Poisson algebra relations have the form
{K,Ri}=—Ry, {K,Rp}=Ry, {R1,Ry}=HK,

and the functional relation between these constants is
RZ+ RZ— HK?— H2+ ~H c =0
1t 2 16
This Hamiltonian separates in all of the four types of separable coordinate systems available,
and the corresponding expressions for the Hamiltonian can be deduced from Ref. 2 by taking
b3:C, b1:b2:0.
The quantum algebra relations are

[R!I’:\el]z _I’QZ! [K!ﬁzZ]:ﬁlv [I’:\{lIIQZ]:HR ’
and the associated operator identity is

A C2—o
16

c+1
2 4

ﬁz§+ﬁz§—ﬂf<2—ﬂ2+(
IV. DARBOUX SPACES OF TYPE FOUR

A. The free particle and separating coordinate systems
With rescaling of the variables andy, the HamiltonianH can be taken in the form

(ex—y_ ey—X)Z

Hoy=———— .
0 e Yray Xyg pxpy

4.9

In coordinatex=v +iu, y=v —iu, we can write the Hamiltonian as

sir? 2u(p2+ p?)
0" " 2cosd+a

It admits constants of the motion

K=p,, X;=e®(—Hg+cosi p’+sin2u pyp,),
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X,=€e"2(—Hg+cos p>—sin2u p,p,).
These integrals satisfy the polynomial algebra relations
{K.X3=2X1, {KXot=—2X,, {X;,X;}=—8K3—4aKH,.
They are functionally dependent via the relation
X1 X,—K4—aK?Ho—H3=0.
The corresponding quantum operators are

R —sirf2u

=5 cosmig (Gt ). Xi=e®(—HotcosA(d;+a,)+sin2u(ayd,+du).,

K=d,, X,=e 2°(—Hg+cos(d>—d,)—sin2u(dyd,—dy)) .
Their algebra is determined by the relations

[K,X1]=2Xy, [K,Xp]=—2X,, [X1,X]=—8K3—4akKH,—4K,
and the operator identity is
X, X —K*—aHoK?—5K?—H3—aHy=0.

The line element sf= (2 cosu+a)(du®+ dv?)/sir’2u can be realized as a two-dimensional
surface embedded iB(2,1) by (assuminga>2)

X=4ya+2cosdv, Y—T=+a+2cosa,

(a—2) a—-2 2 a-2 2 )
Y+T—m H()(, mm,p +11 X mm,p)}—\/a‘f‘z cos AIv“,
where

) (a+2)(cosi+1) 2
siny= . p=

2(a+2cos i) Ja+2’
andII is an elliptic integral of the third kinf.Then &°=dX?+dY?—dT?.

Just as we have done in other cases, we wish to determine all the essentially different sepa-
rable coordinate systems for the free classical or quantum particle. To do this we need to consider
a general quadratic constant of the fomm=aX;+bX,+cK?. Under the adjoint action of
exp(K), X; and X, transform according to

X1—>eX[I(—2a)X1, XZ—>eXF(20{)X2
If we regard two such quadratic expressions as equivalent if they are related by a combination of
group motions and the discrete transformation observed above, then the equivalence classes of
these expressions can be chosen to have the following representatives:

K2, X,, ¥X+K?2, X;+X,+yK2 (4.2

In the last of these are three cases to distingujsh0, y=2, andy+#0,2. The various separable
systems involved can now be computed.
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1. Coordinates associated with K 2

These are the coordinates associated with the ignorable coordisaie the Hamiltonian has
already been given in the,v coordinates. The Hamilton—Jacobi equation is

as)z (as)Z)_
% + % =E.
S(u,v)=—ilog(i(c? cos 1— E)+ c\E(a+2 cos A1)+ ¢ sirf 2u)

1
+ 2c VE(a+2) arctan){

sirt 2u
2cosdi+a

It has typical solutions

E(a+1)+c?+(E—c?)cos 2 )
JVE(a+2)(E(a+2 cos 21)+c?sir’ 2u

1
+—+VJE(a—2) arctan?(

E(a—1)+c?+(E+c?)cos A
5c +cv

VE(a—2)(E(a+2 cos A1) +c?sir 2u
The corresponding Schdimger equation is

sinf 2u
2cosdi+a

=EV¥,

P
7t =
Jdv Ju

which has the solution
V=,F(3(A—€.—€_),3(A+e,+e_),e,+ 3,sirfu)e\’,
where
e.=3+3V1-(ax2)E, (43
and,F, is a Gaussian hypergeometric functidn.

2. Coordinates associated with X

If we choose new coordinates

x=log(;(u—iv)), y=log(z(u+iv)), (4.9
then the Hamiltonian takes the rational form

4puPv?(pl+pd)

Ho=~ % 2) i+ (a—2)1%"

In this case the corresponding choice of coordinates has already been given, and the quadratic
constant in these coordinates is

4a+2)u’pi—4a-2)v’p?
27 (at+2)u’+(a—2)r?
S
b

2 IS 2
+ —_
I (01/) )

 (a+t2)uit(a—2)2

The Hamilton—Jacobi equation
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S(u,v)=iV(a=2)E+\u’~iy(a-2)E arctanh (a—(;)_%
+(a+2)E-\v”—/(a+2)E arctanh (""J(Fazl%l

The corresponding Schdimger equation has Bessel function solutions of the form

has solution

¥=\uv Ciypr=ea=z(3VAn) Cupr—emra(3V\ iv).
3. Coordinates associated with — yX,+ K>
In the case of the third representative the transformation
pm=ccoshw cose, wv=csinhwsing (4.5

gives the classical Hamiltonian

4(p2+p3)
(a—2)(seck w—se€ ¢)—(a+2)(cosechw+cose ¢)

H=

The classical constant associated with this coordinate system is

c? o ((a- 2)se ¢+ (a+2)cosed ¢)p>+((a—2)sechk w— (a+2)cosecﬁw)p‘p
TRtk (a—2)(seck w—se€ o) —(a+2)(cosech w+ coseé ¢)

4

The Hamilton—Jacobi equation in these coordinates is

4(p;,+p3) ~
(a—2)(seclf w—se€ ¢)—(a+2)(cosecR w+coseé ¢)

and has solutions of the form

S(w,p)= \/Xlog(\/— (X oS 2p+ 2aE) + \\/BE + 4aE coS 2p— \ Sir? 2¢)

2Ea+8E—\+cos2p(\+2Ea)
2+\/(a+2)E(8E+4aE cos 2p— \ Sirf 2¢)

1
7 V(a+2)E arctamE

—2Ea+8E—\N+cos2p(—\+2Ea)
2\/(a—2)E(8E+4aE cos 2p— \ Sir? 2¢)

— % J(a—2)E arctamé

1
+2 YN log(VA (X cosh 20— 4E) + \ VA sintf 2w — 8E cosh 20— 4aE)

AE + \ + 4aE+ cosh 20(4E—\) )

++a+2 arcta -
2+\(a+2)E(\ sintf o — 8E cosh 2v—4aE)

—4E+\+4aE+cosh 20(4E+)\) )

+ya—2 arcta -
2\/(a—2)E(\ sintf w—8E cosh 2v—4aE)

The Schrdinger equation has the form
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A Py . P
d0? " 97

(a—2)(secR w—se@ ¢)— (a+2)(cosecRw+ cose€ ) BV
with corresponding solutions
) ) €,te_—N e te_+A\ 1
W =(sin¢ sinhw) - (cose coshw) +,F 3 , 3 ,e,+5,smz<p
€,te_—\N e€,+te_+\ 1 )
X ,F 5 , 5 ,e,+§,—sm}‘?w

with e.. defined by(4.3).

4. Coordinates associated with X 1+ X,+ yK?
For the coordinates corresponding to the fourth representative we make the transformation
u=arctan(expy), v = £/2, so our Hamiltonian has the form

p2+sech ap;
-7 a—2tanha

(4.6

This can be realized in terms of projective coordinates on a two-dimensional complex sphere via
s,=cosha coshB, s,=i coshasinh, s;=i sinha wheres?+s3+ s3= 1. The Hamiltonian can be
written as

J2+35+05
2i33 .

Vsi+ss

These two ways of realizing the classical Hamiltonian are useful in determining the various
possible separable coordinate systems.

We consider the most general case first, ig40,2. We make use of the transformation
equations

+a

XY+l
SinNNa =1 s
2XY

2JAXFA ) AX+A A Y+A (A Y+A,)

tanhg= (AZ+AZ)(XY+1)+2ALA_(X+Y)

applied to(4.6) to give classical Hamiltonian in the form

X(ALX+A_)A_X+A)pZ—Y(ALY+A_)(A_Y+A,)p2

H=—16xy AA_(X—Y)((a+2)XY—a+2)

The corresponding classical constant associated with this coordinate system is
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AL+AZ
A —
+ -

(A+X+A WA_X+A)(A(ALY+A)(A_Y+A,)—2A, A_(Y2—1))X?p?
A A_(A2—A%)(X-Y)((a+2)XY—a+2)

(A Y+A_)(A_Y+A)(a(AX+A_)(A_X+AL)—2A,A_(X?—1))Y?p?
A A_(A2—-A%)(X-Y)((a+2)XY—a+2)

The Hamilton—Jacobi equation has the form

2

JS 39S\ ?
X(A+X+A)(AX+A+)(a—X +Y(A+Y+A)(AY+A+)((9—Y)

—16xY AA_(X—Y)((a+2)XY—a+2) -E

and solutions

SOGY0= ( f N b=X)(c-%) ><)c X) dX“Yf Nb-Vic-v) aYY>c Y) dY)

whereNy—Ay=—(a+2)EA, A_/16, ay=(a—2)ENy/16, ay=(a—2)EN\/16, b=—A /A _,
C= _A_ /A+ .
A further change of coordinates

1 1
X:—Esr?(a’JriK’,k), YI—ESF\Z(,B'HK'ak)v k=2"

is convenient for writing the Schdinger equation

(aZ\If (92\1/>
Noa2t op
(a+2)k*(sri(a’,k)—srf(B’ k) +k*(a—2)

=EV.

The separated equations are versions of I'smguationt® Indeed if we look for solutions of the
form ¥'=A(a’)B(B’) then

2 ’

‘9?057_,‘” (_—k4E(a+2)sr?(a )=\ )A(“)

2

&fﬁ(g) (_—k4E(a+2)er(B )=\ )B(B’)=0,

where\;—\,=—E(a—2)k?/16. Solutions of these separation equations can be represented as
RiemannP functions? of the form

k-2 %0
0 X1-i/a+KE(a+2)) sr(zk)
3 i1+ 3/4+KE(at2)

00
P(z)=| 0 O

N

forz=a',B’.
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The casey=0 can easily be deduced by settitg=iA _, as can be seen from the expression
for the associated classical constant.
If y=2 then a convenient choice of coordinates is

x=log(tan¢' —iw')), y=log(tan¢’'+iw")). 4.7
The corresponding classical Hamiltonian has the form
P2, +PL,
a+t?2 a—2
Sinf 20" i 2¢'

H=-

The classical constant is

(a+2)sirf2¢’ pi, —(a—2)sintf 20'p>,
(a+2)sirf2¢' +(a—2)sintf 2w’

X;+X,+2K2=aH+

The Hamilton—Jacobi equation in these coordinates is

S\% [ 9S\?

de’ * dw’

— :E,
a+2 a—2

SN 20’ Si? 2¢’

which has solutions

i a—2)E
S((p',a)')ZE )\arctan\/(T) sec2¢' +tarf 2¢’

i
—=J(a—-2)E arctanh\/seé 20"+

> Etanz 2¢

A
(a-2)

3

a+2)E
A arctan\/(T sec 2w’ —tank 2w’

i A
—E\/(a+2)E arctanh\/secHZw —mtanr? 20'.

The corresponding Schdmger equation is

Py . Py
0@'2 dw'? _Ev
a+2 a-2 ’

SinF 20’ i 2¢'

which has solutions of the form

W= sin2¢’ sinh 2w’ PY21"@"2F(cos 25" )PY2 TG 2E(cosh '),

whereP?#(z) is a solution of Legendre’s equation.

This completes the list of possible coordinate systems which are inequivalent and separable
for this particular Hamiltonian. We notice in particular that the equaienE=0 can be written
in the equivalent forms
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2

2is
a—2+(a+2)%)=0, J2+15+33-E 2

Vst +s5

both superintegrable systems on the complex two-sphere, the first of which is written in horo-
spherical coordinates.

+a|=0,

1
pA(p+p))+ ZE

B. Superintegrability for Darboux spaces of type four
There are various possibilities for the potential in this cdad; [B], [C], [D].

4ulv?
(a+2)u’+(a—2)1°

[A] H=-

2 2 2 2
pM+pv+a1+a2 F“F? +a3(,u +V)

The additional constants of the motion have the form

R1:K2+ a.l(/.L2+ V2)+a3(/.L2+ V2)2 y

2a,((a+2)u?— (a—2)v?)+ 16a,+4as((a+2) u*—(a—2)v%)

Re=Xa (@a+2)u?+(a-2)1?

The corresponding quadratic algebra relations are determined by
R?=16R,R5— 256a;R? — 64a;R;R,— 256aa;HR; — 1024,a;3R,
+64a,HR,— 256a;H?— 64a,(a+2)H— 256a3a, .

This Hamiltonian admits a separation of variables in coordinates corresponding to the equivalence
first, second, and third classes of Sec. IV A. For the second this is covered by the choice of
coordinatesu, v.

(i) For coordinates corresponding to the first equivalence class, we obtain the Hamiltonian in
the form
Sin? 2u(p2+ p2+4a,6% + 4a,coseé 2u+ 4aze™)
B 2 cos 2i+a '
(i) For coordinates corresponding to the third representaivig the Hamiltonian takes form
4(p%,+p?) +4a,c%(costt w—cos ¢)
~ (a—2)(secR w—se@ ¢)—(a+2)(cosech w+ cose @)

H

16a,(cosech 2w+ coseé 2¢) + azc*(sint? 2w+sir? 2¢)
(a—2)(seck w—sec ¢)—(a+2)(cosech w+ cosed ¢)

The quantum algebra relations are
[R,R;]=—8{R;,R,} —16R,—32a,H ,
[R,R,]=8R3—256a3R, — 128aa;H — 32(a®+ 4a,+ 16a,a3)
together with the operator relation
R?=8{R,,R5} — 256a;R2— 80R5— 256aa;HR, — 64(16a,a5+a>+ 4az) R, + 64a;HR,
— 256a3H2+ 64a(4a;—ad)H+ 128 al?+ 4a;+ 8a,a;— 2a3a,).

As in the case of free motion we observe that the equatierE is
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1 1
a,— ;(a—2)E a,— z(a+2)E
pi+pitagt 4,U~2 + 41/2 +ag(u?+1%)=0,

a superintegrable system in flat space with rearranged constants, that separates in elliptic and
hyperbolic coordinates.

. b, 3
sir? 2u| pZ+pa+ P s v) +b,

2cosdi+a

The additional constants are

2b; cosh 2 + (b, +b3)(4—a?) + (cos A1+ 2a cos i+ 3)

b, b3
sinffv  cosifu

=X, 4+ X+
Ri=X1tXe 2cosdi+a '

b, b3
sinfv  cosio’

R2:K2+

The quadratic algebra is given by

R?=16R7R,— 64R3— 64aHR5+ 64(2by— 2b,—b;)R3+32a(b,+ b3)R;R,— 64H?R,
+64(b,+b3)HR; +128a(b;—b,)HR,— 16((4—a?)(b,+ bg)?+8b;(b,—b3))R,
+128b;—b,)H?—64b,(b,+bj)?.

This Hamiltonian admits a separation of variables in coordinate systems corresponding to the

first and fourth equivalence classes(4f2). The defining expressions have already been given in
terms of coordinates for the first. For the fourth, we distinguish two cases.

i y#2,
X(A_X=A ) (A X=A_ )P+ Y(A_Y+A,) (A, Y+A )ps
H=16xY ALA_(X=Y)(a—2—(a+2)XY)
4b,(A% —A%)XY Aby(A% —A%)XY
by (XY+1)+ 2 - + S h
(ALY+A ) (ALX+A)  (ALY+AL)(A_X+A,)
- a—2—(a+2)XY '
(i) y=2,
1 4b 4b
2 2 2 3
e PPy by sink 20’ +sin22<p’ +00522<p' oS 20
B a+?2 a—2 '

. +=
sinff 2w’ sirf2¢’
The corresponding quantum algebra relations are

[R,R;]=—8R%+96R5+64aHR,— 16a(b,+b3)R; +64(2b,— 2b;+b; + 3)R,+ 32H2

+32a(2b,— 2bs+ 1)H +64b,(b,— bs) —8(a?—4) (b, +bg)2+32(b, + 2b,— 2bs) ,

[R,R,]=8{R;,R,} +16a(b,+hz)R,— 16R; + 32(b,+bs)H —16a(b,+bj)
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R?= —64R3+ 8{R?,R,} — 64aHR3— 64H%R,— 80R2— 64(2b,— 2bs+ b, + 7)R3+ 16a(b,+ by)
X{R;,R,}+64(b,+b,)HR; +64a(2bs— 2b,— 1)HR,— 160a(b,+ bs)R; + 16((a?—4)
X (by+b3)2+8(by+1)(bg—b,) —4b;+32)R,+ 128 by —b,+ 1)H%+128a(b,— b+ 1)H
+(b,+b3)%(128—80a?—64b,) — 128 b, + 2)(b;—b,— 1) — 256.

As in the case of free motion, equatibh—E=0 is

2405+ 03+ +a

2b 2b 2is
1 2 ( 3 :0,

+ by E| —
7.0 7.0 70 7D 7D
VST HS5(S+ Vsi+83)  VSi+sa(si— st +s3) VS1tS;

a superintegrable system on the complex sphere that separates variables in spherical, elliptic, and
degenerate elliptic type 1 coordinates.

9 9 Cy C, 1 1
PortPu® 502" T CosR o’ +C3<sin2 @ sinik? w’)
a+2 a—2
SN 200’ Sir? 2¢

These are coordinates associated with2 in the fourth representative frofd.2). The constants
of the motion associated with this Hamiltonian are

at+2 C3 N C1 N a—2 Cs Co
5 sintf 2w’ \sif ¢’ coS ¢’  sif2¢’ \sinffw’ cosif o’
Rl:Xl+X2+2K +aH+ ’
a+2 N a—2
sinff 2w’ sifw’
Ry=X1— X+ ! at2 haw' tar o’ :
272 a2 a2 ~|sinf2e | C1C08 aIr ¢ = C,C0S 2%

sinkf 2w’ + Sit o’

c3(2 cog ¢’ (sintf w’ —sirt ¢'))+ 1) a—2
a sir’ ¢’ Sif 2¢’

C3(2 cosi o' (sinkf o’ —sir? )+ 1)
They satisfy the quadratic algebra determined by the identity

(cz cos 2’ tanif o’ + ¢, cosh 2w’

sintf o’

R?=16R}— 16R;R5— 32aHR2+32(c,— ¢;)RZ+ 16(a’— 4)H?R, + 32((a+2)c;— (a—2)c,
+4c3)HR; — 16(2¢2— c2— 3+ 6C5(Cq+Cy) +4C,C,) Ry — 32(C,— C3) (C1— C3) R,

—16((a+2)(c;—C3)2+(a—2)(Ca—C3))H—32(cy— €,) (35— C1C,— C5(C1+Cy)).

The Hamiltonian admits a separation of variables in a number of coordinates systems corre-
sponding to various combinations of the opera®ysandR,. We exhibit the various possibilities.
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(i) For the constanR; — R,, the associated separable coordinates are those corresponding to
the third representative i#.2) with y=1. In these coordinates, the Hamiltonian is

Cc;tC+2c; (c+cycosh2  c3c0S 2

2 2 _
H_4(pw+p‘9)+ 2sintf 2w 2sinf20 | sif2e
B R 1 1 5 1 1
@2 oshw cofe) @ s TSty

(i)  In coordinates corresponding to rotations of the fourth representativé.2 with y
#0,2, that is,B2 X;+(B? —B?)X,+ (2B% —B?)K?, the corresponding Hamiltonian has
the form

Lo Sy
2 ( )

Cc
Hzlﬁ{—X(B++X)(B++X)p§+Y(B++Y)(B++Y)p$+ Zl 7%

C3 2 2
+ — +
4 (B2-B2)

¥

! ! + ! 1 BZ BZ
1+B-Y 1+B_X 1+B.Y 1+B.X (B2—B2)

a—2 a—2 a+2 at+2

a—2 a2
11B.X 1+B.Y 1+B.Y 1+B.X B

X Y

X

+

+(a+2)(X—Y))

Here,B.=B,/B_ andB-=B_/B, . The Hamiltonian associated wifR, can be obtained
from this last case by taking_=v2B, .
The quantum algebra relations are

[R,R1]=8{Ry Ry} +16R,+16(C;—C3)(Cy—C3)

3\ .
C1—Cr— = |R;+16((a+2)c,—(a—2)cy

[R,R,]=24R3—8R%—32aHR; +8(a’—4)H?+ 32 5

+a+64c3)H+8c2+8c5— 16c5— 32c,C,— 485(Cy+Cy) + 16(C1—Cp) .

The operator identity is

R?=16R3—8{R;,R3}+32/ c,—c;— 5) RZ—80R3+16(a’—4)H?R;+32((a+2)c;— (a—2)c,

+4cs+a)HR, +16(c3+c5—2¢3—6c5(Cy+Cy) —4C1Cy+2(C1— Cp) —8)Ry— 32(C,—C3)
X (€1~ Cg) R+ 16(a” —4)H? — 16((a+2) (1~ C3)*— 2¢1) +(a—2)((Co—Cg) >+ 2¢))
—8c3—4a)H—32(c;—C,p) (3¢5~ C1Cr— C5(C1+Cp)) +32(C2+ c53—4cs(Cy+Cy) — 264G
+2c,1—2C,).

As in the case of free motion, the equatidr-=E is

i(Ci+Cy+t2C3)S;  1(C1—Cy)(S11+iSy—S3) (2C3—C1—Cy)(S1+iS,+S3)
4\/s3+s3 4v2\/(s;+is,)(S3—iS,) V(sy+is,)(s5+is5)

i(c,—c 2is
+(l—2)—E(a+ L=

4v2 i

which is a superintegrable system on the complex sphere, with rearranged constants, that separates
variables in elliptic and degenerate elliptic coordinates of type 1.

J2+5+35—
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4,u2y2 pi—l— plzj-l— d

L+
w? 2

Bl A= @22

This Hamiltonian admits three classical constants of the motion

d(u?+v?%)? By 16d
(a+2)u’+(a—2)v?>" 2 7?2 (at+2)u’+(a—2)v?’

Rl=X1+ K=/.Lplu+ pr.

The Poisson quadratic algebra satisfies the relations
{K.R}=2R;, {K,R}=-2R,, {R;,R,}=—-8K3-4aKH—-16K.
These three extra constants are related via the identity
—R;R,+K*+aHK?+4 dk?2+H?=0.

This Hamiltonian admits a separation of variables in all the coordinate systems that are
possible. We need only give the expressions in terms of the fourth representatives. In the coordi-
nate system associated with the fourth representative and for whic¢hthe Hamiltonian can be
written as

X(AX=A ) A X=A)pZ—Y(A Y+A (A Y+A,)pd
(X—=Y)(a—2—-XY(a+2))A,A_

40A L A_(XPY+Y+XY?+X)
C(X=Y)(—a+2+XY(a+2)A A’

H=16XY

and for the case/=2 this Hamiltonian has the form

p2 +p2 +d| = ! + = !
¢ Fo' " Hlsintf 20 Si? 2¢’
at+2 a—2
Sinf 20" i 2¢’

H:

The corresponding quadratic algebra relations are
[R,ﬁl]ZZI’Ql, [R,ﬁz]:_zﬁz, [ARl,ﬁz]:_8R3_4a|:”2_16d2_4k,
subject to the operator identity
— Ry, R} +H?+aHK2+K*+aH+ (5+4d)K?+4d=0.

This completes the analysis of the superintegrable potentials associated with the four metrics
of Darboux.

V. RELATIONSHIP TO CONSTANT CURVATURE SUPERINTEGRABLE POTENTIALS

In Secs. -1V we have found, by means of exhaustive calculation, all superintegrable poten-
tials in the Darboux spaces of revolution having two or more quadratic integrals. Once these are
expressed in suitable coordinates, it is clear that each is simply a multiple of one of the superin-
tegrable potentials on the complex Euclidean plane or 2-sphere, that have been enumerated in Ref.
7, though that was by no means evident in advance.

In each case we can start with a Hamiltonian of the form
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H:H0+CYVO, (51)

whereV, is a function of the coordinatesandy, and« is a constant. Dividing the Hamilton—
Jacobi equatiorii = E, throughout by, and rearranging gives a new Hamilton—Jacobi equation
in which the roles of the enerdy and parametet have been exchanged,

H=to B 5.2
—V—O V—O— a. ()

Clearly, the integrability and separability of one system guarantees that of the other. It is this
relationship between the harmonic oscillator potential written in Cartesian coordinates and the
Coulomb potential in parabolic coordinates that has been discovered by many authors. Transfor-
mations of this type relating integrable systems were described in a more general context by
Hietarintaet al. in Ref. 14 and calledoupling constant metamorphosiSee also Ref. 15 where
the Stackel transformand its close connection with variable separation was emphasized.

The preservation of integrability under such a transformation can be demonstrated explicitly
by noting that if{Hq,Lo}=0 and

are in involution, i.e.{H,L}=0, then so are

Ho
H'=—- and L'=Lo—{oH’ . (5.4)
Vo

Any identities involving integrals associated with.1), give rise to corresponding identities
involving integrals associated wiits.2) and are obtained by the replacements

a——H'" and H—O0. (5.5

A. Generating the Darboux spaces of revolution by coupling constant metamorphosis

Taking each of the degenerate potentials from Ref. 7, that is, the potentials with Hamiltonians
having one first order and two quadratic integrals and performing a coupling constant metamor-
phosis we arrive at a Hamiltonian having one first oreand two quadratic constant¥; and
X,. These must be free Hamiltonians either on one of the four Darboux spaces of revolution or
one of the constant curvature spacgs(C) or S,(C). After comparing the Hamiltonians so
generated, it can be seen that this approach generates all of the Darboux spaces of revolution.

Knowing the Poisson algebra for each Hamiltonian involved and how coupling constant
metamorphosis modifies this algebra, we can determine which Hamiltonian has been generated,
even if it appears in unfamiliar coordinates. Note that some transformations reproduce the free
Hamiltonian onE,(C) or S,, and some Darboux spaces can be generated from two distinct
constant curvature potentials.

For each Hamiltonian we have four linearly independent constants of the motion. These,
however, cannot be functionally independent and there is always a polynomial ideriityXn,

X,, andH that is of fourth order in the momenta. We can use this identity to classify the possible
Hamiltonians. Up to freedoms in choosing and X,, scalings ofK and coupling constant
metamorphosis, we find that there are five classes of identities that involve all of the constants.
The correspondences between these identities, degenerate superintegrable potentials from Ref. 7
and the Darboux spaces of revolution are summarized in Table |. Note that because we allow
coupling constant metamorphosis, has the same status as parameters in the potential and the
coefficientsA andB appearing in the representative identities may be functiot$.ofhe labels

in bold (e.g.,E3, S3..) refer to Ref. 7. Those Hamiltonians in Table | on the complex 2-sphere,
that is,S3 S5 andS6, are represented with three coordinasgs s,, ands; constrained b)si
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TABLE I. Correspondences between constant curvature superintegrable potentials and Hamiltonians for Darboux spaces of

revolution.
Degenerate superintegrable Hamiltonian for Darboux
potential onE,(C) or S,(C) space of revolution Representative identity
2 2
E5  4x p,: PP X2+ AX,+K*+B=0
4u
1 u?(p;+p2) 2., 12
i : X2+ K2X,+AX,+B=0
EG6: X2 +1 2 W 1 2 2
S5 —21 1
(s1—isy)
a(x—i E,(C X2+ K2X,+A=0
E12 ( . y) ) 2(C) 1 2
(x—iy)“+c
El4 —+8
X—iy
2 2
E3 x2+y2+4 D, PP X, Xo+AKZ+B=0
4+ uP+o?
E18 2 +1
- Ve
2 2
a+2 D,: pu+ pv 4 2
S3 — —a+2 4 at2 a-2 X1 Xp+ K7+ AK*+B=0
S —t—
u v
2is3
S6 = +a
ST+ S5
B4 a(x-iy)+pB E2(C) K2X,+AX,+B=0
E13 ——— 18
N iy

+s§+s§=1 andleszpss—sgpSZ, J2=53Ps, — S1Ps,, andJ3=slp52—szpsl. The potential€E12,

E14, E4, and E13 are functions ofx—iy and hence division op?+p; by these potentials
reproduces the flat space Hamiltonian.

For example, starting from the algebraic identity for constants associated with the Hamil-
tonian and integrals

2,2, ¢
H=px+py+ﬁ+a (EB),

ay , . ay?
X1=(Xpy—ypx)px—?, XZZ(Xpy_ypx) +?, K:py- (5.6

that is Ref. 7,
X2+ K2X,— (H— a)X,+ aK?=0,

we find that applying the transformati@b.4) gives
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2 2 2 2 2 212

. bty ) y Pxtpy  Y(Py—Xpy)

=7 KTy TYPIPx T iz T T g T XPPys
_2+1 —2+1
X X

2 12 2 2 4 2\ 12 2,,2~2
, Yo pxt Py (XTHXT—yo)pyt Xy p )
X5=(xpy=ypa)?+ Sz = v —2xyppy, K'=K,
!

and using(5.5),
X{2+K'2X5—H'X;—H'K'2=0.
Then
Xj=2X;, Xy=-Xy+H', H’'=H', K’'=K',
gives
X}?—4K"2X5+4H" X5~ 4H"?=0

the identity(2.3) associated with the Darboux space of type {&d).

B. Generating superintegrable potentials on Darboux spaces

The Hg in Eq. (5.3 may itself contain potential terms and if these are chosen sa-hat
superintegrable, then so will be'.
For example, taking the superintegrable Hamiltonian on the complex two-sghigre

o BSs y(1-4s3)
(s1—isp)* - (s1—isy)® " (sp—isy)?

H=J37+J5+35+

and dividing though by €, —is,) “?—1 gives, after a change of coordinates, the superintegrable
potential[A] in a Darboux space of type 2. The same Hamiltonian can be generated by dividing
E2 throughout byx 2+ 1.

Each potential in Table | is compatible with the addition of further terms while maintaining
superintegrability, and in using the method demonstrated above, all superintegrable Hamiltonians
found in Secs. II-IV can be generated. The correspondences are given below.

1. Darboux spaces of type 1

The potentialE5, V,=4x, appears in each of
. 2,2 Y
E2 : «a(4x +y)+ﬂx+;+5,

E3' :  a(xX’+y?)+Bx+yy+4,

a y(2x—iy)
+ X+ ———+6
X—1iy A VX—iy

The potential labeledE3’ is a translation ofE3. Adding these potentials tblo=p2+ p§ and
dividing by 4x produces the two real nondegenerate potentials found in Ref. 1 and an additional
complex one given in this papdiThe details of the quadratic algebra and defining operators for
the Hamiltonian derived fronk9 can be computed using.2).]

E9
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2. Darboux spaces of type 2
The potentials£6 and S5 appear in each of the following:

E1 [B] a(x2+y2)+§+%+5,

E2 [A] a(4x2+y2)+5x+%+5,

1
E16 [C] : ab— P 7 + 5,

WE+y? X+ VX2+y?  x—x2+y?

Bss y(1-42%)

SLIAL ¢ g ms? T simis)? T iy T2
B v(s1tisy)
S2 1Bl gt st T simisy)® O
s4 [C] P 4

+ +
A 2 .
(51-182)°  \[s?+s5  (s;—is,)\/So+55

The superintegrable system generated after dividing B+ 1 or (s;—is,) 2—1 as appropriate
is indicated by label thA], [B], or [C]. The apparent over abundance of superintegrable poten-

tials generated in this way f@, is resolved by noting that the same potential can appear in more
than one coordinate system.

3. Darboux spaces of type 3
The potentialE£3 and E18 appear in each of

E1 [B] : a(x2+y2)+§+%+&

E3 [A] : a(X®+y?)+pBx+yy+4,

E7 (D] a(X—iy) + B(x+iy) + (X2+ 2)+5
Vi)=& xmiy) 2= (x—iy)+Jx—iyp—cd)z e
(x+iy)
E8 [C] C(Yx_iy;/fi + (X—Biy)z + ’}/(X2+y2)+ 51
E16 [B] i P S +6
WE+y? x+\x2+y?  x—\x2+y?
E17 [C] A S Iy
UCHy?  (XFIY)T T (x+iy)VXP+y?
E19 [D] a(X—1y) N B Y

P
VX—iy)*=4  J(x+iy)(x—iy+2) " VX+iy)(x—iy—2) !
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1
E20 [A] : sz—Tyz(‘”ﬂ\/X*Wz*yz*NX‘\/XZ*yz)”-

As before, once the possibility of changes of coordinates in taken into account, the above list
produces only those superintegrable potentials found in Sec. Il B.

4. Darboux spaces of type 4
The potentialsS3 and S6 appear in each of

B y(s1+isy)
(51_i52)2 (51_i52)3 ’

o
s2 [A] ¢ g+
3

sS4 [A] N ’ +6
(s1-is2)® 2482 (s,—isy)si+sp
as; Bs; Y
S7 [B,C] + + 5+ 8,
VE+s SsErs S
as S;+is,—s S;+is,+s
s8 [C] 212+ B( 1. 2 31) ¥( 1' 2 3')
Vsi+s3  V(sy+isy)(s3—isy)  V(sy+isy)(sa+isy)
o
so [B] : S4B 2.,
S1 S S3

As before, once the possibility of changes of coordinates in taken into account, the above list
produces only those superintegrable potentials found in Sec. IV B.

VI. CONCLUSION

In this paper we have discussed in some detail three of the four Darboux spaces of revolution
that have at least two integrals of classical motion quadratic in the momenta in addition to the
Hamiltonian. In each case we have also presented an exhaustive list of potentials for each of these
spaces which when added to the Hamiltonians of these spaces preserve this property, i.e., that
there are still two extra integrals of the classical motion. These are the superintegrable systems
associated with the systems of Darboux. The property of extra integrals also extends easily to the
case of the corresponding quantum systems. For each of these systems we have calculated the
corresponding quadratic algebra relations and have shown that in each case the Hamiltonians that
we obtain arise from constant curvature systems via a coupling constant transformation. We have
also discussed the solutions of the corresponding classical and quantum problems in each of the
inequivalent coordinate systems and have also given some of the embeddings of these spaces in
three dimensions. In the last section we have shown how the free Hamiltonians of Darboux are
related to the superintegrable Hamiltonians on spaces of constant curvature via coupling constant
transformations. We also list how the corresponding superintegrable systems of spaces of constant
curvature are related in this way to the superintegrable systems that we have found. This classi-
fication is comprehensive and complete.

Let us very briefly review the current status of superintegrability in two-dimensional spaces.
Most of the published work’ concerns quadratic superintegrability for classical, or quantum
Hamiltonians of the form kinetic energy plus a scalar potential. Once a specific space is chosen,
superintegrable systems in the space can be classified under the action of the corresponding
isometry group. Systems in the same class are not only mathematically equivalent, but also have
the same physical properties. In classical mechanics they will have the same trajectories and the
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trajectories will be periodic, if they are bounded. Similarly, in quantum mechanics superintegrable
systems in the same class will have the same energy levels and eigenspaces.

Quadratically superintegrable systems exist in spaces of constant curvature and also in Dar-
boux spaces. A Darboux space is defined by the fact that it allows one Killing vector and two
(irreducible Killing tensors. This paper completes the task of classifying all quadratically super-
integrable systems in all of the above spaces.

The results are quite rich. Indeed, in the real Euclidean shacaeve have fourE(2) classes
of superintegrable system$.They are physically quite diverse. One is an isotropic harmonic
oscillator with additional terms, calldgl in Sec. V. A second is an anisotropic harmonic oscillator
with additional termgcalledE2). The third and fourth are Kepléor Coulomb systems with two
different types of additional terms, respectively. In complex Euclidean sga¢€), or corre-
spondingly in the pseudo-Euclidean sp#&dd,1), one obtains six more classes.

Two classes of superintegrable systems exist on the real shefeur more on the complex
sphereS,(().% On the real Darboux spacé, ,...,D, we have obtained 3, 4, 4, and 4 classes of
systems, respectively. One more for the complex sjiage’).

From the mathematical point of view the situation is much more unified. As was stressed
above, superintegrable systems that may correspond to quite different physical situations may be
related by coupling constant metamorphosis. Once we allow this type of equivalence, many fewer
equivalence classes exist. For instance, in real Euclidean space we only have two classes, because
the Kepler potentials with additional terms are equivalent to isotropic harmonic oscillatanse
case with the additional termsAll superintegrable systems in Darboux spaces are related by
coupling constant metamorphosis to systems in spaces of constant curvatubg., By, andD5
this is always flat space, complex or real. Two of the systeni3, iare related to systems in real
Euclidean space. The other two are related to systems on a complex sphere. The relation is of
course not unique and depends on the choice of coordifstesSec. V.

A typical feature of quadratic superintegrability for scalar potentials is that quantum and
classical superintegrable potentials coincide. They allow separation of variables in at least two
coordinate systems in the Schinger and Hamilton—Jacobi equation, respectively.

Superintegrability involving third order integrals of motion has also been considfetéd.
There the situation is quite different. Multiseparability is lost. More interestingly, quantum super-
integrable systems exisin real Euclidean spag¢ahat have no classical analdm the classical
limit they reduce to free motign
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