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Abstract

Data provenance describes the derivation history of data, capturing de-

tails such as the entities involved and the relationships between entities.

Knowledge of data provenance can be used to address issues, such as

data quality assurance, data audit and system security. However, current

computer systems are usually not equipped with means to acquire data

provenance. Modifying underlying systems or introducing new monitor-

ing software for provenance logging may be too invasive for production

systems. As a result, data provenance may not always be available.

This thesis investigates the completeness and correctness of data

provenance reconstructed from log files with respect to the actual deriva-

tion history. To accomplish this, we designed and tested a solution that

first extracts and models information from log files into provenance re-

lations then reconstructs the data provenance from those relations. The

reconstructed output is then evaluated against the ground truth prove-

nance. The thesis also details the methodology used for constructing a

dataset for provenance reconstruction research.

Experimental results revealed data provenance that completely cap-

tures the ground truth can be reconstructed from system-layer log files.

However, the outputs are susceptible to errors generated during event

logging and errors induced by program dependencies. Results also show

that usage of log files of different granularities collected from the system

can help resolve logging errors described. Experiments with removing

suspected program dependencies using approaches such as blacklisting

and clustering have shown that the number of errors can be reduced by a

factor of one hundred. Conclusions drawn from this research contribute

towards the work on using reconstruction as an alternative approach for

acquiring data provenance from computer systems.
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Chapter 1

Introduction

1.1 Background

In day to day life we often encounter objects with an uncertain back-

ground, regardless of whether it is at work or during personal time (e.g.

an unmarked parcel, unmarked document). An intuitive response is to

question the object’s origins (e.g. where is this object from? How did it

get here?). One approach is to analyse the object’s derivation history –

information that depicts how the object arrived at its current state. How-

ever, in most situations, this piece of information does not accompany

the object and as such, has to be obtained through other means.

In computer science, an object’s derivation history is generally known

as provenance of the object or simply as provenance. In a survey on

provenance, Carata et al. [2014] conceptualised provenance as a graph

that captures the relationship between entities (e.g. people, process or

other objects) that are involved in the object’s derivation process. This

concept is shared by many other discussions on defining provenance,

such as those by Cruz et al. [2009] and Moreau [2010]. Due to its re-

lational properties, generating provenance requires specialised logging

mechanisms that focus on capturing relational information [Allen et al.

2010b; Carata et al. 2014].

Practical provenance research can be broadly categorised into two as-

pects: the applications of provenance and the collection and manage-

ment of provenance. Figure 1.1 briefly illustrates the relationship be-

tween these two aspects. Research on the collection and management of

1
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Query

Provenance
System

Solutions that 
address both 

aspects

Computer 
System

Figure 1.1: Two main aspects of practical research in provenance

provenance focuses on how it can be collected, stored and queried [Cruz

et al. 2009; Biton et al. 2008; Ko and Will 2014]. The end results are

provenance systems, such as SPADE [Gehani and Tariq 2012] and Ko-

madu [Suriarachchi et al. 2015], that abstract tasks related to the collec-

tion and management of provenance from consumers (e.g. researchers

or solutions using provenance).

On the other hand, research on the applications of provenance focuses

on how it can be used to tackle issues ranging from data quality assur-

ance to experiment reproducibility and system security [Gotz and Zhou

2009; Biton et al. 2008; Dumitras and Neamtiu 2011]. The provenance

required to drive these researches and solutions are queried from exist-

ing provenance systems.

However, the provenance required may differ based on the context

of the research. For example, work by Gotz and Zhou [2009] looks at

analysing user activities using provenance depicting high-level user be-

haviours while Biton et al. [2008] looks at understanding complex work-

flows using workflow provenance. Existing provenance systems may not

2



1.2 Motivation

be able to capture all of the required provenance. As a result, solutions

such as those proposed by Gotz and Zhou [2009] integrate customised so-

lutions for capturing the required provenance into their proposed prove-

nance management frameworks. Regardless, we can establish that how

provenance can be used is inherently dependent on how it can be col-

lected. Such a dependency relationship hints at the importance of prove-

nance collection.

1.2 Motivation

Studies on techniques for collecting provenance by Allen et al. [2010a],

Carata et al. [2014] and Coe et al. [2014] noted that state-of-the-art tech-

niques either require modifying software running on the system (e.g. ap-

plications or the kernel) or manifest as software that actively monitors

different parts of a system and generates provenance during runtime.

However, it is not always possible to collect provenance using the pro-

posed techniques. For example, modifying existing software on produc-

tion systems is generally considered intrusive and may cause instability

in the system (e.g. introduce new vulnerabilities, incompatibility with

other existing software or components). Likewise, introducing new soft-

ware to the system for monitoring and generating provenance would

require extensive testing to ensure compatibility with existing software

and that it is secure. Deploying new software becomes even more diffi-

cult if the party requiring the provenance does not own the system (i.e.

third party) as it would involve the issue of whether the software can

be trusted. Another downside with existing provenance collection tech-

niques is that they have to be in place and running while the relevant

events are happening in order for the appropriate provenance to be cap-

tured. This is an issue for situations where provenance collection is an

afterthought (i.e. forensic investigation) or when the solutions are not

present or running when the event is happening. Without provenance,

solutions that rely on access to provenance will not be able to function.

An alternative approach to acquiring provenance is to reconstruct it

3
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from information sources commonly found on systems, such as event

logs (i.e. log files)1 and file meta-data. In comparison to collecting prove-

nance, event logging is common in systems and in many cases, an in-

tegral part of the system’s day to day operation. Security standards

such as the Controlled Access Protection Profile (CAPP) [National Secu-

rity Agency 1999] require tools that capture and record events describ-

ing the states or activities of the system to be deployed. Likewise, upon

starting up, the operating system generates information that can be used

to deduce the states and activities of the operating system [Ling 2013],

in the form of log files and file meta-data. In their work on analysing

different types of log files found on systems, Ghoshal and Plale [2013]

and Ling [2013] discussed how the analysed log files contain information

pertaining to events happening in the system and the involved objects.

Having said that, the focus of information captured in log files differs

from provenance. Provenance captures relational information describ-

ing the derivation history of an object while events in log files describe

what is happening in the system at a fixed point. Section 1.3 further

elaborates the difference between log files and provenance.

In recent work, Ghoshal and Plale [2013] have shown that it is possi-

ble to extract and model parts of provenance information (e.g. disjoint

elements of the provenance graph) from application log files. However,

the authors do not discuss how provenance that depicts the derivation

history of objects can be reconstructed using the extracted information.

Hence, this thesis focuses on investigating reconstructing data prove-

nance from log files as an alternate approach to active data provenance

collection.

1.3 Log files and Provenance

Provenance information can be stored either as metadata embedded in

the object the provenance is describing (i.e. data or workflow) [Groth

1In the context of this thesis, the term ’event logs’ is used interchangeably with the
term ’log files’.
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et al. 2012] or as a separate file. Storing provenance as a separate file

arguably gives it a log-file flavour. Having said, the difference between

provenance stored separately as a file and a log file is the focus of the

information captured within each.

Events stored within log files can be seen as entries within a visitor

sign-in book at a security guard’s booth. Each visitor entry captures in-

formation of visitors who have passed through the security booth. How-

ever, just by looking at the entry, it is not certain as to where exactly the

visitors have been or with whom the visitors have interacted after passing

through the security booth. Similarly, log files are considered to be the

result of logging mechanisms deployed at specific points within a com-

puter system. Most of these mechanisms only capture events observed

within their assigned scope and perspective. For example, a logger for an

application only captures events happening in relation to the application

and within the application’s execution space (e.g. memory region or exe-

cution stack). Thus relationships between objects and processes outside

the scope of the application (e.g. across other log files) are unknown.

In contrast, provenance describes how an object evolves over time and

contains information that allows an analyst to understand and attribute

the evolution process. Evolution of the object may span logically across

the execution space of multiple applications or systems. Information

within provenance differs from those in log files as they each describe

either a direct or indirect relationship between other objects and the ob-

ject the provenance is describing. For example, provenance of a visitor

would contain information on the places the visitor actually visited, the

people the visitor interacted with and the sequence of activities the visi-

tor went through before each activity.

Due to its relational properties, provenance is conceptualised and com-

monly visualised as a graph. Figure 1.2a illustrates such a graph, based

on an example extracted from documentation on PROV-DM, a provenance

model proposed by Moreau and Missier [2013]. Provenance can also be

expressed in record format using tuple-like formats that can adequately

express relationships between two objects, as shown in Figure 1.2b.

On the other hand, visualising events in a log file (e.g. an application
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determs:title=
"Crime rises in cities"

exn:article exb:quoteInBlogEntry-20130326

exn:articleV2exn:articleV1exg:dataSet1

exg:dataSet2

specializationOf

wasDerivedFrom

alternateOf

specializationOf

wasQuotedFrom

wasD
eri

vedFrom

(a) Sample of a provenance graph adapted from Gil and Miles [2013]

entity(exn:article, [dcterms:title="Crime rises in cities"])
entity(exg:dataSet1)
entity(exg:dataSet2)
entity(exn:articleV1)
entity(exn:articleV2)
entity(ex:quoteInBlogEntry-20130326)

wasDerivedFrom(ex:quoteInBlogEntry-20130326, exn:article, [prov:type='prov:Quotation'])
specializationOf(exn:articleV1, exn:article)    
specializationOf(exn:articleV2, exn:article)
alternateOf(exn:articleV2, exn:articleV1)
wasDerivedFrom(exc:articleV1, exg:dataSet1)
wasDerivedFrom(exc:articleV2, exg:dataSet2)

(b) Corresponding record format of the provenance shown above

Figure 1.2: Examples of provenance adapted from examples discussed by Gil
and Miles [2013]
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Figure 1.3: A possible graph visualisation of event logs

log) would result in a graph that shows the states and objects the appli-

cation interacted with directly connected to the node representing the

application. This is much like a ‘one-step’ provenance. An example is

illustrated in Figure 1.3.

1.4 Thesis Question

Theoretically, disjointed pieces of provenance information modelled from

different log files can be piece together, by studying the cause and effect

relationship between events, to produce a reconstructed provenance of

an object. However, how well such reconstructed provenance accounts

for the object’s known derivation history remains unclear. Addressing

this uncertainty is critical to understanding whether reconstructing prove-

nance from log files can be a viable alternative to acquiring provenance.

Formally, this thesis seeks to address the following question:

“Can data provenance be reconstructed in an automated

manner from log files found on a computer system and,

if so, how does the reconstruction compare to the known

derivation history of the data?”

However, it is difficult to obtain the entire derivation history of data ob-

jects for evaluation. As such, this research focuses on addressing the the-

sis question from a more practical perspective, where the reconstructed
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provenance is compared against what is known of the derivation of the

data. This will be discussed in detail in Chapter 3.

1.5 Scope of Research

Scope of Data Provenance

Surveys by Moreau [2010], Carata et al. [2014] and Simmhan et al.

[2005] have discussed different usages of provenance, such as results

reproducibility, data verification, workflow checking, data accountability

and system security. Ultimately, its usage has an influence on the form

and information required in the provenance and the type of dataset re-

quired to reconstruct the provenance.

In this thesis, we define data provenance as the information that

depicts the evolution process of a piece of data, including the en-

tities and activities involved in the process. Data, in this research, is

viewed at a file level where a file object is treated as a digital container

for data.

We consider a reconstructed data provenance to be sufficiently com-

plete if:

• it captures all entities, including any other derivatives of the data,

involved in the derivation process starting from the creation of the

data

• it captures the relationships between entities and their order, such

that the data provenance shows how the data and its derivatives

arrive at their current state

• it does not contain information that does not explain or is related to

how the data reaches its current state or any of its derivative

Data provenance that satisfies the two stated points would be able to

explicitly show how the data is being changed in every step of its deriva-

tion history. By analysing the data provenance, analysts would be able
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to reach a consistent and correct conclusion on what has happened to

the data and how it reaches its current state [Carata et al. 2014; Moreau

2010].

Access to such data provenance would be useful for activities where de-

termining when or how changes were made to the data or identifying the

root cause of an error in the data is the primary focus [Zhou et al. 2010].

Digital data investigation [Carrier and Spafford 2004a], data account-

ability and data verification [Aldeco-Pérez and Moreau 2008] are some

examples of data-oriented activities that can potentially benefit from hav-

ing data provenance.

Having said so, this thesis does not concern with the applications of

the reconstructed data provenance. Our focus is purely on investigat-

ing the reconstruction of data provenance from log files obtained from a

computer system.

Assumptions Made

In line with the motivation discussed in Section 1.2, the following as-

sumptions are made with regards to the state of logging and the com-

puter system:

1. we assume no provenance collectors or any other provenance sys-

tems are being actively deployed in the system.

2. we assume that all logging systems adopt its default configurations

(i.e. info log level), where each logging system outputs information

regarding the normal operations of the target of the logging.

3. we assume that only access to the log files are made available.

4. we assume that the log file are trusted and have not been tampered

with.

The rationale behind the assumption of default configurations stems

from our motivation that provenance acquisition is an afterthought. As

a result, we assumed that no intentional steps have been taken to en-

rich the log files with information that could have enhanced the results
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of the reconstruction. Assuming default logging configurations can also

provide a base-line understanding on the data provenance that can be

reconstructed from log files.

Definition of Computer System

In general, the term computer system can refer to different types of sys-

tems such as those within a private environment (e.g. private network of

computers) or systems in an open environment (e.g. the Internet). How-

ever, challenges such as privacy, ownership and trust issues surrounding

the dataset that can be used, are more complex when reconstructing

provenance in an open environment. These issues, although important,

are not directly relevant towards addressing the thesis question. As such,

by computer system we refer to any system within a private environment,

such as desktop computers or a cluster of computers connected within a

private network.

Categorisation of Log Files

A study by Ling [2013] noted that application log files are not the only

type of log files that can be collected off the system. Other types of log

files such as kernel and activities log may also be found on a computer

system. To study each type of log file separately in an exhaustive man-

ner would require an extensive amount of data and effort. Instead, we

broadly categorise log files according to where they are being generated

in the system. The view of a computer system as a multi-layered architec-

ture system, used in many modern day operating system textbooks such

as those by Silberschatz et al. [2005] and Tanenbaum and Bos [2008], is

adopted for this purpose.

Although views used by different textbooks may differ on the function-

ality and naming of each layer, they generally agree that an operating

system can be structured into hierarchical layers between the hardware

and the user.
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Each layer is responsible for a specific set of tasks and the communica-

tion of information between layers. Such a layered view of the operating

system is useful for debugging or even just simply for understanding how

various components, software and data structures interact with one an-

other.

Although this research concerns reconstructing data provenance from

log files and not debugging, viewing computer systems as multi-layered

architectures is still useful. As discussed later in Chapter 3, events gen-

erated by different logging mechanisms may differ in the level of detail

depending on where the events are generated from. Hence, being able to

objectively categorise events based on their granularity aids understand-

ing and modelling of events with relation to provenance.

We broadly categorise the layers between the system kernel and the

user into three layers. Log files are then categorised into one of the three

layers, based on the point within a computer system in which the events

are being observed and captured. The three layers in our multi-layered

view are illustrated in Figure 1.4 and defined as follows:

• User layer—the user layer represents the user’s perspective. Events

observed or generated at this layer relate directly to the activities

carried out by a user, such as their behaviours and interactions.

These events can possibly be produced through user intervention,

such as manual notes and transcripts of screen recordings or auto-

matically by components of an application (i.e. user interface).

• Application layer—the application layer sits between the user and

system layer. It represents the space in which user-space applica-

tions run on a computer system. Log files generated in this layer are

automatically generated by the logging functionality of applications

or user-space logging mechanisms (e.g. logging mechanisms that do

not require elevated privileges).

• System layer—the system layer represents the kernel space, where

management of the devices such as the Central Processing Unit

(CPU) and file system is carried out below the user-space. Log files

generated in this layer either require elevated privileges granted

11



Chapter 1 Introduction

Figure 1.4: Layered view of a computer system derived from the multi-layered
architecture view by Silberschatz et al. [2005]

to the logging mechanism or need to be generated natively by the

devices (e.g. operating system kernel).

Layers beneath the system layer, such as the hardware layer, are not

included in the view because obtaining events from these layers usually

requires modifications (e.g. physical modification) to the system. Thus,

our layered view is not concerned with layers beneath the system layer

as it is uncommon for systems to log events beneath the system layer (i.e.

hardware layer).

1.6 Requirements

To address the thesis question, a solution for reconstructing data prove-

nance from log files is required. Drawing lessons from the work of

Ghoshal and Plale [2013], we recognised such a solution will require

the transformation from log events to provenance graph to be done in

multiple steps. As such, the following will be required to achieve such a

transformation:

RQ1 - a dataset for experimentation and evaluation. Such a dataset

would require both the data from which data provenance can be
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reconstructed (i.e. set of log files) and information on the actual

derivation history of files (i.e. ground truth).

RQ2 - a provenance model for modelling information extracted from log

files into provenance information.

RQ3 - an algorithm or approach for reconstructing data provenance from

the modelled provenance information.

RQ4 - a methodology for evaluating the reconstructed data provenance

against the ground truth. Such a methodology can also serve as a

platform on which the proposed approach can be evaluated against

other approaches for data provenance reconstruction.

1.7 Thesis Structure

Figure 1.5 structures the solution for reconstructing data provenance

from log files as a workflow, based on the list of requirements listed in

Section 1.5. The intention is to modularise the solution for each require-

ment, such that outcomes from future research (e.g. new algorithms for

reconstruction) are interoperable with the work done. The thesis is struc-

tured according to the proposed workflow so as to facilitate the descrip-

tion of this research.

Chapter 2 surveys and discusses work related to each of the require-

ments listed in Section 1.6. The goal is to provide an overview of the

research done with respect to each of the requirements and their gaps.

Emphasis is placed on the discussion of work related to RQ2, RQ3 and

RQ4. Detailed review of existing datasets for RQ1 is done in Chapter 3

in order to keep the discussion in Chapter 3 concise.

Chapter 3 discusses the work done to meet requirement RQ1. The

chapter first lays out a set of requirements for datasets suitable for prove-

nance reconstruction research and shows the lack of publicly available

datasets that meet the requirements. The methodology used in the gath-

ering of a dataset for this research is then presented.
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Provenance 
Modelling

Information
Extraction

Result
Abstraction

Provenance
Reconstruction

Modelling Phase Reconstruction Phase

Figure 1.5: Illustration of the proposed data provenance reconstruction work-
flow

Chapter 4 discusses the model proposed for requirement RQ2. The

chapter first introduces the proposed multi-layered provenance model. It

then describes our approach to mapping provenance relations between

the different layers in the proposed model.

Chapter 5 outlines the reconstruction algorithm designed to satisfy

requirement RQ3. The problem of reconstructing data provenance from

the modelled provenance relations is formulated and presented in the

first section of the chapter. The rest of the chapter is devoted to describ-

ing how the algorithm works.

Chapter 6 presents and shows how the proposed evaluation method-

ology satisfies requirement RQ4. Using the proposed methodology, the

thesis question is addressed. Problems in the reconstructed data prove-

nance are also identified and discussed.

Chapter 7 discusses possible future work from this research and con-

cludes the thesis.
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Chapter 2

Literature Review

In this chapter literature related to requirements listed in Section 1.6 are

reviewed. The structure of this chapter follows the order of the workflow

for provenance reconstruction, shown previously in Figure 1.5. Work

related to extracting information from log files are first discussed. Fol-

lowing which, provenance models for modelling the extracted informa-

tion into provenance relations are reviewed. The review then focuses

on work relating to provenance reconstruction. Finally, approaches for

evaluating provenance reconstruction are discussed.

2.1 Extracting Information from Logs

To reconstruct data provenance from log files, entries in the log files have

to be modelled into provenance relations. Information that can be used

for identifying entities involved and inferring relationships between the

entities have to be first extracted from the log entries.

One of the objectives of log analysis research is to extract patterns

that describe expected behaviours of a system or application from the

log files. These patterns can then be used to monitor for abnormali-

ties during operation of the system. Research on extracting patterns

from log files by Vaarandi [2003], Nagappan and Vouk [2010] and Lou

et al. [2010] discussed how each log entry can be divided into two por-

tions: message signature and parameters. The message signature is usu-

ally free-form text that describes the event represented by the log entry
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while the parameters provide more specific contextual information such

as the process ID, process name or state of the application. By extracting

and analysing the message signatures, log entries can be classified into

different types, thereby allowing patterns to be extracted from the se-

quence of logs. Techniques such as frequent item mining [Nagappan and

Vouk 2010], source code analysis [Xu et al. 2009] and text analysis [Fu

et al. 2009] have been proposed for the extraction of message signatures

from log entries.

For the purpose of provenance modelling, techniques for extracting

message signatures can be applied to log files for separating log entries

into the two stated portions. The message signatures can be used for in-

ferring relationships while the parameters can be used for identifying en-

tities involved. However, techniques for extracting message signatures

can only resolve heterogeneity of log formats. Our initial analysis of dif-

ferent log files revealed that heterogeneity may exist in the parameter

portion of a log entry.

Differences in the implementation of logging mechanisms may cause

heterogeneity in the representation and the amount of information logged

for each parameter field. Such heterogeneity may be observed even if the

logging mechanisms are logging events from the same application type

(e.g. different implementations of web servers) or system device. As an

example, we look at log messages produced by two different kernel log-

ging mechanisms, Linux Audit Framework (LAF) [archLinux 2012] and

Sysdig [Draios Inc 2016], shown in Figure 2.1.

Both Sysdig and LAF log system calls invoked and the parameters

used, in the Linux system kernel. Parameters are logged in their raw

format into the log file in LAF. In contrast, Sysdig translates captured

parameters into human readable format before logging into the log file.

This heterogeneity in the representation of information being logged can

be observed by comparing parameters highlighted by the corresponding

boxes between Figure 2.1a and 2.1b. Such heterogeneity complicates au-

tomatic extraction of relevant information from log entries as a program

would also need to know when a parameter needs to be translated.

Different logging mechanisms may also produce parameters with dif-
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type=SYSCALL msg=audit(1431919800.905:5766096): arch=c000003e syscall=43 success=yes
exit=5 a0=3 a1=7fff8b0a8150 a2=7fff8b0a814c a3=0 items=0 ppid=1 pid=2050 auid=4294967295 
uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=(none) ses=4294967295 comm="sshd" 
exe="/usr/sbin/sshd"
subj=system_u:system_r:sshd_t:s0-s0:c0.c1023 key=(null)

type=SOCKADDR msg=audit(1431919800.905:5766096): saddr=0200D3C8C0A802170000000000000000

(a) Entry for accept system call in LAF

679507;2015-09-18 20:13:51.478914528;pid=1074(sshd);ppid=1;uid=0(root);sys=accept>;
param:

679508;2015-09-18 20:13:51.478938100;pid=1074(sshd);ppid=1;uid=0(root);sys=accept<;
param:fd=5(<4t>192.168.110.50:46814->192.168.110.52:ssh)

(b) Entry for accept system call in Sysdig

Figure 2.1: Comparing log formats of different kernel logging tools

ferent amounts of information. For example, the dotted red boxes in

Figure 2.1a and 2.1b highlight the parameter field that describes the

network address associated with a network socket. Converting the net-

work address parameter logged by LAF would show the values of a sin-

gle Internet Protocol (IP) address and the port number. However, Sysdig

records the IP address and port number used by both the local and re-

mote hosts as observed in Figure 2.1b. Due to such inconsistency in the

amount of information logged, a level of domain knowledge is required

for extracting the right information when processing log files from het-

erogeneous sources.

Ghoshal and Plale [2013] proposed a rule-based engine for parsing and

deriving provenance relations from log files. Since the rules are user-

defined, knowledge of the log formats can be incorporated into the rules.

However, rule-based engines require users to be familiar with the rule

formulation guidelines specific to the engine and how the engine works.

This increases the complexity of extracting information from log files.

Although extracting relevant information from log files is the initial

phase in our data provenance reconstruction workflow, proposing a gen-

eral approach that works across different types of log files (including

unknown log files) is out of the scope of this research. Instead, we im-
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plemented customised parsers for different types of log file. Doing so

allowed us to incorporate the extraction and modelling of information

into provenance relations in a single implementation, without having to

deal with the complexity of rule formulation. We discuss the extraction

of information from log files in more detail in Chapter 3.

2.2 Modelling Provenance Relations

Once information relevant to provenance has been extracted from log

files, the next step is to model the extracted information into provenance

relations. In this section, we review existing provenance models and

discuss the gaps in these proposed models.

Both theoretical and practical models had been proposed for modelling

provenance. Theoretical models such as those proposed by Green et al.

[2007], Luttenberger and Schlund [2014], Souilah et al. [2009] and Ch-

eney et al. [2008] focus on formalising the properties and forms prove-

nance can have. On the other hand, practical models such as Open

Provenance Model (OPM) [Moreau et al. 2011], PROV-DM [Moreau and

Missier 2013], D-PROV [Missier et al. 2013], Time-aware Provenance

model (TAP) [Zhou et al. 2011] and many others focus on modelling infor-

mation gathered off different systems (e.g. workflow systems, computer

systems, distributed systems) into provenance.

Many proposed practical models operate at a flat granularity, treating

information observed by different tools to be of the same level of de-

tail. In their discussion on how provenance graphs can vary from one

another, Coe et al. [2014] showed how graphs generated from different

provenance collectors based on existing provenance models can differ in

granularity. Provenance collectors that monitor the execution of a work-

flow at the application space, such as Vistrail [Bavoil et al. 2005] and

Taverna [Hull et al. 2006], capture activities such as reading of a file and

running of a script as separate individual events. However, provenance

collectors monitoring shared system components (e.g. the kernel or file

system), such as Progger [Ko and Will 2014] and SPADE [Gehani and
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Apache logs (Application logs)

Sysdig logs (Kernel logs)
 

130.217.250.77 - - [07/Oct/2016:21:10:55 -0700] "GET /challenge/index.html" ...
130.217.250.77 - - [07/Oct/2016:21:10:55 -0700] "GET /challenge/Resources/scroll.png" ... 

2016-10-07 21:10:55.854907787;pid=21988(apache2); ... ;sys=open <;
param:fd=13(<f>/var/www/challenge/index.html) ... flags=4097(O_RDONLY|O_CLOEXEC) 
 
2016-10-07 21:10:55.855783642;pid=21988(apache2); ... ;sys=close >;
param:fd=13(<f>/var/www/challenge/index.html)

2016-10-07 21:10:55.889660864;pid=21988(apache2); ... ;sys=open <;
param:fd=13(<f>/var/www/challenge/Resources/scroll.png) ... flags=4097(O_RDONLY|O_CLOEXEC)

2016-10-07 21:10:55.889673454;pid=21988(apache2); ... ;sys=close >;
param:fd=13(<f>/var/www/challenge/Resources/scroll.png) 

Figure 2.2: Comparing messages between application and kernel logs

Tariq 2012], may observe the same file read as a series of read events.

Since most existing provenance models do not consider the granularity

layer on which they operate, the events would be modelled equivalently.

As a result, the graphs would differ in shape and size even though they

are describing the same activities. This is an issue when attempting to

compare provenance graphs generated from different granularity lay-

ers of a system. Although transformers or similar tools may be used to

reduce the impact of granularity during provenance query, it may not

produce the right results for all cases. For example, a web server may

access the same file back to back due to requests from different remote

clients. In such situations, provenance collectors operating at the system

layer may capture the two accesses as a series of sequential accesses to

the same file. As such, the transformer may not be able to differentiate

the series of accesses and collapse the accesses observed by the system

provenance collectors into a single access operation.

The difference in granularity described by Coe et al. [2014] can also

be observed in log files. Figure 2.2 shows how activities can be captured

differently in the application and kernel logs. Requests for two files made

to the application, Apache, are logged as two events in the application

log. However, each file request is logged as a pair of open and close

system call events in the kernel log. If a flat granularity provenance

model is used to model both log files, the provenance graph modelled

from the application log file will differ from the graph modelled from
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the kernel log. This creates an issue when attempting to resolve the

two graphs (i.e. determine if the two graphs are the same or looking for

duplicated relations).

One possible solution for resolving the differences caused by granu-

larity in log files is to incorporate the concept of multi-granularity into

provenance models. This would allow events observed at different gran-

ularities to be modelled as separate provenance relations. Association

between provenance relations of different granularities can then be ex-

pressed through mappings between the different granularity layers in

the model. Such a multi-layered provenance model and mapping would

allow provenance graphs modelled from different log files to be mapped

to and compared at the same granularity. Any comparison at the same

granularity would ideally be free of the differences in shape and size of

the graph (assuming they are looking at the same activity) caused by the

difference in granularity described by Coe et al. [2014].

The need to incorporate granularity when modelling provenance was

identified as early as 2007 by Barga and Digiampietri [2007]. From the

literature reviewed, two types of abstraction have been identified for

achieving multi-granularity in provenance. We term the two forms of ab-

straction contextual abstraction and structural abstraction. A quick

overview of the abstraction types and the approaches to implement them

is shown in Figure 2.3. The two forms of abstraction used are discussed

in detail in the following sections.

2.2.1 Contextual Abstraction

Contextual abstraction reduces the amount of contextual information

shown in the provenance graph as the granularity approaches coarse-

grained, influencing the understanding of elements in the graph (e.g.

edges and nodes) in the process. Contextual abstraction can best be

understood through the view of Barga and Digiampietri [2007] on dif-

ferences between granularity layers in a provenance graph. A coarse-

grained provenance graph captures the structure of a workflow but not

details surrounding each element in the graph. As the granularity be-
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Figure 2.3: Summary of the different types of abstraction in provenance and
approaches used to implement them

Coarse-grained Fine-grained

associated

associated

associated

Figure 2.4: Difference between granularity layers caused by “contextual ab-
straction”

comes more fine-grained, information that describes each element in

more detail is added to the graph, thereby giving a more contextual un-

derstanding of each element. For example, at a coarse-grained level, an

input parameter to a function could be captured as a single node that

denotes an input Field. However, as the granularity increases, more el-

ements can be associated to the Field node to capture more contextual

information, such as the value and data type of the Field. Such contrast

in the level of detail between provenance graphs of different granularity

is portrayed in Figure 2.4.

Contextual abstraction in provenance enables users to query prove-
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nance with customisable precision, based on their needs. In their discus-

sion on the level of detail that should be captured in provenance graphs,

Daniel et al. [2015] linked the requirement on the level of detail to the

specificity of the query. The authors argued that by capturing more detail

surrounding each element of the provenance graph, queries over a range

of specificity, ranging from “retrieve the list of input for a workflow” to

“retrieve the list of input of a specific data type for a workflow” can be

executed.

Thus far, contextual abstraction in provenance models have been im-

plemented using two approaches. Barga and Digiampietri [2007] pro-

posed introducing layering into their workflow provenance model. Each

layer in the model is responsible for modelling a specific set of informa-

tion, such as information obtainable from runtime. These sets of infor-

mation can originate from the separate phases of executing a workflow.

For example, L0 (Layer 0) would contain only abstract descriptions of

the services used in the workflow. These descriptions can be obtained

during the workflow composition stage. In contrast, L3 (Layer 3) would

capture details, such as the value and value type, of data observed during

runtime execution.

Another approach to implementing contextual abstraction is through

extending existing models with specialised classes for capturing finer-

grained detail. The extended classes are then appended to the coarse-

grained provenance graph as associations, so as to allow elements to

be described in more detail. For example, Daniel et al. [2015] proposed

PROV-Wf, an extension of the PROV-DM model. Concepts in PROV-Wf that

are based on PROV-DM are used to model workflow provenance (e.g.

structure of workflow). However, the PROV-DM concepts are not suffi-

ciently fine-grained to allow modelling of contextual information such as

value and type of the data. Hence, the authors extended the PROV-DM

model with classes designed to allow domain-specific data and informa-

tion pertaining to the execution of the workflow to be modelled. Likewise,

Probst and Hansen [2013] extended the ExASyM model, a model for mod-

elling the spatial and organisational aspects of an organisation proposed

by Probst and Hansen [2008], to allow the modelling of security policies
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and activities surrounding data, information which is more fine-grained

compared to the structure of a organisation. In doing so, the resulting

model, acKlaim, allows analysis concerning data, such as provenance of

data, data policy violations and data security to be carried out.

However, even with changes in the structure, interpretation of the in-

terconnectivity (i.e. edges that do not denote associations) between the

elements remains constant throughout the layers. With reference to Fig-

ure 2.4, one can still deduce that Field is still a direct input to Function,

regardless of the granularity. This is the main difference between con-

textual and structural abstraction.

2.2.2 Structural Abstraction

Structural abstraction refers to simplification made to the structure of

the provenance graph, thereby influencing the interpretation of relation-

ships between elements. Such relationships may represent different se-

mantics, such as flow of information between entities or sequences of

execution. For example, in Figure 2.5, one would not know exactly how

many processes the data passed through before reaching the recipient

process by analysing only the abstracted graph (i.e. coarse-grained).

Structural abstraction in provenance is mostly used to aid analysis of

large provenance graphs and to group and annotate segments of a graph.

For instance, in visualisation tools proposed by Borkin et al. [2013] and

Macko and Seltzer [2011], techniques such as clustering and hierarchical

grouping have been employed to summarise a group of nodes, reducing

the number of elements users have to analyse. Abreu et al. [2016] argued

that by applying structural abstraction to provenance graphs, segments

of the graphs can be grouped and annotated with higher-level semantic

descriptions. Such descriptions would allow users or algorithms to op-

erate using semantic-rich information to understand and process prove-

nance graphs. For example, a series of interconnected nodes that show

the execution sequence of a function can be abstracted and annotated

with the function’s name. This allows users to relate the execution of the

function as part of the provenance.
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Coarse-grained Fine-grained

Structurally 
abstracted

Figure 2.5: Difference between granularity layers caused by structural ab-
straction

Structural abstraction for summarising a group of nodes or for seg-

menting a provenance graph can be achieved directly through the use of

grouping techniques. These techniques can further be divided in two

based on whether a priori knowledge of elements in the provenance

graph was used.

Without using a priori knowledge, Macko et al. [2013] proposed the

use of metrics such as closeness, betweenness and eigenvector to iden-

tify nodes that are inter-related, clustering them together to form local

clusters. These local clusters can be used to relate segments of a prove-

nance graph to known activities.

Borkin et al. [2013] applied a time-based hierarchical grouping tech-

nique to a provenance graph to create groups of nodes, based on the

distance between nodes in the time domain. The creation of groups

through measuring temporal distance can then be applied recursively

on the groups, until the graph is aggregated to a suitable size for visu-

alisation. Such a visualisation can be said to be hierarchically layered,

allowing users to “zoom” into different segments by expanding the ag-

gregated nodes into their original form.

Moore and Gehani [2013] proposed Simple Event Logic (SEL), a domain-

specific language for implementing filters that can be used to aggregate

streams of provenance events (i.e. nodes, edges and attribute events)

generated by provenance collection tools. Differing from previous work,

SEL aggregates sequential edges and nodes having the same attributes.

For example, when a provenance collector generates a series of prove-

nance events showing a process reading the same file, these events are

all buffered and aggregated as they possess the same process ID, file ID
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Process
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Figure 2.6: Counter use-cases for structural abstractions without using a priori
knowledge

and activity type. However, once sequential reads are broken by other

activities such as a write, the aggregated elements are output and the

aggregation is reset. Such a measure is necessary as the authors do not

assume that they have an unlimited amount of memory to buffer events.

By not relying on a priori knowledge, the discussed approaches can

be applied generically to various types of provenance graph. However,

they may produce semantically incorrect groupings. Figure 2.6 shows

two use-cases where the discussed approaches would produce incorrect

groupings.

In the left use-case, variation in the distance between two sets of se-

quential reads may result in approaches that use distance metrics to

erroneously aggregate the nodes into two semantically different nodes.

Likewise, the right use-case shows how erroneous aggregation of nodes

can happen for approaches that use order of events for determining

group membership. Due to events from one process interleaving with

events from a different process, structural abstraction using event order

would fail to aggregate the events.

Macko and Seltzer [2011] and Buneman et al. [2012] both assumed ac-

cess to a priori knowledge such as the control flow and function call tree

of the application the provenance is describing. Patterns that describe

the sequence of nodes to expect or relationships between the nodes can

be extracted from the a priori knowledge. These patterns are then used

to guide the abstraction, such that the abstracted graph may reflect the

structure seen in the a prioriknowledge (e.g. functions in the function

call tree), as illustrated in Figure 2.7.
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Original Provenance Graph Abstracted Provenance Graph

Pattern extracted
from a-priori knowledge

Abstraction

Abstracted node that reflects
features or structure observed 
in the a-priori knowledge

Figure 2.7: Structural abstraction using a priori knowledge such as the func-
tion call tree

Such abstraction can be applied recursively to the provenance graph,

thereby inducing different levels of granularity into the resulting prove-

nance graph. Lee et al. [2013] proposed an approach to split an applica-

tion’s system trace into units by first deriving the application’s hierarchi-

cal loop structure through runtime monitoring. Using the derived loop

structure, the application is instrumented to emit specific events denot-

ing the start and end of loops in the system call trace. While this work is

done from a non-provenance perspective, provenance models modelling

the resulting system call trace can utilise the loop-start and loop-end

events to abstract segments of the provenance graph.

Biton et al. [2008] assumed the workflow specifications (e.g. struc-

ture, components of the workflow) and the set of relevant elements1 is

known. This contrasts with the previously discussed models where the

relevant elements are derived from the call tree. Structural abstraction

is achieved by collapsing non-relevant elements together with each rel-

evant element into composite modules. Each composite module is con-

fined to having at most one relevant element, but can have an unbounded

number of non-relevant elements. Through such a constraint, the au-

1In the discussions, the authors describe “relevant elements” as “relevant modules”.
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thors seek to maintain the data flow between relevant elements in each

abstracted graph.

The main advantage of using a priori knowledge is that semantically

meaningful patterns that map lower granularity provenance relations to

those of higher granularity can be extracted from the knowledge, result-

ing in more accurate abstractions. For example, from an application’s

call tree Buneman et al. [2012] were able to extract the set of directly

connected nodes that can be mapped to a higher granularity provenance

relation. The extracted set can be viewed as the pattern that maps to the

higher granularity provenance relation. Counter use-cases, such as those

shown in Figure 2.6, can be resolved using the patterns extracted from

a priori knowledge as the nodes to expect are defined by the patterns.

However, access to a priori knowledge cannot always be assumed.

Arguably, being able to structural abstract provenance graphs mod-

elled from log files is more critical, as compared to identifying their con-

textual abstraction, when comparing or resolving graphs modelled from

different granularity. For example, an application reading from a file can

be logged as a single read event in the application log file. However, the

same read can manifest as a series of read operations in the kernel log

files. Modelling events from both log files would result in two structurally

non-equivalent provenance graphs even though they are describing the

same file read event.

Structurally abstracting provenance graphs modelled from log files us-

ing models that do not assume a priori knowledge can potentially pro-

duce semantically incorrect abstractions like those illustrated in Figure

2.6. On the other hand, models based on a priori knowledge of elements

in the provenance graph can only abstract graphs describing those ele-

ments. For example, models based on workflow specifications for work-

flow A will not work for other workflows. For reconstructing provenance

from log files, obtaining a priori knowledge of applications running on a

system is infeasible due to the number of possible applications existing

on a system. Obtaining the required a priori knowledge of each appli-

cation is also subject to the availability of information concerning the

application, such as its source code or binary. Such information cannot
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be assumed if only access to log files is made available.

Another solution for structurally abstracting provenance graphs mod-

elled from log files is by defining patterns that describe known generic

operations or behaviours of applications (e.g. read, write). Abreu et al.

[2016] proposed a conceptual workflow that would potentially allow such

patterns to be extracted without relying on a priori knowledge. A prove-

nance graph is segmented into different segments. Semantically mean-

ingful patterns are then extracted from each segment using analytic

techniques such as feature extraction. However, as the authors have

pointed out, discovering segmentation strategies for provenance graphs

is an open research issue in provenance research. In Chapter 4, we

present our proposed multi-layered provenance model and discuss how

a set of patterns that map provenance relations between different gran-

ularity layers is derived and implemented.

2.3 Provenance Reconstruction

Provenance reconstruction can be broadly seen as reconstructing the

sequence of events that explain the resulting state of an object or inci-

dent. In this section, research that relates to this view in the areas of

provenance, digital forensics and workflow planning are reviewed and

discussed.

2.3.1 Reconstruction in Provenance

A call for solutions for reconstructing provenance was issued as a re-

cent challenge in the provenance challenge series [?]. The objective is to

address the impractical assumption that provenance can always be col-

lected or collected completely. The challenge is symbolic of the problem

being recognised as an important issue in provenance research by the

community as the challenge series has been a platform for addressing

key challenges. Past issues addressed include the need for a standard

model for provenance across different fields and provenance interop-

28



2.3 Provenance Reconstruction

Sep 2006

1st Provenance Challenge
Comparison of approaches
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2nd Provenance Challenge 
Provenance Interoperability

3rd Provenance Challenge
Evaluation of Open Provenance Model

Jun 2009

Jun 2014

Provenance Reconstruction Challenge
and Provenance Datasets

Figure 2.8: Timeline and focus of the series of provenance challenges [Moreau
et al. 2010; Groth 2014]

erability; issues that affect the application of provenance. Figure 2.8

illustrates the series of issues addressed. In this subsection, we cate-

gorise and discuss research on reconstructing provenance according to

the methodologies the approaches take.

Inference-based

Inference-based approaches reconstruct provenance by inferring the miss-

ing segments or the complete provenance from existing provenance knowl-

edge, such as the provenance of other similar objects. Huq et al. [2011]

proposed using coarse-grained workflow provenance, collected during

setup, from workflows working with streaming data to reconstruct fine-

grained data provenance. The coarse-grained provenance which cap-

tures parameters, input sources and other information regarding the

processing elements in the workflow is used to reconstruct a process-

ing window. The window is then used to infer which data tuples in the

input data stream are the contributing input data tuples that resulted in

the queried output tuple. While the proposed solution allows inference

of the contributing data tuples, it assumes that the set of transformations

the data undergoes (e.g. the workflow template) before reaching its final

state is known.

Both Govindan et al. [2011] and Zhao et al. [2011] discussed how miss-

ing parts of a provenance graph can be reconstructed by inferring the
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missing segments from the provenance of objects similar or related to

the object described by the partial provenance graph. Govindan et al.

[2011] considers the scenario where data provenance may be incomplete

due to attacks from malicious users or nefarious nodes in the computer

network. Two scenarios where provenance could be lost were addressed:

complete loss of provenance information for a network node (i.e. missing

nodes in the provenance graph) and partial loss of provenance informa-

tion on a network node (i.e. incomplete information on a node in the

graph).

To reconstruct partial provenance loss, the missing information was in-

ferred from past complete provenance of the node. In the event where

the missing information could not be inferred, the provenance for that

node is deemed lost and discarded; to reconstruct the provenance graph

with missing nodes, a list of possible paths the data could have taken

through the network is derived by computing the reachability set or in-

ferred from past behaviour of the network. The most likely path is then

selected based on total length of the graph or by the order of common

sequences. Zhao et al. [2011] reconstruct partial loss of provenance for

data items used in reservoir engineering using an approach similar to

how Govindan et al. [2011] reconstruct partial provenance loss. Their

approach first searches for data items which are semantically similar to

the data item with incomplete provenance. The missing segments are

then inferred from the complete data provenance of those semantically

similar data items. The underlying assumption is that semantically simi-

lar data items are processed in a similar manner.

These approaches have demonstrated that missing segments or the

complete provenance graph can be inferred from the provenance of re-

lated objects. However, they rely on access to existing provenance knowl-

edge. Our research assumes no provenance collectors were being de-

ployed. Hence, it is assumed that no such knowledge is available.

Planning

Assuming a library containing all possible transformations is available,

Groth et al. formulates reconstructing data provenance that shows the
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transformation process of a piece of data as a planning problem [Groth

et al. 2012]. A prototype based on A* search and heuristic functions

based on edit distance is implemented. The prototype searches for possi-

ble sequences of transformations that could explain how the data reaches

its output state from its initial state. However, the authors highlighted

the search space for possible sequences being unbounded as one of the

challenges that needs to be resolved. Another challenge of the proposed

solution is that the search may yield incomplete results if there are trans-

formations not defined in the library.

Formulating provenance reconstruction as a planning problem has two

requirements. First, like in workflow planning, the set of possible trans-

formations or provenance relations from which the provenance can be

reconstructed is required. For our research, the set of provenance re-

lations can be modelled from the log files. Second, the end goal needs

to be clearly defined and known. However, discerning which objects are

relevant to the data provenance from a dataset on which we assume zero

knowledge is difficult. As such, formulating the problem of reconstruct-

ing data provenance from log files as a planning problem would also face

the challenge of an unbounded search space.

Code Analysis

Code analysis approaches reconstruct the provenance of a workflow by

analysing the source code or binary of a given piece of software. Huq

et al. [2013] reconstructs the workflow provenance of a script by first

parsing the program code in the script and constructing an abstract syn-

tax tree from the code grammar used. Based on the syntax tree, the

authors’ implementation prompts the user for operation-specific infor-

mation, such as whether an operation is reading or writing persistent

data. Corresponding elements in the syntax tree are then annotated with

the user’s responses. Finally, the tree is converted into a workflow prove-

nance graph.

Viewing provenance from a phylogenetic tree perspective, Dumitras

and Neamtiu [2011] tackle the problem of malware profiling by attempt-

ing to reconstruct the phylogenetic tree for families of malware. Through
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analysing the source or binary, malware are classified into families based

on similarities in how they operate. By ordering the different versions

of malware, the resulting phylogenetic tree can show the evolution of

malware within each family.

Since the functionality of an application can be inferred from its source

or binary (i.e. execution steps or sequence of transformations of the ap-

plication), data provenance that shows how an application transforms a

piece of data can be reconstructed. However, in situations where the

data is propagated or used by multiple applications, the reconstructed

provenance would resemble a set of disjointed graphs. This is because

the relationships inferred from the sources would only capture activities

within each application’s scope. Inter-application communication would

fall outside of such scope. Take for example the case where the output of

one application is fed directly to the stream input of another application.

Relationships inferred from the latter’s source would not show the ori-

gins of the input data is from the first application since the input source

will be treated generically as a stream object.

Content-based

Content-based approaches reconstruct the provenance of a file by com-

paring the difference in content between files. This is based on the as-

sumption that files which are related (i.e. different revisions of a file)

would have similarities in their content. The general approach first re-

constructs the relevant entities of the graph by correlating files based

on similarity of their content. Using temporal information such as time

of creation, correlated files can then be arranged into a time-ordered

coarse-grained provenance that shows how a file evolve through differ-

ent revisions over time. Measuring content similarity may be done based

on the actual content or through the semantic properties of the content.

Magliacane [2012], Deolalikar and Laffitte [2009] and Aierken et al.

[2014] measured content similarity using distance measures such as co-

sine similarity and longest common subsequence. Interestingly, in eval-

uating a prototype developed by Magliacane and Groth [2012] against a
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set of clinical documents, the authors reported issues with deriving the

appropriate temporal order due to differences in the file metadata. This

is a major issue for content-based approaches that rely on timestamps

for inferring file revision order as different file systems may update the

file metadata in a different manner as discussed by Knutson [2016] and

in ForensicsWiki [2015].

Nies et al. [2012] considered the case where revisions of a file may

differ in content length. Instead of computing the content similarity

distance of two news articles, semantic properties associated with each

news article, such as Named Entities, are extracted. The coarse-grained

provenance is then generated by correlating news articles based on sim-

ilarities between their semantic properties. Fine-grained provenance

is then inferred by identifying and modelling each difference between

the content of two correlated news articles. Modelling of content dif-

ference is done using relations defined in the PROV-DM model [Moreau

and Missier 2013]. The proposed approach was then extended by adding

new parameters to how similarity between documents is measured and

applied on the 2014 provenance reconstruction challenge dataset by Nies

et al. [2016].

In a separate work, Nies et al. [2015] adapted their approach for recon-

structing provenance between news articles to social media messages.

Fine-grained provenance is reconstructed using knowledge such as how

users are interconnected on social media, message IDs, timestamps and

other meta-data. The reconstructed fine-grained provenance is able to

show how a message or news is diffused from the original source within

the connected network of users (e.g. network of friends and friends-

of-friends). However, it does not cover messages that were copied or

revised manually (e.g. not shared or retweeted through the social me-

dia software). To reconstruct coarse-grained provenance that captures

the missing relationships, tracked copies of messages in the fine-grained

provenance are first removed from the set of all messages. A similarity

matrix for all messages is then built using a feature model and seman-

tic similarity function (e.g. TF-IDF and cosine similarity). The messages

are then clustered and messages within each cluster are ordered based
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on timestamps to produce the coarse-grained provenance. Finally, by

integrating both forms of provenance, the graph that shows both mes-

sage diffusion between users who are friends and possible relationships

between messages not captured by the social media software is recon-

structed.

Although content-based approaches have demonstrated the possibility

of reconstructing provenance, they are reliant on being able to access

and compute the content of files. In a computer system, given the large

number of files that can exist, it is computationally expensive to cor-

relate every file. Data communicated between processes using volatile

memory are also transient. This implies that acquiring the data required

to establish communication between processes may not be possible. Fi-

nally, while content comparison allows the inference of how data is being

transformed, the question of which processes or applications are respon-

sible for the transformations remains. In contrast, studies by Ghoshal

and Plale [2013] and Ling [2013] showed information relating to events

happening and involved objects are being captured in log files. This infor-

mation leads to reconstructing provenance that shows the activities (e.g.

read, write) and entities involved in the transformation to be promising.

2.3.2 Digital Forensics

Part of a digital forensic investigation involves having to reconstruct the

sequence of events happening at a digital crime scene2 such that it can

be used to reason about or infer how a crime was committed. Recon-

struction is usually based on digitised evidence such as computer logs,

saved states of a system or even disk images. This is directly relevant

to our research on reconstructing data provenance from log files gath-

ered from the system. In this section, we identify two schools of thought

surrounding research in reconstructing the sequence of events in digital

forensics: timeline and event reconstruction.

2In digital forensics, the crime scene usually refers to the computer system under
investigation.
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Timeline Reconstruction

Timeline reconstruction aims to temporally order events such that fur-

ther reasoning (usually manual) can be applied on the timeline to infer

the cause of the observed incident (e.g. digital crime or anomalies). The

general approach is to first extract events from the digital evidence gath-

ered from the system. Events are then ordered based on their timestamp

into a linear time sequence that reflects the order in which the events

took place. Approaches mainly differ in how events are being extracted

and processed.

Chabot et al. [2014], Hargreaves and Patterson [2012] and Buchholz

and Falk [2005] utilised different types of parser to extract timestamped

events, along with other relevant information from collected evidence.

Extracted events are processed into event nodes that encapsulate infor-

mation relevant to each event (e.g. start and end time, type, source of

extraction) before inserting it into the timeline.

Khan et al. [2007] addresses the issue of where extracting events3 in

the past becomes harder as the evidence becomes older (e.g. repeated

execution of an application would result in modification to the metadata

of files the application accessed). To overcome this issue, the authors

proposed the use of neural networks for automatic classification and ex-

traction of the execution time frame and files manipulated for a set of

known applications. Training of the neural networks is done using file

system activities that describe the behaviour of each application in the

set. Experiments conducted using the implementation showed that a

highly accurate timeline of the applications can be reconstructed despite

multiple applications and multiple file accesses happening at the same

time. However, the reconstruction only works for applications the neural

network is trained for. Identifying new applications would require the

neural networks to be retrained.

While a timeline captures the sequence between events, its linear prop-

erties are not intuitive for capturing relationships between events, which

is key to understanding the ’hows’ and causes of events. This is espe-

3In this case, the authors are looking at traces of execution of an application.
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Figure 2.9: Case where linearity of timeline is not intuitive for deducing rela-
tionship between events

cially the case if two related events are far apart on the timeline or that

there are many other events taking place between the two events (e.g.

noise), as illustrated in Figure 2.9. As a result, approaches for timeline

reconstruction are insufficient for reconstructing provenance.

Event Reconstruction

Deviating from timeline reconstruction, event reconstruction approaches

reconstruct each event4 as a separate entity. Such an entity would con-

tain information that describes the event, extracted from different evi-

dence. For example, FACE, an event reconstruction implementation by

Case et al. [2008], reconstructs an entity that describes a process as an

event. Such an entity would contain information on the files the process

accessed, the sockets it opened and other contextual information. From a

provenance perspective, each entity is equivalent to a node in the graph

or a small segment of the graph.

Once events are reconstructed, reasoning can be applied such that the

sequence of events that led to an incident can be reconstructed (e.g.

cause and effect). Carrier and Spafford [2004b] defined a conceptual

4In the reviewed literature, the definition of the unit term ’event’ varies between two
definitions: 1)Event is equivalent to an entity. 2)Event as in a singular activity ex-
ecuted by an entity. It is not our goal to provide a unified understanding of ’event’
in this review. As such, we use ’event’ to interchangeably refer to both definitions,
based on the context of the discussed work. Having said that, this variation of defini-
tion of term has little impact on the overall discussion of reconstructing the sequence
of events.
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framework that consists of the following five phases to achieve this end

goal.

1. Evidence examination—Identify and extract objects likely to be re-

lated to the investigation, its relevant information and characteris-

tics from the gathered evidence.

2. Role classification—Classify objects as the cause or effect of an

event, based on the information and characteristics associated with

the object.

3. Event construction and testing—Different objects and events are

correlated, such that each event has a cause and an effect. The

aim is to allow reasoning on how a cause object could have brought

about changes that resulted in the effect object, through the known

event.

4. Event sequencing—Events that are reconstructed in the previous

phase are sequenced together, forming a chain of events. The end

result may be a list of possible chains of events or even series of

small event chains that needs to be sequenced further.

5. Hypothesis testing—Each chain of events is tested with the discov-

ered evidence or known facts about the crime to see if the chain of

events can explain the crime.

The majority of work on event reconstruction focuses on phases one

to three. Tools such as ECF by Chen et al. [2003], FACE by Case et al.

[2008] and FIRESTORM by Ahmad and Ruighaver [2002] place emphasis

on providing a platform that collects and associates information relevant

to an event from different sources. Phase four, the most important phase,

where the sequence of events is reconstructed, is however delegated to

the user. This is achieved through tools, such as FACE by Case et al.

[2008], that allow users to query or visualise the reconstructed events

for manual correlation and reasoning. However, as pointed out by Schatz

et al. [2004], such tools would not scale as the number and complexity

of events to be investigated increases. An increase in the number and
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complexity of events can be due to several causes, such as increased

workload on the system under investigation, investigation of an incident

that happens across long periods of time or inclusion of multiple sources

of evidence.

To overcome the increase in volume and complexity of events, rule-

based correlation engines such as SEC by Vaarandi [2002] and FORE

by Schatz et al. [2004] were proposed. Events extracted from evidence

are formulated as knowledge. User-defined rules that describe known

patterns or anomalies in the form of antecedents (e.g. cause) and conse-

quences (e.g. effect) are then fed to the correlation engine and executed

over the knowledge base. The engine can return either the sequence of

events that matches the defined rules or return the effects of the matched

rules. Rule-based correlation engines provide the flexibility for users to

update rules periodically, thereby increasing the coverage of incident

types that can be detected. However, the specificity of the rules affect

the results returned. If the rule is overly strict, the engine may miss

other relevant events. In contrast, if the rule is too general, the engine

may return a large number of false positive results. In addition, knowl-

edge of the patterns or anomalies is required for the formulation of rules.

This makes it difficult to detect an unknown sequence of events.

Another approach to event reconstruction is through profiling the digi-

tal fingerprints of specific applications performing different actions. Pro-

filing is achieved by monitoring changes in the timestamps in the meta-

data of files (e.g. access, modify, create timestamps) in the file system,

as discussed by Kalber et al. [2013] and James et al. [2011]. By match-

ing profiles showing sequences of file activities expected from applica-

tions to the file metadata of the current state of the system, analysts can

reconstruct which applications are running at the instant of time of the

snapshot. However, the disadvantage is that the profiles can only identify

when the last time the application executed as the file metadata would

have been overwritten by the latest file activity. Profiling digital finger-

prints of applications also suffers from an inability to detect unknown

applications running on the system

Phase four of the conceptual framework defined by Carrier and Spaf-

38



2.3 Provenance Reconstruction

ford [2004b] is more relevant to provenance reconstruction as the key

challenge is establishing the relationship between entities. However, we

note approaches using rule-based engines require knowledge on struc-

ture of the provenance graph or expected behaviour of the entities for

rule formulation. We do not assume such knowledge in this research.

2.3.3 Workflow Planning

Our review exercise on techniques that reconstruct sequences of events

led to work surrounding workflow planning. It is not our intention to

provide an extensive review of the work in this area, but rather to gather

inspiration on how relationships between entities can be reconstructed.

In his article on the application and implementation of classical plan-

ning in game development, Vassos [2012] defined the planning problem

as:

“Given the initial state of the world (world model), a set of ac-

tions that describe how the world changes in terms of precon-

ditions and effects and a goal condition, find the sequence of

actions (plan) such that when applied one after the other, they

would transform the current state description into one that sat-

isfies the goal condition.”

The Standford Research Institute Problem Solver (STRIPS) by Fikes and

Nilsson [1971] is an implementation of the classical planning technique.

In STRIPS, each action consists of a set of preconditions that must be

met in the world model before the effects of the action can be applied

onto the world model and a set of effects in the form of a delete and add

list. The delete list contains the set of conditions that are to be removed

from the world model and the add list contains the set of conditions that

are to be added to the world model. In general, STRIPS works as follows:

1. A theorem prover is used to prove whether the world model, M0

satisfies the goal conditions, G. If the prover is able to find a valid

proof, the planning is deemed complete and any applied actions will

be output as the plan (if the planner is able to prove M0, then the
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problem is solved trivially). If not, STRIPS treats the incomplete

proof as the difference between the state of the world model and

the goal conditions.

2. STRIPS searches for actions with effects that can reduce the differ-

ence between the state of the world model and the goal conditions.

The preconditions of such actions then become subgoals.

3. STRIPS uses the theorem prover to check if there are instances of

the selected action that can be used to prove the subgoal. If not,

Step 2 is applied onto the subgoal. If it can, the action is applied

to transform M0 to a new world model, M1. From here, the planner

goes back to Step 1 using M1 as the new world model instead.

Although different implementations of classical planning may adopt dif-

ferent searching algorithms and heuristics, these implementations gen-

erally are exposed to the issue of a large search space as the number

of valid actions increases in each state of the world model. In addition,

classical planning also suffers from an unbounded length of the plan and

does not guarantee an optimal solution. We note that these issues have

been raised by Groth et al. [2012], where they investigate formulating

reconstructing data provenance as a planning problem.

While there are other strategies proposed for workflow planning, such

as temporal planning [Chen et al. 2006; Cushing et al. 2007] and Hi-

erarchical Task Network planning (HTN) [Nau et al. 1999; Georgievski

and Aiello 2014], the problems and assumptions that these strategies

are designed for renders them irrelevant to our scenario. For exam-

ple, the assumption for HTN is that the abstract structure of the plan

is known. The plan can then be broken down to different subtasks, such

that the sequence of actions required to achieve each task can be dis-

covered separately. However, we do not assume that the structure of the

provenance graph is known. Likewise, temporal planning was designed

to solve problems where time constraints surrounding the concurrent ex-

ecution of different actions are considered. However, we do not assume

such constraints in our reconstruction scenario.
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2.4 Evaluating Provenance Reconstruction

In the process of reviewing literature on provenance reconstruction in

Section 2.3, we noted the inadequate discussion on the evaluation of

results. Details such as how are the results measured and the metrics

and dimensions used in the evaluation are lacking. Discussions such as

those by Huq et al. [2011], Dumitras and Neamtiu [2011], Groth et al.

[2012], Zhao et al. [2011] and Nies et al. [2015] either did not discuss or

only briefly mentioned the results of their evaluation. The methodology

that led to the authors arriving at the stated results was not documented.

This makes it difficult to replicate or compare other approaches with the

discussed work. However, some of the authors also highlighted the lack

of a suitable dataset for evaluation as the main reason for the absence of

evaluation.

Govindan et al. [2011] evaluated the performance of their algorithm for

reconstructing missing segments of a provenance graph under different

loss ratios5 using the Receiver Operating Characteristics (ROC) curve.

The algorithm was repeated a hundred times using a random starting

point for each loss ratio. The rate in which the missing provenance seg-

ments are correctly reconstructed is then plotted against the rate of in-

correct reconstruction results to form the ROC curve. By plotting the

ROC curve for each loss ratio on the same chart, the performance of the

algorithm under different loss ratios can be deduced quickly from the

chart. Instead of a ROC curve, Zhao et al. [2011] directly plotted the pre-

cision of their algorithm against different loss ratios. However, from the

discussion, it is not clear how precision was calculated or what it means.

The authors only briefly state that it was calculated by comparing the re-

constructed provenance with the ground truth. In both discussions, the

proposed algorithms were evaluated based on whether the missing seg-

ments were correctly reconstructed. The metrics used (e.g. ROC curve,

precision-to-loss ratio) do not provide insights to the quality of the recon-

structed provenance, such as the amount of redundant information (i.e.

noise) in the output.

5Loss ratio refers to the ratio between the size of the lossy provenance graph and the
provenance graph without loss (ground truth).
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Most content-based approaches, such as those by Aierken et al. [2014],

Nies et al. [2012] and Magliacane and Groth [2012], assume that the en-

tire provenance graph is not available (i.e. 100% loss). As a result, the

approaches are not evaluated against varying loss ratios. Instead, eval-

uation is centred on understanding how well the reconstructed prove-

nance represents the ground truth using metrics such as precision and

recall. Unfortunately, how precision and recall are computed and the

significance of those metrics were not discussed in the experiments.

Knowing the approach to how the values for precision and recall is

derived is important as there can be different methods for calculating

those metrics. These methods can potentially result in different values.

Manning et al. [2009] described precision as “the fraction of retrieved

documents that are relevant” and can be computed as follow:

Precision =
tp

(tp + fp)

where tp is the number of retrieved items that are relevant (true posi-

tive) and fp is the number of retrieved items that are not relevant (false

positive) and can be computed by subtracting tp from the total length of

the result. However, in their research on proposing an automatic ma-

chine translation evaluation methodology for computational linguistics,

Papineni et al. [2002] highlighted two different approaches to measuring

tp. Assuming matching unigrams, traditional approaches to calculating

precision would equate tp to be the max(Countresult ,Counttruth) , where

Count is the number of matches in the respective sentences between the

result and the ground truth. In some cases, the traditional precision cal-

culation would yield high precision but questionable translations, such

as the case shown in Figure 2.10a. The authors argued that this ap-

proach is different to how humans would distinguish the performance of

a translation.

Instead, the authors proposed to take the minimum count between the

result and the ground truth when computing tp. The authors remarked

that counting the minimum is closer to how humans distinguish a good

translation from a bad one as compared to the traditional approach to
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Ground Truth:
Translation Result:

The fox jumps over the wall

The fox the fox the fox wall

tp = 7,  precision = 7/7

(a) Traditional approach takes the maximum match count when computing true
positives

Ground Truth:
Translation Result:

The fox jumps over the wall

The fox the fox the fox wall

tp = 4,  precision = 4/7

(b) Considering the minimum match count when computing true positives

Figure 2.10: Difference between traditional approach to computing true posi-
tives and approach proposed by Papineni et al. [2002]

computing tp. Figure 2.10b illustrates the outcome of the proposed mod-

ified approach. While the discussion surrounds computing precision, it

applies to recall too as tp is also a key variable for deriving recall, as

shown in the formula below:

Recall =
tp

(tp + fn)

where fn (false negative) is the number of items falsely deemed non-

relevant. Although subtle, these two different approaches yield different

evaluation results. As such, it is important that the approach to how the

metrics are computed be documented in any discussion on evaluation.

Cheah and Plale [2014] suggested that quality of a provenance graph

can be deduced by measuring the correctness and completeness of the

graph. The authors defined correctness to be associated with the degree

in which the graph is free of errors and inconsistencies and complete-

ness to the ratio of loss or over-completeness of a graph in comparison to

the expected provenance graph. A framework that evaluates the correct-

ness and completeness of a provenance graph is proposed. Correctness
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is evaluated by searching for conflicting annotations6 and timestamp in-

consistencies between connected nodes7. Completeness is evaluated by

comparing the provenance graph with knowledge of the graph, such as

a workflow template, to determine if there are missing elements. The er-

rors found were then averaged over the expected nodes and edges into a

single scoring metric that is used to denote the quality of the graph.

While the dimensions used by Cheah and Plale [2014] can also be ap-

plied to evaluating a reconstructed provenance graph, consolidating the

outcome to a single scoring metric is insufficient for highlighting the

aspect the reconstruction faired poorly in. Also, the authors’ proposed

framework only factored missing segments into their quality metric. We

argue that noise (e.g. extra provenance relations in the graph) is also a

factor that should be included in the evaluation as it reduces quality and

hinders comprehending the provenance graph.

In Chapter 6, we address the lack of evaluation methodology for prove-

nance reconstruction research. We argue that addressing this gap is

critical for future research as an open and clear evaluation methodology

is key for comparison and performance evaluation of proposed solutions.

2.5 Dataset for Provenance Reconstruction

An important research gap highlighted by some of the work reviewed

in Section 2.4 is the lack of a suitable dataset for evaluation. Maglia-

cane and Groth [2013] discussed their efforts identifying such a dataset

for their research on reconstructing file provenance given a set of files

whose relationship is unknown. Their survey was based on the following

use cases:

1. Detecting plagiarism, text and multimedia content reuse.

6In the context of their work, the authors referred to annotations as the contextual
information associated with each node in the graph, in the form of name-value pairs.

7Since in a provenance graph, each edge is equivalent to a dependency relationship
between the two connected nodes, timestamp inconsistencies can be checked by
observing the causal order of the two nodes.
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2. Connecting publications with related data such as other research

data and blog posts.

3. Tracking the evolution of scientific knowledge and discourse through

publications and informal communications between scientists.

As a result, the datasets surveyed were mostly corpora of text documents

and multi-media datasets. Since the scope of this research is on com-

puter system log files, the findings reported by the authors were not

applicable. Having said that, the authors broadly discussed some guide-

lines for selecting a dataset for evaluating provenance reconstruction.

Based on these guidelines, we defined a list of requirements for identi-

fying datasets that can be used for our research. To keep the discussion

concise, the requirements for the datasets and our work on surveying

publicly available datasets is discussed in Chapter 3.

2.6 Summary

In this chapter, work related to the requirements identified in Section 1.6

are reviewed. Figure 2.11 illustrates the categories of work reviewed.

Techniques used in log analysis, such as frequent item mining and text

analysis, can be used to extract the message signature and parameters

portion of log entries in a log file. However, our review showed that

these techniques do not handle the heterogeneity found in parameters

caused by logging mechanisms. Extracting the correct information from

the parameter portion of a log entry is critical to modelling log entries

into provenance relations. Having said that, proposing a general solu-

tion for resolving heterogeneity in both the message signature and pa-

rameter portions of a log entry is not within the scope of our research.

Instead, we combine the extraction of information from different log files

together with the modelling of such information and implemented them

as customised parsers. We elaborate upon our approach in Chapter 4.

A provenance model is required to model information extracted from

log files into provenance relations, such that they can be used for recon-
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Figure 2.11: Structure illustrating the categories of work reviewed

structing the data provenance. Existing provenance models can be cat-

egorised into those that operate on flat granularity and models where a

multi-granularity view is induced using abstraction. However, modelling

log files generated from different granularity layers using flat granularity

models would result in disparate provenance graphs. We argue that dif-

ferences between log files, induced by granularity, resemble structural

differences in the graph. Hence, multi-granularity provenance models

based on structural abstraction are potential candidates for modelling

log files generated from different granularities into provenance relations.

However, existing models either assume a priori knowledge on elements

of the provenance or are sensitive to noise or interference in the data.

Our proposed provenance model and approach to mapping provenance

graphs between different granularity layers is discussed in Chapter 4.

In Section 2.3, research relating to reconstructing the sequence of
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events in the areas of provenance, digital forensics and workflow plan-

ning are reviewed. Work on reconstructing provenance either references

existing provenance or access information such as the application source

code or content of data files for deducing the missing provenance. How-

ever, this research does not assume provenance is available or collected.

Approaches relying on access to application source code or data files may

also incur high computational cost due to the number of applications and

files that can exist on a computer system. Many timeline and event recon-

struction techniques in digital forensics do not focus on reconstructing

the relationships among events and entities. While some have proposed

using rule-based engines for inferring relationships, users are expected

to possess knowledge of either the provenance graph or behaviour of the

entities in order to formulate correct rules. However, this research as-

sumes no knowledge on the structure of the provenance graph. In Chap-

ter 5, we present and discuss our proposed algorithm for reconstructing

data provenance from the set of modelled provenance relations. The pro-

posed algorithm leverages the causality of events and assumes only basic

domain knowledge on how operating systems function.

Although there are published work on provenance reconstruction, dis-

cussion on how the approaches are evaluated have been brief. One of the

attributing reasons was the lack of suitable datasets for evaluation pur-

poses. We address this gap in Chapter 3 by constructing and making pub-

lic, a set of datasets for provenance reconstruction research. Amongst

work that discusses evaluating their proposed approaches, none have de-

tailed or referenced the methodologies used in the evaluation. In most

cases, only the metrics used and the results are presented. Although the

metrics used were known metrics such as precision and recall, we argue

that it is still important to detail or reference the approaches used for

deriving the values. This is because there can be a different interpreta-

tion of the metrics and approaches for computing the values. In Chapter

6, we detail our methodology for evaluating reconstructed provenance

and demonstrate its usage by evaluating our solution using the proposed

methodology.
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Chapter 3

Constructing a Dataset for
Provenance Reconstruction
Research

A dataset that allows provenance to be reconstructed while possess-

ing the ground truth for evaluation is essential to addressing the thesis

question—how complete the reconstructed data provenance is compared

the known derivation history of the data. Hence, to systematically iden-

tify suitable datasets from a pool of publicly available datasets, a set of

requirements is defined. However, our survey revealed a lack of suitable

datasets, prompting the Cyber Security Lab to record the New Zealand

Cyber Security Challenge (NZCSC’15) dataset. This chapter details the

process and setup used to create the dataset. The discussion wraps up

with a description of a set of use cases that we derived for evaluation

purposes from the NZCSC’15 dataset.

3.1 Requirements for Dataset

Magliacane and Groth [2013] broadly stated the following requirements

for a dataset to be considered suitable for evaluating provenance recon-

struction research:

• The dataset needs to contain the information that the provenance

graph can be reconstructed from.
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• The dataset needs to have a gold standard provenance graph which

the reconstructed provenance can be compared with.

However, the authors did not elaborate further on the kind of information

required for provenance to be reconstructed. Based on the requirements

stated by Magliacane and Groth [2013], the following list of requirements

are proposed to aid the selection of dataset:

Requirement 1 (R1). Entities—the dataset should contain information,

independent from the ground truth, that can lead to the identification or

inference of at least a partial set of entities involved.

Requirement 2 (R2). Relations between entities—the dataset should

contain information, independent from the ground truth, that would pos-

sibly allow at least partial set of the relationships between entities to be

inferred or established.

Requirement 3 (R3). Ground truth—the ground truth is a separate

portion of the dataset that sheds light on the sequence of events happen-

ing during the generation of the dataset. Depending on how the ground

truth is collected, it can either be in provenance form (which will be

equivalent to the gold standard provenance stated by Magliacane and

Groth [2013]) or data from which the gold standard provenance can be

derived.

Here, we draw a distinction between the base data and the ground

truth data. The base data is the portion of the dataset used for recon-

struction. The ground truth data is a separate portion of the dataset used

mainly for verifying the reconstructed output. The ground truth can be

generated through manual annotation or captured from a perspective

separate from the generation of the base data. It should be noted that

the ground truth is used purely for evaluation purposes and not in the

reconstruction.

On top of those listed above, we further extend the requirements for

our desired evaluation dataset to include capturing events from multiple

perspectives in a computer system. This is in line with our scope of study-

ing data provenance reconstructed from log files generated at different
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granularities of a computer system, stated in Section 1.5. We break down

the multiple perspective requirement into the following types of events:

Requirement 4 (R4). Multiple Perspective

• (R4.1) System events—events collected from the system layer. These

events provide information on process interactions with other ele-

ments within a computer system such as files, processes or remote

systems. Example of system events are system call traces and net-

work events.

• (R4.2) Application events—events collected by logging mechanisms

operating at the application layer. Application events detail the op-

erational details, state and activities of applications monitored and

are usually consolidated into application log files.

With these requirements in mind, we first look at some publicly avail-

able research datasets and evaluate their suitability.

3.2 Evaluating Public Datasets

Following the scope defined in Section 1.5, the survey focuses on datasets

describing events happening within a computer system. Table 3.1 sum-

marises the datasets surveyed with respect to the list of requirements

presented in Section 3.1.

3.2.1 Provenance Datasets

ProvBench [ProvBench 2012] is the product of an effort to construct a

repository of provenance datasets for interoperability testing, validat-

ing proposed approaches and benchmarking of solutions by the prove-

nance community. To-date, the repository contains a handful of datasets

collected using various provenance collection tools. As a result, most

datasets in the repository are in the form of complete provenance graphs

modelled using provenance models such as PROV [Moreau and Groth
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Table 3.1: Overview of discussed datasets

Multi-Perspectives (R4)

Dataset
Entities and
Relationship
(R1 and R2)

Ground
Truth (R3)

System
Events
(R4.1)

Application
Events (R4.2)

ProvBench
[ProvBench

2012]
3

workflow
engines

Netresec
Dataset

[Netresec
2010]

3
network

data

SNAP Dataset
[Leskovec and

Krevl 2014]
3

network
data

different
application

data
ISCX Dataset
[Shiravi et al.

2012]
3

labelled
attack
data

network
data

ADFA Dataset
[Creech and

Hu 2013]

labelled
attack
data

system
call traces

DARPA
Dataset
[Lincoln

Laboratory
1998]

3 3

system
call traces
& network

data

2013; Moreau and Missier 2013]. Since the provenance graphs are al-

ready captured, the use of the ProvBench datasets contradicts the objec-

tive of reconstructing data provenance.

Since the ProvBench datasets are never intended for provenance re-

construction research, they are not published with ground truth data.

As such, the ProvBench datasets do not satisfy requirement R3. Hence,

these datasets cannot be used for evaluating the success of a reconstruc-

tion.
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3.2.2 Network and System Logs

While there are many publicly available network and system datasets,

most of them only provide a single perspective (i.e. system events). In

the following, we review some of the common datasets used for system

security research:

• Netresec Dataset Collection—Maintained by Netresec [Netresec

2010], the collection consists of network traffic datasets collected

from various cyber security competitions, deployed honeypots and

sandboxes for malware analysis. These datasets describe various

forms of network based attack and remote intrusion. The objective

was to provide data for intrusion detection research. As a result,

most of the datasets do not capture events from the application

perspective, hence, fail to satisfy requirement R4.2. Most of the

datasets also do not satisfy requirement R3 as they do not have

ground truth data in the releases.

• Stanford Large Network Dataset Collection (SNAP Dataset)—

the Stanford SNAP group looks at analysing large social and infor-

mation networks. Amongst the rich set of social and communica-

tion network datasets hosted on the group’s website [Leskovec and

Krevl 2014], there are some on computer network communications.

These datasets range from monitored email exchanges to peer-to-

peer networks. However, like the ProvBench datasets, the datasets

hosted here are mostly modelled graph data. Hence they are not

relevant for provenance reconstruction research. Having said that,

it is interesting to note that the datasets capture a variety of data

from different applications such as email clients, Twitter and other

social media applications.

• UNB ISCX Intrusion Detection Evaluation Dataset—the dataset

was generated by the Information Security Centre of Excellence

(ISCX) at the University of New Brunswick (UNB) in 2012 [Shiravi

et al. 2012]. Agents were created to simulate real world services

such as web, mail and file services and were deployed in a testbed
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environment. Various kinds of multi-stage attacks against those

agents were then carried out and the network traffic was captured

as the dataset. By simulating attacks and services in a segregated

network, the authors were able to generate a labelled dataset that

was free from real-time background traffic (i.e. noise). The labels

serve as a form of data from which the ground truth can be derived.

However, the dataset only describes events happening on the net-

work. It does not capture application events, hence does not satisfy

requirement R4.

• ADFA Intrusion Detection Dataset—the Australian Defence Force

Academy (ADFA) Intrusion Detection Dataset [Creech and Hu 2013]

was intended to replace the outdated KDD99 dataset [UIC 1999] re-

leased during the Knowledge Discovery and Data Mining (KDD) con-

ference in 1999 for system intrusion detection research. The ADFA

dataset consists of system call traces captured off systems that were

subjected to simulated malicious attacks. The main advantages of

the ADFA dataset are the dataset’s relevancy to modern computer

systems (the dataset was generated on recent versions of Linux and

Windows operating systems) and that the dataset was labelled, sep-

arating the malicious and normal system call traces. Having said

that, the arguments associated with the system calls invoked were

not captured in the dataset (i.e. the system call traces only contain

information on system call types executed by the process). This

made it not possible to derive the relationships between elements

and as a result, unable to fulfil the entity and relationship require-

ment (R1 and R2 ). On top of that, the dataset contains only events

from the system perspective and hence does not meet requirement

R4.2.

• DARPA Intrusion Detection Dataset—the Defense Advanced Re-

search Projects Agency (DARPA) Intrusion Detection Dataset is one

of the most comprehensive system research datasets, capturing sys-

tem events such as system call traces and network traffic. It was

generated by subjecting agents that simulate real systems to scripted
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attacks. System call traces, along with their arguments, were col-

lected from those systems on a daily basis. The entire simulation

was conducted in an isolated environment. A document that de-

scribes the attacks carried out, a brief description of each type of

scripted attack and their start times was published together with

the dataset. The documentation acts as an approximated ground

truth data which can be used to verify the results. Unfortunately,

the dataset focuses on collecting only system events and neglects

events generated by the applications running on the system. Hence,

the DARPA dataset does not fulfil requirement R4.2. Another down-

side of the dataset is that it is generated on the niche Solaris oper-

ating system. As a result, the dataset is considered to be outdated

compared to modern systems.

The ground truth column in Table 3.1 shows even with recent released

datasets, ground truth data is usually not included in the releases. Some

datasets use labels to annotate and differentiate abnormal events from

the normal ones. However, labels do not capture the semantics of the ac-

tual incidents (e.g. actual flow of the attack, how it happened or whether

two different attacks are related) as the labels only denote whether the

respective events were relevant or not. Since a key aspect of provenance

is the relationship between entities, it is important that the reconstructed

relationships can be evaluated too using the ground truth. As such, the

use of labels as the sole ground truth is insufficient for evaluation.

Due to the lack of ground truth data, most of the surveyed datasets

could not be used for our research. The documentation that details at-

tacks carried out in the DARPA dataset can be used to derive an approx-

imated ground truth. Based on the description of the attacks and their

start times, it is possible to determine which events in the system logs

are the relevant attack events. Relationships between entities can then

be inferred manually from the relevant events. However, since there is

no indication of how long each attack lasted, the ground truth can only

be approximated. As stated above, DARPA dataset also does not include

application events, making it not possible to evaluate provenance recon-

struction using application log files.
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Since none of the surveyed datasets can fulfil the listed requirements,

we set out to collect and construct our own evaluation dataset from the

New Zealand Cyber Security Challenge 2015 (NZCSC’15). The setup for

the data collection and the methodology used for the dataset construction

is discussed in the following sections.

3.3 New Zealand Cyber Security Challenge 2015

Before describing the NZCSC’15, we would like to clarify the author’s

contribution with regards to the work done towards constructing the

dataset. Although the design and execution of the challenge is critical

to the construction of the dataset, it is a group effort together with other

members from the University of Waikato Cyber Security Lab. Hence, the

design and implementation of the challenge discussed in this section are

not part of the contributions claimed by the student for the work done

towards constructing the dataset. Instead, the author’s contribution sur-

rounds the design and methodology used for capturing and constructing

the dataset, specifically, the round 2 portion of the dataset. This section

aims to provide the background knowledge for understanding the dataset

discussed in Section 3.5.

The NZCSC’15 was designed to raise awareness of cyber security, par-

ticularly on web application vulnerabilities and the potential types of at-

tack vectors a vulnerable system is susceptible to. The challenge was

structured into two rounds, with round 1 conducted in a capture-the-flag

style and round 2 as an attack and defence scenario.

In round 1, participants were required to identify and exploit existing

vulnerabilities on a set of hosted web services in order to retrieve a “flag”

from the respective systems. Depending on the challenge, the flag could

be embedded in source code or within the text of an HTML document.

Vulnerabilities introduced were mostly implementation and configuration

based, such as lack of user input sanitisation and erroneous permission

configuration. This translates to very little file interaction on the system1.

1To recap, as stated in Section 1.5, the scope of provenance views data at a file level.
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As a result, the data gathered from this round was not used and hence,

will not be discussed further in this chapter.

Round 2 was designed to test participants’ skills on system and web

application security. Participants were designated as the defenders and

assigned to different “blue” teams. Each blue team was required to main-

tain the availability of a set of services representative of those found

commonly in a corporate environment. The set consisted of a file shar-

ing service, a web server and an email server. Vulnerabilities introduced

into the servers were intended to emulate a poorly secured proprietary

environment (e.g. a company providing online services). These vulner-

abilities include poorly implemented web applications (e.g. unsanitised

parameters and exposed management interfaces), outdated applications

with vulnerabilities published in the Common Vulnerabilities and Expo-

sure database [MITRE 2017] (e.g. shellshock and php vulnerabilities),

weak security and account configurations [van der Stock et al. 2015].

Blue teams had to patch and harden the security of each service so as to

prevent the services and their systems from being compromised.

The participants were pitted against volunteers from industry spon-

sors, who were penetration testers by trade from various security com-

panies, and volunteers from our own research lab. Together, these vol-

unteers form the “red” teams. The red teams’ task was to disrupt the

services maintained by the blue teams.

Each blue team was scored based on the availability of their services by

a scoring machine. Availability was determined using a script that peri-

odically checked if the respective services of each team could be reached

from the scoring machine. Points were then awarded to the respective

team based on the services reached successfully. Figure 3.1 shows the

schematic for the setup used in Round 2.

All system were hosted on Virtual Machine (VM)s running Linux Ubuntu

15.04 as the operating system. The entire virtual environment was hosted

using OpenStack [The OpenStack Foundation 2010], a private cloud vir-

tual infrastructure management suite. The OpenStack version used was

the Havana release. Each blue team was assigned three VMs, each run-

Hence, emphasis is placed on file and system interactions.
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Figure 3.1: Schematics of the setup used for Round 2 of NZCSC’15

ning a service; a web server, a file server and an email server. VMs for

each team were placed in a virtual network allocated to each team so

as to prevent interference between the blue teams. Each blue team was

also allocated a Technician VM for tunnelling into their allocated virtual

network from the physical network. Participants would then access the

VMs hosting the services through the tunnel.

Blue team networks are shown as the blue boxes in Figure 3.1. The red

team systems were placed in a separate red team virtual network. This

was to simulate attackers from outside of a proprietary network (e.g. the

Internet). Each red team VM was pre-installed with Metasploit [Rapid7

2016], a penetration testing suite, as the basic tool. A list of attacks

observed to have been carried out by the red teams on the blue teams2

is attached as reference under Appendix A.

2This is done by going through the video recordings captured on both the blue and red
teams. Details on the video recording is discussed in Sections 3.4 and 3.5.
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3.4 Setup for Data Collection

As the dataset to be constructed is intended for evaluation, events in

the dataset should be generated in a realistic manner, as opposed to a

simulated dataset where events that happened are planned. Evaluat-

ing against such a realistic dataset would allow us to truly understand

whether the proposed reconstruction solution works.

The NZCSC’15 provided a platform for capturing data that are close to

real-world data. Although the vulnerabilities introduced in the challenge

were specifically selected, there was no control on the attack vectors

used (e.g. types of exploit used) or the breath of the attacks (e.g. activi-

ties executed after a successful exploitation). This introduces a sense of

uncertainty on the impact and effect of each attack, even if two attacks

are exploited using the same vulnerability. Potential limitations of the

dataset will be discussed in Section 3.7.

To construct the base data, both system and network events were col-

lected from both blue and read team VMs. From the system perspective,

events were collected from both the system and application layers. At the

system layer, kernel logging mechanisms Sysdig [Sysdig 2014] and LAF

[archLinux 2012] were used for collecting system call traces from the

kernels. Both the system calls invoked and their associated arguments

were logged. This was done to fulfil requirements R1 and R2, which

deals with being able to infer the entities and relationships involved.

The motivation behind using different tools for logging events was so

that interoperability between different data formats could be tested (i.e.

that a proposed solution is able to digest different log formats). On the

application layer, where possible, application logs produced by the var-

ious services were collected at the end of the competition. From the

network perspective, Daemonlogger [Roesch 2006] was used to moni-

tor and log both incoming and outgoing network traffic on each VM. By

collecting events from the system, network and applications running, re-

quirement R4 is satisfied. Table 3.2 lists the logging mechanisms used

and the types of log file captured.

The main challenge with constructing a realistic dataset that satisfies
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Table 3.2: Summary of tools used and logs collected on each VM type

VM Type
System

logs
Application

logs
Network logs Screen capture

Blue-Web
server

Sysdig
Apache

logs
Daemonlogger -

Blue-File
server

LAF
Samba

logs
Daemonlogger -

Blue-
Technician

VM
- - - VLC

Red VM Sysdig - Daemonlogger -

the requirements listed in Section 3.1 is generating the ground truth data

without affecting the base data. In simulated datasets such as the DARPA

dataset, events are planned (e.g. simulated attacks made on the sys-

tems). As such, the authors of the datasets are aware of details concern-

ing those events. Ground truth can then be produced by documenting

those details. However, with constructing a non-simulated dataset, au-

thors should have no influence or role over events that happened. Hence,

alternative means, independent of the those used for capturing the base

data, is required to generate the ground truth.

For the data collection exercise, ground truth data is generated us-

ing VideoLan Client (VLC), screen recording software. Screen activities

of participants from both teams are captured as video recordings from

each team’s physical terminals using the software. Since no data logging

was done on the physical terminals, such a setup ensured that the video

recording did not interfere with the data collection. Also, since control

of the VMs was done through the physical terminals, recording the ac-

tivities from the physical terminals ensured that all activities for each

team were captured. Figure 3.2 illustrates a simple overview showing

the separation of the data logging and the video recording.
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Blue servers
Technician VM

Blue Teams' 
Physical Terminals

Red Teams' 
Physical Terminals Red VMs

Remote 
connection

Blue team internal networks

VMs which have data 
logging enabled

User terminals where 
video recording is done

Red team internal network

Virtual Environment

Remote 
connection

Figure 3.2: Environment separation between data logging and video capture

3.5 NZCSC’15 Dataset

Overview of the NZCSC’15 dataset

In total, data was gathered from five blue teams and three red teams (two

industry experts and the backdoor VM). Permission to record screen ac-

tivities was obtained from all members of the teams for ethics approval.

Unfortunately, one of the blue team’s recording was found to be cor-

rupted after the competition. Hence only recordings for four blue teams

and the two red team experts were retrieved successfully. We also did

not manage to obtain a set of usable log files from the file server applica-

tion due to a misconfiguration in the logging mechanism. A breakdown

of the data collected is as follows:

Blue Team:

• Network traffic log – 5 sets

• System call trace log on web server – 5 sets (Sysdig)

• System call trace log on file server – 5 sets (LAF)

• Apache web server log – 5 sets
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Red Team:

• Network traffic log – 3 sets

• System call trace log – 3 sets (Sysdig)

Video Recording:

• Blue team – 4 sets (Blue 2–5)

• Red team – 2 sets (Red-1 and Red-2)

In the following subsections, we discuss the format and process used

for transcribing the video recordings into ground truth data.

Format of transcript

To enable the video recordings to be machine-processable, each record-

ing was transcribed into text form. Each observed event in the video was

transcribed as an entry in the resulting transcript. An example of an en-

try in the transcript is shown in Figure 3.3. Each entry in the transcript

is broken down into seven data fields. This is to allow for a systematic

approach to transcribing the video and to help preserve the semantics of

the events observed in the video. The data fields used are as follow:

1. Time - the time field records the observed system timestamp when

the event first took place on the system. Because the timestamp

observed was obtained by monitoring the desktop clock, we were

only able to capture the timestamp to minute granularity.

2. Action - the action field describes the observed event. Values of this

field are structured to first contain a short description of the com-

mand or action observed, followed by the VM the event was carried

Time Actions Local Command Send Receive Comments Intent

20:21

ssh to file.co2.csc2
from tech.co2.csc2
as tech user on
terminal

ssh tech@file.co2.csc2

request to
authenticate
password of tech
user to
tech.co2.csc2

credentials of
tech user from
tech.co2.csc2

Authenticate
successfully and
established
connection with
file.co2.csc2

Figure 3.3: An example of an entry in the transcript
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out on (i.e. location), the user account that executed the action and

finally the means through which the action was executed (e.g. com-

mand line, web browser). To simplify the transcription process, lo-

cation is not transcribed if the event happened on the VM to which

the transcript belongs. Similarly, means of execution is not recorded

if the action was executed through the command line interface.

3. Local Command - the local command field records the observed

command and arguments used by the user in carrying out the ob-

served event. This field is only valid for events happening on the

command line interface.

4. Send - the send field provides a general description of the data sent

to the remote host on the network due to the observed event. It

details the nature of the data sent and to which VM the data is being

sent.

5. Receive - similar to send, the receive field details the nature of the

data received at the local host (the VM which the transcript is for)

on the network and the VM from which the data was sent.

6. Comments - recording the semantics of the observed events into

fixed fields is not an easy task due to the wide variation of visual

feedback possible and domain knowledge required to understand

the observed events. Hence, the comments field is a free-text field

that records either a description of the feedback from the system or

comments that will provide insights into what is happening in the

observed event.

7. Intent - in some situations, it is not easy to understand what a user

is trying to achieve through just one event. As such, the intent field

is used for annotating what the participant is attempting to achieve

over one or more observed events. The information provided in the

intent field is derived through one or a combination of two methods.

The first method was through observing what happened over the

series of events. The second method was by looking at the Google

search queries carried out on the browser by the participant when

63



Chapter 3 Constructing a Dataset for Provenance Reconstruction Research

attempting to perform tasks related to the observed event. As such,

the information provided in the intent field is a best effort attempt.

Having said that, we believe that annotating the perceived intent of

the participant can facilitate reasoning about and understanding of

the ground truth data. This field is left empty if the comments or

event description is clear in expressing the intention of the partici-

pants.

The next subsection describes the process used for breaking down each

event observed in the video recording into the defined fields.

Video transcribing process

Events observed in the videos can be generated either by the user or the

system. An event is considered user generated if it is observed that the

event is the result of a direct action by a participant (i.e. a participant

executed a command or action). The time of execution, the command

used and the data sent are noted for each observed user generated event.

This information, along with a brief description of the action or command

executed are transcribed into the transcript using the format described

above. The system is then observed for feedback returned to the user in

relation to the command or action executed. Such feedback may come

as a message prompt returned by the system or as a visual effect caused

by the participants’ action, such as the successful loading of a web page.

Feedback observed is transcribed into either the comments or receive

fields or both. In the case where a goal is achieved through a series of

events, the intent field for the respective entries will be annotated with

the same goal.

On the other hand, an event is considered system generated if the ob-

served event happened suddenly or automatically without the partici-

pant’s involvement. An example of a system generated event could be a

sudden disconnection of the participant’s remote terminal to one of the

servers, observed in video recording. In such cases, the time at which

the event is observed and a description of what had happened are noted
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Yes

NoNo

Yes

Yes

No

Figure 3.4: Flowchart depicting the video transcribing process for system and
user generated events

in the respective fields. If required, further details are noted in the com-

ments field. It should be noted that a system generated event could

be caused by user generated events from other teams (i.e. attacks from

red teams causing immediate visual feedback on blue team terminals).

In those cases, the responsible event is transcribed as a user-generated

event in the other team’s transcript. As such, it is possible to correlate

two transcripts and deduce the cause and effect of actions or commands

executed by other teams. However, we do not annotate such correlation

into the ground truth so as to avoid complicating the ground truth data.

The transcription process is illustrated as a flowchart in Figure 3.4.

Two examples of the resulting video transcripts are shown in Figure

3.5. Figure 3.5a shows the result of transcribing an observed standalone

event. Information in the action field is decomposed using boxes and
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Time Actions Local Command Send Receive Comments Intent

20:21

ssh to file.co2.csc2
from tech.co2.csc2
as tech user on
terminal

ssh tech@file.co2.csc2

request to
authenticate
password of tech
user to
tech.co2.csc2

credentials of
tech user from
tech.co2.csc2

Authenticate
successfully and
established
connection with
file.co2.csc2

1

2

3
4

(a) A single transcribed event. The action field is highlighted with different
colours and annotated with numbers to illustrate formatting used

Time Actions Local Command Send Receive Comments Intent

21:56 edit crontab as root sudo crontab -e
Crontab opened
using /bin/nano.

21:56
close editor editing
crontab

ctrl+x

Modified crontab to
remove all cronjobs.
Modifications saved
to crontab.

21:56 edit crontab as root sudo crontab -e
Crontab opened
using /bin/nano.

21:56
close editor editing
crontab

ctrl+x
No modifications
made to crontab.

21:56
list cronjobs for root
user as root

sudo crontab -u root -l no cronjobs listed.

Participant removes
all cronjobs for root

user.

(b) Intent field used to annotate relation and intention behind executing a series
of observed events

Figure 3.5: Examples of the video transcript of the ground truth

numbering to demonstrate the format described in the field descriptions

above. The intention behind having a format for the fields is to allow

the transcript to be processed in an automatic and structured manner.

Figure 3.5b shows how the intent field is used to semantically group a

series of events together. Although the intent field is in free text form, it

can be used to conveniently group and label events into event groups.

After transcribing the video recordings, the NZCSC’15 dataset would

have event log files and the transcripts describing the participants’ ac-

tivities. These two sets of data represent the base data and the ground

truth data, discussed in Section 3.1, respectively. The event log files will

be used for data provenance reconstruction, while the transcripts will be

used for deriving use cases for evaluation. Next, we describe the use

cases derived.
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access (21:43, cat, /etc/hosts)

Time Actions Local Command Send Receive Comments Intent

21:43 display content of /etc/hosts
on terminal using cat cat /etc/hosts

entity initiating
action

(source entity)

entity affected
(target entity)

Entry in 
Transcript 

Ground Truth
Provenance

concept is taken from proposed 
provenance model

access

graph form

Figure 3.6: Converting event in transcript to ground truth provenance

3.6 Use Cases from the NZCSC’15 Dataset

Using the transcript, a sample set of use cases was derived for the pur-

pose of evaluating the proposed reconstruction solution. For each use

case, a piece of data (e.g. file) is first selected. Events in the transcripts

that are relevant to the file (e.g. events that modify, access or propa-

gate data in the file) are then identified. Information such as timestamp,

the actions and involved entities are then extracted and expressed as

a provenance graph using concepts described in our proposed prove-

nance model, discussed later in Chapter 4. Figure 3.6 shows a simple

example of an event in the transcript being converted to ground truth

provenance. From the actions field of the entry in the transcript, one

can deduce that the application cat is used to read data from the file

/etc/hosts. Using concepts in the proposed provenance model, the entry

is translated to a tuple format that shows the relationship between the

two entities. The format of the tuple is discussed along with concepts in

the model in Chapter 4. The tuple can also be converted into graph form

for visualisation purposes, as shown in the figure. The resulting prove-

nance graph for each use case is the ground truth provenance with which

the reconstructed data provenance can be compared for evaluation.

The derived use cases and selection of files are designed to test the

reconstruction solution on the following capabilities:

1. ability to retrieve all relevant entities and relationships

2. reconstruct the sequence that depicts how the data is derived from
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its origin

3. reconstruct the sequence that shows how the data evolve from a

given state

In the following, a brief description of the scenario and the simplified

ground truth provenance3 are presented for the use cases derived.

Use-case 1—Backing up Critical Files

Scenario - Participants from the blue team, web-co2, were attempting

to backup a set of critical files which they were supposed to protect from

the red team. First, the blue team checked the content of the file /home-

/tech/PrivateFiles/PrivateFile1 by reading it using the application less on

the terminal. After ensuring that the file was correct, they copied it from

the file server to the technician VM using the scp application. A check-

sum was then generated for the file using the md5sum application.

Based on Pechanec [2007]’s explanation of how scp utilises the under-

lying secure shell (ssh) daemon, sshd, for sending data to remote hosts,

we added the passing of data from the scp to a sshd process into the

provenance graph. The resulting high level provenance graph is shown

in Figure 3.7. The dotted arrow represents host-to-host network commu-

nication.

This simple use case covers not only day to day user interactions with

files but also communication between processes. Process-to-process com-

1) access 2) read

3) write

4) datatransfer

5) access

Figure 3.7: Use-case 1—Backing up /home/tech/PrivateFiles/PrivateFile1 to re-
mote host, Technician VM

3In some cases, certain events were repeatedly executed over time. For simplicity,
these repeated sequences are not shown in the figures.
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3) access2) modify

4) access

Figure 3.8: Use-case 2—Modification of /root/.ssh/authorized_keys file in order
to gain remote shell access through ssh

munication is an important behaviour in the operating system, used mainly

to move data from files to other locations such as other files or hosts. By

selecting the file /home/tech/PrivateFiles/PrivateFile1 as the data whose

provenance is to be reconstructed, this use case tests whether the prop-

agation of data across different processes and over the network can be

reconstructed.

Use-case 2—Malicious File Modification

Scenario - One of the first things the red teams did upon successfully

compromising the blue teams’ VMs was to enable password-less remote

shell access for themselves. To achieve that, the red team injected their

own ssh-key into the /root/.ssh/authorized_keys file on the blue team’s

VM. Modification of the file was done via a malicious backdoor shell

installed previously. The red team then checked to see if the ssh-key had

been successfully injected by reading and displaying the content of the

file using the cat application. Every time the red team logs in remotely to

the VM using ssh, the file authorized_keys will be automatically accessed

by the ssh daemon (i.e. sshd).

The high-level provenance graph for use-case 2 is shown in Figure 3.8.

Use-case 2 is an example of how hidden malicious software can alter the

system, eventually leading to the system being compromised. It tests if

the modification of /root/.ssh/authorized_keys and events showing differ-

ent applications consuming the modified data over time can be recon-

structed.
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2) access1) create

3) delete

Figure 3.9: Use-case 3—Injecting Malicious Payload via Database

Use-case 3—Malicious Payload

Scenario - Use-case 3 captures the red team injecting malicious shell

code into one of the blue team’s VMs via the MySQL database, mysqld.

Access to the blue team’s web server (httpd) is gained by leveraging the

malicious shell code and the method depicted in use-case 2. Finally, the

shell code is deleted so as to cover the attackers’ tracks.

Figure 3.9 shows the high-level provenance graph of use-case 3. Dif-

fering from the previous use cases, use-case 3 captures the entire life-

cycle of the file red.php; from its creation till its deletion. Creation and

deletion of a file are important relationships in data provenance as these

relations mark the beginning and end of a file’s life cycle. As such, the

proposed reconstruction solutions should not only be able to reconstruct

the interactions but also the creation and deletion of files.

Use-case 4—File Versions

Scenario - In this use case, the red team first injected a malicious shell

code, red0.php into one of the blue team’s VM web folders /usr/local/a-

pache2/htdocs/. To ensure availability of the shell code on the compro-

mised VM, the red team made backups of the shell code in various direc-

tories. This was achieved by copying the file to other directories using

the cp application. Two different backups were created, the first one

from the original file to another web server directory and the other to

the system temporary file folder.

Figure 3.10 shows the ground truth provenance for file, ../test/red0.php.
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2) access1) create

6) delete
5) access

7) access

3) access

8) modify

4) modify

Figure 3.10: Use-case 4—Data provenance showing the derivation of the file
/usr/local/apache2/htdocs/red0.php

The file is selected intentionally to test whether the relationships that

show how the file is derived from ../htdocs/red0.php and how it evolves

to /tmp/red0.php can be reconstructed.

These four use cases are examples of the type of use cases that can be

extracted from the ground truth for testing provenance reconstruction

solutions. These use cases demonstrate some scenarios of file tampering

and file evolution during the competition4. However, the use cases do

not exhaustively represent the different variety of attacks that can be ob-

served in the real world ,such as those encountered in a digital forensics

investigation. This is due to the limitation in the scope of the dataset,

which will be discussed in Section 3.7.

Having said that, the use cases are sufficient for representing the ba-

sic operations that can be carried out on a file (e.g. create, read, write,

delete) and the communication of data between entities. By focusing on

reconstructing these aspects, we can verify if the proposed reconstruc-

tion solution can produce data provenance that allow questions such as,

“how was the file created?" and “where did the data in this file origi-

nate from?" to be addressed. Such a reconstructed output is relevant to

4Other use cases that can be derived from the ground truth can be inferred from the
list of attacks, listed in Appendix A, carried out in the challenge.
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Table 3.3: Overview of the set of use cases

File
create

File
read

File
write

File
delete

Derivation across
entities

Use-case 1 3 3 3

Use-case 2 3 3

Use-case 3 3 3 3

Use-case 4 3 3 3 3 3

the data provenance we defined in Section 1.5 of Chapter 15. Table 3.3

provides an overview of the aspects captured in each use case.

3.7 Limitations of the NZCSC’15 Dataset

Although the NZCSC’15 dataset was captured from a live platform, we

do not assume that the dataset is complete and perfect. In this section,

we discuss limitations of the dataset that stems from how it was captured

and constructed.

Enclosed Virtual Environment

Due to constraints regarding the venue of the competition, it was decided

that the competition be hosted in a closed environment (e.g. a virtual en-

vironment separated from external networks). This decision has an ef-

fect on the amount of non-malicious activities captured and represented

in the dataset.

Although non-malicious activities are still being generated throughout

the competition (e.g. participants testing and checking their system func-

tionality; events generated by scoring machine;execution of background

services), the amount of non-malicious activities captured is still limited

compared to a real-world environment. This may affect the fuzziness of

5We defined data provenance as, “the information that depicts the evolution process
of a piece of data, including the entities and activities involved in the process”
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the dataset required for evaluating security research such as intrusion

detection.

Another limitation that resulted from the decision to host the compe-

tition in a virtual environment is the tools that can be used for collect-

ing the ground truth. Participants interacted (e.g. keyboard typing and

mouse clicks) with the virtual environment from the physical environ-

ment where installing monitoring software such as key loggers was not

possible. As a result, more precise ground truth could not be captured

and we had to rely on screen recording for generating the ground truth.

We intend to address this limitation through revisiting the design of the

architecture used for the competition in future efforts in dataset collec-

tion.

Focus of the Challenge

The objective of the NZCSC’15 challenge was to educate the partici-

pants on the impact of poorly implemented and secured web applica-

tions. Hence, vulnerabilities introduced into the challenge were targeted

at web applications and system perimeter defense6. The variety of at-

tacks (e.g. types of payload and exploits used) executed and captured

were also constrained by the duration of the competition. As a result,

the data captured may not be rich enough to represent the wide range of

types of exploits and payloads seen in the real-world. These two factors

may constraint the types of use cases that can be generated for research

purposes.

Having said, based on our observation on the attacks carried out, events

captured in the dataset does cover the different phases of a system intru-

sion (e.g. reconnaissance, vulnerability scanning, vulnerability exploita-

tion, malware insertion and covering up) [Wai 2002; Lois 2015]. Tam-

pering of user files and system configurations are also included in the

types of payload observed to be executed. These factors allow for the

generation of use cases suited for research that emphasis on root cause

6For more information on the type of vulnerabilities introduced, reader can refer to
the attack labels listed in the Table in Appendix A.
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Chapter 3 Constructing a Dataset for Provenance Reconstruction Research

analysis, such as system or data security using a provenance approach.

Structure of the Ground Truth

One of the initial goals set for the NZCSC’15 dataset was to cater to

research work in the areas of provenance and security. However, the

format for the ground truth required for the different types of research

work may differ. For example, provenance research often require the

ground truth to be in the form of graphs, usually modelled using defined

provenance models [Magliacane and Groth 2013; Nies et al. 2015]. In

contrast, research that explores the use of machine learning approaches,

such as classifiers [Nari and Ghorbani 2013] and neural networks [Khan

et al. 2007] for detecting malicious and abnormal events relies on la-

belled ground truth.

Hence, instead of providing the ground truth in multiple formats, we

opted to represent the ground truth in a structured document. This is

such that it can be automatically processed into the desired ground truth

format for experimentation use. However, this adds another processing

step of converting the transcript into a format that can be readily con-

sumed.

3.8 Summary

A list of requirements for datasets that can be used for evaluating prove-

nance reconstruction was proposed and discussed in the beginning of

this chapter. Using the list, we showed how publicly available datasets

used commonly for system security and other system related research

are not suited for evaluation of our research. As such, the NZCSC’15

dataset was constructed.

The dataset was constructed through a data collection exercise done

in conjunction with the NZCSC’15 competition. Events happening on

the VMs used were collected as the base data for reconstruction. Video

recordings of screen activities of participants were transcribed into text
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Ground Truth Data

Log Data used 
in Reconstruction

System Layer

Application Layer

User Layer

CSC 2015 DatasetCaptured Logs Granularity Layers

Screen activities 
transcripts

Application logs

Network logs

System kernel logs

Figure 3.11: Mapping between the log files and transcript in NZCSC’15
dataset to granularity level of computer system

form to act as the ground truth data from which use cases and their

respective ground truth provenance can be derived for evaluation pur-

poses. The use cases, shown in Section 3.6, demonstrate the types of

use cases that can possibly be derived from the transcripts for experi-

mentation. The data gathered in the NZCSC’15 dataset is summarised

in Figure 3.11. Limitations caused by how the data was collected and

constructed were also discussed in Section 3.7.

The NZCSC’15 dataset contributes towards the effort by the Cyber Se-

curity Lab on constructing a comprehensive repository of datasets for

research use. At the point of writing this thesis, the NZCSC’15 dataset

is being used internally by other researchers of the Cyber Security Lab.

Requests for the dataset (e.g. for examination purposes) can made to the

lab at info@crow.org.nz. Together with the NZCSC’16 and NZCSC’17

datasets, this dataset will be published for public consumption by 2018.

The next step of the reconstruction workflow, shown in Section 1.7, is

to extract and model information from the log files, such that it can be

used for reconstructing the data provenance. In the next chapter, the

approach used for the extraction and the model proposed for modelling

of provenance relationships is discussed.
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Chapter 4

Modelling Log Events as
Provenance Relations

This chapter discusses how information is extracted from log files and

modelled into provenance relations, to be used for reconstructing the

provenance. The approach that is adopted for information extraction

is discussed. To address the need to model log events from a multi-

granularity perspective, the Data Flow Provenance Model (DFPM), a

multi-layered provenance model for modelling log events into provenance

relations, is proposed. A set of patterns that defines how provenance re-

lations can be mapped between different layers in the model is then pre-

sented. Together with the defined patterns, the proposed model allows

data provenance, reconstructed from fine-grained log files, to be com-

pared with the ground truth provenance, derived from events observed

at the user layer.

4.1 Modelling Log Events to Provenance
Relations

One of the challenges of extracting information from log files is dealing

with heterogeneity in the logs (e.g. in log format and parameters). How-

ever, as pointed out in Section 2.1, proposing a generic approach for ex-

tracting information from different types of log file is not the focus of this

thesis. Instead, an adaptor-based architecture is adopted for processing

different types of log file, as illustrated in Figure 4.1. This architecture
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Kernel
logs

Application
logs

Network
logs

Adaptors

extracted parameters
and message signatures

Figure 4.1: Illustration of the adopted adaptor-based architecture for process-
ing log files

has been used in state-of-the-art analytic tools such as ArcSight [Bam-

benek 2007] and Splunk [Splunk Inc 2005]. For each type of log file, an

adaptor is designed for extracting parameters and message signatures

using regular expression and string parsing techniques. Contextual in-

formation such as timestamps and results returned from the events are

also extracted for correlation purposes.

Knowledge such as the structural format of the arguments and the

types of encoding used to encode the arguments are applied in the re-

spective adaptors for processing the extracted parameters. By incorpo-

rating such knowledge into the respective adaptors, the heterogeneity

in parameters caused by variations in the implementations of logging

mechanisms can be managed.

Information extracted from each log entry is modelled into pair-wise

provenance relations using the model described later (Section 4.3). Each

pair-wise provenance relation shows how data is propagated or the re-

lationship between two entities. These provenance relations form the

basic building blocks that will be used by the reconstruction algorithm,

discussed later in Chapter 5, for reconstructing the data provenance.
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Log Domain Provenance Domain

Granularity
layers

System System

ApplicationApplication

User User

Translation

mapping

Figure 4.2: Illustration of granularity layers used in the log and provenance
domain

4.2 Assumptions Made

Before presenting the proposed model, the problem and assumptions

used are first discussed. In Section 2.2, the issue of modelling log en-

tries generated at different granularity layers into provenance was high-

lighted. Due to differences in the level of detail, modelling log entries of

different granularity using a flat granularity provenance model would re-

sult in disparities in the resulting graphs. To resolve this, a multi-layered

provenance model is required. Hence, the first assumption is made:

Assumption 1. The provenance domain can be divided into the same set

of granularity layers used to describe the log domain.

The granularity layers used were discussed in Section 1.5 and are il-

lustrated here in Figure 4.2. Based on Assumption 1, the following two

problems are identified:

1. How can relationships be modelled from the log domain into the

provenance domain?

2. How can provenance relations be mapped between granularity lay-

ers in the provenance domain?
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In the context of modelling, the term translation is used to describe the

modelling of information (e.g. entities and relationships) between the two

domains. Likewise, the term mapping is used to describe the abstraction

of provenance relations between granularity layers.

With respect to the first problem identified, learning the translation be-

tween the log and provenance domain would require extensively labelled

datasets from both domains. While log files can be scraped from running

computer systems, obtaining the corresponding provenance datasets is

challenging. For example, provenance datasets discussed in Chapter 3,

such as the ProvBench datasets [ProvBench 2012], do not have the cor-

responding log files packaged in the releases. Existing provenance col-

lectors, such as SPADE [Gehani and Tariq 2012], assume the translation

using their understanding of the events being monitored (e.g. domain

knowledge). Based on this, the second assumption made follows:

Assumption 2. Knowledge about translating relationships from the log

domain to the respective layers in the provenance domain can be inferred

from the nature of the activities described by log events (e.g. reading and

writing of data).

The rest of this chapter focuses on addressing the second problem iden-

tified. Concepts defined in the model proposed in Section 4.3 allow re-

lationships to be represented in the provenance domain. The patterns

defined in Section 4.4 address how provenance relations can be mapped

to other granularity layers.

4.3 Data Flow Provenance Model

Data Flow Provenance Model (DFPM) is proposed for addressing the

need for a multi-layered provenance model for modelling log events into

provenance relations. It is based on the Open Provenance Model (OPM)

[Moreau et al. 2011], a model proposed for modelling provenance. The

model has been used in the past for modelling provenance in computer

systems [Gehani and Tariq 2012; Groth and Moreau 2011]. While OPM

models relationships between entities from an ancestry perspective (e.g.
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derivedFrom, wasGeneratedBy), DFPM models how data flows between

entities. This results in a difference in the vocabulary used, even though

the format and fields used by both models are similar. Having said that,

the main difference between the two models is the treatment of the gran-

ularity of provenance. OPM treats all provenance relations to be of the

same granularity, while in DFPM provenance relations are modelled into

different granularity layers.

The motivation for modelling data flow between entities is in relation to

our objective to reconstruct data provenance that depicts the evolution

of a piece of data. A process can create multiple files, but only writes the

relevant data to one of those files. Based on our definition of data prove-

nance in Chapter 1, the reconstructed data provenance should capture

only the file with the relevant data. Hence by modelling the data flow, the

reconstruction can directly identify which file or entities have interacted

with the data.

Concepts defined in DFPM are also heavily influenced by the treatment

of data in this thesis. To recap the research scope defined in Section 1.5,

a piece of data is viewed at a file level. Although by no means exhaustive,

the concepts are intended for modelling the basic interactions (e.g. cre-

ate, read, write, delete) [Silberschatz et al. 2012] and the types of entity

that can interact with files in the context of a computer system.

DFPM consists of two classes - Entity and Activity. Entity associates to

beings or objects that exist either in the real world or digitally. Examples

of entity can range from user accounts to processes or remote hosts in

a computer network. On the other hand, Activity models the propaga-

tion of data and the management of channels required for data to flow

between entities.

4.3.1 Entity

The Entity class encapsulates two concepts - Agents and Objects. Col-

lectively, these two concepts are termed as “entities”. They are defined

as follows:

• Agents—Agents refer to entities that are capable of initiating or
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being held responsible for an activity observed with another entity.

Examples of agents are processes, users or even network hosts.

• Objects—Objects refer to entities that are understood to be inca-

pable of initiating any form of activity on their own. Objects are

often viewed as data sources or data sinks. Objects can range from

file descriptors used by the kernel for data communication to files

within a file system.

Each entity can be expressed into a provenance record1 that captures

information regarding the entity. The format used for expressing each

entity is as follow:

Entity_type(ID, [owner], [context1 ;context2 ;...])

Entity_type is used to record whether this entity is of Agent or Object

type. ID captures the label used by the respective logging mechanisms

for uniquely identifying the entity2. Owner is used to capture informa-

tion regarding the user who created or owned this entity. Lastly, context

captures any contextual information that can provide insights into the

identity of the entity. Such information can either be used to distinguish

two entities with the same ID3 or for correlating between entity instances

across granular layers4. Multiple pieces of contextual information in the

context field are separated using semi-colons.

Classification of entities is based on the expected behaviour of the en-

tity. However, in situations such as a malicious attack, it is possible to

have entities with behaviours overlapping that of an agent and object.

1A provenance record is an entry in a provenance log. Its relation to a provenance log
is akin to a log entry’s relation to a log file.

2Note that processing of events are done independently at log file level. As such, labels
for the same logical entity may differ across different logging mechanisms.

3In cases such as kernel logs from two different systems, entities with the same ID may
exist in both logs. However, both entities are essentially different as they originate
from different systems. As such, contextual information such as the identity of the
host can be used to differentiate them.

4A process can be identified by its binary name at the application layer or by its process
ID at the system layer. If the respective binary name or process ID are also captured
at the system or application layer respectively, they can be represented in the context
field.
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Table 4.1: Composition of concepts for layers in DFPM in BNF form

<prov_graph> ::= <user_layer> | <app_layer> | <system_layer>

<user_layer> ::= <user_a><user_layer> |
<application_a><user_layer> |
<system_a><user_layer> |
<user_a> | <application_a> | <system_a>

<app_layer> ::= <application_a><app_layer> |
<system_a><app_layer> |
<application_a> | <system_a>

<system_layer> ::= <system_a><system_layer> | <system_a>

<user_a> ::= merge | copy

<application_a> ::= createfile | access | modify_rw | modify_w |
datatransfer

<system_a> ::= create | generate | delete | open | connect |
close | read | write | transfer

For example, a malicious PDF document can automatically download or

execute background programs in the system when opened by a user. In

this case, the PDF document is classified as an object, as a PDF docu-

ment is known to be a file. However, when analysing the provenance,

it may appear that the object is initiating activities. In such cases, the

definitions listed here can be formulated into a rule for detecting abnor-

malities within the provenance graph.

4.3.2 Activity

Concepts defined in the Activity class (otherwise known as “activities”)

are derived based on the operations used by operating systems when

handling files and processes, as discussed by Silberschatz et al. [2005].

The defined concepts aim to express the data flow relationship and the

construction of data channels required for data flow between entities.

DFPM is divided into user, application and system layer; three hier-

archically ordered layers with the system layer being the finest granular

layer. Each layer is composed of a set of layer specific activities and of the
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activities defined in the layer beneath it. This hierarchical composition of

activities is described using Backus-Naur Form (BNF)5[McCracken and

Reilly 2003; Backus et al. 1960] in Table 4.1. The reason for layers to

adopt activities defined in the layer below is to allow events that are

semantically and structurally equivalent (i.e. events that cannot be de-

composed into a group of activities in the layer below) to be modelled

in the layer the event was observed at. For example, a simple file open

observed at the application layer is equivalent to a file open in the sys-

tem layer. Hence, by having an open activity defined in the application

layer, granularity of the modelled events from the log file can be kept

consistent.

The format used for modelling each activity into a provenance record

is as follows:

activity_type(time, source_entity, target_entity, [context1 ;context2 ;...])

Activity_type denotes the activity this record is describing and is based

on concepts defined in the following subsections. Time records the ac-

companying timestamp observed in the log event and as such denotes

when the activity occurred. The source_entity denotes the entity re-

sponsible for initiating this activity while the target_entity denotes the

recipient entity of this activity. Lastly, the context field captures contex-

tual information that provides further information that is specific to this

activity.

In the following, we list only the layer-specific activities for each layer.

Activities inherited from the lower layers use the same definitions, hence,

are not repeated.

System Layer

The system layer is composed of concepts that model events concern-

ing data flow and the setting up of data channels observed beneath the

5BNF is a context-free grammar introduced by John W. Backus and Peter Naur and is
traditionally used for describing structure in a language
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abstraction layer of operating systems. These events include those ob-

served in the kernel or file system. Since the system layer is the finest

granularity, the following concepts can be viewed as basic activities in

DFPM.

• Create—models an agent creating a new object. A channel that

allows data to be communicated between the agent and the object

is also assumed to be established as part of the process of creating

the new object. Either the owner of the agent or the agent itself

(if the identity of the owner of the agent is unknown) would assume

the ownership of the new object.

• Generate—models the generation of a new entity by an existing en-

tity. Similar to create, the owner of the parent agent will assume

ownership of the new agent immediately. However, it does not as-

sume a data channel is automatically created between the two enti-

ties.

• Delete—models the attempt made by an agent to remove or destroy

an existing object.

• Open—models an agent establishing a new data channel with an

existing object.

• Connect—models the establishing of a new data channel between

two existing agents. The target agent can be either a local (e.g.

process) or remote (e.g. network host) agent.

• Close—models the termination of an opened data channel from the

initiating agent to either an existing object or another agent.

• Read—models the initiating agent obtaining data from an existing

object or agent with which it has an opened data channel.

• Write—models the initiating agent outputting data to an existing

object or agent with which it has an open data channel.
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• Transfer—models the transfer of data across the network between

the initiating agent and another remote agent. Like read and write,

a data channel must be established beforehand between the two

agents.

Application Layer

Concepts defined in this layer model events concerning data flow ob-

served in applications the application layer (e.g. application log files).

Such data flow can take place between other systems or even files.

• Createfile—models the initiating agent creating a new object. The

agent may subsequently perform a combination of read and write

activities using the data channel created along with the object.

• Access—models the initiating agent performing read-only opera-

tions on an existing object. Such activities may retrieve partially or

the entire data content of the object. Access also models the exe-

cution of the content of the object (e.g. execution of a script by a

process).

• Modify—models the initiating agent modifying the content of an

existing object. Unlike access, at least one change is made to the

object. Modify is also represented by two instances, modify_w and

modify_rw to distinguish between instances of blindly writing to an

object and reading and writing to an object.

• Datatransfer—models the exchange of data between the initiating

agent with a remote agent across the network. The exchange may

be bi-directional (i.e. multiple transfers that includes sending and

receiving data between both agents).

The key difference of createfile from access and modify is the creation

of a new object. This is illustrated in Figure 4.3. Without createfile,

a create activity would need to be added before access or modify to
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Interpreted as 

(a) Using createfile to represent object creation and its associated read-write
events

create

open
object

.
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.
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Interpreted as 

create

read

object

(b) Separating object creation using create

Figure 4.3: Difference between having createfile and using the create activity
to represent file creation at the application layer

model the creation of the new object first. However, as shown later in

Section 4.3.3, create and open can be used for separating system layer

activities into groups. As such, prepending a create before the access or

modify may give rise to the misinterpretation that the read-write events

are independent of the create (i.e. there is an open in-between the create

and the read-write events).

User Layer

Lastly, user layer concepts model high level entity relationships that are

not captured in the application and system layers and events observed

from a user’s perspective.

• Merge—models the information flow between two existing objects.

Merge denotes the convergence of either partial or full content of

the source object into the target object.

• Copy—models the derivation relationship from an existing source

object to a newly created target object. It signifies that the tar-

get object would contain either partial or full content of the source

object ’s content.
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192.168.130.50 - - [18/Sep/2015:21:31:42 +1200] "GET /phpmyadmin/js/functions.js?  . . .

192.168.130.50 - - [18/Sep/2015:21:31:42 +1200] "GET /phpmyadmin/js/functions.js?  . . .

192.168.130.50 - - [18/Sep/2015:21:31:42 +1200] "GET /phpmyadmin/js/jquery/jquery-ui-1.8.16.custom.js?  . . .

(a) Example of events from Apache Web Server logs

read(21:23:42, process:apache, file:/phpmyadmin/js/functions.js)
read(21:23:42, process:apache, file:/phpmyadmin/js/functions.js)
read(21:23:42, process:apache, file:/phpmyadmin/js/functions.js)
read(21:23:42, process:apache, file:/phpmyadmin/js/jquery/jquery-ui-1.8.16.custom.js)

(b) Modelled System layer relations may appear to be sequential reads from
the same process without open and close

open(21:23:42, process:apache, file:/phpmyadmin/js/functions.js)
read(21:23:42, process:apache, file:/phpmyadmin/js/functions.js)
read(21:23:42, process:apache, file:/phpmyadmin/js/functions.js)
close(21:23:42, process:apache, file:/phpmyadmin/js/functions.js)

open(21:23:42, process:apache, file:/phpmyadmin/js/functions.js)
read(21:23:42, process:apache, file:/phpmyadmin/js/functions.js)
close(21:23:42, process:apache, file:/phpmyadmin/js/functions.js)

open(21:23:42, process:apache, file:/phpmyadmin/js/jquery/jquery-ui-1.8.16.custom.js)
read(21:23:42, process:apache, file:/phpmyadmin/js/jquery/jquery-ui-1.8.16.custom.js)
close(21:23:42, process:apache, file:/phpmyadmin/js/jquery/jquery-ui-1.8.16.custom.js)

(c) Open and close activities can be used to clearly separate logically non-
sequential reads

Figure 4.4: Example showing how open and close can be used to group rela-
tions into logical groups

4.3.3 Modelling Data Channels

The purpose of modelling the management of data channels is to allow

series of reads and writes to be separated into logical groups of activities

that are independent (i.e. not a series of reads/writes that result from

the coarser-grained action). An example adapted from the Apache Web

Server logs, shown in Figure 4.4, is used to explain the separation of

activities.

Figure 4.4a illustrates three log events showing an Apache server ac-

cessing two different files. While the three events from the application

log hinted at three groups of system layer activities surrounding reads to

the two involved files, the exact number of read activities in each group
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is unknown. Without open and close, the group membership of the read

activities cannot be determined accurately, as illustrated in Figure 4.4b.

However, with the open and close activities, relevant read activities can

be enclosed. Series of data flow activities can then be segmented into

groups that reflect events observed in the less granular layers with high

confidence, as shown in Figure 4.4c. As discussed in Section 2.2, an issue

with existing structural abstraction provenance models is the reliance on

a-priori knowledge of elements in the provenance graph for deriving an

accurate abstraction. However, it is observed that the same user action

achieved through different applications can result in slightly different

sets of activities in the finer-granular layers. For example, creating a

new file using the vim document editor would result in a set of system

events that differ from using the nano document editor. This difference

stems from how applications can be implemented differently even for

tasks of the same nature. In the following subsection, the approach used

to discover a generic set of patterns for abstracting concepts defined in

the model is discussed.

4.4 Aggregating Activities

4.4.1 Discovering Patterns

Instead of learning patterns specific to a set of applications, as discussed

by Macko and Seltzer [2011] and Buneman et al. [2012], the following

study focuses on discovering patterns that can be used independently of

applications to map provenance relations. The study assumes that each

mapping that maps a group of fine-grained activities to a coarse-grained

activity (e.g. set of system layer activities to an application layer activity)

has a consistent structure and hence can be derived from the patterns

observed.

Based on the activities defined in the user and application layer of

DFPM, sets of scenarios for accomplishing each of those activities using

different applications were designed. For example, the use of different
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Process spawn 
phase

Initialisation 
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Workload
phase

Process termination
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Process system call trace
for one scenarioStart of 

process
End of
process

Figure 4.5: Segmentation of system call trace for each scenario

text editors and approaches for creating a file constitute the set of sce-

narios for the createfile activity. System events generated at the kernel

were captured for each scenario using Progger, a tool for logging system

call events [Ko and Will 2014], and translated using activities defined in

the system layer6. The scenarios used for each activity defined in the

model are listed in Appendix B for reference.

For each scenario, the modelled system call trace is manually seg-

mented into four phases, as shown in Figure 4.5. The process spawn

phase consists of events executed by the kernel when spawning a new

process. The main objective is to establish the input and output data

channels to various devices, such as the standard input and output ter-

minals, for the process. As such, events executed mainly concern the

opening, connecting and closing of pipes. This phase is almost identical

for all processes. The initialisation phase is specific to each application

type. In this phase, library functions and other functionality required by

the application are loaded from system and application-specific library

files. These files can be identified by looking at their full system paths.

They are usually prefixed with known shared system directories such as

“/etc” and “/usr/lib”. All files accessed in this phase are on a read-only

basis (e.g. no write relations). The workload phase is where the applica-

tion executes events for accomplishing the task set out in the scenario.

The beginning of this phase is identified by the first event executed on an

entity used in the scenario (e.g. opening of a file or connecting to known

network host). The workload phase would terminate either when the

6The system layer activities are used as the log files are all captured at the system
kernel.
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open(.., cat, a.txt)
read(.., cat, a.txt)
read(.., cat, b.txt)
close(.., cat, b.txt)
close(.., cat, a.txt)

open(.., vim, a.swx)
close(.., vim, a.swx)
open(.., vim, a.swp)
open(.., vim, a.txt)
read(.., vim, a.txt)
close(.., vim, a.txt)
close(.., vim, a.swp)

Scenario 1
(using cat)

Scenario 2
(using vim)

Patterns extracted based on 
target entity field and sequence
of relations

Figure 4.6: Illustration of the extraction of patterns from modelled provenance
relations in the workload phase

process’s system call trace ends or when the process termination phase

begins. The process termination phase is the final phase of a process’s

system call trace. Its appearance is subject to how the process is being

terminated; hence, it may not appear in all system call traces. It can

be identified by the closing of the data channels established during the

process spawn phase, right before the system call trace ends.

Each scenario is executed several times and the workload phase is ex-

tracted from each modelled system call trace. The extracted segments

from scenarios within the same set (e.g. all scenarios designed for create-

file) are then compared manually. The comparison attempts to identify

common sequence of events with the same target entities. This compar-

ison is illustrated in Figure 4.6. Common sequence of events observed

across all segments are then extracted as the patterns for abstracting

provenance relations to the respective model activity. We describe the

identified patterns in Tables 4.2 and 4.3 using BNF. Each set of pro-

duction rules describes the abstraction of activities from one layer to its

immediate higher granularity layer (i.e. activities in application layer to

user layer; activities in system layer to application layer). Although in

practice, activities may be abstracted across multiple layers (i.e. system

to user layer), we assume abstraction across multiple layers is done in

multiple parses.

Since the production rules in Tables 4.2 and 4.3 are either in the form

91



Chapter 4 Modelling Log Events as Provenance Relations

Table 4.2: Abstracting system layer activities to application layer

<createfile_c> ::= create<CF>

<CF> ::= write<CF> | read<CF> | close

<access_c> ::= open<AR>

<AR> ::= read<AR> | close

<modify_w_c> ::= open<MW>

<MW> ::= write<MWD>

<MWD> ::= write<MWD> | close

<modify_rw_c> ::= open<MA>

<MA> ::= read<MA> | write<MD>

<MD> ::= write<MD> | read<MD> | close

<datatransfer_c> ::= open<DT> | connect<CT>

<DT> ::= connect<CT>

<CT> ::= transfer<TR>

<TR> ::= transfer<TR> | close

Table 4.3: Abstracting application layer activities to user layer

<merge_c> ::= access<MER> | modify_rw<MER>

<MER> ::= modify_w | modify_rw

<copy_c> ::= access<CPR> | modify_rw<CPR>

<CPR> ::= createfile

of A → aB or A → a, where A and B are non-terminals and a is a termi-

nal, we can say the grammar defined is regular [Linz 2012]. Using the

approach discussed by Linz [2012], where non-terminals are treated as

states and terminals as transitions, we elaborate on the patterns using

Finite State Automata (FSA). The FSA is defined as follows:

FSA = (Σ, Q, δ, q0, F )

where:

• Σ is defined as the set of input alphabets represented by the con-

cepts defined in the Activity class.
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• Q denotes the finite set of states,

{S ,MER,CPR,CF ,AR,MA,MD ,MW ,MWD ,DT ,CT ,TR,TER}.

• δ denotes the transition function Σ × Q → Q and is represented by

the right hand side expressions in Tables 4.3 and 4.27.

• q0 denotes the start state, S.

• F denotes the final state, TER.

The FSA8 for identifying each layer specific activity are as follow:

Createfile

Createfile uses create and close to enclose relevant read and write re-

lations that are executed using the data channel that resulted when the

initiating agent created the object. While createfile can have zero or

more read or write relations, the group must have one create and close.

create close

read, write

S TERCF

Figure 4.7: FSA for ‘createfile’ activity

Access

The pattern identifying Access is very much similar to createfile. Except

instead of create, open is used to denote the start of the group pattern

for Access. Objects can be accessed for various reasons (e.g. a process

reading data from the file or executing the file, which may be a piece of

code) and in some cases may not involve any read operations. As such,

access can have zero or more read relations.
7Each activity-state pair is treated as a state transition rule. In this case, the ‘|’ symbol

used in the BNF can be treated as a rule separator.
8In the FSAs illustrated, we adopt the shorthand notation of using a comma in transi-

tion labels to simplify multiple transitions that have the same initial and destination
states but with different labels into a single transition, as shown in [Hopcroft et al.
1979; Anderson 2006].
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S TER
open close

read

Figure 4.8: FSA for ‘access’ activity

Modify_w and Modify_rw

S TERMD
open close

read, write

MA

read

write

Figure 4.9: FSA for ‘modify_rw’ activity

S TERMWD
open close

write

MW
write

Figure 4.10: FSA for ‘modify_w’ activity

Modify models edits made to an object and hence, should contain one or

more write relations. On the other hand, read relations are not essential

but should not be excluded from the patterns as it is possible for agents

to both read and write data to an object using the same data channel.

The distinction between a process blindly writing to a file and a process

reading and writing to a file is made through modify_w and modify_rw

respectively.

Datatransfer

In the description of system layer activities, connect is explained to de-

note creation of a data channel between two agents. Hence, connect
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connect close
S TER

DT

CT TR

open

transfer

connect
transfer

Figure 4.11: FSA for ‘datatransfer’ activity

can be used to mark the beginning of the set of relations that describe

the communication of data between two agents. However, due to the

way that modern operating systems work when communicating with re-

mote systems, a network communication channel has to be associated

to a socket. As a result, in cases where a socket for the network com-

munication is newly initiated, an open is used to denote the creation of

the socket. Like modify, we only identify a group as datatransfer if the

group consists of one or more transfer relations, denoting that data has

actually been communicated between the two agents.

Copy

TERCPR

access, 
modify_rw createfile

S

Figure 4.12: FSA for ‘copy’ activity

Copy models not only the derivation of the content in the target ob-

ject but also the creation of a new object. As such, a createfile activity

should come after the initiating agent has obtained a full or partial copy

of the data from the source object. Although it is possible to first create

the object before obtaining a copy of the data from the source object,

we simplify such cases and express them using merge and precede the

merge with a createfile relation. It should also be noted that the pattern

here precludes blind writes made to a file as the agent will have to obtain

data from the first object first.
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Merge

TERMER

access, 
modify_rw

modify_w, 
modify_rw

S

Figure 4.13: FSA for ‘merge’ activity

Unlike copy, merge models the derivation of data between two exist-

ing objects. Therefore either a modify_rw or modify_w is expected in the

place of a createfile, indicating an edit done to the target object. Like

copy, the agent is expected to obtain data from the first object first,

hence a modify_rw is expected before the modification of the second ob-

ject.

Unlike application layer activities, there are no activities that can be

used to denote the start and end of a pattern. Hence an alternative

approach to determining the relevancy of relations when automatically

abstracting relations for user layer activities is required. One possible

alternative is through temporal reasoning.

It is assumed that events observed close together in time are more

likely to be related to each other than if they are observed a long time

apart (e.g. sequence of functions called automatically to accomplish a

task). Based on this assumption, the likelihood of relevancy between

activities can be determined by modelling the time intervals at which

the activities were observed using Allen’s interval algebra [Allen 1983].

Allen defined the thirteen relationships possible between two individual

intervals shown in Table 4.4.

Pairs of application layer activities that satisfy any of the relations in

the set, {meets, overlaps, starts, during, finishes, is equal to} can be

grouped together automatically. The automata can then be applied to

each group to determine whether the activities can be rolled up.
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Table 4.4: The 13 relations defined in Allen’s interval algebra

Relation Symbol Illustration

X before Y
X < Y

X

YX > Y

X meets Y
XmY

X

YX mi Y

X overlaps Y
X oY

X

YX oi Y

X starts Y
X sY

X

YX si Y

X during Y
X dY

X

YX di Y

X finishes Y
X f Y

X

YX fi Y

X is equal to Y X = Y

X

Y

4.4.2 Parsing

The main objective of describing the patterns identified using BNF gram-

mar and FSA is to facilitate the understanding of how activities can be

abstracted. Proposing an efficient approach for parsing the modelled

provenance relations for abstraction is beyond the scope of this research.

Having said so, the parsing and detection of patterns can be achieved

using Complex Event Processing (CEP) systems, such as Beepbeep [Hallè

and Varvaressos 2014; Laboratoire d’informatique Formelle 2015] and

Flink [Rohrmann 2016] or through parsers generated using tools that

supports various parsing methods (e.g. LALR(1) [Grune and Jacobs 1990]),

such as HIME [Iwouters et al. 2014] and PLY [Beazley 2001]. The gram-

mar presented in Tables 4.2 and 4.3 can either be used directly as input

to parser generators, such as those listed above, or reformulated as rules

for event detection systems.

In this section, we briefly describe some of our experiences in pars-
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ing the stream of provenance relations. Ideally, the discussion here can

be useful when considering which systems can be used for parsing and

detecting patterns.

Interleaving Events

Due to concurrency in operating systems, it is common for events gen-

erated by different processes to appear in the log file in an interleaving

manner. Further complicating the situation, a process can also interact

with multiple objects in an interleaving manner (e.g. a process reading

concurrently from two different files). The interleaving of events may

affect the detection of sequential patterns. In a recent comprehensive

survey on CEP systems, Hallè [2017] noted that few systems support fea-

tures that allow event streams to be sliced, such that different computa-

tions (i.e. different patterns) can be executed over the different slices.

A simple work-around for this issue is to pre-process the stream of

events, such that events are segmented based on their attributes, into

segments of inter-related events. For example, events resulting from

a process reading from two files concurrently can be segmented into

two segment of events, one for each file. Each segment can then be

parsed and computed by the event processing system. Segmentation of

provenance relations modelled from log files using DFPM is discussed in

details in Sections 5.2.1 and 5.5 of Chapter 5.

Arbitrary Pattern Length

In their survey on CEP systems, Hallè [2017] and Cugola and Margara

[2012] noted the language used by some CEP systems only permit prim-

itive sequential patterns, such as “A follows B", to be expressed. More

complex notions, such as negations and expressing unbounded number

of sequential events (e.g. “zero or more” or “one or more”) cannot be

expressed directly9.

9It is interesting to note that while some CEP systems, such as RAPIDE [Luckham
et al. 1998; Luckham and Frasca 1998] allow repetitions to be expressed, they do
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The ability to express patterns with arbitrary length of sequential events

is important as it is difficult to predict the amount of data transfer rela-

tions (i.e. read, write, transfer) to expect for each pattern. For example,

the number of read system calls a process invokes when reading data

from a file is dependent on the size of data to be read. Hence, the num-

ber of read can only be known during runtime. Variations may also exists

in the patterns shown in Tables 4.2 and 4.3. For example, applications

may reuse an existing socket or open a new socket for establishing a con-

nection with another host or process. As a result, the open socket event

is observed only in some cases. This creates variations in the pattern

that abstracts to the datatransfer activity.

4.4.3 Verifying the Patterns

The patterns identified are implemented as a FSA for parsing and aggre-

gating the provenance relations. The system takes a finite list of prove-

nance relations (e.g. the reconstructed data provenance) as input and

assumes that the provenance relations are already segmented according

to their attributes10. Relations in each segment is parsed and evaluated

against the FSA. If a segment matches a pattern (i.e. reaches the TER

state), the system will output the activity corresponding to the matched

pattern. In contrast, if a segment does not match any patterns, the sys-

tem outputs the original segment. The system completes execution once

there are no more segments available for parsing.

To verify the patterns, the implemented FSA system was applied to

the system log files captured in the NZCSC’15. Since the patterns focus

on mapping data flow relations, the count for read, write and transfer)

relations before and after applying the FSA are shown in Figure 4.14.

The results showed that the discovered patterns were indeed able to

map majority of the data flow relations to coarser-grained activities (e.g.

not allow variations (e.g. “zero or more”) in pattern definitions. Having said that,
this limitation can be resolved by explicitly formulating each possible variation of
the pattern as a separate rule.

10The approach used for the segmentation will be discussed in Sections 5.2.1 of Chapter
5.
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application layer activities). Investigation into the read and write re-

lations that are not mapped successfully showed those relations were

interacting with the system input and output terminals. Channels to the

system input and output terminals usually do not have open relations

associated with them as they are created at system initialisation and re-

main open throughout the operating system’s uptime. Having said that,

segments of read and write relations to some files were noticed to fail

the mapping. Large amount of network transfer relations are also ob-

served to have not been mapped successfully for log files captured from

the red team. Reference to the ground truth data (i.e. the transcript and

video) showed that mapping for these segments of relations was unsuc-

cessful because the processes were terminated abruptly before the data

channels could be closed (e.g. no close relation). Since the FSA imple-

mented requires a close relation to enclose the patterns, the FSA would

determine those segments to have failed the matching conditions. The

workaround is to relax the patterns defined, such that matching for a

close relation is optional. Results in Figure 4.14b showed the relax FSA

was able to map majority of the network transfers.

4.5 DFPM and OPM

This section highlights the differences between the OPM used for mod-

elling provenance in computer systems Gehani and Tariq [2012] and the

proposed DFPM.

Modelling of Entities

The approach taken to model entities is the first difference between the

two models. To explain this difference, a snippet of events, taken from a

LAF log file and shown in Figure 4.15, is used. The snippet consists of

three events. Event 1 shows the parent process, pid:26272, creating a

data channel that will be used for data communication. Event 2 shows

the spawning of the child process, pid:26273, and the inheritance of the
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(a) Read and write relations

(b) Network transfer relations

Figure 4.14: Results for applying the FSA on the NZCSC’15 system log files
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type=SYSCALL msg=audit(1431919799.945:49458): arch=c000003e syscall=22 
... pid=26272 auid=0 uid=0 ... comm="scp" exe="/usr/bin/scp" ...
type=FD_PAIR msg=audit(1431919799.945:49458): fd0=5 fd1=6

type=SYSCALL msg=audit(1431919799.945:49462): arch=c000003e syscall=56 
... pid=26272 auid=0 uid=0 ... comm="scp" exe="/usr/bin/scp" ...

type=SYSCALL msg=audit(1431919803.497:50401): arch=c000003e syscall=1 
... pid=26272 auid=0 uid=0 ... comm="scp" exe="/usr/bin/scp" ...

Event  1:

Event  3:

Event  2

Figure 4.15: Events snippet from a LAF log file, simplified to show only the
relevant fields

data channel set up in Event 1 by the child process. Event 3 shows the

use of the data channel for data communication from the parent to the

child process.

In OPM, users are modelled as Agents, running processes as Processes

and files and other passive entities as Artifacts. This is illustrated in

Figure 4.16, where events in Figure 4.15 are modelled using the OPM

model adopted by Gehani and Tariq [2012] in their system provenance

monitoring tool, SPADE.

Figure 4.16 shows OPM models not only the relationship between the

parent and child process, but also the owner of those processes (i.e.

user:0 ). However, this level of detail is achieved at the expense of adding

a large number of nodes and edges to the provenance graph.

Although this overhead is manageable when modelling events at the

user layer, the same cannot be said for events at the finer granularity

layers. The volume of events and entities generated is higher in the

finer granularity layers due to the increasing level of detail captured in

those layers. As a result, modelling all this information will result in

the provenance to be overwhelmed with information. This increases the

complexity and difficulty of analysing the provenance.

To reduce the impact caused by the volume of new entities and events

generated, DFPM only models entities which have a direct impact on the

movement of data. Figure 4.17 illustrates the result of using DFPM to

model events shown in Figure 4.15. Entities such as users are modelled

implicitly using the entity and context fields. This difference between
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Agent(user:0)
Process(pid:26272)
Process(pid:26273)
Artifact(fd:5-6)

WasGeneratedBy(fd:5-6, pid:26272)
WasControlledBy(pid:26272, user:0)
WasTriggeredBy(pid:26273, pid:26272)
WasControlledBy(pid:26273, user:0)
Used(pid:26273, fd:5-6)

(a) Corresponding OPM provenance records

WasGeneratedBy
fd:5-6

WasControlledByWasControlledBy

WasTriggeredBy

Used

user:0

pid:26272 pid:26273

(b) Corresponding OPM provenance graph

Figure 4.16: OPM provenance resulting from modelling snippet of events from
LAF log file

the two modelling approach can be observed by comparing Figures 4.16b

and 4.17b.

As shown in Figure 4.17a, ownership association between an user and

a process is implicitly captured through the owner field in the agent

record. Although not shown in the graph, ownership and other role based

association can still be visualised through the use of property graphs,

where nodes and edges can be decorated with contextual information.

By not explicitly modelling every entity, the resulting provenance is sim-

plified to focus only on activities that shows how data is moved between

entities.
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agent(pid:26273, user:0, process:/usr/bin/ssh;host:192.168.2.23)
agent(pid:26272, user:0, process:/usr/bin/scp;host:192.168.2.23)

generate(1431919799.94505, pid:26272, pid:26273, host:192.168.2.23)
connect(1431919799.94505, pid:26272, pid:26273, type:pipe;readfd:5;writefd:6;host:192.168.2.23)
write(1431919803.49703, pid:26272, pid:26273, fd:6;bytes:25;host:192.168.2.23)

(a) Provenance records modelled using DFPM

generate

connect

write

(b) Provenance graph modelled using DFPM

Figure 4.17: Provenance of the snippet of events in Figure 4.15 modelled using
DFPM

Concepts and Terminologies

While concepts defined are based on those in OPM, DFPM uses a differ-

ent set of terminology to show how data is propagated between entities.

The mapping between concepts in the two models are shown in Table

4.5. From the table, one can observe that there are no mappings between

some of the concepts between the two models. From OPM, there are no

mappings to model association between Agents and Processes as DFPM

does not model ownership of entities. There are also no OPM equivalent

relations for {close, delete, connect, transfer, datatransfer} due to the

difference in focus between the two models. DFPM models data flow

and setting up of data channels while OPM emphasises how entities are

associated with each other. As such, OPM is not concerned with data

channels or when objects cease to exist. We argue that modelling the

termination of entities is critical for provenance in computer systems as

entities such as files and processes can be reused. Without knowledge of

when entities cease to exist, confusion can arise when entities are being

reused as activities related to the new entity will be linked to the old

instance.
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Table 4.5: Mapping concepts between OPM and DFPM

OPM Concepts
OPM Visual

Representation
DFPM

Concepts
DFPM Visual

Representation

Entities

Agent Agent

Agent Agent

Process Process

Artifact Artifact Object Object

Dependencies Activities

Used Artifact Process

Open
ObjectAgentRead

Access

wasGeneratedBy Process Artifact

Create

ObjectAgent

Write
Createfile

Modify

- -
Close
Delete

wasControlledBy ProcessAgent - -

wasTriggeredBy Process1 Process2 Generate
Agent1 Agent2

- -
Connect
Transfer

Datatransfer

wasDerivedFrom Artifact1 Artifact2
Copy

Object1 Object2
Merge
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Log files

Adaptors

extracted parameters
and message signatures

List of 
Provenance relations

...

Figure 4.18: Illustration of the extraction and modelling of log events into
provenance relations

Multiple Layers of Granularity

The last main difference between DFPM and OPM is the view of the

provenance domain as a multi-granularity domain. The motivation of hav-

ing a multi-layered model for provenance has been discussed in Chapter

2 and as such, will not be discussed again here.

4.6 Summary

DFPM models the information extracted from log events into provenance

relations that describe how data flows between different entities. Through

the extraction and modelling of information, heterogeneity in the log

format and parameters is being normalised. This allows the following

phases of the reconstruction workflow to easily consume the information.

Figure 4.18 illustrates the transformation of log events to list of prove-

nance relations that can be used for reconstruction. First, the adaptors

extract key parameters and message signatures from the log files. Using

the DFPM model, the extracted information is then modelled into prove-

nance relations.

A set of patterns are also derived and implemented as FSA for map-

ping provenance relations between different granularity layers. These

FSA will be used for mapping the reconstructed provenance graph to the
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granularity of the ground truth provenance, such that the two can be

compared without disparities in their structure and semantics. Abstrac-

tion of provenance relations is done after the reconstruction and will be

discussed further in Chapter 5.

After modelling log events into provenance relations, the next step is

to reconstruct the data provenance graph that describes the derivation

of a piece of data. Chapter 5 discusses the problem and the proposed

algorithm for provenance reconstruction.
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Chapter 5

Reconstructing Data Provenance

This chapter discusses how provenance of a piece of data can be recon-

structed from the list of provenance relations modelled from the log files

using DFPM. In Section 5.1, the problem of data provenance reconstruc-

tion is defined. Reconstruction is achieved through a two-step process. In

the first step, the data provenance is reconstructed using the algorithm

described in Section 5.2. Following which, the reconstructed output is

mapped to the granularity layer of the ground truth provenance using

the FSA discussed in Section 4.4. This is demonstrated and explained in

Section 5.5.

We adopt the following notation for this chapter:

Notations:

R set containing all pair-wise provenance relations modelled from
the dataset

E set containing all entity instances modelled from the dataset

e the object whose data provenance is to be reconstructed, e is a
member of E

rg a group of provenance relations from R between two entities,
based on the FSA defined in DFPM

DP(e) the set of provenance relations that constitute the data
provenance of e
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5.1 The Data Provenance Reconstruction Problem

In most situations, provenance relations in R are not focused on a sin-

gle entity and thus contain provenance relations that are not relevant to

DP(e). This is because e is usually not known during logging, causing

events to be logged in an indiscriminate manner. Hence, the problem of

reconstructing DP(e) from R can be viewed as finding all likely source

and derivative objects of e and the paths that link each of those objects

to e. An object is considered the source of e if:

1. The object has an instance that contains at least part of the data in

an instance of e.

2. There exists a path from the object instance to the instance of e,

such that it shows data being propagated from the object to e.

Likewise, an object is considered the derivative of e if:

1. The object has an instance that contains at least part of the data in

an instance of e.

2. There exists a path from the instance of e to the object instance,

such that it shows data being propagated from e to the object.

The problem of reconstructing DP(e) can be decomposed into the fol-

lowing two sub problems:

1. Reconstructing the derivative provenance - Given an instance of

e, find the likely derivative objects of e and the paths, such that each

path describes how e eventually reaches the state of each derivative

object.

2. Reconstructing the source provenance - Given an instance of e,

find the likely source objects of e and the paths, such that each path

describes how e is derived from each source object.

We define rg to be a structure that describes the flow of data between

two entities, e1 and e2 (i.e. pair-wise provenance relation):

rg = (r, t, e1, e2) (5.1)
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rg

Derivative ProvenanceSource Provenance

Time

path

rg2

Figure 5.1: Illustration of source and derivative provenance from e

where r is a member of the set of concepts defined in DFPM, shown in

Table 4.1 in Chapter 4. r also denotes the direction of the data flow and

is illustrated in the last column in Table 4.5. e1 denotes the source_entity

and e2 denotes the target_entity between the two entities connected by

rg . Both e1 and e2 are members of E. t denotes the timestamp at which

rg was first observed. Note that rg is a group containing one or more

distinct provenance relations from R. The approach used and benefits of

grouping is discussed in Section 5.2.1.

A path connecting two objects, o1 and o2, can then be defined as a

sequence of rg:

P (o1, o2) = (rg1, rg2, ...rgn)

= ((r1, t1, e11, e21), (r2, t2, e12, e22), ..., (rn, tn, e1n, e2n)) (5.2)

with the following constraints:

1. (rg1, rg2, ...rgn) is ordered such that tn−1 < tn

2. rg1 describes the data flow between an agent and o1 while rgn de-

scribes the data flow to o2 (e21 = o1 ∧ e2n = o2)

3. rg in the sequence are connected to each other through the entities

such that either e1n = e1n+1 or e2n = e1n+1

Note that each path does not have branches. Instead, multiple objects

passing through the same entity are considered as separate paths. As

such, DP(e) can be composed of multiple paths joined together to form a

graph. Figure 5.1 illustrates the relationship of the source and derivative

provenance with respect to e and the notation defined thus far.
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Algorithm 1 Algorithm for Reconstructing Data Provenance of e

1: Input: e_id . user input that denotes id of e
2: R,E ← readModelledData() . modelled relations and entities
3: Initialise: Q← ∅,DP(e)← ∅
4:

5: Lsorted, Tlookup ← groupRelations(R) . sort
6:

7: I,DP(e) . find instance
← findInstances(e_id, E, Lsorted, DP (e), Tlookup)

8: Q← Q ∪ I
9:

10: DP(e)←BF-traverse(Q, filter = findInOutEdges) . reconstruction
11: DP(e)← checkDuplicates(DP(e))
12: return DP(e)

Agent2
write(t1)

read(t0)

data-in data-out

Data flow direction

Object
Data-in array:   [ read(t0), write(t2) ]

Agent3

Agent1

write(t2)

Data-out array: [ write(t1) ]

Data flow arrays of Agent2

Figure 5.2: Illustration of the content of data-in and data-out arrays from
Agent2’s perspective

5.2 Algorithm for Reconstructing Data
Provenance

Based on the problem stated in Section 5.1, an algorithm for reconstruct-

ing both source and derivative provenance for a given instance of e is

proposed. The algorithm is based on the principles of the happens-before

causal relationship defined by Lamport [1978].

The notion of applying causality to log events have been explored in

various fields of research in computer science, such as workflow mining

[van der Aalst et al. 2004] and intrusion tracking [King and Chen 2003;

King et al. 2005]. These approaches generally determine causality be-

tween entities by observing the order of events appearing in the logs.

While the algorithm proposed here adopts a similar approach of using
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Access Modify

Access

Modify

Modify Access

e

Figure 5.3: Illustration of the hypothetical use case that will be used in the
explanation of the reconstruction algorithm

temporal information, the activity involved (e.g. read, write, transfer) is

also considered when determining causality between two provenance re-

lations. Overall, the algorithm consists of three phases, namely the sort,

find-instance and the reconstruction phase. The pseudocode in Algorithm

1 gives an overview of the algorithm.

The algorithm works on the assumption that an entity has to obtain

the data before it can be propagated to other entities. Based on

this assumption, two arrays, data-in and data-out, are initialised in each

entity’s instance data structure. The two arrays capture the inflow and

outflow of data with respect to the entity, as illustrated in Figure 5.2.

Note that assignment of data flow provenance relations differs for agent

and object type entities due to their definitions. The difference is dis-

cussed in Section 5.2.4.

The algorithm first locates entities that are directly connected to e, the

object of interest, in the find-instance phase and initialises them to a

queue, Q. Based on Q, the algorithm traverses through the data graph in

a breadth-first manner. The traversal uses the function findInOutEdges,

which is based on Lamport’s happens-before principles, to determine

which entities (vertex) or relations (edges) to visit. Visited entities or

relations are placed on DP(e) and returned as the final reconstructed

data provenance graph.

The following hypothetical use case will be used to illustrate how the

algorithm works as the different phases of the algorithm is explained.

Figure 5.3 shows the data provenance for File-x. The provenance shows

how File-x is being derived from files File-S1 and File-S2 (i.e. source

objects of File-x) through the application, P1. File-D1 is the derivative
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object of File-x, through the application, P3. The provenance also shows

that File-S2 is being influenced by the application, P2.

5.2.1 Sort Phase

The sort phase calls the groupRelations function for sorting and group-

ing provenance relations in R into lists of rg . Relations are first sorted

based on their source_entity field into separate lists of provenance rela-

tions and stored in a sorted list, Lsorted
1. Note that R is modelled from

log files gathered from across different computer systems. Hence, it is

possible to have entities with the same source_entity value but originate

from different computer systems. Contextual information such as the

host ID captured in the context field2 is used in conjunction with the

source_entity field to uniquely identify each entity.

After sorting, provenance relations in each list in Lsorted are grouped

into sets of rg . Grouping is done based on the FSA patterns defined

in Section 4.4. Based on the patterns, sequence of provenance relations

between the same pair of source_entity and target_entity can be grouped

and mapped to a lesser granular activity. However, in practice, order of

the log events observed from the same source_entity may show events

to different target_entity interleaving each other. This can happen when

a process accesses multiple files at the same time. Since provenance

relations are modelled from log events, the interleaving behaviour will

be reflected in the order of the modelled relations. Therefore, to account

for interleaving of events, the algorithm also considers the value of the

target_entity in addition to the activity_type when determining group

membership of each provenance relation. This is done in conjunction

with using the FSA patterns for determining the start and end of a rg .

Figure 5.4 visualises the sorting phase using the use case given in Fig-

ure 5.3. Although grouping is done based on the FSA patterns, the algo-

rithm does not replace each group with the coarser-grained activity as-

sociated to the matched pattern. This is to preserve the granularity so as

1We assume that the modelled provenance relations are already in chronological order.
2Context field is defined in the format of an activity (see Section 4.3.2).

114



5.2 Algorithm for Reconstructing Data Provenance

one rg

start and end of rg 
determined 
using 
FSA patterns

membership 
based on 
values in 
target_entity field

open(P2, File-S2)
write(P2, File-S2)
open(P1, File-S1)
close(P2, File-S2)
open(P1, File-S2)
read(P1, File-S1)
close(P1, File-S1)
read(P1, File-S2)
close(P1, File-S2)
open(P1, File-x)
...
open(P3, File-x)
open(P3, File-D1)
read(P3, File-x)
...

Unsorted relations
P2's sorted list
open(P2, File-S2)
write(P2, File-S2)
close(P2, File-S2)
..
P1's sorted list
open(P1, File-S1)
open(P1, File-S2)
read(P1, File-S1)
close(P1, File-S1)
read(P1, File-S2)
...
P3's sorted list
open(P3, File-x)
open(P3, File-D1)
read(P3, File-x)
...

Sorted relation list

P2's sorted list
..

P1's sorted list
open(P1, File-S1)
read(P1, File-S1)
close(P1, File-S1)

open(P1, File-S2)
read(P1, File-S2)
close(P1, File-S2)
...

P3's sorted list
...

Sorted and grouped
 relation list

Sort relations Grouping

Figure 5.4: From unsorted relations to list of rg , illustrated based on use case
shown in Figure 5.3

to allow the search for relevant provenance relations to be as precise as

possible. For the rest of the discussion on the algorithm, we use “sorted

relation list” or Lsorted to reference the sorted and grouped relation list,

unless otherwise indicated.

The motivation behind grouping provenance relations into rg is to facil-

itate the retrieval of data channel provenance relations associated with

the relevant data flow provenance relations. As pointed out in Section

4.3.3, data channel relations are an integral part of segmenting relations

into logical groups and the FSA. Hence, by grouping relations, the al-

gorithm can focus on analysing data flow relations when reconstructing

the paths. The associated data channel relations can be retrieved to-

gether with the group when one of the data flow relations in the group is

determined to be relevant to DP(e).

A lookup table is also generated while parsing provenance relations

during sorting to facilitate the search for related entities in other phases

of the algorithm. The table holds a relational mapping between entities

and returns a set of entities that are associated (i.e. have one or more

provenance relations that connect the two entities) to a given entity.

The mapping for an agent entity is updated whenever the correspond-

ing agent in the source_entity field is observed to be associated to a new

target_entity. Mapping of an object entity is updated when the corre-

sponding object in the target_entity field is observed to be associated
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with a new source_entity. The update of mapping is done differently be-

tween agent and object entities due to objects being regarded as passive

(e.g. not able to initiate activities).

5.2.2 Find Instance Phase

After the sort phase, the algorithm retrieves e from E and attempts to

find all agents directly connected to e using the findInstances function.

The pseudocode for the function is shown in Algorithm 2. We use the

form rg .r to represent attributes associated to rg (e.g. the provenance

relation associated to rg). i.dIn and i.dOut represents the data-in and

data-out arrays associated to the entity instance i.

Retrieval of e is done using e_id, a user supplied string that denotes the

ID of the object whose data provenance the user wants reconstructed3.

Once e is retrieved, the algorithm starts reconstructing the source and

derivative provenance of e. Since e is an object entity, entities that con-

nect directly to e are expected to be of agent type (e.g. agents executing

activities in relation to e).

A list of IDs of agents associated with e is retrieved using the lookup

table constructed in the sorting phase. Based on the list, the instance

that represents each agent is retrieved from E. The algorithm then looks

for rg that connects each agent directly to e by searching for rg with e as

its target_entity value in the respective agent ’s sorted relation list. Each

qualified rg is assigned to the agent ’s respective data flow array. Assign-

ment of rg to the arrays is based on the data flow direction described

by the provenance relation. Details of the assignment is discussed later

in Section 5.2.4. Once all agents’ sorted relation list are processed, the

agent instances are returned and inserted into Q for processing in the

main function.

Referencing the example use case in Figure 5.3, Figure 5.5 shows the

progress of reconstructing at the end of the find instance phase. In-

stances of agent directly connected to File-x, P1 and P3, are retrieved

3Note that e will always be an object type entity (e.g. file object) due to the scope of
our research.
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Algorithm 2 Function: findInstances

1: Inputs: e_id, E, Lsorted,DP(e), Tlookup
2: Initialise: Enew ← ∅
3:

4: e← E[e_id]
5: if e is null then terminate algorithm
6: S ← Tlookup[e]
7: DP(e)← DP(e) ∪ {e}
8:

9: for each s ∈ S do
10: i← E[s]
11: RGread ← {rg ∈ Lsorted[s] | (rg .r = read ∧ rg .e2 = e)}
12: i.dIn ← i.dIn ∪ RGread

13:

14: RGwrite ← {rg ∈ Lsorted[s] | (rg .r = write ∧ rg .e2 = e)}
15: i.dOut ← i.dOut ∪ RGwrite

16:

17: Enew ← Enew ∪ {i}
18: end for
19: return Enew, DP (e)

from E. rg that directly connects the agents to File-x are assigned to

the respective agents’ data flow array. Q shows the agents that will be

processed in the next phase of the reconstruction.

5.2.3 Reconstruction Phase

Source and derivative provenance are reconstructed in an iterative man-

ner by finding directly connected rg that can logically explain the ‘next

step’ of the data flow. This is done in two steps.

First, the algorithm identifies the entity on which to perform the search

by checking for the ID of the instance being processed. Based on the ID

of the instance, the entity’s sorted relation list is retrieved from Lsorted.

Next, the algorithm tries to find matching rg from the retrieved list for

each rg in the instance’s data-flow arrays.

Matching is done using Lamport’s happened-before causal relationship

[Lamport 1978]. Lamport defined a happened-before b if a comes before
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AccessModify

Q

P1
[]

[Modify(File-x)]

(in array)
(out array)

e
P3

[Access(File-x)]

[]

DP(e)

source provenance derivative provenance

Figure 5.5: State of DP(e) at the end of find instance phase (with reference to
the example use case)

Agent
write(tn+2)read(tn-2)

Agent2

write(tn-1)

Agent3Ruled out since it
happened before the
read

Ruled out since it does not 
complement the rg being matched

Case for matching
data-in rg, read(tn)

Object

Figure 5.6: Finding a match for a data-in rg on Agent. Dotted arrows represent
ruled out provenance relations

b in terms of clock order (in our case, we use timestamp) and that b is

the recipient of the message sent by a. A rg is considered to be causally

related (i.e. a match) if it meets the following two conditions:

1. The rg in the provenance relation list complements the rg in the

data flow array in terms of the direction of data flow. For example,

to match a data-in rg , the rg in the provenance relation list should

describe data flowing out of the entity (i.e. write provenance rela-

tion).

2. The timestamp on the pair of rg satisfy the causal order stated by

our assumption in the beginning of Section 5.2. That is to say, the

timestamp on a data-in rg should be smaller or equal to the times-

tamp on a data-out rg .

Figure 5.6 illustrates the conditions for the matching. Assuming that

the algorithm is matching a read at time tn, the read on the object by

Agent would fail to complement the read in the data-in array since both

provenance relations describe data flowing into Agent. The write to
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DerivativeAgentSource

data-out

Agent

data-out

data-in
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Object
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Source provenance

Derivative provenance

data-out

data-in

retrieved rg are placed 
in the next nodes data-in array

retrieved rg are placed 
in the next nodes data-out array

Figure 5.7: Illustrating the concept of data-in and data-out rg at agents along
a path

Algorithm 3 Function: findInOutEdges

1: Inputs: i, E, Lsorted, Tlookup,DP(e)
2: Initialise: Enew . To hold new nodes
3:

4: if i is an agent then
5: Enew, i← findAgentEdges(i, E, Lsorted)
6: else if i is an object then
7: Enew, i← findObjectEdges(i, Lsorted, Tlookup, E)
8: end if
9: DP(e)← DP(e) ∪ Enew

10: return Enew, i

Agent3 would fail to meet the conditions too due to the timestamp being

smaller than the data-in read.

For every instance in Q, part of the derivative provenance is recon-

structed by searching for matching data-out rg in the entity’s sorted re-

lation list for each rg in the data-in array. Source provenance is recon-

structed in a similar fashion, except the algorithm searches for match-

ing data-in rg for each rg in the instance’s data-out array. For each rg

matched, the algorithm retrieves the instance for each unique entity in-

troduced by the rg from E. The newly matched rg is then assigned to

the mirroring data flow array on the new instance the rg is matched to

(e.g. if matching rg in data-in, newly matched rg is placed into the new

instance’s data-in array). This process is visualised in Figure 5.7 and

is implemented in the findInOutEdges function used in the reconstruc-

tion phase. The general structure of findInOutEdges is shown in the

pseudocode described in Algorithm 3. For clarity, the searching of rg is

described separately in Section 5.2.4 (Algorithms 4 and 5).
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Figure 5.8: Progress of reconstructing the example use case after processing
P1
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Figure 5.9: Progress of reconstructing the example use case after processing
P3

The findInOutEdges function is called by the traversal for every in-

stance in Q. Newly discovered instances at the end of findInOutEdges

are placed onto Q. The processed instance is then placed into DP(e).

The reconstruction stops once Q is empty. The algorithm then checks

for duplicated provenance relations in DP(e) before returning it as the

result of the reconstruction.

Figure 5.8 and 5.9 illustrate two iterations of the reconstruction phase

when reconstructing the example use case. Calling findInOutEdges

when processing P1 will result in the discovery of File-S1 and File-S2

due to the rg connecting them to P1. In the example, it is assumed that

these two rg satisfy the conditions for the matching. Once P1 is pro-

cessed, the newly discovered entities, together with the rg that connects

them to P1 are added to Q. The state at the end of the second itera-

120



5.2 Algorithm for Reconstructing Data Provenance

Algorithm 4 Function: findAgentEdges

1: Inputs: i, E, Lsorted

2: Initialise: Enew ← ∅
3:

4: tsmall ← findSmallestTime(i.dIn)
5: tlarge ← findLargestTime(i.dOut)
6: for each rg ∈ Lsorted[i] do
7: n← E[rg.e2 ]
8: n.dIn ← n.dIn ∪ {rg | rg .r = write ∧ rg .t ≥ tsmall ∧ rg .e2 /∈ DP(e)}
9: n.dOut ← n.dOut ∪ {rg | rg .r = read ∧ rg .t ≤ tlarge ∧ rg .e2 /∈ DP(e)}

10:

11: i.dOut ← i.dOut ∪ ({rg} \ n.dIn)
12: i.dIn ← i.dIn ∪ ({rg} \ n.dOut)
13: Enew ← Enew ∪ ({n} \ DP(e))
14: end for
15: return Enew, i

tion is shown in Figure 5.8. Note the rg placed in the data-out array for

File-S1 and File-S2 as the algorithm reconstructs the source provenance

from P1. Likewise, the third iteration, shown in Figure 5.9, processes

P3 in a similar manner using findInOutEdges. Over time, the algorithm

reconstructs the source and derivative provenance one step at a time.

5.2.4 Agents and Objects

Differences in the definitions of agent and object4 resulted in the search

for relevant rg for the two entities to be slightly different. Algorithm

4 and 5 contain the pseudocode for the search function for agents and

objects respectively. Objects in DFPM are treated as passive entities;

they are unable to initiate activities by themselves. This implies that ob-

ject entities will not appear in the source_entity field of a provenance

relation. Since rg in the sorted relation list are sorted based on the

source_entity field, the algorithm will need to know which entity’s list

to look at. This is done by retrieving the list of entities that have inter-

acted with the object using the Tlookup table.

4The two entities are defined in Section 4.3.1.
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Algorithm 5 Function: findObjectEdges

1: Inputs: i, Lsorted, Tlookup, E
2: Initialise: Enew ← ∅
3:

4: tsmall ← findSmallestTime(i.dIn)
5: tlarge ← findLargestTime(i.dOut)
6: S ← Tlookup[i]
7: for each s ∈ S do
8: RGderive ← {rg ∈ Lsorted[s] | (rg .r = read ∧ rg .t ≥ tsmall ∧ rg .e2 = i)}
9: RGsource ← {rg ∈ Lsorted[s] | (rg .r = write ∧ rg .t ≤ tlarge ∧ rg .e2 = i)}

10:

11: n← E[s]
12: n.dIn ← n.dIn ∪ {rg ∈ RGderive | (rg .e1 /∈ DP(e))}
13: n.dOut ← n.dOut ∪ {rg ∈ RGsource | (rg .e1 /∈ DP(e))}
14:

15: i.dOut ← i.dOut ∪ (RGderive \ n.dIn)
16: i.dIn ← i.dIn ∪ (RGsource \ n.dOut)
17: Enew ← Enew ∪ ({n} \ DP(e))
18: end for
19: return Enew, i

Another implication of the difference in definition is the interpretation

of the data flow direction for each rg . Due to object entities being pas-

sive, write relations always originate outside of the object, causing write

to be seen as an inflow of data from the object’s perspective. Read re-

lations are also interpreted in the same manner; reading data from an

object is seen as data flowing out from the object’s perspective. This

contrasts how read and write relations are interpreted for agents.

Agent entities are viewed as active entities. Hence, provenance rela-

tions associated with an agent originate from the agent (i.e. source_entity

is the agent). This changes how read and write are interpreted from an

agent’s perspective. A read is seen as obtaining data from other entities,

thus is viewed as data flowing into the agent. Likewise a write is equiva-

lent to data being output from the agent. The interpretation of data flow

for both entity types is illustrated in Figure 5.10.
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Figure 5.10: Difference in the interpretation of provenance relations in terms
of data flow direction between Object and Agent entities

5.2.5 Reducing the Number of Iterations on Relation List

The path reconstruction approach described in Section 5.2.3 tries to find

all matching pairs of rg for each rg in the respective data flow array5 of

the entity being processed. This is due to a lack of information on data

content being communicated between the two entities described by each

provenance relation. As a result, the algorithm can only determine like-

lihood of a rg being related by determining if two rg are causally related.

Figure 5.11 depicts an example scenario that illustrates the issue of not

being able to accurately identify the relevant provenance relation.

It is assumed that both write provenance relations satisfy the matching

conditions for determining causal relation when matched with the read

provenance relation in Figure 5.11. Without knowing the actual data be-

ing communicated (shown as the letters in round brackets beneath each

edge), the algorithm cannot accurately determine which write relation

is the actual relevant activity. Therefore, the algorithm would have to

include all rg that satisfy the causal order requirement so as not to over-

look the ‘correct’ provenance relation. This results in the dependency

explosion problem, which will be discussed in Section 6.4.

The algorithm iterates through the entity’s sorted relation list n times,

where n is the number of rg in the respective data flow array, so as to

5Data-in and data-out for reconstructing derivative and source provenance respec-
tively.
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Figure 5.11: Example scenario for why considering causal order alone cannot
accurately determine relevancy of a rg . Letters in round brack-
ets under each edge represents the content of the data communi-
cated at each edge
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{read(t1), read(t5), read(t11)}
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Figure 5.12: Overlapping of results (dotted bars) for each iteration in the path
reconstruction process

find all rg that satisfy the causal order requirement. Since each iteration

looks for rg of the same type (e.g. finding matching write rg in the list

for every rg in data-in and vice versa), the search can be optimised to

just one pass through the list. A sample case, illustrated in Figure 5.12,

where the algorithm is trying to match rg in an entity’s data-in array is

used to demonstrate how the number of iterations can be reduced.

In the sample case, we consider an entity with three rg in its data-in

array being removed from Q for processing. The entity’s data-in array

is shown on the left side in Figure 5.12, with the rg simplified to show

only their time sequence order. The assumed matched rg in the entity’s

provenance relation list is shown on the right hand side of the figure. The

red arrow marks the starting point in the list for provenance relations

that satisfy the causal order requirement for each iteration. The dotted
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bars indicate the rg that complement the rg in the data-in array.

It can be observed from Figure 5.12 that the results returned from the

rg with a larger timestamp is a subset of the results from matching the rg

with the smallest timestamp. Based on this observation, simply matching

the rg with the smallest and largest timestamp in the data-in and data-out

array, for reconstructing derivation and source provenance respectively,

will return the set of rg that satisfy all rg in the respective arrays. This

optimisation is reflected in the implementation of the algorithm, where

the respective timestamps are computed at the beginning of findAgent-

Edges and findObjectEdges in Algorithm 4 and 5 respectively.

5.3 Analysis of Algorithm

In this section, we analysis the complexity of the algorithm by analysing

each phase of the algorithm. The sort phase attempts to sort relations

in R according to their source_entity field (i.e. agent) and group re-

lations into rg . Sorting and grouping is done in two separate parses,

once through R and the other through the relation list for each identified

agent.

In the first parse, the algorithm extracts the source_entity field and in-

serts each relation at the end of its respective relation list. This requires

|R| ∗ (O(1 ) + O(1 )) number of operations. We can treat the cost of inser-

tion as constant as the relation is always inserted at the end of the list.

Thus the index for the insertion can be stored independently to speed up

the insertion6.

In the second parse, each relation is passed to the groupRelations

function. The function either advances its state by one step based on the

input relation7 or outputs the result of the pattern matching. In either

case, the number of operations scale with |R|. Hence, we can assume

a worst-case complexity of O(R) for grouping the relations. The lookup

table that stores the set of entities related to each unique entity, Tlookup,

6We already assumed the relations in R are sorted chronologically before hand.
7Advancement of the states is determined by the FSA patterns discussed in Section

4.4 of Chapter 4.
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Figure 5.13: Comparison between the amount of relations and entities for sys-
tem log files in the CSC’15 dataset

is also generated concurrently during this parse. This can be done by

extracting the target_entity field from each relation during the parsing.

By using a hash table with linked list data structure, the table can be

generated using |R| ∗ (O(1 ) + O(1 )) number of operations. By summing

the complexity for each parse, we can assume the time complexity of

the sort phase to be O(R ∗ (1 + 1 )) + O(R) + O(R ∗ (1 + 1 )) and can be

simplified to O(R) worst-case complexity.

In terms of space complexity, since R needs to be stored in Lsorted, the

amount of memory required by Lsorted is proportional to |R|. For the

worst-case scenario, we can assume every entity is connected to every

other entity. In such a case, the memory required to store the lookup

table Tlookup will be |E| ∗ |E|, where E is the entity set. Hence, the over-

all worst-case space complexity required for the reconstruction to take

place is O(R) + O(E 2 ).

Theoretically, the space required by the lookup table appears to be

large. However, in practice, |E| is significantly smaller than |R|. For

example, system logs from the NZCSC’15 dataset shows |E| is usually

smaller than |R| by at least a factor of 100 for systems used in the compe-

tition. Figure 5.13 shows the comparison between the two sets for each

system log file collected from the NZCSC’15. The worst-case scenario
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where every entity is inter-connected is also unlikely as not all processes

would communicate with one another directly in a computer system (e.g.

background processes performing routine system maintenance may not

interact at all with user applications).

In the find-instance phase, the algorithm attempts to find all relations

and entities directly connected to e, the object whose data provenance is

to be reconstructed. Retrieving, S, the set of entities directly connected

to e can be done in constant time using the hash lookup table, Tlookup and

e. On the other hand, retrieving all relations directly associated to e will

require the algorithm to scan the relation list for each s in the sorted

relation list Lsorted. Since the size of the relation list of s refers to the

amount of relations connected to s, |Lsorted[s]| is the degree of s, deg(s).

As such, the time complexity for the find-instance phase can be said to

be O(1 + |S | ∗ deg(s)), where |S| is the number of unique entities directly

connected to e.

In the reconstruction phase, the algorithm uses the findInOutEdges

function to determine which relation and entity should be considered

when reconstructing the source and derivative provenance of e. In the

following analysis, we assume the worst-case scenario where all entities

in the input data are relevant (i.e. E ⊂ DP(e)).

To reconstruct both source and derivative provenance, the algorithm

first computes the time window for relations to qualify. This is achieved

by finding the smallest and largest timestamp using the data-in and data-

out arrays respectively for each entity being processed. In the worst-

case scenario, the arrays would represent the in and out degrees of an

entity as all relations would be considered relevant to DP(e). Hence, the

complexity of finding the time window for each entity, i, being processed

is O(deg(i)).

After computing the time window, the algorithm will search through

the relation list for each unvisited entity, s, that is connected to i. As

discussed above, the complexity of searching the relation list of each

entity is deg(s). Since every entity will be processed in the worst-case

scenario, the worst-case time complexity of the reconstruction phase can

be said to be O(|E | ∗ (2 ∗ deg(s)).
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Chapter 5 Reconstructing Data Provenance

5.4 Context-based Provenance Reconstruction
Algorithm

Prior to the algorithm described in Section 5.2, an algorithm that lever-

age on Allen’s interval and the context information of each provenance

relation was explored. The context-based algorithm was inspired by

the concepts of precondition used in classic workflow planning [Vassos

2012] and description logic matching used in web service composition

[González-Castillo et al. 2001]. The underlying idea is to keep track of

the data obtained by each entity.

Relevance between two potential causally related provenance relation

(e.g. pair of read and write activities) is determined in two steps:

1. check if the temporal relationship between the two provenance re-

lations falls into one of the following Allen’s interval algebra: meet,

overlaps, starts, during, finishes, is equal to.

2. match contextual information of pairs of provenance relations that

satisfy the first check.

A data structure, precondition, is used to keep track of data held by

each entity. In reconstructing derivative provenance, read relations from

an entity are treated as the an entity obtaining a piece of data. An in-

formation set consisting of contextual information surrounding the data,

such as size of the data read or information regarding the data channel, is

constructed and assigned to the respective entity in precondition. When

a write relation from the same entity is encountered, contextual informa-

tion of the write relation is matched against those in precondition. The

matching results in one of the following three possibilities:

1. Equivalent - write-information set matches exactly to at least one

contextual information set in the precondition data structure.

2. Sub-match - write-information set is considered to be a subset for

each information set matched in precondition.

(e.g. sizewrite < sizeread)
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3. Super-match - write-information set is a superset of at least one

information set in precondition (e.g. sizeread < sizewrite) and is not a

subset or equivalent to any information set in precondition.

For equivalent and sub-match results, the write relation is treated as

having propagated data to other entities. Hence, the relation is added

to DP(e). In the case of super-match, the algorithm assumes that the

data propagated is not relevant. This is because the data being written

is larger than what was obtained by the entity and hence is likely not

relevant to the data the provenance is concern of. As a result, the relation

is ignored. Source provenance is reconstructed in the same manner.

The only difference is instead of populating precondition when a read

is observed, the update is done when a write is observed. Likewise,

matching with information set in precondition is done when a read is

found.

During testing, it was observed that the algorithm worked well in sit-

uations where data was propagated unmodified (i.e. creating duplicated

copies of a document). However, in cases where data is being modified

before being propagated to other entities, the logic used in the algorithm

would fail. An example of such a case is when a process

Such cases are common in users’ interaction with computer systems

where

Hence, the context-based algorithm was scraped as it could not recon-

struct the data provenance if the data is being modified during propaga-

tion. Having said that, the lesson learnt from the context-based algorithm

led to the idea of leveraging the causality of relations for the reconstruc-

tion.

5.5 Abstracting the Reconstructed Provenance

The work by Coe et al. [2014] highlighted how provenance graphs gen-

erated at different granularities can differ in shape and size, even if they

are describing the same events. These disparities between graphs of dif-
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ferent granularity will result in false negatives8 when evaluating the re-

constructed data provenance (i.e. DP(e)) against the ground truth prove-

nance. This is because the ground truth provenance is derived from user

layer events9 while the data provenance is reconstructed from log files

generated at finer granularity layers. To resolve the difference in gran-

ularity, the FSA discussed in Section 4.4, is used to map DP(e) to the

granular layer which contains the ground truth provenance.

Provenance relations in DP(e) are first sorted into separate lists of

provenance relations based on their source_entity value and ordered

chronologically by timestamp. Since the FSA focus on relations between

a pair of source_entity and target_entity, sorting the provenance rela-

tions allows the FSA to perform the matching by simply iterating through

each list.

The automaton takes in a list of provenance relations as a sequence

and attempts to find sub-sequences that match the patterns defined by

the FSA. Once matched, each sub-sequence is replaced with the corre-

sponding coarser granularity activity ascribed to the matched pattern.

For example, if a sub-sequence matches the pattern describing modify,

the sub-sequence is summarised and replaced with a modify relation.

The new provenance relation inherits the source_entity and target_entity

values of the sub-sequence10. However, a single time field is insufficient

to represent timestamps of the summarised relations. Instead, time is

represented as a range in the new provenance relation. The timestamp

of the first and last provenance relation in the sub-sequence is used as the

start and end time of the range. Start time is captured in the time field as

per the defined format, while end time is inserted into the context field

with the tag ‘endTime’ to denote the context of the value. Figure 5.14

illustrates the sorting and the outcome of the mapping by the automaton,

using sample provenance relations simplified to show the source_entity

and target_entity values of each provenance relation.

8A single read observed in the user layer may be made up of multiple read operations
in the finer granularity layers.

9Derivation of the ground truth provenance was discussed in Section 3.6.
10Similar to how grouping of provenance relations is done in Section 5.2.1, the automa-

ton only looks at provenance relations with the same source_entity and target_entity
when searching for sub-sequences.
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List: pid:272
open(t1, pid:272, file:/text.txt, ...)
read(t2, pid:272, file:/text.txt, ...)
read(t3, pid:272, file:/text.txt, ...)
close(t4, pid:272, file:/text.txt, ...)

open(t1, pid:272, file:/text.txt, ...)
read(t2, pid:272, file:/text.txt, ...)
read(t3, pid:272, file:/text.txt, ...)
close(t4, pid:272, file:/text.txt, ...)
open(t5, pid:271, file:/net/dev, ...)
write(t6, pid:271, file:/net/dev, ...)
close(t7, pid:271, file:/net/dev, ...)

sort by source_entity

access(t1, pid:272, file:/text.txt, endTime:t4; ...)

modify(t5, pid:271, file:/net/dev, endTime:t7; ...)

aggregated results

automaton processes each list 
in a string-like manner

List: pid:271
open(t5, pid:271, file:/net/dev, ...)
write(t6, pid:271, file:/net/dev, ...)
close(t7, pid:271, file:/net/dev, ...)

Figure 5.14: Example of the aggregation process

read

read

open

close

pid:272 file:/text.txt
access

pid:272 file:/text.txt

process:vim file:/text.txt
access

Ground Truth Provenance Reconstructed Provenance

mapped to user layer

user layer

system 
+

application
 layer

Figure 5.15: Illustration of the ground truth and reconstructed provenance
graph

Once DP(e) is mapped to the layer with the same granularity as the

ground truth provenance, they can be compared equally as each ob-

served event can be treated as structurally equivalent, as illustrated in

Figure 5.15. Any difference between the two provenance graphs can now

be treated as unexpected results produced by the reconstruction.

5.6 Summary

This chapter focuses on reconstructing the data provenance from prove-

nance relations modelled from log files. An algorithm, based on Lam-

port’s happened-before causal relationship, is proposed for achieving

this. Once reconstructed, the FSA discussed in Chapter 4 is used to

map the data provenance to the same granularity layer as the ground
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Log files

{r, r1, r2, r3, ...}

Provenance 
Modelling

Provenance 
Relations

Provenance Reconstruction

Reconstructed 
Provenance

of a File
(Granular)

Reconstructed 
Provenance

of a File

Events 
Observed

(System wide)

Figure 5.16: From log files to reconstructed provenance

truth provenance. This allows the reconstructed data provenance to be

evaluated against the ground truth provenance without false negatives—

caused by the difference in granularity in the results. Figure 5.16 illus-

trates the reconstruction process, from log files to the reconstructed data

provenance.

Once the data provenance can be reconstructed from log files, the next

step is to evaluate how complete is the reconstructed provenance with

respect to the known derivation history of the data. However, review

of existing literature showed the lack of a methodology for evaluating

data provenance reconstruction. We discuss our proposed evaluation

methodology and the evaluation of the reconstructed data provenance

in Chapter 6.
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Experiments

To assess the reconstructed data provenance, in the context of address-

ing the thesis question, we require an evaluation methodology. However,

Chapter 2’s review showed the absence of such a methodology in the

literature. To address this gap, a methodology that evaluates a recon-

structed data provenance based on its completeness and correctness is

proposed in Section 6.1. Section 6.2 discusses the two errors found in

the dataset and discussed how they were resolved. The setup used for

the experiments is also discussed. The thesis question is then addressed

in Section 6.3 through a series of experiments that look at the data prove-

nance reconstructed from different types of log file. Based on observa-

tions obtained, Section 6.4 discusses approaches that can be applied to

reducing the number of errors in the reconstructed output.

6.1 Methodology for Evaluating Data Provenance
Reconstruction

The proposed methodology for evaluating reconstructed data provenance

is based on two dimensions related to information quality: correctness

and completeness. These dimensions were inspired by the work of Cheah

and Plale [2012] on assessing the quality of provenance captured in an

automated manner. The authors argued that other dimensions, such as

timeliness, validity and uniqueness are more applicable when assessing

information curated manually. This argument conforms to the context of
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this research as the reconstruction is done in an automated manner.

Although inspired by the work of Cheah and Plale [2012], the defini-

tions and approach to calculating the two dimensions differs in our pro-

posed methodology. Correctness and completeness are defined as follow:

Correctness - denotes the extent to which the reconstructed prove-

nance is error free with respect to the ground truth.

Completeness - denotes the extent to which the reconstructed prove-

nance captured the provenance relations found in the ground truth.

To simplify the evaluation, any provenance relations in the reconstructed

output but not in the ground truth are considered as errors. These errors

include provenance relations that are duplicated, redundant (i.e. noise)

or with erroneous fields.

Different approaches can be used to quantify these dimensions. For

example, Cheah and Plale [2014] count and score the number of errors

found on each node and edge of a provenance graph. A single quality

score that defines the quality of a provenance graph is then calculated

by averaging the sum of scores for each element over the number of

expected nodes and edges. Such a quality score allows different prove-

nance graphs to be compared and ranked based on their quality. How-

ever, applied to evaluating provenance reconstruction, the single scoring

approach cannot highlight which dimensions the reconstructed prove-

nance failed in. Our proposed methodology measures the two dimen-

sions separately using the metrics precision and recall. We argue that

by using different metrics, areas in the reconstructed data provenance

that require improvement can be identified through the evaluation. This

is demonstrated in the later sections on the experiments.

In the context of the proposed methodology, precision measures the

number of reconstructed relations that are in the ground truth against

the total number of reconstructed relations. It quantifies how much of the

reconstructed output is correct. Recall measures the amount of ground

truth being reconstructed and reflects completeness.

Comparison of provenance relations1 between reconstructed and ground

1A provenance relation is a construct that consists of two entities connected by an ac-
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AgentObject
writeread

Agent2

(Entity) (Entity)(Activity)

match

Provenance relation 

AgentObject
writeread

Agent3

Reconstructed 
Provenance

Ground Truth
Provenance

error

miss

Figure 6.1: Illustration of a pair-wise provenance relation and the possible out-
comes of comparison between the ground truth and reconstructed
provenance

truth data provenance is done in a pair-wise manner. Each comparison

results in one of the following outcomes:

1. match (true positive, tp) - the same pair-wise provenance relation

exists in both the reconstructed and ground truth provenance

2. error (false positive, fp) - a pair-wise provenance relation exists

only in the reconstructed provenance

3. miss (false negative, fn) - a pair-wise provenance relation exists

only in the ground truth provenance

Figure 6.1 illustrates the three outcomes. Note that the approach to

take the minimum count when computing tp, proposed by Papineni et al.

[2002], is adopted in our proposed methodology2.

Based on the tabulated outcomes, recall of the reconstructed data

provenance can be computed as follows:

Recall =
match

length of ground truth
=

tp

tp+ fn
(6.1)

tivity that describes the relationship between the two entities, as defined previously
in Section 4.3.

2This is with reference to the discussion in Section 2.4 on how tp or matches can be
calculated differently.
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Likewise, precision of the reconstructed data provenance can be com-

puted as follows:

Precision =
match

length of reconstructed provenance
=

tp

tp+ fp
(6.2)

Based on Equation 6.2, the complement of precision (i.e. 1 − precision)

would inform how much error is in the reconstructed provenance. It

should also be noted that the formulas used in Equation 6.1 and 6.2 con-

form to the standard formulas defined by Manning et al. [2009]. An ideal

result of the reconstruction is where the reconstructed data provenance

only contains matching relations and completely captures the ground

truth. This implies precision and recall would equate to 1, indicating

the reconstructed output mirrors the ground truth provenance.

6.2 Experimental Setup

This section details the setup used for the experiments described in this

chapter. The first subsection describes issues found in the log files that

can be resolved at the pre-processing stage (i.e. before running the re-

construction algorithm). The second subsection documents the experi-

ment setup.

6.2.1 Data Pre-processing

Initial inspection of the NZCSC’15 dataset, discussed in Chapter 3, un-

covered two types of sequencing error amongst the log entries. These

errors can affect the execution of the reconstruction algorithm. Hence

they need to be identified and rectified in the data pre-processing stage.

In this section, we discuss what these errors are and how they can re-

solved.

Since the procedure for generating kernel log entries by system log-

ging mechanisms is the basis for the occurrences of the errors, it is first

explained to facilitate the discussions later on.

136



6.2 Experimental Setup

log insertion

Legend

system call 

timestamping

log generation

Figure 6.2: Illustration of the procedure for kernel log entry generation

type=SYSCALL msg=audit(1428297037.360:1687673): syscall=4 ...
type=CWD msg=audit(1428297037.360:1687673):  cwd="/root"

type=SYSCALL msg=audit(1428297037.364:1687692): syscall=2 ...
type=CWD msg=audit(1428297037.364:1687692):  cwd="/root"

type=PATH msg=audit(1428297037.360:1687673): item=0 name="/usr/sbin/tcpdump" ...

type=PATH msg=audit(1428297037.364:1687692): item=0 name="/root" ...

correct 
order

Log entry out of 
sequence order

Figure 6.3: Log sequence error in Linux Audit Framework (LAF) logs

Before describing the errors found, the procedure of how kernel log

entries are generated is explained first. This is so as to facilitate the

discussions later on. The procedure can be divided into three phases,

namely execution of the system call, event timestamping and log inser-

tion. When a process invokes a system call, the kernel would executes

the system call first. Upon completion, the event is timestamped by the

logging mechanism. Parameters to be logged, including the timestamp,

are then extracted from the various kernel data structures. These pa-

rameters are assembled according to the log format and inserted into the

kernel ring buffer. Log entries are then retrieved from the ring buffer in

a First-in-First-out (FIFO) order and output to log files in the user space.

Depending on the log format, one or more log entries may be gener-

ated for each system call. Figure 6.2 briefly illustrates this procedure.

It is important to note that while certain system calls are idempotent

(e.g. cannot be interrupted during execution), the kernel regards the log

generation portion to be non-critical and thus can be interrupted (e.g.

pre-empted).

The first type of sequencing error found is log sequence error, where

the order of two log entries in the same log file does not match the order

of their timestamp. An example of a log sequence error in the LAF logs

is shown in Figure 6.3.
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Log sequence errors occur commonly in kernel log files of systems

where the number of concurrent processes running challenge the sys-

tem’s capacity. In high load situations, processes may be context-switched

out of the CPU before it is able to completely emit all required log entries.

This results in log sequence errors.

Process concurrency in modern systems is achieved through context

switching at the CPU. This is managed by the scheduler and is per-

formed differently based on the scheduling algorithm used. In the rest

of this discussion, the round robin scheduling algorithm3 is used as an

example [Silberschatz et al. 2012]. Under round robin scheduling, CPU

usage is managed through time-slices being allocated to each process.

At the end of each time-slice, if the process is still running, the scheduler

would pre-empts it from the CPU in favour of the next assigned process.

By default, the size of a time-slice is usually based on the number of

processes running on the system. As a result, each time-slice becomes

significantly smaller when the system is heavily loaded.

Under a normal system load, each time-slice allocated to the process

would be sufficiently large for the process to complete the entire pro-

cedure, from invocation to inserting log entries into the ring buffer, as

shown in Figure 6.4a. However, when the system experiences heavy load,

the time-slices become significantly smaller. This results in increased

possibility of a process being pre-empted during the insertion of its log

entries into the ring buffer. If the next process also does insertion, the

log entries of the previous system call would be interleaved with entries

from the current system call. Since the log entries are timestamped be-

fore the insertion and pre-emption, the interleaved entries will appear

out of sequence. Figure 6.4 briefly illustrates how log sequence error

could result from smaller time-slices. Note that, although other schedul-

ing algorithms do not utilise time-slices for managing access to the CPU,

as long as pre-emption of process is enabled, log sequence errors can

take place when a process is pre-empted.

Log sequence error is an issue when extracting information from the

log files for modelling provenance relations. In situations where an event

3Most modern operating systems use round robin as the default scheduling algorithm.

138



6.2 Experimental Setup

Process 1

Process 2

context
switch

process execution

waiting for CPU
log insertion

Legend

Kernel

...

...

...

... system call 

invoke

invoke

timestamping

(a) Under normal load, time-slice is sufficient for process to log the system call
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(b) Overloading the system may interrupt the logging procedure

Figure 6.4: Impact of system load on logging

is described using multiple log entries (e.g. Figure 6.3), the parser would

expect the respective entries to be in sequence. Log sequence errors may

cause the parser to miss out on certain key information, hence affecting

the modelling of entities. Log sequence errors can be remedied easily by

sorting the log entries based on their timestamp.

The second type of sequencing error found is a logic sequence error,

where the timestamps of a pair of causally dependent entries are logically

incorrect. Assuming a pair of causally dependent events A and B, where

B is dependent on A (e.g. A → B), the timestamp of A is expected to be

smaller than B as A has to happen before B. However, in logic sequence

error, the timestamp of A is larger than B.

In idempotent system calls, such as read and write, the main function

of the system call (e.g. during reading or writing of bytes) cannot be pre-

empted. However, timestamping of the event is not considered critical

and as such is susceptible to interruption by the scheduler. As a result,
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main function
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Figure 6.5: Logic sequence error due to system call being interrupted before it
can be timestamped correctly

if the process invoking a system call was context-switched out by the

scheduler before it managed to timestamp the system call event, logic

sequence error would likely occur. With reference to the log generation

procedure illustrated in Figure 6.2, Figure 6.5 demonstrates how a logic

sequence error could result due to context-switching. It should be noted

that logic sequence errors only manifest between two or more interacting

processes. System call invocation within the same process is sequentially

ordered (e.g. previous system call must be completed and logged first).

As such, the order of events within the same process can be assumed to

be logged correctly.

Our approach for resolving logic sequence errors in the NZCSC’15

dataset focuses on pairs of provenance relations that describe process

communication. Such pairs can be identified by searching for write-read

relation pairs, where the write shows process A writing to process B

while the read shows process B reading from process A. Each identified

pair is then checked for the error by comparing their timestamps.

Once found, the error can be fixed by changing the write timestamp to

be smaller or equal to the read timestamp or changing the read times-

tamp such that it is larger or equal to the write timestamp. However, any

changes made to the timestamps has to be done without violating the se-

quence order within the respective processes (e.g. if the write timestamp

is changed, the sequence order of the write amongst the events observed
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Algorithm 6 Resolving logic sequence error

1: Assume:
2: wbt = timestamp of relation before write
3: wt = timestamp of write relation
4: rt = timestamp of read relation
5: art = timestamp of relation after read
6:

7: if (wbt ≥ rt) and (art > wt) then . Change read timestamp
8: Set rt← wt
9: else if wbt < rt then . Change write timestamp

10: Set wt← rt
11: end if

for that process should remain the same). Algorithm 6 shows the psue-

docode for determining which timestamp is to be changed.

6.2.2 Description of Experimental Setup

Our experimental setup is based on the NZCSC’15 dataset and use cases

discussed in Chapter 3. Log entries in each log file of the dataset are

first sorted to resolve log sequence errors. After which, log entries are

modelled into a set of pair-wise provenance relations using the proposed

DFPM, described in Chapter 4. The modelled set of provenance relations

is then checked for logic sequence errors using Algorithm 6. The prove-

nance relation set and the name of the file whose data provenance is to be

reconstructed are given as inputs to the two-step reconstruction process4

to produce the reconstructed data provenance for each use case. Note

that each use case is reconstructed from its own set of relations. Finally,

the ground truth provenance for each use case, discussed in Section 3.6,

is compared against the reconstructed provenance, for evaluation. The

process of producing the reconstructed and ground truth provenance for

evaluation is illustrated in Figure 6.6.

Precision and recall for the reconstructed data provenance for each

4First the data provenance is reconstructed using the proposed reconstruction algo-
rithm then abstracted to a higher level of granularity using the automaton discussed
in Chapter 4.
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Log files Reconstructed Provenance
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Figure 6.6: Workflow for reconstructing the data provenance and generating
the ground truth from the NZCSC’15 dataset

use-case are then calculated using the methodology described in Section

6.1. To describe how matching is done, the notation defined in Equation

5.1, shown in Chapter 5, for a pair-wise provenance relation is used:

rg = (r, t, e1, e2)

where r is the activity between the two entities e1, e2, t is the timestamp

indicating the time the activity happened, e1 is the source entity and e2

is the target entity. A pair of provenance relation between the recon-

structed and ground truth provenance is considered a match only if:

1. the timestamp, trp, of the relation from the reconstructed prove-

nance is within the threshold window δ, with respect to the times-

tamp of the relation from the ground truth provenance

2. the activity, r, source e1 and target e2 for both relations hold the

same value

As the time granularity in the ground truth is in minutes, δ is set to one

minute in the experiments described in Section 6.3.

The psuedocode for computing precision and recall is given in Algo-

rithm 7. Agents which use process ID for their entity ID would have their

entity ID field replaced with the corresponding process name, if captured

142



6.2 Experimental Setup

Algorithm 7 Algorithm for computing precision and recall

1: Input: RP,GT
2:

3: GTlen← GT .length . Length of ground truth
4: RPlen← RP .length . Length of reconstructed prov
5:

6: for all rgrp in RP do
7: mapIDtoName(rgrp)
8: end for
9:

10: for all rgrp in RP do
11: if GT .length = 0 then exit for-loop
12:

13: for rggt in GT do
14: if match(rgrt, rggt) = 1 then
15: GT .remove(rggt)
16: RP .remove(rgrp)
17: break
18: end if
19: end for
20: end for
21:

22: tp← GTlen−GT .length
23: precision← tp/RPlen . Initial length of RP is tp+ fp
24: recall← tp/GT len . Initial length of GT is tp+ fn

in the context portion of the relation. This is to facilitate matching as

Agents are known by their process name in the ground truth.

For evaluation, use cases discussed in Chapter 3 are reconstructed us-

ing the NZCSC’15 dataset. To recap, the use cases are derived from

the NZCSC’15 video transcripts. Together, they cover different aspects

of interactions between elements in an operating system and data prove-

nance. These aspects include process-to-process communications, process-

to-file interactions and the source and derivative provenance of file ob-

jects. A brief summary of the use cases derived is as follows:

Use-case 1 - The reading and backing up of the file PrivateFile1 is cap-

tured in this use case. This use case aims to test whether the pro-

posed reconstruction algorithm is able to reconstruct the propaga-
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tion of data across different processes and over the network.

Use-case 2 - This use case shows the malicious modifications made to

a system critical file, /root/.ssh/authorized_keys. It demonstrates

file modifications by processes and shows the modified data being

propagated to other processes.

Use-case 3 - The injection of the malicious shell code, red.php, through

a running application by one of the red team is captured in this use

case. The use cases tests if the algorithm is able to reconstruct

sequence of events that describe the life cycle of a piece of data,

from creation, access, modification to deletion.

Use-case 4 - The final use case shows the propagation of the malicious

shell code injected in use-case 3 through interactions with different

applications. This use case tests the ability of the reconstruction

algorithm to reconstruct the source and derivative provenance of

the file ../test/red0.php.

6.3 Reconstructing Data Provenance from
Different Granularities

The first set of experiments investigates the outcome of the reconstruc-

tion when using log files of different granularity5. Recalling the NZCSC’15

dataset, described in Chapter 3, log files generated at the system and ap-

plication layer of the operating system were collected. As such, the log

files may differ in terms of the granularity of events and the observation

scope of the logging mechanisms. To investigate the impact of differ-

ent types of log files6 on the reconstruction, the NZCSC’15 log files are

divided into the following three sets of data:

D1 - The first set of data consists of log files from the system layer. This

includes the LAF, Sysdig and the network traffic log files.

5Granularity of a log file is determined based on the categorisation of log files using
the system granularity view defined in Section 1.5.

6Log files are classified according to their granularity, as discussed in Section 1.5.
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D2 - The second set of data comprises of log files from the application

layer. Log files generated by the Apache web server applications

form this set.

D3 - The third set of data is made up of log files from both the system

and application layers. It is comprised of log files in both D1 and

D2.

6.3.1 D1 - System Log Files

Table 6.1 shows the precision and recall of the data provenance recon-

structed for each use case using only system log files. Two observations

can be made from the results. First, the reconstructed data provenance

for all use cases exhibit low precision. This is especially so for use-case

2, 3 and 4, where relevant7 file objects were modified. Second, recall

varies by a large margin across the different use cases. This is especially

so with use cases involving the Apache process (i.e. use-case 3 and 4 ).

Low precision across the use cases indicates that the number of er-

rors (i.e. false positives) in the reconstructed data provenance is con-

sistently high. Analysis of the reconstructed output further revealed two

insights regarding the erroneous provenance relations. First, shared sys-

tem files and libraries made up the majority of erroneous entities in the

graph. Second, the reconstructed data provenance manifest as a single

connected graph. Erroneous entities are interconnected such that they

eventually connect to at least one relevant entity. Figure 6.7 illustrates

a captured screenshot, taken from a sample reconstructed data prove-

nance, demonstrating the interconnectivity amongst entities.

Table 6.1: Results of reconstruction for each use case using the system only set

Use-case 1 Use-case 2 Use-case 3 Use-case 4

Precision 0.2105 5.1194e-5 5.4317e-6 2.9981e-5

Recall 0.8 1.0 0.5 0.3142

7An entity or provenance relation is considered relevant if it exists in the ground truth.
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Relevant entities
(matches)

Non-relevant entities
(errors)

Figure 6.7: Sample screenshot showing how erroneous and relevant entities
interconnects to form a single connected graph

As discussed in Section 5.2.3, reconstruction of paths is based on the

principles of causality between events. The inclusion of a data flow re-

lation (e.g. read, write, transfer) into the reconstructed data provenance

will prompt the algorithm to search for relations that are causally related

in the entity’s sorted list. Coupled with the two insights described above,

it is deduced that the expanded search for causally related relations was

the reason for the shared system files in the reconstructed output. This

issue is referred to as the dependency explosion problem and is discussed

in detail later in Section 6.4.

With respect to the second observation, our analysis of the recon-

structed output also shows that there are some provenance relations that

closely match the ground truth. These relations would overlap with the

expected relations (e.g. those in the ground truth provenance) in terms

of the time they happened. But they failed to satisfy the matching cri-

teria due to a mismatch in one of the entity fields (e.g. source or target

entity). As such, it is suspected that these relations are the expected re-

lations but with errors. Table 6.2 lists three samples of such close match

relations, taken from use-case 1 and 4. The bold entries highlight the

mismatched entities in each pair.
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Table 6.2: Examples of near matches between the ground truth and the recon-
structed provenance

Activity Timestamp
Source
Entity

Target Entity

GT access 1442567040.0 process:httpd
file:/usr/local/apache2
/htdocs/test/red0.php

RP access 1442567045.0

process:
/usr/local/

apache2/bin/
httpd

file:/usr/local/apache2
/htdocs/test/red0.php

GT access 1442567400.0 process:httpd
file:/usr/local/apache2
/htdocs/test/red0.php

RP access 1442567418.0

process:
/usr/local/

apache2/bin/
httpd

file:/usr/local/apache2
/htdocs/test/red0.php

GT datatransfer 1442567640.0
process:/usr
/sbin/sshd

host:192.168.120.50

RP datatransfer 1442567695.0
process:/usr
/sbin/sshd

host:192.168.120.51

Such mismatches can be traced back to errors in the parameters8

logged by the logging mechanisms. In his work on documenting prob-

lems with intercepting system calls, Garfinkel [2003] discussed how those

problems can lead to the kind of erroneous parameters we observed in

the log files.

The severity of the errors vary from minor inconsistencies that can be

resolved through visual inspection to the need for other sources of in-

formation for resolution to be possible. For example, the kernel logging

mechanisms used in the NZCSC’15 inconsistently label the web service

process, Apache, either by its process name ‘httpd ’ or by its fully quali-

fied path name ‘/usr/local/apache2/bin/httpd ’. This is shown by the first

two pairs of mismatch in Table 6.2. Although automatic comparison of

relations would flag these minor inconsistencies as errors, a visual in-

spection would reveal that the two labels are referring to the same pro-

cess. Based on the observations gathered from such visual inspections,

8The term ‘parameter’ is defined in Section 2.1.
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Table 6.3: Improvement in recall values after adapting the evaluation to the
inconsistencies observed in the log files

Use-case 1 Use-case 2 Use-case 3 Use-case 4

Recall before
adaptation

0.8 1.0 0.5 0.3142

Recall after
adaptation

0.8 1.0 1.0 1.0

the entity labels can be manually canonicalised to produce a semantically

accurate evaluation of the reconstructed data provenance.

However, to automatically identify and canonicalise entity labels is not

a straightforward task. For example, in their discussion on matching het-

erogeneous events between different log files, Zhu et al. [2014] pointed

out similarity based approaches for automatically canonicalising labels

would fail if the difference between the labels is “opaque". Approaches

such as typographic similarity (e.g. string cosine similarity) and linguistic

similarity (e.g. using dictionary of ontology) would not work if the labels

are encoded or represented differently by the different logging mecha-

nisms.

Table 6.3 compares the recall before and after the adaptation. Entities

that are inconsistently labelled can now be correctly identified under the

adapted comparison scheme. The modification on the comparison re-

sulted in a stark improvement in recall for use-case 3 and 4. The recall

for those two use cases improved by at least two fold, showing the ground

truth to be completely reconstructed.

On the other hand, errors in the parameters such as a mislabelled en-

tity cannot be resolved without additional information (e.g. log files from

other layers). One such example is the third mismatched pair shown

in Table 6.2. From the ground truth, a provenance relation that de-

scribes a communication between the process sshd and a remote host

192.168.120.50 is expected. However, events captured at the system

layer associated the network socket to the local host address instead.

This results in a provenance relation that showed sshd communicating
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Table 6.4: Results of the reconstruction using only application layer log files

Use-case 1 Use-case 2 Use-case 3 Use-case 4

Precision - - 1 1

Recall - - 0.5 0.3428

with the local host, 192.168.120.519. Even though manual analysis could

reveal the error10, it is difficult to assert the correct identity of the en-

tity with whom sshd is communicating without additional sources of in-

formation. As Garfinkel [2003] pointed out in their discussion on their

experiences with system level logging, errors in parameter logging is

common due to various reasons, such as complex data structures used in

the system and race conditions. We discuss this further in Section 6.3.3.

From this experiment, we can observe reconstructing using system

log files can lead to data provenance with high recall but low precision.

The results with improved recall, shown in Table 6.3, demonstrated that

ground truth for most of the use cases were completely reconstructed.

This is attributed to the shared nature of the system devices, such as the

kernel and file system. Since applications running on the system all uses

the same set of devices, events logged by the system layer logging mech-

anisms will be a mix of activities from these applications. As a result,

the reconstruction algorithm has access to all necessary provenance re-

lations to fully reconstruct the ground truth. However, because of the

inability to accurately differentiate which pair of causally related prove-

nance relations are relevant, data provenance reconstructed using only

system log files suffers from large number of errors (i.e. low precision).

In addition, using only log files from the system layer makes it difficult to

resolve inconsistencies produced by the logging mechanisms.

9Association of IP addresses to hosts is based on knowledge of the network structure
of the NZCSC’15 competition.

10A host computer sending data over the network to itself would appear to be abnormal.
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6.3.2 D2 - Application Log Files

Table 6.4 shows the results of reconstructing the data provenance using

only application layer log files. Note thatuse-case 1 and 2 are not consid-

ered in this experiment as there were no application log files generated

for applications used in those two use cases.

file:/usr/local/apache2/htdocs/test/red0.php

process:httpd

access

(a) Reconstructed data provenance for use-case 4

2) access1) create

6) delete
5) access

7) access

3) access

8) modify

4) modify

(b) Ground truth data provenance for use-case 4

Figure 6.8: Comparing the data provenance reconstructed from dataset D2 to
the ground truth

Recall values for the applicable use cases indicated that the ground

truth could not be fully reconstructed from application log files alone.

Figure 6.8 shows the reconstructed and ground truth data provenance

for use-case 411. Figure 6.8a shows only the access from the httpd

process to the file of interest, ../test/red0.php, could be reconstructed.

11Note that the graphs illustrated display only distinct activities between entities (e.g.
multiple access to the file object, ../test/red0.php, by the process httpd is simplified
to a single access between the two entities).
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Provenance relations describing interactions between ../htdocs/red0.php

and applications such as mysql, rm and cp were absent. The situation

can be attributed to the fact that events from the missing applications

took place outside the observation scope of the Apache logging mech-

anism. Hence they were not included in the Apache log files. Since,

no log files were generated by the missing applications12, the resulting

set of provenance relations is incomplete. Likewise, the algorithm could

not establish the relationship between ../htdocs/red0.php and ../htdoc-

s/test/red0.php as the main provenance relations linking the two objects

through cp are missing from the modelled set.

Even though the dataset used in this experiment is composed of log

files from a single application type, the limitation surrounding the obser-

vation scope of logging mechanisms applies even if log files from mul-

tiple applications are used. The algorithm would only likely be able

to reconstruct the data provenance if the scopes of the log files con-

tiguously cover the ground truth (i.e. all relevant events are captured

across the different log files). However, once contiguity is broken, such

as deriving a new file object via applications that do not generate log

files, the completeness of the reconstructed data provenance will be af-

fected. The derivation relationship between ../htdocs/red0.php and ../ht-

docs/test/red0.php through cp in use-case 4 is an example of how a break

in the contiguity of the scope can affect the completeness of the recon-

structed data provenance.

6.3.3 D3 - System and Application Log Files

Table 6.5 lists the results for using both system and application layer

log files in the reconstruction. In comparison, the results are similar to

those shown in Table 6.3, where the dataset D1 is used but with adap-

tations made to the implementation of the comparison. Reconstructed

data provenance with high recall is the common outcome for both ex-

12Either because operating system native applications such as rm and cp do not gener-
ate log files or the log files generated only showed error events, such as the case for
mysql.
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periments. However, unlike using only system log files, the experiment

here does not require modification to the comparison for resolving the

errors in the system log files. Instead, provenance relations modelled

from the application log files acted as redundancy, providing the means

to “self-correct” the inconsistencies.

Table 6.5: Results of reconstruction different use-cases using both system and
application layer log files

Use-case 1 Use-case 2 Use-case 3 Use-case 4

Precision 0.2105 5.1194e-5 1.0861e-5 9.538e-5

Recall 0.8 1 1 1

Duplicated 
provenance relations

Errors can be spotted through
duplicated relations such as

the ones shown here

Duplicated 
entities

Figure 6.9: Duplicated provenance relations in data provenance reconstructed
using dataset D3

In situations where both application and system layer logging mech-

anisms are logging events concurrently, the same event will likely be

logged twice. Hence, duplicated provenance relations will result from

the modelling of log files. In situations where an error such as the mis-

labelling of entities described in Section 6.3.1 occurs, the duplicated re-

lations will instead appear as pair of closely matched relations. This is

because most of the information captured in the two relations will be

overlapping (e.g. activity observed, timestamp, entities involved), except

for the mislabelled entity. In the absence of ground truth, these closely
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matched relations can highlight the error to users analysing the prove-

nance graph, as demonstrated in Figure 6.9.

However, using log files that overlap in terms of events observed will

also lead to duplicated entities in the reconstructed provenance. This is

because different logging mechanisms may assign different identifiers to

the same entity. For example, a process would be identified by its process

name in the application layer and its process ID in the system layer. This

causes the provenance model to treat both as different entities. Graph

entity resolution techniques such as those described by Bhattacharya and

Getoor [2005] can be used for removing such duplicates.

Experiment using dataset D3 also showed errors resulting from issues

in the system logging mechanisms, such as those discussed by Garfinkel

[2003], may be partially resolved using log files obtained in the applica-

tion or higher layers. This highlights the importance of using multiple

sources of information when reconstructing the data provenance.

From the experiments discussed thus far, we can conclude that the

observation scope of the logging mechanism is crucial to reconstructing

a complete data provenance. Obtaining a set of application layer log files

that have an unified scope sufficient enough to cover all required events

is difficult. This is so as not all applications generate log files. The lack

of application log files for use-case 1 and 2 in dataset D2 substantiate

this claim. In contrast, system layer log files contain events that describe

activities across all applications running on the system. This is attributed

to the shared nature of system devices. As a result, data provenance with

high or perfect recall can be reconstructed using system layer log files.

However, the reconstructed data provenance is difficult to analyse as the

output contains large number of redundant provenance relations (e.g.

errors). These errors obfuscate the relations that matter (e.g. ground

truth) and are caused by the inability to differentiate relevant provenance

relations from the set of causally related relations. In the next section, we

investigate approaches for reducing errors mentioned in Section 6.3.1.
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6.4 Dependency Explosion

This section first describes the dependency explosion problem associ-

ated with the use of system log files for provenance reconstruction, as

highlighted in Section 6.3.1. Following which, possible approaches for

reducing effects of the problem are discussed.

6.4.1 Understanding the Dependency Explosion Problem

Throughout the execution lifetime of a process, it may load and utilise

different files and objects, as dependencies, for access to external func-

tionalities or as part of its programmed execution. The dependency ex-

plosion problem occurs when the reconstruction algorithm mistakenly

adds such dependencies into the provenance graph being reconstructed.

In certain cases, dependencies can also be shared by different applica-

tions. Such shared behaviour of dependencies further worsen the effects

of the problem.

During reconstruction, because of the inability to identify exactly the

conjoining provenance relations from the set of causally related relations,

some of the dependencies appear in the reconstructed output as errors.

Figure 6.10 illustrates an example of how this can happen. Upon dis-

covering the write relation to a file object, the algorithm would search

for provenance relations that could influence the write. Since depen-

dencies such as library files are mostly loaded (e.g. treated as access

or read ) during the early phase of a process (e.g. initialisation phase),

relations that associate dependencies to the process would satisfy the

causal dependency requirement and be added to the reconstructed data

provenance.

However, in cases where the dependencies are used by different pro-

cesses (e.g. a shared system resource), the search for relevant prove-

nance relations may result in an explosion of dependencies being added

to the reconstructed data provenance.

With reference to Figure 6.11, if a dependency is regularly accessed

and modified by different processes, the search for relevant relations
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Process
write(tn)

read(tn-1)

read(tn-2)

read(tn-3)

read(tn-4)

Dependencies directly 
connected to relevant entity

Relevant entities 
and relation

Dependencies included into graph due to
the relations satisfying 
the causal dependent requirement

Figure 6.10: Dependencies directly connected to relevant process nodes in the
reconstructed data provenance graph

may be chained along the different entities added to the reconstructed

data provenance. Figure 6.12 captures a sample screenshot showing

such a chained explosion of dependencies in the reconstructed output.

The end result is the large number of errors observed in the experiment

with using only system log files.

One approach to reduce the number of errors is by pruning dependen-

cies from the set of modelled provenance relations before reconstruction.

In the following subsections, we discuss approaches that can be used to

identify and prune dependencies.

6.4.2 Blacklisting Dependencies

A naive approach for identifying and pruning dependencies is blacklist-

ing. From the Linux system man pages [Faith et al. 2016], the following

list of directory prefixes are put together as the blacklist. This list of

directories represents known structures of the file system where shared

system resources are stored. Note that application specific dependen-

cies, such as those stored under the application’s home directories, are

not included in the list.

Figure 6.13 compares the precision of the reconstructed data prove-

nance between using system log files with no pruning done to those
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Process
write(tn)

read(tn+2)

Other processes (agent) that 
also uses the same dependency

Relevant entityProcess

Process

Process

Process

read(tn+3)

read(tn+4)

read(tn+1)

Directly connected
 dependency 

Dependencies included because the relations are 
causally dependent on the relation between the 
dependency and the relevant entity

Figure 6.11: Indirect dependencies explosion when reconstructing derivation
provenance

Figure 6.12: Chained dependency explosion through shared system resources

pruned using the blacklist approach. Note that the Y-axis is in log scale,

with the best precision value, 1, located at the bottom. As such, a lower

bar indicates better precision. By simply removing the dependencies,

precision is improved significantly by approximately a factor of 100 in

use-case 2, 3 and 4.

However, blindly pruning a fixed list of dependencies may result in the

loss of relevant provenance relations. As shown in Table 6.6, complete-

ness of the reconstructed data provenance for use-case 4 is observed to

suffer from pruning. Attackers are known to hide malware in directo-

ries used for storing dependencies. In other situations such as a binary

planting attack [OWASP 2013], malicious users or hackers are known to

replace dependencies or executables on the system with malicious codes

of their own. As a result, provenance relations describing the activities
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Figure 6.13: Comparing precision of the reconstructed output between using
system log files with no pruning and blacklist pruning (Y-axis is in
log scale)

Table 6.6: Results of reconstruction using blacklist-pruned system log files

Use-case 1 Use-case 2 Use-case 3 Use-case 4

Precision 0.235 4.36e-3 2.2465e-4 1.8955e-3

Recall 0.8 1 1 0.9714

of these malicious codes would be lost to the reconstruction algorithm as

the corresponding entities would have been pruned away. In such situa-

tions, impact to the completeness of the reconstructed data provenance

would affect its usage.

6.4.3 Process-access Based

A second approach for identifying dependencies to be pruned is by analysing

each file’s usage pattern and number of unique processes accessing it

(e.g. process-access value). The premises are as follow:

1. Dependencies are likely to be files used by a large number of pro-

cesses.

2. Dependencies that only have read relations can be pruned away
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Directory
list:

“/dev/”,“/etc/”, “/proc/”, “/usr/lib/”, “/usr/include/”,
“/usr/share/”, “/lib/”, “/var/”, “/tmp/”, “/sys/”

without affecting much of the ground truth as no new data is being

propagated through these dependencies (e.g. pruning these depen-

dencies will not result in loss of sub-graphs).

Process

Dependencies

Figure 6.14: Explosion of dependencies connected to a process—the depen-
dency explosion problem may lead to file dependencies used for
the initialisation and execution of a process to be included into
the data provenance

Based on the premises, the approach targets read-only dependencies.

Read-only file objects (e.g. file objects with only read or access relations)

are classed as dependencies to be pruned if its process-access value ex-

ceeds a pre-defined threshold. The goal is to avoid clusters of read-only

dependencies such as those shown in Figure 6.14 while still allowing

other activities pertaining to processes to be reconstructed. The decision

to keep dependencies with write relations associated is mainly due to

write representing a propagation of data to new entities. Removing such

dependencies would risk losing important segments of the data prove-

nance graph that may help identify abnormalities such as a disguised

malware. Hence in this experiment, we simulate retaining dependencies

with write relations.

File objects identified as dependencies are pruned before the recon-

struction process so as to avoid incurring redundant computation cost
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Table 6.7: Summary of results for process-access based pruning

(a) Use-case 1

Precision Recall
No. of

Process-access

Process-access w.r.t.
total no. of unique

processes
0.2105 0.8 1539 54.38%
0.2352 0.8 830 29.32%

(b) Use-case 2

Precision Recall
No. of

Process-access
Process-access to total
unique processes ratio

5.12e-5 1 2436 41.51%
5.576e-3 1 7 0.11%

(c) Use-case 3

Precision Recall
No. of

Process-access
Process-access to total
unique processes ratio

1.09e-5 1 4367 54.26%
1.04e-4 1 10 0.12%

(d) Use-case 4

Precision Recall
No. of

Process-access
Process-access to total
unique processes ratio

9.54e-5 1 4367 54.26%
1.474e-4 1 41 0.509%

when searching for the next conjoining relation. However, the main chal-

lenge is defining a threshold value for the classification of file objects.

Objects identified should help reduce the number of errors in the re-

constructed data provenance while not compromising completeness. As

such, finding the correct threshold is crucial. Figure 6.15 tabulates file

objects having the same process-access value into histograms for each

system log file used for the reconstruction of each use case. Note that

use-case 3 and 4 both use the same system log file, hence share the same

histogram.

The x-axes show the process-access value for each group of files while

y-axes count the number of files in each group. From the right end of

each histogram, we can observe that only a small number of files, with

respect to the total number of unique file objects in each system log file,
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(a) Use-case 1

(b) Use-case 2

(c) Use-case 3 and 4

Figure 6.15: Histograms showing the number of dependencies sharing the
same number of processes accessing them for the different sys-
tem log files
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fits the first premise.

To determine the threshold, file objects are iteratively added to a list of

files to be pruned starting from files with the highest number of process-

access (i.e. right end of histogram). This process iterates until recall

is affected. Table 6.7 compares the results from the first iteration of

the pruning with the first iteration that yields the best precision without

compromising recall. Results for all iterations are listed in Appendix C for

reference. The last column puts into perspective the percentage of total

unique processes required to be sharing a file for it to be considered for

pruning if the threshold value is set at the corresponding process-access

value.

From the percentage of total processes and the process-access value,

we can observe that the process-access value that provides the best pre-

cision varies across different use cases. One reason is because errors in-

curred in each use case may be caused by different dependencies. Since

the file objects are ranked according to the process-access values, the

dependencies that caused the errors may be pruned only at a later iter-

ation. Hence, the use of process-access value as threshold may produce

results that may differ based on the situation rendering this approach un-

reliable. Furthermore, determining the threshold becomes more difficult

without the ground truth since it is required for calculating recall.

Figure 6.16 compares the precision of the reconstructed output using

process-access based pruning against blacklist pruning and no pruning

done. While process-access based pruning performs slightly better in

use-case 2, the precision is significantly worse than blacklist pruning for

use-cases 3 and 4. Further analysis of the reconstructed data provenance

showed that there were many dependency files that were used only by

a single process, such as temporary files. This observation refuted the

first premise, listed in the beginning of this subsection, which hypoth-

esize that dependencies are files used by a large number of processes.

It also indicates that identifying dependencies based on the number of

processes accessing the file objects cannot be generalised for all cases.
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Figure 6.16: Comparing precision of the reconstructed output for process-
access based pruning with blacklist and no pruning (Y-axis is in
log scale)

6.4.4 Clustering

Instead of determining file objects to be pruned based on the number

of processes accessing the object, the third approach uses clustering to

identify groups of files used in a similar manner. Clusters can then be se-

lected, according to usage pattern, for pruning. The following file object

attributes are considered for the clustering:

• Number of unique processes - Determines how many unique pro-

cesses uses the file object.

• Read-to-Write ratio - Defines a file object’s usage pattern. It ranges

from 1 to -1, with 1 being read-only and -1 being write-only.

• Interaction Mean - Statistically denotes how frequent each file ob-

ject is being used by a single process.

• Interaction Variance - Statistically denotes how each process uses

the file object differently.

K-means is used as the clustering algorithm. The implementation, from

the Python based machine learning package scikit-learn [scikit 2010],

used in our experiment utilises Euclidean distance as the distance mea-
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sure. Attributes for each file object are consolidated into vector form and

normalised before clustering. The elbow-method [Ketchen and Shook

1996] is used to estimate the number of clusters, k.

The elbow method is based on the premise that as more clusters are

added, the data could be split into distinct groups (e.g. better modelling

of the data), until a point where adding more clusters would result in

dissimilar clusters. By visualising the percentage of variance against the

number of clusters, one can infer the value of k that best models the data

by observing where the graph starts to flatten. Percentage of variance is

computed as follows:

Percentage of variance =
between-cluster-variance

total variance
(6.3)

where between-cluster-variance is calculated as:

Between-cluster-variance =
k∑

j=1

nj(xj − x)2 (6.4)

and total variance is calculated as:

Total variance =
k∑

j=1

nj∑
i=1

(xij − x)2 (6.5)

where k is the number of clusters, nj is the number of file objects in

cluster j, x is the overall mean and xj is the mean for cluster j. To esti-

mate k, the file object vector is computed and clustered using k-means,

with k varying from 2 to 10. The percentage of variance is calculated

for each k and plotted. To obtain a general value for k, such that it can

be applied generally to the system log files in the NZCSC’15 dataset, we

apply the described process on each system log file in the dataset.

Figure 6.17 illustrates the plot for the system log file used for use-

case 2. Results for other system log files are not shown here as they are

similar. Instead, they are listed in Appendix D for reference. It can be

observed that gradient of the curve starts decreasing when k is 5. As a

result, we estimate k to be 5.
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Figure 6.17: Percentage of variance measured for different values of k for sys-
tem log file used in the reconstruction of use-case 2

Table 6.8: Attributes of the best-performing cluster for each use case

Use-case 1 Use-case 2 Use-case 3 Use-case 4

No. of processes 1.47 457.7 8 8

R/W ratio -0.868 0.991 0.757 0.757

Mean 11.91 2.519 3418.48 3418.48

Variance 7.88 0.109 22255786 22255786

To evaluate the number of errors that can be reduced using the clus-

ters produced, each use case is reconstructed five times, once for each

cluster produced. In each iteration, files from one of the five clusters

are pruned from the corresponding system log file before running the

reconstruction algorithm. Summary of the precision, from pruning each

cluster, is shown in Figure 6.18. Note, missing bars for each use case in-

dicates the reconstruction failed to reconstruct anything as the required

files were pruned away (e.g. zero recall and precision). The arrows in the

figure mark the best performing clusters.

Table 6.8 shows the attributes defining each of the best performing

clusters. It shows the usage patterns for each cluster of files to be differ-

ent from one another. This is attributed to the reason mentioned previ-

ously with the process-access based pruning approach; errors in each

of the use case may be caused by different dependencies. However,
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6.4 Dependency Explosion

Figure 6.18: Summary of precision for pruning each cluster from system log
file, for each use case (Y-axis in log scale)

Table 6.9: Attributes of clusters that resulted in zero recall (no ground truth)

Use-case 1 Use-case 2 Use-case 3 Use-case 4

No. of processes 8.534 7.452 1.204 7.435

R/W ratio 0.989 0.988 -0.962 0.99

Mean 6.252 6.437 9.342 6.671

Variance 3032.2 3791.2 54.62 1550.36

in comparison with pruning using a threshold value, clustering allows

files used in the same manner to be selected in one iteration. Cluster-

ing files according to their usage patterns also prevents abnormal files,

such as dependencies being replaced in a binary planting attack, to be

pruned. When dependencies behave abnormally, the behavioural change

will cause the clustering algorithm to cluster it with other more similar

behaving files.

Although the usage patterns shown in Table 6.8 hint that dependencies

cannot be described by a fixed set of usage patterns, it is interesting to

note clusters that result in an impact on recall (e.g. zero recall) showed

certain consistent patterns among them. Table 6.9 summarises the usage

patterns of files for clusters which resulted in the lost of ground truth

when pruned from the system log files (e.g. recall is zero). These files
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generally have low mean and high variance. This observation indicates

the usage patterns for the same file differs between processes and that

the interaction between each process and the corresponding file is not

frequent (i.e. in comparison to clusters which exhibits over three thou-

sand interactions).

Building on this observation, the reconstruction is executed again. How-

ever, this time around, instead of pruning one cluster from the system

log files, clusters which do not impact the recall in Figure 6.18 are all

pruned instead. Figure 6.19 compares the outcome of the reconstruc-

tion with other approaches discussed thus far for removing dependen-

cies. Although the clustering approach generally performs better than

the process-access approach, it performed the worst for use-case 2. How-

ever, the clustering approach provides more flexibility in choosing files to

prune compared to the process-access approach as groups of files can be

quickly selected based on patterns in the clustering attributes. The clus-

tering approach can also pick up on changes in file behaviour, such as

the case of a binary replacement attack, since clustering is based on file

usage patterns. In certain cases, such as use-case 3, it even performed

better than the blacklisting approach. This is because the clustering ap-

proach was able to pick up some of the application specific dependencies

that are not included in the blacklist.

Although the clustering shows some promise for separating relevant

files objects from the set of file objects in the modelled set of provenance

relations, the observations drawn here are not representative of depen-

dencies. This is mainly because the NZCSC’15 dataset only captures a

specific type of user interaction with the underlying system13. Datasets

that describe different types of system behaviour (e.g. system log files

from data centres, file servers or other types of system) would be re-

quired for a more extensive study.

13Because of the nature of the competition, the participants’ interaction with the sys-
tems are influenced and targeted at achieving a specific set of goals, such as moni-
toring the system for attacks. As a result, the dataset is not well suited for studies
aimed at understanding expected usage patterns of files.
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6.5 Summary

Figure 6.19: Comparing precision of reconstructed data provenance for clus-
tering based pruning with other discussed approaches (Y-axis in
log scale)

6.5 Summary

In this chapter, a methodology for evaluating reconstructed data prove-

nance against the ground truth provenance is presented. Using the pro-

posed methodology, data provenance reconstructed using different sets

of log files from the NZCSC’15 dataset are evaluated.

Results of the experiments showed data provenance with high recall,

with respect to the ground truth, can be reconstructed from system log

files. The experiment that combined the use of application and system

layer log files has also shown relations modelled from the application log

files can resolve inconsistencies generated during the logging of system

events.

Having said that, provenance reconstructed using system log files were

observed to have low precision (i.e. contains a large number of redundant

relations). The poor precision is attributed mainly to the inability to ac-

curately identify relevant relations from the set of causally related rela-

tions. Low precision may induce ambiguities when attempting to deduce

the derivation history of the data from the provenance. While having low

precision provenance is undesirable in critical scenarios (e.g. data audit
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or system security), low precise provenance may still provide useful in-

sights to figuring out information such as potential processes that holds

the data and how they obtained a copy of the data. Having said that, we

do not discuss the impact and possible applications of data provenance

with low precision as exploring the applications of the reconstructed data

provenance is out of the scope of this thesis.

To reduce the number of errors produced from reconstructing using

system log files, several approaches for identifying and pruning depen-

dencies are discussed. In most cases, blacklist-based pruning was able

to improve precision by a factor of ten to a factor of a hundred. However,

statically identifying file objects as dependencies and pruning them may

result in losing important segments of the provenance graph. These seg-

ments may be crucial for identifying abnormalities in the system. Identi-

fying file objects for pruning based on the number of processes accessing

them faces the issue of selecting a suitable threshold for the classifica-

tion. In addition, observation drawn from the results also showed that

dependencies cannot be identified from just the number of processes ac-

cessing the file object. Clustering provided a more dynamic approach as

it allows a set of file attributes to be considered. However, further stud-

ies on the attributes used will be required as the experimental results

showed that current attributes used cannot definitively identify depen-

dencies.

Through the experiments discussed in this chapter, we can observe

data provenance with high recall can be reconstructed using system

layer log files. However, the resulting provenance suffers from low pre-

cision due to the dependency explosion problem. Although having low

precision in the reconstructed provenance may affect its usage, the ap-

plications of the reconstructed provenance is not the focus of this thesis.

Hence we do not discuss the implications of using reconstructed data

provenance with low precision. It should also be noted that results of the

experiments and the conclusion is based on the event causality based

algorithm proposed for the reconstruction.
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Chapter 7

Conclusions and Future Work

7.1 Conclusion

Motivated by the issues surrounding actively collecting data provenance,

this thesis investigates the reconstruction of data provenance from log

files obtained off a computer system. Log events are first modelled into

pair-wise provenance relations using the proposed multi-layered prove-

nance model, DFPM. An algorithm, based on the principles of causality

between events, then reconstructs the provenance for a given piece of

data from the modelled relations.

A methodology that evaluates the correctness and completeness of the

reconstructed output, using the metrics precision and recall respectively,

is proposed. The methodology helps address the second part of the thesis

question; how the reconstructed data provenance compares to its known

derivation history. Results from experimenting with log files of different

granularity revealed high recall provenance can be reconstructed from

system log files. This is attributed to the system wide scope of system

layer devices.

Experiments also showed the use of application log files in conjunction

with system log files can help resolve inconsistencies that are generated

during logging in the system layer. Doing so improved the recall of the

reconstructed data provenance. Concurrent use of log files from different

layers of the system can also help to mitigate the effects of not being

able to automatically canonicalising entity labels. In three out of the four

use-cases used in the experiments, the ground truth was shown to have
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been completely reconstructed without having to adjust the comparison

to compensate for the inconsistencies.

The experimental results also showed a large number of redundant re-

lations in the provenance reconstructed using system log files. These

relations have the adverse effect of reducing the precision of the recon-

structed output, obfuscating the ground truth in the provenance. Result-

ing from the dependency explosion problem, these relations are mostly

interactions with shared library files or program dependencies. Analysis

showed the dependency explosion problem is attributed to an inability to

accurately identify relations relevant to the data from the set of causally

related relations. Although low precision in the reconstructed output

may impact the usability of the data provenance, the usefulness of low

precise reconstructed data provenance is not discussed as the discussing

the application of the reconstructed data provenance is out of the scope

of this thesis.

Three approaches for identifying and pruning dependencies are consid-

ered for improving the precision of the provenance reconstructed from

system log files. The blacklist approach statically identifies file objects

as dependencies and prunes them from the modelled relations. Although

precision can be improved by a factor of a hundred in some use-cases,

the approach can affect the detection of abnormal objects in the system.

While the other two approaches do not perform as well as the black-

list approach, they factor in the behaviour of the file objects, hence are

less susceptible to abnormalities such as malicious activities that involves

masking potential malware as file objects. Identifying and pruning of file

objects, based on the number of processes accessing them, has the issue

of selecting a suitable threshold for classifying file objects. Also, obser-

vations drawn from the analysis of the results showed that dependencies

cannot be identified solely from the number of processes accessing the

file object. Clustering file objects based on their properties was able

to perform equally or better than process-access approach in most use-

cases. However, analysis on the clusters showed the attributes used are

not able to definitively link dependencies to a specific pattern in the at-

tributes.
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Overall, the blacklist and process-access approaches for identifying

and pruning dependencies showed promising results in terms of improv-

ing the precision. However, it is not easy to generalise the two ap-

proaches due to the dynamic nature of how processes interact with de-

pendencies. While the clustering approach for identifying dependencies

showed promising results, due to the lack of a comprehensive dataset,

further studies on identifying attributes that can be used to identify de-

pendencies would be required.

In conclusion, although data provenance with high recall can be recon-

structed from system log files, the output suffers from a large number of

redundant relations caused by the dependency explosion problem. While

approaches to prune dependencies have significantly improved the pre-

cision, further studies on identifying dependencies is required for a more

accurate classification. It should also be noted that this conclusion is

drawn based on reconstructing data provenance using an event causality

based approach. The reconstruction workflow and evaluation methodol-

ogy established in this research provides the platform for future research

on provenance reconstruction.

7.1.1 Summary of Contributions

Besides addressing the question of data provenance reconstruction, this

thesis makes the following contributions to the area of provenance:

- Dataset for Provenance Reconstruction Research

Having a suitable dataset that can be used to evaluate solutions for

provenance reconstruction is crucial. However, a review of existing

literature and publicly available datasets showed the lack of such a

dataset. In this thesis, a set of requirements is defined to guide the

selection of datasets that can be used for provenance reconstruction

research. Leveraging on the NZCSC’15 competition, held at the Uni-

versity of Waikato, a dataset that comprises a set of log files and tran-

scripts, that describe participants’ screen activities, is constructed. The

transcripts allow the derivation of ground truth provenance that can be

used to evaluate provenance reconstructed from the log files.
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- Data Flow Provenance Model (DFPM)

Most existing provenance models operate with the assumption that prove-

nance is of single granularity. However, log events captured at different

granularity layers of a computer system can differ in terms of level of

detail, even if they are describing the same observed event. As a re-

sult, modelling log events using existing provenance models will lead

to disparities among the resulting provenance. This is an issue for the

reconstruction as the ground truth provenance and the reconstructed

output are of different granularity.

The Data Flow Provenance Model (DFPM) is proposed for modelling

provenance relations from a data flow perspective. Provenance con-

cepts defined in the model are organised into granularity layers that

reflect the hierarchically layered view of an operating system. A set of

patterns are then defined for mapping concepts between the different

granularity layers. These patterns are implemented using FSA so as

to allow the mapping of the reconstructed data provenance to be done

automatically.

- Application and Evaluation of a Causal-based Approach for Re-

constructing Data Provenance from Log Files

An algorithm that is based on Lamport’s happened-before causal rela-

tionship is proposed for reconstructing data provenance from the mod-

elled provenance relations. Building on further, a evaluation method-

ology was also proposed for evaluating the completeness and correct-

ness of the reconstructed data provenance. In doing so, we were able

to study and understand some issues that could be encountered when

applying a causal-based approach for reconstructing data provenance

from log files.

7.2 Future Work

Two areas that can benefit from further research have been identified

throughout the course of this research.
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7.2.1 Translation between Log and Provenance Domain

As discussed in Chapter 4 and in most existing provenance models, the

translation of events to the provenance domain has always been assumed.

Although knowledge of the log files can be used to derive the transla-

tion, different groups of people may have a different interpretation of log

events captured. This may in turn induce inaccuracy or inconsistency in

the modelling of log events.

One approach is to infer the translation from a more static and neutral

source of information, such as the source code of the respective appli-

cations. The objective of the analysis will be to uncover the functions

or portions of the application that emitted those log events. Techniques

such as source code analysis [Huq et al. 2013] can be applied to analyse

the syntax used, so as to deduce the nature of those functions. Based on

the deduced understanding, the translation can be inferred. Approaches

based on other types of analysis, such as binary [Rosenblum et al. 2008]

or control flow analysis [Cesare and Xiang 2010], can also be studied and

compared.

7.2.2 Resolving the Dependency Explosion Problem

Resolving the dependency explosion problem is currently an open re-

search problem. Approaches proposed, such as those from Lee et al.

[2013], involve instrumenting the logging mechanism to segment the sys-

tem call traces during logging. However such approaches are often con-

sidered intrusive and cannot be applied to legacy systems or log files that

are generated from non-instrumented mechanisms. Other approaches

such as the framework proposed by Khan et al. [2007] adopt a learning

approach, using neural networks to learn the behaviour and patterns of

running applications. These approaches are not flexible as the trained

network can only segment system call traces of applications it is trained

for.

Drawing from the experiments conducted on improving precision of

the reconstructed provenance, further studies into how dependencies
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can be identified may help mitigate the effects of the problem. Through

analysing and mining datasets that represent different types of system

usage and process behaviours, an attribute set that can be used for clas-

sifying dependencies from other file objects can be obtained. Once iden-

tified, dependencies can be pruned from the input dataset, hence elimi-

nating the cause of the dependency explosion problem. Although prun-

ing can be said to be an indirect approach to resolving the problem (i.e. it

does not address the issue of how to accurately identify relevant relations

or events), it can help reduce the impact of the problem.

7.2.3 Extending the Data Flow Provenance Model

The current proposed DFPM model focuses on modelling file interac-

tions. However, in a computer system, transient data can flow between

processes through memory regions. Such data flows are important as

data may be transformed in-memory (e.g. arithmetic computation). The

current proposed model does not model transient data flows because

such events are not captured in normal log files. As a result, tools that

can monitor and capture in-memory system activities would need to be

developed first.

Another aspect in which DFPM can benefit from future work is extend-

ing the activities modelled at the user layer. Currently, only copy and

merge are defined. Depending on the situation and nature of the prove-

nance, other activities that captures a richer form of user interaction may

be required. For example, to model data leakage, extending the user

layer to include activities such as taking of screenshots or the download-

ing of objects through different avenues may benefit the analysis on the

modelled provenance.
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Appendix A

List of Attacks Carried Out in
Challenge

The following table lists the labels and categories of the attacks observed

to have been carried out by the red teams in round 2 of the New Zealand

Cyber Security Challenge 2015.

Table A.1: Categories and labels for attacks carried out by the red teams

Category Attack Label Brief Description

Fingerprinting nmap
Uses the tool, nmap, to perform hosts and

ports scanning.

DoS1 crontab
Edits victim host’s crontab to periodically

kill Apache service.

DoS config-tamper

Tampers with Apache service’s

configuration file so as to achieve the

effect of a DoS attack.

DoS
permission-

tamper

Tampers with permission of ssh key file so

as to deny access to host.

DoS process-kill

Forcefully terminate running process on

terminal of remote host. Attacker used this

to either terminates running service or

disconnect victim from their host (remote

connection).

1Denial of Service attacks.
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Table A.1: Categories and labels for attacks carried out by the red teams (con-
tinued)

Category Attack Label Brief Description

DoS firewall

Tampers with victim host’s firewall rules to

drop packets for target services. This is to

achieve the effect of a DoS attack.

Remote shellshock

Exploits a vulnerability in CGI script

execution that allows arbitrary code

execution via Bash.

Remote
brute force

password

Uses brute force approach to guess the

password on a login page on the web

browser.

Remote php-backdoor

A Metasploit exploit that exploits an

arbitrary code execution vulnerability in

phpmyadmin v.3.5.2.2. Runs a reverse shell

to connect to host.

Remote
php-preg-

replace

A Metasploit exploit that exploits

phpmyadmin’s replace_prefix_tbl

vulnerability. Runs a reverse shell to

connect to host.

Remote sql-injection

Exploit the lack of parameter sanitisation

for injecting and executing arbitrary code

and queries through the SQL database.

Others inject-key

Attacker injects their own ssh keys into

victim’s ssh authorized key list. Usually the

prequel for an unauthorised ssh access.

Others
unauthorised

ssh access

Attacker logins to victim’s machine

through ssh.

Others exe-tamper

Rename program executable so as to hide

applications or masquerade malicious

executables.

Others
content-

tamper

Tamper with content of files residing on

victim host machine.
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Scenarios for Designing Finite
State Automata

This appendix lists the sets of scenarios designed for discovering pat-

terns that can represent the application and user layer activities defined

in DFPM.

Table B.1: Scenarios for CreateFile

Description of Scenario
Sample

Command
Comments

Create a new file using Linux native

application, touch
touch file.txt

Create a new file using Linux

redirect and input terminal

echo “data” >

file.txt

Create a new file using the editor,

vim
vim file.txt

Create a new file using the editor,

vim, and write data into the file
vim file.txt

data is written using

the vim interface.

File is saved and

closed.

Create a new file using the editor,

nano
nano file.txt
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Table B.1: Scenarios for CreateFile (continued)

Description of Scenario
Sample

Command
Comments

Create a new file using C file I/O

library
./createfile.o

‘createfile.o’ is a

compiled C program.

File created using

fopen in the stdio.h

library. File object

was given executable

permission.

Table B.2: Scenarios for Access

Description of Scenario
Sample

Command
Comments

Read data off a file using Linux

native application, cat
cat file.txt

Read data off a file using Linux

native application, tail
tail file.txt

Read data off a file using Linux

native application, fmt
fmt file.txt

Read data off a file using the editor,

nano
nano file.txt

Read and redirect content of a file

using Linux pipes

grep “string”

< file.txt

grep acts as a

receiving process for

the redirected data.

Read and redirect content of a file

using Linux pipes
fmt < file.txt

fmt acts as a

receiving process for

the redirected data.

Read content of a file using the

editor, vim
vim file.txt
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Description of Scenario
Sample

Command
Comments

Read content of a file using C file

I/O library and print to terminal
./readfile.o

‘readfile.o’ is a

compiled C program

and made executable.

File is accessed using

fopen in the stdio.h

library. Data read is

printed to terminal

Read content of a file using cat and

passing it to another application for

processing

cat file.txt |

grep “string”

Read content of a file using cat and

passing it to another application for

processing

cat file.txt |

fmt -w 5

Table B.3: Scenarios for Modify

Description of Scenario
Sample

Command
Comments

Write data into an empty file using

Linux native application, echo and

pipes

echo “string”

> file.txt

Empty file is newly

created separately.

Append data into an empty file

using Linux native application,

echo and redirect with append

mode

echo “string”

» file.txt

Empty file is newly

created separately.

Write data into an empty file using

the editor, vim
vim file.txt

uses the vim

interface and writes

“string” into file.

Empty file is newly

created separately.
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Table B.3: Scenarios for Modify (continued)

Description of Scenario
Sample

Command
Comments

Write data into an empty file using

the editor, nano
nano file.txt

uses the nano

interface and writes

“string” into file.

Empty file is newly

created separately.

Edit content of a file using the

editor, vim
vim file.txt

uses the vim

interface and edit the

content.

Edit content of a file using the

editor, nano
nano file.txt

uses the nano

interface and edit the

content.

Table B.4: Scenarios for DataTransfer

Description of Scenario
Sample

Command
Comments

Sending a file over the network,

unencrypted, using netcat

nc

<dest_add>

<port> <

file.txt

Receiving a file over the network,

unencrypted, using netcat

nc -l <port>

> file.txt

Sending a file over the network,

encrypted, using scp

scp file.txt

<dest_add>

Table B.5: Scenarios for Copy

Description of Scenario
Sample

Command
Comments

Copy content of a file using Linux

native application, cp into a new file

cp file.txt

result.txt
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Table B.5: Scenarios for Copy (continued)

Description of Scenario
Sample

Command
Comments

Copy content of a file into a new file

using Linux native application, cat

and Linux redirect

cat file.txt >

result.txt

Table B.6: Scenarios for Merge

Description of Scenario
Sample

Command
Comments

Append content of a file into

another existing file using Linux

redirect with append mode and cat

cat file.txt »

result.txt

Append “string” from input

terminal to an existing file using

Linux redirect with append mode

and echo

echo “string”

» file.txt
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Appendix C

Experimental Results for
Process-access based Pruning

This appendix documents the full list of results for the experiment on

pruning file objects based on the number of processes accessing the file

object (i.e. process-access).

Table C.1: Results for use-case 1

Precision Recall
No. of

Process-access

Process-access w.r.t.

total no. of unique

processes

0.2105 0.8 1539 54.38%

0.2105 0.8 1343 47.45%

0.2105 0.8 1302 46.00%

0.2105 0.8 1292 45.65%

0.2105 0.8 1289 45.54%

0.2105 0.8 1226 43.32%

0.2105 0.8 1129 39.89%

0.2105 0.8 891 31.48%

0.2105 0.8 856 30.24%

0.2352 0.8 830 29.32%

0.2352 0.8 695 24.55%

0.2352 0.8 636 22.47%

0.2352 0.8 602 21.27%

0.2352 0.8 586 20.70%
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Table C.1: Results for use-case 1 (continued)

Precision Recall
No. of

Process-access

Process-access w.r.t.

total no. of unique

processes

0.2352 0.8 506 17.87%

0.2352 0.8 486 17.17%

0.2352 0.8 455 16.07%

0.2352 0.8 453 16.00%

0.2352 0.8 401 14.16%

0.2352 0.8 361 12.75%

0.2352 0.8 353 12.47%

0.2352 0.8 308 10.88%

0.2352 0.8 307 10.84%

0.2352 0.8 304 10.74%

0.2352 0.8 280 9.89%

0.2352 0.8 278 9.82%

0.2352 0.8 268 9.46%

0.2352 0.8 248 8.76%

0.2352 0.8 247 8.72%

0.2352 0.8 245 8.65%

0.2352 0.8 239 8.44%

0.2352 0.8 238 8.40%

0.2352 0.8 231 8.16%

0.2352 0.8 227 8.02%

0.2352 0.8 223 7.87%

0.2352 0.8 222 7.84%

0.2352 0.8 212 7.49%

0.2352 0.8 197 6.96%

0.2352 0.8 192 6.78%

0.2352 0.8 182 6.43%

0.2352 0.8 172 6.07%

0.2352 0.8 161 5.68%
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Table C.1: Results for use-case 1 (continued)

Precision Recall
No. of

Process-access

Process-access w.r.t.

total no. of unique

processes

0.2352 0.8 128 4.52%

0.2352 0.8 120 4.24%

0.2352 0.8 109 3.85%

0.2352 0.8 103 3.63%

0.2352 0.8 101 3.56%

0.2352 0.8 99 3.49%

0.2352 0.8 95 3.35%

0.2352 0.8 90 3.18%

0.2352 0.8 88 3.10%

0.2352 0.8 82 2.89%

0.2352 0.8 80 2.82%

0.2352 0.8 78 2.75%

0.2352 0.8 77 2.72%

0.2352 0.8 69 2.43%

0.2352 0.8 67 2.36%

0.2352 0.8 64 2.26%

0.2352 0.8 62 2.19%

0.2352 0.8 58 2.04%

0.2352 0.8 56 1.97%

0.2352 0.8 55 1.94%

0.2352 0.8 53 1.87%

0.2352 0.8 52 1.83%

0.2352 0.8 51 1.80%

0.2352 0.8 50 1.76%

0.2352 0.8 47 1.66%

0.2352 0.8 44 1.55%

0.2352 0.8 43 1.51%

0.2352 0.8 41 1.44%
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Table C.1: Results for use-case 1 (continued)

Precision Recall
No. of

Process-access

Process-access w.r.t.

total no. of unique

processes

0.2352 0.8 39 1.37%

0.2352 0.8 37 1.30%

0.2352 0.8 36 1.27%

0.2352 0.8 35 1.23%

0.2352 0.8 34 1.20%

0.2352 0.8 33 1.16%

0.2352 0.8 32 1.13%

0.2352 0.8 29 1.02%

0.2352 0.8 28 0.98%

0.2352 0.8 27 0.95%

0.2352 0.8 26 0.91%

0.2352 0.8 24 0.84%

0.2352 0.8 23 0.81%

0.2352 0.8 22 0.77%

0.2352 0.8 21 0.74%

0.2352 0.8 20 0.70%

0.2352 0.8 19 0.67%

0.2352 0.8 18 0.63%

0.2352 0.8 17 0.60%

0.2352 0.8 16 0.56%

0.2352 0.8 15 0.53%

0.2352 0.8 14 0.49%

0.2352 0.8 13 0.45%

0.2352 0.8 12 0.42%

0.2352 0.8 11 0.38%

0.2352 0.8 10 0.35%

0.2352 0.8 9 0.31%

0.2352 0.8 8 0.28%
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Table C.1: Results for use-case 1 (continued)

Precision Recall
No. of

Process-access

Process-access w.r.t.

total no. of unique

processes

0.2352 0.8 7 0.24%

0.2352 0.8 6 0.21%

0.2352 0.8 5 0.17%

0.2352 0.8 4 0.14%

0 0 3 0.10%

0 0 2 0.07%

0 0 1 0.03%

Table C.2: Results for use-case 2

Precision Recall
No. of

Process-access

Process-access w.r.t.

total no. of unique

processes

5.12e-5 1 2436 41.51%

5.39e-5 1 1901 32.39%

5.39e-5 1 1798 30.64%

5.39e-5 1 1785 30.41%

5.39e-5 1 1702 29%

5.56e-5 1 1691 28.81%

5.73e-5 1 1573 26.8%

5.73e-5 1 1561 26.6%

5.97e-5 1 1386 23.61%

5.97e-5 1 1315 22.4%

6.44e-5 1 1039 17.7%

6.44e-5 1 1025 17.46%

6.61e-5 1 881 15.01%

6.61e-5 1 868 14.79%

6.89e-5 1 859 14.63%

6.89e-5 1 785 13.37%
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Table C.2: Results for use-case 2 (continued)

Precision Recall
No. of

Process-access

Process-access w.r.t.

total no. of unique

processes

7.10e-5 1 723 12.32%

6.92e-5 1 709 12.08%

7.33e-5 1 675 11.5%

7.45e-5 1 649 11.05%

7.45e-5 1 645 10.99%

7.45e-5 1 633 10.78%

8.85e-5 1 619 10.54%

9.05e-5 1 605 10.31%

9.21e-5 1 586 9.98%

1.00e-4 1 570 9.71%

1.01e-4 1 544 9.27%

1.01e-4 1 540 9.2%

1.01e-4 1 539 9.18%

1.01e-4 1 537 9.15%

1.01e-4 1 530 9.03%

1.01e-4 1 525 8.94%

1.01e-4 1 523 8.91%

1.01e-4 1 522 8.89%

9.80e-5 1 507 8.64%

9.80e-5 1 505 8.6%

9.80e-5 1 504 8.58%

1.19e-4 1 503 8.57%

1.19e-4 1 502 8.55%

1.19e-4 1 496 8.45%

1.22e-4 1 417 7.1%

1.22e-4 1 412 7.02%

1.22e-4 1 372 6.33%

1.22e-4 1 368 6.27%
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Table C.2: Results for use-case 2 (continued)

Precision Recall
No. of

Process-access

Process-access w.r.t.

total no. of unique

processes

1.22e-4 1 358 6.1%

1.22e-4 1 356 6.06%

1.22e-4 1 343 5.84%

1.24e-4 1 338 5.76%

1.24e-4 1 327 5.57%

1.24e-4 1 326 5.55%

1.24e-4 1 325 5.53%

1.24e-4 1 323 5.5%

1.24e-4 1 318 5.41%

1.24e-4 1 316 5.38%

1.24e-4 1 300 5.11%

1.24e-4 1 261 4.44%

1.24e-4 1 235 4%

1.24e-4 1 230 3.91%

1.25e-4 1 221 3.76%

1.25e-4 1 180 3.06%

1.25e-4 1 179 3.05%

1.25e-4 1 177 3.01%

1.27e-4 1 147 2.5%

1.27e-4 1 137 2.33%

1.27e-4 1 136 2.31%

3.82e-4 1 134 2.28%

3.82e-4 1 132 2.24%

3.82e-4 1 118 2.01%

3.82e-4 1 102 1.73%

3.82e-4 1 101 1.72%

3.82e-4 1 100 1.7%

3.82e-4 1 99 1.68%
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Appendix C Experimental Results for Process-access based Pruning

Table C.2: Results for use-case 2 (continued)

Precision Recall
No. of

Process-access

Process-access w.r.t.

total no. of unique

processes

3.82e-4 1 98 1.67%

3.82e-4 1 97 1.65%

3.82e-4 1 96 1.63%

3.82e-4 1 95 1.61%

3.82e-4 1 90 1.53%

3.82e-4 1 88 1.49%

3.82e-4 1 74 1.26%

3.82e-4 1 72 1.22%

3.82e-4 1 70 1.19%

3.82e-4 1 69 1.17%

3.82e-4 1 63 1.07%

3.82e-4 1 62 1.05%

3.82e-4 1 61 1.03%

3.82e-4 1 60 1.02%

3.82e-4 1 59 1%

3.82e-4 1 57 0.97%

3.82e-4 1 55 0.93%

3.82e-4 1 53 0.9%

3.82e-4 1 52 0.88%

4.01e-4 1 51 0.86%

4.01e-4 1 49 0.83%

4.01e-4 1 47 0.8%

4.01e-4 1 46 0.78%

4.01e-4 1 45 0.76%

4.01e-4 1 44 0.74%

4.05e-4 1 43 0.73%

4.05e-4 1 40 0.68%

4.05e-4 1 37 0.63%
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Table C.2: Results for use-case 2 (continued)

Precision Recall
No. of

Process-access

Process-access w.r.t.

total no. of unique

processes

4.05e-4 1 36 0.61%

4.05e-4 1 35 0.59%

4.05e-4 1 34 0.57%

4.05e-4 1 33 0.56%

4.05e-4 1 32 0.54%

4.05e-4 1 31 0.52%

4.05e-4 1 27 0.46%

4.05e-4 1 26 0.44%

4.05e-4 1 25 0.42%

4.05e-4 1 24 0.4%

4.05e-4 1 23 0.39%

4.05e-4 1 22 0.37%

4.05e-4 1 21 0.35%

4.05e-4 1 20 0.34%

4.05e-4 1 19 0.32%

4.05e-4 1 18 0.3%

4.05e-4 1 17 0.28%

4.05e-4 1 16 0.27%

4.72e-3 1 15 0.25%

5.49e-3 1 14 0.23%

5.49e-3 1 13 0.22%

5.50e-3 1 12 0.2%

5.50e-3 1 11 0.18%

5.50e-3 1 10 0.17%

5.50e-3 1 9 0.15%

5.50e-3 1 8 0.13%

5.58e-3 1 7 0.11%

5.58e-3 1 6 0.1%
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Table C.2: Results for use-case 2 (continued)

Precision Recall
No. of

Process-access

Process-access w.r.t.

total no. of unique

processes

5.58e-3 1 5 0.08%

5.58e-3 1 4 0.06%

0 0 3 0.05%

0 0 2 0.03%

0 0 1 0.01%

Table C.3: Results for use-case 3

Precision Recall
No. of

Process-access

Process-access w.r.t.

total no. of unique

processes

1.09e-5 1 4367 54.26%

1.11e-5 1 3855 47.9%

1.12e-5 1 2378 29.54%

1.12e-5 1 2339 29.06%

1.12e-5 1 2325 28.88%

1.12e-5 1 2309 28.69%

1.13e-5 1 2239 27.82%

1.14e-5 1 2102 26.11%

1.14e-5 1 2003 24.88%

1.16e-5 1 1574 19.55%

1.16e-5 1 1541 19.14%

1.17e-5 1 1362 16.92%

1.17e-5 1 1344 16.69%

1.17e-5 1 1309 16.26%

1.17e-5 1 1232 15.3%

1.17e-5 1 1152 14.31%

1.17e-5 1 1067 13.25%

1.17e-5 1 1011 12.56%
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Table C.3: Results for use-case 3 (continued)

Precision Recall
No. of

Process-access

Process-access w.r.t.

total no. of unique

processes

1.17e-5 1 1010 12.54%

1.22e-5 1 999 12.41%

1.22e-5 1 996 12.37%

1.22e-5 1 981 12.18%

1.22e-5 1 908 11.28%

1.22e-5 1 881 10.94%

1.22e-5 1 811 10.07%

1.23e-5 1 784 9.74%

1.24e-5 1 762 9.46%

1.24e-5 1 749 9.3%

1.24e-5 1 748 9.29%

1.24e-5 1 746 9.26%

1.26e-5 1 740 9.19%

1.26e-5 1 711 8.83%

1.26e-5 1 699 8.68%

1.26e-5 1 692 8.59%

1.26e-5 1 676 8.39%

1.26e-5 1 672 8.34%

1.26e-5 1 663 8.23%

1.26e-5 1 659 8.18%

1.26e-5 1 636 7.9%

1.26e-5 1 628 7.8%

1.26e-5 1 598 7.43%

1.26e-5 1 586 7.28%

1.26e-5 1 559 6.94%

1.26e-5 1 550 6.83%

1.26e-5 1 511 6.34%

1.26e-5 1 502 6.23%
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Table C.3: Results for use-case 3 (continued)

Precision Recall
No. of

Process-access

Process-access w.r.t.

total no. of unique

processes

1.26e-5 1 500 6.21%

1.26e-5 1 499 6.2%

1.26e-5 1 474 5.88%

1.27e-5 1 473 5.87%

1.27e-5 1 463 5.75%

1.27e-5 1 434 5.39%

1.62e-5 1 420 5.21%

1.62e-5 1 380 4.72%

1.62e-5 1 369 4.58%

1.62e-5 1 361 4.48%

1.62e-5 1 347 4.31%

1.62e-5 1 344 4.27%

1.62e-5 1 342 4.24%

1.62e-5 1 341 4.23%

1.62e-5 1 333 4.13%

1.62e-5 1 316 3.92%

1.63e-5 1 303 3.76%

1.63e-5 1 302 3.75%

1.64e-5 1 285 3.54%

1.64e-5 1 241 2.99%

1.64e-5 1 240 2.98%

1.64e-5 1 238 2.95%

1.64e-5 1 231 2.87%

1.64e-5 1 225 2.79%

1.65e-5 1 224 2.78%

1.65e-5 1 222 2.75%

1.65e-5 1 215 2.67%

1.65e-5 1 214 2.65%
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Table C.3: Results for use-case 3 (continued)

Precision Recall
No. of

Process-access

Process-access w.r.t.

total no. of unique

processes

1.65e-5 1 213 2.64%

1.65e-5 1 210 2.6%

1.65e-5 1 208 2.58%

1.65e-5 1 207 2.57%

1.65e-5 1 197 2.44%

1.65e-5 1 196 2.43%

1.65e-5 1 195 2.42%

1.65e-5 1 189 2.34%

1.65e-5 1 187 2.32%

1.65e-5 1 186 2.31%

1.65e-5 1 182 2.26%

1.65e-5 1 180 2.23%

1.65e-5 1 179 2.22%

1.65e-5 1 175 2.17%

1.65e-5 1 174 2.16%

1.65e-5 1 173 2.14%

1.65e-5 1 172 2.13%

1.65e-5 1 171 2.12%

1.65e-5 1 170 2.11%

1.65e-5 1 169 2.09%

1.67e-5 1 165 2.05%

1.67e-5 1 164 2.03%

1.67e-5 1 163 2.02%

1.67e-5 1 158 1.96%

1.67e-5 1 157 1.95%

1.67e-5 1 156 1.93%

1.67e-5 1 154 1.91%

1.67e-5 1 151 1.87%
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Table C.3: Results for use-case 3 (continued)

Precision Recall
No. of

Process-access

Process-access w.r.t.

total no. of unique

processes

1.67e-5 1 147 1.82%

1.67e-5 1 145 1.8%

1.67e-5 1 139 1.72%

1.67e-5 1 138 1.71%

1.67e-5 1 137 1.7%

1.67e-5 1 136 1.68%

1.67e-5 1 135 1.67%

1.67e-5 1 132 1.64%

1.67e-5 1 130 1.61%

1.67e-5 1 126 1.56%

1.67e-5 1 125 1.55%

1.67e-5 1 124 1.54%

1.67e-5 1 119 1.47%

1.67e-5 1 109 1.35%

1.67e-5 1 108 1.34%

1.67e-5 1 107 1.32%

1.67e-5 1 106 1.31%

1.67e-5 1 105 1.3%

1.67e-5 1 104 1.29%

1.67e-5 1 103 1.27%

1.67e-5 1 93 1.15%

1.67e-5 1 92 1.14%

1.67e-5 1 88 1.09%

1.67e-5 1 87 1.08%

1.67e-5 1 85 1.05%

1.67e-5 1 84 1.04%

1.67e-5 1 83 1.03%

1.67e-5 1 82 1.01%

196



Table C.3: Results for use-case 3 (continued)

Precision Recall
No. of

Process-access

Process-access w.r.t.

total no. of unique

processes

1.67e-5 1 81 1%

1.67e-5 1 80 0.99%

1.67e-5 1 78 0.96%

1.67e-5 1 77 0.95%

1.67e-5 1 76 0.94%

1.67e-5 1 75 0.93%

1.67e-5 1 73 0.9%

1.67e-5 1 72 0.89%

1.67e-5 1 71 0.88%

1.67e-5 1 70 0.86%

1.67e-5 1 69 0.85%

1.67e-5 1 66 0.82%

1.67e-5 1 65 0.8%

1.67e-5 1 62 0.77%

1.67e-5 1 61 0.75%

1.67e-5 1 60 0.74%

1.67e-5 1 57 0.7%

1.67e-5 1 56 0.69%

1.67e-5 1 55 0.68%

1.67e-5 1 54 0.67%

1.67e-5 1 53 0.65%

1.67e-5 1 52 0.64%

1.67e-5 1 51 0.63%

1.67e-5 1 49 0.6%

1.67e-5 1 48 0.59%

1.67e-5 1 47 0.58%

1.67e-5 1 46 0.57%

1.67e-5 1 45 0.55%
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Table C.3: Results for use-case 3 (continued)

Precision Recall
No. of

Process-access

Process-access w.r.t.

total no. of unique

processes

1.67e-5 1 44 0.54%

1.67e-5 1 43 0.53%

1.67e-5 1 42 0.52%

1.67e-5 1 41 0.5%

1.67e-5 1 40 0.49%

1.67e-5 1 39 0.48%

1.67e-5 1 38 0.47%

1.67e-5 1 37 0.45%

1.67e-5 1 36 0.44%

1.67e-5 1 35 0.43%

1.67e-5 1 34 0.42%

1.67e-5 1 33 0.41%

1.67e-5 1 31 0.38%

1.67e-5 1 30 0.37%

1.67e-5 1 29 0.36%

1.67e-5 1 28 0.34%

1.67e-5 1 27 0.33%

1.67e-5 1 26 0.32%

1.67e-5 1 25 0.31%

1.67e-5 1 24 0.29%

1.67e-5 1 23 0.28%

1.67e-5 1 22 0.27%

1.67e-5 1 21 0.26%

1.67e-5 1 20 0.24%

1.67e-5 1 19 0.23%

1.67e-5 1 18 0.22%

1.67e-5 1 17 0.21%

1.67e-5 1 16 0.19%
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Table C.3: Results for use-case 3 (continued)

Precision Recall
No. of

Process-access

Process-access w.r.t.

total no. of unique

processes

1.67e-5 1 15 0.18%

1.67e-5 1 14 0.17%

1.67e-5 1 13 0.16%

1.67e-5 1 12 0.14%

1.67e-5 1 11 0.13%

1.04e-4 1 10 0.12%

1.04e-4 1 9 0.11%

1.04e-4 1 8 0.09%

1.04e-4 1 7 0.08%

1.04e-4 1 6 0.07%

1.04e-4 1 5 0.06%

1.04e-4 1 4 0.04%

0 0 3 0.03%

0 0 2 0.02%

0 0 1 0.01%

Table C.4: Results for use-case 4

Precision Recall
No. of

Process-access

Process-access w.r.t.

total no. of unique

processes

9.54e-5 1 4367 54.26%

9.75e-5 1 3855 47.9%

9.83e-5 1 2378 29.54%

9.83e-5 1 2339 29.06%

9.83e-5 1 2325 28.88%

9.83e-5 1 2309 28.69%

9.61e-5 1 2239 27.82%

9.73e-5 1 2102 26.11%
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Table C.4: Results for use-case 4 (continued)

Precision Recall
No. of

Process-access

Process-access w.r.t.

total no. of unique

processes

9.73e-5 1 2003 24.88%

9.89e-5 1 1574 19.55%

9.89e-5 1 1541 19.14%

9.95e-5 1 1362 16.92%

9.96e-5 1 1344 16.69%

1.03e-4 1 1309 16.26%

1.03e-4 1 1232 15.3%

1.03e-4 1 1152 14.31%

1.03e-4 1 1067 13.25%

1.03e-4 1 1011 12.56%

1.03e-4 1 1010 12.54%

1.06e-4 1 999 12.41%

1.06e-4 1 996 12.37%

1.07e-4 1 981 12.18%

1.07e-4 1 908 11.28%

1.07e-4 1 881 10.94%

1.08e-4 1 811 10.07%

1.08e-4 1 784 9.74%

1.09e-4 1 762 9.46%

1.09e-4 1 749 9.3%

1.09e-4 1 748 9.29%

1.09e-4 1 746 9.26%

1.10e-4 1 740 9.19%

1.10e-4 1 711 8.83%

1.10e-4 1 699 8.68%

1.10e-4 1 692 8.59%

1.10e-4 1 676 8.39%

1.10e-4 1 672 8.34%
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Table C.4: Results for use-case 4 (continued)

Precision Recall
No. of

Process-access

Process-access w.r.t.

total no. of unique

processes

1.10e-4 1 663 8.23%

1.10e-4 1 659 8.18%

1.10e-4 1 636 7.9%

1.10e-4 1 628 7.8%

1.10e-4 1 598 7.43%

1.11e-4 1 586 7.28%

1.11e-4 1 559 6.94%

1.11e-4 1 550 6.83%

1.11e-4 1 511 6.34%

1.11e-4 1 502 6.23%

1.11e-4 1 500 6.21%

1.11e-4 1 499 6.2%

1.11e-4 1 474 5.88%

1.11e-4 1 473 5.87%

1.11e-4 1 463 5.75%

1.11e-4 1 434 5.39%

1.38e-4 1 420 5.21%

1.38e-4 1 380 4.72%

1.38e-4 1 369 4.58%

1.38e-4 1 361 4.48%

1.38e-4 1 347 4.31%

1.38e-4 1 344 4.27%

1.38e-4 1 342 4.24%

1.38e-4 1 341 4.23%

1.38e-4 1 333 4.13%

1.38e-4 1 316 3.92%

1.39e-4 1 303 3.76%

1.39e-4 1 302 3.75%
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Table C.4: Results for use-case 4 (continued)

Precision Recall
No. of

Process-access

Process-access w.r.t.

total no. of unique

processes

1.4e-4 1 285 3.54%

1.4e-4 1 241 2.99%

1.4e-4 1 240 2.98%

1.4e-4 1 238 2.95%

1.4e-4 1 231 2.87%

1.4e-4 1 225 2.79%

1.406e-4 1 224 2.78%

1.406e-4 1 222 2.75%

1.406e-4 1 215 2.67%

1.406e-4 1 214 2.65%

1.406e-4 1 213 2.64%

1.406e-4 1 210 2.6%

1.406e-4 1 208 2.58%

1.406e-4 1 207 2.57%

1.406e-4 1 197 2.44%

1.406e-4 1 196 2.43%

1.406e-4 1 195 2.42%

1.406e-4 1 189 2.34%

1.406e-4 1 187 2.32%

1.406e-4 1 186 2.31%

1.406e-4 1 182 2.26%

1.406e-4 1 180 2.23%

1.406e-4 1 179 2.22%

1.406e-4 1 175 2.17%

1.406e-4 1 174 2.16%

1.406e-4 1 173 2.14%

1.406e-4 1 172 2.13%

1.406e-4 1 171 2.12%

202



Table C.4: Results for use-case 4 (continued)

Precision Recall
No. of

Process-access

Process-access w.r.t.

total no. of unique

processes

1.406e-4 1 170 2.11%

1.406e-4 1 169 2.09%

1.43e-4 1 165 2.05%

1.43e-4 1 164 2.03%

1.43e-4 1 163 2.02%

1.43e-4 1 158 1.96%

1.43e-4 1 157 1.95%

1.43e-4 1 156 1.93%

1.43e-4 1 154 1.91%

1.43e-4 1 151 1.87%

1.43e-4 1 147 1.82%

1.43e-4 1 145 1.8%

1.43e-4 1 139 1.72%

1.43e-4 1 138 1.71%

1.43e-4 1 137 1.7%

1.43e-4 1 136 1.68%

1.43e-4 1 135 1.67%

1.43e-4 1 132 1.64%

1.43e-4 1 130 1.61%

1.43e-4 1 126 1.56%

1.43e-4 1 125 1.55%

1.43e-4 1 124 1.54%

1.43e-4 1 119 1.47%

1.43e-4 1 109 1.35%

1.43e-4 1 108 1.34%

1.43e-4 1 107 1.32%

1.43e-4 1 106 1.31%

1.43e-4 1 105 1.3%
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Appendix C Experimental Results for Process-access based Pruning

Table C.4: Results for use-case 4 (continued)

Precision Recall
No. of

Process-access

Process-access w.r.t.

total no. of unique

processes

1.43e-4 1 104 1.29%

1.43e-4 1 103 1.27%

1.43e-4 1 93 1.15%

1.43e-4 1 92 1.14%

1.43e-4 1 88 1.09%

1.43e-4 1 87 1.08%

1.43e-4 1 85 1.05%

1.43e-4 1 84 1.04%

1.43e-4 1 83 1.03%

1.43e-4 1 82 1.01%

1.43e-4 1 81 1%

1.43e-4 1 80 0.99%

1.43e-4 1 78 0.96%

1.43e-4 1 77 0.95%

1.43e-4 1 76 0.94%

1.43e-4 1 75 0.93%

1.43e-4 1 73 0.9%

1.43e-4 1 72 0.89%

1.43e-4 1 71 0.88%

1.43e-4 1 70 0.86%

1.43e-4 1 69 0.85%

1.43e-4 1 66 0.82%

1.43e-4 1 65 0.8%

1.43e-4 1 62 0.77%

1.43e-4 1 61 0.75%

1.43e-4 1 60 0.74%

1.43e-4 1 57 0.7%

1.43e-4 1 56 0.69%
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Table C.4: Results for use-case 4 (continued)

Precision Recall
No. of

Process-access

Process-access w.r.t.

total no. of unique

processes

1.43e-4 1 55 0.68%

1.43e-4 1 54 0.67%

1.43e-4 1 53 0.65%

1.43e-4 1 52 0.64%

1.43e-4 1 51 0.63%

1.43e-4 1 49 0.6%

1.43e-4 1 48 0.59%

1.43e-4 1 47 0.58%

1.43e-4 1 46 0.57%

1.43e-4 1 45 0.55%

1.43e-4 1 44 0.54%

1.43e-4 1 43 0.53%

1.43e-4 1 42 0.52%

1.47e-4 1 41 0.5%

1.47e-4 1 40 0.49%

1.47e-4 1 39 0.48%

1.47e-4 1 38 0.47%

1.47e-4 1 37 0.45%

1.47e-4 1 36 0.44%

1.47e-4 1 35 0.43%

1.47e-4 1 34 0.42%

1.47e-4 1 33 0.41%

1.47e-4 1 31 0.38%

1.47e-4 1 30 0.37%

1.47e-4 1 29 0.36%

1.47e-4 1 28 0.34%

1.47e-4 1 27 0.33%

1.47e-4 1 26 0.32%
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Appendix C Experimental Results for Process-access based Pruning

Table C.4: Results for use-case 4 (continued)

Precision Recall
No. of

Process-access

Process-access w.r.t.

total no. of unique

processes

1.47e-4 1 25 0.31%

1.47e-4 1 24 0.29%

1.47e-4 1 23 0.28%

1.47e-4 1 22 0.27%

1.47e-4 1 21 0.26%

1.47e-4 1 20 0.24%

1.47e-4 1 19 0.23%

1.47e-4 1 18 0.22%

1.47e-4 1 17 0.21%

1.47e-4 1 16 0.19%

1.47e-4 1 15 0.18%

1.47e-4 1 14 0.17%

1.47e-4 1 13 0.16%

1.47e-4 1 12 0.14%

1.47e-4 1 11 0.13%

0 0 10 0.12%

0 0 9 0.11%

0 0 8 0.09%

0 0 7 0.08%

0 0 6 0.07%

0 0 5 0.06%

0 0 4 0.04%

0 0 3 0.03%

0 0 2 0.02%

0 0 1 0.01%
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Appendix D

Graph Plots for Determining
Number of Clusters

This appendix lists the graph plots, generated from each system log file in

the NZCSC’15 dataset, for determining the number of clusters, k. Based

on the elbow method, used for estimating the number of clusters to be

used with the k-means algorithm, the plots demonstrate k is estimated

to be 5 for majority of the system log files in the dataset.

Figure D.1: Blue Team 1 - Web server system log file
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Appendix D Graph Plots for Determining Number of Clusters

Figure D.2: Blue Team 1 - File server system log file

Figure D.3: Blue Team 2 - Web server system log file

Figure D.4: Blue Team 2 - File server system log file
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Figure D.5: Blue Team 3 - Web server system log file

Figure D.6: Blue Team 3 - File server system log file

Figure D.7: Blue Team 4 - Web server system log file
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Appendix D Graph Plots for Determining Number of Clusters

Figure D.8: Blue Team 4 - File server system log file

Figure D.9: Blue Team 5 - Web server system log file

Figure D.10: Blue Team 5 - File server system log file
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Figure D.11: Red Team 1

Figure D.12: Red Team 2
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