

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the

Act and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right

to be identified as the author of the thesis, and due acknowledgement will be

made to the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://researchcommons.waikato.ac.nz/

This thesis is submitted in partial fulfillment of the requirements for the

Degree of Master of Science at the University of Waikato.

March 2014

© 2014 Lichao Wang

XNA-like 3D

Graphics Programming

on the

Raspberry Pi

Lichao Wang

ii

Abstract

The Raspberry Pi is a credit-card sized computing device created by Broadcom in

2012. This device is a kind of mini PC, and it is capable of doing things that desktop

PC can do. The goal of the Raspberry Pi Foundation is to allow people all over the

world to learn programming. Therefore, the Raspberry Pi is designed as a small sized,

low cost device that can provide reasonable data processing capability. However,

because of its goal is to keep the price down to maximize openness for learning,

Raspberry Pi can only run the Linux operating system.

XNA is a set of libraries developed by Microsoft to facilitate the creation and

management of video games. It provides a large number of underlying functions to

help the development of systems that based on runtime. Therefore, programmers may

focus on programming their own code. XNA is built on Microsoft's .NET framework,

and it is designed to be used with DirectX. However, as no drivers are developed to

provide the low level API defined by DirectX on Linux, it is currently impossible to

program with XNA on a Raspberry Pi.

This thesis investigates the possibility of developing XNA like programs directly on

the Raspberry Pi. Instead of using DirectX, OpenGL ES is used to provide the low

level graphics APIs. The code of a project named "JBBRXG11", which is an open

source project extending XNA classes on Windows to access DirectX 10 and DirectX

11 graphics features is used as a reference for this project.

The project successfully built a library that allows an XNA like program to produce

moving, textured 3D models on screen.

iii

Acknowledgements

Firstly, I would like to thank my supervisor, Bill Rogers, for his endless support in

this project.

I would also like to thank James Boud for his previous work that contribute to the

complete of this project.

Finally, I would like to thank my family and friends who supported me over the

research of this project.

iv

Contents

Abstract ...ii

Acknowledgements...iii

Contents...iv

Chapter 1: Introduction...1

Chapter 2: Literature Review...6

2.1 MonoGame..6

2.2 JBBRXG11..7

Chapter 3: Underlying System..9

3.1 XNA..9

3.1.1 XNA Core Classes...10

3.1.2 XNA Graphics Classes...13

3.1.3 XNA Mathematical Classes...16

3.1.4 Shader...19

3.1.5 XNA Inputs..20

3.2 OpenGL ES..21

3.2.1 EGL..24

3.2.2 Shaders and GLSL...25

3.3 JBBRXG11..27

3.4 Raspbian..29

Chapter 4: Development..31

4.1 C++ code with OpenGL ES 2.0 on Windows..32

4.1.1 OpenGL ES 2.0 Sample Program..32

4.1.2 C++ Blank Window...42

4.1.3 C++ Triangle..44

4.1.4 C++ Colored Rotating Cube..46

4.1.5 C++ Textured Cube...52

4.2 C# Code with OpenGL ES 2.0 on Windows...58

4.2.1 C# Blank Window...59

v

4.2.2 C# Triangle..62

4.2.3 C# Colored Rotating Cube..63

4.2.4 C# Textured Cube...63

4.3 C# Programs on Raspbian..64

4.3.1 C# Blank Window on Raspbian..65

4.3.2 C# Triangle on Raspbian...67

4.3.3 C# Colored Rotating Cube on Raspbian...68

4.3.4 C# Textured Cube on Raspbian..70

4.4 Rewriting XNA Classes..73

4.4.1 Display a Blank Window with Modified XNA Classes............................73

4.4.2 Display a Colored Triangle with Modified XNA Classes.........................87

4.4.3 Display a Colored Rotating Cube with Modified XNA Classes.............102

4.4.4 Display a Textured Lighting Cube with Modified XNA Classes............109

Chapter 5: Conclusion and Future Work..120

Appendix...122

References...131

1

Chapter 1: Introduction

The purpose of the project Pi-XNA is making it possible for people to learn 3D

graphics programming on Raspberry Pi. The Raspberry Pi is a credit card sized single

board, open computer that can be used with a monitor and keyboard.

Figure.1 The Raspberry Pi [1]

The Raspberry Pi was developed by Broadcom in 2012. It was designed as an

inexpensive tiny computer to help give children access to computers. The concept of

tiny PC has existed for years, early product like the microcontroller manufactured by

Atmel Corporation [3]. However, the Raspberry Pi is the popular fully functional tiny

computing device that can provide reasonable performance. What is more, a number

of accessories like mini cameras and wireless network cards can be used with it, and

quite a few applications can be found on the BBS of Raspberry Pi.

There are two types of Raspberry Pi, model-A and model-B. The big difference

between these two types is that model-A does not provide Ethernet controller and only

has one USB port. However, it can still connect to the Internet by using an external

2

USB adapter. The comparison of the specific configurations and the layout of both

types is shown in Figure.2 and Figure.3.

Figure.2 Configuration of the Raspberry Pi

Figure.3 Layout of the Raspberry Pi [2]

In this project, B-model Raspberry Pi was used to do the development. As shown in

Figure.2, B-model Pi contains almost all the components that a real desktop PC has,

including: a CPU and GPU block (its GPU is as powerful as the one used on the first

version of Xbox), SDRAM memory, two USB ports that can be used to connect with

3

input devices like mouse and keyboards, an HDMI port and a RCA port that provide

video outputs (HDMI also supports audio outputs), a 3.5mm jack that provides audio

outputs, an Ethernet port, and it even provides GPIO pins, so it is possible to use it

with robotics. It works with Linux based operating systems, and uses SD cards (at

least 2G memory space) as the onboard storage (equivalent of disk on a larger

system).

XNA is a 3D graphics and game development library built around DirectX 9 and

meant to be used on Windows. When programming with XNA on Windows,

programmers usually use an IDE (Integrated Development Environment) like Visual

Studio to get their code connected with the XNA library. However, neither XNA nor

Visual Studio can be directly used on Raspberry Pi, as its operating system is one of

the versions of Linux. There is a fully functional IDE named "MonoDevelop" that can

be used on Linux, but XWindow implementation is too slow on Raspberry Pi because

of Pi's limited memory, programmers cannot actually run MonoDevelop on Pi.

Therefore, in order to allow people to do XNA programming conveniently on

Raspberry Pi, two parts of work are involved.

Firstly, when programming XNA on Raspberry Pi, the code should be similar to that

on Windows. In XNA programs, a lot of low level functions are provided by DirectX

(i.e. when XNA needs some underlying functions to get access to the graphics cards,

it makes a procedure call to DirectX). As DirectX cannot be used on Linux, some

other graphics libraries that can provide graphical functionality are needed. In this

project, OpenGL ES is used to replace DirectX. Therefore, the work of rewriting some

of the XNA classes to make them work with OpenGL ES becomes necessary. Some

similar previous work has been done at the University of Waikato that extending XNA

on Windows to use DirectX 11, named "JBBRXG11". As XNA is not an open source

library, the code of JBBRXG11 was used as a reference in this project. The detail of

rewriting the libraries will be explained in Chapter Four of this thesis.

It was not a goal of this project to port Windows XNA programs to the Raspberry Pi.

The JBBRXG11 project set out to extend XNA to use more sophisticated features on

modern graphics cards. Similarly the Pi-XNA project sets out to allow 3D graphics

programming in a Raspberry Pi environment, using native coding where appropriate.

4

For example, Pi-XNA programs should use OpenGL shader language rather than

HLSL (as is used with DirectX on Windows).

Secondly, an IDE is needed to make the way of programming on Raspberry Pi more

convenient. For example, programmers may add reference classes by the IDE, rather

than coding all the file names in a terminal command to compile. This part of work is

being undertaken by another student at the University of Waikato, and it will not be

discussed in this thesis.

The remainder of the thesis is arranged into four chapters.

Chapter Two introduces some similar previous work with this project.

Chapter Three looks into the underlying software that is involved in this project. This

chapter not only introduces the software themselves, but also explains how it is used

to support the development of this project.

Chapter Four gives all the significant details of the implementation of this project. It

firstly outlines the steps that have been taken in the project, and then discuss how each

step was done, what problems occurred, and how they have been solved.

There were a number of issues which made development difficult. These include the

number of libraries involved, the poor documentation of some libraries and the

primitive nature of the development environment on the Raspberry Pi (test editor and

command line compiler). These are compounded by the common experience of silent

failure, with a blank display when errors were made in graphics programming. To

accommodate these difficulties, a very careful systematic development process was

followed. Working first on Windows to establish API understanding, working from

sample code that could be shown to work, and developing in small steps with

programs producing diagnostic output. The steps followed are documented in Chapter

Four.

Chapter Five briefly conclude the work that have been done. It discusses the outcomes

of this project, and compares it with the original goal. This chapter also discusses the

5

future work of this project. It looks into some possible research that may improve the

usability, but have not been done in this project.

6

Chapter 2: Literature Review

This chapter briefly investigates the background of this project. It firstly looks into

XNA and previous work about porting XNA on other systems, named MonoGame,

and then introduces a project named JBBRXG11 developed at the University of

Waikato. The source code of JBBRXG11 was used as a reference in this project.

2.1 MonoGame

"Microsoft XNA is a set of tools with a managed runtime environment that facilitates

video game development and management. It is based on the .NET Framework,

which is a software framework developed by Microsoft that runs primarily on

Windows, and getting access to the graphics system through DirectX 9, which is a

low-level API that handles tasks related to multimedia on Microsoft platforms."[4]

Microsoft released its first version XNA in the year 2006. Since then, a huge number

of applications and games have been developed with XNA libraries all over the world.

The applications built with XNA are available to all Windows system based devices

(e.g. Desktops running Windows operating system, Windows smartphones and Xbox).

However, the biggest limitation is that XNA programs could not be ported to other

platforms like Linux machines and android phones. In order to solve this problem, a

group of software developers created MonoGame.

MonoGame is an open-source port of XNA that makes Windows operating system

based games executable on other systems, like Linux and iOS. The goal of

MonoGame is to allow people to program with XNA in the same way as

programming on Windows (i.e. the code programmed on different platforms should

be all the same). It implements the XNA 4.0 API, but replacing the Microsoft’s .Net

Framework with Mono.Net, which is an open source, cross-platform implementation

of Microsoft's .NET Framework [5], so that programmers may develop XNA games on

systems other than Windows.

The first version of MonoGame was created in 2009. The early versions only support

2D sprite based games [6]. Current versions are trying to extend MonoGame with new

features like 3D rendering and multi-GameWindows. It is easy to learn and develop

with MonoGame, but it is not perfect yet. Sometimes bugs occur and the programs

7

could crash, but with the help of MonoGame community and developers all over the

world, MonoGame is getting increasingly improved. The development of MonoGame

still has a long way to go.

The reason of not using MonoGame in this project is mainly because it currently does

not support development on Raspberry Pi. As MonoGame is targeted to a number of

different platforms, and the performance of Raspberry Pi is limited, even if

MonoGame was available on Pi, it would be a little bit complicated for Pi to program

with XNA. What is more, MonoGame strives for exact source code compatibility with

XNA. This is not desirable for shader coding. Therefore, MonoGame is not used in

this project. However, Mono is supported on Raspberry Pi. In order to port XNA on Pi,

some of the XNA libraries were modified to interact with graphics cards through

OpenGL ES (rather than DirectX it used), so that developers may program and

smoothly execute their XNA programs on Raspberry Pi.

2.2 JBBRXG11

Most of the introduction of JBBRXG11 is referenced from jbbrxg11.codeplex.com.

JBBRXG11 is a project developed by a group from the University of Waikato, trying

to extend the XNA library to allow use of DirectX 10 and 11 features. DirectX 10

provides geometry shaders, and DirectX 11 allows hull and domain shaders for

tessellation and also compute shaders. The motivation of this project was to fully

explore the technology when programming shaders in XNA. The first version of

JBBRXG11 was created by Bill Rogers in 2011, based on the XNA 3.1 and DirectX

10. In the same year, Microsoft released XNA 4.0, which modified a number of

original underlying functions. The next year, this project was ported to XNA 4.0 and

DirectX11 by James Boud.

XNA is not an open source library. Therefore, a lot of work of writing the code of

XNA classes are involved in JBBRXG11, but this project is not simply duplicating the

library. It modified some of the classes to get access to the graphics card with DirectX

11 via SlimDX. SlimDX is an open source framework, and developers may build

DirectX applications with it. There was an early project lead by Bill Rogers named

"SlimDXna 3", trying to extend XNA 3.1 to work with DirectX 10 (rather than

8

working with DirectX 9), and the JBBRXG11 is based on this project. So converting

from the XNA 3.1 API to the XNA 4.0 API is necessary. This is not currently

completed, which means when programming XNA with JBBRXG11, some of the

program still need to be coded in the same way with that of XNA 3.1.

Although JBBRXG11 is an incomplete project, its structure and code clearly shows

how XNA works with low-level APIs (i.e. DirectX). So it was used as an reference in

this project. The detail of JBBRXG11 will be introduced in Chapter 3.

9

Chapter 3: Underlying System

This chapter introduces the software and libraries that are used to support the

development of this project. It firstly looks into the detail of Microsoft's XNA, which

is the library that needs to be ported on to the Raspberry Pi, then follows by the

introduction of OpenGL ES, the API used to replace DirectX on Pi, and finally

discusses the detail of the operating system used on Raspberry Pi, Raspbian.

This chapter not only explains the original purpose of each underlying system, but

also looks into the purpose of these systems within this project and how they were

used.

3.1 XNA

The goal of this project is to allow people to learn XNA programming on the

Raspberry Pi. XNA is a set of object libraries accessing the DirectX graphics library

with a managed runtime environment. It was developed by Microsoft, and it is built

on Microsoft's .Net Framework. XNA is designed to facilitate the creation and

management of video games. As described by Microsoft in 2004, "XNA is made with

the intention of making the game development process easier by providing much of

the underlying code and functions that are often used in games, freeing the developer

to focus on programming the systems that are specific to their own games ". Figure.4

explains the architecture of an XNA program (this figure is taken from James Boud's

report "Extending SlimDXna to Use XNA 4 and DirectX 11"[19]). It provides

underlying functions to the users, and interacts with the graphics system through

DiretX.

Figure.4 XNA Architecture [19]

10

The first version of the XNA toolset was announced in 2004, and till today, a number

of versions have been developed. The latest version is XNA 4.0 Refresh, which

contains a lot of new features and new methods. In an XNA project, XNA handles the

running of the main loop of the program, the 3D graphics functions, and provides a

number of methods that should be overridden by programmers, like the methods used

for initialization and loading content. It abstracts much of the detail of using the

underlying DirectX libraries, and also provides a content management system for

game assets (e.g. models, textures etc.).

XNA is not an open source toolset, Microsoft only provided the name of the methods

and properties of its classes. However, the source code of XNA is essential for

rewriting the libraries. To solve this problem, the code of a project named

"JBBRXG11" is used as reference. JBBRXG11 is a project developed by a group at

Waikato University. This project rewrote the XNA classes that access the graphics

system with DirectX 11 code via the SlimDX library.[7] The detail of JBBRXG 11

will be introduced in the next section.

The full XNA library is very comprehensive and complicated, it includes a large

number of classes that help to develop video games. The workload of rewriting the

whole system (like JBBRXG 11) would be too much. Therefore, in this project, only

the classes that are involved in creating the sample programs (e.g. displaying triangle

or cube) have been rewritten. The work of writing the remaining classes is leaved for

future work. The project does, however, give a complete demonstration of feasibility

and shows how the XNA programming model can be adapted to work with OpenGL

ES on the Raspberry Pi (or any other Linux system).

3.1.1 XNA Core Classes

The 'Game' class is the core class of XNA programs. When building a new XNA

project, a class named 'Game1', that inherit from 'Game', will be created for the

programmer. Game provide five virtual methods that can be overridden by

programmers. These are 'Initialize', 'Update', 'Draw', 'LoadContent', and

'UnloadContent'. The Update, Draw and LoadContent are of most importance to XNA

programs, while the other two are not so critical and can be ignored in simple

11

programs. Programmers should insert their own code into these methods in 'Game1',

and these methods will be called by the underlying framework when the program is

executed. The details of these methods will be introduced in this section, and this

section will show the source code for an XNA game. Figure.5 shows the outline

source of an XNA program.

Figure.5 Outline Source of an XNA Program

12

The constructor of Game creates a new GameWindow object and a ContentManager

object. The GameWindow object handles the creation and display of the graphics

window, initializing the graphics system and allocating buffer chains etc.

Programmers may change the size of the window in Game1 by modifying the value of

the window properties (details will be explained later). The object of ContentManager

handles the process of loading and unloading graphics resources.

After the Game object is created, the first method that will be called is 'Initialize'. As

described in MSDN (the Microsoft Developer Network), "the Initialize method is

called after the Game and GraphicsDevice are created, but before LoadContent and

Draw. Programmers may override this method to query for any required services, and

load any non-graphics resources."[8] The graphics resources can be loaded by

LoadContent method. In the Game implementation, Initialize calls LoadContent, so

all the resources can be loaded in the process of initialization.

"Update method is called when the game has determined that game logic needs to be

processed."[9] It handles the updating of simulation data, user input, or the

management of the game state. Update is called in the main loop of the game program,

so nearly all the code that needs to be executed on every iteration will be placed in

this method. There is a property named 'IsFixedTimeStep' that gets or sets a value

indicating whether to use fixed time steps.[10] The default value of this property is true,

and this made the game a fixed-step game. When a fixed-step game is running, it calls

the Update method on the fixed interval specified in 'TargetElapsedTime', which is

another property that gets or sets the target time between calls to Update when

IsFixedTimeStep is true. [11] The default value of TargetElapsedTime is 1/60 second,

but programmers may change this value.

Another critical virtual method provided by Game is 'Draw'. This method is

synergistic with Update, and it will be called to draw a frame when the program

determines to do so. The rate of calling Update and Draw depends on the value of

IsFixedTimeStep. If its value is the default value (i.e. true), as described above,

Update will be called at the interval specified in TargetElapsedTime, while Draw will

continue to be called as often as possible.[12] If TargetElapsedTime has not elapsed

yet after a calling from Update, the Draw method will be called. After that, if it is still

13

not time to call Update again, the game idles. On the other hand, if it takes too long to

process the Update method, then Update will be called again without calling the Draw

method, and if Update is executed longer than TargetElapsedTime, the next few

frames will be dropped to catch up the runtime.[10] By contrast, if the value of

IsFixedTimeStep is set to false, then both Update and Draw will be called sequentially

as often as possible.

The other two virtual methods provided by Game: LoadContent and UnloadContent,

are not as important as the three methods described above. LoadContent is used to

load graphics resources that are needed for the game. For example, textures, videos,

or shaders. This method is firstly called by Initialize when the program is running, and

after that, it also can be called whenever the game content needs to be reloaded. For

some simple programs, like displaying a triangle or cube, LoadContent will not be

needed as there are no extra graphics resources needed. Compared to LoadContent,

UnloadContent method works the other way, it is used to unload the graphics

resources.

What is more, there are two other critical underlying methods in Game, 'Tick' and

'Run'. Tick controls the game time system. It updates the game's clock and calls

Update and Draw at different rates according to the value of IsFixedTimeStep as

introduced above. The Run method is the kernel of the XNA program. Generally

speaking, all the methods described above and those that will be introduced later, are

eventually called by the Run method. It firstly creates a new object of

GraphicsDeviceManager and a new GraphicsDevice (these will be explained in XNA

Graphics), and then calls the Initialize method (as described above, LoadContent will

also be called by Initialize). After that, it builds a game window, and begin running

the game loop. In the loop of the game, the Tick method will be called (so Update and

Draw will be called by Tick in every iteration of the loop).

3.1.2 XNA Graphics Classes

Most of the classes of the XNA graphics system are contained by the 'Graphics'

namespace of the XNA framework, which has a number of low-level API

(Application Programming Interface) methods that accelerate hardware to display 3D

graphics.[13] Two core classes of the XNA graphics system are

14

'GraphicsDeviceManager' and 'GraphicsDevice'. In this project, these two classes

have been rewritten to use OpenGL ES library to operate the graphics system.

The GraphicsDeviceManager class handles the configuration and management of the

graphics device.[14] In this class, the default properties of the game window are set

(e.g. the size and color of the back buffer), and programmers may change the value of

those properties when creating an object of GraphicsDeviceManager in Game1. When

the game starts, GraphicsDeviceManager calls a function named 'CreateDevice' in

GraphicsDevice to create a new graphics device object.

GraphicsDevice is a class in the Graphics namespace. As described in MSDN,

"GraphicsDevice class performs primitive-based rendering, creates resources, handles

system-level variables, adjusts gamma ramp levels, and creates shaders."[15]

GraphicsDevice contains a variety of functions that handle the drawing of primitives.

In both XNA and OpenGL ES, 3D objects are eventually assembled from a number of

primitives. Primitive is a geometric object, it could be a triangle ,a line or a point. An

object like a cube or a sphere in XNA is actually drawn as a number of flat triangles,

sorted in orders to make the shape look like a cube or a sphere. Using triangles to

draw a sphere makes the surface appear faceted. After smoothing, using an

appropriate lighting model, the effect looks much better.

Figure.6 Smoothing

A triangle is described by its three vertices. The position of a vertex is represented by

its coordinate (three float values representing the position on X axis, Y axis, and Z

15

axis respectively). Most of the time, the coordinate of a vertex is stored in a

Vector3(will be explained later) object, shown as Figure.7. The data structures used

for storing vertex data will be described in Chapter 4. Programmers should indicate

the way of assigning those vertices, either sequentially use three vertices to draw a

triangle, or give it another list of indices to explicitly indicate the drawing sequence.

The code using a list of indices is shown as Figure.8.

Figure.7 Declaring the coordinates of vertices

Figure.8 Using a list of indices to indicate the sequence of drawing

16

3.1.3 XNA Mathematical Classes

The flow of an XNA program can be expressed as a pipeline diagram. As shown in

Figure.9, there is one step before primitive assembly in the XNA graphics pipeline,

which is transform and lighting. Transform handles the positioning and transforming

of objects in the virtual environment from a 3D space to a 2D screen (i.e. to project

the scene of 3D objects captured by the camera on to the specified area of the screen).

XNA provides a series of mathematical classes that helps the transformation between

different coordinate systems, including 'Vector2', 'Vector3', 'Vector4', 'Rectangle', and

'Matrix'. For this project, these classes were all rewritten to make them executable

with OpenGL ES on Linux. In XNA programs, a set of matrices can be created to do

the transformation, which are the World matrix, View matrix, and Projection matrix.

The World matrix mainly handles the rotation, scaling, and translation of the objects

in the 3D virtual world that is defined by the programmer. Compare to World, the

View matrix sets the camera position, it also handles the rotation and translation of

the coordinate system. The Projection matrix specifies the attribute of the camera, like

perspective, field of view, and some depth limitations. The Matrix class provides a

function named 'createPerspectiveFieldOfView' to set those values. After all three

matrices are set, the final step is to multiply them in order (World * View *

Projection), thus the final matrix that used for calculating the position can be

acquired.

17

Figure.9 XNA Fixed Function Graphics Pipeline

Lighting is built from four components, ambient lighting, diffuse lighting, specular

lighting, and emissive lighting. With lighting effect, programmers are able to calculate

reflections and shadows, which make the game graphics seems more real. When

building a model in XNA, programmers may give every vertex a normal. Normal is a

vector that pointing out from a surface, and it is used to calculate interaction with light

sources. The sample code of drawing a cube with normals is shown as Figure.10.

Coordinates of a set of vertices are given on the left part of the code, and each vertex

is given a normal vector as shown on the right part of the code.

18

Figure.10 Sample code of normal

By using lighting effect, the color of each surface of a white cube will be different.

The effect is shown as Figure.11. Surfaces that face towards the light direction are

brighter than those face away from the light.

Figure.11 Lighting effect

19

3.1.4 Shader

Before programmable graphics pipeline was created, programmers needed to send all

the model data and textures to the graphics card, and they could only use a fixed set of

functions to configure the way of drawing the objects. Shaders were then developed to

improve the efficiency of programs. Shaders are small programs that will be compiled

and sent to the graphics card to handle the graphical data. In XNA, they are written in

HLSL (stands for High Level Shader Language), which is a kind of special

programming language that fairly similar to C programming language (OpenGL uses

a different language named GLSL, it is similar to HLSL, but not identical).[16]

Generally speaking, there are two kinds of shaders used in XNA, which are Vertex

Shader, Pixel Shader(also known as Fragment Shader). As shown in Figure.12, in the

programmable pipeline, vertex shader allows programmers to program their own

codes to operate the transform and lighting, and the position of objects can be altered

in this stage. Compare to vertex shader, pixel shader replaces the texturing stage. It

handles advanced lighting and determines the color of each pixel. In addition,

JBBRXG11 and DirectX 10 give access to geometry shaders. These operate in the

rasterization stage, and can create or destroy primitives. Programmers may create a

".fx" file to put in their shader code, and load it as a content into the XNA program.

XNA also provides a built-in shader named 'BasicEffect', which is created by the

graphics device and supports a variety of basic graphics effects (similar to the fixed

function pipeline). XNA 4.0 runs on a variety of platforms, and DirectX 10 and

DirectX 11 do not provide fixed function pipeline anymore.

20

Figure.12 Shaders

3.1.5 XNA Inputs

XNA framework provides a flexible library (the Microsoft.Xna.Framework.Input

namespace) that handles user inputs. Most input devices can be supported (e.g.

keyboard, mouse, touch panel etc.). In this project, the Input library is only used to

take keyboard and mouse input to the program.

A structure named 'KeyBoardState' is used to represent the state of keystrokes. It

contains a variety of methods, and two of them would be frequently used by

programmers, which are 'IsKeyDown' method and 'Is KeyUp' method. These two

methods return bool values to indicate if a specified key is currently being pressed or

21

not respectively. The current keyboard state can be checked by 'GetState' method

provided by Keyboard class.

Compare to keyboard, the mouse position and the state of mouse buttons (i.e. mouse

button click) can be retrieved by calling the GetState method of Mouse class. The

MouseState structure provides three properties, 'LeftButton', 'MiddleButton', and

'RightButton', that return the state (Pressed or Released) of mouse buttons. Another

two properties, 'X' and 'Y', specify the position of the cursor. The position of the

mouse is its related position to the upper-left corner of the game window, and the

values of X and Y represent the horizontal distance and vertical distance between the

cursor and the upper-left corner respectively.

3.2 OpenGL ES

In this project, EGL and OpenGL ES were used to get access to the graphics system.

OpenGL ES, created by the Khronos Group, is a subset of OpenGL (Open Graphics

Library) that designed for embedded devices like mobile phones, computer tablets and

personal digital assistants. "It is a cross-language, multi-platform application

programming interface (API) for rendering 3D graphics."

DirectX and OpenGL are two standard 3D APIs for programs to interact with a

Graphics Processing Unit (GPU). DirectX can be used on any devices that running the

Microsoft's Windows operating system. In an XNA program, nearly all the low-level

APIs are provided by DirectX. Compare with DirectX, OpenGL is a cross-platform

API that can be used on both Windows and Linux. In this project, OpenGL ES is used

to replace DirectX to provide API functions to the XNA, so that programming with

XNA on Raspberry Pi becomes possible.

The OpenGL ES used in this project is version 2.0, which is derived from the

OpenGL 2.0 specification. Because of the constrained performance of embedded

systems, OpenGL ES is not as complex as OpenGL, a number of redundant functions

have been removed to ensure the efficiency of the program. Compare with the early

versions of OpenGL ES (i.e. ES 1.0 and ES 1.1), the ES 2.0 implements a

programmable graphics pipeline, rather than a fixed function pipeline, which makes

22

use of the programmable graphics capabilities available on embedded systems.[17] The

OpenGL ES 2.0 graphics pipeline is shown in Figure.13. This pipeline is similar with

the XNA graphics pipeline. The systems are the same because they run on similar

hardware.

Figure.13 OpenGL ES 2.0 Graphics Pipeline [17]

The shaded stages (i.e. Vertex Shader and Fragment Shader) are the programmable

stages in the pipeline. The details of shaders will be discussed later in this chapter. In

the OpenGL ES 2.0 graphics pipeline, the vertex arrays and buffer objects are firstly

passed into the vertex shader to implement some operations on the vertices (e.g.

transforming, lighting etc.). After the vertex shader, is the primitive assembly stage. A

primitive is a basic geometric object that can be drawn on the screen. There are three

types of primitives, which are points, lines and triangles. In primitive assembly, the

shaded vertices are assembled into individual geometric primitives, and then the 3D

coordinates are converted into the screen 2D coordinates.[17] The next stage is the

rasterization that each primitive is converted into a 2D fragment. These fragments will

then be sent to the fragment shader where the fragments' color is generated. The last

stage before framebuffers are generated is the per-fragment operations. This stage

consists of a series of tests, and the fragment color generated in the fragment shader

can be modified. Compare with the per-fragment operations in OpenGL 2.0, Alpha

23

Test and Logical Operations are eliminated in OpenGL ES 2.0. An overview of the

operations is shown in Figure.14.

Figure.14 Per-Fragment Operations [21]

The investigation in this project started with an OpenGL ES sample, the sample code

mainly contains three parts, initialize, create program and render, and they were coded

as three major functions in the program.

Initialize is the first function called by the main function, and it will be called only

once. This stage handles the initialization of EGL (details of EGL will be explained in

the next section in this chapter), communication with the native windowing system,

creating rendering surface and some other works to set up a display environment.

24

Once the initialization is finished, the CreateProgram function is called. This function

creates shader objects and program object (the details of shaders will be discussed

later in this chapter), loading the shader source code and compiling the shaders,

attaching the shader objects as a program object, and linking the shader program. This

function is called only once as well.

Compared with Initialize and CreateProgram, the Render function is called on every

iteration of the main loop. It handles the creation of buffers, loading the vertex data

into the buffers, using the program object, linking vertex data with variables in the

shaders, and finally drawing the primitives on the screen.

3.2.1 EGL

EGL (Embedded-System Graphics Library) is a platform-independent API created by

the Khronos Group. It is an interface between rendering APIs like OpenGL ES and

the underlying native platform windowing system.[18] The mechanisms provided by

EGL mainly include creating the drawing surfaces and binding the buffers, querying

configurations of drawing surfaces, managing the graphics context and synchronizing

rendering between OpenGL ES 2.0 and other graphics-rendering APIs (e.g. the native

windowing system).[17]

This project used EGL version 1.4, which contains dozens of functions. However,

only six of them were used during the initialization stage.

The first function called by the program is "eglGetDisplay". It is used to communicate

with the windowing system, and it returns a token that representing the native display

type. After that, "eglInitialize" is called to initialize EGL's data structures. Once the

initialization is done, the next step would be choosing an available rendering surface

configuration. Generally, there are two ways to do this. Programmers either query all

the configurations and find one themselves, or just let EGL make the determination by

specifying a set of requirements. In this project, the second way was used by calling

"eglChooseConfig". After a suitable configuration of rendering has been determined,

the EGL window and rendering context can be created by calling the function

"eglCreateWindowSurface", which connects to the native display manager, the

configuration that has been chosen, and "eglCreateContext" respectively. When the

25

program creates more than one context, "eglMakeCurrent" is needed to associate a

context with the rendering surface. If all these six functions work properly, then the

initialization process has been successfully done.

Another EGL function named "eglSwapBuffers" was used in the rendering stage in

this project. The reason of using this function is that when displaying the frame buffer

on the screen, there are actually two buffers alternately displaying the images. The

image of a frame is represented by a two-dimensional array of pixel data. If there is

only one buffer used to update the frames, because of the fixed updating rate from its

memory, artifacts might be displayed when only part of the buffer data has been

updated. A scheme called double buffering is used to solve this problem. A front

buffer and a back buffer are used, and all the rendering process only occurs to the

back buffer. Once the rendering is complete, the back buffer will be swapped to the

front, and the original front buffer becomes the current back buffer to render the next

frame. Thus, artifacts will no longer be displayed on the screen.

3.2.2 Shaders and GLSL

As explained earlier, OpenGL ES 2.0 implements a programmable graphics pipeline.

Programmers may put their own code in the shaders to do postprocessing and produce

special effects. Similar to XNA programming, OpenGL ES provides vertex shader

and fragment shader (it is called pixel shader in XNA), and programmers may use

OpenGL Shading Language (GLSL) to program shader code in the graphics pipeline.

The vertex shader is responsible for transforming the positions of vertices from 3D

space to 2D coordinate space, and it can also modify the coordinates and colors of

those vertices. In OpenGL ES, a vertex shader takes attributes, uniforms and samplers

as its input. Attributes could be the positions and colors of the vertices, or texture

coordinates. These values are always stored in vertex arrays in the program. In this

project, an array of structures that contains vertices' coordinates, colors, and other

information is used to provide those attributes. The details will be introduced in

Chapter.4. Uniforms provide constant data to the vertex shader, like the world, view,

and projection matrices. Samplers are an optional input to a vertex shader, and are

used to represent textures. The output of vertex shader is called varyings, like vertex

colors and texture coordinates. These values are interpolated in rasterization stage,

26

and the results will be sent to the fragment shader.

The fragment shader takes the output varyings of the vertex shader as its inputs. It

mainly handles the calculation of the colors and some other attributes of the fragments,

and finally outputs the color of each fragment. The inputs and outputs of the shaders

are shown in Figure.15.

Figure.15 Inputs and Outputs of the Shaders [17]

In OpenGL ES, shader objects and program objects are essential for using shaders. In

the process of using shaders, shader objects are firstly created. In the sample code of

this project, two shader objects were created, one for the vertex shader, and the other

for the fragment shader. Shader objects contains the shader source code (one shader

object contains the source code of one shader), and these objects will be linked to a

later created program object after compiling. A program object is attached with one

vertex shader and one fragment shader, no more and no less. The program object is

then linked to the program, and the shaders are ready for rendering.

27

The programming language used for coding OpenGL ES shaders is called OpenGL

ES Shading Language (GLSL), which is a high-level shading langrage created by

OpenGL Architecture Review Board. GLSL and HLSL are similar to each other.

They are all based on the syntax of C programming language, but there are still some

differences between them, like the keyword of variable types (e.g. "vec4" in GLSL,

but "float4" in HLSL) and the names of some built-in functions.

However, the goal of this thesis is to investigate how XNA programming can be

ported to the Raspberry Pi. Since this project focuses on rewriting the classes of XNA,

and the differences between both shading languages are not so numerous, GLSL was

directly used to replace the HLSL for coding shaders in this project.

3.3 JBBRXG11

As described in section 2.2, the JBBRXG11 project is built with the XNA 4.0 library,

trying to extend XNA to work with DirectX 11 via SlimDX. As XNA is not an open

source library, the JBBRXG11 project involves a large amount of work to rewrite the

source code of XNA classes.

SlimDX is an open source framework that allows developers to create DirectX

applications. Essentially it is a wrapper for DirectX. In JBBRXG11, SlimDX was

used to access DirectX 11 methods when replacing the XNA classes that access the

graphics systems. Figure.16 shows the generalized system architecture of

JBBRXG11.

28

Figure.16 Architecture of JBBRXG11 [19]

JBBRXG11 replaced all classes that interact with DirectX 9 using SlimDX to get

access to DirectX 11, and the XNA's content manager system was also replaced by

modified content loaders. When users program with the JBBRXG11 system, their

code will be similar to XNA programs, but the data is actually send to DirectX 11

through SlimDX. The JBBRXG11 system can be downloaded from the web page

http://jbbrxg11.codeplex.com/ [20]

This thesis investigates how to port XNA to Raspberry Pi, trying to replace DirectX

with OpenGL ES. The JBBRXG11 system is an extension of XNA. It still works with

parts of the XNA framework. However, the XNA framework cannot be used in the

modified classes as the operating system used on Pi is not Windows.

In this project, the source code of JBBRXG11 was used as a reference to rewrite some

XNA classes. The modified classes provides methods that have the same names with

those in XNA to the users, and the XNA classes that interact with DirectX were

replaced with modified classes to make procedure calls from OpenGL ES. Figure.17

shows the architecture of the modified system in this project. XNA classes are still

http://jbbrxg11.codeplex.com/

29

used in JBBRXG11, but they were replaced with new versions appropriate for the

Raspberry Pi in this project.

Figure.17 Architecture of Modified System on Raspberry Pi

When programming with the modified classes on Raspberry Pi, users' programs are

similar to XNA programs on Windows, but the underlying classes actually interact

with graphics systems through the OpenGL ES library.

3.4 Raspbian

Raspbian is the most widely used operating system for Raspberry Pi. This project

used Raspbian as well. However, when Raspberry Pi was first announced, the

operating system used on Pi was the ARM based Fedora created by Red Hat company.

As the early version of Raspberry Pi only has 256M memory space, which does not

meet the requirement of Fedora, it cannot smoothly run this system. In August 2012,

Raspbian was released and replaced Fedora.

Raspbian is a Debian based operating system created by Mike Thompson and Peter

Green. A large amount of work has been done by these two volunteers, including a

home-built cluster of ARM computers, and the rebuilding of 19,000 Linux software

packages.[7]

A number of versions of the Raspbian have been developed. The one used in this

30

project is the "Hard-float" version Raspbian. A Floating-point Unit makes

mathematical calculations very quick. Although Debian supports floating point for

ARMv7 processors, it does not support ARMv6 (the version used on the Raspberry

Pi). As explained by Thompson, "Debian didn't see a product like the Raspberry Pi

coming on the horizon. Even though ARMv6 in Pi has a pretty capable floating point

unit, they didn't support it, all the thousands or tens of thousands of software packages

they built wouldn't support the Raspberry Pi. A floating point unit performs all the

math very quickly, it's a peripheral that not every computer has, but when it does you

really want to take advantage of it."[7] Using floating point unit may increase the

calculation speed of the system, which is important for any numerically intensive

tasks.

The biggest difference between the "Hard-float" and the "Soft-float" is speed. The

Hard-float uses on-chip floating point unit, while the Soft-float emulates one in

software. Making software handle a large amount of mathematical operations will

obviously slow down the speed of Pi. Therefore, the "Hard-float" version Raspbian

was used in this project to take advantage of floating point capability in the

hardware.[7] However, Mono does not work with the Hard-float version Raspbian.

The way of installing Mono will be explained in the Appendix.

31

Chapter 4: Development

This chapter discusses all the significant details of the implementation in this project.

As explained earlier, XNA is an library designed for the Windows operating system,

and it can interact with the graphics card through DirectX, which is an API designed

for Windows as well. This project investigates the possibility of porting XNA on to

Raspberry Pi, which is a computing device that can run the Linux operating system. In

order to achieve this goal, OpenGL ES was used to replace DirectX, and a number of

XNA classes needed to be rewritten. However, before rewriting the code of XNA,

some other work needed to be done.

The two biggest challenges of this project are, firstly, how to make the modified XNA

interact with the graphics system through OpenGL ES 2.0 on Raspberry Pi, and

secondly, when users programming with the modified XNA on Raspberry Pi, how to

make their code similar to that programmed on Windows.

Therefore, before doing any modification to XNA, the first thing is to learn how

OpenGL ES works. The operating system used on Raspberry Pi, the Raspbian,

provides the OpenGL ES 2.0 library, and also some sample code that uses this library

to display objects. However, these sample projects are all written in C++, while XNA

classes are all written in C#. So the second thing to do before modifying XNA is to

investigate how to make procedure call to OpenGL ES using C# language. What is

more, it is also necessary to find out how to use the native windowing system on the

Raspberry Pi.

As there are no suitable IDEs that can be used on Raspberry Pi currently, and OpenGL

ES is a cross-platform API, in order to more easily find errors in the program, the two

steps described above (i.e. learning OpenGL ES and getting access to OpenGL ES

with C# code) were firstly done on Windows (with Visual Studio 2010), and then

move the program on Raspberry Pi to do further modifications. Experiments with

windowing were done on the Pi itself.

Once programming with OpenGL ES in C# language on Raspberry Pi is successful,

the last step is to rewrite some of the XNA classes to allow coding similar to

32

programming in XNA on Windows.

The remainder of this chapter is divided into three sections, explaining the details of

how each step was done in this project. Each step created four sample programs,

started with displaying a blank window, followed by displaying a triangle, then a

colored rotating cube, and finished with showing a textured rotating cube. In the end

of this project, the modified XNA allows programmers to create a textured rotating

cube with lighting effect on Raspberry Pi, shaders are in separate files, and the code is

similar to that on Windows (all the programs mentioned in this thesis are included in

the Appendix).

4.1 C++ code with OpenGL ES 2.0 on Windows

This project started with learning OpenGL ES and writing four sample programs

(displaying blank window, triangle, cube and textured cube) in C++ with OpenGL ES.

As errors may occur when developing sample programs, it is better to program with

an IDE that is capable of indicating syntax errors and debugging. However, because

there were no suitable IDEs that could be used on Pi, all the sample programs were

firstly developed on Windows. Once a program worked, it was moved to Raspberry Pi,

and further modified to be executable on Raspbian.

The next section which explains how to rewrite the four sample programs in the C#

language was also started on Windows, and then moved to Raspbian.

4.1.1 OpenGL ES 2.0 Sample Program

Before writing sample programs, the way of programming with OpenGL ES should

be understood. This project used OpenGL ES 2.0 to replace DirectX, so a sample

program that uses GLES version 2.0 was used as a reference.

As shown in Figure.18, this sample code is written in C++, displaying a textured ninja

model on a colored background, and the angle of the view can be changed by clicking

and moving the mouse. It contains a number of classes and functions to implement the

display, but only four of them are of importance to the program.

33

Figure.18 Ninja Sample

Figure.19 explains the basic structure of the Ninja program.

34

Figure.19 Structure of the Ninja Program

As a C++ program, before writing the classes and functions, the first thing to do is to

include header files that are needed in the program. Figure.20 shows the header files

used in the Ninja program, the "egl.h" and "gl2.h" allows programmers to use the

functions in EGL and OpenGL ES 2.0 libraries (the detail of EGL and OpenGL ES 2.0

have been described in Chapter 3). "nativewin.h" is used for interacting with the

native windowing system.

35

Figure.20 Header Files in the Ninja Program

The most important function in this sample program is the main function. It controls

the process of the program by calling other functions.

The first function called by main is the 'Setup' function, which is responsible for

initializing all the component of display. In the Setup function, it firstly calls

OpenNativeDisplay to interact with the native windowing system and creates a new

window, and then calls eglGetDisplay to connect to the EGL display server, and gets

an EGL display handle. Once the connection is successful, EGL needs to be initialized

by calling eglInitialize function, which uses the EGL display handle as one of its

parameters. After that, eglChooseConfig is called to obtain the first display

configuration with a depth buffer. Once a suitable EGL configuration has been chosen,

the next step is to create an on-screen rendering surface for the main window, and an

OpenGL ES rendering context. "A rendering context is a data structure that contains

all of the state required for operation, like the references to the vertex and fragment

shaders and the array of vertex data."[17] These are done by calling the

eglCreateWindowSurface and the eglCreateContext respectively. The last function

called by Setup is eglMakeCurrent, which makes the EGL context and the rendering

surface current, because multiple contexts may have been created in the program. The

process of initialization of the program (i.e. the Setup function) is shown as Figure.21.

36

Figure.21 Process of Initialization (Setup Function)

After the initialization process is done, the second function called by main is

'CreateProgram'. This function handles the loading of shaders, compiling shaders, and

link shaders to form the shader program. In this sample program, shader code is

included in the CreateProgram function in literal strings. The shader source code is

shown in Figure.22. Both the vertex shader and the fragment shader contains only

several lines of code, so it can be included in the program. If the shaders contain a

large amount of code, then they should be created as separate files, and be loaded by

the program. In this project, the final rewritten XNA system will load shader files just

as programmers use XNA on Windows. This will be explained later.

37

Figure.22 Shader Code of Ninja Sample Program

After the shader source code has been defined, the next step is to create shader objects

and compile the shaders. As described in Chapter.3, shader object is an OpenGL ES

object that can be used for attachment to a shader program object.[17] The shader

object is created by the glCreateShader function. Then the shader source code can be

loaded by using glShaderSource, and the shaders can be compiled by using

glCompileShader. glGetShaderiv can be used to check if the shader has been

successfully compiled. The code of loading and compiling shaders is shown in

Figure.23. However, it is difficult to get syntax errors

38

Figure.23 Create Shader Objects and Compiling Shaders

Once the shaders are ready for use, a shader program object should be created using

glCreateProgram. The shader objects are attached to the program object using

glAttachShader. The next step is to link the shaders together. Linking a program

object is accomplished using glLinkProgram.[17] The linking status can be checked by

using glGetProgramiv. Finally the individual compiled shader code objects can be

deleted, as they are no longer needed. The code for assembling and linking the shader

program is shown in Figure.24.

39

Figure.24 Linking Shaders

The last job of CreateProgram is to assign the locations of the attributes in the shaders

(i.e. "to map a generic vertex attribute index to an attribute variable name in the

shader"[17]). There are two ways to do that. The first, which is also the approach used

in this project, is to let OpenGL ES 2.0 to bind the index to the attribute name by

calling the glGetAttribLocation function. The other approach is to let the application

bind the index to an attribute name by using glBindAttribLocation. As this thesis is

not about how to program with OpenGL ES 2.0, the detail of the second approach will

not be explained.

glGetAttribLocation returns the generic attribute index (which is actually an integer)

bound to the attribute variable name. The index will later be used in another function

to allocate a buffer to the attribute data. The code is shown in Figure.25. The "po" in

the program is the shader program object. The Ninja program uses a structure (i.e.

ctx.rs in the program) to hold these values. Later in the Render function, the three

vertex streams will be bound to three attributes in the vertex shader.

Figure.25 Mapping Indices to Attributes

40

The process of the CreateProgram function is shown in Figure.26.

Figure.26 Process of CreateProgram

The last essential function called by main is the 'Render' function. Render is the

function that actually draw objects on the screen, and it is called on every iteration of

the main loop. The Ninja program implements a number of effects, so its Render

function includes a lot of code. However, most of the code is not of importance for

displaying objects. For example the transformation effect requires some calculation of

matrices, but models can still be displayed without this effect. Therefore, in order to

make the introduction more clear, this section only discusses the most important

processes involved in Render function. Other OpenGL ES provided functions were

also used in this project, and will be explained later in this thesis.

In the Ninja program, there are three vertex arrays storing vertex positions, vertex

41

normal and texture coordinates respectively.

The Render function mainly implements four tasks. It firstly uses glClearColor to set

the color for the background, then calls glUseProgram to bind the shader program to

the graphics device (i.e. load the shader code onto the GPU). Once the program is

bound, glVertexAttribPointer is used to specify the vertex arrays (the vertex attribute

indices acquired in CreateProgram is used as one of the parameters in this function),

and glEnableVertexAttribArray is called to enable the generic vertex attribute array.

The code is shown as Figure.27.

Figure.27 Specifying Vertex Arrays

Figure.28 shows the way of specifying vertex attributes, and binding them to attribute

names in the shader. This figure is referenced from the book "OpenGL ES 2.0

Programming Guide"[17].

42

Figure.28 Specifying and Binding Vertex Attributes for Drawing Primitives

The last job of Render is calling glDrawArrays to draw primitives on the screen, and

using eglSwapBuffers to flip the visible buffer.

All the other functions called by main are not important to the display, like detecting

the mouse move and loading textures.

4.1.2 C++ Blank Window

The Ninja sample program was used as a reference to create the sample programs for

this project. The best way of writing sample code is to start with creating something

really simple. For example, displaying a blank window. When creating a new XNA

project on Windows, programmers may execute the outline program provided by the

system without doing any modifications to it, and a blank window will be displayed.

43

Therefore, the first sample program created in this project is to display a blank screen

with OpenGL ES 2.0 using the C++ language. This program was built by modifying

the Ninja program. Only three functions were kept, which are the Setup function, the

Render function and the main function. All the other functions like loading textures

were deleted from this program. As nothing needs to be displayed in the window,

shaders were not needed, so the whole CreateProgram function was deleted as well.

The Setup function only contains the initialization routines, so it was not modified.

The code in the Render function was largely minified, as it does not need to do any

transformation calculations, nor allocate buffers to attribute data. The current Render

function only clears the background to a given color, and swaps buffers. The code is

shown as Figure.29.

Figure.29 Render Function for Displaying a Blank Window

The main function was not modified much, just deleting the invoke of CreateProgram.

Figure.30 shows the execution effect of this program. It was possible to verify that the

program was working as expected by altering the clear color and seeing that this

changed the display properly.

44

Figure.30 Displaying Blank Window with OpenGL ES 2.0 on Windows

4.1.3 C++ Triangle

Once the program for displaying a blank window can be successfully compiled, the

next step is to display something on the window. As an object consists of a number of

triangles, the simplest object to built is a single triangle.

The Setup function does not need to be changed. Compared to the blank window

program, shaders are needed to display a triangle, so the CreateProgram function

should be added. The shader source code is quite simple. In the vertex shader, the

vertex data of the triangle is sent to an attribute named "vertPosition", and its value is

passed to gl_Position without any other calculations. In our sample data, vertex

coordinates were supplied in projection space, so no transformations were needed. In

the fragment shader, a vector4 is created to define the value of gl_FragColor. The

source code of shaders is shown in Figure.31.

45

Figure.31 Shaders to Display a Triangle

The process of compiling shaders and linking the program does not change. At the

end of CreateProgram, there is only one generic vertex attribute index that needs to be

mapped, with the attribute vertPosition.

In the Render function, the vertex coordinates are provided, and the index of

vertPosition (vertLoc) is used to load the vertex data to the shader. Figure.32 shows

the source code of the modified Render function.

Figure.32 The Render Function for Displaying a Triangle

46

The main function is all the same as that of the Ninja program. Figure.33 shows the

execution effect of the program. The white color of the triangle is as defined in the

fragment shader. Again the function s of the program can be verified by changing

color in the fragment code and positions in the vertex array.

Figure.33 C++ Triangle on Windows

4.1.4 C++ Colored Rotating Cube

The triangle sample has successfully shown how to render a 2D object with OpenGL

ES 2.0. In order to learn how to create and display 3D objects, the next step is to draw

a colored rotating cube by extending the triangle program.

Before implementing the transformation and coloring effect, the first goal is trying to

draw a cube on the window. There is not too much code to change. The Setup

function, the CreateProgram function and the main function do not need to be

modified at all (except the color of the cube defined in the fragment shader). In the

Render function, the glDrawElements is used to draw primitives. This function asks

for an array of indices as one of its parameters, so an array of indices should be

47

defined in Render. The code of the Render function for displaying a cube is shown in

Figure.34.

Figure.34 Source Code of the Render Function for Displaying a Cube

The array of indices declares the sequence for drawing the vertices. There is one thing

that should be noticed. As some graphics cards cannot use arrays of 32 bit integers as

indices, the array of indices needs to be declared as 'GLushort' (16 bit) type. Figure.35

shows the index numbers on the cube.

48

Figure.35 Index Numbers on the Cube

The effect of executing the program is shown as Figure.36.

Figure.36 Displaying a Cube with OpenGL ES 2.0

At this stage, as neither the cube nor the view position can be changed, there is only a

square shown on the window, but it is actually a cube. This can be checked by

modifying some coordinates of the vertices. Once the cube was successfully rendered,

color and transformation could be added to the program.

There are two changes that need to be done from the current program to display a

colored rotating cube.

49

Firstly, in addition to an array of vertex coordinates, an array of vertex colors is also

needed. Compared to former programs, the colored rotating cube program needs to

allocate two buffers to store vertex attribute data, one for the vertex coordinate data,

and the other for the vertex color data. The modified program used vertex buffer

objects to solve this problem. The reason for using vertex buffer objects is that they

ensure good performance for the program. When drawing primitives, the data of the

vertex arrays that was originally stored in client (CPU) memory needs to be copied to

the graphics memory (GPU). "Vertex buffer objects allow OpenGL ES 2.0

applications to allocate and cache vertex data in graphics memory and render from

this memory, rather than copying vertex data on every iteration"[17].

Secondly, in the Render function, a calculated matrix is needed to implement

transformations. This program uses three 4x4 matrices, which are known as the World,

View and Projection matrices, to calculate the transformation matrix. The World

matrix defines the position and orientation of the object, and it handles the rotation,

scaling and translation of the object. The View matrix sets the viewport (i.e. the

camera position). The Projection matrix describes how the object should be projected

onto the screen. The transformation matrix is calculated by multiplying these three

matrices in order, and then it is sent to the vertex shader as a uniform to be used to

calculate the position of the vertices.

Figure.37, Figure.38 and Figure.39 describe the modifications of the source code

based on the first cube program.

In CreateProgram, the data for vertex coordinate and vertex color are defined in two

separate arrays. To use vertex buffer objects, glGenBuffers should be called to

generate a buffer, followed by calling the glBindBuffer function to bind the buffer

objects with the buffers (as shown in Figure.37, vbo_cube and vbo_cube_colors are

two GLuint type variables, holding the index of each vertex buffer object).

glBufferData is used to load data into the buffers. What is more, "mvpLoc" and

"attribute_v_color" are calculated, representing the location of the transformation

matrix and that of the vertex color in the vertex shader.

50

Figure.37 Creating Vertex Buffer Objects

In shader source code, the uniform named mvpMatrix is the transformation matrix

calculated from World, View and Projection matrices. It is used to calculate the value

of gl_Position in vertex shader. Color data of the vertices is passed to the fragment

shader in the f_color varying vector, to supply the color of each vertex.

51

Figure.38 Shader Source Code of Colored Rotating Cube

In the Render function, rebind the buffer first, and then specify vertex attribute data

with glVertexAttribPointer. Note that the second call to glVertexAttribPointer has all

its parameters listed with comments showing their purpose (this will be important

later).

Figure.39 Rebinding Vertex Buffer Objects

52

Figure.40 shows the execution effect of colored rotating cube program. Again correct

operation can be verified by altering colors and transformations.

Figure.40 Colored Rotating Cube

4.1.5 C++ Textured Cube

In an XNA project, external files like images, videos and font can be loaded into the

program by XNA's content manager. Therefore, the last sample program was built to

determine how to load and paste textures on to a 3D object with OpenGL ES 2.0.

First of all, in the textured cube program, a new function named 'LoadTexture' was

created to load the data of the texture. OpenGL ES 2.0 does not include functions for

decompressing or interpreting different image file formats. This sample uses a texture

file in .BMP format. .BMP files are not (usually) compressed, so this avoids issues

with decompression. It was not difficult to write code to extract the raw pixel data

from the file. This function specifies the path of the image file, and calls

glTexImage2D to load the image data. glTexImage2D is a function provided by the

53

OpenGL ES 2.0, which requires a number of parameters to provide some information

about the image. Some of the parameters are set with pre-defined values, like the type

of the incoming pixel data, while the others, like the width and height of the image in

pixels, and the actual pixel data of the image, need to be read from the file. As shown

in Figure.41, four structures were created to read the image data. The width and

height information are stored in the BMPInfoHeader structure, and the pixel data of

the image is stored in an array of RGB structures. The texture data will later be sent to

the fragment shader as a sampler2D uniform to calculate the color of the cube.

Figure.41 Structures for Reading Image Data

What is more, as textures are going to be pasted on each surface of the cube, the

direction of pasting the textures need to be defined. This is done by adding an array of

vertex texture coordinates in the Render function. The texture coordinates use the 2D

54

UV coordinate system to specify how the textures should be pasted on the surfaces.

Figure.42 shows how the texture coordinates are declared. Each surface of the cube is

drawn with two triangles. For example, as shown in Figure.42, the front face of the

cube consists of triangle 0-1-2 and triangle 0-2-3. The first two members in the

texture coordinates array, the "1,1,", specifies that the upper right corner of the texture

should be pasted on the upper right corner of the front face. The texture coordinates

array will be sent to the fragment shader to indicate the positioning of texture.

55

Figure.42 Texture Coordinates

56

The source code of the new shaders is shown in Figure.43. The texCoord0 attribute

contains the texture coordinate data, and textureUnit0 references the texture sampler

hardware and through that, the image data. The varying vTexCoord is used to pass

texture coordinates from the vertex shader to the fragment shader.

Figure.43 Shaders for Displaying a Texture Cube

There is one problem that should be noticed when specifying vertex data in the

Render function. As explained earlier, the sample code uses vertex buffer objects to

allocate and cache data in graphics memory (i.e. in a GPU buffer) for both vertex

coordinates and vertex colors. In this sample program, the texture coordinates were

defined in the Render function, and did not use vertex buffer objects, which means the

data of the texture coordinates is stored in the client memory (i.e. in a CPU buffer).

There is no special reason for doing this other than to establish that mixed CPU/GPU

buffers were possible in OpenGL ES. Managing buffer data is a major issue in this

project as a whole, and as it turns out an issue did arrise. After specifying the data of

vertex colors, the buffer is currently bound, and glBindBuffer with a 0 as its second

parameter need to be called to remove the binding, so that UV data can be properly

connected. Figure.44 shows how it was done in Render.

57

Figure.44 Specifying Vertex Data for Drawing a Textured Cube

The executing effect of textured cube is shown in Figure.45.

Figure.45 Textured Cube

58

4.2 C# Code with OpenGL ES 2.0 on Windows

XNA is written in C#, and XNA projects are all written in C# as well. Therefore, once

the C++ sample programs have been acquired, the next step is to rewrite the sample

programs with C# language (later on Raspberry Pi, Mono was used to compile and

run the C# programs).

One of the challenges in this project is how to make procedure calls from OpenGL ES

2.0 in a C# program on Raspberry Pi. As described in section 4.1, the C++ programs

use a number of "#include <header file name>" commands to get access to the

headers and libraries. However, C# does not provide "#include" key word, so it is

impossible to get access to OpenGL ES library with just one command line.

The way of solving this problem is to use the "DllImport" command to explicitly

import every OpenGL ES function and every EGL function into the program. What is

more, as the OpenGL ES 2.0 library is written in C language, the data types of the

functions and their parameters need to be changed into C# defined types. For example,

in initialization stage, the first EGL function called by the program is eglGetDisplay.

Figure.46 shows the declarations of this function in the EGL library and in the C#

program. The C language is excellent for defining data types. In the EGL library, the

return value of eglGetDisplay is defined as a type named "EGLDisplay", which is

actually a void pointer type. The parameter is declared as "EGLNativeDisplayType",

which is an integer handle. In C program, they are two different data types. However,

in the C# program, both two types become "IntPtr". In this way, all the EGL functions

and OpenGL ES functions can be imported into the C# program. In C#, IntPtr is

essentially an integer, but large enough to hold a pointer value. No arithmetic is

permitted on an IntPtr value. With the Windows operating system, it is often used to

hold handles or pointers when accessing unmanaged code.

59

Figure.46 Importing an EGL Function into a C# Program

The type mappings developed and used in this project between EGL and C# are

shown in Figure.47.

Figure.47 EGL Type Mappings

4.2.1 C# Blank Window

As when writing C++ sample programs, to experiment with coding an OpenGL ES

program in the C# language, the first step was to create a program as simple as

possible. The first C# sample program again displays a blank window to ensure an

executable environment for the following programs.

Compared with the C++ program, the structure of the C# program does not change

too much. It also starts by calling an Initialize function (which is known as the Setup

function in C++ programs) to create the render surface and the window for display,

then calls the Render function in the main loop to clear the color of the background

and swap buffers to display the rendered surface. The Windows forms library, which

provides access to display windows for C# programs gives access to the underlying

Win32 "window handle" which can be passed as the EGLNativeDisplayType value.

The content of each function has not changed, only the code was written in C#

60

language. As the functions of every procedure call from the OpenGL ES 2.0 library

need to be declared in C# program, there are dozens of code lines declaring the

imported functions and predefined values that are used in those functions.

Furthermore, a function named 'Terminate' was added to the program to delete buffers

and to release resources when needed.

Figure.48 and Figure.49 show the code. In the following sample programs (i.e.

displaying triangle, cube and textured cube), with the increasing number of the

OpenGL ES functions used to display objects, there will be even more command lines

to import functions into the C# programs. As the way of importing functions are all

the same, the screen shot of the importing source code will not be shown again.

The output display of the C# sample programs looks the same as that of the C++

programs. So screen shots from the C# programs will not be shown in this section.

61

Figure.48 Predefined Variables

62

Figure.49 Importing Functions from EGL and OpenGL ES 2.0

4.2.2 C# Triangle

The C# triangle program has the same structure with the C++ triangle. A

CreateProgram function was added to the program to handle the loading and

compiling of the shaders, and linking the program. The process of the Initialize

function, the CreateProgram function and the Render function are all the same with

those of the C++ program. Shader source code did not change. An interesting issue

when compiling the shader was passing a C# string value to a C char array. The C#

marshalling code managed that transparently. Only the syntax of the programming

language was changed to C#. The details of the code can be checked in the Appendix.

63

4.2.3 C# Colored Rotating Cube

The colored rotating cube sample was also modified from the C++ program. As vertex

buffer objects are used in this program, the glVertexAttribPointer function need to be

declared as two overloaded functions. The data type of its last parameter is different.

When using VBO (vertex buffer objects), the last parameter is an integer indicating

the buffer. If there is no VBO used, the last parameter should be an array of float that

stores the vertex data. Figure.50 shows the overload of the glVertexAttribPointer

function.

Figure.50 Overloaded Functions of glVertexAttribPointer

In this program, matrices and vectors are used to calculate transformations. However,

rewriting the Matrix and the Vector classes involves a large amount of workload.

Therefore, the XNA framework was used to provide mathematical classes to the

program. These classes were later rewritten for the sample programs on Raspberry Pi.

4.2.4 C# Textured Cube

Compared to the C++ textured cube sample program, the LoadTexture function

becomes much simpler in the C# program. It still uses glTexImage2D function to load

textures. The image can be loaded by the FileStream function provided by the System

namespace, and the width and height of the bitmap texture can be queried by using the

Bitmap function. The pixel data of the image is acquired from calling the LockBits

function (declared in the Bitmap class), and the data is copied into a byte array, which

is later used as a parameter in glTexImage2D. Figure.51 shows the source code of the

LoadTexture function.

Note the frequent use of Console.WriteLine. Correcting errors was a continuing

source of difficulty during this project, and much of the sample code has frequent

debug displays to show progress and warn of problems.

64

Figure.51 LoadTexture Function in C# Program

4.3 C# Programs on Raspbian

Once all the C# sample programs were successfully executed on Windows, the next

step was to copy these programs on the Raspberry Pi, further modifying them to make

these C# programs executable on Pi. The introduction of how to set up Raspberry Pi,

and how to make programs find the path of the libraries will be explained in the

Appendix.

The Raspberry Pi had very simple OpenGL ES 1.0 and OpenGL ES 2.0 samples.

These were not used directly, but porvided information on how to interface with the

Raspberry Pi's native graphics system.

65

4.3.1 C# Blank Window on Raspbian

The program to display a blank window must be modified in several ways to be

executable on Pi. Firstly, as Raspbian has a different display system from Windows,

the Initialize function needed some change. In this project, the DispmanX API was

used to handle the display on Raspberry Pi. Different from the XWindow system,

DispmanX does not create any windows in the X-Window's sense. Instead it takes

over an area of the screen (or all of the screen, it depends on users' setting) to display

rendered objects. DispmanX is the display manager provided by Broadcom.

In the process of the Initialize function, the rendering surface is created by the

eglCreateWindowSurface function. In the C# sample programs created on Winodws,

the third parameter of this function was declared as an IntPtr variable, which was

passed a Win32 window handle obtained from the .NET form window using the

GetHandle function.

By contrast, the data type of the third parameter in eglCreateWindowSurface was

declared as EGL_DISPMANX_WINDOW_T on Raspbian.

EGL_DISPMANX_WINDOW_T is a structure that contains three members.

The width and height represent the size of the rendering area. There is a

graphics_get_display_size() function in DispManX that detects the resolution of the

monitor, and display for full screen. In this project, the width and height of the

rendering surface were hard coded as 640 and 480 respectively. The other member,

element, is a handle to a dispmanx area, which can be acquired by calling the

vc_dispmanx_element_add function.

Figure.52 shows the source code for creating a window surface on Raspberry Pi. The

"nativewindow" in the code is an EGL_DISPMANX_WINDOW_T type structure.

66

Figure.52 Creating Window Surface on Raspberry Pi

The running effect of the modified "blank window" program is shown as Figure.53.

Figure.53 Blank Window on Raspberry Pi

67

As shown in Figure.53, the upper left corner of the screen displays a blank area with

size 640 x 480, and there is no frame for the window. Instead of clicking a "Close"

button to stop the program, users may press "Ctrl + C" to stop the test program and

therefore close the window.

4.3.2 C# Triangle on Raspbian

To make the C# triangle sample program executable on Raspberry Pi, there is only

one part of the source code that needs to be modified. In the Initialize function, once

the display surface has been successfully created, the rendering context can then be

created by calling the eglCreateContext function. The last parameter of this function

is a list of attributes that specifies attributes and attribute values for the context being

created, and the list has the same structure as described for eglChooseConfig

(eglChooseConfig returns a list of EGL frame buffer configurations that match the

attributes specified in attribute list). In programs created on Windows, this

parameter can take "null" as its value (when there are no attributes recognized, this

parameter will normally be null or empty as though the first attribute was

EGL_NONE). However, this does not work on Raspberry Pi. It is possible that some

platforms will define attributes specific to those environments, as an EGL extension.

A non-null attribute list that is terminated with EGL_NONE will be passed to the

underlying EGL implementation.[22] The context attributes need to be explicitly

defined on Raspbian, or nothing will be displayed. The declaration of the attributes is

shown in Figure.54.

Figure.54 Context Attributes

EGL_CONTEXT_CLIENT_VERSION is followed by an integer "2" indicating an

OpenGL ES 2.x context should be created.

68

Once the attributes are used to create the rendering context, the triangle program can

be successfully executed on the Raspberry Pi. Figure.55 shows the running effect of

this program.

Figure.55 Triangle on Raspberry Pi

4.3.3 C# Colored Rotating Cube on Raspbian

The program that displays a blank window and the one displays a triangle only have

one ".cs" document to be compiled. By contrast, the cube program implements

transformation effects, so the rewritten XNA mathematical structures are needed to do

the calculations. The modified mathematical structures include Vector2, Vector3,

Vector4 and Matrix. The work of rewriting these structures are done by the supervisor

of this thesis, Bill Rogers.

Although the C# programs created on Windows make procedure calls to the OpenGL

ES 2.0 library, the shading language used in those programs is still HLSL. Compared

with the C# cube program on Windows, the program on Raspberry Pi needed

modified shader source code, as GLSL has a different syntax from HLSL. Note the

last program's shaders were so simple (only vertex position was passed to the vertex

shader) that the source code of last program's shaders were not given.

69

Figure.56 shows the differences between the shader source code. Firstly, there is no

"mul" function provided in GLSL. Matrices can be simply multiplied with a "*"

symbol. Secondly, the float number in GLSL do not have an "f" suffix. If the number

is written as "1.0f" in GLSL, then the rendering of the objects will be failed and

nothing can be displayed on the window.

Figure.56 Modified Shading Language

What is more, another important change of the program on Raspberry Pi is the

sequence of drawing the vertices. The triangle primitives are assumed to face in a

direction, which is defined by the order of the vertices. These primitives can be

70

discarded based on their apparent facing, and this process is known as Face

Culling.[23] The default cull mode of OpenGL ES is anti-clockwise (i.e. when drawing

a triangle primitive, the three vertices should be connected in an anti-clockwise order,

this was not noted on the triangle program as the vertices of the triangle was drawn in

the right direction by lucky), which is different from that of XNA. Therefore, the

sequence of drawing vertices on each primitive should be modified.

When compiling the program on Raspberry Pi, the several ".cs" files should be placed

in same folder. As there is no suitable IDE for compilation, the command line for

compiling the program needs to contain all the file names (command "gmcs cube.cs

Vector2.cs Vector3.cs Vector4.cs Matrix.cs" can be used in the Terminal to compile

the cube program on Pi). Figure.57 shows the running effect of the colored rotating

cube on Raspberry Pi.

Figure.57 Colored Rotating Cube on Raspberry Pi

4.3.4 C# Textured Cube on Raspbian

As described in section 4.2.4, the LoadTexture function used in Windows programs

read the image data by the Bitmap class. This class belongs to the System.Drawing

namespace. However, Mono does not provide the Drawing namespace, so a new

function is needed to load textures. The C++ on Windows program had its own code

71

for reading Bitmap files (see section 4.1.5). A new version of this code was written in

C#.

The data of a bitmap image contains two parts, the FileHeader and the InfoHeader.

The LoadTexture function created on Raspberry Pi put this starts by calling the

BinaryReader function to get the data stream (the image should be copied into the

same folder as the other files, so the path of the image can be found), then reads data

of the FileHeader and the InfoHeader in separate byte arrays. The InfoHeader contains

the width, height and pixel data of the image, which are used as parameters in the

glTexImage2D function. The remainder of the file holds the pixel data. Figure.58

shows the source code of the new LoadTexture function.

72

Figure.58 LoadTexture Function for Raspberry Pi

The other parts of the program remains unchanged. Figure.59 shows the effect of

running the textured cube program on Raspberry Pi.

73

Figure.59 Textured Cube on Raspberry Pi

4.4 Rewriting XNA Classes

Once C# programs can be successfully run with OpenGL ES on Raspberry Pi, the last

step is to make the code look like XNA programs. The program should have a

Game1.cs class for users to put their code in, and also have other essential classes that

control the processes of the program and provide underlying functions to the

programmers.

As XNA contains a large number of classes, only the ones involved in the sample

programs were rewritten. The source code of JBBRXG11 was used as a reference to

write those classes. JBBRXG11 still uses some of the XNA framework, and those

parts were also replaced with C# code in this project.

4.4.1 Display a Blank Window with Modified XNA Classes

Once again, starts with creating a blank window. Before writing the classes, the first

step was to create a program with JBBRXG11 (almost identical to an equivalent XNA

program) that displays a blank window, and set the color of the background into

PaleGreen. As usual, the successful setting of windows color shows that the graphics

code is working correctly. The classes involved in this program are Program, Game1,

Game, GraphicsDevice, GraphicsDeviceManager, GameWindow, Gametime, Color,

74

DepthFormat and SurfaceFormat. In the JBBRXG11 system, these classes all either

use routines from the XNA framework or DirectX. JBBRXG11 is built on XNA and

only rewrote the parts that called DirectX methods. None of XNA is available on

Raspberry Pi, so classes from the XNA framework must be redeveloped here. Classes

that were part of JBBRXG11 are available in source code form and can be modified to

use the Raspberry Pi graphics system (i.e. EGL, Dispmanx and OpenGL ES 2.0).

Data Structure:

The Program class is the class of the program that contains the Main function.

Figure.60 shows the source code of Program. In the Main function, an instance of the

Game1 class is created. Game1 inherits from the Game class. The Main function

creates an instance of Game1 and calls the Run method (a method defined in the

Game class. "This method is called to initialize the game, begin running the game

loop, and start processing events for the game"[24]) through the instance of Game1.

The Run method calls the GetGameManager method to access the instance of

GraphicsDeviceManager that is created in the Game1 constructor, and added to the

device manager list. In Game1 constructor, users may set the width and height of the

game window through the PreferredBackBufferWidth property and the

PreferredBackBufferHeight property defined in GraphicsDeviceManager. In the

Game class, the value of these two properties is read via the GraphicsDeviceManager

object, and passed as the parameters of the GameWindowInitialize method (defined in

GameWindow) to initialize and create a new window. After that, in the game loop of

Run method, the Draw method is called. The Draw method calls the Clear function

(defined in GraphicsDevice) to set the color of the window.

75

Figure.60 Program Class

Game1 Class:

Figure.61 shows the source code in modified Game1 class. When users programming

with the modified XNA classes to display a blank screen, their code in Game1 class

would be like this. Firstly declares an object of GraphicsDeviceManager, then defines

the size of the window in the constructor of Game1, and finally calls the Clear method

to set the color of the window in the Draw method. The code is the same with that

programmed with XNA on Windows.

76

Figure.61 Source Code in Game1 Class for Displaying a Blank Screen with JBBRXG11 on

Raspberry Pi

Rewriting the GameWindow Class for Raspberry Pi:

The modified GameWindow class only contains a constructor, a read-only property

that returns a handle of the window, and a SwapBuffers function.

The whole Initialize function of the rotating cube experimental C# program was

copied into the constructor of GameWindow, as it contains all the instructions for

creating rendering surfaces and displaying windows. Therefore, when creating a

GameWindow object in the Game class, all the initialize routine can be done and

window will be ready to use.

77

The read-only property "Handle" is supposed to return a handle that represents the

window. Therefore, the value of dispman_element (acquired in the constructor)

should be returned.

As described in previous sections, in the Render function of the C# programs,

eglSwapBuffers is called in the program loop after objects have been drawn. In XNA

programs, the Game class controls the process of the program. In every iteration of

the game loop, after the Draw method is called, the buffers need to be swapped.

However, the two parameters of eglSwapBuffers, display and surface, are declared in

the constructor of GameWindow, so the SwapBuffers method is also defined in the

GameWindow class (this method just calls eglSwapBuffers function to swap the

buffers). In the Game class, SwapBuffers can be called through a GameWindow

object.

Replacing the XNA GameTime Class:

The modified GameTime class contains overloaded constructors and three properties.

Figure.62 shows the source code of the modified GameTime. The three read-only

properties, ElapsedGameTime (the amount of elapsed game time since the last

update), IsRunningSlowly (a bool value represents whether the game is running

multiple updates this frame) and TotalGameTime (the amount of game time since the

start of the game) are used in the Tick method in Game class to control the running

speed of the game. The three overloaded constructors can be called to get the value of

these properties. In this class, the value returned from the ElapsedGameTime property

and the TotalGameTime property are declared as TimeSpan type, which is a structure

defined in the System namespace. So this structure does not need to be modified.

78

Figure.62 New GameTime Class

Replacing the XNA Color Class:

In the XNA's Color class, a large amount of source code is written to define the values

of different colors. A color is represented by a four byte value, and the four bytes

stand for R, G, B and A (red, green ,blue and alpha) respectively.

In the modified Color class, four properties were declared to read and write the value

of RGBA of a color. The constructor just copies the value from four integers to the

properties. As the purpose of this project is to investigate the possibility of

programming with modified XNA classes on Raspberry Pi, it is not necessary to

rewrite every part of the original classes in this project. Therefore, in the modified

Color class, only one predefined color, the PaleGreen, was declared to show it is

usable for the program (more colors can be predefined in the same way). There is

another property named PackedValue that gets or sets the current color as a 4 byte

79

packed value. When reading the value of the color from PackedValue, the data should

be read in an reversed order (i.e. in ABGR order) as it is written in the RGBA order.

Once a byte is read, the packed value is moved to the left with 8 bits to read the next

byte.

Figure.63 shows the source code of the new Color class.

Figure.63 Modified Color Class

80

Modifying the GraphicsDevice Class:

The GraphicsDevice class contains a number of properties and functions (e.g. the

functions used to draw primitives). However, at this stage, a lot of its routine can be

temporarily deleted as no objects need to be drawn currently.

As explained in the modified Game1 class, the Clear function used to set the color of

the window is called from a GraphicsDevice object. Therefore, the modified

GraphicsDevice class contains a constructor and a Clear function. Figure.64 shows

the source code of the modified GraphicsDevice class.

Figure.64 Source Code of Modified GraphicsDevice

81

The constructor of the GraphicsDevice class sets the displaying window according to

the parameters passed in. It determines whether the window should be displayed in

full screen, the size of the window, the surface pixel format and the depth buffer

format, and a handle of the window (the handle of the window is the "Handle"

property declared in GameWindow, it returns the IntPtr "dispman_element"). The

DepthFormat and the SurfaceFormat are two enumerations, are built as copies of the

XNA versions. Figure.65 and Figure.66 shows the source code of SurfaceFormat and

DepthFormat respectively.

The Clear function makes procedure calls to the OpenGL ES 2.0 library to set the

color of background by the glClearColor function, and then the glClear function. As

the predefined colors in the Color class use a 0-255 range value to define RGBA,

while the glClearColor function takes four values ranging from 0 to 1, so the RGBA

values of the colors must be divided 255 and converted to floats.

82

Figure.65 Source Code of SurfaceFormat

83

Figure.66 Source Code of DepthFormat

Modifying the GraphicsDeviceManager Class:

The GraphicsDeviceManager uses another class named game_registration (as shown

in Figure.67). game_registration is an object that is used to form a game "registration

list". The list associates one instance of each of Game, GraphicsDeviceManager and

GraphicsDevice. The reason for the list is that some of the XNA framework method

implementations assume that these classes of a game can access information from

each other. Method calls do not always provide the required access, so the registration

list provides a "behind-the-scenes" linkage. This is not well developed in JBBRXG11,

as facilities for games with multiple windows, or computers with multiple displays

have not yet been implemented. The registration list provides some connections and

the "hooks" for further development.

Figure.67 Source Code of game_registration

84

The modified GraphicsDeviceManager class declared two properties named

PreferredBackBufferHeight and PreferredBackBufferWidth. As described earlier,

users may define the size of the window by setting values to these properties in

Game1.

The constructor of this class add the generated Game instances and the

GraphicsDeviceManager instances into the registration list. It also provides default

values of back buffer height and back buffer width to PreferredBackBufferHeight and

PreferredBackBufferWidth respectively. Therefore, if users do not set the size of the

window themselves, the window will be created with its default value (600 height,

800 width).

The internal static constructor establishes the registration list.

What is more, the modified GraphicsDeviceManager class declares a CreateDevice

method to create an instance of GraphicsDevice and add it to the registration list. This

method returns the created GraphicsDevice instance.

Modifying the Game Class:

The Game class is the most important class in an XNA project. It is the parent class of

Game1, and controls the process of the whole program.

In the modified Game class for displaying a blank window, its constructor creates a

GameWindow object and three variables for controlling the game time.

The Game class also provides a number of protected virtual methods that will be

overriden in Game1 by the users. As described in Chapter 3, the four important

methods for the users are Initialize, LoadContent, Update and Draw.

In addition to the virtual methods, Game class has a Tick method that controls the

running speed of the game. In the modified Game class, the Update method, the Draw

method and the SwapBuffers method (declared in GameWindow) are called by Tick,

and Tick is called on every iteration of the game loop.

85

The most important method in Game class is the Run method. It handles the creation

and registration of the GraphicsDeviceManager objects and GraphicsDevice objects.

The Run method contains the game loop, but before that, a procedure call from the

OpenGL ES 2.0 need to be done to invoke the bcm_host_init() function, because the

Raspberry Pi requires that this function is called first before any GPU calls can be

made. It then loads content (there is no content to be loaded for displaying a blank

screen), resets the game time and create a window. Once the window has been created,

the game loop starts and the Tick method is repeatedly called to draw the window.

Figure.68 shows the source code of the Run method in the modified Game class. The

game loop was set to run for 1000 frames. The reason for the fixed number of frames

is that the program was hard to stop and sometimes it was necessary to power off the

Pi during development, especially when experimenting with full screen mode. This

provides a safe experimental system. This can be changed to make the program keep

running, and users may press "Ctrl + C" to stop the program.

86

Figure.68 Source Code of Modified Run Method

The effect of running is shown as Figure.69. This effect is different from that of the

previous C# program. With the Game1 class, the color of the window was changed to

"PaleGreen", and the size of the window has been successfully modified to 800 x 800,

so it becomes a square window rather than a 600 x 800 rectangle window. This proves

that all the modified classes are working well, and users may simply program their

code in Game1 class to display a blank screen.

87

Figure.69 Blank Window Displayed by Modified XNA Classes

4.4.2 Display a Colored Triangle with Modified XNA Classes

At this stage, the modified classes allow users to create a blank window, and they can

change the size and the background color of the window in the same way as

programming XNA on Windows. The current task is to do further modifications to

some of the existing classes, and add some new classes to allow users to draw a

colored triangle in Game1 class.

The first step is to create an XNA project on Windows that draws a colored triangle to

see how the user's code looks in Game1. In addition to the declaration of a

GraphicsDeviceManager object, users need to declare a VertexPositionColor type

array to store both vertex coordinate data and vertex color data. What is more,

BasicEffect, which is the built-in shader program of XNA, should be used to draw the

triangle.

Figure.70 shows the source code of the LoadContent method in Game1 for drawing a

colored triangle. The values of vertex coordinates and vertex colors are separately

assigned, and the color display of the vertices need to be enabled through the

BasicEffect object.

88

Figure.70 Source Code of the LoadContent method for Drawing Colored Triangle with XNA

on Windows

In the Draw method, the DrawUserPrimitives<T> method is called to draw the

triangle. This method is declared in the GraphicsDevice class, and takes four

parameters (the primitive type, the vertex data, the vertex offset, and the number of

primitive) to draw primitives. The "<T>" is a generic type, which indicates the data

type of its second parameter.

The source code of the Draw method is shown in Figure.71.

Figure.71 Source Code of the Draw method for Drawing Colored Triangle with XNA on

Windows

The running effect is shown as Figure.72

89

Figure.72 XNA Colored Triangle on Windows

The triangles drawn by the previous programs on Raspberry Pi were all in single

colors, so before modifying the XNA classes, a new C# sample program that draws a

colored triangle on Raspberry Pi was needed.

In the new colored triangle sample program, two vertex buffer objects were used to

store the vertex position and vertex data respectively (like the colored cube program).

Figure.73 shows the source code for using VBOs (vertex buffer objects) in the

CreateProgram function.

Figure.73 VBOs of Colored Triangle

90

In the Render function, the vertex buffers are bound again, and then calls to

glVertexAttribPointer are used to indicate the attribute location in vertex shader. The

source code is shown as Figure.74.

Figure.74 Using Two VBOs to Draw a Colored Triangle

In this way, a C# program that draws a colored triangle on Pi was acquired. The next

step is to do further modifications to the Pi-XNA classes to allow users coding like an

XNA program.

In order to draw a colored triangle, more classes are needed. Firstly, a

VertexPositionColor structure was added to declare vertices with position and color.

Secondly, when calling the DrawUserPrimitives method to draw primitives, its first

parameter indicates the primitive type. Primitive types define the way of using

vertices to draw primitives. Figure.75 shows some triangle primitive types supported

by OpenGL ES 2.0 (this figure is referenced from the book "OpenGL ES 2.0

Programming Guide"). As shown in Figure.75, GL_TRIANGLES draws a series of

separate triangles, GL_TRIANGLE_STRIP draws a series of connected triangles, and

GL_TRIANGLE_FAN also draws a series of connected triangles, but they are based

on one center vertex (the V0 vertex). Therefore, a PrimitiveType class is also needed.

91

Figure.75 Triangle Primitive Types

Thirdly, as the vertex coordinates were declared as Vector3 in the users' XNA program,

the mathematical classes are needed as well.

Modifying the VertexPositionColor Structure:

In this project, the VertexPositionColor structure only needs to contain a Color type

variable to store the vertex colors, and a Vector3 variable to store the vertex positions.

Its constructor just needs to pass the values of vertex data from the parameters to the

fields declared in VertexPositionColor structure. Figure.76 shows the source code of

VertexPositionColor.

92

Figure.76 Source Code of VertexPositionColor Class

In the Windows XNA framework, there are a number of vertex structures (e.g.

VertexPositionNormalTexture) and conventions to allow users to add their own. Each

structure provides a run time description in the form of an array of VertexElement

structures. This description allows full implementation of the generic

DrawUserPrimitives method in GraphicsDevice. For the Pi-XNA implementation, this

would be possible, but is left to further work. Instead we demonstrate how one or two

fixed vertex structures can be built and used.

Modifying the PrimitiveType Class:

PrimitiveType is an enumeration type. The PrimitiveType class in XNA is shown in

Figure.77.

Figure.77 PrimitiveType of XNA

93

Compared with XNA, the primitive types are declared as macros in OpenGL ES 2.0.

Figure.78 shows the declarations of primitive types in OpenGL ES 2.0.

Figure.78 Primitive Types in OpenGL ES 2.0

In this project, the values of primitive types defined in OpenGL ES were copied to

define the XNA primitive types. Figure.79 shows the modified PrimitiveType class.

These values will be used in GraphicsDevice to decide how to draw primitives.

Figure.79 Modified PrimitiveType Class

Modifying the GraphicsDevice Class:

The DrawUserPrimitives method is defined in the GraphicsDevice class. In the XNA

program, BasicEffect allows users to use the XNA built-in shader, rather than writing

shaders themselves. In previous programs created for the Raspberry Pi, the shaders

were written in the CreateProgram function. At this stage, as the shaders cannot be

loaded to the program from separate files, most of the code in CreateProgram was

directly copied into the DrawUserPrimitives method.

94

What is more, the routine in the Render function that handles binding vertex buffers,

indicating attribute locations in the vertex shader and drawing primitives was also

moved to the DrawUserPrimitives method.

In the current DrawUserPrimitives method, the triangle primitives are actually drawn

by the glDrawArrays function called from OpenGL ES. This function takes three

parameters, the first parameter specifies the primitive type to render, the second one

specifies the starting vertex index in the enabled vertex arrays, and the last parameter

specifies the number of vertices to be drawn.

In the DrawUserPrimitives method, the first parameter of glDrawArrays uses the

value of the first parameter of DrawUserPrimitives, which indicates the primitive type.

The second parameter of glDrawArrays uses the third parameter of

DrawUserPrimitives, which represents the vertex offset (the value is 0 in this

program). The value of the last parameter of glDrawArrays, the number of vertices,

depends on the primitive type. When the program draws Triangle List, the number of

indices three times the number of the primitives, as each triangle contains three

vertices. If the primitive type is Triangle Strip, then the number of the vertices equals

that of the primitives plus two, as each two conjoint triangles share two vertices.

Figure.80 shows the source code of calculating the number of vertices (the variable

named "count").

95

Figure.80 Calculating the Number of Vertices for glDrawArrays

The process of the DrawUserPrimitives method is shown in Figure.81.

96

Figure.81 Process of the DrawUserPrimitives Method

The current DrawUserPrimitives method still has two problems.

First of all, the way of storing vertex data between XNA and the current program is

different. The vertices are declared as VertexPositionColor type. The way the vertex

data is stored in this structure is shown as Figure.82. Each vertex contains two parts,

the vertex position and the vertex color, and they are stored alternately.

97

Figure.82 VertexPositionColor Data Structure

By contrast, in the current program, vertex position and vertex color are stored in two

separate arrays, and the program uses two VBOs to cache the vertex data.

The way of solving this problem is quite easy. The glVertexAttribPointer function

takes six parameters, the first parameter stands for the attribute location in vertex

shader, the second parameter represents the number of elements in the attribute data,

the third and the forth parameters represents the type of the element and whether the

data value should be normalized to 0 - 1 respectively. The fifth parameter holds the

spacing of attribute data items, and the last one indicates the offset of the first element.

Thus, OpenGL ES allows a vertex buffer to be a series of values interleaved with

other data.

The problem can be solved by simply modifying the value of the last two parameters

of glVertexAttribPointer. Figure.83 shows the modified source code of the program. A

vertex position is a Vector3 data that make up of three float numbers. Therefore, the

number of its elements is 3. Vertex color data consist of four byte numbers, so the

number of color elements is 4. The size of 4 bytes equals the size of 1 float, so the

extra data between each vertex address is 4 * sizeof(float). The data structure starts

with a vertex position data, so the offset value of the vertex position is 0. By contrast,

the first vertex color data follows the first vertex position, so the offset value of the

vertex color should be 3 * sizeof(float). The second call to glBindBuffer is not needed

as both position and color data are accessed from the same physical buffer.

98

Figure.83 Using Offset in glVertexAttribPointer

After using the offset parameter of glVertexAttribPointer, the program only needs to

use one vertex buffer object to hold the vertex data.

The second problem is how to use generic types on Raspberry Pi (as the generic type

"<T>" is used in the DrawUserPrimitives method on XNA). Note that this is not quite

the same problem as fully managing variable vertex types. The issue here is passing

data coming in as a generic array to the OpenGL ES code. C# does not provide an

automatic way of passing generic arrays to native code, nor does it provide a way of

mapping to C++ generics. In order to learn how it could be solved, a test program was

created. Figure.84 shows the source code of the test program. This test program

accesses data in an array of a structure named VertexXX from the Main function. In

order to achieve the goal, pointers are needed. Pointers are considered as unsafe code

in C# programs, so the class has to be declared as unsafe.

Test3 is the function that takes a generic type array as its parameter. The Main

function uses the structure that contains the data as parameter to call Test3. Test3 uses

Marshal.UnsafeAddrOfPinnedArrayElement(data, 0); command to set an

pointer point to the actual data.

GCHandle pinhandle = GCHandle.Alloc(data, GCHandleType.Pinned); ensures

a more correct way of doing the access to the data. The program will work without

this command, but adding it should mark the memory as in use and fix its memory

location in case of concurrent garbage collection while test runs. For the purposes of

the experiment, Test3 calls Test (simulating a call to an external (native) function).

Test simply copes the data into an array of floats and returns that array for display, to

99

show that the passing mechanism worked correctly.

Figure.84 Read data with generic type

Figure.85 shows the running result of this program. The data in the structure can be

successfully read with generic type.

Figure.85 Result of the Test Program

100

The last step of modifying the GraphicsDevice class is to call

GCHandle pinhandle = GCHandle.Alloc(vertices, GCHandleType.Pinned);

IntPtr ptr = Marshal.UnsafeAddrOfPinnedArrayElement(vertices, 0);

commands to access the vertex data, and declare the Graphics Device as an unsafe

public class.

Modifying the Game1 Class:

The source code in Game1 is quite similar to the XNA program. However, as there are

no built-in shaders in the modified classes, the BasicEffect was not used in Game1.

The source code of the modified Game1 class is shown as Figure.86.

101

Figure.86 Modified Game1 Class for Drawing a Colored Triangle

Figure.87 shows the running effect on Raspberry Pi.

102

Figure.87Colored Triangle Displayed by Modified XNA Classes

4.4.3 Display a Colored Rotating Cube with Modified XNA Classes

Once the colored triangle can be successfully drawn in Game1 in a similar way with

programming XNA on Windows, the next step is try to program a colored rotating

cube with modified classes.

The first step is again writing an XNA program on Windows to display a colored

rotating cube. In addition to the XNA triangle program, a short type array was

declared to store the indices (as shown in Figure.88).

Figure.88 Declaration of the XNA Colored Rotating Cube

In LoadContent method, vertex data and index data are given (note the vertices of

each primitive should be drawn in clock-wise direction in XNA code). Figure.89

shows the source code of the LoadContent method.

103

Figure.89 LoadContent Method for Drawing a Colored Rotating Cube with XNA on

Windows

In the Draw method, the World, View and Projection Matrices are provided to

BasicEffect to specify the rotation, view position and projection; and finally the

DrawUserIndexedPrimitives method (declared in GraphicsDevice) is called to draw

104

the cube. Figure.90 and Figure.91 show the source code of Draw method and the

running effect respectively.

Figure.90 Draw Method for Displaying a Colored Rotating Cube with XNA on Windows

Figure.91 XNA Colored Rotating Cube on Windows

In the XNA program, an array of indices was used to indicate the drawing sequence of

the vertices. In OpenGL ES, glDrawElements should be used to draw primitives with

indices, as it takes an array of indices as one of its parameters (glDrawArrays does

not).

105

The glDrawElements function takes four parameters, the first parameter specifies the

primitive type, the second and the third parameters specify the number of indices and

the data type of the indices respectively. The last parameter specifies the location

where the indices are stored. On Raspbian, the indices for glDrawElements should be

declared as an array of bytes, and the data type of indices should be specified as

GL_UNSIGNED_BYTE. In GraphicsDevice, glDrawElements is declared as

Modifying the Game1 Class:

In order to make the program in Game1 similar to that of the Windows XNA program,

the modification starts with the Game1 class.

As users need to write shader programs themselves when programming with the

Pi-XNA classes, an Effect object was declared, rather than the original BasicEffect

object. In the LoadContent method, the declaration of vertex data remains the same as

in the Windows XNA program. The array of indices was declared as a byte array

because the program on Raspberry Pi eventually calls glDrawElements to draw

primitives, and the sequence of drawing vertices of the primitives was changed to

anti-clockwise to match the different default cull mode between XNA and OpenGL

ES. After the vertices and indices have all been declared, an Effect object was created

by calling the constructor of the Effect class. In the colored triangle program, the

process of loading and compiling shaders were moved into the DrawUserPrimitive

method, which is a method called in the game loop (i.e. the shader source code will be

loaded and compiled on every iteration of the game loop). However, the loading and

compilation of shaders should only be performed once during the initialization part of

the program. Therefore, the constructor of the Effect class is a suitable method to

place the process of loading and compiling shaders, because this method is called in

LoadContent, which is executed once as part of the initialization. So when creating

the Effect object, in addition to a GraphicsDevice object, the constructor also takes

two strings that representing the names of the shader files as its parameters. This is a

change from Windows XNA. This project does not attempt to reconstruct the XNA

content management system, so the change cannot be avoided. Finally in

106

LoadContent, the value of VertexColorEnabled was set to true. This can be achieved

by adding a property named VertexColorEnabled that returns a bool value. Figure.92

shows the modified LoadContent method.

Figure.92 Modified LoadContent for Drawing a Colored Rotating Cube

In the Draw method, as in the program in Windows XNA, the World, View and

Projection matrices need to be defined. In the XNA program, these three matrices

were managed by BasicEffect. So in the modified Draw method, the matrices should

be handled by Effect. This can be done by adding three read and write Matrix type

properties in the Effect class. This does not provide the full generality required to

handle uniforms in shaders, but that can be added later. For the moment, uniforms are

at least being managed in the correct place.

107

Finally, an Apply method can be created in Effect to bind the shader program for

execution.

At the end of the modified Draw method, the DrawUserIndexedPrimitives method is

called to draw primitives. Figure.93 shows the modified Draw method.

Figure.93 Modified Draw Method for Drawing a Colored Rotating Cube

Modifying the GraphicsDevice Class:

As the Draw method in Game1 calls DrawUserIndexedPrimitives to draw primitives,

a DrawUserIndexedPrimitives method was required in GraphicsDevice. This method

was declared as

Similar to the DrawUserPrimitives method, it firstly calculates the number of vertices

according to the primitive type, then sets a pointer point to the vertex data, and then

use vertex buffer objects to hold the data of the vertices, and finally calls

glDrawElements, rather than glDrawArrays, to draw primitives.

Modifying the Effect Class:

The modified Effect class contains a constructor, four properties, and a method named

Apply.

108

As described in the introduction to the modified Game1 class, the constructor of

Effect contains the instructions for loading and compiling shader source code. In this

program, the vertex shader and the pixel shader were programmed in two separate

files. The parameters taken by the constructor are the names of the shader files, and it

uses

System.IO.File.ReadAllText("./" + file name + ".txt");

command to read the shader source text from their paths.

The four properties are VertexColorEnabled, World, View and Projection. In the

Apply method, the value of the World, View and Projection properties were read and

used to calculate the transformation matrix. The data of the transformation matrix is

then sent to the mvp uniform in vertex shader.

Modifying the Color Class:

As shown in Figure.94, more colors were used to define the vertex colors. The three

colors added in the Color class are Red, Green and Blue. Figure.94 shows the

definition of these three colors.

Figure.94 Definition of Colors

After doing the modifications described above, a colored rotating cube can be

displayed. Figure.95 shows the effect of running the modified program.

109

Figure.95 Colored Rotating Cube Displayed by Modified XNA Classes

4.4.4 Display a Textured Lighting Cube with Modified XNA Classes

The last job is to draw a textured rotating cube with modified classes on the

Raspberry Pi. In order to show more shading effect, lighting was also implemented in

the last program.

Creating a VertexPositionNormalTexture Structure:

As the texture effect and the lighting effect were to be implemented in this program,

each vertex needed a texture coordinate and a normal vector to indicate the location in

texture space and calculate the illumination intensity. Therefore, a new data structure,

the VertexPositionNormalTexture, was created.

Compared with the VertexPositionColor structure, the vertex color is replaced by

normal vectors and texture coordinates. The VertexPositionNormalTexture structure

declares a Vector3 type variable representing vertex position, another Vector3 variable

that represents vertex normal, and a Vector2 type variable stores the data of vertex

texture coordinates. The constructor of this structure takes three parameters, and gives

the values to the three variables respectively. Figure.96 shows the source code of this

structure.

110

Figure.96 VertexPositionNormalTexture

Figure.97 shows the data structure of VertexPositionNormalTexture.

Figure.97 Data Structure of VertexPositionNormalTexture

Modifying the Game1 Class:

In the XNA library, a class named "Texture2D" handles the loading of texture data.

When programming textured objects with XNA, a Texture2D object should be

declared first, and in LoadContent method, Content.Load<Texture2D>("file

name") command can be used to pass texture data to the Texture2D variable. Again a

file name is needed because an XNA content system is not available.

111

Therefore, a Texture2D class should be created (the detail of Texture2D class will be

explained later), and in the modified Game1 class, a Texture2D variable was declared.

Also, the vertices of the cube were declared as VertexPositionNormalTexture type.

Figure.98 shows the declaration part in modified Game1.

Figure.98 Declarations in Game1 for Drawing a Textured Cube with Lighting Effect

In the LoadContent method, a total of 24 vertices data were defined. This is because

each vertex on a cube is shared by three surfaces. As the normal directions of a vertex

on the three connected surfaces are different, one vertex actually has three normal

vectors, so 8 vertices have 24 normal vectors. Figure.99 shows the declaration of the

vertices.

112

Figure.99 Vertex Declarations for Drawing a Textured Cube with Lighting Effect

Once the vertex data has been defined, the array of indices was given. The Effect

object and the Texture2D object were instantiated to load shaders and the texture (as

the XNA ContentManager class was not included in this project, the constructor of

modified Texture2D handles the loading of textures). Figure.100 shows the remainder

of LoadContent.

113

Figure.100 Declaring Indices and Loading Contents

In a typical Windows XNA project, transformation matrices are passed to and used in

the vertex shader. The World, View and Projection matrices are all sent to the vertex

shader, and it may multiply these three matrices to get a composite transformation

matrix. By contrast, as explained in section 4.4.3, the current modified program

calculates a combined transformation matrix in the Apply method of Effect class.

However, the Effect class is transparent to the users, and this causes some problems.

Programmers have to use the calculated transformation matrix in vertex shader, even

if they do not want to do so (in shaders, if an attribute or uniform is given a value

from the program, then it has to be used for calculating the positions or colors of the

primitives, otherwise nothing can be displayed on the window. Probably the lack of

output is due to silent failure in some part of the shaders driver code).

In order to solve this problem, a new overload method named "SetParameters" was

added in the Effect class (the detail of this method will be explained later). This

method takes two parameters, the first is a string variable, which is the name of the

attribute or uniform in vertex shader. The other parameter takes a variable holding the

data that suppose to be sent to the corresponding attribute or uniform. In this way,

users are able to decide which data should be sent to the shaders according to the

needs of their shader programs. For example, as shown in Figure.101, the

transformation matrix "mvp" was calculated in the Draw method in Game1, then the

SetParameters("mvpMatrix", mvp); command could be used to send the matrix data to

a uniform named "mvpMatrix" in the vertex shader. This provides the same flexibility

as the Windows implementation of the XNA Effect class. In the Windows version,

parameters are set up as an array property of Effect, so the syntax is slightly different.

However, usage is similar.

114

Figure.101 Draw Method for Drawing a Textured Cube with Lighting Effect

As the lighting effect was implemented in this program, the data of the World matrix

had also to be sent to the vertex shader to allow the shader to transform normal vector

into World space to get the correct lighting effect.

Creating a Texture2D Class:

The modified Texture2D class contains a constructor and the LoadTexture method

used in the previous C# program. The constructor takes a GraphicsDevice object and

the file path of the texture as its parameters, and calls the LoadTexture method to load

texture data.

Modifying the Effect Class:

Firstly, the overload method named "SetParameters" as mentioned above, was created

to send uniform data to the uniforms in shaders. The glGetUniformLocation function

was moved from the constructor of Effect to SetParameters.

Secondly, the routine for calculating the transformation matrix was removed from the

Apply method as this should either be done in the Game1 class by the user or be done

in the shader itself. The current Apply method only handles the use of program and

sets some GL states.

115

Figure.102 shows the modified code in Effect class.

Figure.102 Modified Methods in Effect Class for Drawing a Textured Cube with Lighting

Modifying the GraphicsDevice Class:

The only change in GraphicsDevice class was the vertex buffer objects used in

DrawUserIndexedPrimitives method. As in Game1, a new data structure was used to

declare the vertex data, when calling DrawUserIndexedPrimitives in Draw method,

the generic type of vertices actually used VertexPositionNormalTexture structure.

Therefore, instead of holding vertex color data, the vertex buffer object allocates

buffers for vertex positions, vertex normals and texture coordinates.

116

The type of vertex position and that of vertex normal are both Vector3, which consists

of three floats. The type of texture coordinate is Vector2, which contains only two

floats. Therefore, the number of vertex position elements and that of vertex normal

elements are all 3 (3 floats), the number of texture coordinate elements is only 2. The

extra data between each vertex data address is (3 + 3 + 2) * sizeof(float), and their

offset of the first element are 0, 3 * sizeof(float), and 6 * sizeof(float) respectively.

Figure.103 shows the modified VBOs in DrawUserIndexedPrimitives.

Figure.103 VBOs for VertexPositionNormalTexture

Modifying the Shaders:

To implement the lighting effect, the shader source code was modified as well. In

vertex shader, the light direction was defined, and a float varying "lightlevel" was

declared to represent the illumination intensity. This is calculated by multiplying the

light direction with the vertex normal, and clamping the result into 0 to 1.

The light level was sent to the fragment shader to be multiplied with the colors, and

the lighting effect was successfully achieved.

Figure.104 and Figure.105 show the not textured cube with lighting effect and the

textured cube with lighting effect respectively.

117

Figure.104 Cube with Lighting Effect

Figure.105 Textured Cube with Lighting Effect

118

At this stage, there are enough modified classes for programming a textured3D object

with lighting effect on Raspberry Pi, and the code in Game1 is quite similar to the

XNA program on Windows. However, there is still a part in the program which

cheats.

When modifying the GraphicsDevice class to draw the textured cube with lighting

effect, we knew that the generic type used in DrawUserIndexedPrimitives for

declaring the vertices would be VertexPositionNormalTexture. So the way of using

VBOs in DrawUserIndexedPrimitives was manually modified and hard coded to

allocate buffers for VertexPositionNormalTexture type vertex data.

However, vertex data may be declared with other data structures, like the sample of

drawing a colored rotating cube with the modified classes. It also calls the

DrawUserIndexedPrimitives method to draw primitives, but its vertex data was of

type VertexPositionColor.

In the Windows XNA library, there is a class named "VertexDeclaration", which

contains an array of VertexElements. VertexElement is a structure that stores the

information for all the possible vertex data items (e.g. offset, format, index etc.).

When calling DrawUserIndexedPrimitives in the Draw method, information about the

vertex data type can be queried from VertexDeclaration. For example, if the vertex

data is declared as VertexPositionColor, one vertex data consists of 3 floats

representing the XYZ value of the position, followed by 4 byte values representing

the color. By querying the VertexDeclaration, the program knows that a vertex

position occupies 12 byte of the buffer, and its offset is 0 byte. Similarly, the buffer

size for a vertex color should be 4 bytes, with a 12 byte offset for the first vertex color

data. When a Windows XNA program is running, this information will be

automatically queried and used to allocate buffers for the vertex data.

A VertexElement structure can be created in this project to store information on vertex

data types. A new class named VertexDeclaration can also be created, holding a

VertexElement array to store the information about different vertex data types in use.

When calling the drawing methods declared in GraphicsDevice, the type of the vertex

119

data could be looked up, and buffers automatically allocated for the vertices. Because

of the time limitation, using VBOs to automatically allocate buffers for the vertex data

is not achieved in this project, and this work is left for the future.

Another difficulty also arises with vertex data structures. In HLSL, the package of

information constituting a vertex is usually referenced as a structure, and each data

item has an associated "semantic" which identifies its role in the shader. For example,

POSITION and NORMAL are HLSL semantics. This makes it possible to map vertex

items to shader attributes automatically. An OpenGL ES shader lacks this detail. To

overcome the problem, we adopted the convention of using standard names for vertex

shader attributes in our final shader programs. This should permit the final step of

automating vertex buffer management.

120

Chapter 5: Conclusion and Future Work

This thesis has shown the possibility of developing XNA like programs directly on the

Raspberry Pi. It described the way of interacting with the graphics system through the

OpenGL ES 2.0 library by creating some sample programs, both in C++ language and

in C# language. It also explained the data structures and algorithms of some of the

XNA classes, the relationships between these classes, and how to combine the

routines of the C# sample programs with the XNA classes to acquire the modified

classes that replace DirectX with the OpenGL ES library.

At the end of this project, users are able to program in quite a similar way to

programming XNA on Windows to draw a textured rotating cube with lighting effects.

Shaders and the texture are loaded from separate files. This result shows that the

modified system is able to create a suitable rendering environment for drawing 2D

and 3D objects with different data structures. It is also capable of implementing

shading effects (e.g. texturing and lighting) and mathematical calculations (e.g

rotation) to the objects.

Therefore, this project clearly shows that it is absolutely possible to write XNA like

programs on Raspberry Pi.

Pi-XNA programs are not identical to Windows XNA programs. However the

differences are small and appropriate to Raspberry Pi development. Pi-XNA programs

use GL shader language. There are differences in the way assets are loaded. But, the

level of detail required of implementers and the level of abstraction of the liabrary

matches that of XNA.

The goal of this project was not to fully rewriting the XNA library. XNA contains a

large number of classes and structures. Rewriting all parts of the XNA library to make

it work with OpenGL ES 2.0 involves a huge amount of work. Because of time

limitations, this project only modified the most important and needful classes and

structures, which declared enough fuctionalities of the system and proved the

possibility of XNA programming on the Raspberry Pi.

121

More work can be done in the future to make the system become a fully featured

library on Raspberry Pi. However, building an entire XNA like system still leaves

much work to do. There are two parts can be firstly done in the near future.

Users have to write their own shaders to implement shading effects with the current

modified classes. Therefore, one work that worth to do is to create a BasicEffect class

that contains built-in shader programs, which allows programmers to use a number of

different effects in the Game1 class without writing any shader programs themselves.

The other work can be done in the future is to keep modifying the GraphicsDevice

class. Compare with the modified classes, the GraphicsDevice in XNA contains more

properties and drawing methods, like the DrawInstancedPrimitives method, and some

overload declarations of the methods that already existed in current modified

GraphicsDevice class. Fully modifying this class may provide users more flexibility

for their programs. In particular implementing VertexDeclaration and using it to

automatically bind different vertex buffer types would be very useful.

122

Appendix

Setting-up the Raspberry Pi

Raspberry Pi uses an SD card as its ram, so the first thing to do is to write the disk

image of Raspbian on to an SD card (4GB or larger). Raspbian images can be

downloaded from http://www.raspberrypi.org/downloads

For this project the Hard Float version of Raspbian (release dated 26/7/2013) was

used. This version uses the hardware floating point capabilities of the Raspberry Pi

CPU (instead of using floating point emulation software).

Please note that not all kinds of SD cards can be used with Raspberry Pi. The

available and unavailable SD cards can be checked on

http://elinux.org/RPi_SD_cards

Raspbian images can be written into SD cards from a Windows computer by using

software named "Win32diskimager". Instructions for its use can be found on

http://rpi.tnet.com/project/faqs/backups/backingup

The first time a Raspberry Pi boots up with Raspbian, the Raspi-config will be

automatically shown to help setting up the configuration of Pi. Later users may type

"raspi-config" ata terminal window to use this configuration tool again.

http://www.raspberrypi.org/downloads
http://elinux.org/RPi_SD_cards
http://rpi.tnet.com/project/faqs/backups/backingup

123

Firstly, the expand_rootfs should be enabled to fully use the SD card's memory space

on Raspberry Pi. The expand_rootfs is disabled by default, and there will be only

approximately 2GB available, no matter how big is the memory space of the SD card.

The screens used with Raspberry Pi may have different resolutions. Disabling the

overscan option allows the screen to be fully used to display images on the Pi.

The next step is to select a layout for the thekeyboard. In the configure_keyboard

option, users may firstly choose the type of the keyboard used, and then a list of

keyboard layouts will be offered.

124

In this project, the English(US) was used as the keyboard layout.

The change_pass option in the main menu handles the modifying of password.

The next step is to set up the region. This will decide the symbols and languages used

on Raspberry Pi.

125

The last step is to set the time zone by the chage_timezone option.

126

At this stage, the set up of Raspberry Pi is complete. Reboot the Pi, and this time users

may login with the modified password.

After logging in, users may type the "startx" command to launch a graphical session,

and the desktop will be displayed.

127

Installing Mono

To run the code in this project it is necessary to install Mono – the open source

implementation of C#. At the time of writing there was an issue with Mono on the

Raspberry Pi – it had errors in handling hardware floating point. Instead of using the

standard version of Mono therefore, code from an experimental branch of the Mono

project in which the floating point handling had been repaired was used.

cd ~

wget https://www.dropbox.com/s/sask17flot3zqlg/mono_2_11_4_armv6hf_binary.tgz

cd /

sudo tar zxvf ~/mono_2_11_4_armv6hf_binary.tgz

sudoldconfig

sudo apt-get install libgdiplus

128

List of EGL and OpenGL ES Functions Used in This Project

EGL Procedures:

GLenumglGetError(void)

EGLDisplayeglGetDisplay(EGLNativeDisplayTypedisplay_id)

EGLBooleaneglInitialize(EGLDisplay display, EGLint *majorVersion,

EGLint *minorVersion)

EGLBooleaneglTerminate(EGLDisplay display)

EGLBooleaneglGetConfigs(EGLDisplay display, EGLConfig *configs,

EGLintmaxReturnConfigs,

EGLint *numConfigs)

EGLBooleaneglChooseChofig(EGLDispay display,

constEGLint *attribList,

EGLConfig *config,

EGLintmaxReturnConfigs,

ELGint *numConfigs)

EGLBooleaneglGetConfigAttrib(EGLDisplay display, EGLConfigconfig,

EGLint attribute, EGLint *value)

EGLSurfaceeglCreateWindowSurface(EGLDisplay display,

EGLConfigconfig,

EGLNatvieWindowType window,

constEGLint *attribList)

EGLBooleaneglDestroySurface(EGLDisplaydisplay,EGLSurface surface)

EGLContexteglCreateContext(EGLDisplay display, EGLConfigconfig,

EGLContextshareContext,

constEGLint* attribList)

EGLBooleaneglDestroyContext(EGLDisplaydisplay,EGLContext context)

EGLBooleaneglmakeCurrent(EGLDisplay display, EGLSurface draw,

EGLSurface read, EGLContext context)

EGLBooleaneglSwapBuffers(EGLDisplaydisplay,EGLSurface surface)

129

OpenGL ES 2.0 Procedures:

voidglClear(GLbitfield mask)

voidglClearColor(GLclampf red, GLclampf green,

GLclampf blue, GLclampf alpha)

voidglViewport(GLint x, GLint y, GLsizei w, GLsizei h)

GLuintglCreateShader(GLenum type)

voidglShaderSource(GLuintshader, GLsizei count,

const char** string,

constGLint* length)

voidglCompileShader(GLuintshader)

voidglGetShaderiv(GLuintshader, GLenumpname,

GLint *params)

voidglGetShaderInfoLog(GLuintshader, GLsizeimaxLength,

GLsizei *length, GLchar *infoLog)

voidglDeleteShader(GLuintshader)

GLuintglCreateProgram(void)

voidglAttachShader(GLuint program, GLuintshader)

voidglLinkProgram(GLuint program)

voidglGetProgramiv(GLuint program, GLenumpname,

GLint *params)

voidglDeleteProgram(GLuint program)

GLintglGetAttribLocation(GLuint program,

constGLchar *name)

voidglUseProgram(GLuint program)

voidglVertexAttribPointer(GLuint index, GLint size,

GLenum type,GLboolean normalized,

GLsizei stride,const void *ptr)

voidglEnableVertexAttribArray(GLuint index)

voidglDrawArrays(GLenum mode, GLint first, GLsizei count)

voidglGenBuffers(GLsizei n, GLuint *buffers)

voidglBindBuffer(GLenum target, GLuint buffer)

voidglBufferData(GLenum target, GLsizeiptr size,

const void *data, GLenum usage)

GLintglGetUniformLocation(GLuint program,const char* name)

voidglUniformMatrix4fv(GLint location, GLsizei count,

130

GLboolean transpose,

constGLfloat* value)

voidglEnable(GLenum cap)

voidglDisable(GLenum cap)

voidglDepthFunc(GLenumfunc)

voidglDisableVertexAttribArray(GLuint index)

voidglTexParameteri(GLenum target, GLenumpname,GLintparam)

voidglTexImage2D(GLenum target, GLint level,

GLenuminternalFormat, GLsizei width,

GLsizei height, GLint border,

GLenum format, GLenum type,

const void* pixels)

voidglUniform1i(GLint location, GLint x)

voidglActiveTexture(GLenum texture)

voidglBindTexture(GLenum target, GLuint texture)

voidglGenTextures(GLsizei n, GLuint *textures)

131

References

[1]. http://readwrite.com/2014/01/20/

 raspberry-pi-everything-you-need-to-know#awesm=~otPxAqvcxEKveu

[2]. http://www.hackthings.com/raspberry-pi-model-a-and-b/

[3]. http://en.wikipedia.org/wiki/Atmel

[4]. http://en.wikipedia.org/wiki/Microsoft_XNA

[5]. http://www.mono-project.com

[6]. http://en.wikipedia.org/wiki/MonoGame

[7]. http://jbbrxg11.codeplex.com/

[8]. http://msdn.microsoft.com/en-us/library/

 microsoft.xna.framework.game.initialize.aspx

[9]. http://msdn.microsoft.com/en-us/library/

 microsoft.xna.framework.game.update.aspx

[10]. http://msdn.microsoft.com/en-us/library/

 microsoft.xna.framework.game.isfixedtimestep.aspx

[11]. http://msdn.microsoft.com/en-us/library/

 microsoft.xna.framework.game.targetelapsedtime.aspx

[12]. http://msdn.microsoft.com/en-us/library/

 microsoft.xna.framework.game.draw.aspx

[13]. http://msdn.microsoft.com/en-us/library/

 microsoft.xna.framework.graphics.aspx

[14]. http://msdn.microsoft.com/en-us/library/

 microsoft.xna.framework.graphicsdevicemanager.aspx

[15]. http://msdn.microsoft.com/en-us/library/

 microsoft.xna.framework.graphics.graphicsdevice.aspx

[16]. http://rbwhitaker.wikidot.com/intro-to-shaders

[17]. Addison, Wesley (2008) OpenGL ES 2.0 Programming Guide

[18]. http://en.wikipedia.org/wiki/EGL_(API)

[19]. James Boud (2012) Extending SlimDXna to Use XNA 4 and DirectX 11

[20]. http://jbbrxg11.codeplex.com/

[21]. http://www.opengl.org/documentation/specs/version1.1/glspec1.1/

 node93.html#SECTION00710000000000000000

http://www.hackthings.com/raspberry-pi-model-a-and-b/
http://en.wikipedia.org/wiki/Atmel
http://en.wikipedia.org/wiki/MonoGame
http://en.wikipedia.org/wiki/MonoGame
http://jbbrxg11.codeplex.com/
http://rbwhitaker.wikidot.com/intro-to-shaders
http://en.wikipedia.org/wiki/EGL_(API)
http://jbbrxg11.codeplex.com/

132

[22]. http://docs.oracle.com/javame/config/cldc/opt-pkgs/api/jb/jsr239/javax/

 microedition/khronos/egl/EGL10.html

[23]. http://www.opengl.org/wiki/Face_Culling

[24]. http://msdn.microsoft.com/en-us/library/

 microsoft.xna.framework.game.run.aspx

http://www.opengl.org/wiki/Face_Culling

