THE UNIVERSITY OF

7 WAIKATO Research Commons

gty 16 Whare Winanga o Waikato

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the
Act and the following conditions of use:

e Any use you make of these documents or images must be for research or private
study purposes only, and you may not make them available to any other person.

e Authors control the copyright of their thesis. You will recognise the author’s right
to be identified as the author of the thesis, and due acknowledgement will be
made to the author where appropriate.

e You will obtain the author’s permission before publishing any material from the
thesis.

http://researchcommons.waikato.ac.nz/

674"‘

THE UNIVERSITY OF

) WAIKATO

Te Whare Wananga o Waikato

XNA-like 3D
Graphics Programming
on the
Raspberry Pi

Lichao Wang

This thesis is submitted in partial fulfillment of the requirements for the
Degree of Master of Science at the University of Waikato.

March 2014
© 2014 Lichao Wang

Abstract

The Raspberry Pi is a credit-card sized computing device created by Broadcom in
2012. This device is a kind of mini PC, and it is capable of doing things that desktop
PC can do. The goal of the Raspberry Pi Foundation is to allow people all over the
world to learn programming. Therefore, the Raspberry Pi is designed as a small sized,
low cost device that can provide reasonable data processing capability. However,
because of its goal is to keep the price down to maximize openness for learning,

Raspberry Pi can only run the Linux operating system.

XNA is a set of libraries developed by Microsoft to facilitate the creation and
management of video games. It provides a large number of underlying functions to
help the development of systems that based on runtime. Therefore, programmers may
focus on programming their own code. XNA is built on Microsoft's .NET framework,
and it is designed to be used with DirectX. However, as no drivers are developed to
provide the low level API defined by DirectX on Linux, it is currently impossible to

program with XNA on a Raspberry Pi.

This thesis investigates the possibility of developing XNA like programs directly on
the Raspberry Pi. Instead of using DirectX, OpenGL ES is used to provide the low
level graphics APIs. The code of a project named "JBBRXG11", which is an open
source project extending XNA classes on Windows to access DirectX 10 and DirectX

11 graphics features is used as a reference for this project.

The project successfully built a library that allows an XNA like program to produce

moving, textured 3D models on screen.

Acknowledgements

Firstly, I would like to thank my supervisor, Bill Rogers, for his endless support in
this project.

| would also like to thank James Boud for his previous work that contribute to the
complete of this project.

Finally, I would like to thank my family and friends who supported me over the
research of this project.

Contents

ADSEFACT ... bbbt i
ACKNOWIEAGEMENTS.oeiiiiie et iii
(0] 01 (=] 0 | £ J PSP PT OV TUPPR iv
Chapter L: INTrodUCTION.ooiiiie e 1
Chapter 2: LIterature REVIEW..........ccoiiiiiiiiiieeeeee e 6
2.1 MONOGAIME. ...ttt ettt sb ettt e e sb e sbe e ssb e e beeenne e e 6
2.2 IBBRXGLL.....oiiieieiieieieeste ettt ettt 7
Chapter 3: UNderlying SYStEM........cooiiiiiiiiiiiieieese e 9
T80 N SRS 9
3L L XINA COrE ClaSSES...ueeuveietiiiisiesiierieie et sie sttt ee et sbe e sseeneenes 10
3.1.2 XNA GraphiCs ClaSseS.......ccoveiuiiiiiieeieiie it see st 13

3.1.3 XNA Mathematical ClaSSeS..........ccceruerririeiieriieiesiesesie e e eee e sieaneens 16
R T0] - To L] S STPUPRTSR 19

.10 XINA INPULS. ..ttt bae e 20

B2 OPENGL ES....ooiiiieee s 21
B2 L EGL it 24

3.2.2 Shaders @and GLSL.......ccciviieiieieeie e 25

BB UIBBRXGLL... .ottt ettt 27
B4 RASPDIAN. ..o e 29
Chapter 4: DeVelOPMENT.........ooiiiie s 31
4.1 C++ code with OpenGL ES 2.0 0n WINAOWS.........coovevieiieieeieiic e 32
4.1.1 OpenGL ES 2.0 Sample Program............cccooveeeiiieiienesieseene e 32

4.1.2 CH++ Blank WINAOW........ccceeieiieiieie e 42

4.1.3 CHt THHANGIE. ... 44

4.1.4 C++ Colored Rotating CUDE........ccveiiieiieie e 46

4.1.5 CH+ Textured CUDE........coi i 52

4.2 C# Code with OpenGL ES 2.0 0n WINAOWS.......cc.ooeiviiiiiiinieieeenie e 58
4.2.1 C# Blank WINOW........ccueeiiiieiice e 59

4.2.2 CHTHANGIE. ..ot 62

4.2.3 C# Colored Rotating CUDE.........ccocvieiieiiecce e 63

4.2.4 CHTeXtUred CUDE........oceieie e 63

4.3 C# Programs on RasphIaN..........cccooiiiiiiiiiice s 64
4.3.1 C# Blank Window on Raspbian............cccccvveiviiiiieii e 65

4.3.2 C# Triangle on RasSPhian..........ccccoeiveiiiieieee e 67

4.3.3 C# Colored Rotating Cube on Raspbian...........c.ccocvoviiiiiieniiciiine 68

4.3.4 C# Textured Cube on Raspbian..........ccooeiiiiiiiiiicce 70

4.4 REWIIING XINA ClaSSES.......eiivieieiieiieeiiesee e esieseesteestesee e ste e steeeesneesraenee s 73
4.4.1 Display a Blank Window with Modified XNA Classes..........cccceevverurnen. 73

4.4.2 Display a Colored Triangle with Modified XNA Classes...........ccccceeeee. 87

4.4.3 Display a Colored Rotating Cube with Modified XNA Classes............. 102

4.4.4 Display a Textured Lighting Cube with Modified XNA Classes............ 109
Chapter 5: Conclusion and Future WOrK............cccooeoiiiiiiinneec e 120
A o] 0 1=1 o [OSSR 122
RETEBIEINCES. ...ttt bbbttt bbb re et 131

Chapter 1: Introduction
The purpose of the project Pi-XNA is making it possible for people to learn 3D

graphics programming on Raspberry Pi. The Raspberry Pi is a credit card sized single

board, open computer that can be used with a monitor and keyboard.

o X
0
oo
L3
*

-n
=
| =28
!
32

fo .J::.Ha di-"'” '

2§
D | 1888

A
551
e [

c11 .-hu.
= (

J) Jscxz gk

EbiRs 1 |

_JH!!

Figure.1 The Raspberry Pi [1]

The Raspberry Pi was developed by Broadcom in 2012. It was designed as an
inexpensive tiny computer to help give children access to computers. The concept of
tiny PC has existed for years, early product like the microcontroller manufactured by
Atmel Corporation [3]. However, the Raspberry Pi is the popular fully functional tiny
computing device that can provide reasonable performance. What is more, a number
of accessories like mini cameras and wireless network cards can be used with it, and

quite a few applications can be found on the BBS of Raspberry Pi.

There are two types of Raspberry Pi, model-A and model-B. The big difference
between these two types is that model-A does not provide Ethernet controller and only
has one USB port. However, it can still connect to the Internet by using an external

USB adapter. The comparison of the specific configurations and the layout of both

types is shown in Figure.2 and Figure.3.

Model A Model B
Price uss 25 USS 35
CPU: 700 MHz ARM1176JZF-S core (ARM11 family)
GPU: Broadcom VideoCore |V, OpenGL ES 2.0, MPEG-2 and VC-1,
1080p 30 h.264/MPEG-4 AVC
Memory : 256 MB 512 MB
USB ports: 1 2

Video outputs: Composite RCA, HDMI, raw LCD Panels via DSI 14 HDMI

Audio outputs: 3.5 mm jack
Onboard storage: SD / MMC / SDIO card slot

Onboard network: None 10/100 Ethernet
Power ratings: 300 mA (1.5 W) 700 mA (3.5 W)
Size and Weight 85.60 mm x 53.98 mm, 45 g
e SO T Debian GNU/Linux, Raspbian OS, Fedora, Arch Linux ARM,
RISC OS, FreeBSD, Plan 9

Figure.2 Configuration of the Raspberry Pi

RASPBERRY PI MODEL A - $25 RASPBERRY PI MODEL B - $35

RCAVIDEO AUDIO LEDS x USB

RCAVIDED AUDIO

LEDS

<
SN (Q\
cpugery HOME S~
N
O
SD CARD

SOCARD poyep POWER
€ s

Figure.3 Layout of the Raspberry Pi [2]

In this project, B-model Raspberry Pi was used to do the development. As shown in
Figure.2, B-model Pi contains almost all the components that a real desktop PC has,
including: a CPU and GPU block (its GPU is as powerful as the one used on the first
version of Xbox), SDRAM memory, two USB ports that can be used to connect with

input devices like mouse and keyboards, an HDMI port and a RCA port that provide
video outputs (HDMI also supports audio outputs), a 3.5mm jack that provides audio
outputs, an Ethernet port, and it even provides GPIO pins, so it is possible to use it
with robotics. It works with Linux based operating systems, and uses SD cards (at
least 2G memory space) as the onboard storage (equivalent of disk on a larger

system).

XNA is a 3D graphics and game development library built around DirectX 9 and
meant to be used on Windows. When programming with XNA on Windows,
programmers usually use an IDE (Integrated Development Environment) like Visual
Studio to get their code connected with the XNA library. However, neither XNA nor
Visual Studio can be directly used on Raspberry Pi, as its operating system is one of
the versions of Linux. There is a fully functional IDE named "MonoDevelop" that can
be used on Linux, but XWindow implementation is too slow on Raspberry Pi because
of Pi's limited memory, programmers cannot actually run MonoDevelop on Pi.
Therefore, in order to allow people to do XNA programming conveniently on

Raspberry Pi, two parts of work are involved.

Firstly, when programming XNA on Raspberry Pi, the code should be similar to that
on Windows. In XNA programs, a lot of low level functions are provided by DirectX
(i.e. when XNA needs some underlying functions to get access to the graphics cards,
it makes a procedure call to DirectX). As DirectX cannot be used on Linux, some
other graphics libraries that can provide graphical functionality are needed. In this
project, OpenGL ES is used to replace DirectX. Therefore, the work of rewriting some
of the XNA classes to make them work with OpenGL ES becomes necessary. Some
similar previous work has been done at the University of Waikato that extending XNA
on Windows to use DirectX 11, named "JBBRXG11". As XNA is not an open source
library, the code of JBBRXG11 was used as a reference in this project. The detail of

rewriting the libraries will be explained in Chapter Four of this thesis.

It was not a goal of this project to port Windows XNA programs to the Raspberry Pi.
The JBBRXGL11 project set out to extend XNA to use more sophisticated features on
modern graphics cards. Similarly the Pi-XNA project sets out to allow 3D graphics

programming in a Raspberry Pi environment, using native coding where appropriate.

For example, Pi-XNA programs should use OpenGL shader language rather than
HLSL (as is used with DirectX on Windows).

Secondly, an IDE is needed to make the way of programming on Raspberry Pi more
convenient. For example, programmers may add reference classes by the IDE, rather
than coding all the file names in a terminal command to compile. This part of work is
being undertaken by another student at the University of Waikato, and it will not be
discussed in this thesis.

The remainder of the thesis is arranged into four chapters.

Chapter Two introduces some similar previous work with this project.

Chapter Three looks into the underlying software that is involved in this project. This
chapter not only introduces the software themselves, but also explains how it is used
to support the development of this project.

Chapter Four gives all the significant details of the implementation of this project. It
firstly outlines the steps that have been taken in the project, and then discuss how each
step was done, what problems occurred, and how they have been solved.

There were a number of issues which made development difficult. These include the
number of libraries involved, the poor documentation of some libraries and the
primitive nature of the development environment on the Raspberry Pi (test editor and
command line compiler). These are compounded by the common experience of silent
failure, with a blank display when errors were made in graphics programming. To
accommodate these difficulties, a very careful systematic development process was
followed. Working first on Windows to establish APl understanding, working from
sample code that could be shown to work, and developing in small steps with
programs producing diagnostic output. The steps followed are documented in Chapter

Four.

Chapter Five briefly conclude the work that have been done. It discusses the outcomes

of this project, and compares it with the original goal. This chapter also discusses the

future work of this project. It looks into some possible research that may improve the

usability, but have not been done in this project.

Chapter 2: Literature Review

This chapter briefly investigates the background of this project. It firstly looks into
XNA and previous work about porting XNA on other systems, named MonoGame,
and then introduces a project named JBBRXG11 developed at the University of
Waikato. The source code of JBBRXG11 was used as a reference in this project.

2.1 MonoGame

"Microsoft XNA is a set of tools with a managed runtime environment that facilitates
video game development and management. It is based on the .NET Framework,
which is a software framework developed by Microsoft that runs primarily on
Windows, and getting access to the graphics system through DirectX 9, which is a
low-level API that handles tasks related to multimedia on Microsoft platforms."[4]
Microsoft released its first version XNA in the year 2006. Since then, a huge number
of applications and games have been developed with XNA libraries all over the world.
The applications built with XNA are available to all Windows system based devices
(e.g. Desktops running Windows operating system, Windows smartphones and Xbox).
However, the biggest limitation is that XNA programs could not be ported to other
platforms like Linux machines and android phones. In order to solve this problem, a

group of software developers created MonoGame.

MonoGame is an open-source port of XNA that makes Windows operating system
based games executable on other systems, like Linux and iOS. The goal of
MonoGame is to allow people to program with XNA in the same way as
programming on Windows (i.e. the code programmed on different platforms should
be all the same). It implements the XNA 4.0 API, but replacing the Microsoft’s .Net
Framework with Mono.Net, which is an open source, cross-platform implementation
of Microsoft's .NET Framework [5], so that programmers may develop XNA games on

systems other than Windows.

The first version of MonoGame was created in 2009. The early versions only support
2D sprite based games [6]. Current versions are trying to extend MonoGame with new
features like 3D rendering and multi-GameWindows. It is easy to learn and develop
with MonoGame, but it is not perfect yet. Sometimes bugs occur and the programs

could crash, but with the help of MonoGame community and developers all over the
world, MonoGame is getting increasingly improved. The development of MonoGame

still has a long way to go.

The reason of not using MonoGame in this project is mainly because it currently does
not support development on Raspberry Pi. As MonoGame is targeted to a number of
different platforms, and the performance of Raspberry Pi is limited, even if
MonoGame was available on Pi, it would be a little bit complicated for Pi to program
with XNA. What is more, MonoGame strives for exact source code compatibility with
XNA. This is not desirable for shader coding. Therefore, MonoGame is not used in
this project. However, Mono is supported on Raspberry Pi. In order to port XNA on Pi,
some of the XNA libraries were modified to interact with graphics cards through
OpenGL ES (rather than DirectX it used), so that developers may program and

smoothly execute their XNA programs on Raspberry Pi.

2.2 JBBRXG11

Most of the introduction of JBBRXG11 is referenced from jbbrxgll.codeplex.com.
JBBRXG11 is a project developed by a group from the University of Waikato, trying
to extend the XNA library to allow use of DirectX 10 and 11 features. DirectX 10
provides geometry shaders, and DirectX 11 allows hull and domain shaders for
tessellation and also compute shaders. The motivation of this project was to fully
explore the technology when programming shaders in XNA. The first version of
JBBRXG11 was created by Bill Rogers in 2011, based on the XNA 3.1 and DirectX
10. In the same year, Microsoft released XNA 4.0, which modified a number of
original underlying functions. The next year, this project was ported to XNA 4.0 and
DirectX11 by James Boud.

XNA is not an open source library. Therefore, a lot of work of writing the code of
XNA classes are involved in JBBRXGL11, but this project is not simply duplicating the
library. It modified some of the classes to get access to the graphics card with DirectX
11 via SlimDX. SlimDX is an open source framework, and developers may build
DirectX applications with it. There was an early project lead by Bill Rogers named
"SlimDXna 3", trying to extend XNA 3.1 to work with DirectX 10 (rather than

working with DirectX 9), and the JBBRXGL11 is based on this project. So converting
from the XNA 3.1 API to the XNA 4.0 API is necessary. This is not currently
completed, which means when programming XNA with JBBRXG11, some of the
program still need to be coded in the same way with that of XNA 3.1.

Although JBBRXG11 is an incomplete project, its structure and code clearly shows
how XNA works with low-level APIs (i.e. DirectX). So it was used as an reference in
this project. The detail of JBBRXG11 will be introduced in Chapter 3.

Chapter 3: Underlying System

This chapter introduces the software and libraries that are used to support the
development of this project. It firstly looks into the detail of Microsoft's XNA, which
is the library that needs to be ported on to the Raspberry Pi, then follows by the
introduction of OpenGL ES, the API used to replace DirectX on Pi, and finally

discusses the detail of the operating system used on Raspberry Pi, Raspbian.

This chapter not only explains the original purpose of each underlying system, but
also looks into the purpose of these systems within this project and how they were

used.

3.1 XNA

The goal of this project is to allow people to learn XNA programming on the
Raspberry Pi. XNA is a set of object libraries accessing the DirectX graphics library
with a managed runtime environment. It was developed by Microsoft, and it is built
on Microsoft's .Net Framework. XNA is designed to facilitate the creation and
management of video games. As described by Microsoft in 2004, "XNA is made with
the intention of making the game development process easier by providing much of
the underlying code and functions that are often used in games, freeing the developer
to focus on programming the systems that are specific to their own games ". Figure.4
explains the architecture of an XNA program (this figure is taken from James Boud's
report "Extending SlimDXna to Use XNA 4 and DirectX 11"[19]). It provides
underlying functions to the users, and interacts with the graphics system through
DiretX.

User’s XNA Program

XNA Library Classes XNA Content Manager

XNA Classes Private Code| XMA Content Processors

Figure.4 XNA Architecture [19]

The first version of the XNA toolset was announced in 2004, and till today, a number
of versions have been developed. The latest version is XNA 4.0 Refresh, which
contains a lot of new features and new methods. In an XNA project, XNA handles the
running of the main loop of the program, the 3D graphics functions, and provides a
number of methods that should be overridden by programmers, like the methods used
for initialization and loading content. It abstracts much of the detail of using the
underlying DirectX libraries, and also provides a content management system for

game assets (e.g. models, textures etc.).

XNA is not an open source toolset, Microsoft only provided the name of the methods
and properties of its classes. However, the source code of XNA is essential for
rewriting the libraries. To solve this problem, the code of a project named
"JBBRXG11" is used as reference. IBBRXG11 is a project developed by a group at
Waikato University. This project rewrote the XNA classes that access the graphics
system with DirectX 11 code via the SlimDX library.[7] The detail of JBBRXG 11

will be introduced in the next section.

The full XNA library is very comprehensive and complicated, it includes a large
number of classes that help to develop video games. The workload of rewriting the
whole system (like JBBRXG 11) would be too much. Therefore, in this project, only
the classes that are involved in creating the sample programs (e.g. displaying triangle
or cube) have been rewritten. The work of writing the remaining classes is leaved for
future work. The project does, however, give a complete demonstration of feasibility
and shows how the XNA programming model can be adapted to work with OpenGL

ES on the Raspberry Pi (or any other Linux system).

3.1.1 XNA Core Classes

The 'Game' class is the core class of XNA programs. When building a new XNA
project, a class named 'Gamel', that inherit from 'Game’, will be created for the
programmer. Game provide five virtual methods that can be overridden by
programmers. These are 'Initialize’, ‘'Update’, '‘Draw', ‘LoadContent’, and
'‘UnloadContent'. The Update, Draw and LoadContent are of most importance to XNA

programs, while the other two are not so critical and can be ignored in simple

10

programs. Programmers should insert their own code into these methods in 'Gamel’,
and these methods will be called by the underlying framework when the program is
executed. The details of these methods will be introduced in this section, and this
section will show the source code for an XNA game. Figure.5 shows the outline

source of an XNA program.

1 [Fuzing Svatem;

2 |u=ing Sy=stem.Collectionsz.Generic;

3 |uzing System.Ling:

4 uzing Microszoft. ¥na. Frameworlk;

5 |uzing Microszoft. ¥na. Framework. fudio;

i |uzing Microszoft. ¥na. Framework. Content ;

T uzing Microzoft. Xna. Framework. GamerServices;
B |u=zing Microszoft. ¥na. Framework. Graphics;

9 | uzing Microsoft. ¥na. Framework. Input ;

10 uzing Microsoft. ¥na. Framework, Media;

12 HEnamezpace WindowsGamel
13 {

14 [E public claszs Gamel : Microszoft. Ena. Frameworlk. Game
15 {

16 GraphicsleviceManager graphics;

17 Spritefatch spriteBatch;

18

19 [H public Gamel()

20 i

21 graphics = new GraphiczDeviceManager (this) ;
22 Content. RootDirectory = "Content”;

23 i

24

25 H protected override woid Initialize()

26 i

27 base. Initialize();

28 1

29

i B protected override woid LoadContent ()

3l 1

32 spriteBatch = new SpriteBatchi(GraphicsDevice) ;
33 }

34

30 = protected override woid Update (GameTime gameTime)
K13} i

3T if (GameFPad. GetState (FlaverIndex. Onel, Buttons. Back == ButtonState.Preasszed)
38 thiz.Exit () ;

39

40 baze. Update (zameTime) ;

41 1

42

43 B protected override woid Draw(GameTime gameTime)
44 i

45 GraphicsDewice. Clear (Color. CornflowerBlue)
46

a7 basze.Draw(ganeTime] ;

48 i

48 1

a0 h

Figure.5 Outline Source of an XNA Program

11

The constructor of Game creates a new GameWindow object and a ContentManager
object. The GameWindow object handles the creation and display of the graphics
window, initializing the graphics system and allocating buffer chains etc.
Programmers may change the size of the window in Gamel by modifying the value of
the window properties (details will be explained later). The object of ContentManager

handles the process of loading and unloading graphics resources.

After the Game object is created, the first method that will be called is 'Initialize’. As
described in MSDN (the Microsoft Developer Network), "the Initialize method is
called after the Game and GraphicsDevice are created, but before LoadContent and
Draw. Programmers may override this method to query for any required services, and
load any non-graphics resources."[8] The graphics resources can be loaded by
LoadContent method. In the Game implementation, Initialize calls LoadContent, so

all the resources can be loaded in the process of initialization.

"Update method is called when the game has determined that game logic needs to be
processed.”[91 It handles the updating of simulation data, user input, or the
management of the game state. Update is called in the main loop of the game program,
so nearly all the code that needs to be executed on every iteration will be placed in
this method. There is a property named 'IsFixedTimeStep' that gets or sets a value
indicating whether to use fixed time steps.[10] The default value of this property is true,
and this made the game a fixed-step game. When a fixed-step game is running, it calls
the Update method on the fixed interval specified in ‘TargetElapsedTime', which is
another property that gets or sets the target time between calls to Update when
IsFixedTimeStep is true. [11] The default value of TargetElapsedTime is 1/60 second,

but programmers may change this value.

Another critical virtual method provided by Game is 'Draw'. This method is
synergistic with Update, and it will be called to draw a frame when the program
determines to do so. The rate of calling Update and Draw depends on the value of
IsFixedTimeStep. If its value is the default value (i.e. true), as described above,
Update will be called at the interval specified in TargetElapsedTime, while Draw will
continue to be called as often as possible.[12] If TargetElapsedTime has not elapsed

yet after a calling from Update, the Draw method will be called. After that, if it is still

12

not time to call Update again, the game idles. On the other hand, if it takes too long to
process the Update method, then Update will be called again without calling the Draw
method, and if Update is executed longer than TargetElapsedTime, the next few
frames will be dropped to catch up the runtime.[10] By contrast, if the value of
IsFixedTimeStep is set to false, then both Update and Draw will be called sequentially

as often as possible.

The other two virtual methods provided by Game: LoadContent and UnloadContent,
are not as important as the three methods described above. LoadContent is used to
load graphics resources that are needed for the game. For example, textures, videos,
or shaders. This method is firstly called by Initialize when the program is running, and
after that, it also can be called whenever the game content needs to be reloaded. For
some simple programs, like displaying a triangle or cube, LoadContent will not be
needed as there are no extra graphics resources needed. Compared to LoadContent,
UnloadContent method works the other way, it is used to unload the graphics

resources.

What is more, there are two other critical underlying methods in Game, 'Tick' and
‘Run'. Tick controls the game time system. It updates the game's clock and calls
Update and Draw at different rates according to the value of IsFixedTimeStep as
introduced above. The Run method is the kernel of the XNA program. Generally
speaking, all the methods described above and those that will be introduced later, are
eventually called by the Run method. It firstly creates a new object of
GraphicsDeviceManager and a new GraphicsDevice (these will be explained in XNA
Graphics), and then calls the Initialize method (as described above, LoadContent will
also be called by Initialize). After that, it builds a game window, and begin running
the game loop. In the loop of the game, the Tick method will be called (so Update and
Draw will be called by Tick in every iteration of the loop).

3.1.2 XNA Graphics Classes

Most of the classes of the XNA graphics system are contained by the 'Graphics'
namespace of the XNA framework, which has a number of low-level API
(Application Programming Interface) methods that accelerate hardware to display 3D

graphics.[13) Two core classes of the XNA graphics system are

13

‘GraphicsDeviceManager' and 'GraphicsDevice'. In this project, these two classes

have been rewritten to use OpenGL ES library to operate the graphics system.

The GraphicsDeviceManager class handles the configuration and management of the
graphics device.[14] In this class, the default properties of the game window are set
(e.g. the size and color of the back buffer), and programmers may change the value of
those properties when creating an object of GraphicsDeviceManager in Gamel. When
the game starts, GraphicsDeviceManager calls a function named 'CreateDevice' in

GraphicsDevice to create a new graphics device object.

GraphicsDevice is a class in the Graphics namespace. As described in MSDN,
"GraphicsDevice class performs primitive-based rendering, creates resources, handles
system-level variables, adjusts gamma ramp levels, and creates shaders."[15]

GraphicsDevice contains a variety of functions that handle the drawing of primitives.

In both XNA and OpenGL ES, 3D objects are eventually assembled from a number of
primitives. Primitive is a geometric object, it could be a triangle ,a line or a point. An
object like a cube or a sphere in XNA is actually drawn as a number of flat triangles,
sorted in orders to make the shape look like a cube or a sphere. Using triangles to
draw a sphere makes the surface appear faceted. After smoothing, using an

appropriate lighting model, the effect looks much better.

=z
Figure.6 Smoothing

A triangle is described by its three vertices. The position of a vertex is represented by
its coordinate (three float values representing the position on X axis, Y axis, and Z

14

axis respectively). Most of the time, the coordinate of a vertex is stored in a
Vector3(will be explained later) object, shown as Figure.7. The data structures used
for storing vertex data will be described in Chapter 4. Programmers should indicate
the way of assigning those vertices, either sequentially use three vertices to draw a
triangle, or give it another list of indices to explicitly indicate the drawing sequence.

The code using a list of indices is shown as Figure.8.

VertexDeclaration wvdecl;
vdecl = VertexPositionColor.VertexDeclaration;

VertexPositionColor([] wvertices;

wvertices = new VertexPositionColor [8];

// PR 5

[/ Y ' /!

[| N /o

/| 0--—-—--- 1|

Iy +----X | &----- |--7

ff | / | /

[/ Z |/ |/

[/ 2-------- 3

wvertices[0] .Position = new Vector3i (0, 1, 1);

wvertices[1l] .Position = new Vectori(l, 1, 1);

vertices[2] .Position = new Vector3i (0, 0, 1);

wvertices[3] .Position = new Vector3i(l, 0, 1);

vertices[4] .Position = new Vectori (0, 1, 0);

wvertices [5] .Position = new Vectori(l, 1, 0);

wvertices [6] .Position = new Vectori (0, 0, 0);

wvertices[7] .Position = new Vectori(l, 0, 0);

Figure.7 Declaring the coordinates of vertices
int [] indices;
indices = new int[] {0, 1, 2, 1, 3, 2, // front

1, 5, 3, 5, 7, 3, // right
5, 4, 7, 4, 6, T, // back
4, 0, &, 0, 2, 6, // left
4, 5, 0, 5, 1, 0o, J/ top
2, 3, 6, 3, 7, 6}; // bottom

Figure.8 Using a list of indices to indicate the sequence of drawing

15

3.1.3 XNA Mathematical Classes

The flow of an XNA program can be expressed as a pipeline diagram. As shown in
Figure.9, there is one step before primitive assembly in the XNA graphics pipeline,
which is transform and lighting. Transform handles the positioning and transforming
of objects in the virtual environment from a 3D space to a 2D screen (i.e. to project
the scene of 3D objects captured by the camera on to the specified area of the screen).
XNA provides a series of mathematical classes that helps the transformation between
different coordinate systems, including 'Vector2', '"Vector3', 'Vector4', 'Rectangle’, and
'Matrix'. For this project, these classes were all rewritten to make them executable
with OpenGL ES on Linux. In XNA programs, a set of matrices can be created to do
the transformation, which are the World matrix, View matrix, and Projection matrix.
The World matrix mainly handles the rotation, scaling, and translation of the objects
in the 3D virtual world that is defined by the programmer. Compare to World, the
View matrix sets the camera position, it also handles the rotation and translation of
the coordinate system. The Projection matrix specifies the attribute of the camera, like
perspective, field of view, and some depth limitations. The Matrix class provides a
function named 'createPerspectiveFieldOfView' to set those values. After all three
matrices are set, the final step is to multiply them in order (World * View *
Projection), thus the final matrix that used for calculating the position can be

acquired.

16

Geometry Data

y

Transform & Lighting

A4

4)

Primitive Assembly,
Culling,
Perspective Division,

Viewport Mappin
\ P PP 8)

Rasterization

\z
Texturing

Color Sum and Fog

\ 4

('
Alpha Test,
Depth Test,
Stencil Test
\.

Frame Buffer Blending

A4

Frame Buffer

Figure.9 XNA Fixed Function Graphics Pipeline

Lighting is built from four components, ambient lighting, diffuse lighting, specular
lighting, and emissive lighting. With lighting effect, programmers are able to calculate
reflections and shadows, which make the game graphics seems more real. When
building a model in XNA, programmers may give every vertex a normal. Normal is a
vector that pointing out from a surface, and it is used to calculate interaction with light
sources. The sample code of drawing a cube with normals is shown as Figure.10.
Coordinates of a set of vertices are given on the left part of the code, and each vertex

is given a normal vector as shown on the right part of the code.

17

wertices = new VertexPositionMormalTexture [24] ;

13 wertices[00].Normal = new Vector3d, 0, +17;
1}; wertices[01].Normal = new Vector3id, 0, +17;
13: werticez[02].Normal = new Vector3(0, 0, +17;
1) wertice=[03].Normal = new Vector3(0, 0, +13;
13 wertices[04].Normal = new Vector3(+1l, 0, 0);
0); wertices[05].Normal = new Vector3(+l, 0, 0);
1}; wertices[06].Normal = new Vectordi+i, 0, 07;
01 : wertice=[07].Normal = new Vectord(+l, 0, 07

wertices [00]. Position = new Vectord (O,
wertices[01].FPosition = new Vectord(l,
werticez[02]. Position = new Vector3 (O,
werticez[03]. Pozition = new Vectord(l,
wertices[0d4]. Position = new Vectord(l,
wertices [05]. Position = new Vectord(l,
wertices[06].Position = new Vectord(l,
werticez[07]. Position = new Vector3d(l,

M

=

-

w

=

M

-

-

werticez[08]. Position = new Vector3(l, 1, 0); wertices[08].Hormal = new Vector3(0, 0, -1):
wertices[09]. Position = new Vector3(0, 1, 0); wertices[09].Normal = new Vector3(0, 0, -1);
wertices[10]. Position = new Vector3(l, 0, 0); wertices[10].Hormal = new Vector3(0, 0, -1J;
wertices[11].Position = new Vectord (O, 0); wertices[11].Normal = new Vector3(d, 0, -17;

0): wertice=[12].Normal = new Vectord(-1, 00
1) wertice=[13].Normal = new Vector3i-1, 0
0 wertices[14]. Normal = new Vectori(-1, 0
13; wertices[15]. Normal = new Vector3i-1, 0, 07;
0); wertices[16].Normal = new Vector3(d, +1, 0J;
01 : wertice=s[17].Normal = new Vector3(0, +1, 07;
1) wertice=[18].Normal = new Vector3{0d, +1, 03
13 wertices[18].Normal = new Vector3(0, +1, 07
13 wertices[20].Normal = new Vector3d, -1, 07;
1}; wertices[21].Normal = new Vector3id, -1, 07;
0): wertice=[22].Normal = new Vector3(0, -1, 07;
0); wertice=[23].Normal = new Vector3(0, -1, 0J;

werticez[12]. Position = new Vector3 (O,
werticez[13]. Pozition = new Vectord (O,
wertices[14]. Position = new Vectord (O,
wertices[15]. Position = new Vectord (O,
wertices[16]. Position = new Vectord (O,
werticez[17]. Position = new Vector3(l,
werticez[18]. Pozition = new Vectord (O,
wertices[19]. Position = new Vectord(l,
wertices[20]. Position = new Vectord (O,
wertices[21].Position = new Vectord(l,
werticez[22]. Position = new Vector3 (O,
werticez[23]. Pozition = new Vectord(l,

P
-
=
fl}

L T e T e T e T e L = Y e T S S e B e ST S o B e B S S e T e S SR Y
-

w

Figure.10 Sample code of normal

By using lighting effect, the color of each surface of a white cube will be different.
The effect is shown as Figure.11. Surfaces that face towards the light direction are

brighter than those face away from the light.

5= DemolectureSevenlllClassDemoXNA4 ‘ =] |l

Figure.11 Lighting effect

18

3.1.4 Shader

Before programmable graphics pipeline was created, programmers needed to send all
the model data and textures to the graphics card, and they could only use a fixed set of
functions to configure the way of drawing the objects. Shaders were then developed to
improve the efficiency of programs. Shaders are small programs that will be compiled
and sent to the graphics card to handle the graphical data. In XNA, they are written in
HLSL (stands for High Level Shader Language), which is a kind of special
programming language that fairly similar to C programming language (OpenGL uses

a different language named GLSL, it is similar to HLSL, but not identical).[16]

Generally speaking, there are two kinds of shaders used in XNA, which are Vertex
Shader, Pixel Shader(also known as Fragment Shader). As shown in Figure.12, in the
programmable pipeline, vertex shader allows programmers to program their own
codes to operate the transform and lighting, and the position of objects can be altered
in this stage. Compare to vertex shader, pixel shader replaces the texturing stage. It
handles advanced lighting and determines the color of each pixel. In addition,
JBBRXG11 and DirectX 10 give access to geometry shaders. These operate in the
rasterization stage, and can create or destroy primitives. Programmers may create a
".fx" file to put in their shader code, and load it as a content into the XNA program.
XNA also provides a built-in shader named 'BasicEffect’, which is created by the
graphics device and supports a variety of basic graphics effects (similar to the fixed
function pipeline). XNA 4.0 runs on a variety of platforms, and DirectX 10 and
DirectX 11 do not provide fixed function pipeline anymore.

19

Geometry Data

y

Transform & Lighting

v
Primitive Assembly,
Culling,
Perspective Division,
Viewport Mappin
\ P PP 8J

(N

W
Rasterization

Texturing

A4

Color Sum and Fog

(Alpha Test,
Depth Test,
Stencil Test

\.

v
Frame Buffer Blending

A4

Frame Buffer

& Vertex Shader

< Geometry Shader

& Pixel Shader

Figure.12 Shaders

3.1.5 XNA Inputs

XNA framework provides a flexible library (the Microsoft.Xna.Framework.Input

namespace) that handles user inputs. Most input devices can be supported (e.g.
keyboard, mouse, touch panel etc.). In this project, the Input library is only used to
take keyboard and mouse input to the program.

A structure named 'KeyBoardState' is used to represent the state of keystrokes. It
contains a variety of methods, and two of them would be frequently used by
programmers, which are 'IsKeyDown' method and 'Is KeyUp' method. These two

methods return bool values to indicate if a specified key is currently being pressed or

20

not respectively. The current keyboard state can be checked by 'GetState' method

provided by Keyboard class.

Compare to keyboard, the mouse position and the state of mouse buttons (i.e. mouse
button click) can be retrieved by calling the GetState method of Mouse class. The
MouseState structure provides three properties, 'LeftButton’, 'MiddleButton', and
'RightButton’, that return the state (Pressed or Released) of mouse buttons. Another
two properties, 'X' and "Y', specify the position of the cursor. The position of the
mouse is its related position to the upper-left corner of the game window, and the
values of X and Y represent the horizontal distance and vertical distance between the

cursor and the upper-left corner respectively.

3.2 OpenGL ES

In this project, EGL and OpenGL ES were used to get access to the graphics system.
OpenGL ES, created by the Khronos Group, is a subset of OpenGL (Open Graphics
Library) that designed for embedded devices like mobile phones, computer tablets and
personal digital assistants. "It is a cross-language, multi-platform application
programming interface (API) for rendering 3D graphics."

DirectX and OpenGL are two standard 3D APIs for programs to interact with a
Graphics Processing Unit (GPU). DirectX can be used on any devices that running the
Microsoft's Windows operating system. In an XNA program, nearly all the low-level
APIs are provided by DirectX. Compare with DirectX, OpenGL is a cross-platform
API that can be used on both Windows and Linux. In this project, OpenGL ES is used
to replace DirectX to provide API functions to the XNA, so that programming with
XNA on Raspberry Pi becomes possible.

The OpenGL ES used in this project is version 2.0, which is derived from the
OpenGL 2.0 specification. Because of the constrained performance of embedded
systems, OpenGL ES is not as complex as OpenGL, a number of redundant functions
have been removed to ensure the efficiency of the program. Compare with the early
versions of OpenGL ES (i.e. ES 1.0 and ES 1.1), the ES 2.0 implements a
programmable graphics pipeline, rather than a fixed function pipeline, which makes

21

use of the programmable graphics capabilities available on embedded systems.[17] The
OpenGL ES 2.0 graphics pipeline is shown in Figure.13. This pipeline is similar with
the XNA graphics pipeline. The systems are the same because they run on similar

hardware.

5 Vertex Arrays /
Buffer Objects

Primitive P
Vertex Shader Rasterization | —
> Assembly
A
1
1
1
1
API T t'
R exture
Memory
Fragment Per-Fragment Framebuffer
Shader Operations

Figure.13 OpenGL ES 2.0 Graphics Pipeline [17]

The shaded stages (i.e. Vertex Shader and Fragment Shader) are the programmable
stages in the pipeline. The details of shaders will be discussed later in this chapter. In
the OpenGL ES 2.0 graphics pipeline, the vertex arrays and buffer objects are firstly
passed into the vertex shader to implement some operations on the vertices (e.g.
transforming, lighting etc.). After the vertex shader, is the primitive assembly stage. A
primitive is a basic geometric object that can be drawn on the screen. There are three
types of primitives, which are points, lines and triangles. In primitive assembly, the
shaded vertices are assembled into individual geometric primitives, and then the 3D
coordinates are converted into the screen 2D coordinates.[17] The next stage is the
rasterization that each primitive is converted into a 2D fragment. These fragments will
then be sent to the fragment shader where the fragments' color is generated. The last
stage before framebuffers are generated is the per-fragment operations. This stage
consists of a series of tests, and the fragment color generated in the fragment shader

can be modified. Compare with the per-fragment operations in OpenGL 2.0, Alpha

22

Test and Logical Operations are eliminated in OpenGL ES 2.0. An overview of the

operations is shown in Figure.14.

Fragment and
Associated Data

Pixel Ownership Test

Scissor Test

rmmmmmmmm e — e m e — -] Alpha Test

Stencil Test

Depth Test

Blending

e mmmm s s s s mmmmmmmmm o Logical Operations

Framebuffer

Figure.14 Per-Fragment Operations [21]

The investigation in this project started with an OpenGL ES sample, the sample code
mainly contains three parts, initialize, create program and render, and they were coded

as three major functions in the program.

Initialize is the first function called by the main function, and it will be called only
once. This stage handles the initialization of EGL (details of EGL will be explained in
the next section in this chapter), communication with the native windowing system,

creating rendering surface and some other works to set up a display environment.

23

Once the initialization is finished, the CreateProgram function is called. This function
creates shader objects and program object (the details of shaders will be discussed
later in this chapter), loading the shader source code and compiling the shaders,
attaching the shader objects as a program object, and linking the shader program. This

function is called only once as well.

Compared with Initialize and CreateProgram, the Render function is called on every
iteration of the main loop. It handles the creation of buffers, loading the vertex data
into the buffers, using the program object, linking vertex data with variables in the

shaders, and finally drawing the primitives on the screen.

3.2.1 EGL

EGL (Embedded-System Graphics Library) is a platform-independent API created by
the Khronos Group. It is an interface between rendering APIs like OpenGL ES and
the underlying native platform windowing system.[18] The mechanisms provided by
EGL mainly include creating the drawing surfaces and binding the buffers, querying
configurations of drawing surfaces, managing the graphics context and synchronizing
rendering between OpenGL ES 2.0 and other graphics-rendering APIs (e.g. the native

windowing system).[17]

This project used EGL version 1.4, which contains dozens of functions. However,

only six of them were used during the initialization stage.

The first function called by the program is "eglGetDisplay"”. It is used to communicate
with the windowing system, and it returns a token that representing the native display
type. After that, "egllinitialize” is called to initialize EGL's data structures. Once the
initialization is done, the next step would be choosing an available rendering surface
configuration. Generally, there are two ways to do this. Programmers either query all
the configurations and find one themselves, or just let EGL make the determination by
specifying a set of requirements. In this project, the second way was used by calling
"eglChooseConfig". After a suitable configuration of rendering has been determined,
the EGL window and rendering context can be created by calling the function
"eglCreateWindowSurface", which connects to the native display manager, the

configuration that has been chosen, and "eglCreateContext™" respectively. When the

24

program creates more than one context, “"eglMakeCurrent™ is needed to associate a
context with the rendering surface. If all these six functions work properly, then the

initialization process has been successfully done.

Another EGL function named "eglSwapBuffers” was used in the rendering stage in
this project. The reason of using this function is that when displaying the frame buffer
on the screen, there are actually two buffers alternately displaying the images. The
image of a frame is represented by a two-dimensional array of pixel data. If there is
only one buffer used to update the frames, because of the fixed updating rate from its
memory, artifacts might be displayed when only part of the buffer data has been
updated. A scheme called double buffering is used to solve this problem. A front
buffer and a back buffer are used, and all the rendering process only occurs to the
back buffer. Once the rendering is complete, the back buffer will be swapped to the
front, and the original front buffer becomes the current back buffer to render the next

frame. Thus, artifacts will no longer be displayed on the screen.

3.2.2 Shaders and GLSL

As explained earlier, OpenGL ES 2.0 implements a programmable graphics pipeline.
Programmers may put their own code in the shaders to do postprocessing and produce
special effects. Similar to XNA programming, OpenGL ES provides vertex shader
and fragment shader (it is called pixel shader in XNA), and programmers may use

OpenGL Shading Language (GLSL) to program shader code in the graphics pipeline.

The vertex shader is responsible for transforming the positions of vertices from 3D
space to 2D coordinate space, and it can also modify the coordinates and colors of
those vertices. In OpenGL ES, a vertex shader takes attributes, uniforms and samplers
as its input. Attributes could be the positions and colors of the vertices, or texture
coordinates. These values are always stored in vertex arrays in the program. In this
project, an array of structures that contains vertices' coordinates, colors, and other
information is used to provide those attributes. The details will be introduced in
Chapter.4. Uniforms provide constant data to the vertex shader, like the world, view,
and projection matrices. Samplers are an optional input to a vertex shader, and are
used to represent textures. The output of vertex shader is called varyings, like vertex

colors and texture coordinates. These values are interpolated in rasterization stage,

25

and the results will be sent to the fragment shader.

The fragment shader takes the output varyings of the vertex shader as its inputs. It
mainly handles the calculation of the colors and some other attributes of the fragments,
and finally outputs the color of each fragment. The inputs and outputs of the shaders

are shown in Figure.15.

Attributes

Uniforms

Temporary Vertex Shader <:I
Variables <:> <:| samplers

gl_Position

Varyings gl_FrontFacing

gl_PointSize

Rasterization

Uniforms

Temporary Fragment Shader <:I
Variables <:> <:| samplers

Gl_FragColor

Figure.15 Inputs and Outputs of the Shaders [17]

In OpenGL ES, shader objects and program objects are essential for using shaders. In
the process of using shaders, shader objects are firstly created. In the sample code of
this project, two shader objects were created, one for the vertex shader, and the other
for the fragment shader. Shader objects contains the shader source code (one shader
object contains the source code of one shader), and these objects will be linked to a
later created program object after compiling. A program object is attached with one
vertex shader and one fragment shader, no more and no less. The program object is

then linked to the program, and the shaders are ready for rendering.

26

The programming language used for coding OpenGL ES shaders is called OpenGL
ES Shading Language (GLSL), which is a high-level shading langrage created by
OpenGL Architecture Review Board. GLSL and HLSL are similar to each other.
They are all based on the syntax of C programming language, but there are still some
differences between them, like the keyword of variable types (e.g. "vec4" in GLSL,
but "float4™ in HLSL) and the names of some built-in functions.

However, the goal of this thesis is to investigate how XNA programming can be
ported to the Raspberry Pi. Since this project focuses on rewriting the classes of XNA,
and the differences between both shading languages are not so numerous, GLSL was
directly used to replace the HLSL for coding shaders in this project.

3.3 JBBRXG11

As described in section 2.2, the JBBRXG11 project is built with the XNA 4.0 library,
trying to extend XNA to work with DirectX 11 via SIimDX. As XNA is not an open
source library, the JBBRXG11 project involves a large amount of work to rewrite the

source code of XNA classes.

SIimDX is an open source framework that allows developers to create DirectX
applications. Essentially it is a wrapper for DirectX. In JBBRXG11, SlimDX was
used to access DirectX 11 methods when replacing the XNA classes that access the
graphics systems. Figure.16 shows the generalized system architecture of
JBBRXG11.

27

User’s JBBRXG11 Program

JBBRXG11
XNA Library Classes — Extensions to | XNA Content Manager
Public Methods/Structures XNA
XNA Parts of XNA to Replace
o and New Code
Private
Code SlimDX

Figure.16 Architecture of JBBRXG11 [19]

JBBRXGL11 replaced all classes that interact with DirectX 9 using SIimDX to get
access to DirectX 11, and the XNA's content manager system was also replaced by
modified content loaders. When users program with the JBBRXG11 system, their
code will be similar to XNA programs, but the data is actually send to DirectX 11
through SIimDX. The JBBRXG11 system can be downloaded from the web page
http://jbbrxgl1.codeplex.com/ [20]

This thesis investigates how to port XNA to Raspberry Pi, trying to replace DirectX
with OpenGL ES. The JBBRXG11 system is an extension of XNA. It still works with
parts of the XNA framework. However, the XNA framework cannot be used in the

modified classes as the operating system used on Pi is not Windows.

In this project, the source code of IBBRXG11 was used as a reference to rewrite some
XNA classes. The modified classes provides methods that have the same names with
those in XNA to the users, and the XNA classes that interact with DirectX were
replaced with modified classes to make procedure calls from OpenGL ES. Figure.17

shows the architecture of the modified system in this project. XNA classes are still

28

http://jbbrxg11.codeplex.com/

used in JBBRXGL11, but they were replaced with new versions appropriate for the

Raspberry Pi in this project.

User’s XNA Program

Modified Classes—Public
Methods/Structures

Modified Classes Private Code

OpenGLES2.0

Figure.17 Architecture of Modified System on Raspberry Pi

When programming with the modified classes on Raspberry Pi, users' programs are
similar to XNA programs on Windows, but the underlying classes actually interact

with graphics systems through the OpenGL ES library.

3.4 Raspbian

Raspbian is the most widely used operating system for Raspberry Pi. This project
used Raspbian as well. However, when Raspberry Pi was first announced, the
operating system used on Pi was the ARM based Fedora created by Red Hat company.
As the early version of Raspberry Pi only has 256M memory space, which does not
meet the requirement of Fedora, it cannot smoothly run this system. In August 2012,

Raspbian was released and replaced Fedora.

Raspbian is a Debian based operating system created by Mike Thompson and Peter
Green. A large amount of work has been done by these two volunteers, including a
home-built cluster of ARM computers, and the rebuilding of 19,000 Linux software
packages.[7]

A number of versions of the Raspbian have been developed. The one used in this

29

project is the "Hard-float" wversion Raspbian. A Floating-point Unit makes
mathematical calculations very quick. Although Debian supports floating point for
ARMV7 processors, it does not support ARMvV6 (the version used on the Raspberry
Pi). As explained by Thompson, "Debian didn't see a product like the Raspberry Pi
coming on the horizon. Even though ARMV6 in Pi has a pretty capable floating point
unit, they didn't support it, all the thousands or tens of thousands of software packages
they built wouldn't support the Raspberry Pi. A floating point unit performs all the
math very quickly, it's a peripheral that not every computer has, but when it does you
really want to take advantage of it."[7] Using floating point unit may increase the
calculation speed of the system, which is important for any numerically intensive

tasks.

The biggest difference between the "Hard-float" and the "Soft-float" is speed. The
Hard-float uses on-chip floating point unit, while the Soft-float emulates one in
software. Making software handle a large amount of mathematical operations will
obviously slow down the speed of Pi. Therefore, the "Hard-float" version Raspbian
was used in this project to take advantage of floating point capability in the
hardware.[71 However, Mono does not work with the Hard-float version Raspbian.

The way of installing Mono will be explained in the Appendix.

30

Chapter 4: Development

This chapter discusses all the significant details of the implementation in this project.
As explained earlier, XNA is an library designed for the Windows operating system,
and it can interact with the graphics card through DirectX, which is an API designed
for Windows as well. This project investigates the possibility of porting XNA on to
Raspberry Pi, which is a computing device that can run the Linux operating system. In
order to achieve this goal, OpenGL ES was used to replace DirectX, and a number of
XNA classes needed to be rewritten. However, before rewriting the code of XNA,
some other work needed to be done.

The two biggest challenges of this project are, firstly, how to make the modified XNA
interact with the graphics system through OpenGL ES 2.0 on Raspberry Pi, and
secondly, when users programming with the modified XNA on Raspberry Pi, how to

make their code similar to that programmed on Windows.

Therefore, before doing any modification to XNA, the first thing is to learn how
OpenGL ES works. The operating system used on Raspberry Pi, the Raspbian,
provides the OpenGL ES 2.0 library, and also some sample code that uses this library
to display objects. However, these sample projects are all written in C++, while XNA
classes are all written in C#. So the second thing to do before modifying XNA is to
investigate how to make procedure call to OpenGL ES using C# language. What is
more, it is also necessary to find out how to use the native windowing system on the

Raspberry Pi.

As there are no suitable IDEs that can be used on Raspberry Pi currently, and OpenGL
ES is a cross-platform API, in order to more easily find errors in the program, the two
steps described above (i.e. learning OpenGL ES and getting access to OpenGL ES
with C# code) were firstly done on Windows (with Visual Studio 2010), and then
move the program on Raspberry Pi to do further modifications. Experiments with

windowing were done on the Pi itself.

Once programming with OpenGL ES in C# language on Raspberry Pi is successful,
the last step is to rewrite some of the XNA classes to allow coding similar to

31

programming in XNA on Windows.

The remainder of this chapter is divided into three sections, explaining the details of
how each step was done in this project. Each step created four sample programs,
started with displaying a blank window, followed by displaying a triangle, then a
colored rotating cube, and finished with showing a textured rotating cube. In the end
of this project, the modified XNA allows programmers to create a textured rotating
cube with lighting effect on Raspberry Pi, shaders are in separate files, and the code is
similar to that on Windows (all the programs mentioned in this thesis are included in

the Appendix).

4.1 C++ code with OpenGL ES 2.0 on Windows

This project started with learning OpenGL ES and writing four sample programs
(displaying blank window, triangle, cube and textured cube) in C++ with OpenGL ES.
As errors may occur when developing sample programs, it is better to program with
an IDE that is capable of indicating syntax errors and debugging. However, because
there were no suitable IDEs that could be used on Pi, all the sample programs were
firstly developed on Windows. Once a program worked, it was moved to Raspberry Pi,

and further modified to be executable on Raspbian.

The next section which explains how to rewrite the four sample programs in the C#

language was also started on Windows, and then moved to Raspbian.

4.1.1 OpenGL ES 2.0 Sample Program
Before writing sample programs, the way of programming with OpenGL ES should
be understood. This project used OpenGL ES 2.0 to replace DirectX, so a sample

program that uses GLES version 2.0 was used as a reference.

As shown in Figure.18, this sample code is written in C++, displaying a textured ninja
model on a colored background, and the angle of the view can be changed by clicking
and moving the mouse. It contains a number of classes and functions to implement the

display, but only four of them are of importance to the program.

32

-
5| OpenGL ES Sample I —-——

-

Figure.18 Ninja Sample

Figure.19 explains the basic structure of the Ninja program.

33

#include <headers>

Other Functions —————> Functions that are not essential for the display
e.g. Loading textures & Detecting mouse move

Setup ()
{
______ —_— Handling the initialization of the program, like
} creating rendering surface & creating a new
window etc.
CreateProgram ()
{
------ —_— Loading and compiling shaders
} Linking the shader program
Render ()
{
------ —_— Allocating buffers to attribute data
} Draw primitives
void main () —_— Controls the process of the program
{
Setup ()

CreateProgram ()

Other Functions

while() Main loop of the program
{

Render ()
}

}

Figure.19 Structure of the Ninja Program

As a C++ program, before writing the classes and functions, the first thing to do is to
include header files that are needed in the program. Figure.20 shows the header files
used in the Ninja program, the "egl.h" and "gl2.h" allows programmers to use the
functions in EGL and OpenGL ES 2.0 libraries (the detail of EGL and OpenGL ES 2.0
have been described in Chapter 3). "nativewin.h™" is used for interacting with the

native windowing system.

34

#include <EGLAegl. k>
#include <GLESZ2/ g12. ki

#include “nativewin. h”

#include “sbm. b
#include “wvecmath. h”

#include <ioztream>
#include <cazzert>
#include <cmathl
#include <catdio>
#include <cztdlib>
#include <ctimel

Figure.20 Header Files in the Ninja Program

The most important function in this sample program is the main function. It controls

the process of the program by calling other functions.

The first function called by main is the 'Setup’ function, which is responsible for
initializing all the component of display. In the Setup function, it firstly calls
OpenNativeDisplay to interact with the native windowing system and creates a new
window, and then calls eglGetDisplay to connect to the EGL display server, and gets
an EGL display handle. Once the connection is successful, EGL needs to be initialized
by calling egllnitialize function, which uses the EGL display handle as one of its
parameters. After that, eglChooseConfig is called to obtain the first display
configuration with a depth buffer. Once a suitable EGL configuration has been chosen,
the next step is to create an on-screen rendering surface for the main window, and an
OpenGL ES rendering context. "A rendering context is a data structure that contains
all of the state required for operation, like the references to the vertex and fragment
shaders and the array of vertex data."[177 These are done by calling the
eglCreateWindowSurface and the eglCreateContext respectively. The last function
called by Setup is eglMakeCurrent, which makes the EGL context and the rendering
surface current, because multiple contexts may have been created in the program. The

process of initialization of the program (i.e. the Setup function) is shown as Figure.21.

35

Create native window

Y
Get EGL display handle

Y
Initialize the EGL display

Y
Query for a suitable EGL
configuration

l

Create rendering surface

A 4

Create rendering context

\ 4
Make the surface and
context current

Figure.21 Process of Initialization (Setup Function)

After the initialization process is done, the second function called by main is
'CreateProgram'. This function handles the loading of shaders, compiling shaders, and
link shaders to form the shader program. In this sample program, shader code is
included in the CreateProgram function in literal strings. The shader source code is
shown in Figure.22. Both the vertex shader and the fragment shader contains only
several lines of code, so it can be included in the program. If the shaders contain a
large amount of code, then they should be created as separate files, and be loaded by
the program. In this project, the final rewritten XNA system will load shader files just

as programmers use XNA on Windows. This will be explained later.

36

Vertex
Shader

Fragment
Shader

const GLchar* vsSource =
“uniform matd mvpMatrix:”
“attribute wecd vertPosition:”
“attribute vec3 normal;”
“attribute vec? texCoord0:”
“warying vec? vwlexCoord:”
“warying vec3 vNormal;”
“yoid main()"”
“ g
gl_Position = mvpMatrix * vertPosition:”
vlexCoord = texCoord0:;”
vNormal = normal;”

i
const GLcharx fsSource =

“uniform vecd lightVec:”

“uniform sampler2D texturelUnit0:”

“warying vec? vwTexCoord:”

“wvarying vec3 vlNormal;”

“void main()"”

" e

vecd diff = wvecd(dot (lightVec.xyz, normalize (vNormal)). xxx,
gl FragColor = diff * texture(textureUnit0, vwTexCoord):”

1

Figure.22 Shader Code of Ninja Sample Program

After the shader source code has been defined, the next step is to create shader objects

and compile the shaders. As described in Chapter.3, shader object is an OpenGL ES

object that can be used for attachment to a shader program object.[17] The shader

object is created by the glCreateShader function. Then the shader source code can be

loaded by using glShaderSource, and the shaders can be compiled by using

glCompileShader. glGetShaderiv can be used to check if the shader has been

successfully compiled. The code of loading and compiling shaders is shown in

Figure.23. However, it is difficult to get syntax errors

37

zLint atatus;

/f create and compile the wertex shader
GLuint ws;
vz = glCreateShader (GL_VERTEX SHADER) ;
glShaderSource (ws, 1, &wsSource, NULL);
glCompileShader (wz) ;
glzetShaderiwvi(vs, GL_COMPILE_STATUS, Astatus);
if (status == 0)
{
printf ("Failed to create a wertex shader.'n");
glleleteShader (va) ;
return GL_FALSE;
1

Ff create and compile the fragment shader
GLuint f=;

fz = glCreateShader (GL_FEAGMENT SHADER) ;
glShaderSource (fz, 1, &fsSource, NIULL) ;
glCompileShader (f=) ;

glizetShaderiwi(fs, GL_COMPILE_STATUS, Astatus);
if (status == 0)

{

printf ("Failed to create a fragment shader.'‘n");
glDeleteShader (wa) ;

glDeleteShader (f2)

return GL_FALSE;

Figure.23 Create Shader Objects and Compiling Shaders

Once the shaders are ready for use, a shader program object should be created using
glCreateProgram. The shader objects are attached to the program object using
glAttachShader. The next step is to link the shaders together. Linking a program
object is accomplished using glLinkProgram.[17] The linking status can be checked by
using glGetProgramiv. Finally the individual compiled shader code objects can be
deleted, as they are no longer needed. The code for assembling and linking the shader
program is shown in Figure.24.

38

£ create the program and attach the zhaders
GLuint po;

o = gllreateProgram() ;

if (po == 0}

{

privtf ("Failed to creste a program. '\n");
return L_FALSE;

h

glittachShader (po, wsl;

glittachShader (po, f=1;

£ link the program
glLinkProgramipol ;
glGetProgramivipo, GL_LINE_STATUS, Astatus);
if {1 =t atus)
{
privtf ("Failed to link program. 'n”);
glleleteProgram (pa) ;
glleletesShader (wa) ;
glleletesShader (fa) ;
return L_FALSE;

Figure.24 Linking Shaders

The last job of CreateProgram is to assign the locations of the attributes in the shaders
(i.e. "to map a generic vertex attribute index to an attribute variable name in the
shader"[17]). There are two ways to do that. The first, which is also the approach used
in this project, is to let OpenGL ES 2.0 to bind the index to the attribute name by
calling the glGetAttribLocation function. The other approach is to let the application
bind the index to an attribute name by using glBindAttribLocation. As this thesis is
not about how to program with OpenGL ES 2.0, the detail of the second approach will
not be explained.

glGetAttribLocation returns the generic attribute index (which is actually an integer)
bound to the attribute variable name. The index will later be used in another function
to allocate a buffer to the attribute data. The code is shown in Figure.25. The "po” in
the program is the shader program object. The Ninja program uses a structure (i.e.
ctx.rs in the program) to hold these values. Later in the Render function, the three
vertex streams will be bound to three attributes in the vertex shader.

glGetittriblocation(ctx.rs.po, “wvertFoszition” ;
glGetittriblocation(ctx.rs.po, “rnormal” J;
glGetittriblocation(ctx.rs.po, “texCoordl” };

octx. raz.wertloco
ctx. ra.normalloc
otx®. ra. texcoordloc

Figure.25 Mapping Indices to Attributes

39

The process of the CreateProgram function is shown in Figure.26.

Load shader source code

Y

Create shader objects
&
Compile Shaders

y

Create program object
&
Attach shaders

y
Link the program

v
Free up no longer needed
shader resources

4

Assign the location of
attributes/uniforms in the
shaders

Figure.26 Process of CreateProgram

The last essential function called by main is the 'Render' function. Render is the
function that actually draw objects on the screen, and it is called on every iteration of
the main loop. The Ninja program implements a number of effects, so its Render
function includes a lot of code. However, most of the code is not of importance for
displaying objects. For example the transformation effect requires some calculation of
matrices, but models can still be displayed without this effect. Therefore, in order to
make the introduction more clear, this section only discusses the most important
processes involved in Render function. Other OpenGL ES provided functions were

also used in this project, and will be explained later in this thesis.

In the Ninja program, there are three vertex arrays storing vertex positions, vertex

40

normal and texture coordinates respectively.

The Render function mainly implements four tasks. It firstly uses glClearColor to set
the color for the background, then calls glUseProgram to bind the shader program to
the graphics device (i.e. load the shader code onto the GPU). Once the program is
bound, glVertexAttribPointer is used to specify the vertex arrays (the vertex attribute
indices acquired in CreateProgram is used as one of the parameters in this function),

and glEnableVertexAttribArray is called to enable the generic vertex attribute array.
The code is shown as Figure.27.

GLint posfttrib = ctx. ra.vertloc;
GzLint normbéttrib = ctx. rz.normalloc;
GLint uwdttrib = ctw. rz.texcoordloc;

Ff =et wvertex pointers

glVertezfttribPointer (posittrib, posSize, GL_FLOAT, GL_FALSE, 0, posPtr);
glEnableVertexittriblirray (posdttrib) ;

glVertezfttribFointer (normittrib, normSize, GL_FLOAT, GL_FALSE, 0, normPtr);
glEnableVertexdttriblirray (normittrib) ;

glVertezfttribFointer (uwittrib, uwSize, GL_FLOAT, GL_FALSE, 0, uwPtr);
glEnableVertexittriblirray (uvittrib) ;

Figure.27 Specifying Vertex Arrays
Figure.28 shows the way of specifying vertex attributes, and binding them to attribute

names in the shader. This figure is referenced from the book "OpenGL ES 2.0
Programming Guide"[17].

41

Constant

Vertex Attribute 0 |

Vertex Attribute 0
Enable/Disable

Vertex Array
Vertex Attribute 0

Constant
Vertex Attribute 1

Vertex Attribute 1

Enable/Disable T
‘ : — Vertex Shader

Vertex Array :

Vertex Attribute 1

Constant
Vertex Attribute n—1

1oL

Vertex Attribute n— 1|__| l
Enable/Disable

Attribute ___ Vertex Attribute
Variahle Index Bindings

f

glDrawArrays/gl DrawElements

Vertex Array
Vertex Attribute n -1

:

Figure.28 Specifying and Binding Vertex Attributes for Drawing Primitives

The last job of Render is calling glDrawArrays to draw primitives on the screen, and
using eglSwapBuffers to flip the visible buffer.

All the other functions called by main are not important to the display, like detecting

the mouse move and loading textures.

4.1.2 C++ Blank Window

The Ninja sample program was used as a reference to create the sample programs for
this project. The best way of writing sample code is to start with creating something
really simple. For example, displaying a blank window. When creating a new XNA
project on Windows, programmers may execute the outline program provided by the

system without doing any modifications to it, and a blank window will be displayed.

42

Therefore, the first sample program created in this project is to display a blank screen
with OpenGL ES 2.0 using the C++ language. This program was built by modifying
the Ninja program. Only three functions were kept, which are the Setup function, the
Render function and the main function. All the other functions like loading textures
were deleted from this program. As nothing needs to be displayed in the window,
shaders were not needed, so the whole CreateProgram function was deleted as well.
The Setup function only contains the initialization routines, so it was not modified.
The code in the Render function was largely minified, as it does not need to do any
transformation calculations, nor allocate buffers to attribute data. The current Render
function only clears the background to a given color, and swaps buffers. The code is

shown as Figure.29.

woid Render (esContext &otx)

{
A Clear the color buffer
glClearColor § 0.0f, 1.0f, 1.0f, 0.0f };
glClear (3L COLOER_EBUFFEE_EBIT | GL_DEPTH EUFFEE_EIT);

A flip the wizible buffer
eglSwapbufferz (ctx. egllizplay, ctx.egliurface);

Figure.29 Render Function for Displaying a Blank Window

The main function was not modified much, just deleting the invoke of CreateProgram.
Figure.30 shows the execution effect of this program. It was possible to verify that the
program was working as expected by altering the clear color and seeing that this

changed the display properly.

43

Figure.30 Displaying Blank Window with OpenGL ES 2.0 on Windows

4.1.3 C++ Triangle
Once the program for displaying a blank window can be successfully compiled, the
next step is to display something on the window. As an object consists of a number of

triangles, the simplest object to built is a single triangle.

The Setup function does not need to be changed. Compared to the blank window
program, shaders are needed to display a triangle, so the CreateProgram function
should be added. The shader source code is quite simple. In the vertex shader, the
vertex data of the triangle is sent to an attribute named "vertPosition™, and its value is
passed to gl Position without any other calculations. In our sample data, vertex
coordinates were supplied in projection space, so no transformations were needed. In
the fragment shader, a vector4 is created to define the value of gl_FragColor. The

source code of shaders is shown in Figure.31.

44

_const GLchar* wsSource =
“attribute vecd vertPosition:”

7 “woid main()”

Vertex I

L
Shader “ gl Position = vertPosition;”
“ye.
_const GLchar* fsSource =
“woid main()"”
Fragment | “U
Shader «}Ngl_FragColor = wecd(l, 1, 1, 0);

Figure.31 Shaders to Display a Triangle

The process of compiling shaders and linking the program does not change. At the
end of CreateProgram, there is only one generic vertex attribute index that needs to be
mapped, with the attribute vertPosition.

ctx. ra. wvertloc = glGetittriblocation(ctx.rs.po, “wertPosition” J;

In the Render function, the vertex coordinates are provided, and the index of
vertPosition (vertLoc) is used to load the vertex data to the shader. Figure.32 shows

the source code of the modified Render function.

void Render (esContext hotx)
{
A5 Vertex data
GLfloat wWerticesz[] = { 0.0f, 0.5f, 0.0f,
-0.5f, -0.5f, 0.0f,
0.5f, -0.5f, 0.0f };

ff Clear the color buffer
glClearColor (0.0f, 0.0f, 1.0f, 0.0Of)
glClear (GL_COLOF_BUFFEE_EIT | &L_DLEFTH BUFFER _EIT);

/f Use the program (zshaderz) object
gllUzeProgram { ct®.ra.po) :

/¢ Load the vertex data

glVertexittribPointer (ctx.r=.wvertloc, 3, GL_FLOAT, GL_FALSE, 0, vWertices);
glEnableVertexfttriblrray { ctx. rs.wvertLoc)

glDrawhrrays | GL TRIANGLES, 0, 3);

ff clean up state

gllUzeProgrami) ;

/f flip the wiszible buffer
eglSwapBuffers(ctx. egllizplay, ctx. eglSurface);

Figure.32 The Render Function for Displaying a Triangle

45

The main function is all the same as that of the Ninja program. Figure.33 shows the
execution effect of the program. The white color of the triangle is as defined in the
fragment shader. Again the function s of the program can be verified by changing
color in the fragment code and positions in the vertex array.

-
5] OpenGL ES Sample = | B S

Figure.33 C++ Triangle on Windows

4.1.4 C++ Colored Rotating Cube
The triangle sample has successfully shown how to render a 2D object with OpenGL
ES 2.0. In order to learn how to create and display 3D objects, the next step is to draw

a colored rotating cube by extending the triangle program.

Before implementing the transformation and coloring effect, the first goal is trying to
draw a cube on the window. There is not too much code to change. The Setup
function, the CreateProgram function and the main function do not need to be
modified at all (except the color of the cube defined in the fragment shader). In the
Render function, the glDrawElements is used to draw primitives. This function asks
for an array of indices as one of its parameters, so an array of indices should be

46

defined in Render. The code of the Render function for displaying a cube is shown in
Figure.34.

woid Eender (esContext &ctx)
{
Ff Vertex data
GLfloat wVWertices[] = { 0.0f, 0.0f, O.0f,
-0.1£, 0.0f, 0.0f,
-0.1f, -0.1f, 0.0f,
n.o0f, -0.1f€, 0.0f,
n.o0f, -0.1f€, -0.1%,
0.of, 0.0f, -0.1f,
-0.1£, 0.0f, -0.1%,
-0.1£, -0.1£, -0.1f
T

GLushort indices[36] = {0, 1, 2, 0, 2, 3,

a a a Ll

-
-

-
-
-
I
-
-

-
-
-
-
-
fh

-

—q—q:ql:ll:l
Mrﬂ-hﬂ'ﬁr_ﬂu
wmrm.t-
—q—q:ql:ll:l
wmrm.t-
nhm‘I\J'—*U'I

a

-
-
-

ff Clear the color buffer
glClearColor ¢ 0.0f, 1.0f, 1.0f, 0.0f };
glClear (GL_COLOE_EBUFFEE_EBIT | ¢L_DEFTH BUFFEF_EIT) ;

ff Usze the program (szhaders) object
gllzeProgram { ctx.r=.po).

Ff Load the wertex data
glVertexzdttribPointer { ctxz.rs.wertloc, 3, GL_FLOAT, GL_FALSE, 0, wVertices };
glEnableVertexdttribirray | ctx.rs.wertloc J;

glDrawElements (GL_TRIANGLES, sizeof (indices)/sizeof (GLushort),
GL_UHSIGNED_SHORT, indices) ;

Ff clean up state
gllzeProgram{0}

ff flip the wiszible buffer
eglSwapBuffers (ctx. egllisplay, ctxz.eglSurface);

Figure.34 Source Code of the Render Function for Displaying a Cube

The array of indices declares the sequence for drawing the vertices. There is one thing
that should be noticed. As some graphics cards cannot use arrays of 32 bit integers as
indices, the array of indices needs to be declared as ‘GLushort' (16 bit) type. Figure.35

shows the index numbers on the cube.

47

Figure.35 Index Numbers on the Cube

The effect of executing the program is shown as Figure.36.

Figure.36 Displaying a Cube with OpenGL ES 2.0

At this stage, as neither the cube nor the view position can be changed, there is only a
square shown on the window, but it is actually a cube. This can be checked by
modifying some coordinates of the vertices. Once the cube was successfully rendered,
color and transformation could be added to the program.

There are two changes that need to be done from the current program to display a

colored rotating cube.

48

Firstly, in addition to an array of vertex coordinates, an array of vertex colors is also
needed. Compared to former programs, the colored rotating cube program needs to
allocate two buffers to store vertex attribute data, one for the vertex coordinate data,
and the other for the vertex color data. The modified program used vertex buffer
objects to solve this problem. The reason for using vertex buffer objects is that they
ensure good performance for the program. When drawing primitives, the data of the
vertex arrays that was originally stored in client (CPU) memory needs to be copied to
the graphics memory (GPU). "Vertex buffer objects allow OpenGL ES 2.0
applications to allocate and cache vertex data in graphics memory and render from

this memory, rather than copying vertex data on every iteration"[17].

Secondly, in the Render function, a calculated matrix is needed to implement
transformations. This program uses three 4x4 matrices, which are known as the World,
View and Projection matrices, to calculate the transformation matrix. The World
matrix defines the position and orientation of the object, and it handles the rotation,
scaling and translation of the object. The View matrix sets the viewport (i.e. the
camera position). The Projection matrix describes how the object should be projected
onto the screen. The transformation matrix is calculated by multiplying these three
matrices in order, and then it is sent to the vertex shader as a uniform to be used to

calculate the position of the vertices.

Figure.37, Figure.38 and Figure.39 describe the modifications of the source code
based on the first cube program.

In CreateProgram, the data for vertex coordinate and vertex color are defined in two
separate arrays. To use vertex buffer objects, glGenBuffers should be called to
generate a buffer, followed by calling the glBindBuffer function to bind the buffer
objects with the buffers (as shown in Figure.37, vbo_cube and vbo_cube_colors are
two GLuint type variables, holding the index of each vertex buffer object).
glBufferData is used to load data into the buffers. What is more, "mvpLoc” and
"attribute_v_color" are calculated, representing the location of the transformation

matrix and that of the vertex color in the vertex shader.

49

ff Vertex data

GLfloat wWertices[] = { 0.5f, 0.5f, 0.5f,
-0.5f, 0.5f, 0.5f,
-0.5f, -0.5f, 0.5f,
n.5f, -0.5f, 0.5f,
0.5f, -0.5f, -0.5%,
0.5, 0.5f, -0.5f,
-0.6f, 0.5f, -0.5%,
-0.5f, -0.5f, -0.5f

Ffwertex buffer object

glGerBuffer=s(1, &wbo_cube);

glBindBuffer (GL_AREAT EUFFEE, who_cube) ;

glBufferlata(GL_AREAT BUFFEE, sizecf (vWertices),
wWertices, GL_STATIC DEALW) ;

GLfloat cube_colors[] =

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

-
-
-

{
1
0
1
0.
1
0
0
0

—JmDDFDCID
[T e B I arL s I e R
LA.'IU'ICICIFCICICI
L e T e B e R
DU‘ICICIFCICID

-
-

S
glGerBuffer=s(1, &wbo_cube_colors);
glBindBuffer (GL_AREAT BUFFEE, who_cube_colors);
glBufferlata(zL_AREAT BUFFEE, sizeof (cube_colors), cube_colors, GL_STATIC _DEAWD ;

Figure.37 Creating Vertex Buffer Objects

In shader source code, the uniform named mvpMatrix is the transformation matrix
calculated from World, View and Projection matrices. It is used to calculate the value
of gl_Position in vertex shader. Color data of the vertices is passed to the fragment

shader in the f_color varying vector, to supply the color of each vertex.

50

conzt GLchar® vsSource =
“uniform matd mepMatriz;”
“attribute wecd wertPoszition;”
“attribute wecld w_color;”
“wrarying wecd f_color:”
“woid main()”
" e
* gl Pozition = mvpMatrix # wertPozition;
“ f color = w_color:”
T
conzt GLchars faSource =
“wrarying wecd f_color:”
“woid main()”
" e
“2l FragColor = wecd (f color.xz, f color.w, f_color.z, 1.00:°
T

Figure.38 Shader Source Code of Colored Rotating Cube

In the Render function, rebind the buffer first, and then specify vertex attribute data
with gl\VertexAttribPointer. Note that the second call to glVertexAttribPointer has all
its parameters listed with comments showing their purpose (this will be important
later).

£ Clear the color buffer
glClearColor (0.0f, 1.0f, 1.0f, 0.0f };
21Clear (GL_COLOR_EUFFEE_EIT | GL_DEPTH EUFFEE_EIT) :

#f Usze the program (shaderz) object
glUzeProgram { ctx.rs.po)
gllmiformMat rixdfv{ctz. rs. mvploc, 1, GL_FALSE, &mvp.x.x);

Ff zet state
g1Enable (GL_DEPTH_TEST) ;
glDepthFunc (GL_LES3) ;

£ Load the wertex data

glEnableVertexdttribArray | ctx. rs.wertloc)

glBindBuffer (GL_ARRLY BUFFEE, +who_cube)

glVertexdttribPointer { ctz.rs.wertLoc, 3, GL_FLOAT, GL_FALSE, 0, 0 7

glEnableVertexdttribhrray(attribute_v_color);
glBindBuffer (GL_ARRLY BUFFEE, who_cube_colors)
glVertexfttribPointer |

attribute_w_color, /F attribute

3, /¢ rumber of elements per wertex, here (r,g,b)
GL_FLOAT, ff the type of each element

;L_FALSE, Ff take our walues as-isz

a, S no extra data between each pozition

0 Ff offzet of first element

1

g1DrawElement = (GL_TRIANGLES, =sizeof (indices)/sizeof (GLushort),
GL_UNSIGNED SHORT, indices) :

Figure.39 Rebinding Vertex Buffer Objects

51

Figure.40 shows the execution effect of colored rotating cube program. Again correct

operation can be verified by altering colors and transformations.

Figure.40 Colored Rotating Cube

4.1.5 C++ Textured Cube

In an XNA project, external files like images, videos and font can be loaded into the
program by XNA's content manager. Therefore, the last sample program was built to
determine how to load and paste textures on to a 3D object with OpenGL ES 2.0.

First of all, in the textured cube program, a new function named 'LoadTexture' was
created to load the data of the texture. OpenGL ES 2.0 does not include functions for
decompressing or interpreting different image file formats. This sample uses a texture
file in .BMP format. .BMP files are not (usually) compressed, so this avoids issues
with decompression. It was not difficult to write code to extract the raw pixel data
from the file. This function specifies the path of the image file, and calls
glTexImage2D to load the image data. glTexImage2D is a function provided by the

52

OpenGL ES 2.0, which requires a number of parameters to provide some information

about the image. Some of the parameters are set with pre-defined values, like the type

of the incoming pixel data, while the others, like the width and height of the image in

pixels, and the actual pixel data of the image, need to be read from the file. As shown

in Figure.41, four structures were created to read the image data. The width and

height information are stored in the BMPInfoHeader structure, and the pixel data of

the image is stored in an array of RGB structures. The texture data will later be sent to

the fragment shader as a sampler2D uniform to calculate the color of the cube.

struct RGE {
GLbyvte blue;
GLbyvte green;
GLbyvte red;
GLbvte alpha;

I

struct EMPInfoHeader {

GLuint
GLuint
GLuint
GLuzhort
GLuzhort
GLuint
GLuint
GLuint
GLuint
GLuint
GLuint
T

ZiTe;

width;
height;
planes;
bit=;
COmMpression;
imageiize;
xocale;
vacale;
colors;
importantColors;

struct EMPHeader {

GLuzhort

GLuint

GLuzhort

GLuzhort

GLuint
e

tvpe;
2iTe;
uruzed;
unuzed? ;
offaet;

struct BMPInfo {

BMF InfoHeader

FizB
T

header;
color=[1];

Figure.41 Structures for Reading Image Data

What is more, as textures are going to be pasted on each surface of the cube, the

direction of pasting the textures need to be defined. This is done by adding an array of

vertex texture coordinates in the Render function. The texture coordinates use the 2D

53

UV coordinate system to specify how the textures should be pasted on the surfaces.
Figure.42 shows how the texture coordinates are declared. Each surface of the cube is
drawn with two triangles. For example, as shown in Figure.42, the front face of the
cube consists of triangle 0-1-2 and triangle 0-2-3. The first two members in the
texture coordinates array, the "1,1,", specifies that the upper right corner of the texture
should be pasted on the upper right corner of the front face. The texture coordinates

array will be sent to the fragment shader to indicate the positioning of texture.

54

1
1]

1.‘
|
|
|
1.‘

W coord 0,1 —————

f-——————-5
/1 /1
. .
1———————-0 |
T-———|-——4
| /
|/
2——————-3

| /
|/

:::::::::::::::::::::::::::::::::::

JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ

i
H
Figure.42 Texture Coordinates

GLfloat texture coordinates[] =

55

The source code of the new shaders is shown in Figure.43. The texCoord0 attribute
contains the texture coordinate data, and textureUnitO references the texture sampler
hardware and through that, the image data. The varying vTexCoord is used to pass
texture coordinates from the vertex shader to the fragment shader.

conzt GLchar® vasSource =
“uniform matd mepMatriz:”
“attribute wecd wertPosition;”
“attribute wecld w_color:”
“wrarying wecd f_color:”
“attribute wec? texCoordd;”
“warying wec? wlexCoord:”
“woid main()”
" e

* gl Position = mwpMatriz # wertPosition:”

f color = v_color:”

vTexCoord = texCoordd;”

"1

w

conzt GLcharx fzSource =
“uriform zampler?D texturelnit0l;”
“warving wvec? wlexCoord;”
“warving wecd f_color;”
“woid main()”

. e
“wecd wertcolor = wecd (f_color.x, f_color.y, f_color.z, 1.00;°
" gl _FragColor = texture(texturelnitl, wTexCoord).bgra;”
wye

Figure.43 Shaders for Displaying a Texture Cube

There is one problem that should be noticed when specifying vertex data in the
Render function. As explained earlier, the sample code uses vertex buffer objects to
allocate and cache data in graphics memory (i.e. in a GPU buffer) for both vertex
coordinates and vertex colors. In this sample program, the texture coordinates were
defined in the Render function, and did not use vertex buffer objects, which means the
data of the texture coordinates is stored in the client memory (i.e. in a CPU buffer).
There is no special reason for doing this other than to establish that mixed CPU/GPU
buffers were possible in OpenGL ES. Managing buffer data is a major issue in this
project as a whole, and as it turns out an issue did arrise. After specifying the data of
vertex colors, the buffer is currently bound, and glBindBuffer with a 0 as its second
parameter need to be called to remove the binding, so that UV data can be properly

connected. Figure.44 shows how it was done in Render.

56

/¢ Load the wertex data

glBindBuffer (GL_AREAYT BUFFER, who_cube);

glVertewidttritPointer { ctx.rs.wertLloe, 3, GL_FLOAT, GL_FALSE, 0, 0 };
glEnableVertexdttriblrray { ctx. rs.wertLoc J;

/f Load the color data
glBindBuffer (GL_ARRALY BUFFEE, whbo_cube_colors);
glVertexdttribPointer |

attribute_w_color, // attribute

3, Af number of elements per wertex, here (r,z,b)
GL_FLOAT, ff the type of each element

GL_FALSE, Ff take our walues as-is

0, ff no extra data between each pozition

1] ff offszet of first element

3
glEnableVertemdttriblrray (attribute_w_color) ;
/f Load the texture coordinate data
glBindBuffer (GL_ARRLY BUFFEE, 0} ; /¢ Remowe the binding
glVertexdttribPointer (uvittrib, uwSize, GL_FLOAT, GL_FALSE, 0, uvPtr);
glEnableVertexbdttribirray (uwittrib) ;

Figure.44 Specifying Vertex Data for Drawing a Textured Cube

The executing effect of textured cube is shown in Figure.45.

Figure.45 Textured Cube

57

4.2 C# Code with OpenGL ES 2.0 on Windows

XNA is written in C#, and XNA projects are all written in C# as well. Therefore, once
the C++ sample programs have been acquired, the next step is to rewrite the sample
programs with C# language (later on Raspberry Pi, Mono was used to compile and
run the C# programs).

One of the challenges in this project is how to make procedure calls from OpenGL ES
2.0 in a C# program on Raspberry Pi. As described in section 4.1, the C++ programs
use a number of "#include <header file name>" commands to get access to the
headers and libraries. However, C# does not provide "#include" key word, so it is

impossible to get access to OpenGL ES library with just one command line.

The way of solving this problem is to use the "DIlimport” command to explicitly
import every OpenGL ES function and every EGL function into the program. What is
more, as the OpenGL ES 2.0 library is written in C language, the data types of the
functions and their parameters need to be changed into C# defined types. For example,
in initialization stage, the first EGL function called by the program is eglGetDisplay.
Figure.46 shows the declarations of this function in the EGL library and in the C#
program. The C language is excellent for defining data types. In the EGL library, the
return value of eglGetDisplay is defined as a type named "EGLDisplay", which is
actually a void pointer type. The parameter is declared as "EGLNativeDisplayType",
which is an integer handle. In C program, they are two different data types. However,
in the C# program, both two types become "IntPtr". In this way, all the EGL functions
and OpenGL ES functions can be imported into the C# program. In C#, IntPtr is
essentially an integer, but large enough to hold a pointer value. No arithmetic is
permitted on an IntPtr value. With the Windows operating system, it is often used to

hold handles or pointers when accessing unmanaged code.

58

Function declared in egl.h header file:

EGLAPI EGLDisplay EGLAPIENTRY eglGetDisplay(EGLNativeDisplayType display_id);

Importing the same function into a C# program: Path of the EGL library

[D11Import (@ C:\Users\#§\Desktopigles_sdkix8641ibEGL. d117)]
static extern IntPtr eglGetDisplay(IntPtr display_id):

Figure.46 Importing an EGL Function into a C# Program

The type mappings developed and used in this project between EGL and C# are
shown in Figure.47.

f* BGL Type Mappings

* EGLint =» either IntPtr (where no arithmetic should be allowed)
* or imt (thiz will be a 32 bit integer)

* EGLEoolean =» int (true and false are 1 and 0 respectiwely)

* EGLDisplay = IntPtr (thiz iz the way an HDIC should be treated in C#)
¥ EGLConfis =» IntPtr (iz a woid pointer in C implementation)

* EGL5urface =» IntPtr " *

* EGLCont ext = IntPtr " *

* GLbitfield =» uint

* GLolampf =» float

* char[] = gtring

7

Figure.47 EGL Type Mappings

4.2.1 C# Blank Window

As when writing C++ sample programs, to experiment with coding an OpenGL ES
program in the C# language, the first step was to create a program as simple as
possible. The first C# sample program again displays a blank window to ensure an

executable environment for the following programs.

Compared with the C++ program, the structure of the C# program does not change
too much. It also starts by calling an Initialize function (which is known as the Setup
function in C++ programs) to create the render surface and the window for display,
then calls the Render function in the main loop to clear the color of the background
and swap buffers to display the rendered surface. The Windows forms library, which
provides access to display windows for C# programs gives access to the underlying
Win32 "window handle™ which can be passed as the EGLNativeDisplayType value.

The content of each function has not changed, only the code was written in C#

59

language. As the functions of every procedure call from the OpenGL ES 2.0 library
need to be declared in C# program, there are dozens of code lines declaring the
imported functions and predefined values that are used in those functions.
Furthermore, a function named 'Terminate' was added to the program to delete buffers

and to release resources when needed.

Figure.48 and Figure.49 show the code. In the following sample programs (i.e.
displaying triangle, cube and textured cube), with the increasing number of the
OpenGL ES functions used to display objects, there will be even more command lines
to import functions into the C# programs. As the way of importing functions are all

the same, the screen shot of the importing source code will not be shown again.

The output display of the C# sample programs looks the same as that of the C++

programs. So screen shots from the C# programs will not be shown in this section.

60

£ EGL Constants
TrtPtr EGL_DEFAULT DISPLAYT = (TetPtri0;

IntPtr EGL_NO_CONTEXT = (IntPtri0;
IntPtr EGL_NO_DISPLAY = (IntPtri0;
IrntPtr EGL_NO_SURFACE =

(TrtPtri0;
const int EGL_FALSE = 0;
const int EGL_TRIE = 1;

=

£ ClearBufferMask

const uint GL_DEPTH_BUFFEE_EBEIT = 0xz00000100;
const uint GL_STENCIL_BUFFEE_BIT = 0xz00000400;
const uint GL_COLOE_BUFFEE_EBIT = 0x00004000;
Config attributes

conat int EGL_EBUFFER_SIZE = (x3020;
conat int EGL_ATFPHA SIIE = (=z3021;
conat int EGL_ELUE_SIIE = (=zx3022;
conat int EGL_GREEN _SIIE = (=x3023;
conat int EGL_EED _SIZE = (z3024;
conat int EGL_DEFTH_SIIE = (=z3025;
conzt int EGL_STENCIL_SIZE = 0z3026;
conzt int EGL_CONFIG_CAVEAT = 0z3027;
conat int EGL_CONFIG_ID = (=zx3028;
const int EGL_LEVEL = Ox3029;
const int EGL_MA¥ PREUFFEER_HEIGHT = 0z3024;
conzt int EGL_MA¥ PREUFFEE_PIXELS = 0z3025;
conzt int EGL_MA¥ PEUFFEERE_WIDTH = 0x302C;
conzt int EGL_NATIVE_RENDERARLE = 0z302D;
const int EGL_NATIVE_VISUAL_ID = 0z302E;
conzt int EGL_NATIVE_VISUAL_TYFPE = 0z302F;
const int EGL_SANPLES = 0x3031;
conzt int EGL_SAMPLE_BUFFERS = 0x3032;
conat int EGL_SURFACE TYFE = (=x3033;
conzt int EGL_TRANSPARENT_TYPE = 0x3034;
conzt int EGL_TRANSPARENT_BLUE_VALUE = [0x3035;
conzt int EGL_TRANSPARENT _GREEN_WVALUE = 0x3036;
conzt int EGL_TRANSPARENT_RED_VALUE = 0z3037;
const int EGL_NONE = Ox3038
const int EGL_BIND TO_TEXTURE_RGEH = 0x3039;
conzt int EGL_BIND TO_TEXTURE_RGEA = 0z3034;
conzt int EGL_MIN_SWAP INTERVAL = 0x303E;
conzt int EGL_MA¥ SWAP INTERVAL = 0=303C;
const int EGL_LUMINANCE_SIZE = [0x303D;
const int EGL_ALPHL MASE SIZE = 0z303E;
conzt int EGL_COLOE_BUFFEE_TYPE = [0z3035F;
conat int EGL_EENDERABLE_TYFE = (=z3040;
const int EGL_MATCH NATIVE_PIXMAP = Ox3041
conat int EGL_CONFORMANT = (zx304Z;

Figure.48 Predefined Variables

61

/¢ EGL Procedures
[D11Import (@°C:4Users" Bl Desktopizles sdk =864 1ibEGL. d117)]
static extern IntPtr eglGetDisplay (IntPtr display_id);

[D11Import (@°C:Uzers" Bl Desktopizles sdk =864 1ibEGL. d117)]
static extern int egllnitialize(IntPtr dpy, out int major, out int minor);

[D11Import (@ C:4Uzers' Bl Desktoptzles sdki =864 1ibEGL. d117)]
static extern int eglTerminate(IntPtr dpw);
[D11Import (@ C:4Uzers' Bl Desktoptzles sdki =864 1ibEGL. d117)]

ztatic extern int egzlGetConfigsz (IntPtr dpy, IntPtrl[] configs, int config_size, out int num_configz) ;

[D11Import (@ C:\Users\ Bl \Desktophgles_sdk =864 11bEGL. 1170]
ztatic extern int egzlChoozeConfig (IntPtr dpy, int[] attrib_list, IntPtr[] configs, int config_size, out int num_confiz) ;

[D11Import (@°C:Uzers" Bl Desktopizles sdk =864 1ibEGL. d117)]
static extern int eglGetConfighttrib{IntFtr dpy, IntPtr config, int attribute, out int walue)

[D11Import (@°C:Uzers" Bl Desktopizles sdk =864 1ibEGL. d117)]
static extern IntPtr eglCreateWindowSurface(IntFtr dpy, IntPtr config, IntPtr win, int[] attrib_list):

[D11Import (@ C:4Uzers' Bl Desktoptzles sdki =864 1ibEGL. d117)]
static extern int eglDestrovSurface(IntPtr dpy, IntPtr surface);

[D11Import (@ C:4Uzers' Bl Desktoptzles sdki =864 1ibEGL. d117)]
static extern IntPtr eglCreateContext (IntPtr dpw, IntPtr config, IntPtr share comtext, int[] attrib_list);

[D11Import (@ C:\Users\ Bl \Desktophgles_sdk =864 11bEGL. 1170]
ztatic extern int egzlDestrovContext (IntPtr dpy, IntPtr octx);

[D11Import (@°C:Uzers" Bl Desktopizles sdk =864 1ibEGL. d117)]
static extern int eglMakeCurrent (IntFtr dpy, IntPtr surface_draw, IntPtr surface_read, IntFtr ctm):

[D11Import (@°C:Uzers" Bl Desktopizles sdk =864 1ibEGL. d117)]
ztatic extern int eglSwapBuffers(IntFtr dpy, IntPtr surface);

£7 GL procedures
[D11Import (@ C:iUsers\ B Desktophgles_sdk =864 11bGLESwZ, 41170]
ztatic extern woid zlClear (uint mask)

[D11Import (@ C: A\ Users\ B \Desktopigles_sdk\ =86 11ibGLESwZ, 41170]
static extern woid glClearColor (float red, float green, float blue, float alpha):

Figure.49 Importing Functions from EGL and OpenGL ES 2.0

4.2.2 C# Triangle

The C# triangle program has the same structure with the C++ triangle. A
CreateProgram function was added to the program to handle the loading and
compiling of the shaders, and linking the program. The process of the Initialize
function, the CreateProgram function and the Render function are all the same with
those of the C++ program. Shader source code did not change. An interesting issue
when compiling the shader was passing a C# string value to a C char array. The C#
marshalling code managed that transparently. Only the syntax of the programming

language was changed to C#. The details of the code can be checked in the Appendix.

62

4.2.3 C# Colored Rotating Cube

The colored rotating cube sample was also modified from the C++ program. As vertex
buffer objects are used in this program, the gl\VertexAttribPointer function need to be
declared as two overloaded functions. The data type of its last parameter is different.
When using VBO (vertex buffer objects), the last parameter is an integer indicating
the buffer. If there is no VBO used, the last parameter should be an array of float that
stores the vertex data. Figure.50 shows the overload of the gl\VertexAttribPointer

function.

[D11Inport (@"C: \Tsers\ BlWDeskt oplgles_sdk'x864%1ibGLESwZ. d117)]
static extern woid glVertexdttribPointer (it indx, int size, uint type, char normalized, int stride, int ptr);

[D11Inport (8" C: \Users' Bl WDeskt oplgles_sdk'x 864 1ibGLESwZ. d117)]
static extern woid glVertexfttribPointer (it indx, int zize, uint type, char normalized, int stride, float[] ptr);

Figure.50 Overloaded Functions of glVertexAttribPointer

In this program, matrices and vectors are used to calculate transformations. However,
rewriting the Matrix and the Vector classes involves a large amount of workload.
Therefore, the XNA framework was used to provide mathematical classes to the

program. These classes were later rewritten for the sample programs on Raspberry Pi.

4.2.4 C# Textured Cube

Compared to the C++ textured cube sample program, the LoadTexture function
becomes much simpler in the C# program. It still uses glTexImage2D function to load
textures. The image can be loaded by the FileStream function provided by the System
namespace, and the width and height of the bitmap texture can be queried by using the
Bitmap function. The pixel data of the image is acquired from calling the LockBits
function (declared in the Bitmap class), and the data is copied into a byte array, which
is later used as a parameter in glTexImage2D. Figure.51 shows the source code of the

LoadTexture function.
Note the frequent use of Console.WriteLine. Correcting errors was a continuing

source of difficulty during this project, and much of the sample code has frequent

debug displays to show progress and warn of problems.

63

bool LoadTexture ()
{

int width, height;

war bm = new System. I0.FileStrean(”. /TulipSquare.bmp”, System.I0.FileMode. Open) ;
war bmp = new HBitmap (bm) ;

width = bmp. Width;
height = bmp. Height ;

Conzole. Writeline ("width = "+ width);
Conzole, WriteLine (“height = “+ height);

bytel] pHits:
war bitmapData = bmp. LockBits (hew System. Drawing. Eectangzle(0, 0, bmp. Width, bmp.Height) ,

Syztem. Drawing. Imaging. ImagzelockiMode. Readinly, bmp.PixelFormat) ;
war length = bitmapData. Stride # bitmapData. Height ;

w

Conzole, Writeline ("Stride = ¥ + bitmapData. Stride) ;
Conzole. Writeline ("bitmaplata. Height = “ + bitmapData. Height) ;

pBits = new bytel[lengthl:
Conzole. Writeline (" length = " + lengthl ;

ffcopy bitmap to byte[]

Marshal, Copy (bitmapData. Scanl, phits, 0, length);
bmp. UnlockBits (bitmapData) ;

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRLP_S, GL_CLAMP_TO_EDGE) :

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE)

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINELR):

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINELR) :
glTexInage?D(GL_TEXTURE 2D, 0, GL_EGE, width, height, 0, GL_EGEH, GL_UNSIGNED_BTIE, pBits):

return true;

Figure.51 LoadTexture Function in C# Program

4.3 C# Programs on Raspbian

Once all the C# sample programs were successfully executed on Windows, the next
step was to copy these programs on the Raspberry Pi, further modifying them to make
these C# programs executable on Pi. The introduction of how to set up Raspberry Pi,
and how to make programs find the path of the libraries will be explained in the
Appendix.

The Raspberry Pi had very simple OpenGL ES 1.0 and OpenGL ES 2.0 samples.

These were not used directly, but porvided information on how to interface with the

Raspberry Pi's native graphics system.

64

4.3.1 C# Blank Window on Raspbian

The program to display a blank window must be modified in several ways to be
executable on Pi. Firstly, as Raspbian has a different display system from Windows,
the Initialize function needed some change. In this project, the DispmanX API was
used to handle the display on Raspberry Pi. Different from the XWindow system,
DispmanX does not create any windows in the X-Window's sense. Instead it takes
over an area of the screen (or all of the screen, it depends on users' setting) to display
rendered objects. DispmanX is the display manager provided by Broadcom.

In the process of the Initialize function, the rendering surface is created by the
eglCreateWindowSurface function. In the C# sample programs created on Winodws,
the third parameter of this function was declared as an IntPtr variable, which was
passed a Win32 window handle obtained from the .NET form window using the

GetHandle function.

[D11Import (@' C:yUsersy B\ Desktoptgles_sdki\x86411bEGL, d117)]
static extern IntPtr eglCreateWindowSurface (IntPtr dpy, IntPtr config, IntPtr win, int[] attrib list):

By contrast, the data type of the third parameter in eglCreateWindowSurface was
declared as EGL_DISPMANX_WINDOW _T on Raspbian.

[D11Import ("1ibEGL")]
static extern IntPtr eglCreateWindowSurface (IntPtr dpy, IntPtr config, ref EGL_DISPFMANE WINDOW T win, int[] attrib_list):

EGL_DISPMANX_WINDOW _T is a structure that contains three members.

public struct EGL _DISPMANY WINDOW T
public IntPtr element;
public int width;
public int height;

1
The width and height represent the size of the rendering area. There is a
graphics_get_display_size() function in DispManX that detects the resolution of the
monitor, and display for full screen. In this project, the width and height of the
rendering surface were hard coded as 640 and 480 respectively. The other member,
element, is a handle to a dispmanx area, which can be acquired by calling the

vc_dispmanx_element_add function.

Figure.52 shows the source code for creating a window surface on Raspberry Pi. The
"nativewindow" in the code is an EGL_DISPMANX_WINDOW _T type structure.

65

int screen_width = 640;
int screen_height = 480;

dat_rect.x = 0;

dat_rect.v = 0;

dzt_rect.width = screen_width;
dat_rect.height = zcreen_height;

groc_rect.x = 0;

zrc_rect.v = 0;

gro_rect.width = screen_width << 16;
zro_rect.height = zcreen_height << 16;

dispman_display = wo_dispmanx_display_open(0 S# LCD) ;
diszpman_update = wo_dispmarns_update_start{ 0 7 ;

dizpman_element = wc_dispmarx_element_add { dispman_update, dispmarn_display,
07 +lavers/, ref dst_rect, 0 #=zrcs/,
ref src_rect,0 /+DISPMANE_PROTECTION_NONE+/,
0 f+alpha%s, 0/ +«clamp#/, 0/ *transform+/);

nativewindow. element = dispman element ;
nativewindow. width = zcreen_width;

nativewindow. height = zcreen_height ;
wo_dispmares_update_submit_sync{ dispman_update 3 ;

surface = eglCreateWindowSurface (display, configs[0], ref natiwewindow, rmll};

Figure.52 Creating Window Surface on Raspberry Pi

The running effect of the modified "blank window" program is shown as Figure.53.

Figure.53 Blank Window on Raspberry Pi

66

As shown in Figure.53, the upper left corner of the screen displays a blank area with
size 640 x 480, and there is no frame for the window. Instead of clicking a "Close"
button to stop the program, users may press "Ctrl + C" to stop the test program and

therefore close the window.

4.3.2 C# Triangle on Raspbian

To make the C# triangle sample program executable on Raspberry Pi, there is only
one part of the source code that needs to be modified. In the Initialize function, once
the display surface has been successfully created, the rendering context can then be
created by calling the eglCreateContext function. The last parameter of this function
is a list of attributes that specifies attributes and attribute values for the context being
created, and the list has the same structure as described for eglChooseConfig
(eglChooseConfig returns a list of EGL frame buffer configurations that match the
attributes specified in attribute list). In programs created on Windows, this
parameter can take "null” as its value (when there are no attributes recognized, this
parameter will normally be null or empty as though the first attribute was
EGL_NONE). However, this does not work on Raspberry Pi. It is possible that some
platforms will define attributes specific to those environments, as an EGL extension.
A non-null attribute list that is terminated with EGL_NONE will be passed to the
underlying EGL implementation.[22] The context attributes need to be explicitly
defined on Raspbian, or nothing will be displayed. The declaration of the attributes is

shown in Figure.54.

int [] context_attributes= new int[3]

{

EGL_CONTEXT _CLIENT_WERSION, 2,
EGL_HNONE

T

Figure.54 Context Attributes

EGL_CONTEXT_CLIENT_VERSION is followed by an integer "2" indicating an
OpenGL ES 2.x context should be created.

67

Once the attributes are used to create the rendering context, the triangle program can
be successfully executed on the Raspberry Pi. Figure.55 shows the running effect of

this program.

N ,mﬁ\w‘o’, 1.0f, 1.
i {GL_COLOR_BUFFER_BIT

Figure.55 Triangle on Raspberry Pi

4.3.3 C# Colored Rotating Cube on Raspbian

The program that displays a blank window and the one displays a triangle only have
one ".cs" document to be compiled. By contrast, the cube program implements
transformation effects, so the rewritten XNA mathematical structures are needed to do
the calculations. The modified mathematical structures include Vector2, Vector3,
Vectord and Matrix. The work of rewriting these structures are done by the supervisor

of this thesis, Bill Rogers.

Although the C# programs created on Windows make procedure calls to the OpenGL
ES 2.0 library, the shading language used in those programs is still HLSL. Compared
with the C# cube program on Windows, the program on Raspberry Pi needed
modified shader source code, as GLSL has a different syntax from HLSL. Note the
last program's shaders were so simple (only vertex position was passed to the vertex

shader) that the source code of last program's shaders were not given.

68

Figure.56 shows the differences between the shader source code. Firstly, there is no
"mul™ function provided in GLSL. Matrices can be simply multiplied with a "*"
symbol. Secondly, the float number in GLSL do not have an "f" suffix. If the number
is written as "1.0f" in GLSL, then the rendering of the objects will be failed and

nothing can be displayed on the window.

HLSL:

string vsSource =

“uniform matd mvpMatrix;“+

“attribute vecd vertPosition;"+

“attribute vec3 v_color;“+

“wvarying vec3 f_color;"+

“woid main()“+

" [y

g gl_Position = mulfmgBMatriﬁ. vertPosition) ;“ +
f_color = v_color;” +

w
«}e

string fsSource =

“wvarying vec3 f_color;“+

“woid main()“ +

“re 4

“gl_FragColor = vecd (f_color.x, f_color.y, f_color.z, ;“ +

TN

GLSL:

string vsSource =

“uniform matd mvpMatrix;“+

“attribute vecd vertPosition:"+

“attribute vec3 v_color;“+

“wvarying vec3 f_color; "+

“woid main()“+

o

S gl_Position = mvpMatrix * vertPosition:” +
f color = v color;” +

“ye
string fsSource =

“wvarying vec3 f_color;"+

“woid main()“+

“ {4

“gl_FragColor = vecd(f_color.x, f_color.y, f_color.z, ;" +
“I\n’;

Figure.56 Modified Shading Language
What is more, another important change of the program on Raspberry Pi is the

sequence of drawing the vertices. The triangle primitives are assumed to face in a

direction, which is defined by the order of the vertices. These primitives can be

69

discarded based on their apparent facing, and this process is known as Face
Culling.[23] The default cull mode of OpenGL ES is anti-clockwise (i.e. when drawing
a triangle primitive, the three vertices should be connected in an anti-clockwise order,
this was not noted on the triangle program as the vertices of the triangle was drawn in
the right direction by lucky), which is different from that of XNA. Therefore, the

sequence of drawing vertices on each primitive should be modified.

When compiling the program on Raspberry Pi, the several ".cs" files should be placed
in same folder. As there is no suitable IDE for compilation, the command line for
compiling the program needs to contain all the file names (command "gmcs cube.cs
Vector2.cs Vector3.cs Vector4d.cs Matrix.cs” can be used in the Terminal to compile
the cube program on Pi). Figure.57 shows the running effect of the colored rotating

cube on Raspberry Pi.

/11110001101

fault display");
CEFAULT_DISPLAY) |
DISPUAY)

e(*Couldn’t \"get* the default display®);

t default display = * + ((IntPtr)display).ToString());

nor) ;.

Figure.57 Colored Rotating Cube on Raspberry Pi

4.3.4 C# Textured Cube on Raspbian

As described in section 4.2.4, the LoadTexture function used in Windows programs
read the image data by the Bitmap class. This class belongs to the System.Drawing
namespace. However, Mono does not provide the Drawing namespace, SO a new

function is needed to load textures. The C++ on Windows program had its own code

70

for reading Bitmap files (see section 4.1.5). A new version of this code was written in
C#.

The data of a bitmap image contains two parts, the FileHeader and the InfoHeader.
The LoadTexture function created on Raspberry Pi put this starts by calling the
BinaryReader function to get the data stream (the image should be copied into the
same folder as the other files, so the path of the image can be found), then reads data
of the FileHeader and the InfoHeader in separate byte arrays. The InfoHeader contains
the width, height and pixel data of the image, which are used as parameters in the
glTexlmage2D function. The remainder of the file holds the pixel data. Figure.58
shows the source code of the new LoadTexture function.

71

bool LoadTexture()
i
FPIbitmap rpi = new RPIbitmap() :

string filename:
filename = “./TulipSquare.bmp”;
BinaryReader br = new BinaryReader (new FileStream(filename, FileMode.Open)):

FEPEFEAFEEFdifidrddffdif/f Read BitmapFileHeader — 14 bytes /// /7777777 8i7iiididiiid

byte[] fileheader = new byte[14]:

br.Read(fileheader, 0, 14);

/{ First two bytes should be ASCII codes for B and M

Console, WriteLine (“First two bytes as characters: * + Convert. ToChar (fileheader [0]) + Cornvert. ToChar (fileheader[1])):
if (fileheader[0] |= 66 || fileheader[1] != TT)

{
Censole, WriteLine ("ERROR: This is net a BIP file"):
br.Close():
return false:

}

int filesize = getint32(fileheader, 2):
Console, Writeline("File size is " + filesize. ToString() + " bytes"):
// Ignore bytes 6, T, 8, and 9

int offset = getint32(fileheader, 10):
Console. WriteLine ("Offset to pixel data is

+ offset. ToString() + " bytes"):

LELEEETTELEEAEAdF e 47 f7/ Read the BitmapInfoHeadexr ///// 7777771780707 1¢f

byte[] sizebytes = new byte[d]:

br.Read(sizebytes, 0, 4);

int headersize = getint32(sizebytes, 0).

Console, WriteLine ("Header size is “ + headersize + “ (40 means BITMAPINFOHEADER)®):
if (headersize < 40 || headersize == 64)

{
Console, WriteLine ("ERROR: Carnot process this kind of BMP file");
br.Close();
return false;

}

byte[] restofheader = new bytelheadersize - 4]:

br.Read(restofheader, 0, headersize - 4):

rpi.width = getint32(restofheader, 0):

rpi. height = getint32 (restofheader, 4):

Console. WriteLline ("Width is " + rpi.width + “, Height is “ + rpi.height):

rpi.imagesize = getint32(restofheader, 16):
Console, WriteLine (" Image size is “ + rpi.imagesize +
// Read the pixel data
rpi. imagedata = new byte[rpi.imagesize]: // the imagedata array is the pBits[], i.e. the last param for glTexImage2D()
br.Read(rpi.imagedata, 0, rpi.imagesize):
Console, Writeline ("Read image data”):

w

bytes”):

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE) ;

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLANP_TO_EDGE)

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR):

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR):

glTexImage2D (GL_TEXTURE_2D, 0, GL_RGB, rpi.width, rpi.height, 0, GL_RGB, GL_UNSIGNED_BYTE, rpi.imagedata):

return true:

Figure.58 LoadTexture Function for Raspberry Pi

The other parts of the program remains unchanged. Figure.59 shows the effect of

running the textured cube program on Raspberry Pi.

72

ir(fileheader(0]) + Conver

2(fileheader, 10);
Offset to pixel data is * + offset.ToString() + * bytes');

i

H r /]
T11111111,
oty
{nt32(sizabytes, 0);
Size 13 '+ hoadersize + * (40 means BITMAPINAONEADER)) ;

Figure.59 Textured Cube on Raspberry Pi

4.4 Rewriting XNA Classes

Once C# programs can be successfully run with OpenGL ES on Raspberry Pi, the last
step is to make the code look like XNA programs. The program should have a
Gamel.cs class for users to put their code in, and also have other essential classes that
control the processes of the program and provide underlying functions to the

programmers.

As XNA contains a large number of classes, only the ones involved in the sample
programs were rewritten. The source code of JBBRXG11 was used as a reference to
write those classes. JBBRXG11 still uses some of the XNA framework, and those

parts were also replaced with C# code in this project.

4.4.1 Display a Blank Window with Modified XNA Classes

Once again, starts with creating a blank window. Before writing the classes, the first
step was to create a program with JBBRXG11 (almost identical to an equivalent XNA
program) that displays a blank window, and set the color of the background into
PaleGreen. As usual, the successful setting of windows color shows that the graphics
code is working correctly. The classes involved in this program are Program, Gamel,

Game, GraphicsDevice, GraphicsDeviceManager, GameWindow, Gametime, Color,

73

DepthFormat and SurfaceFormat. In the JBBRXG11 system, these classes all either
use routines from the XNA framework or DirectX. JBBRXG11 is built on XNA and
only rewrote the parts that called DirectX methods. None of XNA is available on
Raspberry Pi, so classes from the XNA framework must be redeveloped here. Classes
that were part of JBBRXG11 are available in source code form and can be modified to

use the Raspberry Pi graphics system (i.e. EGL, Dispmanx and OpenGL ES 2.0).

Data Structure:

The Program class is the class of the program that contains the Main function.
Figure.60 shows the source code of Program. In the Main function, an instance of the
Gamel class is created. Gamel inherits from the Game class. The Main function
creates an instance of Gamel and calls the Run method (a method defined in the
Game class. "This method is called to initialize the game, begin running the game
loop, and start processing events for the game"[24]) through the instance of Gamel.
The Run method calls the GetGameManager method to access the instance of
GraphicsDeviceManager that is created in the Gamel constructor, and added to the
device manager list. In Gamel constructor, users may set the width and height of the
game window through the PreferredBackBufferWidth property and the
PreferredBackBufferHeight property defined in GraphicsDeviceManager. In the
Game class, the value of these two properties is read via the GraphicsDeviceManager
object, and passed as the parameters of the GameWindowInitialize method (defined in
GameWindow) to initialize and create a new window. After that, in the game loop of
Run method, the Draw method is called. The Draw method calls the Clear function

(defined in GraphicsDevice) to set the color of the window.

74

1 uzing Swstem;

2

i Hnamespace TeztGame

4 |

b = gtatic class Program

& {

T E static woid Maini(string[] args)
a i

9 uzing (Gamel game = new Gamel())
10 {

11 game, Bun () ;

12 1

13 h

14 1

15 h

Figure.60 Program Class

Gamel Class:

Figure.61 shows the source code in modified Gamel class. When users programming
with the modified XNA classes to display a blank screen, their code in Gamel class
would be like this. Firstly declares an object of GraphicsDeviceManager, then defines
the size of the window in the constructor of Gamel, and finally calls the Clear method
to set the color of the window in the Draw method. The code is the same with that

programmed with XNA on Windows.

75

1 [Fu=ing Syztem;

2 |using JEEREG11IVZ,

3

4 Hnamespace TeztGame

B

A = public claszs Gamel : JBBEEXG11VWZ. Game

T {

] GraphicsDewviceManager graphics;

G

10 = public Gamel ()

11 {

12 graphics = new GraphicsDeviceManager (thizs) ;
13 graphics. PreferredBackBufferHeight = 800;
14 graphics. PreferredbackBufferWidth = 800;
15 h

1a

17T = protected override woid Initialize()

18 {

15 basze. Initialize() ;
20 h
21
22 = protected owerride woid LoadContendt ()
23 {
24 h
25
26 = protected override woid Update (GameTime gameTime)
27 {
28 baze. Tpdate (zameTime) ;
28 h
30
il = protected override woid Draw(GameTime gameTime)
32 {
33 GraphicsDewvice. Clear (Color.PaleGreen) ;
34 baze. Drawi(gameTime) ;
3b h
36 1
3T 1

Figure.61 Source Code in Gamel Class for Displaying a Blank Screen with JIBBRXG11 on
Raspberry Pi

Rewriting the GameWindow Class for Raspberry Pi:
The modified GameWindow class only contains a constructor, a read-only property
that returns a handle of the window, and a SwapBuffers function.

The whole Initialize function of the rotating cube experimental C# program was
copied into the constructor of GameWindow, as it contains all the instructions for
creating rendering surfaces and displaying windows. Therefore, when creating a
GameWindow object in the Game class, all the initialize routine can be done and

window will be ready to use.

76

The read-only property "Handle" is supposed to return a handle that represents the
window. Therefore, the value of dispman_element (acquired in the constructor)
should be returned.

As described in previous sections, in the Render function of the C# programs,
eglSwapBuffers is called in the program loop after objects have been drawn. In XNA
programs, the Game class controls the process of the program. In every iteration of
the game loop, after the Draw method is called, the buffers need to be swapped.
However, the two parameters of eglSwapBuffers, display and surface, are declared in
the constructor of GameWindow, so the SwapBuffers method is also defined in the
GameWindow class (this method just calls eglSwapBuffers function to swap the
buffers). In the Game class, SwapBuffers can be called through a GameWindow

object.

Replacing the XNA GameTime Class:

The modified GameTime class contains overloaded constructors and three properties.
Figure.62 shows the source code of the modified GameTime. The three read-only
properties, ElapsedGameTime (the amount of elapsed game time since the last
update), IsRunningSlowly (a bool value represents whether the game is running
multiple updates this frame) and TotalGameTime (the amount of game time since the
start of the game) are used in the Tick method in Game class to control the running
speed of the game. The three overloaded constructors can be called to get the value of
these properties. In this class, the value returned from the ElapsedGameTime property
and the TotalGameTime property are declared as TimeSpan type, which is a structure

defined in the System namespace. So this structure does not need to be modified.

77

1 using Svatem;

2

3 [Enameszpace JBBEREG11VZ

4 |

5 = public class GameTime

£ {

T TimeSpan currentgametime, currentelapsedtime;

] bool isrunningzlowly;

o

10

e

13 E public GameTime ()

14 {

15 currentgametime = currentelapsedtime = TimeSpan. Zero;

16 izrunningzlowly = falze;

17 1

15

19 B

29 = public GameTime (TimeSpan totalGameTime, TimeSpan elapsedGameTime)
30 {

3l currentgzametime = totalGameTime:

32 currentelapsedtime = elapsedGameTime;

33 izrunningzlowly = falze:

34 1

%

48 = public GameTime (TimeSpan totalGameTime, TimeSpan elapsedGameTime, bool isRunningSlowlsy)
49 {

a0 currentgametime = totalGameTime;

A1 currentelapzedtime = elapsedGamelime;

a2 izrunningzlowly = izRunningSlowlsy;

53 1

hd

55 b

AT public TimeSpan ElapszedGameTime { get { return currentelapzedtime; | }
%

A3 public bool IsRunmingSlowly { get [return isrunningslowlwy;]}
64

a7 public TimeSpan TotalGameTime { get | return currentgametims; 1}
it 1

69 [}

Figure.62 New GameTime Class

Replacing the XNA Color Class:

In the XNA's Color class, a large amount of source code is written to define the values
of different colors. A color is represented by a four byte value, and the four bytes
stand for R, G, B and A (red, green ,blue and alpha) respectively.

In the modified Color class, four properties were declared to read and write the value
of RGBA of a color. The constructor just copies the value from four integers to the
properties. As the purpose of this project is to investigate the possibility of
programming with modified XNA classes on Raspberry Pi, it is not necessary to
rewrite every part of the original classes in this project. Therefore, in the modified
Color class, only one predefined color, the PaleGreen, was declared to show it is
usable for the program (more colors can be predefined in the same way). There is
another property named PackedValue that gets or sets the current color as a 4 byte

78

packed value. When reading the value of the color from PackedValue, the data should
be read in an reversed order (i.e. in ABGR order) as it is written in the RGBA order.

Once a byte is read, the packed value is moved to the left with 8 bits to read the next
byte.

Figure.63 shows the source code of the new Color class.

1 FHuszing Svatem;

2 |uzing Svstem.Collections. Generic;

3 uzing System. Ling;

4 |using System. Text

b

fi FElnamespace JEBEEG11VZ

T

B = public class Color

g i

10 public byte B { get: =zet; }

11 public byte G | get: set:]

12 public byte B | get; =zet; }

13 public byte & | get; =zet; }

14

i

30 = public Color(int r, int g, int b, int a)
31 {

32 E = (bytelr;

33 G = ilbytelz:

k| E = (bytelb:

35 4 = (byte)a:

36 1

aT

38 public static Color PaleGreen { get { return new Color (196, 255, 196, 266): 1 1}
l]

10 8

44 H public uint PackedValue

45 {

48 [zet

47 {

48 return ({{uint)d << 8 | (uint)B) << & | fuint)G) << & | (uint)R;
49 1

B0 &= zet

51 {

b2 uint temp = walue;

53 F = (byte) (walue & 266);
bd temp = temp »> &

55 G = (byte) (walue & 256);
i1} temp = temp »> 8

a7 B = (byte) (walue & 250);
hE temp = temp »> 8

54 4 = (byte) (walue & 250}
a0 1

61 i

62

B3 1

g4 1

&5

Figure.63 Modified Color Class

79

Modifying the GraphicsDevice Class:
The GraphicsDevice class contains a number of properties and functions (e.g. the
functions used to draw primitives). However, at this stage, a lot of its routine can be

temporarily deleted as no objects need to be drawn currently.

As explained in the modified Gamel class, the Clear function used to set the color of
the window is called from a GraphicsDevice object. Therefore, the modified
GraphicsDevice class contains a constructor and a Clear function. Figure.64 shows

the source code of the modified GraphicsDevice class.

1 Elu=ging Swvetem;

? |using System. Buntime. Interopiervices;

3

4 [FElnamespace JHEREG11W2

B

A E public class GraphicsDevice

T {

& [D11Import (" 1ibGLESw2%)]

] static extern woid gzlClear (uint mask);

1n

11 [D11Tmport (" 1ibGLESw2")]

12 ztatic extern woid glClearColori(float red, float green, float blue, float alpha)
13

14 const uint GL_COLOR_BUFFER_BIT = (xz00004000;

15

16 internal GraphicsDevice(bool iswin, int prefwidth, int prefheight,
17 SurfaceFormat prefbackbufferformat,
18 DepthFormat prefdepthstencilformat,
19 E GameWindow gamewin)

20 {

21 bool IsWindowed = iswin; //uszed to determine if it is =zet to full =screen
22

23 int Width = (iswin ? prefwidth : 0)

24 int Height = {izwin ? prefheight : 0}

25 SurfaceFormat modedescFormat = prefbackbufferformat

26 DepthFormat depthbufferdescFormat = prefdepthstencilformat ;
27

28 IntPtr outputHandle = zamewin. Handle;

20

30 }

31

32 E public woid Clear(Color color)

3 {

34 Conzole. Writeline ("Clearing Coloxr”):

3B

13 float r, gz, b, a:

37 r = color.RE % 1.0f / 265;

38 g = color.G % 1.0f / 2B&;

39 b = color.B % 1.0f / 25B&;
40 a = color. b % 1.0f / 255;
41
4z glClearColorir, g, b, al;
43
44 glClear (GL_COLOR_RUFFEE_EIT) :
45 1
1A 1
47 |1

Figure.64 Source Code of Modified GraphicsDevice

80

The constructor of the GraphicsDevice class sets the displaying window according to
the parameters passed in. It determines whether the window should be displayed in
full screen, the size of the window, the surface pixel format and the depth buffer
format, and a handle of the window (the handle of the window is the "Handle"
property declared in GameWindow, it returns the IntPtr "dispman_element™). The
DepthFormat and the SurfaceFormat are two enumerations, are built as copies of the
XNA versions. Figure.65 and Figure.66 shows the source code of SurfaceFormat and

DepthFormat respectively.

The Clear function makes procedure calls to the OpenGL ES 2.0 library to set the
color of background by the glClearColor function, and then the glClear function. As
the predefined colors in the Color class use a 0-255 range value to define RGBA,
while the glClearColor function takes four values ranging from 0 to 1, so the RGBA

values of the colors must be divided 255 and converted to floats.

81

1 FEu=zing Sysztem;
2 Juzging Svztem.Collections. Generic;
3 |uzging Syztem. Ling;
4 |using System Text;
]
f Fnamespace JEERNG1IVEZ
T
e
10 = public ermum SurfaceFormat
11 i
12 @
14 Color = 0O,
15 @
14 Bgrhgh = 1,
20 @
24 Bzrahhhl = 2,
25 ®
28 Bgradddd = 3,
20 ®
3h Dztl = 4,
36 =
42 Dxtd = h,
43 ®
49 Dxth = &,
50 =
] NormalizedBvte? = T,
54
a7 NormalizedByted = &,
58
Az Eghal0ioinz = 4,
63 m
T3] g3z = 10,
67
70 Eghafd = 11,
1 ®
T4 Alphad = 12,
5 =
T8 Single = 13,
9 ®
B3 Vector? = 14,
84 ®
58 Vectord = 15,
80 =
9z HalfSingle = 16,
93 @
aT HalfVector? = 17,
98
10z HalfVectord = 18,
103 M
108 HdrElendahle = 18,
mr | h
1os |}

Figure.65 Source Code of SurfaceFormat

8

N

1 Fu=ing Syztem;

2 Juzing Svstem.Collections. Generic;
i Juzing Svstem. Ling;

4 Juzing Svetem. Text

]

f Fnamespace JHEERNG11WE

T

5= public enum DepthFormat
a {

10 &

12 None = 0O,

13 &

14 Depthld = 1,

1T &

20 Depthad = 2,

21 B

250 Depth?d5tencils = 3,
26 1

27 1

Figure.66 Source Code of DepthFormat

Modifying the GraphicsDeviceManager Class:

The GraphicsDeviceManager uses another class named game_registration (as shown
in Figure.67). game_registration is an object that is used to form a game "registration
list". The list associates one instance of each of Game, GraphicsDeviceManager and
GraphicsDevice. The reason for the list is that some of the XNA framework method
implementations assume that these classes of a game can access information from
each other. Method calls do not always provide the required access, so the registration
list provides a "behind-the-scenes™ linkage. This is not well developed in JBBRXG11,
as facilities for games with multiple windows, or computers with multiple displays
have not yet been implemented. The registration list provides some connections and

the "hooks" for further development.

clags game_registration
{
public rame game;
public GraphicsleviceManager device_manager
public Graphicslevice device;
public game_registration(Game g, GraphicsDeviceManager m, Graphicslevice dew)

{
Conzole, Writeline ("Game Registered”™);
game = g,
dewvice_manager = m;
dewvice = dev;

Figure.67 Source Code of game_registration

83

The modified GraphicsDeviceManager class declared two properties named
PreferredBackBufferHeight and PreferredBackBufferWidth. As described earlier,
users may define the size of the window by setting values to these properties in

Gamel.

The constructor of this class add the generated Game instances and the
GraphicsDeviceManager instances into the registration list. It also provides default
values of back buffer height and back buffer width to PreferredBackBufferHeight and
PreferredBackBufferWidth respectively. Therefore, if users do not set the size of the
window themselves, the window will be created with its default value (600 height,
800 width).

The internal static constructor establishes the registration list.

What is more, the modified GraphicsDeviceManager class declares a CreateDevice
method to create an instance of GraphicsDevice and add it to the registration list. This

method returns the created GraphicsDevice instance.

Modifying the Game Class:
The Game class is the most important class in an XNA project. It is the parent class of

Gamel, and controls the process of the whole program.

In the modified Game class for displaying a blank window, its constructor creates a

GameWindow object and three variables for controlling the game time.

The Game class also provides a number of protected virtual methods that will be
overriden in Gamel by the users. As described in Chapter 3, the four important

methods for the users are Initialize, LoadContent, Update and Draw.

In addition to the virtual methods, Game class has a Tick method that controls the
running speed of the game. In the modified Game class, the Update method, the Draw
method and the SwapBuffers method (declared in GameWindow) are called by Tick,

and Tick is called on every iteration of the game loop.

84

The most important method in Game class is the Run method. It handles the creation
and registration of the GraphicsDeviceManager objects and GraphicsDevice objects.
The Run method contains the game loop, but before that, a procedure call from the
OpenGL ES 2.0 need to be done to invoke the bcm_host_init() function, because the
Raspberry Pi requires that this function is called first before any GPU calls can be
made. It then loads content (there is no content to be loaded for displaying a blank
screen), resets the game time and create a window. Once the window has been created,

the game loop starts and the Tick method is repeatedly called to draw the window.

Figure.68 shows the source code of the Run method in the modified Game class. The
game loop was set to run for 1000 frames. The reason for the fixed number of frames
is that the program was hard to stop and sometimes it was necessary to power off the
Pi during development, especially when experimenting with full screen mode. This
provides a safe experimental system. This can be changed to make the program keep
running, and users may press "Ctrl + C" to stop the program.

85

public woid Fum ()

{
GraphicsDewviceManager dev_manager = GraphicsDeviceManager. GetGameManager (this) ;
int height = dev_manager.PreferredBackBufferHeight ;
Conzole.Writeline ("PreferredBackBufferHeight iz " + height);
int width = dev_manager.PreferredBackBufferWidth;
Conzole.Writeline (“PreferredBackBufferWidth iz © + width);
if (device |= null)
throw new Exception("DEna (NYI): Carnot handle multiple dewice managers");
device = dev_manager.Createlevice (] ;
bem_host_init ()
window, GameWindowInitialize (height, width) ;
Initialize() ;
EezetElapzedTime () ;
£ Fun window
cloze_requested = false;
BeginFun () ;
int 1 =0;
yhile (i < 100} /¢ (lcloze_requested)
{
Tick();
1+
!
EndRun () ;
Window. Terminate () ;
H

Figure.68 Source Code of Modified Run Method

The effect of running is shown as Figure.69. This effect is different from that of the
previous C# program. With the Gamel class, the color of the window was changed to
"PaleGreen", and the size of the window has been successfully modified to 800 x 800,
So it becomes a square window rather than a 600 x 800 rectangle window. This proves
that all the modified classes are working well, and users may simply program their

code in Gamel class to display a blank screen.

86

Figure.69 Blank Window Displayed by Modified XNA Classes

4.4.2 Display a Colored Triangle with Modified XNA Classes

At this stage, the modified classes allow users to create a blank window, and they can
change the size and the background color of the window in the same way as
programming XNA on Windows. The current task is to do further modifications to
some of the existing classes, and add some new classes to allow users to draw a

colored triangle in Gamel class.

The first step is to create an XNA project on Windows that draws a colored triangle to
see how the user's code looks in Gamel. In addition to the declaration of a
GraphicsDeviceManager object, users need to declare a VertexPositionColor type
array to store both vertex coordinate data and vertex color data. What is more,
BasicEffect, which is the built-in shader program of XNA, should be used to draw the

triangle.

Figure.70 shows the source code of the LoadContent method in Gamel for drawing a
colored triangle. The values of vertex coordinates and vertex colors are separately
assigned, and the color display of the vertices need to be enabled through the

BasicEffect object.

87

protected owerride woid LoadContent ()

{
wertices = new VertexPositionColor[3];
wvertice=s[0].Foszition = new Vector3(-0.5f, -0.5f, 0.5F);
wertice=z[1].Fozition = new Vector3{0.0f, 0.5f, 0.5F);
wvertice=z[2].FPozition = new Vector3{0.5f, -0.5f, 0.5f);
wertices[0].Color = Color. Red;
wertice=z[1].Color = Color. Green;
wertice=[2].Color = Color. Blue;
effect = new BazicEffect (GraphicsDewvice) ;
effect. VertexColorEnabled = true;

Figure.70 Source Code of the LoadContent method for Drawing Colored Triangle with XNA

on Windows

In the Draw method, the DrawUserPrimitives<T> method is called to draw the
triangle. This method is declared in the GraphicsDevice class, and takes four
parameters (the primitive type, the vertex data, the vertex offset, and the number of
primitive) to draw primitives. The "<T>" is a generic type, which indicates the data

type of its second parameter.

The source code of the Draw method is shown in Figure.71.

protected override woid Draw(GameTime gameTime)
{
GraphicsDevice. Clear (Color. CornflowerBlue) ;

effect. Current Technique. Pas=ze= [0]. &pply () ;

GraphicsDevice. DrawllzerPrimitives<VertexFPositionColor» (FrimitiveTvpe. Trianglelist, wertices, 0, 17;
baze.Draw(zameTime) ;

Figure.71 Source Code of the Draw method for Drawing Colored Triangle with XNA on

Windows

The running effect is shown as Figure.72

88

#= Triangle i

Figure.72 XNA Colored Triangle on Windows

The triangles drawn by the previous programs on Raspberry Pi were all in single
colors, so before modifying the XNA classes, a new C# sample program that draws a

colored triangle on Raspberry Pi was needed.

In the new colored triangle sample program, two vertex buffer objects were used to
store the vertex position and vertex data respectively (like the colored cube program).
Figure.73 shows the source code for using VBOs (vertex buffer objects) in the

CreateProgram function.

float[] wVertices = new float[]{ 0.0f, 0.5f, 0.0f,
-0.5f, -0.5f, 0.0f,
0.&5f, -0.6f, 0.0fF };
glGenBuffer=(1, out wha);
glBindBuffer (GL_ARRAY BUFFEER, whal;
glBufferData(GL_ARRAY BUFFEE, wVertices.Length # 4,
vwWertices, GL_STATIC_DRAW) ;

float[] cube_colors = new float[]{ 1.0f, 0.0f, 0.0f,
0.of, 1.0f, 0.0f,
0.of, 0.0f, 1.0f };
glGenBuffer={1, out wbo_colors);
glBindBuffer (GL_ARRAY BUFFEER, who_colors);
glBufferData(GL_AREALYT BUFFER,
cube_colors.Length * 4, cube_colors, GL_STATIC_DEALW) ;

Figure.73 VBOs of Colored Triangle

89

In the Render function, the vertex buffers are bound again, and then calls to
gl\VertexAttribPointer are used to indicate the attribute location in vertex shader. The
source code is shown as Figure.74.

glBindBuffer (GL_AREAT BUFFEE, wha) :
glVertexittribPointer (wertloe, 3, GL_FLOAT, GL FALSE, 0, 0);
glEnableVertexittriblrray (vertLoc) ;

zlEindBuffer (GL_ARRAT BUFFER, who _colors);
glVertexittribPointer
attribute_v_color, // attribute

3, A rumber of elements per wertex, here (r,z,b)
GL_FLOAT, ff the tvpe of each element

L _FALZE, A take our walues as-is

0, /f no extra data between each poszition

n Ff offzet of first element

1
glEnableVertexdttriblirray((uint)attribute_v_color) ;

glDrawhrravs (GL_TRIANGLES, 0, 33

Figure.74 Using Two VBOs to Draw a Colored Triangle

In this way, a C# program that draws a colored triangle on Pi was acquired. The next
step is to do further modifications to the Pi-XNA classes to allow users coding like an
XNA program.

In order to draw a colored triangle, more classes are needed. Firstly, a
VertexPositionColor structure was added to declare vertices with position and color.
Secondly, when calling the DrawUserPrimitives method to draw primitives, its first
parameter indicates the primitive type. Primitive types define the way of using
vertices to draw primitives. Figure.75 shows some triangle primitive types supported
by OpenGL ES 2.0 (this figure is referenced from the book "OpenGL ES 2.0
Programming Guide™). As shown in Figure.75, GL_TRIANGLES draws a series of
separate triangles, GL_TRIANGLE_STRIP draws a series of connected triangles, and
GL_TRIANGLE_FAN also draws a series of connected triangles, but they are based
on one center vertex (the VO vertex). Therefore, a PrimitiveType class is also needed.

90

GL_TRIANGLES GL_TRIANGLE_STRIP

Vi Vo Vg
GL_TRIANGLE_FAN

Figure.75 Triangle Primitive Types

Thirdly, as the vertex coordinates were declared as Vector3 in the users' XNA program,

the mathematical classes are needed as well.

Modifying the VertexPositionColor Structure:

In this project, the VertexPositionColor structure only needs to contain a Color type
variable to store the vertex colors, and a Vector3 variable to store the vertex positions.
Its constructor just needs to pass the values of vertex data from the parameters to the
fields declared in VertexPositionColor structure. Figure.76 shows the source code of

VertexPositionColor.

91

1 uging Swatem;

2

i FEnamespace JEEREGL11WZ

4 |1

b E public struct VertexFPozitionColor
i {

T

] public Color Color;

]

10 public Vectord Fosition;

11

12 = rublic VertexPositionColor (Vectord position, Color color)
13 {

14 Fozition = pozition;

15 Color = color;

14 1

17 1

18 |1

1|

Figure.76 Source Code of VertexPositionColor Class

In the Windows XNA framework, there are a number of vertex structures (e.g.
VertexPositionNormalTexture) and conventions to allow users to add their own. Each
structure provides a run time description in the form of an array of VertexElement
structures. This description allows full implementation of the generic
DrawUserPrimitives method in GraphicsDevice. For the Pi-XNA implementation, this
would be possible, but is left to further work. Instead we demonstrate how one or two

fixed vertex structures can be built and used.

Modifying the PrimitiveType Class:
PrimitiveType is an enumeration type. The PrimitiveType class in XNA is shown in
Figure.77.

uzing Svatem;

—namezpace Microszoft. X¥na. Framework. Graphics

{
+ Elpublic enum FrimitiveTlvpe

i
TriangleLis‘t =10,
TriangleS'trip =1,
!I inelist = 2,
!I inedtrip = 3,

H-F-F-F

Figure.77 PrimitiveType of XNA

92

Compared with XNA, the primitive types are declared as macros in OpenGL ES 2.0.
Figure.78 shows the declarations of primitive types in OpenGL ES 2.0.

F* BeginMode */

#define GL_POINTS Ox0000
#define GL_LINES 0x0001
#define GL_LINE_LOOF Ox0002
#define GL_LINE_STEIF 0x0003
#define GL_TRIANGLES Ox0004
#define GL_TRIANGLE_STRIF Ox0005
#define GL_TRIAWNGLE_FAN 0x0006

Figure.78 Primitive Types in OpenGL ES 2.0

In this project, the values of primitive types defined in OpenGL ES were copied to
define the XNA primitive types. Figure.79 shows the modified PrimitiveType class.

These values will be used in GraphicsDevice to decide how to draw primitives.

1 uzing svstem;

2

3 [Enamezpace JEBREG11WZ

4 |

b = public ermm FrimitiwveTspe

f 1

7 8

11 Trianglelist = 0x0004, //GL_TRIANGLES
12 g

17 TrlangleStrlp = [x0005, //GL_TRIANGLE STRIP
19 5
22 LlnELl = Ox0001, A/GL_LINES
2 &
28 LlneStrlp = 0x0003, //GL_LINE_STEIF
24 h
3001
31

Figure.79 Modified PrimitiveType Class

Modifying the GraphicsDevice Class:

The DrawUserPrimitives method is defined in the GraphicsDevice class. In the XNA
program, BasicEffect allows users to use the XNA built-in shader, rather than writing
shaders themselves. In previous programs created for the Raspberry Pi, the shaders
were written in the CreateProgram function. At this stage, as the shaders cannot be
loaded to the program from separate files, most of the code in CreateProgram was

directly copied into the DrawUserPrimitives method.

93

What is more, the routine in the Render function that handles binding vertex buffers,
indicating attribute locations in the vertex shader and drawing primitives was also

moved to the DrawUserPrimitives method.

In the current DrawUserPrimitives method, the triangle primitives are actually drawn
by the glDrawArrays function called from OpenGL ES. This function takes three
parameters, the first parameter specifies the primitive type to render, the second one
specifies the starting vertex index in the enabled vertex arrays, and the last parameter

specifies the number of vertices to be drawn.

In the DrawUserPrimitives method, the first parameter of glDrawArrays uses the
value of the first parameter of DrawUserPrimitives, which indicates the primitive type.
The second parameter of glDrawArrays uses the third parameter of
DrawUserPrimitives, which represents the vertex offset (the value is 0 in this
program). The value of the last parameter of glDrawArrays, the number of vertices,
depends on the primitive type. When the program draws Triangle List, the number of
indices three times the number of the primitives, as each triangle contains three
vertices. If the primitive type is Triangle Strip, then the number of the vertices equals
that of the primitives plus two, as each two conjoint triangles share two vertices.
Figure.80 shows the source code of calculating the number of vertices (the variable

named "count").

94

int count=0;/71it i1z uzed as a parameter in glDrawdrrays()
uint type = 0;

if (primitiweTvpe. ToString() == “Trianglelist")
{

count = primitiweCount * 3;

type = GL_TRIANGLES;

Conzole.Writeline{"type = * + type);
1
elze if (primitiwveType.ToString() == “TriangleStrip™)
{
count = primitiweCount + 2;
tyvpe = GL_TRIANGLE_STEIF:
1
elze if (primitiwveType.ToString() == “Lineli=t")
{
count = primitiweCount * 2;
tvpe = GL_LINES;
1
elze if (primitiwveType.ToString() == "LineStrip")
{
count = primitiweCount + 1;
tvpe = GL_LINE_STEIF;
1

Figure.80 Calculating the Number of Vertices for gIDrawArrays

The process of the DrawUserPrimitives method is shown in Figure.81.

95

Calculate the number of
vertices to be drawn

|

Create VBOs

{

Load shader source code

|

Create shader objects
&
Compile Shaders

|

Create program object
&
Attach shaders

|

Link the program

|

Free up no longer needed
shader resources

Assign the location of
attributes/uniforms in the
shaders

|

Use the program

|

Rebind the VBOs

|

Indicating attribute
location in vertex shader

{

Draw primitives

Figure.81 Process of the DrawUserPrimitives Method

The current DrawUserPrimitives method still has two problems.

First of all, the way of storing vertex data between XNA and the current program is
different. The vertices are declared as VertexPositionColor type. The way the vertex
data is stored in this structure is shown as Figure.82. Each vertex contains two parts,

the vertex position and the vertex color, and they are stored alternately.

96

[Position 1
Vertex 1 -
i Color1l
Position 2
Vertex 2 - c
olor2
i Position 3
Vertex 3 -
Color3
]
.
(]

Figure.82 VertexPositionColor Data Structure

By contrast, in the current program, vertex position and vertex color are stored in two

separate arrays, and the program uses two VBOSs to cache the vertex data.

The way of solving this problem is quite easy. The glVertexAttribPointer function
takes six parameters, the first parameter stands for the attribute location in vertex
shader, the second parameter represents the number of elements in the attribute data,
the third and the forth parameters represents the type of the element and whether the
data value should be normalized to O - 1 respectively. The fifth parameter holds the
spacing of attribute data items, and the last one indicates the offset of the first element.
Thus, OpenGL ES allows a vertex buffer to be a series of values interleaved with

other data.

The problem can be solved by simply modifying the value of the last two parameters
of gl\VertexAttribPointer. Figure.83 shows the modified source code of the program. A
vertex position is a Vector3 data that make up of three float numbers. Therefore, the
number of its elements is 3. Vertex color data consist of four byte numbers, so the
number of color elements is 4. The size of 4 bytes equals the size of 1 float, so the
extra data between each vertex address is 4 * sizeof(float). The data structure starts
with a vertex position data, so the offset value of the vertex position is 0. By contrast,
the first vertex color data follows the first vertex position, so the offset value of the
vertex color should be 3 * sizeof(float). The second call to glBindBuffer is not needed

as both position and color data are accessed from the same physical buffer.

97

glVertexbttribPointer (vertloc, 3, GL_FLOAT, GL_FALSE, 4 # sizeof (float), 0);
zlEnableVertexdttriblirray (vertLoc) ;

FglBindBuffer (GL_ARFRALY BUFFER, wvho_colors)
glVertexdttribPointer {
attribute_v_color, // attribute
q J¢ rumber of elements per wertex, here (r, g, b, al

GL_UNSIGNED BYTE, #f the tvpe of each element
GL_TRUE, £ should it be rnormalized
4 % gizeof (float), A extra data between each wertex

3 # zizeof (float) Ff offzet of first element
3
glEnableVertexdttriblrray ((uint)attribute_v_color);

Figure.83 Using Offset in gl\VertexAttribPointer

After using the offset parameter of gl\VertexAttribPointer, the program only needs to

use one vertex buffer object to hold the vertex data.

The second problem is how to use generic types on Raspberry Pi (as the generic type
"<T>"is used in the DrawUserPrimitives method on XNA). Note that this is not quite
the same problem as fully managing variable vertex types. The issue here is passing
data coming in as a generic array to the OpenGL ES code. C# does not provide an
automatic way of passing generic arrays to native code, nor does it provide a way of
mapping to C++ generics. In order to learn how it could be solved, a test program was
created. Figure.84 shows the source code of the test program. This test program
accesses data in an array of a structure named VertexXX from the Main function. In
order to achieve the goal, pointers are needed. Pointers are considered as unsafe code

in C# programs, so the class has to be declared as unsafe.

Test3 is the function that takes a generic type array as its parameter. The Main
function uses the structure that contains the data as parameter to call Test3. Test3 uses
Marshal. UnsafeAddrOfPinnedArrayElement (data, 0):; command to set an
pointer point to the actual data.

GCHandle pinhandle = GCHandle.Alloc (data, GCHandleType.Pinned); ensures
a more correct way of doing the access to the data. The program will work without
this command, but adding it should mark the memory as in use and fix its memory
location in case of concurrent garbage collection while test runs. For the purposes of
the experiment, Test3 calls Test (simulating a call to an external (native) function).

Test simply copes the data into an array of floats and returns that array for display, to

98

show that the passing mechanism worked correctly.

uszing Swyatem;
uzing System FBuntime. InteropServices:

namezpace Test
{
unsafe class Frogram
i
struct Vertesz¥¥{
public float a,b,c;
public Vertex¥¥ (float pa, float pb, float po)i{a = pa; b =pb; c = pc;}
1

static VertexM¥[] werticesz = new Vertex¥N[] {new Vertex¥¥ (1, 2, 3}, new VertexNN (55, 44, 33)}:

static float[] testtwol(float® f)
{
float[] array? = new float [6]:
forf{int 1 = 0; 1 < 6; i+
AiConzole. Writeline ("Here iz one: “+ (#(f + 1)), TaString ());
array2[i] = *(f + 1) ;
return arraye

1

static float[] test (IntPtr f)

i

float[] arrayl = new float [A];
arrayl = tezttwo((float *)1f);

return arrayl;

}

static woid test3<T> (T[] data)
{
float[] array = new float[6]:

GCHandle pinhandle = GCHandle. Allocidata, GCHandleTvpe. Pirmed)
IntPtr ptr = Marshal.lnsafelddr0fFinnedirrayElement (data, 0);
array = test(ptr);

forfint 1 = 0; 1 < 6; i++)

Conzole. Writeline (array[i]) ;

pinhandle. Free () ;

1

static void Main(string[] args)
{
test3(verticez)

1

Figure.84 Read data with generic type

Figure.85 shows the running result of this program. The data in the structure can be

successfully read with generic type.

one: 1
one: 2
one: 3
one: 55
one: 44
one: 33

e s s e s

5
5
5
5
5
5

-

Figure.85 Result of the Test Program

99

The last step of modifying the GraphicsDevice class is to call
GCHandle pinhandle = GCHandle.Alloc(vertices, GCHandleType.Pinned)
IntPtr ptr = Marshal.UnsafeAddrOfPinnedArrayElement (vertices, 0):

commands to access the vertex data, and declare the Graphics Device as an unsafe

public class.

Modifying the Gamel Class:
The source code in Gamel is quite similar to the XNA program. However, as there are
no built-in shaders in the modified classes, the BasicEffect was not used in Gamel.

The source code of the modified Gamel class is shown as Figure.86.

100

1 Fuszing Syatem:

2 | using JEBERXG11WZ;

K|

4 Enamezpace TestGame

5o

g = public claszsz Gamel : JBEENGLIVZ. Game

ki {

8 GraphicsDeviceManager gzraphics;

g

1 VertexPozitionColor[] wertices:

11 f#BasicEffect effect;

12

13 E public Gamel ()

14 {

15 graphics = new GraphicsDeviceManager (thiz);
16 graphics. PreferredBackBufferHeight = 800;

17 zraphics. PreferredBackBufferWidth = 800;

18 1

19

20 = protected override woid Initializef)

21 {

22 base. Initializel);

23 H

24

25 = protected override woid LoadCorntent ()

26 {

27 vertices = new VertexPositionColor[3];

28 werticez[0]. Pozition = new Vector3 (0, 0.5f, 0);
29 wertices[1].Fogition = new Vector3{-0.5f, -0.5f, 0);
30 wertices[2].Pogition = new Vector3(0.5f, -0.5f, 0);
il wertices[0].Color = Color.Red;

32 werticesz[1].Color = Color.Green;

33 vertices[2].Coleor = Color. Blue;

34 Fieffect = new BasicEffect (GraphicsDewice)
35 fieffect. VertexColorEnabled = true;

36 1

a7

38 E protected override woid Update (GameTime gameTime)
a5 {
40 base. Update(zameTime)
41 1
42
43 = protected override woid Draw(GameTime zameTime)
44 {
45 GraphicsDewice. Clear (Color. PaleGreen) ;
46
47 ffeffect, Current Technique, Pazses [0]. Apply () ;
48
45 Graphicslevice. DrawllzserPrimitives<{VertexPozitionColory (PrimitiwveType. Trianglelist, wertices, 0, 1):
a0

a1

52 basze. Draw(zameTime) ;

B3 1

b4 1

65 |}

Figure.86 Modified Gamel Class for Drawing a Colored Triangle

Figure.87 shows the running effect on Raspberry Pi.

101

Figure.87Colored Triangle Displayed by Modified XNA Classes

4.4.3 Display a Colored Rotating Cube with Modified XNA Classes
Once the colored triangle can be successfully drawn in Gamel in a similar way with
programming XNA on Windows, the next step is try to program a colored rotating

cube with modified classes.

The first step is again writing an XNA program on Windows to display a colored
rotating cube. In addition to the XNA triangle program, a short type array was

declared to store the indices (as shown in Figure.88).

Graphicslevicellanagzer graphics;
Spritebatch spriteBatch;

VertexPositionClolor[] wertices;
short [] indices;

bazicEffect effect;

Figure.88 Declaration of the XNA Colored Rotating Cube
In LoadContent method, vertex data and index data are given (note the vertices of

each primitive should be drawn in clock-wise direction in XNA code). Figure.89
shows the source code of the LoadContent method.

102

protected override woid LoadComtent ()

{
spritefatch = new SpriteBatch(GraphicsDevice) ;

wertices = new VertesxPositionColor [8];

wertices [0]. Pogition = new Vector3(0.5f, 0.5f, 0.5f);
wertices[1].Pogition = new Vector3(-0.5f, 0.5f, 0.5f);
wertices [2].Position = new Vectord{-0.5f, -0.5f, 0.5f);
wertices [3]. Pogition = new Vector3(0.5f, -0.5f, 0.5f);
wertices [4]. Position = new Vector3{0.5f, -0.5f, -0.5f);
wertices [B]. Pogition = new Vector3(0.5f, 0.5, -0.5f);
wertices [f].Position = new Vector3{-0.5f, 0.5f, -0.5f);
wertices [T].Pogition = new Vectord{-0.5f, -0.5Ff, -0.5F);

wertices [0].Color = Color. Cyan;
wertices[1].Color = Color. White;
werticesz[2]. Color = Color.Blue;
wertices [3].Color = Color. Magenta;
wertices[4].Color = Color. Green;
wertices [B].Color = Color. Yellow;
wertices [6].Color = Color.Black;
werticesz [T].Color = Color.Red;

-
[
-

indices = new short[]1{ 1
3, 0

. 0,
1

3]

K]

a

-
-
[~

a

-
-
[~
-

-

-
-
-
-

a

-
-
[~
-

I s T n

=1 =1 O s O

(R B =R

L i T e I
s =

-1 -1 k3 = L

1 I 1 1 } .

-

effect = new BasicEffect (GraphicsDevice) ;
effect. VertexColorEnabled = true;

Figure.89 LoadContent Method for Drawing a Colored Rotating Cube with XNA on

Windows

In the Draw method, the World, View and Projection Matrices are provided to
BasicEffect to specify the rotation, view position and projection; and finally the

DrawUserIndexedPrimitives method (declared in GraphicsDevice) is called to draw

103

the cube. Figure.90 and Figure.91 show the source code of Draw method and the

running effect respectively.

protected owverride woid DrawiGameTime gameTime)
{

Graphieslevice. Clear (Color. CornflowerBlue) ;
FiMatrix world, wiew, projectionm;

effect. World = Matrix.CreateRotation®((float)gameTime. TotalGameTime. TotalSeconds) ;

effect. View = Matrix.Createlookdt (new Vector3(3, 2, 1.TTf), new Vector3(d, 0, @), Vectord.Up);

effect.Projection = Matrixz.CreatePerspectiveField0fView (MathHelper, Pilwverd,
(float)Window. ClientBounds. Width / (float)Window. ClientBounds, Height,
0.1f, 100.0f);

foreach (EffectPass passz in effect.CurrentTechnique. Pazses)
{
pass. dpply ()
Graphiczlevice. Drawllzer IndexedPrimitives{VertexFozitionColory
(PrimitiveType. Trianglelist, wertices, 0, &, indices, 0, 12};

H

base. Draw (zameTime)

1

Figure.90 Draw Method for Displaying a Colored Rotating Cube with XNA on Windows

P eren W

Figure.91 XNA Colored Rotating Cube on Windows

In the XNA program, an array of indices was used to indicate the drawing sequence of
the vertices. In OpenGL ES, glDrawElements should be used to draw primitives with
indices, as it takes an array of indices as one of its parameters (gIDrawArrays does

not).

104

The glDrawElements function takes four parameters, the first parameter specifies the
primitive type, the second and the third parameters specify the number of indices and
the data type of the indices respectively. The last parameter specifies the location
where the indices are stored. On Raspbian, the indices for glDrawElements should be
declared as an array of bytes, and the data type of indices should be specified as
GL_UNSIGNED_BYTE. In GraphicsDevice, glDrawElements is declared as

static extern woid glDrawElementz (uint mode, int count, uint type, bytel[]l indices);

Modifying the Gamel Class:
In order to make the program in Gamel similar to that of the Windows XNA program,

the modification starts with the Gamel class.

As users need to write shader programs themselves when programming with the
Pi-XNA classes, an Effect object was declared, rather than the original BasicEffect
object. In the LoadContent method, the declaration of vertex data remains the same as
in the Windows XNA program. The array of indices was declared as a byte array
because the program on Raspberry Pi eventually calls glDrawElements to draw
primitives, and the sequence of drawing vertices of the primitives was changed to
anti-clockwise to match the different default cull mode between XNA and OpenGL
ES. After the vertices and indices have all been declared, an Effect object was created
by calling the constructor of the Effect class. In the colored triangle program, the
process of loading and compiling shaders were moved into the DrawUserPrimitive
method, which is a method called in the game loop (i.e. the shader source code will be
loaded and compiled on every iteration of the game loop). However, the loading and
compilation of shaders should only be performed once during the initialization part of
the program. Therefore, the constructor of the Effect class is a suitable method to
place the process of loading and compiling shaders, because this method is called in
LoadContent, which is executed once as part of the initialization. So when creating
the Effect object, in addition to a GraphicsDevice object, the constructor also takes
two strings that representing the names of the shader files as its parameters. This is a
change from Windows XNA. This project does not attempt to reconstruct the XNA
content management system, so the change cannot be avoided. Finally in

105

LoadContent, the value of VertexColorEnabled was set to true. This can be achieved

by adding a property named VertexColorEnabled that returns a bool value. Figure.92

shows the modified LoadContent method.

protected override woid LoadConterdt ()

{

wertices =

wvertices [0].
wertices[1].
vertices[2].
vertices[3].
vertices[4].
wvertices[G5].
wvertices[6].
wvertices[T].

wvertices [0].
wertices[1].
vertices[2].
vertices[3].
wertices[4].
wertices[G].
wertices [R].
wertices[T].

indices = new byte[]{

new VertexPositionColor[8];

Foszition = new Vector3d(0.5f, 0.5f, 0.5f);

Pozition =
Pozition =
Pozition =
Pozition =
Pozition =
Pozition =

rnew Vectori(-0.5f, 0.5f, 0.5f);
rnew Vectori(-0.5f, -0.5f, 0.5f);
rnew Vectori(0.5f, -0.5f, 0.5f);
rnew Vector3(0.5f, -0.5f, —-0.5f);
rnew Vector3(0.5f, 0.5f, -0.5f);
rnew Vectori(-0.5f, 0.5f, -0.5f);

Fosition = new Vectord(-0.5f, -0.5f, -0.5f);

Color
Color
Color
Color
Color
Color
Color
Color

Color,
Color,
Color,
Color,
Color.
Color.

Colaor

I

Eed;
Green;
Blue;
Eed;
Green;
Blue;

.Eed;
Caolor.

Green;

effect = new Effect (GraphicsDewice, “VertexShader”, “PizelShader”);
effect. VertexColorEnabled = true;

Figure.92 Modified LoadContent for Drawing a Colored Rotating Cube

In the Draw method, as in the program in Windows XNA, the World, View and

Projection matrices need to be defined. In the XNA program, these three matrices

were managed by BasicEffect. So in the modified Draw method, the matrices should

be handled by Effect. This can be done by adding three read and write Matrix type

properties in the Effect class. This does not provide the full generality required to

handle uniforms in shaders, but that can be added later. For the moment, uniforms are

at least being managed in the correct place.

106

Finally, an Apply method can be created in Effect to bind the shader program for

execution.

At the end of the modified Draw method, the DrawUserIndexedPrimitives method is

called to draw primitives. Figure.93 shows the modified Draw method.

protected override woid Draw(Gamelime gameTime)

{

GraphicsDevice.Clear (Color. PaleGreen) ;

effect.World = Matrix. CreateRotation¥ ((float)zameTime. TotalGameTime. TotalSeconds) ;
effect. View = Matrix. Createlookst (new Vector3{0, 5, 5),
new Vector3(0, 0, 0J,
new Vectori(o, 1, 0));
effect.Projection = Matrix.CreatePerspectiveField0fView (3. 1416926F/4, //MathHelper.Pilwerd,

(float)graphics. PreferredBackBufferWidth / (float)zraphics. PreferredBackBufferHeight,

1.0f, 100d0.0f);

effect. Applv () ;

GraphicsDevice. Drawlzer IndexedPrimitives<VertexPositionColory (PrimitiwveType. Trianglelist,
wverticez, 0, &,
indices, 0, 12);

baze.Iraw(zameTime) ;

Figure.93 Modified Draw Method for Drawing a Colored Rotating Cube

Modifying the GraphicsDevice Class:
As the Draw method in Gamel calls DrawUserIndexedPrimitives to draw primitives,
a DrawUserIndexedPrimitives method was required in GraphicsDevice. This method

was declared as
public woid DrawlzerIndezedPrimitives<Tr (PrimitiwveType primitiweType,
T[] wertices, int wertezOffset, int rumVertices,
bte[] indices, int indexOffzet, int primitiveCourt)
Similar to the DrawUserPrimitives method, it firstly calculates the number of vertices
according to the primitive type, then sets a pointer point to the vertex data, and then
use vertex buffer objects to hold the data of the vertices, and finally calls

glDrawElements, rather than glDrawAurrays, to draw primitives.

Modifying the Effect Class:
The modified Effect class contains a constructor, four properties, and a method named

Apply.

107

As described in the introduction to the modified Gamel class, the constructor of
Effect contains the instructions for loading and compiling shader source code. In this
program, the vertex shader and the pixel shader were programmed in two separate
files. The parameters taken by the constructor are the names of the shader files, and it
uses

System. 10. File. ReadA11Text (”. /” + file name + ”.txt”);

command to read the shader source text from their paths.

The four properties are VertexColorEnabled, World, View and Projection. In the
Apply method, the value of the World, View and Projection properties were read and
used to calculate the transformation matrix. The data of the transformation matrix is

then sent to the mvp uniform in vertex shader.

Modifying the Color Class:

As shown in Figure.94, more colors were used to define the vertex colors. The three
colors added in the Color class are Red, Green and Blue. Figure.94 shows the
definition of these three colors.

public static Coleor Red | get { return new Color(255, 0, 0, 2585): 1 1
public static Coler Green | get | return new Coler{0, 255, 0, 256); 1 }
public static Coler Blue { get [return new Coler(0, 0, 255, 255): 1 1}

Figure.94 Definition of Colors

After doing the modifications described above, a colored rotating cube can be

displayed. Figure.95 shows the effect of running the modified program.

108

Figure.95 Colored Rotating Cube Displayed by Modified XNA Classes

4.4.4 Display a Textured Lighting Cube with Modified XNA Classes
The last job is to draw a textured rotating cube with modified classes on the
Raspberry Pi. In order to show more shading effect, lighting was also implemented in

the last program.

Creating a VertexPositionNormalTexture Structure:

As the texture effect and the lighting effect were to be implemented in this program,
each vertex needed a texture coordinate and a normal vector to indicate the location in
texture space and calculate the illumination intensity. Therefore, a new data structure,

the VertexPositionNormalTexture, was created.

Compared with the VertexPositionColor structure, the vertex color is replaced by
normal vectors and texture coordinates. The VertexPositionNormalTexture structure
declares a Vector3 type variable representing vertex position, another Vector3 variable
that represents vertex normal, and a Vector2 type variable stores the data of vertex
texture coordinates. The constructor of this structure takes three parameters, and gives
the values to the three variables respectively. Figure.96 shows the source code of this

structure.

109

1 uzing Syatem;

2

G Fnamespace JEEEXG11V2

4 |1

o= public struct VertexPozitionMormalTexture

6 {

T

8 public Vectord Pozition;

a

1o public Vectord Normal;

11

12 public Vector? TextureCoordinate;

13

14 = public VertexPositionNormalTexture (Vectord position, Vectord normal, Vector? textureCoordinate)
15 {

16 Pozition = pozition:

17T HNormal = normal;

18 TextureCoordinate = textureCoordinate;
19 1

20 1

Figure.96 VertexPositionNormalTexture

Figure.97 shows the data structure of VertexPositionNormalTexture.

| Position 1 | «— Vector3
Vertex 1 - Normal 1 <——— Vector3

! TexCoord 1 S~ Vector?
| Position 2 |
Vertex 2 4 Normal 2
TexCoord 2
[| Position 3 |
Vertex 3 - Normal 3
TexCoord 3

Figure.97 Data Structure of VertexPositionNormalTexture

Modifying the Gamel Class:

In the XNA library, a class named "Texture2D" handles the loading of texture data.
When programming textured objects with XNA, a Texture2D object should be
declared first, and in LoadContent method, Content. Load<Texture2D>("file
name”) command can be used to pass texture data to the Texture2D variable. Again a

file name is needed because an XNA content system is not available.

110

Therefore, a Texture2D class should be created (the detail of Texture2D class will be
explained later), and in the modified Gamel class, a Texture2D variable was declared.
Also, the vertices of the cube were declared as VertexPositionNormalTexture type.

Figure.98 shows the declaration part in modified Gamel.

GraphicsleviceManager graphics;

VertexPositionNormalTexture[] wertices;
byvtel[] indices;
Effect effect;

Texture?D tex;

Figure.98 Declarations in Gamel for Drawing a Textured Cube with Lighting Effect

In the LoadContent method, a total of 24 vertices data were defined. This is because
each vertex on a cube is shared by three surfaces. As the normal directions of a vertex
on the three connected surfaces are different, one vertex actually has three normal
vectors, so 8 vertices have 24 normal vectors. Figure.99 shows the declaration of the

vertices.

111

vertices = new VertexPositiorMormalTexture[24];

vertices [00].
wvertices [01].
werticesz [02].
wverticez [03].
werticesz [04].
wvertices [05].
vertices [06].
werticesz [OT].
verticesz [08].
wvertices [09].
vertices [10].
vertices [11].
warticez[12].
wverticez [13].
vertices [14].
werticesz [16].
vertices [16].
warticez[17].
vertices [18].
vertices [19].
werticesz [20].
verticez [21].
warticez[22].
vertices [23].

Fogition = new Vector3(-0.5Ff, 0.5f, 0.5f);
Fosition = new Vector3(0.5f, 0.5f, 0.5f);

Pozition = new

Position = new Vector3 (0.
Fosition = new Vector3 (0.
Position = new Vector3 (0.
Position = new Vector3 (0.
Fozition = new Vector3(0.
Position = new Vector3 (0.

Fosgition
Pozition =
Fosition
Pozition =
Fosgition
Fosgition

U T | B T TR}
o s s i e
moom T Mo
= = 5 5 5 =

Wectord (-0, 5f,
Yector3 (0. 5f,
Yectord(-0.5f, -0.5f, -0.5f);
Vectord(-0.5f, 0.5f, -0.5f);
Wector3(-0.5f, 0.5f, 0.5f);
Wectord(-0.5f, -0.5f, -0.5£);

Fosition = new Vector3(-0.5f, -0.&f,
Fosition = new Vectord(-0.5f, 0.&f, -0.5f);
FPosition = new Vector3(0.5f, 0.5f, -0.5f);
Fogition = new Vector3(-0.5Ff, 0.5f, 0.5f);
Fosition = new Vector3(0.5f, 0.5f, 0.5f);

Pozition = new
Fogition =
Pozition =
FPozition = new

conzt float xlo = 0f, xhi = 1f, ¥la

vertices [00].
vertices [01].
warticez[02].
wverticez [03].
vertices [04].
werticesz [08].
vertices [06].
warticez [07].
vertices [08].
wvertices [09].
werticesz [10].
wverticez[11].
warticez[12].
wvertices [13].
vertices [14].
werticesz [16].
verticez [16].
vertices [17].
vertices [18].
vertices [19].
werticez[20].
verticez [21].
wvertices [22].
wertices [23].

TextureCoordinate
TextureCoordinate
TextureCoordinate
TextureCoordinate
TextureCoordinate
TextureCoordinate
TextureCoordinate
TextureCoordinate
TextureCoordinate

TextureCoordinate =

TextureCoordinate
TextureCoordinate
TextureCoordinate

TextureCoordinate =
TextureCoordinate =

TextureCoordinate
TextureCoordinate
TextureCoordinate
TextureCoordinate
TextureCoordinate
TextureCoordinate
TextureCoordinate
TextureCoordinate
TextureCoordinate

Wector3(-0.5f, -0.6f, 0.5f);
5f, -0.6f, 0.5f);:
Ef, 0.5f, 0.5f);

5f, 0.5f, -0.5f);
5f, -0.5f, 0.5f);
5f, -0.5f, —0.5£);

5f, 0.5f, -0.5f);
0.6£, -0.5f);
-0.5f, -0.5f);

0.6f);

1f, vhi = 0Of;

Vector? (xlo,
Vector? (xhi,
Vector?(xla,
Vector? (xhi,
Vector2 (xlo,
Vector? (xhi,
Vector? (xlo,
Vector? (xhi,
Vector? (xlo,
Vector2 (xhi,
Vector? (xlo,
Vector? (xhi,
Vector?(xla,
Vector? (xhi,
Vector? (xlo,
Vector? (xhi,
Vector? (xlo,
Vector2 (xhi,
Vector? (xlo,
Vector? (xhi,
Vector?(xla,
Vector? (xhi,
Vector2 (xlo,
Vector? (xhi,

Wector3(-0.5f, -0.6f, 0.5f);
new Vector3(0.5f, -0.56f, 0.5f):
new Vectord(-0.5f, -0.5f, -0.5f);
Vector3(0.5f, -0.5Ff, -0.5£);

vlal:
vlal:
vhi)
vhil :
vlo);
vlo)
vhil:
vhi):
vlal:
vlal;
vhi) ;
vhil :
ylo);
vlal:
vhi) ;
vhi)
vlo) ;
vlal;
vhil :
vhil:
ylod:
vlal:
vhil;
vhi)

vertices [00].
vertices [01].
verticesz [02].
vertices [03].
wertices[04].
vertices [05].
vertices [06].
verticesz [07].
vertices [08].
vertices [09].
verticesz [10].
vertices[11].
wertices[12].
vertices [13].
vertices [14].
vertices[16].
vertices [16].
wertices[17].
vertices [18].
vertices [19].
verticesz [20].
verticesz [21].
wertices[22].
vertices [23].

Normal =
Normal =

Normal
Normal
Normal

Normal =

Normal
Normal
Normal
Normal
Normal
Normal
Normal
Normal
Normal
Normal
Normal
Normal
Normal

Normal =

Normal
Normal
Normal
Normal

Vector3i(0,
Vector3(0,
Tector3(0,
Vector3i(0,
Vector3d(+1,
Vectord(+1,
Vectord(+1,
Tector3(+l,
Vector3i(0,
Vector3(0,
Vector3i(0,
Vectord(0,
Vector3i(-1,
Vectori(-1,
Vectori(-1,
Vectori(-1,
Vectord(0,
Vector3 (0,
Vector3i(0,
Vector3(0,
Tector3(0,
Vector3i(0,
Vector3 (0,

Vector3(0, -

o,
o,
0,
0,
+1,
+1,
+1,
)
_1,
_1,
_1,

+1):
+:
+13:
+1:
o
oy
I}
oy
-17:
-17:
-1):
-1):
o
o
o,
oy
I}
o
oy
o,
oy
o
o
oy

Figure.99 Vertex Declarations for Drawing a Textured Cube with Lighting Effect

Once the vertex data has been defined, the array of indices was given. The Effect
object and the Texture2D object were instantiated to load shaders and the texture (as
the XNA ContentManager class was not included in this project, the constructor of

modified Texture2D handles the loading of textures). Figure.100 shows the remainder

of LoadContent.

112

irdices = new byte[l{ 0,2,1,1,2,3,
4,6, 5,8,68, T,
#,10,9,9,10,11,
12,14,13,13, 14, 14,
16, 18, 17, 17, 18, 149,
20,22, 21,21, 22, 23
b

effect = new Effect (GraphicsDewice, "VertexShader®, “PixelShader™);

tex = new TexturelD (GraphicsDewice, “./TulipSquare.bmp”) ;

Figure.100 Declaring Indices and Loading Contents

In a typical Windows XNA project, transformation matrices are passed to and used in
the vertex shader. The World, View and Projection matrices are all sent to the vertex
shader, and it may multiply these three matrices to get a composite transformation
matrix. By contrast, as explained in section 4.4.3, the current modified program
calculates a combined transformation matrix in the Apply method of Effect class.
However, the Effect class is transparent to the users, and this causes some problems.
Programmers have to use the calculated transformation matrix in vertex shader, even
if they do not want to do so (in shaders, if an attribute or uniform is given a value
from the program, then it has to be used for calculating the positions or colors of the
primitives, otherwise nothing can be displayed on the window. Probably the lack of

output is due to silent failure in some part of the shaders driver code).

In order to solve this problem, a new overload method named "SetParameters" was
added in the Effect class (the detail of this method will be explained later). This
method takes two parameters, the first is a string variable, which is the name of the
attribute or uniform in vertex shader. The other parameter takes a variable holding the
data that suppose to be sent to the corresponding attribute or uniform. In this way,
users are able to decide which data should be sent to the shaders according to the
needs of their shader programs. For example, as shown in Figure.101, the
transformation matrix "mvp" was calculated in the Draw method in Gamel, then the
SetParameters("mvpMatrix", mvp); command could be used to send the matrix data to
a uniform named "mvpMatrix" in the vertex shader. This provides the same flexibility
as the Windows implementation of the XNA Effect class. In the Windows version,
parameters are set up as an array property of Effect, so the syntax is slightly different.

However, usage is similar.

113

protected override woid Draw{GameTime gameTime)

{

GraphicsDewvice.Clear (Color.PaleGreen) ;

effect. World = Matrix. CreateRotationT((float)ganeTime. TotalGaneTime. TotalSeconds) ;
effect. View = Matrix.Createlookdt (new Vector3(0, 5, 5,
new Vector3d(0, 0, 0),
new Vector3 (O, 1, 00);
effect.Projection = Matrix.CreatePerspectiveField0fView (3. 1415926f/4, //MathHelper. PiOwverd,
(float) graphics. PreferredBackBufferWidth / (float)graphica. PreferredBackBufferHeight,
1.0f, 1000.0f);

Matrix mvp = effect.World # effect. View # effect.Projection:

effect. 4pply () ;

effect. SetParameters ("mwpMatrizx”, mwp)

effect. SetParameters ("worldMatriz”, effect.World);
effect. SetParameters ("texturelnitl”, tex):

GraphicsDewice. Drawllzer IndexedPrimitives<{VertexPositionNormal Texture? (PrimitiveType. Trianglelist, wertices,
0, 24, indices, 0, 12);

baze. Draw(zameTime) ;

Figure.101 Draw Method for Drawing a Textured Cube with Lighting Effect

As the lighting effect was implemented in this program, the data of the World matrix
had also to be sent to the vertex shader to allow the shader to transform normal vector
into World space to get the correct lighting effect.

Creating a Texture2D Class:

The modified Texture2D class contains a constructor and the LoadTexture method
used in the previous C# program. The constructor takes a GraphicsDevice object and
the file path of the texture as its parameters, and calls the LoadTexture method to load

texture data.

Modifying the Effect Class:
Firstly, the overload method named "SetParameters” as mentioned above, was created
to send uniform data to the uniforms in shaders. The glGetUniformLocation function

was moved from the constructor of Effect to SetParameters.

Secondly, the routine for calculating the transformation matrix was removed from the
Apply method as this should either be done in the Gamel class by the user or be done
in the shader itself. The current Apply method only handles the use of program and

sets some GL states.

114

Figure.102 shows the modified code in Effect class.

public woid Applw ()

{
Conzole. Writeline (“Apply™)

glUzeProgramiprogramdbject) ;// (ctx. r=.pol;

Ff ozet state
z1Enable (GL_DEFTH_TEST) ;
gllhepthFunc (GL_LESS) ;

public woid SetParameters(string attribMame, Matrix matrizx)

{
matrizloc = glGetUniformlocation({programibiject, attribName) ;

gllniformMatrixdfvimatrizloc, 1, GL_FALSE, ref matriz);
!

public woid SetParameters(string attribMame, Texture?D tex)

{
texlnitloc = glGetUniformlocation(programdbject, attribName) ;

SetTexture (tex)

H

public woid SetTexture(Texture?D texture)

{

uint texturelnit = texture.tex[0];

gllniformli (texlmitloz, 0);
glictiveTexture (GL_TEXTUEEND) ;
g1BindTexture (GL_TEXTURE_ZD, texturelnit);

1
Figure.102 Modified Methods in Effect Class for Drawing a Textured Cube with Lighting

Modifying the GraphicsDevice Class:

The only change in GraphicsDevice class was the vertex buffer objects used in
DrawUserIndexedPrimitives method. As in Gamel, a new data structure was used to
declare the vertex data, when calling DrawUserIndexedPrimitives in Draw method,
the generic type of vertices actually used VertexPositionNormalTexture structure.
Therefore, instead of holding vertex color data, the vertex buffer object allocates

buffers for vertex positions, vertex normals and texture coordinates.

115

The type of vertex position and that of vertex normal are both Vector3, which consists
of three floats. The type of texture coordinate is Vector2, which contains only two
floats. Therefore, the number of vertex position elements and that of vertex normal
elements are all 3 (3 floats), the number of texture coordinate elements is only 2. The
extra data between each vertex data address is (3 + 3 + 2) * sizeof(float), and their
offset of the first element are 0, 3 * sizeof(float), and 6 * sizeof(float) respectively.

Figure.103 shows the modified VBOs in DrawUserIndexedPrimitives.

£F Load the wertex data

glBindBuffer (GL_ARRAY BUFFEE, who) ;

glVertexbdttribPointer (attribute v position, 3, GL_FLOAT, GL_FALSE, & * zizeof (float), 0);
glEnableVertexdttriblrray ((uint)attribute_w_pozition)

glVertexittribPointer (attribute v normal, 3, GL_FLOAT, GL_FALSE, 8 # =zizeof(float), 3 # sizeof(float));
glEnableVertexdttriblirray ((uint)attribute_v_normal) :

glVertexidttribPointer (texcoordloc, 2, GL_FLOAT, GL_FALSE, 8 # sizeof (float), 6 #% zizeof(float));
glEnableVertexdttribbrray ((uint)texcoordloc) ;

Figure.103 VBOs for VertexPositionNormal Texture

Modifying the Shaders:

To implement the lighting effect, the shader source code was modified as well. In
vertex shader, the light direction was defined, and a float varying "lightlevel” was
declared to represent the illumination intensity. This is calculated by multiplying the

light direction with the vertex normal, and clamping the result into 0 to 1.

The light level was sent to the fragment shader to be multiplied with the colors, and

the lighting effect was successfully achieved.

Figure.104 and Figure.105 show the not textured cube with lighting effect and the

textured cube with lighting effect respectively.

116

Same.cs

rexPositio Pris

SrmalTextu
re.cs

D AT AN D N #idth / (float)graphics.PreferredaackBufferHeight,
1.0f, 1000.0f);
mvp = effect.world * effect.view * effect.Projection;

~Apply();

-Setparameters(*mvpMatrix®, mvp)
-SetParameters(*worldMatrix®, ef
.SetParameters(*textureUnito®, t

foct.world);
ox);

Graphi cabevice. DrawUser IndexedPrimi tives<Ver texPosi tionNormal Texture>(Primi tiveType. TriangleList, vertices, 0, 24, indices, 0, 12);

base.Oraw(ganeTime) ;

Figure.105 Textured Cube with Lighting Effect

117

At this stage, there are enough modified classes for programming a textured3D object
with lighting effect on Raspberry Pi, and the code in Gamel is quite similar to the
XNA program on Windows. However, there is still a part in the program which

cheats.

When modifying the GraphicsDevice class to draw the textured cube with lighting
effect, we knew that the generic type used in DrawUserIndexedPrimitives for
declaring the vertices would be VertexPositionNormalTexture. So the way of using
VBOs in DrawUserIndexedPrimitives was manually modified and hard coded to

allocate buffers for VertexPositionNormalTexture type vertex data.

However, vertex data may be declared with other data structures, like the sample of
drawing a colored rotating cube with the modified classes. It also calls the
DrawUserIndexedPrimitives method to draw primitives, but its vertex data was of
type VertexPositionColor.

In the Windows XNA library, there is a class named "VertexDeclaration", which
contains an array of VertexElements. VertexElement is a structure that stores the
information for all the possible vertex data items (e.g. offset, format, index etc.).
When calling DrawUserIndexedPrimitives in the Draw method, information about the
vertex data type can be queried from VertexDeclaration. For example, if the vertex
data is declared as VertexPositionColor, one vertex data consists of 3 floats
representing the XYZ value of the position, followed by 4 byte values representing
the color. By querying the VertexDeclaration, the program knows that a vertex
position occupies 12 byte of the buffer, and its offset is 0 byte. Similarly, the buffer
size for a vertex color should be 4 bytes, with a 12 byte offset for the first vertex color
data. When a Windows XNA program is running, this information will be

automatically queried and used to allocate buffers for the vertex data.

A VertexElement structure can be created in this project to store information on vertex
data types. A new class named VertexDeclaration can also be created, holding a
VertexElement array to store the information about different vertex data types in use.

When calling the drawing methods declared in GraphicsDevice, the type of the vertex

118

data could be looked up, and buffers automatically allocated for the vertices. Because
of the time limitation, using VBOs to automatically allocate buffers for the vertex data

is not achieved in this project, and this work is left for the future.

Another difficulty also arises with vertex data structures. In HLSL, the package of
information constituting a vertex is usually referenced as a structure, and each data
item has an associated "semantic" which identifies its role in the shader. For example,
POSITION and NORMAL are HLSL semantics. This makes it possible to map vertex
items to shader attributes automatically. An OpenGL ES shader lacks this detail. To
overcome the problem, we adopted the convention of using standard names for vertex
shader attributes in our final shader programs. This should permit the final step of

automating vertex buffer management.

119

Chapter 5: Conclusion and Future Work

This thesis has shown the possibility of developing XNA like programs directly on the
Raspberry Pi. It described the way of interacting with the graphics system through the
OpenGL ES 2.0 library by creating some sample programs, both in C++ language and
in C# language. It also explained the data structures and algorithms of some of the
XNA classes, the relationships between these classes, and how to combine the
routines of the C# sample programs with the XNA classes to acquire the modified

classes that replace DirectX with the OpenGL ES library.

At the end of this project, users are able to program in quite a similar way to
programming XNA on Windows to draw a textured rotating cube with lighting effects.
Shaders and the texture are loaded from separate files. This result shows that the
modified system is able to create a suitable rendering environment for drawing 2D
and 3D objects with different data structures. It is also capable of implementing
shading effects (e.g. texturing and lighting) and mathematical calculations (e.g

rotation) to the objects.

Therefore, this project clearly shows that it is absolutely possible to write XNA like

programs on Raspberry Pi.

Pi-XNA programs are not identical to Windows XNA programs. However the
differences are small and appropriate to Raspberry Pi development. Pi-XNA programs
use GL shader language. There are differences in the way assets are loaded. But, the
level of detail required of implementers and the level of abstraction of the liabrary
matches that of XNA.

The goal of this project was not to fully rewriting the XNA library. XNA contains a
large number of classes and structures. Rewriting all parts of the XNA library to make
it work with OpenGL ES 2.0 involves a huge amount of work. Because of time
limitations, this project only modified the most important and needful classes and
structures, which declared enough fuctionalities of the system and proved the

possibility of XNA programming on the Raspberry Pi.

120

More work can be done in the future to make the system become a fully featured
library on Raspberry Pi. However, building an entire XNA like system still leaves

much work to do. There are two parts can be firstly done in the near future.

Users have to write their own shaders to implement shading effects with the current
modified classes. Therefore, one work that worth to do is to create a BasicEffect class
that contains built-in shader programs, which allows programmers to use a number of

different effects in the Gamel class without writing any shader programs themselves.

The other work can be done in the future is to keep modifying the GraphicsDevice
class. Compare with the modified classes, the GraphicsDevice in XNA contains more
properties and drawing methods, like the DrawlnstancedPrimitives method, and some
overload declarations of the methods that already existed in current modified
GraphicsDevice class. Fully modifying this class may provide users more flexibility
for their programs. In particular implementing VertexDeclaration and using it to

automatically bind different vertex buffer types would be very useful.

121

Appendix

Setting-up the Raspberry Pi
Raspberry Pi uses an SD card as its ram, so the first thing to do is to write the disk
image of Raspbian on to an SD card (4GB or larger). Raspbian images can be

downloaded from http://www.raspberrypi.org/downloads

For this project the Hard Float version of Raspbian (release dated 26/7/2013) was
used. This version uses the hardware floating point capabilities of the Raspberry Pi

CPU (instead of using floating point emulation software).

Please note that not all kinds of SD cards can be used with Raspberry Pi. The
available and unavailable SD cards can be checked on
http://elinux.org/RPi_SD_cards

Raspbian images can be written into SD cards from a Windows computer by using
software named "Win32diskimager". Instructions for its use can be found on

http://rpi.tnet.com/project/fags/backups/backingup

The first time a Raspberry Pi boots up with Raspbian, the Raspi-config will be
automatically shown to help setting up the configuration of Pi. Later users may type

"raspi-config" ata terminal window to use this configuration tool again.

122

http://www.raspberrypi.org/downloads
http://elinux.org/RPi_SD_cards
http://rpi.tnet.com/project/faqs/backups/backingup

Firstly, the expand_rootfs should be enabled to fully use the SD card's memory space
on Raspberry Pi. The expand_rootfs is disabled by default, and there will be only
approximately 2GB available, no matter how big is the memory space of the SD card.

The screens used with Raspberry Pi may have different resolutions. Disabling the

overscan option allows the screen to be fully used to display images on the Pi.

The next step is to select a layout for the thekeyboard. In the configure_keyboard
option, users may firstly choose the type of the keyboard used, and then a list of
keyboard layouts will be offered.

123

In this project, the English(US) was used as the keyboard layout.

The change_pass option in the main menu handles the modifying of password.

The next step is to set up the region. This will decide the symbols and languages used

on Raspberry Pi.

124

Locales to bhe generated:

de LU.UTF-8 UTF-t
de_LU@euro
du MU UTF

HT UTF

IE
IE.UTF
IEfeuro
IN UTF
s UTF-E
130t
UTF-8 UTF-B

I |
F-8
30-B853-1
F-8 UTF-8
9-1

3-15 150D
F-8

The last step is to set the time zone by the chage_timezone option.

Africa
Antarctica
Australia
Arctic
Asia
Atlantic
Europe
Indian
Pacific
Systeml
us

Etc

<0k <Cancel’

125

Montevideo
Montreal
Montserrat
Nassau
Nipigon
None

—

<0k {Cancel >

At this stage, the set up of Raspberry Pi is complete. Reboot the Pi, and this time users
may login with the modified password.
y IP addres=s iz 192.168.11.22

Debian GHU-Linux wheezyrs=zid raspberrypi ttyl

razpberrypi login:

After logging in, users may type the "startx" command to launch a graphical session,

and the desktop will be displayed.
e

@

126

Installing Mono

To run the code in this project it is necessary to install Mono — the open source
implementation of C#. At the time of writing there was an issue with Mono on the
Raspberry Pi — it had errors in handling hardware floating point. Instead of using the
standard version of Mono therefore, code from an experimental branch of the Mono

project in which the floating point handling had been repaired was used.

cd ~

waget https://www.dropbox.com/s/sask17flot3zqlg/mono_2 11 4 armv6hf_binary.tgz
cd/

sudo tar zxvf ~/mono_2 11 4 armv6hf binary.tgz

sudoldconfig

sudo apt-get install libgdiplus

127

List of EGL and OpenGL ES Functions Used in This Project

EGL Procedures:

GLenumglGetError (void)

EGLDisplayeglGetDisplay (EGLNativeDisplayTypedisplay id)
EGLBooleanegllnitialize (EGLDisplay display, EGLint *majorVersion,
EGLint *minorVersion)

EGLBooleaneglTerminate (EGLDisplay display)

EGLBooleaneglGetConfigs (EGLDisplay display, EGLConfig *configs,
EGLintmaxReturnConfigs,

EGLint *numConfigs)

EGLBooleaneglChooseChofig (EGLDispay display,

constEGLint *attriblList,

EGLConfig *config,

EGLintmaxReturnConfigs,

ELGint *numConfigs)

EGLBooleaneglGetConfigAttrib (EGLDisplay display, EGLConfigconfig,
EGLint attribute, EGLint *value)

EGLSurfaceeglCreateWindowSurface (EGLDisplay display,
EGLConfigconfig,

EGLNatvieWindowType window,

constEGLint *attribList)

EGLBooleaneglDestroySurface (EGLDisplaydisplay, EGLSurface surface)
EGLContexteglCreateContext (EGLDisplay display, EGLConfigconfig,
EGLContextshareContext,

constEGLint* attribList)

EGLBooleaneglDestroyContext (EGLDisplaydisplay, EGLContext context)
EGLBooleaneglmakeCurrent (EGLDisplay display, EGLSurface draw,
EGLSurface read, EGLContext context)

EGLBooleaneglSwapBuffers (EGLDisplaydisplay, EGLSurface surface)

128

OpenGL ES 2.0 Procedures:

voidglClear (GLbitfield mask)

voidglClearColor (GLclampf red, GLclampf green,
GLclampf blue, GLclampf alpha)

voidglViewport (GLint x, GLint y, GLsizei w, GLsizei h)
GLuintglCreateShader (GLenum type)

voidglShaderSource (GLuintshader, GLsizei count,

const char** string,

constGLint* length)

voidglCompileShader (GLuintshader)

voidglGetShaderiv (GLuintshader, GLenumpname,

GLint *params)

voidglGetShaderInfolog (GLuintshader, GLsizeimaxLength,
GLsizei *length, GLchar *infolLog)

voidglDeleteShader (GLuintshader)
GLuintglCreateProgram (void)

voidglAttachShader (GLuint program, GLuintshader)
voidglLinkProgram (GLuint program)

voidglGetProgramiv (GLuint program, GLenumpname,

GLint *params)

voidglDeleteProgram (GLuint program)
GLintglGetAttribLocation (GLuint program,

constGLchar *name)

voidglUseProgram (GLuint program)
voidglVertexAttribPointer (GLuint index, GLint size,
GLenum type,GLboolean normalized,

GLsizei stride,const void *ptr)
voidglEnableVertexAttribArray (GLuint index)
voidglDrawArrays (GLenum mode, GLint first, GLsizei count)
voidglGenBuffers (GLsizei n, GLuint *buffers)
voidglBindBuffer (GLenum target, GLuint buffer)
voidglBufferData (GLenum target, GLsizeiptr size,
const void *data, GLenum usage)
GLintglGetUniformLocation (GLuint program,const char* name)

voidglUniformMatrix4fv (GLint location, GLsizei count,

129

GLboolean transpose,

constGLfloat* wvalue)

voidglEnable (GLenum cap)

voidglDisable (GLenum cap)

voidglDepthFunc (GLenumfunc)
voidglDisableVertexAttribArray (GLuint index)
voidglTexParameteri (GLenum target, GLenumpname,GLintparam)

voidglTexImage2D (GLenum target, GLint level,
GLenuminternalFormat, GLsizei width,
GLsizei height, GLint border,

GLenum format, GLenum type,

const void* pixels)

voidglUniformli (GLint location, GLint x)
voidglActiveTexture (GLenum texture)
voidglBindTexture (GLenum target, GLuint texture)

voidglGenTextures (GLsizei n, GLuint *textures)

130

References

[1].

[2].
[3].
[4].
[5].
[6].
[7]1.
[8].

[9].

[10].
[11].
[12].
[13].
[14]
[15].
[16].
[17]
[18].
[19].

[20].
[21].

http://readwrite.com/2014/01/20/

raspberry-pi-everything-you-need-to-know#awesm=~0tPxAqvcxXxEKveu

http://www.hackthings.com/raspberry-pi-model-a-and-b/
http://en.wikipedia.org/wiki/Atmel
http://en.wikipedia.org/wiki/Microsoft XNA
http://www.mono-project.com
http://en.wikipedia.org/wiki/MonoGame
http://jbbrxg1l.codeplex.com/
http://msdn.microsoft.com/en-us/library/
microsoft.xna.framework.game.initialize.aspx
http://msdn.microsoft.com/en-us/library/
microsoft.xna.framework.game.update.aspx
http://msdn.microsoft.com/en-us/library/
microsoft.xna.framework.game.isfixedtimestep.aspx
http://msdn.microsoft.com/en-us/library/
microsoft.xna.framework.game.targetelapsedtime.aspx
http://msdn.microsoft.com/en-us/library/
microsoft.xna.framework.game.draw.aspx
http://msdn.microsoft.com/en-us/library/
microsoft.xna.framework.graphics.aspx
http://msdn.microsoft.com/en-us/library/
microsoft.xna.framework.graphicsdevicemanager.aspx
http://msdn.microsoft.com/en-us/library/
microsoft.xna.framework.graphics.graphicsdevice.aspx
http://rbwhitaker.wikidot.com/intro-to-shaders
Addison, Wesley (2008) OpenGL ES 2.0 Programming Guide
http://en.wikipedia.org/wiki/EGL_(API)
James Boud (2012) Extending SlimDXna to Use XNA 4 and DirectX 11
http://jbbrxgll.codeplex.com/
http://www.opengl.org/documentation/specs/versionl.1/glspecl.1/
node93.htmI#SECTION00710000000000000000

131

http://www.hackthings.com/raspberry-pi-model-a-and-b/
http://en.wikipedia.org/wiki/Atmel
http://en.wikipedia.org/wiki/MonoGame
http://en.wikipedia.org/wiki/MonoGame
http://jbbrxg11.codeplex.com/
http://rbwhitaker.wikidot.com/intro-to-shaders
http://en.wikipedia.org/wiki/EGL_(API)
http://jbbrxg11.codeplex.com/

[22]. http://docs.oracle.com/javame/config/cldc/opt-pkgs/api/jb/jsr239/javax/
microedition/khronos/egl/EGL10.html

[23]. http://www.opengl.org/wiki/Face_Culling

[24]. http://msdn.microsoft.com/en-us/library/

microsoft.xna.framework.game.run.aspx

132

http://www.opengl.org/wiki/Face_Culling

