

Working Paper Series
ISSN 1177-777X

CONSIDERING REACHABILITY
WHEN COMPARING DATA

REFINEMENTS

Steve Reeves

Working Paper: 12/2008
November 2008

© 2008 Steve Reeves
Department of Computer Science

The University of Waikato
Private Bag 3105

Hamilton, New Zealand

Considering reachability when comparing data
refinements

Steve Reeves

Department of Computer Science, University of Waikato, Hamilton, New Zealand
November 3, 2008 10:44

Abstract. Adding considerations about reachability to theLogics of Specifica-
tion Languages[1] chapter [2].

1 Reachability concerns

We need to think aboutreachability. It seems to me that the counterexample given in
the chapter [2] relies exactly on having a simulation that is not well-defined, in the sense
that it does not “deal” with all reachable states (made clearer soon!).

An ADT may never be able to reach some of its states because there is no sequence
of operations, starting with the initialisation, which allows us to pass to those states.
This also means we have to think of all the operations in an ADT, including the initial-
isation and finalisation operations, since reachability is a property of the whole ADT,
not of single operations within an ADT. So, we’ll assume that an ADTA is given by
< SA, {O

A
i
}i , IA,FA > whereSA are the states that the ADT may be in, theOA

i
are

the operations of the ADT, andIA andFA are its initialisation and finalisation opera-
tions respectively. (And note that, as is usual in these sorts of presentation, we use⋆ to
name the state from the global state spaceSG which the ADT is called from and returns
control to after it has done its work.)

Now consider the three “shapes” of diagrams which have to semi-commute, i.e. the
initialisation and finalisation ones, and the operation ones. These give rise to the usual
conditions, for conformal ADTsA andC and simulationS ,

IC ⊆ IA o
9 S

S o
9 O

C
i
⊆ OA

i
o
9 S

S o
9 FC ⊆ FA

For these to hold there are certain readings to do with reachability.
From the third case, if (tC , ⋆) ∈ FC then there must be atA such that (tA, ⋆) ∈ FA

and (tA, tC) ∈ S . So, if tC is reachable then∃ t ∈ SA • (t , tC) ∈ S .
Other conditions on simulations can be read off these conditions, but we need just

one rule (below) for our purposes in the current enterprise, and the reading here is
enough to give us that. The conditions when read together mean that a simulation must
be defined everywhere onreach(A) and ontoreach(C), i.e. reach(A) ⊆ domS and
reach(C) ⊆ ranS .

Definition 1. For ADT A (taken from [3], p. 80—and see the surrounding discussion
there for consideration of reachability))

reach(A) =def

⋂
{S ⊆ SA | IA(SG) ⊆ S ∧ ∀OA

i • OA
i (S) ⊆ S }

whereOA(X) are the states reachable from a state inX ⊆ SA by (one) use of operation
OA, i.e.

OA(X) =def {s ∈ X | ∃ t • (t , s) ∈ OA}

We then need to add conditions to what counts as a simulation in order to enforce
the property that simulations are well-defined in terms of reachability.

So, we have:

Definition 2. A simulationS ⊆ T1 × T0 is acceptable with respect to ADTC if

∀ t0 ∈ T0⊥ • t0 ∈ reach(C) ⇒ ∃ t1 ∈ T1⊥ • t1 ⋆ t ′0 ∈
➞

S

This definition gives us a new rule that we use in the proof of equivalence (denoted
by ♠ there) later:

Lemma 1. With the usual conditions ony we have:

t0 ∈ reach(C) y ⋆ t ′0 ∈
➞

S ⊢P

P

2 Strict lifting

Definition 3 (Strictly Lifted Forward Simulation).

➞

SP(T1gT ′0)
=df {z1 ⋆ z ′0 ∈ T1⊥ ⋆ T ′0⊥ | (z1 ,⊥⇒ z1 ⋆ z ′0 ∈ S) ∧ (z1 =⊥⇒ z ′0 =⊥

′)}

Various introduction and elimination rules follow from this.

Lemma 2. The following additional rules are derivable for strictly-lifted simulations:

S ⊆
➞

S

(i)
➞

S ⊆
➞

S

(ii)
⊥∈

➞

S

(iii)

t1⋆ ⊥
′∈

➞

S
t1 =⊥

(iv)
t1 ⋆ t ′0 ∈

➞

S t ′0 ,⊥
′

t1 ⋆ t ′0 ∈ S
(v)

@

Lemmas 2(iv − v) embody the strictness captured by definition 3: if the after state is⊥

then the initial state must also be⊥, and if it is not⊥ then the initial state was not either.
WF
-Refinementis a refinement theory, in which both the operations and the simula-
tion are strictly lifted. WF
-refinement was defined in the chapter [2] as follows:

2

Definition 4.

U0

s

⊒wf
 U1 =df

➞

S o
9

U0 ⊆

U1
o
9

➞

S

Various introduction and elimination rules follow from this definition.

Lemma 3. Let z0 andz1 be fresh.

z1 ⋆ z ′0 ∈
➞

S o
9

U0 ⊢ z1 ⋆ z ′0 ∈

U1
o
9

➞

S

U0

s

⊒wf

U1

(⊒+wf

)
U0

s

⊒wf

U1 t1 ⋆ t ′0 ∈

➞

S o
9

U0

t1 ⋆ t ′0 ∈

U1
o
9

➞

S

(⊒−wf

)

@

We also then need to condition the definition of the refinement relation to consider
just those states that are reachable (unreachable ones clearly play no rôle). The follow-
ing definition incorporates reachability into Definition 4 above.

Definition 5. For operationsU0 andU1 from conformal ADTsC (with statesT0) and
A (with statesT1) respectively, and for acceptable simulationS we have:

U0

s

⊒wf

U1 =df ∀ t0 ∈ T0⊥ • t0 ∈ reach(C) ⇒ ∀ t1 ∈ T1⊥ • (t1⋆t

′
0 ∈

➞

S o
9

U0 ⇒ t1⋆t
′
0 ∈

U1
o
9

➞

S)

This definition gives rise to just the original rules in Lemma 3 with the addition
that everything is conditioned on the assumption that we are dealing with reachable
states. In the proofs that follow we will tend not to record this assumption or its use
in order to simplify the presentation since it becomes crucial in only one place right at
the end of our final proof. So, until that point (which is clearly flagged) we will use the
unconditioned rules for simplicity.

We begin by showing that WF⊖-refinement implies SF-refinement by proving that
WF⊖-refinement satisfies both SF-refinement elimination rules. Firstly the rule for pre-
conditions.

Proposition 1. The following rule is derivable:

U0

s

⊒wf

U1 Pre U1 t1 t1 ⋆ t ′0 ∈ S

Pre U0 t0

Proof.

δ....

t1⋆ ⊥
′∈

U1
o
9

➞

S

t1 ⋆ y ′ ∈

U1

(2) y⋆ ⊥′∈
➞

S

(2)

y =⊥
(L. 2(iv))

t1⋆ ⊥
′∈

U1

(=)
Pre U1 t1

t1⋆ ⊥
′∈ U1

(
−0)

false
(L. 4)

false
(2,U−o

9
)

Pre U0 t0
(1,¬ +,¬ −)

3

whereδ is:

U0

s

⊒wf
 U1

t1 ⋆ t ′0 ∈ S

t1 ⋆ t ′0 ∈
➞

S

(L. 2(i))
¬Pre U0 t0

(1)

t1 ⋆ t ′0 ∈ S

t0 ∈ T0

t0 ∈ T0⊥

t0⋆ ⊥
′∈

U0

(L. 5(iv))

t1⋆ ⊥
′∈

➞

S o
9

U0

(U+o
9
)

t1⋆ ⊥
′∈

U1
o
9

➞

S

(⊒−wf

)

@

Turning now to the second elimination rule in SF-refinement.

Proposition 2. The following rule is derivable:

U0

s

⊒wf

U1 Pre U1 t1 t0 ⋆ t ′2 ∈ U0 t1 ⋆ t ′0 ∈ S t1 ⋆ y ′ ∈ U1, y ⋆ t ′2 ∈ S ⊢ P

P

where the usual conditions apply to the eigenvariabley.

Proof.

U0

s

⊒wf
 U1

t1 ⋆ t ′0 ∈ S

t1 ⋆ t ′0 ∈
➞

S

(L. 2(i))
t0 ⋆ t ′2 ∈ U0

t0 ⋆ t ′2 ∈

U0

(L. 5(i))

t1 ⋆ t ′2 ∈
➞

S o
9

U0

(U+o
9
)

t1 ⋆ t ′2 ∈

U1
o
9

➞

S

(⊒−wf
)
δ....
P

P
(1,U−o

9
)

whereδ is:

t1 ⋆ y ′ ∈

U1

(1)
Pre U1 t1

t1 ⋆ y ′ ∈ U1
(
−0)

y ⋆ t ′2 ∈
➞

S

(1)
t1 ⋆ y ′ ∈

U1

(1)
Pre U1 t1

t1 ⋆ y ′ ∈ U1
(
−0)

y ,⊥
(L. 4)

y ⋆ t ′2 ∈ S
(L.2(v))

t1 ⋆ y ′ ∈ U1 ∧ y ⋆ t ′2 ∈ S
(∧+)

....
P

@

Theorem 1.
U0 ⊒wf

U1⇒ U0 ⊒sf U1

4

Proof. This follows immediately, by (⊒+sf), from propositions 1 and 2.@

We now show that SF-refinement satisfies the WF⊖-elimination rule.

Proposition 3. The following rule is derivable:

U0 ⊒sf U1 t1 ⋆ t ′0 ∈
➞

S o
9

U0

t1 ⋆ t ′0 ∈

U1
o
9

➞

S

Proof.

t1 ⋆ t ′0 ∈
➞

S o
9

U0

Pre U1 t1 ∨ ¬ Pre U1 t1
(LEM)

δ0, δ1....

t1 ⋆ t ′0 ∈

U1
o
9

➞

S

t1 ⋆ t ′0 ∈

U1
o
9

➞

S

(2,∨−)

t1 ⋆ t ′0 ∈

U1
o
9

➞

S

(1,U−o
9
)

whereδ0 is:

U0 ⊒sf U1 Pre U1 t1
(2)

β0....
y ⋆ t ′0 ∈ U0

t1 ⋆ y ′ ∈
➞

S

(1) Pre U1 t1
(2)

t1 ,⊥
(L.4)

t1 ⋆ y ′ ∈ S
(L.2(v))

β1....

t1 ⋆ t ′0 ∈

U1
o
9

➞

S

(3,⊒−sf1)

whereβ0 stands for the following branch:

y ⋆ t ′0 ∈

U0

(1) U0 ⊒sf U1 Pre U1 t1
(2)

t1 ⋆ y ′ ∈
➞

S

(1) Pre U1 t1
(2)

t1 ,⊥
(L.4)

t1 ⋆ y ′ ∈ S
(L.2(v))

Pre U0 y
(⊒−sf0)

y ⋆ t ′0 ∈ U0
(
−0)

andβ1 is:

t1 ⋆ w ′ ∈ U1
(3)

t1 ⋆ w ′ ∈

U1

(L.5(i))
w ⋆ t ′0 ∈ S

(3)

w ⋆ t ′0 ∈
➞

S

(L.2(i))

t1 ⋆ t ′0 ∈

U1
o
9

➞

S

(U+o
9
)

δ1 stands for the following branch:

t1 ⋆ y ′ ∈
➞

S

(1)

t1 ∈ T1⊥

t1 =⊥∨ t1 ∈ T1

ǫ0, ǫ1....

t1 ⋆ t ′0 ∈

U1
o
9

➞

S

t1 ⋆ t ′0 ∈

U1
o
9

➞

S

(∗,∨−)

5

ǫ0 stands for the following branch:

t1 =⊥
(∗)

t1 =⊥
(∗)

t1 ⋆ y ′ ∈
➞

S

(1)

y =⊥ y ⋆ t ′0 ∈

U0

(1)

t0 =⊥ ⊥ ⋆ ⊥′∈

U1
o
9

➞

S

⊥ ⋆t ′0 ∈

U1
o
9

➞

S

(=)

t1 ⋆ t ′0 ∈

U1
o
9

➞

S

(=)

ǫ1 stands for the following branch:

t1 ∈ T1
(∗)

¬ Pre U1 t1
(3)

x ⋆ t ′0 ∈
➞

S

(4)

x ∈ T1⊥

t1 ⋆ x ′ ∈

U1

(L.5(v))
x ⋆ t ′0 ∈

➞

S

(4)

t1 ⋆ t ′0 ∈

U1
o
9

➞

S

(U+o
9
)

t1 ⋆ t ′0 ∈

U1
o
9

➞

S

(♠, 4)

@

To get the above step at♠ to work we need the reachability definitons etc.. Note that
this is where the proof before failed, so considering reachability, which we failed to do
in the original paper, has allowed us to show that the two refinementsareequivalent.

Theorem 2.
U0 ⊒sf U1⇒ U0

s

⊒wf

U1

@

Theorems 1 and 2 together establish that the theories of SF-refinement and WF⊖-
refinement are equivalent.

Theorem 3.
U0 ⊒wf

U1 ⇐⇒ U0 ⊒sf U1

@

Comments: I daresay much of this can be used to extend equivalence results for the
other cases. I had hoped that we’d be able to ditch the LEM requirement, but it seems
not!

3 Some machinery

Natural carriersfor each type (sets which exclude⊥) are then easily defined by closing:

Υ =df {z
Υ | z ,⊥}

under the type forming operations. When we are working in this more general frame-
work, we sometimes need the following:

6

Lemma 4.
⊥∈ U
false

Pre U t
t ,⊥

Lemma 5.

U ⊆

U

(i)

U ⊆
•

U

(ii)
⊥∈

U

(iii)

¬ Pre U t t ∈ T in
⊥

t⋆ ⊥′∈

U

(iv)
¬Pre U t0 t0 ∈ T in t ′1 ∈ T out ′

⊥

t0 ⋆ t ′1 ∈

U

(v)

Notice that in (v)t0 ranges over the natural carrier set, rather than the extended carrier.
@

Corollary 1.
t ′ ∈ T out ′

⊥

⊥ ⋆t ′ ∈
•

U

(i)
¬ Pre U t t ∈ T in

⊥

t⋆ ⊥′∈
•

U

(ii)

@

References

1. Bjørner, D., Henson, M., eds.: Logics of Specification Languages. EATCS. Springer (2008)
2. Henson, M.C., Deutsch, M., Reeves, S.: Z logic and its applications. In: Logics of Specifica-

tion Languages. EATCS. Springer (2008) 489–596
3. de Roever, W.P., Engelhardt, K.: Data Refinement: Model oriented proof methods and their

comparison. Number 47 in Cambridge Tracts in Theoretical Computer Science. Cambridge
University Press (1998)

7

