Working Paper Series
ISSN 1170-487X

Computer Concepts without
Computers: A First Course
in Computer Science

by Geoffrey Holmes, Tony C. Smith
and William J. Rogers

Working Paper 97/7
February 1997

© 1997 Geoffrey Holmes, Tony C. Smith and William J. Rogers
Department of Computer Science
The University of Waikato
Private Bag 3105
Hamilton, New Zealand

COMPUTER CONCEPTS WITHOUT COMPUTERS:
A FIRST COURSE IN COMPUTER SCIENCE

Geoffrey Holmes, Tony C. Smith and William J. Rogers
Department of Computer Science, University of Waikato,
Hamilton, New Zealand.
geoff,tcs,w.rogers @cs.waikato.ac.nz

Abstract

While some institutions seek to make CS1 curricula
more enjoyable by incorporating specialised educational
software [1] or by setting more enjoyable programming
assignments [2], we have joined the growing number of
Computer Science departments that seek to improve the
quality of the CSI1 experience by focusing student
attention away from the computer monitor [3, 4].
Sophisticated computing concepts usually reserved for
senior level courses are presented in a popular science
manner, and given equal time alongside the essential
introductory programming material. By exposing
students to a broad range of specific computational
problems we endeavour to make the introductory course
more interesting and enjoyable, and instil in students a
sense of vision for areas they might specialise in as
computing majors.

Introduction

CS1 curricula are often developed from a core requirement
that computing majors must be skilled programmers
before they can undertake the more interesting and
compelling topics of Computer Science in subsequent
courses. This emphasis on the machine as the object of
study serves only to implant the mistaken notion that
“Computer Science is programming’, and that taking up
the subject as a major will inevitably result in years of
staring bleary eyed at a computer screen hacking format
directives over and over until columns of output are
properly aligned.

The challenge for educators in any discipline is to present
topics of interest in a manner that will capture the
imagination of the learners and release the creative
energies that will carry them through their programme of
study, fostering a sense of enjoyment for what may
develop into a lifelong career.

Introductory courses in Computer Science have a great
many conflicting agendas to address. How to introduce
programming to students who have no prior experience;
how to correct for prior experience; how to motivate
students who can program and who have acquired “good
habits”; how to introduce abstraction as a key concept;
how to introduce the subject of Computer Science, its
scope, beauty, genius, and fun. Add to this list the issue
of making the curriculum more inclusive for females, the
religious and sometimes fanatical wars over programming
language, and the need to encourage good written and
oral communication skills and we have a problem as
complex as any encountered in the subject itself.

This situation has not deterred attempts by educators to
find a solution, many of which are adapted to local
conditions [5, 6]. In this paper we present our local
solution which we believe strikes a nice balance among
these conflicting agendas by dividing all lectures,
laboratories and tutorials into two parallel streams: one
dedicated to teaching introductory programming, and the
other to giving students exposure to a broad spectrum of
computing concepts and computational problems.
Sophisticated topics usually reserved for more senior
level courses are presented in a manner that can be
understood by those with little computing experience.
Our hope is that this sneak preview of the subject gives
students a better sense of what Computer Science is
about, and puts them in a better position from which to
make decisions about undertaking a major programme of
study.

Background

At Waikato University, Computer Science majors must
pass two 12 week semester courses in order to qualify for
entry into second year. In this paper we concentrate on
describing the first of these 12 week courses. Students
enter the course with a variety of computing experiences,
with the majority having had no prior computer
programming experience. The objectives of the course
are to introduce students to programming in C++, and to
basic ideas and concepts relating to a wide variety of
topics in Computer Science.

The course has per week: three lectures, two tutorials and
between two and four hours of hands-on programming
practice. The first lecture of the week is on
programming, the second is on a Computer Science
concept and the third is a review lecture in which the
lecturer presents five or six small problems related to the
previous two lectures. The students attempt the
problems in the lecture, and then the lecturer, resisting
the temptation to reveal the answers too soon, carefully
goes through the solutions. In this way students can
assess their progress with the material. The tutorials are
split between programming and concepts.

The course is assessed by a combination of internal
coursework and final examination (50% for each). The
internal coursework is based on “laboratory live”
practical tests, a small programming project,
programming practicals and homework from the concept
tutorials. In order to stress the importance of the work

done in the concept tutorials and at home, we allocate
almost half of the internal assessment to this activity.

The programming side of the course is to all intents and
purposes fairly standard, and so we will only mention it
further where necessary. There is an open question,
however, as to whether it is important to bind the work
on programming with the concepts. We will return to
this question after we have described what we mean by a
concept tutorial.

Concept Tutorials

The course contains ten concept tutorials on a range of
Computer Science topics. The tutorials are dovetailed
into the lecture program, and represent the practical
consequence of the material presented in lectures.
Students attend the tutorial where the practical material is
introduced. They start to tackle the problems here where
they can gain assistance from their tutor. Remaining
work is taken home to complete, and their solutions are
handed in at the next concept tutorial.

The tutorials cover (in order) the representation of
numbers, data security and encryption, text compression,
image coding, error-correcting codes, searching, sorting,
graph problems, resource scheduling and systems
analysis.

The programming material is presented to the students in
small pieces and is drawn together in the final two weeks
of the course alongside a programming project and
material on systems analysis. The idea is to bind the
notion of programming in the large with systems
development. This is why systems analysis is the topic
for the final concept tutorial.

The first five topics cover issues pertaining to
representation, which we consider to be fundamental to
an understanding of what Computer Science is all about
and how programming is achieved on a computer. This
material helps to cement programming ideas that are
being presented in parallel on data types, variables, a
basic data model of a computer and the principles of
abstraction.

The second five topics are more concerned with
algorithms and representing procedures. This material is
presented in conjunction with programming notions such
as control structures, functions, modularisation, arrays,
and systems analysis to try to achieve the same effect.

Inspiration

The material that we have collected together in our
concept tutorials is drawn and adapted from two excellent
sources: A. K. Dewdney’s Turing Omnibus [7] and an,
as yet, unpublished book by Tim Bell, lan Witten and
Mike Fellows called Computer Science Unplugged ...
off-line activities and games for all ages [8]. This latter
work is aimed at presenting important topics in
Computer Science, without using computers, to five to
twelve year-olds. It is essentially a manual for teachers,
presenting lessons on each topic to be conducted in the
classroom.

We have adapted material so that the level of presentation
in Bell et al’s book is raised and the level in Dewdney’s
book is lowered (some topics in the “Omnibus” are at
the appropriate level, but not all). In keeping with the
“Unplugged” book, none of our concept tutorials involve
computers. They are pencil and paper exercises which
attempt to get across the ideas without the “threat” of
programming a solution.

Examples
Example 1: Representation - Data Security

This tutorial begins by explaining the need to preserve
confidential information when it is transmitted down a
communications channel. It addresses the problem of
transmitting text-messages and deals with
encryption/decryption using ciphers and Huffman coding.
The emphasis is on representation and is a good topic to
address at the same time as programming material on
character data types and the binary representation of
characters.

Figure 1: Two-Rotor Enigma Machine

Students are first shown an example of the k-th
substitution' method using 27 letter English (A-Z plus a
space character). A sequence is encoded, using k = 4,
and then decoded. A discussion follows on how this type
of encryption is vulnerable to statistical attacks, after
which students attempt to decode a message using just
such a method.

Avoiding statistical attacks is addressed by introducing a
multi-rotor Enigma? machine.

I k-th substitution, sometimes called the Caesar cipher,
works by encrypting each letter of the message with the k-th
letter after it (modulo the size of the symbol set so that
references beyond the last symbol wrap to the beginning
again).

2 To encrypt a letter using the Enigma machine in Figure 1,
find the letter on the inside rotor and note the letter adjacent
to it on the outside wheel (the backplate), then find that

An exercise is set in which students decode and then
encode a message that we provide using the two-rotor
Enigma machine shown in Figure 1. They do this by
cutting out the rotors from an appendix in their manual
(which has been printed on thick card) and pinning the
three rotors together using a drawing pin (bent over at the
back). Clearly, this is an opportunity in lectures to
discuss the work done during the war by Alan Turing
and his colleagues.

Once the general principles have been established we can
talk about their realisation on a computer. For example,
it is possible to discuss the relative ease with which the
k-th substitution method can be programmed using a
fixed offset of the ASCII values of the characters (this is
possible, of course, because the characters are represented
by binary numbers—the topic of the previous weeks
concept tutorial). In order to make the connection more
concrete, we follow the Enigma machine with an
explanation of Huffman coding.

The advantage of Huffman coding is that it deals with the
bit-level representation of a code in a file. It also presents
yet another representation of characters—a representation
which does not use a fixed number of bits per character.
This is an example of a piece of lateral thinking in
computing which leads to an extremely clever solution to
the encryption problem (the story of how Huffman found
this solution® is again excellent lecture material). This is
precisely the kind of idea that makes Computer Science
an interesting, fun and challenging subject. Further, the
introduction of Huffman coding serves to introduce the
next representation topic: data compression.

Example 2: Algorithms/Procedures
- Graph Problems
The objective of this tutorial is to show students the
connection between representation, algorithms/procedures
that use the underlying representation, and real-world
problem solving.

letter on the second rotor (i.e. the middle wheel) and output
the one adjacent to it on the backplate. After a letter is
encrypted, turn the inside rotor clockwise one step.
Whenever the inside rotor returns to its original orientation,
the second rotor turns in lock-step, just like the odometer in
a car. Such a machine makes unauthorised decryption
difficult by creating a new permutation of character-
substitutions after each letter is encrypted.

3 Legend has it that, as a student, Huffman's professor
invited students to solve a related problem and receive an
automatic A grade for the course or attend lectures and take
the final examination. Huffman chose the former and on the
eve of the exam (after many failed attempts) solved the
problem.

C

Figure 2: Fictitious Airline Network

We begin by explaining the concept of an acyclic
subnetwork and a minimal spanning tree (MST*), and
work through an abstract example showing how to
construct a MST. The construction process is laid out
as an algorithm, and students are encouraged to follow
the steps and to answer questions such as whether there
exists more than one MST for a given network.

From this abstract example we present a fictitious
network depicting domestic air routes between major
cities of New Zealand’s North Island, shown in Figure 2.
The students are then asked to construct a variety of
MSTs for the network, and to decide which would be
preferred if an airline wanted to minimise stop-overs.

The remainder of the tutorial is dedicated to describing
Dijkstra’s shortest path algorithm for the traveling
salesman problem. Again we motivate the algorithm
through the previous real world example and ask the
question: What if a traveller wants to travel on the
cheapest route between two cities?

Before tackling this question on the network of New
Zealand cities, we present a careful step by step solution
to a smaller, more abstract network, using Dijkstra’s
algorithm. Students are then asked to answer the
traveller’s question using the network of New Zealand

4 A minimum spanning tree for a graph is a subset of its
edges where 1) a unique path is maintained for all vertex-
pairs, and 2) the total weight of these edges is the minimum
possible for all subsets satisfying 1).

Tutorial Activities

Representation Base conversion, 2’s

of Numbers complement, binary
addition/subtraction, develop an
algorithm for base conversion

Data Security Decode message using

frequency/context analysis, build
Enigma machine, encode/decode
messages using Huffiman coding
Text Perform Ziv-Lempel coding on
Compression stanza from Dr. Seuss,
decompress “file” by hand
Draw picture on graph paper and
run-length encode it, draw
quadtree for a given picture
(Dewdney’s cat and dish),
compare techniques by encoding
original picture as a quadtree.
Describe errors in EFTPOS
transmission, discuss problems
with single-bit parity checking,
find Hamming code for 5-bit
numbers.

Searching Calculate time taken to search
telephone book, play a guess a
number and determine how long
it takes to find the number.
Sorting Sort packs of cards using
quicksort, radix sort, bubble sort
and selection sort. Compare
times and estimate times for large
numbers of cards.

Graphs Construct a minimal spanning
tree for fictitious network of air
routes around New Zealand, use
Dijkstra’s algorithm to find
shortest path through network.

Image Coding

Error Codes

Resource Calculate cost of packing crates
Scheduling using first-fit, next-fit and best-fit
algorithms.

System Analysis | Perform systems analysis of
wholesale paper warehouse
identifying key components and
processes

Table I: Summary of Concept Tutorials

cities and their new found knowledge of Dijkstra’s
algorithm.

Discussion

Table 1 provides a summary of topics and the activities
that students have to do to complete each of the concept
tutorials.

We use the concept tutorials to present a view of
Computer Science which demonstrates that ideas and
creative solutions rather than programming are the main
focus of the subject.

If we bind these concepts to the programming portion of
the course then we might compromise this distinction,

and therefore lose some of the benefits of working away
from the computer.

We prefer to delay the implementation of many of these
concepts until the practice of programming has become
more established—specifically at the third year level in a
course on the design and analysis of algorithms. Even
s0, the exercises and tutorials from the programming side
of the course are designed to incorporate some specific
component of the concept being studied at the same time.
In fact, for their final programming project students
implement a specification they constructed during an
earlier system analysis tutorial.

We realise that many of the students with prior
experience might “breeze through” the programming
material. It is highly unlikely, however, that they would
have met all of the concepts. This group of students,
more than any other, will need to be persuaded that
Computer Science is not equivalent to computer
programming.

In order to capture the imagination of the students who
“breeze through” the concept material, and to extend
them a little, we conclude each concept tutorial with
some open questions (similar to the way Knuth uses
starred exercises in his books [9]).

Conclusion

The material presented in this paper is being trialed for
the first time in 1996. By the time of the conference in
July we will have 300 student opinions to report. Ahead
of this data, we believe that this approach to teaching
Computer Science has great merit.

Firstly, it is exciting material to present to the students.
Some of the material may well be the reason why the
lecturer for the course studied Computer Science, and
therefore, their enthusiasm for the subject should come
across.

Secondly, elegant and neat solutions together with the
ugly and brute-force can co-exist and be discussed
without the burden of discussing the relative merits of
ease of implementation, and without concern for the wide
variation in programming ability, which must play some
role in discouraging less experienced students from
continuing in Computer Science.

Finally, the material is very flexible and adaptable to
local conditions. We have a tutorial on text compression
because state-of-the-art algorithms to perform this task
have been the outcome of research at Waikato University
[10]. This shows students that research in the subject is
ongoing and achievable in a university thousands of
miles from the main centres of Computer Science in
North America and Europe.

References

[1] Connelly, Christopher and Biermann, Alan W.
(1996) “Home-Study Software: Flexible,
Interactive, and Distributed Software for
Independent Study”. In The Proceedings of the
27th SIGCSE Technical Symposium on Computer
Science Education, pp 63-67, Philadelphia.

(2]

3]

(4]

[5]

[6]

(7]
(8]

9]
[10]

Feldman, Todd J. and Zelenski, Julie D. (1996)
“The Quest for Excellence in Designing Csl1/Cs2
Assignments”. In The Proceedings of the 27th
SIGCSE Technical Symposium on Computer
Science Education, pp 319-323, Philadelphia.
Reek, Margaret M. (1995) “A Top-Down
Approach to Teaching Programming”. SIGSCE
Bulletin, 27(1) pp 6-9.

Scragg, Greg and Baldwin, Doug and Koomen,
Hans (1994) “Computer Science Needs an Insight-
Based Curriculum”. SIGSCE Bulletin, 26(1) pp
150-154.

Paxton, John T. and Ross, Rockford J. and
Starkey, J. Denbigh (1994) “A Methodology for
Teaching an Integrated Computer Science
Curriculum”. SIGSCE Bulletin, 26(1) pp 1-5.
Barrett, Martin L. (1996) “Emphasising Design in
CS1”. In The Proceedings of the 27th SIGCSE
Technical Symposium on Computer Science
Education, pp 315-318, Philadelphia.

Dewdney, A. K. (1993) The (new) Turing
Omnibus. Computer Science Press. New York.
Bell, T. and Witten, I. H. and Fellows, M. (draft)
“Computer Science Unplugged ... off-line
activities and games for all ages”.

Knuth, D. E. (1973) The art of computer
programming, 2nd edition. Addison-Wesley.
Cleary, John G., Teahan, W. J. and Witten, Ian
H. (1995) Unbounded context lengths for PPM.
In Storer, J. A. and M. Cohn (eds). Data
Compression conference proceedings. pp 52-61,
Utah.

