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Abstract. Autoencoders learn data representations through reconstruc-
tion. Robust training is the key factor affecting the quality of the learned
representations and, consequently, the accuracy of the application that
use them. Previous works suggested methods for deciding the optimal au-
toencoder configuration which allows for robust training. Nevertheless,
improving the accuracy of a trained autoencoder has got limited, if no,
attention. We propose a new approach that improves the accuracy of a
trained autoencoder’s results and answers the following question, Given
a trained autoencoder, a test image, and using a real-parameter opti-
mizer, can we generate better quality reconstructed image version than
the one generated by the autoencoder?. Our proposed approach combines
both the decoder part of a trained Resitricted Boltman Machine-based
autoencoder with the Competitive Swarm Optimization algorithm. Ex-
periments show that it is possible to reconstruct images using trained de-
coder from randomly initialized representations. Results also show that
our approach reconstructed better quality images than the autoencoder
in most of the test cases. Indicating that, we can use the approach for
improving the performance of a pre-trained autoencoder if it does not
give satisfactory results.
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1 Introduction

Autoencoders are powerful Neural Network (NN) models that learn representa-
tions of data with multiple levels of abstraction. Based on the application and
the objective measure, the abstract representations are described as “good” if
they are useful for addressing tasks of interest [22]. Examples of these tasks are
speech recognition, visual object recognition, image reconstruction and classifi-
cation.

Learning good discriminative representations using NN-based approaches is
very challenging and requires robust training. Factors affecting the training can
be related to the network’s configuration, the number of training examples [4]
and the lack of proper data preprocessing (engineering) [3]. However, deciding the
optimal network configuration is still determined by trail-and-error techniques
i.e. by searching through a vast space of possible hypermeter combinations.
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Lots of works have been done so far to improve the NNs’, including the
autoencoders, accuracy. Most of these works concentrated on the networks’ pre-
training (data engineering) and training phases; so new network models were
suggested/improved and a few parameter selection methods and principles were
suggested [7, 23]. This paper, in contrast, presents a novel approach that im-
proves the accuracy of a pre-trained autoencoder results and answers the fol-
lowing main questions.Without anymore training, is it possible to motivate a
pre-trained autoencoder to detect more features?. Given a pre-trained autoen-
coder, a test image, and using a real-parameter optimizer, can we generate better
quality reconstructed version than the autoencoder’s one?

The approach introduced in this paper generates good reconstructed version
for given test images using optimized representations. We are applying our ap-
proach using a Restricted Boltzmann Machine (RBM)-based autoencoder and
the Competitive Swarm Optimization (CSO) algorithm. Only the decoder part
of the trained autoencoder is used in conjunction with the (CSO) algorithm to
generate optimized representations that produce good reconstructed versions for
the target test images.

Our experiments show that it is possible to reconstruct interesting images
using the CSO’s particle’s which are used as inputs to the pre-trained decoder.
Moreover, our evaluations proved the efficiency of the proposed approach in
generating good quality reconstructed versions and allowed the decoder to detect
some fine details.

The rest of the paper is organized as follows. In the next section, we cover
background about the image representations and briefly present some related
works. In the section after that, we describe our proposed new approach. Next,
we outline our evaluations. The last two sections conclude our work and present
the limitations.

2 Technical Background

2.1 Images Representations and Reconstruction

Images can be generally described using color, shape and texture properties
which are extracted using different techniques such as Bag of Words (BoW) [5],
Fisher Kernel (FK) [16] and Vector Of Locally Aggregated Descriptors (VLAD)
[10]. NN’s representations are other type of representations that can be ex-
tracted, after training, by activating a certain layer or a set of layers and concate-
nating [2, 20] or pooling the results [1]. Such representations are useful for image
classification [14],visual object recognition [15], retrieval [17] and reconstruction
[11].

Images representation and reconstruction are highly related in the NN world.
Dosovitskiyet al,[8], for examples, used a deconvolutional-based approach to re-
construct images from representations learned by a pre-trained deep Convolu-
tional Neural Network (CNN) autoencoders and proved their efficiency in learn-
ing deep images representations. Other autoencoder-based techniques such as
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RBM-based autoencoders [11], discussed in the following subsection, and Stacked
Denosing Autoencoders [22] were also introduced to extract robust low dimen-
sional images representations through reconstruction and to reconstruct test
images from low dimensional representations.

Generating good image representations that give satisfactory results is still
a challenge as it is highly dependent on the robustness of the training process
[7]. Neural networks are blackbox predictive tools and designing them require
extensive knowledge engineering and careful parameter and configuration de-
cisions [23]. Walczak and Cerpa [23] suggested a set of heuristic principles for
designing networks with optimal output performance. Most recently, Ciancio et
al, [7] suggested four different heuristic approaches to increase the generalization
abilities of a neural network. These methods are based, respectively, on the use
of genetic algorithms, Taguchi, tabu search and decision trees. The parameters
taken into account are the training algorithm, the number of hidden layers, the
number of neurons and the activation function of each hidden layer.

2.2 RBM-based Autoencoder

RBM-based autoencoders were first introduced by Hinton and Ruslan [11] as a
non-linear generalization of Principal Component Analysis (PCA). The network
consists of an “encoder” part which transforms the high-dimensional input data
into a low-dimensional representation (the code), and a “decoder” part which
recovers the data (image) from the code.

The autoencoder consists of two-layer RBM network which has stochastic vis-
ible and hidden binary units arranged in sublayers using symmetrically weighted
connections (weights), Figure 1 depicts an illustration of this.

Fig. 1: RBM autoencoder

The joint configuration of the visible and hidden units has an energy given
by

E(v, h) = −
∑

i∈pixels
bivi −

∑

j∈features
bjhj −

∑

i,j

vihjwij (1)

where vi and hj are the binary states of (visible) pixel i and (hidden) feature
j respectively; bi and bj are their biases; and wij is the weight between them.
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Starting with random weights, the state of hidden node hj is set to be 1 with
a probability defined as :

p(hj = 1|v) = σ(bj +
∑

i

viwij) (2)

where σ(x) is the logistic function 1/[1 + exp(−x)].
Once the binary states have been chosen for the hidden nodes, the network

sets the visible states by:

p(vi = 1|h) = σ(bi +
∑

j

hjwij) (3)

where bi is the bias of i.
The states of the hidden nodes are then updated once more so that they rep-

resent features of the confabulation. The network tries iteratively to minimize
the discrepancy between the input and output data using an optimization al-
gorithm such as gradient descent and propagating the error derivatives through
the decoder and then through the encoder networks to fine-tune the weights for
optimal reconstruction.

To use the RBM with real-valued images, Ruslan and Hinton [19] suggested
pre-training the network to replace the binary states by stochastic activities.
After pretraining, the model unfolds to produce encoder and decoder networks
and fine-tunes the weights to replace the stochastic activities by deterministic,
real-valued probabilities. Backpropagation is also used through the whole au-
toencoder to fine-tune the weights for optimal reconstruction.

2.3 Competitive Swarm Optimization (CSO)

CSO [6] is fundamentally inspired by Particle Swarm Optimization (PSO) al-
gorithm [12], which is a conceptually simple optimization algorithm that has
attracted considerable research interests so far [21, 13]. PSO defines a swarm of
n particles, each of which has a position and velocity flying in an m-dimensional
search space. Each particle evaluates the objective function at its current posi-
tion and iteratively updates its velocity and position according to the particle’s
best position, personal best, and the entire swarm global best position found
so far. CSO was suggested to overcome the PSO’s poor performance in solving
high-dimensional problems and problems with large number of local optima.

In CSO, the swarm’s n particles are randomly allocated into n
2 couples and a

competition occurs between the two particles in each couple. Only the ones with
the better fitness, the winners, are passed to the next generation (iteration),
indexed as t + 1, of the swarm. Each loser particle updates its position and
velocity by learning from its winning competitor, and the updated loser is passed
to generation t+ 1 after that. Hence, the total number of comparisons occur per

generation is
n

2
and only the velocity and speed for

n

2
particles are updated per

generation. A modified pseudocode of the CSO (with modifications explained in
the next section) is given by Algorithm 1.
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3 Using The CSO For Enhancing The Autoencoders’
Images

Our main goal is to introduce a novel approach that improves the accuracy
of previously trained autoencoder results. The idea of the approach is to use
the decoder part of a pre-trained autoencoder and a real-parameter optimizer
to reconstruct given test images. To apply the approach, we trained an RBM-
based autoencoder and used its decoder with the CSO optimizer. The following
subsections presents the methodology and Figure 2 depicts it.

3.1 Training The RBM-based Autoencoder

To train an RBM-based autoencoder according to [11], the network has to be
configured by setting the number of input and output layers’ nodes equal to the
number of pixels in the training images. Weights and biases are initialized and
the network starts learning by feeding the training images through all of its lay-
ers to generate output images (reconstructed images) . The discrepancy between
the input training image batches and their reconstructed versions are calculated
and error derivatives are propagated through the decoder and the encoder parts
to fine-tune the weights and biases. After a finite number of iterations, the au-
toencoder will learn the images’ features, and its encoder part will be ready to
generate low dimensional representations for test images that are fed through
its input layer. These representations can be used as inputs to the decoder part
to reconstruct the input test images or used for other applications.

3.2 Image Reconstruction Using Trained RBM-decoder and CSO

The second step of the approach represents our main contribution in recon-
structing an image using a pre-trained decoder with the CSO algorithm. We will
refer to our method as decoder+CSO(m) to indicate the length m of the used
representational vector (Algorithm 1).

Contrary to studies that discard the decoder part and use the network’s up-
per part as a fast image dimensionality reduction method, our novel approach
only uses the decoder part of the trained autoencoder and discards the en-
coder. To generate a reconstructed version I ′ for test image I (Equation 4 ), we
feed a swarm P (t) of n randomly initialized low dimensional vectors (X1, .., Xn)
through the trained decoder’s layers to get a set of output images I ′n at its
output layer as depicted by Figure 2 step 2. Note that each particle Xn is an
m-dimensional vector and m equals to the number of nodes in the decoder’s first
layer i.e. the autoencoder’s bottleneck layer.

I ′ = Decoder(X) (4)

The Euclidean norm (given by equation 5) between each output image I ′1..n
and the target test image I is computed to identify the fittest individuals.

F (X) = ||(I − I ′)||2 (5)
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Fig. 2: RBM-based autoencoder training and image reconstruction using pre-
trained decoder+CSO (m). See Algorithm 1 for better understanding

Where I ′ is the result of decoding representation X.
Particles are randomly allocated into n

2 couples and the position and velocity
of the individuals losing each competition are updated according to their winning
partner’s existing velocity and the swarm’s mean velocity as shown in equations
6 & 7) and cited in [6].

Vl,k(t+ 1) = R1(k, t)Vl,k(t) +R2(k, t)(Xw,k(t)−Xl,k(t)) + (6)

ϕR3(k, t)(X̄k(t)−Xl,k(t))

Xl,k(t+ 1) = Xl,k(t) + Vl,k(t+ 1). (7)

where Xw,k, Xl,k,Vw,k and Vl,k are the position and velocity of the winner and
the loser of generation t respectively, K ∈ [1, n2 ] and R1(k, t), R2(k, t), R3(k, t) ∈
[0,1]n are three randomly generated vectors after the k-th round of competition
and learning process in generation t, X̄k(t) is the mean position value of the
relevant particles and ϕ is a parameter that controls the influence of X̄k (t).

The process of feeding the particles through the decoder part, calculating
the fitness function and updating each particle’s positions and velocities are
continued for a set of iterations to find the best reconstructed version I ′ for I.
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Algorithm 1: Image Reconstruction using pre-trained decoder+CSO (m)

1 t = 0;
2 count = 0;
3 I =target test image ;
4 Decoder(X), the decoder part of a pre-trained autoencoder;
5 P (t) = X1, X2, .., Xn randomly initialized m-dimensional particles;
6 while terminal condition is not satisfied do
7 feed each element of P (t) through the trained decoder to generate

I ′1, I
′
2, .., I

′
n using X1, X2, .., Xn according to Equation 4;

8 calculate F (X) between I and I ′1, I
′
2..I

′
n using Equation 5;

9 U = P (t), O(t + 1) = Ø;
10 while U 6= Ø do
11 randomly remove two particles Xrand1(t), Xrand2(t) from U;
12 if F (Xrand1(t)) ≤ F (Xrand2(t)) then
13 Xw(t) = Xrand1(t), Xl(t) = Xrand2(t);
14 else
15 Xw(t) = Xrand2(t), Xl(t) = Xrand1(t);
16 end
17 add Xw(t) into P (t + 1);
18 update Xl(t) using (5) and (6);
19 add the updated Xl(t + 1) to P (t + 1);

20 end
21 t = t + 1;

22 end

Experimental Study

An open-source java-based deep learning library called DeepLearning4j (DL4j)
(version 0.7.0) with the MNIST and the OlivettiFaces [18] datasets were used to
implement the approach and to perform a set of experiments.

As can be observed by Table 1, the MNIST dataset consists of 60,000 (28×
28) training images for all (0-9) digits. The OlivettiFaces dataset contains ten
(64 × 64) images for each of forty different people. We constructed a training
dataset by rotating (-90 to 270) and subsampling images of 30 people to get
10800 (22×22) images (i.e. 30 people×10 images per person×36 rotations). The
500 OlivettiFaces test images were created in the same way using 10 images of
different people. All training and testing images of both datasets were normalized
using min-max normalizer to get values in [0-1] range.

To test the efficiency of the proposed approach, we compared the accuracy of
the images reconstructed by the decoder+CSO(m) (optimized) representations
with the ones reconstructed by the encoder’s (non-optimized) representations.
The trained encoder part of the RBM-based autoencoder was used to generate a
low dimensional representation. This representation is fed through the decoder
part to generate a reconstructed version of the input test image. Hereafter, we
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Dataset Dimension
# Training
Examples

# Testing
Examples

Model
Architecture

MNIST 28× 28 60,000 500 784-30-784

MNIST 28× 28 60,000 500 784-250-784

MNIST 28× 28 60,000 500
7841000-500-256-30
-256-500-1000-784

OlivettiFaces 22× 22
10,800 (30

people)
500 (14
people)

484-30-484

OlivettiFaces 22× 22
10,800 (30

people)
500 (14
people)

484-300-484

Table 1: Description of the datasets and network architectures used.

will denote this method by autoencoder(m) to indicate the length m of the used
representational vector.

In all test cases, we set the number of input and output layer’s nodes equals to
the training images’ size. All the network’s nodes were initialized using DL4j’s
default XAVEIR initialization method where weights are drawn uniformly in
the range [ −2√

Inl+Outl
, 2√

Inl+Outl
] such that “ Inl” and “Outl” are the number

of nodes sending input to and receiving output from the layer (l) to be initial-
ized (see [9]). The network was activated by the sigmoid function, and back
propagated using the Gradient Descent Optimization algorithm (GDS).

Every trained decoder was used to reconstruct 500 test images using the
CSO’s particles. The swarm size was set to 100 randomly initialized [0-1] indi-
viduals and the algorithm was run for 100 iterations, which was good enough to
evolve interesting results. We also performed experiments using a smaller swarm
size (500) and more generations (200), but results were qualitatively very sim-
ilar to the ones obtained using 100 particles and 100 iterations, so we are only
presenting the results of this one.

3.3 Experimental Results and Evaluation

Five experiments, three trained on MNIST dataset and the other two on the
OlivettiFaces dataset, were performed using different network models. The aim
was to test the accuracy of the proposed approach in reconstructing images from
different datasets and using different configurations.

Figures 3-7 depict a set of box-and-whisker plots showing the distribution
of the error between target original images and reconstructed versions resulting
from pre-trained autoencoder(m) and decoder+CSO(m). Comparing the perfor-
mance of the two methods indicates that the trained decoder+CSO(m) recon-
structed better quality images with remarkably less reconstruction error than the
trained encoder(m) in most test cases. The decoder+CSO(m) clearly achieved
superior results with lowest overall and median reconstruction errors when us-
ing three-layered network models for both MNIST datasets (Figures 3-4) and
OlivettiFaces dataset (Figure 5-6).
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Fig. 3: Comparing the perfor-
mance of autoencoder(30) v.s.
decoder+CSO(30) representations in
reconstructing MNIST test images.

Fig. 4: Comparing the perfor-
mance of autoencoder(250) v.s.
decoder+CSO(250) representations in
reconstructing MNIST test images.

Fig. 5: Comparing the perfor-
mance of autoencoder(30) v.s.
decoder+CSO(30) representations
in reconstructing OlivittiFaces test
images.

Fig. 6: Comparing the perfor-
mance of autoencoder(300) v.s.
decoder+CSO(300) representations
in reconstructing OlivittiFaces test
images.

We were also interested in testing our approach using multi layer networks.
For fast training, we chose a Multi Layer Percptron (MLP) network configured
using nine layers with the following sizes 784-1000-500-256-30-256-500-1000-784.
As shown by Figure 7, Optimization added only slight little improvement to the
reconstructed images compared to the accuracy of the multi layer autoencoder
images.
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Fig. 7: Comparing the performance of multi layer autoencoder(30) v.s. Multi
layer decoder+CSO(30) representations in reconstructing MNIST test images.

Qualitative Comparison

Finally we performed qualitative comparisons between all related test cases. As
shown by Figures 8-17, the decoder+CSO(m) method reconstructed better qual-
ity, less blurry and distorted, MNIST images compared to the autoencoder(m).
However, best results obtained, from both methods, when the length of the rep-
resentational vector was 250.

Experiments on the OlivettiFaces dataset show that the autoencoder(m)
method, trained using our parameter settings, was able to efficiently learn the
orientation of faces but not their fine details (see Figures 12-15). However, using
the optimizer helped in revealing more of the face details.

Results generally indicated that using the CSO real-parameter optimizer en-
abled the pre-trained network to detect (filter) more of the test images features.
Indicating that, the general CSO randomly initialized population was able to
activate some of the network’s feature detectors better than the encoder’s rep-
resentations.

Fig. 8: reconstruction of MNIST using
decoder+CSO(250) representations.

Fig. 9: reconstruction of MNIST using
autoencoder(250) representations.
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Fig. 10: reconstruction of MNIST us-
ing decoder+CSO(30) representations.

Fig. 11: reconstruction of MNIST us-
ing autoencoder(30) representations.

Fig. 12: reconstruction of OlivittiFaces
using decoder+CSO(30) representa-
tions.

Fig. 13: reconstruction of Olivitti-
Faces using autoencoder(30) represen-
tations.

Conclusion

To conclude, this paper has described a novel approach for improving the perfor-
mance of previously trained autoencoders. The approach was applied by combin-
ing a pre-trained RBM-based decoder with the CSO algorithm and was used to
reconstruct a set of test images. Experiments have shown that the suggested ap-
proach is able to reconstruct images using randomly initialized representations.
The optimization helped in producing sharper images and detecting finer details
so it helped in improving the accuracy of pre-trained autoencoder results.

The approach can be applied using other types of autoencoders and/or real-
parameter optimizers especially when no satisfactory results obtained from the
trained network. In future, we will use the optimized representations in real
world biomedical applications.
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Fig. 14: reconstruction of OlivittiFaces
using decoder+CSO(300) representa-
tions.

Fig. 15: reconstruction of OlivittiFaces
using autoencoder(300) representa-
tions.

Fig. 16: reconstruction of MNIST us-
ing Multi layer decoder+CSO(30) rep-
resentations.

Fig. 17: reconstruction of MNIST us-
ing Multi layere autoencoder(30) rep-
resentations.

4 Limitations

Our approach is proposed to improve the accuracy of pre-trained autoencoders
results. Reasons affecting the networks performance can be related to the net-
works’ learning parameters settings and configuration which are determined by
trials-and-errors. Using the approach with robustly trained or un-trained net-
works will add no improvement to the results. The approach is helpful when
the network’s neurons are able to detect most of the images features but more
accuracy is required. In this case, the optimizer, with its random population,
could extract more information from the pre-trained network and increase its
ability in detecting fine details and improving the images.
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