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Abstract. Deep neural networks produce state-of-the-art results when
trained on a large number of labeled examples but tend to overfit when
small amounts of labeled examples are used for training. Creating a large
number of labeled examples requires considerable resources, time, and ef-
fort. If labeling new data is not feasible, so-called semi-supervised learn-
ing can achieve better generalisation than purely supervised learning by
employing unlabeled instances as well as labeled ones. The work pre-
sented in this paper is motivated by the observation that transfer learn-
ing provides the opportunity to potentially further improve performance
by exploiting models pretrained on a similar domain. More specifically,
we explore the use of transfer learning when performing semi-supervised
learning using self-learning. The main contribution is an empirical evalu-
ation of transfer learning using different combinations of similarity metric
learning methods and label propagation algorithms in semi-supervised
learning. We find that transfer learning always substantially improves
the model’s accuracy when few labeled examples are available, regard-
less of the type of loss used for training the neural network. This finding is
obtained by performing extensive experiments on the SVHN, CIFAR10,
and Plant Village image classification datasets and applying pretrained
weights from Imagenet for transfer learning.

Keywords: Semi-supervised learning, Transfer learning, Self-learning,
Triplet loss, Contrastive loss, Arcface loss.

1 Introduction

Neural networks are frequently used for image classification tasks and yield state-
of-the-art results in this application. However, for training, these models gener-
ally need a lot of labeled samples, and they tend to overfit on small amounts of
labeled data. This problem is of particular importance when limited labeled sam-
ples are available due to time or financial constraints. Addressing this problem
requires machine learning methods that are able to work with a limited amount
of labeled data and also make efficient use of the side information available from
unlabeled data.

Semi-supervised learning (SSL) aims to improve performance by exploit-
ing both labeled and unlabeled examples. Given an input space X containing
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the examples, SSL methods are designed to work with labeled examples L =
{(x1, y1), (x2, y2), ..., (x|L|, y|L|)} and unlabeled examples U = {x′

1, x
′

2, ..., x
′

|U |},
where xi, x

′

j ∈ X with i = 1, 2, ..., |L| and j = 1, 2, ..., |U | and yi are the labels
of xi, with yi ∈ {1, 2, 3, ..., c} (c being the number of classes).

A few assumptions are required to make semi-supervised learning a principled
approach [3]:

1. If two instances x1, x2 are close in a high-density region, then their corre-
sponding outputs y1, y2 should also be close.

2. If instances are in the same structure (referred to as a cluster or manifold),
they are likely to be of the same class.

3. The decision boundary between classes should lie in a low-density region of
the input space.

Almost all standard neural networks for image classification are trained by
minimising cross-entropy loss on labeled training data. In this paper, along with
cross-entropy loss, we also consider another class of losses, comprising so-called
similarity metric learning losses, which operate on the relationships between
samples such that instances of the same class are considered similar and those
belonging to different classes are considered dissimilar. Once a similarity function
has been trained, which is parameterised by a neural network, feature vectors
(embeddings) of examples produced by the network will be grouped together
according to class labels, normally in Euclidean space. These learned embed-
dings lend themselves naturally to semi-supervised learning because they can be
employed to assign class labels to unlabeled examples using very simple classifi-
cation methods such as nearest-neighbor classifiers.

This approach is related to work on pseudo-labeling [10,16], where the model
is initially trained on limited data. However, in this paper, instead of applying
random initialisation of network parameters when training starts, we investi-
gate using pretrained weights from another domain and show that this provides
much better generalisation ability. Using pretrained model weights is a stan-
dard approach for transfer learning in supervised settings, but appears to have
received little attention in the context of semi-supervised learning, particularly
when applying self-learning with metric learning.

We use a pretrained neural network model trained on Imagenet [17]. A
schematic overview of the proposed approach is shown in Figure 1. Fine-tuning
on data from the target domain is performed on the (very small) initial set of
labeled examples. Following that, confident predictions for unlabeled examples
are added to labeled examples for iterative retraining of the neural network—this
is the standard self-learning method for semi-supervised learning. It enables us
to obtain more labeled training data and the assumption is that this eventually
helps in achieving significant performance improvements. In our experiments on
image classification tasks, we compare using pretrained weights for the neural
network to random initialisation of the weights.

The main contribution of this work is an extensive empirical investigation of
transfer learning in the context of self-learning. Using cross-entropy loss as well
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Fig. 1: Overview of the approach.

as combinations of similarity metric learning losses (e.g., triplet loss, contrastive
loss, and Arcface loss) with simple nearest-neighbor-based label propagation,
we find that transfer learning always substantially improves the classification
accuracy of the model when few labeled examples are available, regardless of
which loss function is used for training the neural network. More specifically,
for semi-supervised learning using self-learning on the SVHN, CIFAR10, and
Plant Village image classification datasets, we obtain a substantial improvement
using pretrained weights when few labeled examples are available for training.
Thus, our results indicate that the well-established method of performing trans-
fer learning by re-using pretrained weights—commonly applied when performing
a purely supervised training of a neural network—is particularly useful in the
context of semi-supervised learning.

2 Related Work

In this section, we briefly discuss some existing work on semi-supervised learning
and transfer learning.
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2.1 Semi-supervised Learning

Semi-supervised Learning (SSL) lies between supervised and unsupervised learn-
ing. SSL tries to employ labeled examples as well as unlabeled examples for more
accurate prediction. There are many different techniques available from the lit-
erature on SSL using deep neural networks. Some employ autoencoders [12,15],
others use generative models [5,23,20] or are based on regularization ideas [14,19].
In pseudo-labeling [10], the model is trained on the limited labeled data first and
then re-trained on an extended set of labeled data, based on the predictions of
the original model for the unlabelled training data.

Our method builds on work investigating transferring learning using both
cross-entropy loss and similarity-based metric learning with neural networks.
Pair and triplet based loss functions provide the foundation for standard ap-
proaches to metric learning. A classic pair-based method is to use contrastive
loss [4], which tries to bring similar pairs closer and push farther away dissimilar
pairs. Pairs can be extended to triplets. They consist of an anchor, a positive,
and a negative example, where the anchor is more similar to the positive exam-
ple than the negative one. The resulting triplet loss function [21] was originally
used on triplets of images for face verification. Metric learning-based loss func-
tions [24] have also been successfully employed for image classification.

Another related class of metric learning methods are based on modified classi-
fication losses. Examples include Arcface [6], Sphereface [11] and Cosface [22]. For
metric learning, Arcface, Sphereface, and Cosface apply multiplicative-angular,
additive-cosine, and additive-angular margins, respectively.

2.2 Transfer Learning

Since the successful Imagenet challenge [17], transfer learning has been used
widely in visual recognition tasks such as object detection [7]. Transfer learning
uses the network weights learned by training on the large and labeled Imagenet
dataset and fine-tunes the weights for the respective target domain. When the
target domain is sufficiently closely related to the source domain of Imagenet,
then transfer learning usually generalizes much better than training from scratch
on the smaller target domain alone.

3 Semi-supervised Learning using Self-learning

The semi-supervised learning approach we apply is based on self-learning. The
model is initially trained using a limited number of labeled examples. Then
confident predictions for unlabelled examples are added to the set of labeled
examples for retraining of the model. Generally, multiple iterations of labelling
and retraining are performed. One important hyper-parameter is the selection
percentage p, which specifies how many of the most confident predictions are
added to the training set after each iteration. We use a small value of p in
our experiments to select the most confident predictions only. Generating many
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more labeled data points in this fashion allows for deep neural networks to be
trained to their full capacity, and generally results in significant performance
improvements. For more details on this approach see, for instance, our previous
work in [18].

In this paper, for network weight initialisation, we transfer pretrained weights
from Imagenet classification and fine-tune on the target domain. We compare
the performance achieved by this weight transfer to the performance of training
using a fully random initialisation of the weights of the neural network.

The proposed approach is very general, suggesting that a spectrum of loss
functions and label propagation algorithms can all work well in this framework.
We use the most widely used classification loss, i.e., softmax cross-entropy, as
a first option. In addition, we explore loss functions based on similarity metric
learning. The embeddings produced by the neural network after training with a
similarity function can be employed to assign class labels to unlabeled examples
using very simple classification methods such as a nearest-neighbor classifier.
Below we review the loss functions used for the experiments.

3.1 Softmax Cross-entropy Loss

The single most frequently used classification loss function is softmax cross-
entropy, which is a measure of the difference between the desired probability
distribution and the predicted probability distribution:

L = − 1

N

N∑
i=1

log
eW

T
yi

xi+byi

c∑
j=1

eW
T
j xi+bj

, (1)

where xi ∈ Rd denotes the deep features (the ”embedding”) of the ith sample,
belonging to the class yi, and d is the dimension of the embedding, Wj ∈ Rd

denotes the jth column of the weight matrix W ∈ Rd×c and bj ∈ Rc is the bias
term. The batch size for gradient descent is N and c is the number of classes.

3.2 Siamese Networks

Siamese networks [2] are neural networks for training a similarity function given
labeled data using one of several possible loss functions. They can be thought
of as two identical copies of the same network, sharing all weights. They are
particularly suitable for datasets with many classes containing only a few labeled
instances per class and can employ any of the loss functions listed below.

Triplet Loss The triplet loss [21] is widely used. A triplet’s anchor example a,
positive example p, and negative example n are provided as a training example
to the network for getting corresponding embeddings. Normally a and p come
from the same class, and n is from a different class. Triplet loss tries to push the
negative example’s embedding farther away from positive example’s one, with a
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user-specified minimum margin m. Using, e.g., Euclidean distance d(., .) between
embedded examples, the triplet loss is calculated as:

L = max(d(a, p)− d(a, n) +m, 0) (1)

Triplet loss tries to push d(a, p) to 0 and d(a, n) to be greater than d(a, p)+m.
Triplets can be categorized as:

– Easy triplets: those with a loss of 0.
– Hard triplets: those where n is closer to a than p.
– Semi-hard triplets: those where n is not closer to a than p, but is within

the margin, thus still returning a positive loss.

In our experiments, we use semi-hard triplets for training of the neural network
as they yield more distinctive embeddings [21].

Contrastive loss The contrastive loss [8] is a pair-based loss that attempts to
bring similar examples closer to each other and push dissimilar examples farther
away with respect to a minimum margin m. Contrastive loss for embeddings of
two examples x1 and x2 can be calculated as follows:

L = y × d(x1, x2) + (1− y)×max(0,m− d(x1, x2)) (2)

Here, y = 1 if x1 and x2 are from the same class, and y = 0 otherwise.

ArcFace loss Arcface loss [6] is a modified cross-entropy loss with angular
margins in the softmax expression, which is designed for improved discrimination
in metric learning. The loss is calculated as:

L = − 1

N

N∑
i=1

log
es

(
cos

(
θyi+m

))
es

(
cos

(
θyi+m

))
+

∑
c
j=1,j 6=yi

es cos θj
. (3)

θj is the angle between the l2-normalized weight vector Wj and the feature
vector xi. The bias term bj is ignored for simplicity. The feature vector xi is l2-
normalised and scaled to s, the radius of the hypersphere. An additive angular
margin penalty m is added to the ground truth angle θyi

.

4 Experiments

For evaluating the effect of transfer learning, we consider three image classifica-
tion problems. For all datasets, a small subset of labeled examples was chosen
according to standard semi-supervised learning practice, with a balanced num-
ber of examples from each class. All remaining examples were used as unlabeled
training examples. For triplet, contrastive and Arcface loss, k-nearest neighbor
is used for label prediction, with k = 1 for simplicity. We always include two
network version in the comparison: one using randomly initialised weights, and
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one using pretrained weights from ImageNet. All models are evaluated on the
standard test split for each dataset in three different ways: after training only on
the initially labeled examples, then after training for a number of meta-iterations
using our semi-supervised learning approaches, and also — for comparison —
after training on all labeled training examples. The two sets of results computed
from a) only the initial labeled examples, and b) all labeled training examples,
act as an empirical lower and upper bound for the semi-supervised approaches.

We used the VGG16 network architecture for all experiments. A fully con-
nected layer is added at the end of the model for generating a 256-dimensional
embedding space. A mini-batch size of 100 is used for all the experiments. For
updating the network parameters, Adam is used as the optimizer, except for
contrastive loss, which uses Rmsprop. For triplet, contrastive, and Arcface loss,
the distance to the nearest labeled example is used as the confidence score when
selecting unlabeled examples for labeling. For softmax cross-entropy loss, the
softmax probability score is used as the confidence score. Our proposed self-
learning approach was run for 25 meta-iterations and results were averaged over
3 runs with a random selection of initially labeled examples.

4.1 Results

SVHN (Street View House Numbers) comprises 32x32 color images of house
numbers. A single image can contain multiple digits, but only the digit in the
center is considered for the label prediction. The proposed approaches are eval-
uated using 1000 labeled instances initially and use a selection percentage of
5% (i.e., in each meta-iteration of self-training, 5% of the remaining unlabeled
examples are selected for labeling). Table 1 shows test accuracy for SVHN using
all four losses, with random as well as pretrained weights, for the 1000-labeled,
the self-learning, and the all-labeled setup.

The CIFAR-10 dataset comprises 32x32 RGB images of ten different object
classes. The proposed semi-supervised approaches are evaluated using 4000 la-
beled instances initially, with a selection percentage of 5% for self-training. Table
2 shows accuracy on the standard test set for all losses using 4000-labeled, all-
labeled and self-learning, for pretrained weights from Imagenet as well as random
initial weights.

The Plant Village [9] dataset consists of plant leaves. It has 43,456 training
and 10,849 test RGB images resized to 96x96 from the original format (256x256).
It has 38 categories of species and diseases. A sample image for each class is shown
in Figure 2. The proposed semi-supervised approaches are evaluated using 10
images per class as labeled instances initially, with a selection percentage of 2%
in self-learning. Table 3 shows accuracy on test examples for all four losses using
380-labeled, all-labeled and self-learning, with random weight initialization and
pretrained weights.

As we can see from the results for all three datasets, using pretrained weights
generally results in substantial improvements over random initialisation. When
comparing the four loss functions, cross-entropy emerges as the winner, with
triplet loss often being second best. However, especially for small numbers of
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Table 1: SVHN Test Accuracy %.

Pretrained 1000 Labels Self-learning 73257 Labels
Cross-entropy loss
No 75.81 ± 2.28 92.07 ± 0.35 95.72 ± 0.23
Yes 80.84 ± 0.74 92.73 ± 0.52 96.10 ± 0.21
Triplet loss [21]
No 57.22 ± 1.81 64.69 ± 1.39 94.79 ± 0.06
Yes 82.52 ± 2.14 86.14 ± 1.11 95.12 ± 0.23
Contrastive loss [8]
No 54.73 ± 0.57 62.80 ± 0.63 81.82 ± 2.29
Yes 79.46 ± 0.99 82.59 ± 0.31 93.41 ± 0.26
Arcface loss [6]
No 68.33 ± 0.91 70.42 ± 1.59 93.74 ± 0.11
Yes 80.84 ± 0.21 82.01 ± 1.41 95.66 ± 0.31

Table 2: CIFAR10 Test Accuracy %.

Pretrained 4000 Labels Self-learning 50000 Labels
Cross-entropy loss
No 70.43 ± 1.43 79.15 ± 0.80 87.84 ± 0.39
Yes 77.07 ± 0.91 83.33 ± 0.19 89.37 ± 0.49
Triplet loss [21]
No 68.35 ± 3.63 70.57 ± 1.17 86.54 ± 0.42
Yes 76.42 ± 2.19 78.36 ± 1.39 88.15 ± 0.36
Contrastive loss [8]
No 34.90 ± 0.73 44.58 ± 1.67 71.16 ± 0.05
Yes 71.98 ± 0.95 76.58 ± 0.05 85.92 ± 0.32
Arcface loss [6]
No 55.04 ± 1.36 69.54 ± 3.69 75.31 ± 0.24
Yes 74.76 ± 0.72 76.55± 1.80 87.76 ± 0.24

Fig. 2: Plant Village disease [9] dataset
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Table 3: Plant village 96x96 Test Accuracy %.

Pretrained 380 Labels Self-learning 43456 Labels
Cross-entropy loss
No 45.78 ± 4.09 54.58 ± 2.65 98.24 ± 0.62
Yes 73.76 ± 1.70 84.62 ± 1.2 99.24 ± 0.08
Triplet loss [21]
No 29.81 ± 2.59 33.16 ± 1.96 92.15 ± 1.63
Yes 76.88 ± 0.36 77.80 ± 1.15 99.02 ± 0.11
Contrastive loss [8]
No 13.12 ± 1.56 16.35 ± 0.88 34.75 ± 3.20
Yes 30.22 ± 2.14 32.46 ± 2.65 45.66 ± 2.64
Arcface loss [6]
No 54.85 ± 0.09 58.39 ± 3.61 98.11 ± 0.38
Yes 60.67 ± 0.13 71.80 ± 2.58 99.32 ± 0.04

labeled examples, triplet loss seems competitive with cross-entropy, outperform-
ing it for two of the three datasets. This seems reasonable, as paying explicit
attention to the similarities of particular instances may be more important when
only a few labeled instances are available.

Comparing the three metric losses with each other, triplet loss generally
outperforms the other two when using pretrained weights. On the other hand,
when using random initial weights, none of the three losses seems to have a clear
advantage over the others, except for the Plant dataset, where Arcface performs
very well, even outperforming cross-entropy.

Figure 3 shows a comparison of self-learning using random weights and pre-
trained weights, across three different runs on CIFAR10, using softmax cross-
entropy loss for 4000 initially labeled examples and 25 meta-iterations of self-
learning. The accuracy curves show similar improvements for both scenarios,
with the pretrained version starting from a higher initial accuracy level, and
retaining this advantage over the 25 meta-iterations of self-learning.

In order to investigate the effect of self-learning on the embeddings, we visu-
alize the embeddings obtained using all four loss functions. Figure 4 shows the
output of TSNE [13] on embeddings of CIFAR10 test instances after training
on 4000 labeled examples and after 25 meta-iterations of self-learning using all
four losses. It is evident that self-learning improves class separation, with cross-
entropy showing the most dramatic improvement, consistent with its high final
accuracy.

5 Conclusions

In this paper, we have shown that transfer learning can be highly beneficial for
semi-supervised image classification. In terms of loss functions, overall, cross-
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Fig. 3: CIFAR10 meta-iterations of self-learning using random and pretrained
Imagenet weights.

entropy outperforms more specialised losses like triplet loss, contrastive loss, or
Arcface loss. Still, for a small number of labels, triplet loss is very competitive.

There are a number of directions for future work. Exploring combinations of
well-performing loss functions, exploring alternatives to the label propagation
scheme, and exploring connections to few-shot learning, are just a few obvious
ones. Additionally, more lower-level engineering ideas, like mini-batch composi-
tion strategies as pointed out in [1], might help to further improve the perfor-
mance of semi-supervised image classification.
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