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Abstract. Let E be a CM-field, and suppose that f ,g are two primitive

Hilbert cusp forms over E+ of weight 2 satisfying a congruence modulo λr.
Under appropriate hypotheses, we show that the complex L-values of f and g

twisted by a ring class character over E, and divided by the motivic periods,

also satisfy a congruence relation mod λr (after removing some Euler factors).
We treat both the even and odd cases for the sign in the functional equation

– this generalizes classical work of Vatsal [23] on congruences between elliptic
modular forms twisted by Dirichlet characters. In the odd case, we also show

that the p-adic logarithms of Heegner points attached to f and g satisfy a

congruence relation modulo λr, thus extending recent work of Kriz and Li [17]
concerning elliptic modular forms.
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1. Introduction and results for elliptic curves

Fix an odd prime p, and suppose A1 and A2 are two elliptic curves defined over Q.
Provided that Re(s) > 3/2, their Hasse-Weil L-functions can be expressed in the
form of Dirichlet series

L(A1, s) =

∞∑
m=1

am(A1) ·m−s and L(A2, s) =

∞∑
m=1

am(A2) ·m−s.

Furthermore, both A1 and A2 are known to be modular by the deep work in [4]
hence these L-functions have an analytic continuation to the whole complex plane.

Definition 1.1. We say the elliptic curves A1 and A2 are congruent mod pr

if one has a system of p-adic congruences

am(A1) ≡ am(A2) ( mod pr) for each m ∈ N with gcd(m,N1N2) = 1,

where N1 denotes the conductor of A1/Q, and N2 denotes the conductor of A2/Q.
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In the p-ordinary case, Vatsal proved that the Mazur-Tate-Teitelbaum [19] p-
adic L-functions LMTT

p (A1) and LMTT
p (A2) are congruent modulo pr · Zp

[[
Γcyc

]]
,

where Γcyc = Gal(Qcyc/Q) denotes the Galois group of the cyclotomic Zp-extension.
Since these p-adic L-functions LMTT

p (Ai) interpolate Dirichlet twists of the Hasse-
Weil L-function L(Ai, ψ, s) at s = 1, one can view Vatsal’s result [23] as a statement
about congruences between critical L-values divided by the real Néron periods Ω+

Ai .
It is therefore natural to ask if this result extends to number fields other than Q?

To be more specific, let E be a CM-field that is also a solvable extension of
Q, and consider the base-change of A1 and A2 to E. Throughout this article, we
assume that the Leopoldt defect for E is zero. For a character χ : E×\A×E → C× of
finite order, it is reasonable to expect a congruence between the twisted L-values

(1.1) Ep(A1/E, χ) · L(A1/E, χ, 1)

(Ω+
A1

Ω−A1
)[E:Q]/2

and Ep(A2/E, χ) · L(A2/E, χ, 1)

(Ω+
A2

Ω−A2
)[E:Q]/2

modulo pr, for a suitable choice of factor Ep(Ai/E, χ) and Néron periods Ω±Ai ∈ C×.
For example, if E is an imaginary quadratic field over which the prime p splits

then Choi and Kim [6] have established a congruence for the two-variable p-adic
L-function over E at cusp forms of different weight. Alternatively if E = Q(µpn)
and r = 1, then various types of congruence have been proved in [3, 9, 10, 22].
With the exception of [6], all these aforementioned congruences above are purely
cyclotomic in their nature, so in this paper we shall deal exclusively with
the anticyclotomic case.

Throughout we assume that A1 and A2 have good ordinary reduction at p,
which means p - ap(A1) · ap(A2) · N1 · N2 (although we expect that a version of
our results should exist if one allows p to divide N1 ·N2, whilst still ensuring that
p - ap(A1) · ap(A2)). We shall further suppose that the prime p splits inside E.
Let ΓE = Gal(E∞/E) be the Galois group of the compositum, E∞ say, of all the
Zp-extensions of E, which can then be decomposed into ΓE = Γcyc

E × Γanti
E where

Γcyc
E (resp. Γanti

E ) is the Galois group of the cyclotomic (resp. full anti-cyclotomic)
extension in E∞.

Building on earlier results in [15, 20], for each base Hecke character χ0 the
work of Disegni [11, Thm 4.3.4] allows the construction of a p-adic L-function
Lp
(
Ai, χ0

)
∈ Zp

[[
ΓE
]]

[1/p
]

interpolating the special values given in Equation (1.1)

at specialisations χ = χ0 · χ†, as the character χ† ranges over Hom
(
ΓE ,Q

×
p

)
tors

.

For a fixed topological generator γ0 of Γcyc
E
∼= 1 + pZp, one can therefore expand

each multi-variable p-adic L-function into a Taylor series of the form

Lp
(
Ai, χ0

)
= L(0)

p

(
Ai, χ0

)
+L(1)

p

(
Ai, χ0

)
· (γ0 − 1) +L(2)

p

(
Ai, χ0

)
· (γ0 − 1)2

2
+ · · ·

for either choice of i ∈ {1, 2}. It is therefore natural to ask whether:

Question. For every non-negative integer j, are the individual coefficients

L
(j)
p

(
A1, χ0

)
and L

(j)
p

(
A2, χ0

)
congruent to each other modulo pr · Zp

[[
Γanti
E

]]
?

To make a precise statement, one divides the problem into three disjoint cases.
For the rest of the Introduction, we assume that the base Hecke character χ0 is
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trivial on F×\A×F , where F = E+ denotes the maximal totally real subfield of E.
We also assume that the primes of F above p are unramified in the extension E/F .
Let ηE/F be the quadratic character of E/F , and write Si for the set of F -places

Si =
{
ν : ν

∣∣∞ or ηE/F,ν
(
cond(Ai/F )

)
= −1

}
.

Definition 1.2. (a) If the global root numbers satisfy ε
(
1/2,Ai/E, χ0

)
= +1

for each i ∈ {1, 2} and if #S1 ≡ #S2 ≡ 0 (mod 2), then we call this the even case.

(b) If the global root numbers satisfy ε
(
1/2,Ai/E, χ0

)
= −1 for each i ∈ {1, 2}

and if #S1 ≡ #S2 ≡ 1 (mod 2), then we naturally refer to this as the odd case.

(c) If the global root numbers satisfy ε
(
1/2,A1/E, χ0

)
= −ε

(
1/2,A2/E, χ0

)
or

if #S1 ≡ #S2 + 1 (mod 2), then we shall call this the mixed parity case.

In the first two cases (a) and (b), we extend Vatsal’s main result [23] as follows.

Theorem 1.3. In the even case, if the conductor of the Hecke character χ0

is coprime to the OE-ideal
∏2
i=1 cond(Ai/E), then

L
(0)
p,Σ′

(
A1, χ0

)
≡ L

(0)
p,Σ′

(
A2, χ0

)
mod pr+µ0 · Zp

[[
Γanti
E

]]
where µ0 ∈ Z is the largest value for which each L

(0)
p

(
Ai, χ0

)
∈ pµ0 · OCp

[[
Γanti
E

]]
.

Note that in the above result, the subscript ‘Σ′ ’ indicates that these L-functions
have been stripped of their Euler factors at the finite primes contained in the set

Σ′ =

{
ν ∈ Spec(OF ) such that ν divides disc(E/F ) ·

2∏
i=1

cond(Ai/F )

}
.

Theorem 1.4. In the odd case, if the conductor of the Hecke character χ0 is
coprime to

∏2
i=1 cond(Ai/E) and all the primes of F above p split in E, then

(i) L
(0)
p,Σ′

(
A1, χ0

)
= L

(0)
p,Σ′

(
A2, χ0

)
= 0, and

(ii)
E0,Σ′(A1)

E1,Σ′(A1)
· L(1)

p,Σ′

(
A1, χ0

)
≡ E0,Σ

′(A2)

E1,Σ′(A2)
· L(1)

p,Σ′

(
A2, χ0

)
mod pr+µ1 · Zp

[[
Γanti
E

]]
where µ1 ∈ Z is the largest value for which each L

(1)
p

(
Ai, χ0

)
∈ pµ1 · OCp

[[
Γanti
E

]]
,

and Ek,Σ′(Ai) interpolates the Euler factors
∏
ν∈Σ′ Lν(Ai/E, χ, k) at each k ∈ Z.

Recall that a quaternion algebra B is called coherent if its ramification set ΣB
has even cardinality, and B is called incoherent if the set ΣB has odd cardinality.
In the case (c) of mixed parity, we can say nothing about mod pr congruences as
the curves A1,A2 cannot be parameterised by the same quaternion algebra B/F ,
otherwise B would have to be simultaneously coherent and incoherent!

There is also a third situation in which one can derive p-adic congruences.
Recall that if E is an imaginary quadratic field, the work of Bertolini, Darmon and
Prasanna [1] produces a p-adic L-function L(Ai) ∈ Zp

[[
Γanti
E

]]
[1/p] interpolating

critical values of L
(
Ai/E, χw, s

)
at character twists χw of arithmetic weight w ∈ N.

Liu, Zhang and Zhang have extended this to general CM-fields E, constructing a
p-adic L-function on Γanti

E interpolating the complex Rankin-Selberg L-function of



4 DANIEL DELBOURGO AND ANTONIO LEI

each Ai, twisted by characters χw of positive weight (see [18, Theorem 3.2.10]).
The corresponding p-adic L-functions L(A1) and L(A2) exist as elements of(

Lie A+
i ⊗FM Lie A−i

)
⊗FM D

(
Ai,MF lt

p

)
in the specific notation of op. cit, where D

(
Ai,MF lt

p

)
is a certain (unbounded)

distribution algebra, and FM = End(A1)⊗Q F = End(A2)⊗Q F .

Aside from the case where E is an imaginary quadratic field, it is not known
precisely when L(Ai) arise from p-bounded measures on Γanti

E . However if Ai has
good ordinary reduction at p, one might reasonably expect L(Ai) to be an Iwasawa
function for each i ∈ {1, 2}.

In [17], Kriz and Li studied special values of the Bertolini-Darmon-Prasanna
p-adic L-function via the p-adic logarithms of Heegner points attached to each Ai.
In particular, they showed that up to appropriate Euler factors, these logarithms
satisfy a congruence relation via Coleman integration. We generalize their method
to show that the p-adic logarithms of Heegner points (over ring class fields for a
general CM-field E) attached to A1 and A2 satisfy a similar congruence relation.
This allows us to compare special values of L(Ai), and deduce the following result.

Theorem 1.5. Suppose we are in the odd case, that the primes of F above p
split in E, and assuming that both L(A1),L(A2) are Iwasawa functions, then

LΣ′(A1) ≡ LΣ′(A2) mod pr · L\A1,A2

[[
Γanti
E

]]
where L\A1,A2

is the OCp-submodule generated by the values χ
(
L(A1)

)
and χ

(
L(A2)

)
for χ = χ0 · χ†, as the character χ† ranges over the elements of Hom

(
Γanti
E ,Q×p

)
.

For the remainder of the article, we will work in a more general setting than
elliptic curves and solvable CM-fields E. We consider modular abelian varieties A?
of GL2-type defined over a totally real field F , parameterised by a common definite
quaternion algebra B/F .

Written below is a brief but non-exhaustive summary of our terminology.

Notations. • F is a totally real field, E will be a CM-extension of F ,
and DE/F (resp. DE) is the relative (resp. absolute) discriminant of E;

• ηE/F is the quadratic character over F associated to the extension E/F ;

• the symbol p will indicate a distinguished prime ideal of OF lying over p,
and we write P for any prime OE-ideal above it (p needs not split in E);

• we fix embeddings Q ↪→ C and Q ↪→ Qp, and an isomorphism C ∼−→ Cp
under which the OE-ideal P is sent into the maximal ideal of OCp ;

• χ always denotes a unitary Hecke character over E (usually a finite order

character), which we identify with a Galois character Gal
(
Eab/E

) χ→ C×;

• for an integral domain R, we shall write Rχ for the ring extension of R
which is obtained by adjoining all the values of the character χ above;

• if M is a module equipped with a Gal(E/E)-action, M(χ) = M⊗χ denotes
the same underlying module M but with its Galois action twisted by χ;
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• Ecyc indicates the cyclotomic Zp-extension of E, so that the cyclotomic
character κcy maps Γcyc

E := Gal
(
Ecyc/E

)
onto an open subgroup of 1+pZp;

• f and g denote primitive Hilbert cusp forms over F of parallel weight two,
Nebentypus character ω, and levels Nf COF and Ng COF respectively;

• associated to both f and g are their modular abelian varieties of GL2-type,
Af and Ag, which are defined over the same totally real number field F ;

• K = Qp
(
C(n, f), C(n,g)

∣∣ nCOF ) is the finite extension of Qp generated
by the Fourier coefficients of f ,g, and λ denotes a local parameter in OK;

• for an abelian group M , its (finite) adelisation is given by M̂ = M ⊗Z Ẑ
where Ẑ := lim←−m Z/mZ ∼=

∏
primes l Zl is the profinite completion of Z.

For example, if E is a solvable extension of Q and A1,A2 are two elliptic curves that
are congruent modulo λr = pr, one can take f = BCF

Q (f1) and g = BCF
Q (f2) as

their base-changes with each fi ∈ S2(Γ0(Ni)), so that Af
∼= A1/F and Ag

∼= A2/F .

We shall now describe a generalisation of Definition 1.1 to modular abelian

varieties over F . Let Ñ denote theOF -ideal lcm
(
Nf , Ng,Q2

)
whereQ =

∏
ν|NfNg

ν.

For a prime q ∈ Spec(OF ), T (q) denotes the q-th Hecke operator if q is coprime
to the level of the HMF, whilst U(q) is the q-th Hecke operator if q divides the
level of the HMF (see for example [20, Chapter 4, §1.3]). We will also require
the diamond operators

〈
m
〉
, as well as the degeneracy maps V(m) which act on

the Fourier expansions by sending C(n,h) 7→ C(nm−1,h) for either choice of form
h ∈ {f ,g}.

Definition 1.6. The Ñ -depletion of f is the Hilbert cusp form given by

f̃ := f

∣∣∣∣∣ ∏
q|Ng, q-Nf

(
1− T (q) ◦ V(q) +NF/Q(q)

〈
q
〉
◦ V(q2)

) ∏
q||Nf

(1− U(q) ◦ V(q)) .

Similarly, the Ñ -depletion of g is defined by the formula

g̃ := g

∣∣∣∣∣ ∏
q|Nf , q-Ng

(
1− T (q) ◦ V(q) +NF/Q(q)

〈
q
〉
◦ V(q2)

) ∏
q||Ng

(1− U(q) ◦ V(q)) .

In particular, f̃ , g̃ ∈ S2

(
Ñ , ω

)
with L(f̃ , s) = LNfNg(f , s) and L(g̃, s) = LNfNg(g, s).

Hypothesis. (f ≡ g (λr)) There is an identity of depleted Hilbert cusp forms

f̃ = g̃ + λr ·
∑
j

cj · hj

with each scalar term cj ∈ OK, and where the hj ’s denote normalised eigenforms

of parallel weight two, level dividing into Ñ , and with Nebentypus character ω.

To reassure the reader, if A1 and A2 are two elliptic curves as before that
are congruent modulo pr, then their base-changes f = BCF

Q (f1) and g = BCF
Q (f2)
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automatically satisfy Hypothesis (f ≡ g (λr)) upon choosing the uniformizer λ = p.
Indeed to verify this claim, we first observe that

f̃1 =
∑

gcd(m,N1N2)=1

am(A1) · qm and f̃2 =
∑

gcd(m,N1N2)=1

am(A2) · qm

satisfy f̃1 − f̃2 = pr · f \ for some f \ ∈ S2

(
Γ0

(
lcm
(
N1, N2,

∏
l|N1N2

l2
)))
∩ Z[[q]].

However this latter module has an integral basis consisting of elements of the type
hj
∣∣V(d) where hj is a newform of level Cj , and d > 1 ranges over integers such that

dCj divides the common level lcm
(
N1, N2,

∏
l|N1N2

l2
)
; one can therefore express

f̃1 = f̃2 + pr ·
∑
j,d

c
(d)
j · hj

∣∣V(d) where the scalars c
(d)
j ∈ Z.

After base-changing each of the cusp forms f̃1, f̃2 and the hj |V(d)’s from Q to F ,

we respectively obtain the HMFs f̃ , g̃ and the hj ’s in Hypothesis (f ≡ g (λr)).

The proof of our main results (Theorems 1.3, 1.4 and 1.5) makes heavy use
of three recent spectacular but rather technical formulae, due to various authors.
To treat the even case we use a version of the Waldspurger formula from [5, 26],
while to treat the odd case we apply the p-adic Gross-Zagier formula in [11, 12].
Lastly to prove congruences for the Liu-Zhang-Zhang p-adic L-functions, we use the
connection between its special values and the logarithms of Heegner cycles [1, 18].
The demonstrations themselves are written up in Sections 2, 3, and 4 respectively.

2. The even case: Waldspurger’s formula

Let B be a totally definite quaternion algebra defined over the totally real field F .
We suppose that πf and πg are two cuspidal automorphic representations of B×AF ,
associated to the Hilbert modular forms f and g respectively under the Jacquet-
Langlands correspondence on GL2/F , with a common central character ω on A×F,fin.

Let us also consider a fixed finite order Hecke character χ defined on E×\A×E ,

corresponding to a weight one theta-series automorphic representation πχ of B×AF .

Hypothesis. (Even) The product ω · χ
∣∣
A×F

is trivial, the three finite sets

SNf
=
{
ν : ν|∞ or ηE/F,ν(Nf ) = −1

}
SNg =

{
ν : ν|∞ or ηE/F,ν(Ng) = −1

}
SÑ =

{
ν : ν|∞ or ηE/F,ν(Ñ) = −1

}
each have even cardinality, and for all places ν of F

ε
(
1/2, πf ,ν , πχ,ν

)
= ε

(
1/2, πg,ν , πχ,ν

)
= χν(−1) · ηE/F,ν(−1) · ξ

(
Bν
)

where the sign ξ
(
Bν
)

= −1 if Bν is a division algebra, and ξ
(
Bν
)

= +1 otherwise.

Here we have written ε
(
1/2, π?,ν , πχ,ν

)
for the local root number associated to

the complex tensor product L-series L
(
s, π? × πχ

)
, for each choice of ? ∈ {f ,g}.

The above hypothesis then implies that both the global root numbers
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ε
(
1/2, πf , πχ

)
and ε

(
1/2, πg, πχ

)
in the Rankin L-functions are equal to +1,

and there is an F -embedding of E into B that identifies E× with a sub-torus in B×.

Proposition 2.1. If the Hypotheses (f ≡ g (λr)) and (Even) both hold, and if
fχ := cond(χ) is coprime to NfNg ·OE, there is a congruence of p-integral elements√
|DE | · ||cχ||2·

LΣ(1/2, πf × πχ)

Ω
aut,(0)
∞,K (f)

≡
√
|DE | · ||cχ||2·

LΣ(1/2, πg × πχ)

Ω
aut,(0)
∞,K (g)

mod λrOK,χ

where cχ is the largest OF -ideal so that χ is trivial on
∏
ν-cχ O

×
E,ν×

∏
ν|c
(
1+cOE,ν

)
,

||cχ|| denotes the norm NF/Q(cχ), the finite set Σ consists of the places of F dividing

Nf ·Ng ·DE/F ·cχ ·∞, and Ω
aut,(0)
∞,K (?) is the automorphic period (see Equation (2.1))

associated to each ? ∈ {f ,g}.

Proof. The key ingredient is the generalised Waldspurger formula in [5, 26].

In particular, we shall take as our common level structure Ñ := lcm
(
Nf , Ng,Q2

)
where Q =

∏
ν|NfNg

ν COF . Firstly, one defines a finite subset of Spec(OF ) by

Σ1 :=
{
ν
∣∣Ñ where ηE/F (ν) = −1 and ordν(cχ) < ordν

(
Ñ
)}

and next constructs a pair of OF -ideals via

c1 :=
∏
ν|cχ,
ν 6∈ Σ1

νordν(cχ) and N1 :=
∏
ν|Ñ,
ν 6∈ Σ1

νordν(Ñ).

Now let R be an admissible OF -order for the pairs (πf , χ) and (πg, χ) in the sense

of [5, Sect 1], so that in addition R has discriminant Ñ and R∩E = OF + c1OE .
We shall also fix a compact open subgroup U =

∏
ν Uν ⊂ B×AF such that Uν = R×ν

at all finite places ν of F , and moreover if the place ν|N1 then Bν must be split.
The (zero-dimensional) Shimura variety X = XU (B) is then defined by

XU (B) := B×
∖
B̂×
/
Û

and let g1, . . . , gn ∈ B̂× be a complete set of representatives for X, so that [gi] ∈ X.

If Z[X] denotes the free Z-module consisting of formal sums
∑
i ai[gi], then

there is a height pairing
[
−,−

]
X

: Z[X]×Z[X]→ C[X] from [14], sending each pair(∑
i ai[gi],

∑
i bi[gi]

)
to the element

∑
i aibiwi with wi = #

(
B× ∩ giR̂×g−1

i

)/
O×F .

There exists a canonical direct sum decomposition

Z[X] =
⊕
c∈C+

Z
[
Xc

]
where Xc is the preimage of c ∈ C+ := F×+

∖
F̂×
/
Ô×F under the natural surjection

XU (B) = B×
∖
B̂×
/
Û � F×+

∖
F̂×
/
Ô×F . One may also consider the submodules

Z
[
Xc

]0 ⊂ Z
[
Xc

]
containing degree zero classes, and set Z[X]0 :=

⊕
c∈C+

Z
[
Xc

]0
.

For each choice of ? ∈ {f ,g}, let V (π?, χ) indicate the space of ‘test vectors’ in

the sense of [5, Defn 3.6]. Because we are working at level Ñ rather than level N?,
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it is no longer true in general that V (π?, χ) is one-dimensional over C; in fact

dimC
(
V (π?, χ)

)
=
∏
ν|Ñ

(
1 + ordν

(
Ñ
)
− ordν

(
N?
))

(of course, if Ñ = Nf = Ng then both V (πf , χ) and V (πg, χ) correspond to C-lines).

There are injections V (π?, χ) ↪→ Z[X]0 ⊗ C obtained from Φ 7→
∑
i Φ
(
[gi]
)
w−1
i [gi],

which respect the natural action of the Hecke algebra on both C-vector spaces.

Remarks. (a) Considering the Ñ -depletions f̃ , g̃ ∈ S2

(
Ñ , ω

)
in Definition 1.6,

the images of C · f̃ and C · g̃ inside Z[X]0⊗C define unique dimension one subspaces.

(b) The action of the Hecke operators T (n) on C · f̃ (resp. C · g̃) coincide with

their action on C · f (resp. C · g) if n is coprime to Ñ , whilst the U(q)-operators

annihilate both of the depleted lines C · f̃ and C · g̃ whenever gcd
(
q, Ñ

)
6= OF .

(c) In the notation of [5, Thm 1.9], we can take as test vectors any f ′1, f
′
2 ∈ C · f̃

(resp. f ′1, f
′
2 ∈ C · g̃) viewed inside Z[X]0 ⊗ C, and then apply the variation of

Waldspurger’s formula to f ′1 ∈ V (π?, χ), f ′2 ∈ V (π∨? , χ
−1) for ? = f (resp. ? = g).

We now relate the Rankin L-function to twisted CM-cycles living in OK,χ[X]0.
Recall the fixed embedding E ↪→ B induces a group homomorphism Pic(Ocχ)→ X
sending t 7→ xt where Ocχ denotes the order OF+cχOE , with cχCOF indicating the

largest OF -ideal such that χ becomes trivial on
∏
ν-cχ O

×
E,ν ×

∏
ν|cχ

(
1 + cχOE,ν

)
.

One defines a pair of (Ñ -depleted) CM-cycles by

P̃χ(f) :=
∑

t∈Pic(Ocχ )

χ−1(t) · f̃(xt) and P̃χ(g) :=
∑

t∈Pic(Ocχ )

χ−1(t) · g̃(xt)

which à priori lie inside OK,χ[X]. However, if χ is a non-trivial character then∑
t∈Pic(Ocχ ) χ

−1(t) = 0, so clearly P̃χ(f), P̃χ(g) ∈ OK,χ[X]0 both have degree zero1.

We initially focus on the HMF f , and its depleted CM-cycle P̃χ(f) ∈ OK,χ[X]0.

Viewing f as a holomorphic function φf : H[F :Q] → C, let us denote by 〈φf , φf 〉Pet

the Petersson self-product of φf , computed using the invariant measure induced on

PGL2(F )
∖
H[F :Q] × PGL2(AF,fin)

/
U0

(
Ñ
)

from the standard hyperbolic volume dxdy/y2 on the extended upper half-plane.
Applying Waldspurger’s formula in the format of [5, Thm 1.9] and [26, Thm 7.1],

LΣ′
(
1/2, πf×πχ

)
= 2−#ΣD ·

(8π2)[F :Q] · 1
2Vol

(
XU0(Ñ)

)
· 〈φf , φf 〉Pet

u2
√
|DE | · ||cχ||2

·
[
P̃χ(f), P̃χ(f)

]
X

where Σ′ consists of those primes dividing gcd
(
Nf ·Ng, cχ·DE/F

)
·∞ such that if ν||Ñ

then ν - DE/F , whilst ΣD denotes the set of primes of F dividing gcd
(
Ñ ,DE/F

)
.

1If χ is trivial then one takes instead
[
P̃χ(f)−deg(P̃χ) ·ξ

]
,
[
P̃χ(g)−deg(P̃χ) ·ξ

]
∈ Pic(X)⊗C,

where ξ denotes the absolute Hodge class [26, Eqn (6.8)] which has degree one on each component.
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Furthermore, we claim that u := #Ker
(
Pic(OF ) → Pic(Ocχ)

)
× [O×cχ : O×F ] is

always a p-adic unit. To see why this is so, observe that Ker
(
Pic(OF )→ Pic(Ocχ)

)
is either 1 or 2 by [24, Theorem 10.3]. Writing WE for the roots of unity of E,
then [WEO×F : O×F ] is coprime to p as the primes of F above p are unramified in E.

Moreover [O×E : WEO×F ] is either 1 or 2 by [24, Theorem 4.12], consequently both

[O×E : O×F ] and hence [O×cχ : O×F ] are coprime to p.

It is also easy to check that there is an inclusion of sets of finite places Σ′ ↪→ Σ.
If we now attach a (complex) automorphic period to f over K by setting

(2.1) Ω
aut,(0)
∞,K (f) := (8π2)[F :Q] ·Vol

(
XU0(Ñ)

)
· 〈φf , φf 〉Pet

then rearranging Waldspurger’s formula yields the equality[
P̃χ(f), P̃χ(f)

]
X

= u2 · 2#ΣD+1 ×
√
|DE | · ||cχ||2 ·

LΣ′(1/2, πf × πχ)

Ω
aut,(0)
∞,K (f)

.

An entirely similar argument, applied to g and P̃χ(g) ∈ OK,χ[X]0, establishes that[
P̃χ(g), P̃χ(g)

]
X

= u2 · 2#ΣD+1 ×
√
|DE | · ||cχ||2 ·

LΣ′(1/2, πg × πχ)

Ω
aut,(0)
∞,K (g)

.

Crucially for each eigenform h lying in the (f ,g)-isotypic component, the depleted

cycles P̃χ(h) belongs to the dual lattice
(
OK,χ[X]0

)∨
under the pairing [−,−]X.

Using the OK,χ-bilinearity of this pairing, it therefore suffices to show that

P̃χ(f) = P̃χ(g) + λr ·Q for some Q ∈ OK,χ[X]0

because if this is indeed the case, then as a direct corollary[
P̃χ(f), P̃χ(f)

]
X

=
[
P̃χ(g), P̃χ(g)

]
X

+ λr ×
(

2 ·
[
P̃χ(g), Q

]
X

+ λr ·
[
Q,Q

]
X

)
so that

[
P̃χ(f), P̃χ(f)

]
X
≡
[
P̃χ(g), P̃χ(g)

]
X

mod λr.

We now exploit the relation between f̃ and g̃ given in Hypothesis (f ≡ g (λr)),
observing that this relation is preserved when we apply the Jacquet-Langlands
correspondence and shift to the quaternion algebra B. One thereby deduces that

P̃χ(f) =
∑

t∈Pic(Ocχ )

χ−1(t) · f̃(xt) =
∑

t∈Pic(Ocχ )

χ−1(t) ·

g̃(xt) + λr ·
∑
j

cj · hj(xt)


= P̃χ(g) + λr ·

∑
j

cj ·
∑

t∈Pic(Ocχ )

χ−1(t) · hj(xt),

and setting Q =
∑
j cj ·

∑
t χ
−1(t)·hj(xt) ∈ OK,χ[X]0, the result follows at once. �

Let E∞ denote the maximal Zp-power extension of E unramified outside p, so

ΓE := Gal(E∞/E) ∼= Z1+[F :Q]+δ
p where δ > 0 is the defect in Leopoldt’s conjecture.

If we choose a base character χ0 such that ω · χ0

∣∣
A×F

is trivial, it follows that the

family of characters
{
χ0 · χ†

∣∣ χ† : Γanti
E → µp∞

}
also satisfies Hypothesis (Even).

Henceforth we define ρ0 := IndFE(χ0) : GF → GL2(Oχ) which is a two-dimensional
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Artin representation, as are ρχ := IndFE(χ) for every character χ = χ0 ·χ† as above.
For the rest of this section, we shall assume that all the primes of F
lying above p split in the CM-extension E.

Remarks. (a) Building on earlier work of Hida and Panchishkin [15, 20] for
the cyclotomic deformation, Disegni [12] has attached p-adic L-functions to GL2×
GL2 interpolating the Rankin product L-functions L(s, πf × πχ) and L(s, πg × πχ)
at the critical point s = 1/2: since we are taking the unitarizations, let us identify

these L-values (respectively) with L
(
f⊗IndFE(χ), s

)
and L

(
g⊗IndFE(χ), s

)
at s = 1.

(b) Let Γanti
E denote the Galois group of the anticyclotomic extension of E

inside E∞, which by definition is the (−1)-eigenspace of the complex conjugation
c ∈ Gal(E/F ) inside ΓE . For a topological generator γ0 of Γcyc

E and the particular
choice ? = f say, one expands the

(
1 + [F : Q]

)
-variable Disegni-Hida-Panchishkin

p-adic L-function Lp,Σ
(
f , ρ0

)
∈ OK

[[
ΓE
]
][1/λ

]
into a Taylor series of the form

Lp,Σ
(
f , ρ0

)
= L

(0)
p,Σ

(
f , ρ0

)
+ L

(1)
p,Σ

(
f , ρ0

)
· (γ0 − 1) +

1

2
L

(2)
p,Σ

(
f , ρ0

)
· (γ0 − 1)2 + · · ·

where L
(i)
p,Σ

(
f , ρ0

)
∈ OK

[[
Γanti
E

]]
[1/λ

]
under the decomposition ΓE = Γcyc

E × Γanti
E .

Here the subscript ‘Σ’ above indicates that the p-adic L-function Lp,Σ
(
f , ρ0

)
has

been completely stripped2 of its Euler factors at those finite places ν ∈ Σ, ν - p.
(c) Note also the condition (Even) implies either L

(0)
p,Σ

(
f , ρ0

)
6= 0, or instead

that L
(0)
p,Σ

(
f , ρ0

)
= L

(1)
p,Σ

(
f , ρ0

)
= 0, because the global root number ε

(
1/2, πf , πχ

)
is equal to +1 under our assumptions.

If χ = χ0·χ† where χ† is anticyclotomic, then χ†
(
Lp,Σ

(
f , ρ0

))
= χ†

(
L

(0)
p,Σ(f , ρ0)

)
as χ†(γ0 − 1) = 0. The exact interpolation rule from [11, Thm 4.3.4] states that

χ†
(
Lp,Σ

(
f , ρ0

))
=

χ
(
d

(p)
F

)
·G
(
χ
)
·
√
NF/Q

(
DE/F · NE/F (fχ)

)
· χ(DE/F )∏

p|p αp(f)ordp(NE/F (fχ))
(2.2)

×
∏
p|p

∏
P|p

(
1− χ(P)

αp(f)

)
×

LΣ\{p|p}
(
f ⊗ IndFE(χ), 1

)
Ω

aut,(0)
∞,K (f)

.

An analogous formula holds for the value of Lp,Σ
(
g, ρ0

)
at each twist χ = χ0 · χ†.

Theorem 2.2. Assuming Hypothesis (f ≡ g (λr)), and that Hypothesis (Even)
for the base character χ0 holds true with the conductor of χ0 coprime to NfNg ·OE,
there is a congruence of p-adic L-functions

L
(0)
p,Σ

(
f , ρ0

)
≡ L

(0)
p,Σ

(
g, ρ0

)
mod λr · OK

[[
Γanti
E

]]
.

If either λr - ε(ρ0,0)·LΣ(f ,ρ0)

Ω
aut,(0)
∞,K (f)

or λr - ε(ρ0,0)·LΣ(g,ρ0)

Ω
aut,(0)
∞,K (g)

with ε(ρ0, s) the ε-factor for ρ0,

then both sides of this anticyclotomic congruence must be non-trivial modulo λr.

2We have deliberately removed the Euler factors from Lp,Σ
(
f , ρ0

)
at the finite places in Σ,

so that we can obtain a congruence modulo λr; it follows that the p-adic L-functions we are
considering correspond to Σ-imprimitive versions of the Disegni-Hida-Panchishkin construction.
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Proof. To establish this p-adic congruence, clearly it is sufficient to prove that

χ†
(
L

(0)
p,Σ

(
f , ρ0

))
and χ†

(
L

(0)
p,Σ

(
g, ρ0

))
are congruent modulo λr, at points χ = χ0·χ†

where χ† ranges over finite order characters on the anticyclotomic component Γanti
E .

Because
∣∣G(χ)

∣∣−1

p
=
∣∣NE/Q(fχ)

∣∣−1/2

p
=
∣∣||cχ||∣∣−1/2

p
, the ratio of algebraic numbers

rχ :=
χ
(
d

(p)
F

)
·G
(
χ
)
·
√
NF/Q

(
DE/F · NE/F (fχ)

)
· χ(DE/F )√

|DE | · ||cχ||2

is a p-adic unit, independent of choosing ? ∈ {f ,g} but dependent on χ obviously.
From the interpolation in Equation (2.2), and after replacing the Hecke character χ
by its dual χ, one can reinterpret the congruence in Proposition 2.1 as the statement:∏

p|p αp(f)ordp(NE/F (fχ))∏
p|p
∏

P|p

(
1− χ(P)

αp(f)

) × r−1
χ · χ†

(
L

(0)
p,Σ

(
f , ρ0

))

≡
∏

p|p αp(g)ordp(NE/F (fχ))∏
p|p
∏

P|p

(
1− χ(P)

αp(g)

) × r−1
χ · χ†

(
L

(0)
p,Σ

(
g, ρ0

))
mod λr · OK,χ.

However for ? ∈ {f ,g}, we can identify αp(?) with the eigenvalue of Frobp acting
on the maximal unramified quotient of Tap(A?) as a GFp

-module, in which case

αp(f) ≡ αp(g) mod λr · OK,χ since Tap(Af )
/
λr ∼= Tap(Ag)

/
λr as GFp

-modules.
Consequently, the reciprocals of these extra terms satisfy∏p|p αp(f)ordp(NE/F (fχ))∏

p|p
∏

P|p

(
1− χ(P)

αp(f)

)
−1

≡

∏p|p αp(g)ordp(NE/F (fχ))∏
p|p
∏

P|p

(
1− χ(P)

αp(g)

)
−1

mod λr · OK,χ

which completes the proof of the main congruence.

Finally, identifying G
(
χ0

)
·
√
NF/Q

(
DE/F · NE/F (fχ0

)
)

with the factor ε(ρ0, 0),

the non-triviality of either of χ†
(
L

(0)
p,Σ

(
f , ρ0

))
mod λr or χ†

(
L

(0)
p,Σ

(
g, ρ0

))
mod λr

at χ† = 1, directly implies L
(0)
p,Σ

(
f , ρ0

)
≡ L

(0)
p,Σ

(
g, ρ0

)
6≡ 0 mod λr · OK

[[
Γanti
E

]]
. �

3. The odd case: p-adic Gross-Zagier formula

We now treat the opposite situation, where the global root numbers ε
(
1/2, πf , πχ

)
and ε

(
1/2, πg, πχ

)
are both −1. In particular L

(0)
p,Σ

(
?, ρ0

)
is identically zero, whence

Lp,Σ
(
?, ρ0

)
γ0 − 1

= L
(1)
p,Σ

(
?, ρ0

)
+

1

2
L

(2)
p,Σ

(
?, ρ0

)
· (γ0 − 1) + O

(
(γ0 − 1)2

)
so that χ†

(
L

(1)
p,Σ

(
?, ρ0

))
=
(

logp κcy(γ0)
)−1 ·χ†

(
dκs−1

cy Lp,Σ(?,ρ0)

ds

) ∣∣∣∣
s=1

for ? ∈ {f ,g}.

Therefore our goal is to establish a congruence modulo λr · logp κcy(γ0) between

χ†
(

dκs−1
cy Lp,Σ(f ,ρ0)

ds

)∣∣∣∣
s=1

and χ†
(

dκs−1
cy Lp,Σ(g,ρ0)

ds

)∣∣∣∣
s=1

under Hypothesis (f ≡ g (λr)).
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Again B denotes a totally definite quaternion algebra over F , with the property
that the automorphic representations πf and πg are both parameterised by B×AF .

Likewise χ : E×\A×E → C× will be a fixed Hecke character of finite order, as before.

Hypothesis. (Odd) The product ω · χ
∣∣
A×F

is trivial, the three finite sets

SNf
=
{
ν : ν|∞ or ηE/F,ν(Nf ) = −1

}
SNg =

{
ν : ν|∞ or ηE/F,ν(Ng) = −1

}
SÑ =

{
ν : ν|∞ or ηE/F,ν(Ñ) = −1

}
each have odd cardinality, and for all places ν of F

ε
(
1/2, πf ,ν , πχ,ν

)
= ε

(
1/2, πg,ν , πχ,ν

)
= χν(−1) · ηE/F,ν(−1) · ξ

(
Bν
)
.

The above hypothesis implies that both the global root numbers
ε
(
1/2, πf , πχ

)
and ε

(
1/2, πg, πχ

)
in the Rankin L-functions are equal to −1,

and that the quaternion algebra B is incoherent. Henceforth, we shall
further assume that all primes of F above p split inside the extension E.

As explained in [12, Sect 1.1], one can interpret the modular parameterizations
of the abelian varieties Af and Ag in terms of Shimura curves. For a compact open
subgroup U of B×AF , the complex points of the algebraic curve XU are given by

XU (C) = B\H± × B̂×/U.
In fact, there exists an infinite tower of Shimura curves

{
XU

}
U

indexed by the

compact open subgroups U ⊂ B×AF , and we shall set X(B) := lim←−U XU .

The canonical Hodge class ξU ∈ Pic
(
XU

)
⊗ Q which has degree one on each

component induces an embedding XU

ιξU
↪→ JacXU . Because the HMFs f and g are

parameterised by B×AF , the End0(A?)-vector spaces

lim−→
U

Hom0
ξU

(
JacXU , Af

)
and lim−→

U

Hom0
ξU

(
JacXU , Ag

)
are both non-empty; let πA? ∈ lim−→U

Hom0
(
JacXU , A?

)
be the smooth irreducible

representation of B×AF corresponding to π?, for each choice of cusp form ? ∈ {f ,g}.
Taking Uf = U0(Nf ), Ug = U0(Ng) and Ũ = U0

(
Ñ
)
, there exists a factorisation

(3.1) X(B)
∼→ lim←−

U

XU

ιξ
−→ lim←−

U

JacXU � JacXŨ

� JacXUf
� Af

� JacXUg � Ag

and the top sequence of maps yields πAf
◦ ιξ, whilst the bottom maps yield πAg ◦ ιξ.

Before we state our main result below, for each choice of HMF ? ∈ {f ,g} let
us introduce the ratio of Euler factors

EÑ (?, χ) :=
∏
q|Ñ

Lq(?⊗ IndFE(χ), s− 1)

Lq(?⊗ IndFE(χ), s)

∣∣∣∣∣
s=1

.

Whilst the denominator can never vanish, the numerator can sometimes vanish
(for example, if q||N? and C(q, ?) = χ(Q) for some place Q of E lying above q).



HEEGNER CYCLES AND ANTICYCLOTOMIC CONGRUENCES 13

Furthermore, these algebraic values can be interpolated by the ratio of two elements
of OK,χ

[[
Γanti
E

]]
, denoted by E0,Ñ (?) and E1,Ñ (?), so that

χ†
(
E0,Ñ (?)

)
χ†
(
E1,Ñ (?)

) =
∏
q|Ñ

Lq(?⊗ IndFE(χ), 0)

Lq(?⊗ IndFE(χ), 1)

for all characters χ = χ0 · χ† in the standard formulation above.

Theorem 3.1. Assume Hypothesis (f ≡ g (λr)), and that Hypothesis (Odd)
for the base character χ0 holds true with the conductor of χ0 coprime to NfNg ·OE.
Then one has the twin relations

(i) L
(0)
p,Σ

(
f , ρ0

)
= L

(0)
p,Σ

(
g, ρ0

)
= 0, and

(ii)
E0,Ñ (f)

E1,Ñ (f)
L

(1)
p,Σ

(
f , ρ0

)
≡
E0,Ñ (g)

E1,Ñ (g)
L

(1)
p,Σ

(
g, ρ0

)
mod λr−r0+ordλ(δE) · logp κcy(γ0).

Here r0 := 2 ·
∑

P|p ordλ

(
#Ã?

(
OE/P

))
with ? ∈ {f ,g}3, while δE ∈ Q× depends

on the CM-extension E/F but does not depend on either f ,g, nor on the prime p.

Before supplying the proof, we first need to establish some preliminary results.

For a CM-point x ∈ XE× , we begin by considering the Heegner points

P(f , χ) :=
∑

t∈Pic(Ocχ )

χ(t) ·πAf

(
ιξ(t ·x)

)
and P(g, χ) :=

∑
t∈Pic(Ocχ )

χ(t) ·πAg

(
ιξ(t ·x)

)
which lie inside

(
Af (E

ab)⊗χ
)Gal(Eab/E)

and
(
Ag(Eab)⊗χ

)Gal(Eab/E)
respectively.

In general, we do not expect their pre-images in JacXŨ to be congruent modulo λr

so instead work with their Ñ -depletions, for which we do expect congruences.

Fix a choice of cusp form ? ∈ {f ,g}. At each OF -ideal a such that Ñ ⊂ a ·N?,
we write V(a) : JacXU? → JacXŨ for the degeneration map induced on jacobians.
Clearly V(a) induces a p-integral map on the ordinary components

‘V(a)’ : Tap (JacXU?)
ord → Tap

(
JacXŨ

)ord

where as usual Tap(J) := lim←−m J [pm] and Tap(J)ord := Tap(J)
∣∣∣ limn→∞ U(pOF )n!.

For every finite place q ∈ Spec(OF ), there are associated Hecke correspondences
T (q) and

〈
q
〉

(resp. U(q)) if q+N? = OF (resp. if q+N? 6= OF ) [25, Section 1.4].
Using these correspondences, one constructs a depletion map on Jacobian varieties

depŨU? : JacXU? → JacXŨ

sending a point PU? ∈ JacXU? to its Ñ -depleted version (cf. Definition 1.6)

PU?

∣∣∣∣∣ ∏
q|Ñ, q-N?

(
1− T (q) ◦ V(q) +NF/Q(q) ·

〈
q
〉
◦ V(q2)

)
·
∏
q|N?

(
1− U(q) ◦ V(q)

)
.

3Note that Ãf

(
OE/P

)
[λr] ∼= Ãg

(
OE/P

)
[λr] since we are assuming (f ≡ g (λr)) holds here.
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In particular, under the composition πJacXU?
◦ ιξ : X(B)→ JacXU? one may define

P̃(?, χ) := depŨU?

( ∑
t∈Pic(Ocχ )

χ(t) ·πJacXU?

(
ιξ(t ·x)

))
∈
(
JacXŨ (Eab)⊗χ

)Gal(Eab/E)
.

Our strategy in proving Theorem 3.1 is to initially establish that:

(I) the pair of Heegner points P̃(f , χ) and P̃(g, χ) are congruent modulo λr;

(II) their projections to
(
A? ⊗ χ(E)

)
Q equal P(?, χ), up to some Euler factors;

(III) their p-adic heights equal χ†
(

dκs−1
cy Lp,Σ(f ,ρ0)

ds

)∣∣∣∣
s=1

and χ†
(

dκs−1
cy Lp,Σ(g,ρ0)

ds

)∣∣∣∣
s=1

.

Let us begin with the middle task (II), and then deal with (I) and (III) afterwards.

Lemma 3.2. For each ? ∈ {f ,g}, if we factorise πA? into prŨA? ◦ πJacXŨ
where

prŨA? : JacXŨ � A?, then inside A? ⊗ χ(E) we have the identities:

prŨAf

(
P̃(f , χ)

)
=
∏
q|Ñ

(
1− C(q, f)χ(Q) + χ2(Q)ω(q) · NF/Q(q)

)
· P(f , χ), and

prŨAg

(
P̃(g, χ)

)
=
∏
q|Ñ

(
1− C(q,g)χ(Q) + χ2(Q)ω(q) · NF/Q(q)

)
· P(g, χ).

N.B. Here for each q|Ñ , we have fixed a choice of prime OE-ideal Q lying above q.

Proof. To simplify the exposition, we will focus exclusively on the HMF ? = f .

Throughout we write c for cχ, and fix a lift of the level structure ÑCOE such that

OE/Ñ ∼= OF /Ñ ; without loss of generality, we may represent t ∈ Pic(Oc) with

ideals coprime to Ñ.
Following Katz [16, Section 1], for a ring R ⊂ C one can view the R-points

of XŨ as a triple (A,C,$) where A is a C-polarized Hilbert-Blumenthal abelian

variety over R, the finite group C denotes a cyclic R-subscheme of A
[
Ñ
]
, $ is

a nowhere vanishing differential form on A, and C runs through a set of coset
representatives for the narrow class group of F . We denote the natural action of
t ∈ Pic(Oc) on the R-points of XŨ by (A,C,$) 7→ t ∗ (A,C,$).

At a prime OF -ideal q such that Q
∣∣Ñ lies over it and for a class t ∈ Pic(Oc), the

map V(qr) sends a point t ∗ (A,C,$) to the point
(
Q
−r
t
)
∗
(
A,C ∩A[ÑQ−r], $

)
.

Consequently, for either choice of exponent r ∈ {1, 2}:

V(qr)

 ∑
t∈Pic(Oc)

χ(t) ·
(
t ∗ (A,C,$)

) =
∑

t∈Pic(Oc)

χ(t) · (Q −rt) ∗
(
A,C[ÑQ−r], $

)
=

∑
t∈Pic(Oc)

χ
(
tQ

r) · (t ∗ (A,C[ÑQ−r], $
))

= χ
(
Q
)r · ∑

t∈Pic(Oc)

χ(t) ·
(
t ∗ (A,C,$)

)
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since
{
Q
r
t
}
t∈Pic(Oc)

also yields a complete set of representative classes for Pic(Oc).

It follows that

(3.2) PUf
(f , χ)

∣∣∣V(qr) = χ
(
Q
)r · PŨ (f , χ) at each r ∈ {1, 2}.

On the other hand, the projection prUf

Af
: JacXUf

� Af is obtained via quotienting

by the elements T (q)−C(q, f) and
〈
q
〉
−ω(q) if q+Nf = OF , and by U(q)−C(q, f)

if q+Nf 6= OF . As an immediate corollary, one obtains the corresponding relations

(3.3) P(f , χ)
∣∣∣T (q) or U(q) = C(q, f) ·P(f , χ) and P(f , χ)

∣∣∣〈q〉 = ω(q) ·P(f , χ).

Combining the various identities in (3.2) and (3.3) together, one thereby deduces

prŨAf

(
P̃(f , χ)

)
= prŨAf

◦ depŨUf

( ∑
t∈Pic(Oc)

χ(t) · πJacXUf

(
ιξ(t · x)

))

= prŨAf

( ∑
t∈Pic(Oc)

χ(t) · πJacXUf

(
ιξ(t · x)

)∣∣∣∣∣ ∏
q|N?

(
1− U(q) ◦ V(q)

)
·
∏

q|Ñ, q-N?

(
1− T (q) ◦ V(q) +NF/Q(q) ·

〈
q
〉
◦ V(q2)

))

=
∑

t∈Pic(Oc)

χ(t) · πAf

(
ιξ(t · x)

)
×
∏
q|Ñ

(
1− C(q, f)χ(Q) + χ2(Q)ω(q) · NF/Q(q)

)
.

Not surprisingly, the argument for the other HMF ? = g is almost identical. �

We shall now establish statements (I) and (III) mentioned in our strategy above.
For a compact open subgroup U of B×AF , there are group homomorphisms(

JacXU ⊗ χ
)
(E)

−⊗1−→
(
JacXU ⊗ χ

)
(E)⊗̂Zp

∂−→ H1
f

(
E ⊗Qp,Tap

(
JacXU

)
⊗ χ

)
where H1

f

(
E⊗Qp,T

)
:= Ker

(
H1
(
E ⊗Qp,T

) −⊗1−→ H1
(
E ⊗Qp,T⊗Zp Bcris

))
, and

the right-hand arrow ∂ is the Kummer map – see [2, Section 3] for further details.
We shall label the composition of this whole sequence as ‘∂U ’.

Now set U := Ũ = U0

(
Ñ
)
: the depleted points P̃(f , χ) and P̃(g, χ) each belong

to
(
JacXŨ ⊗χ

)
(E), so we can apply the mapping ∂Ũ to them. In fact ∂Ũ

(
P̃(f , χ)

)
and ∂Ũ

(
P̃(g, χ)

)
lie inside H1

f

(
E⊗Qp,Tap

(
JacXŨ

)ord⊗χ
)
, since f and g are both

p-ordinary Hilbert cusp forms.

Remark. Disegni’s normalisation of the p-adic L-function in [12, Theorem A]
is slightly different to that of Lp,Σ

(
?, ρ0

)
, for each ? ∈ {f ,g} and set of places Σ.

Note that his interpolation formula is almost the same as that in Equation (2.2),

except that the automorphic period Ω
aut,(0)
∞,K (?) is instead replaced by

Ω
aut,(1)
∞,K (?) :=

2 · L(1, ηE/F ) · L
(
1, ad(?)

)
π2[F :Q] · |DF |1/2

.



16 DANIEL DELBOURGO AND ANTONIO LEI

We will write LDis
p,Σ

(
?, ρ0

)
for the period-modified version

Ω
aut,(0)
∞,K (?)

Ω
aut,(1)
∞,K (?)

× Lp,Σ
(
?, ρ0

)
,

while LDis
p,∅
(
?, ρ0

)
=

Ω
aut,(0)
∞,K (?)

Ω
aut,(1)
∞,K (?)

× Lp,∅
(
?, ρ0

)
denotes the primitive p-adic L-function

in Theorem A of op. cit., which has not yet had its Euler factors at q ∈ Σ removed.

Lemma 3.3. Recall under Hypothesis (Odd) that L
Dis,(0)
p,Σ

(
?, ρ0

)
is always zero.

(a) Assuming that Hypothesis (f ≡ g (λr)) holds true as well, there exists a

crystalline 1-cocycle Q(f ,g, χ) ∈ H1
f

(
E ⊗Qp,Tap

(
JacXŨ

)ord⊗ χ
)

such that

∂Ũ
(
P̃(f , χ)

)
= ∂Ũ

(
P̃(g, χ)

)
+ λr ·Q(f ,g, χ).

(b) For either choice of HMF ? ∈ {f ,g} and at the Hecke character χ = χ0 ·χ†,

χ†

(
dκs−1

cy LDis
p,Σ(?, ρ0)

ds

)∣∣∣∣∣
s=1

=
χ
(
d

(p)
F

)
G
(
χ
)√
NF/Q

(
DE/FNE/F (fχ)

)
χ(DE/F )∏

p|p αp(?)ordp(NE/F (fχ))

× EÑ (?, χ)−1 ·
∏
p|p

∏
P|p

(
1− χ(P)

αp(?)

)
× 2

cE

((
∂Ũ
(
P̃(?, χ)

)
, ∂Ũ

(
P̃(?, χ−1)

)))
Ũ,E

where the scalar cE := ζF (2)
(π/2)[F :Q]|DE |1/2L(1,ηE/F )

6= 0 is independent of ? and χ, and((
−,−

))
Ũ,E

: H1
f

(
E ⊗Qp,Tap

(
JacXŨ

)ord

(χ)

)
×H1

f

(
E ⊗Qp,Tap

(
JacXŨ

)ord

(χ−1)

)
→ Qp

denotes the p-adic height pairing of Perrin-Riou et al (e.g. see [21, Section 1.2]).

Before giving the demonstration of this result, it is important to point out that
for a p-ordinary GF -lattice T, the p-adic height pairing is between H1

f

(
E ⊗Qp,T

)
and H1

f

(
E ⊗ Qp,T∗(1)

)
. In particular, if T = Tap

(
JacXŨ

)
⊗ χ then its Kummer

dual is isomorphic to Tap
(
JacXŨ

)
⊗ χ−1 because Jacobian varieties are auto-dual;

therefore, cutting out the ordinary parts, the height pairing reduces to the above.

Proof. We begin with the first assertion. Let us write hord
Ũ

= hord
(
U0(Ñ);OK

)
for the Hecke algebra acting on the ordinary part of the jacobian of XU0(Ñ), taking

coefficients in OK. In particular for ? ∈ {f ,g}, the composition of the projection

map from JacXŨ to A? with the homomorphism depŨU? from A? back up to JacXŨ

is obtained by tensoring (over hord
Ũ

) by the integral domain hord
Ũ

/
I?, where the ideal

I? :=
[
T (q)− C(q, ?), 〈q〉 − ω(q) if q + Ñ = OF , and U(q) if q + Ñ 6= OF

]
.

In other words, the cocycle ∂Ũ
(
P̃(?, χ)

)
∈ H1

f

(
E ⊗ Qp,Tap

(
JacXŨ

)ord⊗ χ
)

will

coincide exactly with the image of
∑
t∈Pic(Oc) χ(t) · πJacXŨ

(
ιξ(t · x)

)
⊗ 1 under ∂Ũ

in the specialisation H1
f

(
E ⊗Qp,Tap

(
JacXŨ

)ord⊗ χ
)
⊗hord

Ũ

hord
Ũ

/
I?.

To establish the congruence between ∂Ũ
(
P̃(f , χ)

)
and ∂Ũ

(
P̃(g, χ)

)
modulo λr,

we introduce the ideals ‘I?,λr ’ generated over hord
Ũ

by I? and the element λr ∈ OK.
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For the HMF ? = f , this alternative description for the image of ∂Ũ
(
P̃(f , χ)

)
above

means that ∂Ũ
(
P̃(f , χ)

)
mod λr is equal to∑

t∈Pic(Oc)

χ(t)·∂Ũ◦πJacXŨ

(
ιξ(t·x)

)
⊗1 ∈ H1

f

(
E ⊗Qp,Tap

(
JacXŨ

)ord

(χ)

)
⊗hord

Ũ

hord
Ũ

/
If ,λr .

Likewise for the HMF ? = g, the 1-cocycle ∂Ũ
(
P̃(g, χ)

)
mod λr will equal∑

t∈Pic(Oc)

χ(t)·∂Ũ◦πJacXŨ

(
ιξ(t·x)

)
⊗1 ∈ H1

f

(
E ⊗Qp,Tap

(
JacXŨ

)ord

(χ)

)
⊗hord

Ũ

hord
Ũ

/
Ig,λr .

But Hypothesis (f ≡ g (λr)) automatically implies C(q, f) ≡ C(q,g) mod λr at

all primes qCOF satisfying q+Ñ = OF , in which case If ,λr and Ig,λr are the same.

Thus ∂Ũ
(
P̃(f , χ)

)
and ∂Ũ

(
P̃(g, χ)

)
must be congruent mod λr, which proves (a).

To show that assertion (b) is true, a simple direct calculation reveals that((
∂Ũ
(
P̃(?, χ)

)
, ∂Ũ

(
P̃(?, χ−1)

)))
Ũ

=
((

prŨA? ◦ ∂Ũ
(
P̃(?, χ)

)
, prŨA? ◦ ∂Ũ

(
P̃(?, χ−1)

)))
U?

=
((
∂U? ◦ prŨA?

(
P̃(?, χ)

)
, ∂U? ◦ prŨA?

(
P̃(?, χ)

)))
U?

and then applying Lemma 3.2:

∂U?◦ prŨA?
(
P̃(?, χ)

)
=
∏
q|Ñ

(
1− C(q, ?)χ(Q) + χ2(Q)ω(q) · NF/Q(q)

)
· ∂U?

(
P(?, χ)

)
,

∂U?◦ prŨA?
(
P̃(?, χ)

)
=
∏
q|Ñ

(
1− C(q, ?)χ(Qc) + χ2(Qc)ω(q) · NF/Q(q)

)
· ∂U?

(
P(?, χ)

)
.

The product of these two sets of Euler factors above yields the (degree four) factor

L(Ñ)

(
?, χ, 0

)
=
∏

q|Ñ Lq

(
? ⊗IndFE(χ),NF/Q(q)−s

)∣∣∣
s=0

, which therefore implies((
∂Ũ
(
P̃(?, χ)

)
, ∂Ũ

(
P̃(?, χ−1)

)))
Ũ

= L(Ñ)

(
?, χ, 0

)
×
((
P(?, χ),P(?, χ−1)

))
A?
.

Writing out in full the p-adic Gross-Zagier formula from [12, Theorem B],((
P(?, χ),P(?, χ−1)

))
A?

=
cE
2
· Zop(χ)−1 × χ†

(
dκs−1

cy LDis
p,∅(?, ρ0)

ds

)∣∣∣∣∣
s=1

where Zop(χ) =
χ
(
d

(p)
F

)
G
(
χ
)√
NF/Q

(
DE/FNE/F (fχ)

)
χ(DE/F )∏

p|p αp(?)
ordp(NE/F (fχ)) ·

∏
p|p

∏
P|p

(
1− χ(P)

αp(?)

)
.

As an immediate consequence, one deduces that((
∂Ũ
(
P̃(?, χ)

)
, ∂Ũ

(
P̃(?, χ−1)

)))
Ũ

=
cE · L(Ñ)

(
?, χ, 0

)
2 · Zop(χ)

· χ†
(

dκs−1
cy LDis

p,∅(?, ρ0)

ds

)∣∣∣∣∣
s=1

.

If we switch between Σ and the empty set ∅, the interpolation rule in Equation
(2.2) yields the identity

χ†

(
dκs−1

cy LDis
p,∅(?, ρ0)

ds

)∣∣∣∣∣
s=1

= χ†

(
dκs−1

cy LDis
p,Σ(?, ρ0)

ds

)∣∣∣∣∣
s=1

× L(Ñ)

(
?, χ, 1

)−1
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where L(Ñ)

(
?, χ, 1

)
=
∏

q|Ñ Lq

(
? ⊗IndFE(χ),NF/Q(q)−s

)∣∣∣
s=1

.

Lastly, observing that
L

(Ñ)
(?,χ,0)

L
(Ñ)

(?,χ,1) = EÑ (?, χ), the proof of (b) is complete. �

We are now ready to give the demonstration of the main result in this section.
We will also indicate how Theorems 2.2 and 3.1 imply (as special cases) the results
stated in the Introduction, for the congruent elliptic curves A1 and A2 over Q.

PROOF OF THEOREM 3.1. Statement (i) follows immediately from the simple
observation that if the base character χ0 satisfies Hypothesis (Odd), then so does
χ = χ0 · χ† for any choice of anticyclotomic (and finite order) character χ† on ΓE .

To show statement (ii), recall from [21, p167] that the p-adic height takes values

in logp(γ0) ·
∏

P|p #Ã?(OE/P)−2 · Zp ⊂ Qp, and is naturally a Zp-bilinear pairing.

Applying Lemma 3.3(a) to P̃(?, χ) and P̃(?, χ−1), one immediately deduces

((
∂Ũ
(
P̃(f , χ)

)
, ∂Ũ

(
P̃(f , χ−1)

)))
Ũ,E

=
((
∂Ũ
(
P̃(g, χ)

)
, ∂Ũ

(
P̃(g, χ−1)

)))
Ũ,E

+ λr ·
(((
∂Ũ
(
P̃(g, χ)

)
, Q
(
f ,g, χ−1

)))
Ũ,E

+
((
Q
(
f ,g, χ

)
, ∂Ũ

(
P̃(g, χ−1)

)))
Ũ,E

+ λr ·
((
Q
(
f ,g, χ

)
, Q
(
f ,g, χ−1

)))
Ũ,E

)
which means that

((
∂Ũ
(
P̃(?, χ)

)
, ∂Ũ

(
P̃(?, χ−1)

)))
Ũ,E

modulo logp(γ0) · λr−r0 must

be independent of the choice of HMF ? ∈ {f ,g}.
Now by applying Lemma 3.3(b), one obtains the following congruence for the

period-modified p-adic L-functions:

EÑ (f , χ) · χ†
(

dκs−1
cy LDis

p,Σ(f , ρ0)

ds

)∣∣∣∣∣
s=1

≡ EÑ (g, χ) · χ†
(

dκs−1
cy LDis

p,Σ(g, ρ0)

ds

)∣∣∣∣∣
s=1

mod
2

cE
· logp(γ0) · λr−r0 · OK,χ

since for each choice of HMF ? ∈ {f ,g}, the p-adic multiplier term

Zop(?, χ) =
χ
(
d

(p)
F

)
G
(
χ
)√
NF/Q

(
DE/FNE/F (fχ)

)
χ(DE/F )∏

p|p αp(?)ordp(NE/F (fχ))

∏
p|p

∏
P|p

(
1− χ(P)

αp(?)

)

is an algebraic number satisfying the congruence Zop(f , χ) ≡ Zop(g, χ) modulo λr.

However Lp,Σ
(
?, ρ0

)
=

Ω
aut,(1)
∞,K (?)

Ω
aut,(0)
∞,K (?)

× LDis
p,Σ

(
?, ρ0

)
, so defining δE := 2

cE
· Ω

aut,(1)
∞,K (?)

Ω
aut,(0)
∞,K (?)
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which does not depend on the choice4 of cusp form ?, one thereby concludes

EÑ (f , χ) · χ†
(

dκs−1
cy Lp,Σ(f , ρ0)

ds

)∣∣∣∣∣
s=1

≡ EÑ (g, χ) · χ†
(

dκs−1
cy Lp,Σ(g, ρ0)

ds

)∣∣∣∣∣
s=1

mod δE · logp(γ0) · λr−r0 · OK,χ
thus completing the proof of Theorem 3.1(ii). �

Remarks. (a) We should point out that the special values of the derivatives of
the p-adic L-functions Lp,Σ(f , ρ0) and Lp,Σ(g, ρ0) lie inside δE ·logp(γ0)·λ−r0 , so we
should get a non-trivial congruence. If we want to swap the automorphic periods
with motivic periods, we consequently obtain a congruence modulo λr · Lf ,g where
the lattice Lf ,g ⊂ Cp is generated by the values of the motivic p-adic L-functions.

(b) Suppose we are in the situation of the Introduction, so that A1 and A2 are
congruent elliptic curves modulo pr. In the odd case, applying Theorem 3.1 to the

base-change f of A1 and base-change g of A2, yields a congruence mod pr · L(1)
A1,A2

where L(1)
A1,A2

contains the special values of each L(1)
p (Ai/E, χ) (see Theorem 1.4).

(c) Likewise in the even case, applying Theorem 2.2 to the base-change cusp

forms f and g as in (b), this time we obtain a congruence modulo pr ·L(0)
A1,A2

where

L(0)
A1,A2

contains the values of L(0)
p (Ai/E, χ) for each i ∈ {1, 2} (see Theorem 1.3).

4. Logarithm maps and Coleman integration

In this section, we continue to assume Hypotheses (f ≡ g (λr)) and (Odd) hold.
We also assume that p splits in E. Generalizing the work of Bertolini-Darmon-
Prasanna [1], Liu, Zhang and Zhang have constructed a p-adic L-function on Γanti

E

interpolating the complex Rankin-Selberg L-function of ? twisted by characters on
Γanti
E of positive weight, for each ? ∈ {f ,g} (see in particular [18, Theorem 3.2.10]).

At every finite order character χ, the value of this p-adic L-function is related to
the logarithm of the corresponding χ-twisted Heegner point P(?, χ) attached to
either HMF ? ∈ {f ,g}, as given by Theorem 3.3.2 in op. cit.

Following the strategy of [17], we shall show that these special values satisfy
a congruence relation under (f ≡ g (λr)) via Coleman integration. However, at
present, we do not know whether the p-adic L-function of Liu-Zhang-Zhang is an
Iwasawa function, so it is unclear to us whether an analogue of Theorem 2.2 holds.

We first recall the notion of Coleman primitives from [7]. Let K be a local
field contained in Cp, X a quasiprojective scheme over K and U ⊂ Xrig an affinoid
domain with good reduction. We assume ω is a closed rigid analytic 1-form on U .
Suppose that there exists a Frobenius endomorphism φ on U (that is, it becomes
a power of the Frobenius map on the reduction of U), a locally analytic function

4For the record, the explicit form of the factor δE ∈ Q× can be calculated via the formula

δE =
4|DE |1/2 · ζF (2)−1L(1, ηE/F )2 · L

(
1, ad(?)

)
·
〈
?̃, ?̃
〉
R×

|DF |1/2 · (16π3)[F :Q] ·Vol
(
X
U0(Ñ)

)
· 〈φ?, φ?〉Pet

.
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Fω on U , and a polynomial P (X) ∈ Cp[X] whose zeroes are not roots of unity,
satisfying the twin conditions:

• dFω = ω;
• P (φ∗)Fω is rigid analytic.

Then Fω is called a Coleman primitive of ω. Furthermore, it is independent of the
polynomial P (X), and is uniquely determined up to an additive constant.

We will require the following technical result of Liu-Zhang-Zhang.

Proposition 4.1 ([18], Proposition A.0.1). Let K, U and X be given as above.
Assume A is an abelian variety over K which either has totally degenerate reduction
or potentially good reduction. Then for a morphism f : X → A and a differential
form ω ∈ Ω1(A/K), the restriction to U of the pullback f∗ω admits f∗ logω

∣∣
U

as

a Coleman primitive, where logω : A(Cp) → Cp denotes the p-adic logarithmic
attached to ω.

We next briefly review the definition of p-adic HMFs. Let R be a ring which
is complete and separated in its p-adic topology, and C is a fractional ideal of OF .
Then a p-adic C-HMF over R is a rule h, which assigns to every isomorphism class
of triples (A,C,$) a value in R, and satisfies some standard automorphy conditions
(we refer the reader to [16, §1.9] and [13, Chapter 5, §6] for the precise details).
Here A is a C-polarized HBAV over R equipped with real multiplications by F , C
denotes a level structure on A, and $ is a nowhere vanishing differential on A.

In particular, such p-adic C-Hilbert modular forms have q-expansions indexed
by totally positive elements in ab where C = a

b . Recall that we are in the odd case,
so again B/F denotes the incoherent quaternion algebra from Section 3, and for

each compact open subgroup U ⊂ B×AF the algebraic curve XU has as its complex

points XU (C) = B\H± × B̂×/U . The space of p-adic modular forms over XU is
then given by the direct sum of p-adic C-HMFs, as C runs through a complete set
of coset representatives for the narrow class group of F .

Let h be a parallel weight-two p-adic HMF over OK on XŨ in the sense of [16].

Because it has weight 2, we may identify h with a differential ωh ∈ H0(XŨ ,Ω
1
XŨ

).

Let ι̃ : XŨ → JacXŨ be the Abel-Jacobi map: we shall write ω#
h ∈ Ω1

JacXŨ
for the

differential satisfying ι̃∗ω#
h = ωh.

Let Θ be the Atkin-Serre differential operator of [18, Definition 2.4.7] – this
corresponds to the composition of θ(σ) as σ runs through all embeddings F ↪→ Q,
where θ(σ) is defined as in [16, Corollary 2.6.25]. The Θ-operator shifts the weight
of a HMF by exactly 2, i.e. the weight of Θ(h) equals (kσ + 2)σ:F↪→Q if the weight

of h is (kσ)σ:F↪→Q. On q-expansions it has the effect C(q,Θ(h)) = NF/Q(q)C(q,h)

for all q (see [16, (2.6.27)]). If h is of parallel weight two, let Fh denote the
Coleman primitive of ωh ∈ H0(XŨ ,Ω

1
XŨ

) as given by Proposition 4.1. In particular,

dFh = ωh. On comparing q-expansions, we see that and ΘFh = h. Note that
Fh is a HMF of parallel weight zero since h is of parallel weight two. Applying
Proposition 4.1 above, we obtain the following important consequence.
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Corollary 4.2. If P ∈ XŨ (Cp), then

Fh (P) = logω#
h

(P) .

Proof. We simply take f , X, A and ω in Proposition 4.1 to be ι̃, XŨ , JacXŨ

and ω#
h respectively, and the rest follows immediately. �

We shall regard f and g as p-adic HMFs on XUf
and XUg respectively, as well

as on XŨ of course. If one makes a choice of HMF ? ∈ {f ,g}, then recall from
Definition 1.6 the notation ?̃ refers to the depleted form on XU? obtained from ?.
For a p-adic HMF h and an OF -ideal I, we denote the I-depletion of h by h(I).

Lemma 4.3. The Hypothesis (f ≡ g (λr)) implies that

Ff̃ (p) = Fg̃(p) + λr ·
∑
j

cj · Fh
(p)
j
.

Proof. We follow [17, proof of Theorem 3.9]. Since the operator Θ is OK-
linear, one immediately deduces that

(4.1) Θnf̃ (p) = Θng̃(p) + λr ·
∑
j

cj ·Θnh
(p)
j

for all integers n > 1. Note that Θn : qm 7→ mnqm within the q-expansion of h(p),
and recall from [13, Corollary 5.1] that the q-expansion map over C is injective.
Because we have p-depleted our HMFs and the map n 7→ mn is continuous in the
p-adic topology whenever p - m, the HMFs Θnh(p) varies p-adically continuously
in n. If we define

Θ−1h(p) := lim
n→−1

Θnh(p)

where the limit is taken under the p-adic topology, then Θ−1h(p) = Fh(p) on com-
paring q-expansions. Thus, our result follows on letting n→ −1 in (4.1). �

Theorem 4.4. Under the Hypothesis (f ≡ g (λr)) , we have the congruence∏
q|pÑ

(
1− C(q, f)

χ(Q)

NF/Q(q)
+
χ2(Q)ω(q)

NF/Q(q)

)
· logAf

(P(f , χ))

≡
∏
q|pÑ

(
1− C(q,g)

χ(Q)

NF/Q(q)
+
χ2(Q)ω(q)

NF/Q(q)

)
· logAg

(P(g, χ)) mod λr · OK,χ.

Proof. The Hypothesis (f ≡ g (λr)) together with Lemma 4.3 tell us that

F
(pÑ)
f and F

(pÑ)
g must be congruent mod λr, as weight-zero p-adic HMFs on XŨ .

In particular,

(4.2) F
(pÑ)
f (P) ≡ F (pÑ)

g (P) mod λr · OCp

for every P ∈ XŨ (Cp).
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Let x = (A,C,$) ∈ XŨ be any CM-point, and consider t ∈ Pic(Oχ) as in §3.
If h is a weight-zero p-adic HMF on XŨ with central character ω, recall that

h(q) =

(
1− T (q)V(q) +

〈q〉V(q)

NF/Q(q)

)
h if q ∈ Spec(OF ) with q +Nh = OF ;

otherwise, it is given by
(
1−U(q)◦V(q)

)
h if q+Nh 6= OF . Our calculations on the

images of x under these operators, which are described in the proof of Lemma 3.2,
directly imply that∑

t∈Pic(Ocχ )

χ(t)h(pÑ)(t ∗ x)(4.3)

=
∏
q|pÑ

(
1− C(q,h)χ(Q) +

χ2(Q)ω(q)

NF/Q(q)

)
×

∑
t∈Pic(Ocχ )

χ(t)h(t ∗ x)

(see also [17, Lemma 3.6] for the same result for p-adic elliptic modular forms).
Recall once more that Θ : qm 7→ mqm on q-expansions, so for either ? ∈ {f ,g}

we have C(q, F?) = C(q,?)
NF/Q(q) at each q|pÑ . Hence we may rewrite Equation (4.3) as∑

t∈Pic(Ocχ )

χ(t)F
(pÑ)
? (t ∗ x)

=
∏
q|pÑ

(
1− C(q, ?)

χ(Q)

NF/Q(q)
+
χ2(Q)ω(q)

NF/Q(q)

)
×

∑
t∈Pic(Ocχ )

χ(t)F? (t ∗ x)

and upon combining this with (4.2), one therefore deduces∏
q|pÑ

(
1− C(q, f)

χ(Q)

NF/Q(q)
+
χ2(Q)ω(q)

NF/Q(q)

) ∑
t∈Pic(Ocχ )

χ(t)Ff (t ∗ x) ≡

∏
q|pÑ

(
1− C(q,g)

χ(Q)

NF/Q(q)
+
χ2(Q)ω(q)

NF/Q(q)

) ∑
t∈Pic(Ocχ )

χ(t)Fg (t ∗ x) mod λr · OK,χ.

Finally, Corollary 4.2 informs us that∏
q|pÑ

(
1− C(q, f)

χ(Q)

NF/Q(q)
+
χ2(Q)ω(q)

NF/Q(q)

)
· logω#

f
(P(f , χ))

≡
∏
q|pÑ

(
1− C(q,g)

χ(Q)

NF/Q(q)
+
χ2(Q)ω(q)

NF/Q(q)

)
· logω#

g
(P(g, χ)) mod λr · OK,χ.

However logω#
?

= logA? by their definition, so the proof is now complete. �

Remarks. (a) For those readers familiar with the notation of Liu-Zhang-Zhang
in [18, Theorem 3.3.2], their p-adic Waldspurger formula states that

logA+
?

(P(?, χ)) · logA−?

(
P(?, χ−1)

)
= (Euler factor at p) ·χ

(
L(A?)

)
·αχ

(
f?,+, f?,−

)
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where L(A?) denotes the p-adic L-function attached to ? in [18, Theorem 3.2.10],
and αχ

(
f?,+, f?,−

)
is a distinguished generator for the K-line

HomA∞×E

(
Π+
? ⊗ χ,K

)
⊗K HomA∞×E

(
Π−? ⊗ χ−1,K

)
.

(b) Applying Theorem 4.4 directly to logA?
(
P(?, χ±1)

)
, a simple calculation

reveals that

E1,pÑ (f)× logAf
(P(f , χ)) · logAf

(
P(f , χ−1)

)
≡ E1,pÑ (g)× logAg

(P(g, χ)) · logAg

(
P(g, χ−1)

)
mod λr · OK.

(c) Under the strong assumption that L(Af ) and L(Ag) correspond to bounded
Iwasawa functions (which is so far only known over F = Q), as a corollary (b) yields
a congruence modulo λr linking together the Σ-imprimitive p-adic L-functions
LΣ(Af ) and LΣ(Ag), for suitably chosen isomorphisms φ? between the local field
K and the lines

HomA∞×E

(
Π+
? ⊗ χ,K

)
⊗K HomA∞×E

(
Π−? ⊗ χ−1,K

)
⊗FM

(
Lie(A+

? )⊗FM Lie(A−? )
)
.

(d) If A1 and A2 are congruent elliptic curves mod pr as in §1, one thereby

obtains a congruence between LΣ(A1) and LΣ(A2) modulo pr · L\A1,A2

[[
Γanti
E

]]
,

again assuming that L(Ai) for i = 1, 2 correspond to bounded Iwasawa functions,

and where L\A1,A2
is the OCp-submodule generated by the values χ

(
L(A1)

)
and

χ
(
L(A2)

)
as χ† ranges over Hom

(
Γanti
E ,Q×p

)
– we refer the reader to Theorem 1.5

for the precise statement.
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