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Abstract. Neural networks have been successfully used as classification
models yielding state-of-the-art results when trained on a large number
of labeled samples. These models, however, are more difficult to train suc-
cessfully for semi-supervised problems where small amounts of labeled
instances are available along with a large number of unlabeled instances.
This work explores a new training method for semi-supervised learning
that is based on similarity function learning using a Siamese network to
obtain a suitable embedding. The learned representations are discrimi-
native in Euclidean space, and hence can be used for labeling unlabeled
instances using a nearest-neighbor classifier. Confident predictions of un-
labeled instances are used as true labels for retraining the Siamese net-
work on the expanded training set. This process is applied iteratively. We
perform an empirical study of this iterative self-training algorithm. For
improving unlabeled predictions, local learning with global consistency
[22] is also evaluated.

Keywords: Semi-supervised learning, Siamese networks, Triplet loss,
LLGC.

1 Introduction

The modern world generates vast amounts of data and provides many opportu-
nities to exploit it. However, frequently this data is complex, noisy, and lacks
obvious structure. Therefore, explicit modeling of, for example, its distribution
is too challenging for a human agent. On the other hand, a human can specify an
explicit procedure, i.e., an algorithm, for how to construct such a model. Machine
learning (ML) is concerned with algorithms that enable computers to learn from
data in this way, especially algorithms for prediction. Many ML algorithms need
labeled data for such a task, but it is common that fewer labeled data are avail-
able than unlabeled ones. Manual labeling is costly and time-consuming. Hence,
there is an ever-growing need for ML methods to work with a limited amount of
labeled data and also make efficient use of the side information available from
unlabeled data. Algorithms designed to do so are known as semi-supervised
learning algorithms.

Supervised learning algorithms employ labeled data to predict class labels
for unlabeled examples accurately. Unsupervised learning algorithms search for
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structure in data, which can then be used as a heuristic to infer labels for
these examples, on the basis of assumptions about the structure of data. Semi-
Supervised learning (SSL) algorithms lie somewhere between supervised and
unsupervised learning. SSL methods are designed to work with labeled L =
{(x1, y1), (x2, y2), ..., (x|L|, y|L|)} and unlabeled instances U = {x′

1, x
′

2, ..., x
′

|U |},
where X and Y relate to an input space and output space, xi, x

′

j ∈ X(i =
1, 2, ..., |L|, j = 1, 2, ..., |U |) are examples and yi ∈ Y are labels of xi and
Y = {1, 2, 3, ..., c}, c being the number of classes. Usually, these methods as-
sume a much smaller number of labeled instances than unlabeled ones i.e.,
|L| ≪ |U |, because unlabeled instances are more useful when we have a few
labeled instances. SSL has proven to be useful especially when we are dealing
with anti-causal or confounded problems [15].

Without making any assumptions on how the inputs and outputs are related
it is impossible to justify semi-supervised learning as a principled approach [4].
Like the authors in that paper, we make the same three assumptions:

1. If two points x1, x2 are close in a high-density region, then their correspond-
ing outputs y1, y2 should also be close.

2. If points are in the same structure (referred to as cluster or manifold), they
are likely to be of the same class.

3. The decision boundary between classes should lie in a low-density region of
input space.

In this work, we will consider a new training method designed to be used with
deep neural networks in the semi-supervised learning setting. Instead of the usual
approach of learning a direct classification model based on cross-entropy loss,
we will use the labeled examples for learning a similarity function between in-
stances, such that instances of the same class are considered similar and those
instances belonging to different classes are considered dissimilar. Under this sim-
ilarity function, which is parameterized by a neural network, the features (em-
beddings) of labeled examples will be grouped together according to the class
labels, in Euclidean space. In addition, we will use these learned embeddings to
assign class labels to unlabeled examples. We do this using a simple nearest-
neighbor classifier. Following that, confident predictions for unlabeled instances
are added to the labeled examples for retraining of the neural network itera-
tively. In this way, we are able to achieve significant performance improvements
over supervised-only training.

2 Related Work

Semi-supervised learning has been under study since the 1970s [12]. Expectation-
Maximization (EM) [14] works by labeling unlabeled instances with the current
supervised model’s best prediction in an iterative fashion (self-learning), thereby
providing more training instances for the supervised learning algorithm. Co-
training [1] is a similar approach, where two models are trained on two separate
subsets of the data features. Confident predictions from one model are then used
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as labeled data for the other model. Co-EM [2] combines co-training with EM and
achieved better results than either of them. Another, graph-based SSL method,
LLGC (Local Learning with Global Consistency) [22], works by propagating
labels from labeled to unlabeled instances until labels are stable, maintaining
local and global consistency.

There is a substantial amount of literature available on SSL techniques using
deep neural network based on autoencoders [16,11], generative adversarial net-
works (GAN) [18,6,20] and based on regularization [9,17,13]. The Pseudolabel
[10] approach is a deep learning version of self-learning with an extra loss from
regularization and the reconstruction of a denoising autoencoder.

Our method builds on work investigating similarity metric learning using
neural networks. [5] used a network with the contrastive loss for face verification
in a supervised fashion. [19] suggested network training to be based on triplets of
examples. This work was extended to the semi-supervised paradigm [21] for the
image classification task. [7] tries to minimize the sum of cross-entropy and ratio
loss between class indicators (sampled from labeled examples for each class) and
the intra-class distances of instances calculated based on embeddings.

We train our network based on triplets of images and use the triplet margin
loss [19]. We found this to perform better than the contrastive loss or the ratio
loss in our experiments, while the network is trained in a self-learning fashion.
For improving intermediate predictions, we use LLGC [22] in order to get better
labels for unlabeled instances in subsequent iterations. Although triplet networks
and LLGC are not new, this is the first attempt, to our knowledge, of combining
these two approaches for semi-supervised learning.

3 Siamese Networks

Siamese networks [3] are neural networks that are particularly efficient when we
have a large number of classes and a few labeled instances per class. Siamese
networks can be thought of multiple networks with identical copies of the same
function, with the same weights. They can be employed for training a similarity
function given labeled data. Fig. 1 shows a simple network architecture based
on convolutional (CONV) and max-pooling (MP) layers. An input example is
passed to the network for computing the embeddings. Different losses are used
for training Siamese networks, such as contrastive loss, margin-based loss, and
triplet loss. Network parameters are updated according to the loss calculated on
embeddings.

3.1 Triplet Loss

The triplet loss [19] has been used for face recognition. A triplet’s anchor example
a, positive example p, and negative example n are provided as a training example
to the network for getting corresponding embeddings. During optimisation of the
network parameters, we draw all possible triplets from labeled examples based
on class labels. For each mini-batch used in stochastic gradient descent, all valid
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Fig. 1: Network Architecture

triplets(i, j, k) are selected where labels[i] = labels[j], i ̸= j and labels[i] ̸=
labels[k]. Then the loss is calculated according to the following equation using
the Euclidean distance d(., .) between the embedded examples:

L = max(d(a, p)− d(a, n) +m, 0) (1)

where m is the so-called ”margin” and constitutes a hyperparameter.
As illustrated in Fig. 2, the triplet loss attempts to push away the embed-

ded negative example n from the embedded anchor example a based on a given
margin m and the given positive example p. Depending on the location of the
negative example with respect to the anchor and the positive example, it is
possible to distinguish between hard negative examples, semi-hard negative ex-
amples, and easy negative examples. The latter are effectively ignored during
optimisation because they yield the value zero for the loss.

A P

Nmargin
Easy NegativesSemi-hard Negatives

Hard Negatives
m

A: Anchor
P: Positive
N: Negative

Fig. 2: Triplet loss

3.2 Self-learning using Siamese networks
In the first iteration of our semi-supervised learning approach, to be able to la-
bel (some of) the unlabeled examples instances, the Siamese network is trained
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on labeled examples only, using triplet loss. Then the standard nearest neigh-
bor classifier is used to predict labels for the unlabeled examples and a fixed
percentage p of unlabeled examples is chosen based on their distance to the la-
beled instances and added to the set of labeled examples for the next iteration.
Throughout, embedded data is used to calculate distances. For more details see
the pseudo-code in Listing 1.

Algorithm 1 Proposed approach based on Siamese self-training
1: Input: Labeled examples (xL, yL), Unlabeled examples xU , number of meta-

iterations i and selection percentage p
2: for 1 to i do
3: train_siamesenetwork(xL, yL)
4: embedU = siamesenetwork(xU )
5: embedL = siamesenetwork(xL)
6: labelsU , distU = KNN(embedU , embedL, yL)
7: sorted_distU , sorted_labelsU = sort(distU , labelsU )
8: xnew, ynew = select_top(sorted_distU , sorted_labelsU , p)
9: xL, yL = concat((xL, yL), (xnew, ynew))

10: xU = delete_from(xU , xnew)
11: end for

4 Local Learning with Global Consistency (LLGC)

We also investigate local learning with global consistency [22] in addition to the
nearest-neighbor classifier. LLGC works by propagating label information to the
neighbors of an example. The goal of LLGC is to predict labels for unlabeled
instances. The algorithm initializes a matrix Yn×c to represent label information,
where Yij = 1 if example i is labeled as j, and otherwise Yij = 0. We implement a
little variation here for the unlabeled examples: instead of using Yij = 0 for all j
when i is unlabeled, we use predicted labels obtained with the nearest-neighbour
classifier after training the Siamese network.

LLGC is based on calculating an adjacency matrix. This adjacency matrix is
then used to establish a matrix S that is applied to update the label probabilities
for the unlabeled examples. The adjacency matrix is calculated using Eq. 2 by
employing embeddings f(xi) and f(xj) for each pair of two examples xi and xj ,
obtained from the Siamese network. The parameter σ is a hyper-parameter.

Wij =

{
e−σ×|f(xi)−f(xj)|2 , if i ̸= j

0 if i = j.
(2)

The matrix S is computed as:

S = D−1/2 ×W ×D−1/2 (3)
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where D is a diagonal matrix: Di =
∑n

j=1 Wij . The initial matrix of label prob-
abilities is set to F (0) = Y , and the probabilities are updated by:

F (t+ 1) = S.F (t)× α+ (1− α)× Y (4)

where α ∈ [0, 1) is a hyper-parameter for controlling the propagation of label
information. The above operation is repeated till convergence. Finally, labels for
the unlabeled instances are calculated as:

yi = argmax
j≤c

Fij (5)

For efficiently using unlabeled instances, the Siamese network is first trained
on labeled examples only, using triplet loss. Then the nearest-neighbor classifier
is used to predict labels for unlabeled examples. Then, following that, labeled
and unlabeled embeddings along with labels are passed to LLGC. After a certain
number of iterations of LLGC, a fixed percentage p of unlabeled examples are
chosen based on their LLGC score and added to the labeled examples for the
next iteration. For more details see the pseudo-code in Listing 2.

Algorithm 2 Proposed approach based on LLGC self-training
1: Input: Labeled examples (xL, yL), Unlabeled examples xU , number of meta-

iterations i, selection percentage p, α and σ parameters for LLGC.
2: for 1 to i do
3: train_siamesenetwork(xL, yL)
4: embedU = siamesenetwork(xU )
5: embedL = siamesenetwork(xL)
6: labelsU = KNN(embedU , embedL, yL)
7: LLGC_labels, LLGC_score = LLGC(embedL, embedU , [yL, labelsU ], σ, α)
8: labelsU = LLGC_labels[len(xL) :]
9: xnew, ynew = select_top(LLGC_score, p, xU , labelsU )

10: xL, yL = concat((xL, yL), (xnew, ynew))
11: xU = delete_from(xU , xnew)
12: end for

5 Experiments

We consider four standard image classification problems for our evaluation. For
all experiments, a small subset of labeled examples was chosen according to
standard semi-supervised learning practice, with a balanced number of examples
from each class, and the rest were considered as unlabeled. Final accuracy was
calculated on the standard test split for each dataset. No data augmentation
was applied to the training sets. Siamese networks were trained using triplet loss
with margin m = 0.3 for all datasets.
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A simple convolutional network architecture was chosen for each dataset to
ensure performance achieved was due to the proposed method and not the net-
work architecture. For more details about the network architectures, see Table
1. Layer descriptions use (feature-maps, kernel-size, stride, padding) for convo-
lutional layers and (pool-size, stride) for pooling layers. The simple model is
used for MNIST, Fashion MNIST, and SVHN, and produces 16-dimensional em-
beddings, while the CIFAR-10 model produces 64-dimensional embeddings. We
trained the networks using mini-batch sizes 50, 100, and 200. We found that
batch size 50 was insufficient and 200 did not yield significant improvements
compared to batch size 100. Batch size = 100 is used for all experiments, with
Adam [8] as the optimizer for updating network parameters for 200 epochs. Our
proposed approaches Siamese self-training (Algorithm 1) and LLGC self-training
(Algorithm 2) respectively were run for 25 meta-iterations. For LLGC, α = 0.99
is used in all experiments, while σ is optimized for each dataset. The final test
accuracy is computed using a k-NN classifier with k = 1 for simplicity. Our re-
sults were averaged over 3 random runs, using a different random initialization
of the Siamese network parameters for each run and random selection of initially
labeled examples except SVHN. We set a baseline by (a) training the network on
the small number of the labeled instances only, and by (b) using all the labeled
instances. These two baselines should provide good empirical lower and upper
bounds for the semi-supervised error rates.

Table 1: Network Model

Simple(#parameters=163908) CIFAR-10(#parameters=693792)
INPUT INPUT
Conv-Relu(32,7,1,2) Conv-Relu-BN(192,5,1,2)
Max-Pooling(2,2) Conv-Relu-BN(160,1,1,2)
Conv-Relu(64,5,1,2) Conv-Relu-BN(96,1,1,2)
Max-Pooling(2,2) Max-Pooling(3,2)
Conv-Relu(128,3,1,2) Conv-Relu-BN(96,5,1,2)
Max-Pooling(2,2) Conv-Relu-BN(192,1,1,2)
Conv-Relu(256,1,1,2) Conv-Relu-BN(192,1,1,2)
Max-Pooling(2,2) Max-Pooling(3,2)
Conv(4,1,1,2) Conv-Relu-BN(192,3,1,2)
Flatten() Conv-Relu-BN(64,1,1,2)

Avg-Pooling(8,1)

We now consider the datasets used in our experiments. The MNIST dataset
consists of gray-scale 28 by 28 images of handwritten digits. We select only
100 instances (10 from each class) as labeled instances initially. We apply our
algorithms with a selection percentage p = 10% and the LLGC-based method
with σ = 1.8. Table 2 shows noticeable improvements over the supervised-only
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approach when compared with the proposed semi-supervised approaches, when
using the same number of labeled examples.

Table 2: MNIST Test error %.

# labels 100-Labeled All (60000)
Supervised-only 9.73± 0.74 0.6± 0.04
Siamese self-training 3.24± 0.32 –
LLGC self-training 3.50± 0.14 –

The Fashion MNIST dataset consists of 28 by 28 gray-scale images showing
fashion items. 100 instances are considered as labeled initially. Again, we use
selection percentage p = 10% and σ = 3.2. Table 3 again shows noticeable im-
provement over the supervised-only approach when compared with the proposed
semi-supervised approaches, when using the same amount of labeled data.

Table 3: Fashion MNIST Test error %.

# labels 100-Labeled All (60000)
Supervised-only 26.72± 1.23 9.66± 0.10
Siamese self-training 23.33± 0.43 –
LLGC self-training 23.23± 0.67 –

SVHN comprises 32x32 RGB images of house numbers, taken from the Street
View House Numbers dataset. Each image can have multiple digits, but only
the digit in the center is considered for prediction. The proposed approaches
are evaluated using 1000 labeled instances initially, with selection percentage
p = 5%, and σ = 2.4. Table 4 shows noticeable improvement over the supervised-
only approach when compared to the proposed approaches when 1000 labeled
examples are used. Interestingly, purely Siamese self-training again performs
better than LLGC self-training in this case.

The CIFAR-10 dataset contains 32 by 32 RGB images of ten classes. The
proposed semi-supervised approaches are evaluated using 4000 labeled instances
initially, with selection percentage p = 5%, and σ = 2.4. Table 5 shows little
improvement over the supervised-only approach when compared to the proposed
semi-supervised approaches. Siamese self-training performs better than LLGC
self-training.

Figures 3, 4, 5 and 6 show a detailed comparison between Siamese self-
training and LLGC self-training across three different runs of all four datasets;
MNIST, Fashion MNIST, SVHN, and CIFAR-10. The accuracy curves show
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Table 4: SVHN Test error %.

# labels 1000-Labeled All (73275)
Supervised-only 30.33± 1.55 12.26± 0.52
Siamese self-training 20.09± 3.22 –
LLGC self-training 27.23± 0.99 –

Table 5: CIFAR-10 Test error %.

# labels 4000-Labeled All (50000)
Supervised-only 40.87± 0.56 21.51± 0.88
Siamese self-training 36.56± 0.74 –
LLGC self-training 40.06± 0.62 –

definite improvement with respect to the supervised-only version on all datasets
using Siamese self-training as well as LLGC self-training. However, CIFAR-10
and SVHN seem to get low or negligible additional improvement from LLGC
self-training compared to Siamese self-training only.
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Fig. 3: MNIST-100 Comparison of Siamese self-training vs. LLGC self-training.

We also tried to visualize the quality of embeddings learned using the pro-
posed method. We trained an additional model by slightly modifying the simple
model 1. In order to get a 2-dimensional embedding, two feature-maps are used
instead of 4 in the last convolutional layer, followed by average-pooling(2,2) be-
fore the final flattening layer. For this purpose, we considered MNIST. Figure 7
(a) depicts the embeddings for test instances marked in color according to their
true class after random initialization of the network. Figure 7 (b) depicts the em-
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Fig. 4: Fashion MNIST-100 Comparison of Siamese self-training vs. LLGC self-
training.
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Fig. 5: SVHN-1000 Comparison of Siamese self-training vs. LLGC self-training.
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Fig. 6: CIFAR10-4000 Comparison of Siamese self-training vs. LLGC self-
training.
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beddings for test instances after training the Siamese network with only the 100
labeled MNIST instances. It can be seen that the 10000 test examples’ embed-
dings form clusters in Euclidean space after training of the network according
to the class labels; test examples’ embeddings are largely scattered randomly
throughout the 2D space before the network is trained.

(a) Before training (b) After training

Fig. 7: MNIST-100: visualisation of 2-dimensional embeddings

6 Conclusion

In this work, we have shown how neural networks can be used to learn in a semi-
supervised setting using small sets of labeled data by replacing the classification
objective with an objective for learning a similarity function. This objective is
compliant with standard techniques of training the deep neural network and re-
quires no modification of the embedding model. For improving the intermediate
prediction of unlabeled instances, we evaluated LLGC, but this yielded little ad-
ditional benefit compared to k-NN classification alone. Using the method in this
work, we were able to achieve significant improvement compared to supervised
learning only on MNIST, Fashion MNIST and SVHN, when training on a small
subset of labeled examples, but obtained little improvement on CIFAR-10. We
speculate that instead of a fixed selection of unlabeled instances from LLGC’s
predictions, a threshold-based selection based on the LLGC score will be more
beneficial for subsequent iterations of our meta-algorithm. Also, a more robust
convolutional model may help the network in learning distinctive embeddings
and achieving state-of-the-art results for the semi-supervised setting.
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