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Abstract 

This thesis aimed to describe the relationship between suspended sediment 

concentration stimulating the turbidity caused by natural events or human activities, 

and the feeding behaviour and energetics of scallops (Pecten novaezelandiae), 

mussels (Perna canaliculus) and pipis (Paphies australis). A wide range of suspended 

sediment concentration with different organic content was used. In experiment 1, 

sediment with high organic content added to natural seston (12 - 733 mg r1) was 

used, whereas in experiment 2, sediment with very low organic content added to 

natural seston (20 - 196 mg r1) was used. Scallops enhanced the organic content of 

ingested matter by producing pseudofaeces with low organic content when the diet 

organic content had been diluted to~ 14% in both experiments. For the diet with high 

organic content, the clearance rate (the volume of water cleared of suspended 

particles) decreased with increasing sediment concentration (12 - 733 mg r 1), but 

when the diet was composed of low organic content, clearance rate increased up to a 

concentration limit of 120-140 mg r 1• Positive scope for growth was attained until 

suspended sediment concentration exceeded 190 mg r1. Similarly, mussels also 

enhanced the organic content of ingested matter by producing pseudofaeces with low 

organic content when the diet organic content had been diluted to ~ 16% in both 

experiments. The enhancement of ingested organic fraction was accomplished by two 

different feeding behaviours. When the diet had high organic content, mussels clear 

less water, reduce the volume of pseudofaeces produced, and reduce the amount of 

energy expired via low respiration rates. Consequently, the net energy gained was 

uniformly high as sediment concentrations increased to 322 mg r1• The low organic 

diet prompted high clearance rates and increase in pseudofaeces production as 

xii 



sediment concentration increased. Due to high feeding activities, energy expenditure 

was also high which was reflected in a low net energy gain. Pipis can only feed 

efficiently at very low sediment concentrations (<39 mg r1 in experiment I and 20.1 

mg r• in experiment 2). Beyond these values, pipis were unable to compensate for 

increased sediment concentration and therefore had very low scope for growth. 

From these results it was concluded that preferential selection of organic 

particles before ingestion, adjusting clearance and respiration rates, within limits, are 

the key elements that enable scallops and mussels to cope with high turbidity levels. 

Pipis have a low tolerance level to turbidity. 

The second aim of the study was to investigate the effects of resuspended 

sediments caused by dredging on seston quality (organic content and pigment 

concentration) and quantity. This was accomplished through water sampling at 

various places while dredging was in operation. The results indicated that suspended 

sediments caused by dredging had no significant effect on the seston quality and 

quantity, in relation to the seston characteristics observed naturally. 
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CHAPTER 1 

Introduction 

Turbidity is an expression of the optical property of the water that causes light to be 

scattered and absorbed rather than transmitted in straight lines (American Public Health 

Association, 1992). In water, turbidity is caused by suspended matter which include clay, 

silt, fine divided organic and inorganic matter, soluble coloured organic compounds, and 

plankton and other microscopic organisms. This suspended particulate matter (SPM) is 

commonly referred to as "seston" (Fegley et al., 1992). 

Suspended natural seston fluctuates substantially from very low to hundreds of mg 

r 1 and even more than IO g r 1 during storm events (Barille et al., 1997). Resuspended 

clay and fine silt sediments from human activities such as dredging, also affect turbidity 

level, depending on the duration and intensity of the activity and sediment characteristics 

(Ryan, 1989; Yell and Riddell, 1995). Furthermore, discharges from rivers and drainage 

systems contribute significant loads of sediment into the estuaries and open coastal waters 

affecting water quality, in particular, turbidity level (Miller, 1981; Roesner, 1982; 

Griffiths and Gladsby, 1985; Line et al., 1996). The SPM volume discharged by rivers 

ranges from very low to hundreds of tonnes per day (Griffiths and Glads by, 1985). 

High loads of suspended sediments in the water column reduce light penetration 

and alter radiation (Ellis, 1936). Thus, primary production can be adversely affected if 

resuspended sediments persist in the water column. Indeed, Sherk et al. (1974) 
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demonstrated under laboratory conditions that light attenuation caused by resuspended 

sediment significantly reduced the carbon assimilation of four phytoplankton species by 

50-90% depending on the species and the level of SPM. Accordingly, populations that 

depend on phytoplankton as a food source could be adversely affected if resuspension 

persists for a long period. In addition, high resuspension may also smother benthic 

macrofauna if high loads of SPM settle out from the water column (Foster et al., 1991 ). 

Benthic macrofauna, such as suspension feeding bivalves can dominate the 

benthic community in the estuarine and open coastal waters. For example, on Georges 

Bank, West Coast Canada, scallops (Placopecten magellanicus) account for 85 % of the 

macrofaunal biomass (Thouzeau et al., 1991). In the Baltic Sea, mussels (Mytilus edulis) 

totally dominate benthic animal biomass due to the exclusion of its major predators which 

cannot tolerate the low salinity (Kautsky and Evans, 1987). Such high densities of 

bivalves can remove significant amount of suspended particles, often depleting 

phytoplankton in the overlaying water (Wright et al., 1982; Cohen et al., 1984; Nichols, 

1985). Because of this, bivalves are regarded as important agents of sedimentation to the 

benthos (Doering et al., 1987; Kautsky and Evans, 1987). 

Increased deposition of organic matter via seston sedimentation, may increase the 

return of remineralised nutrients from sediment to the water column (Kelly and Nixon, 

1984). These nutrients can support a large portion of the phytoplankton demand. 

Consequently, benthic suspension feeders may affect populations and ecological 

processes in the marine ecosystem in general, not only by removing organic matter from 

the water column, but also through enhancing the return of nutrients (Doering et al., 

1987). This process is known as benthic-pelagic coupling (Pilditch, 1997). 
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For suspension feeders, resuspended sediment causes large variations in food 

quality and concentration (Anderson and Mayer, 1986; Grant et al., 1997). Enhanced food 

sources were reported when resuspended sediment originated from high food quality 

sediments (Wainright, 1990), whereas dilution of organic matter or phytoplankton was 

reported when sediments were comprised mostly of inorganic matter (Cranford and 

Gordon, 1992; Grant et al., 1997). However, if turbidity is above some critical level, the 

effect can be detrimental to suspension feeders as the filtration apparatus is clogged, 

inhibiting feeding and respiration (Grant and Thorpe, 1991 ), and harming gill tissue 

(Morse et al., 1982). 

This study focuses on the feeding behaviour of three New Zealand bivalve 

species; scallops (Pecten novaezelandiae), mussels (Perna canaliculus), and pipis 

(Paphies australis), exposed to large variations in the concentration and organic content 

of suspended matter. Such conditions may occur as a result human activities such as 

dredging, as well as during natural events such as storms. Resuspended sediments may 

alter the food quality and quantity, and either ( 1) prompt compensatory feeding 

physiological strategies unique to different bivalve species, or (2) result in deterioration 

of growth if bivalves can not tolerate high sediment loads. This laboratory study was 

intended to determine predictive relationships between food quality and quantity and 

bivalve feeding behaviour and energetics, under range of conditions expected in the field. 

The second part of this study examines the effects of resuspended sediments 

caused by dredging on seston quality (in terms of organic content and pigment 

concentration) and quantity. The need to quantify the effects arises from the fact that, 

although larger particle sizes will settle when disturbed during dredging, the fine portion 



including clay and fine silt, will stay longer in the water column. Consequently, these fine: 

sediments can be transported over considerable distances from the source (Jago et al. 

1993) affecting water quality in neighbouring areas. 

1.1 Location and Objectives of the Study 

Experiments to quantify the impacts of resuspended sediment on bivalves feeding 

behaviour were carried out at Butters Wharf, Port of Tauranga (Fig. 1.1 ). The black 

silt/mud used in the study were obtained from the Stella Passage, and is similar to 

sediments described by Healy and Roberts (1997) for sites 6, and 9 in their study. 

Scallops (Pecten novaezelandiae), mussels (Perna canaliculus), and pipis (Paphiej 

australis) commonly found at Tauranga Harbour (Park, 1991), were used in this study. 

The primary objectives of this study are to: 

(1) describe the effects of sediment concentration and quality on bivalve feeding rates 

and energetics; and 

(2) quantify through water sampling whether resuspended sediment created during 

dredging affects the seston quality and quantity at the dredge and adjacent sites. 

By seston quality is meant, the organic content and pigment (chlorophyll a + 

phaeophytin a) concentration. 



Figure 1.1 
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The North Island of New Zealand showing the location of Tauranga 

Harbour and Butters Wharf where all bivalve feeding experiments were 

conducted 
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1.2 Structure of Thesis 

In order to meet the different objectives of this study, the thesis is divided into four 

chapters. Chapter 2 deals with the impact of resuspended sediment on bivalve feeding 

rates and energetics while Chapter 3 deals with the impact of resuspended sediment on 

seston quality and quantity during dredging operations. Conclusions and 

recommendations for future research are contained in Chapter 4. 



CHAPTER2 

Effects of Turbidity on Bivalve 
Feeding Rates and Energetics 

2.1 Introduction 

In this chapter, the feeding rates and energetics of Pecten novaezelandiae, 

Perna canaliculus, and Paphies australis, common species in Tauranga Harbour are 

examined by exposing them to a range of seston concentrations. Food quality and 

quantity was altered by adding silt and clay particles to natural seston in order to 

mimic resuspension events caused by dredging or storms. The added silt and clay 

particles were composed of either high or low organic content. This particle size range 

was choosen as it is likely to stay in the water column longer, thus affecting adjacent 

areas once resuspended. 

2.2 Review on the Effects of Turbidity on Bivalve Feeding Rates and Energetics 

Resuspended sediments can be caused by natural events, human induced activities, or 

discharges from rivers and drainages (Miller, 1981; Roesner, 1982; Ryan 1989; Yell 

and Riddell, 1995; Grant et al., 1997). Although large sized particles will settle out 

from the water column quickly, finer particles (clay and fine silt) will stay in the water 

column longer. Consequently, they may be carried over considerable distances, 

affecting the water quality in neighbouring areas (Jago et al., 1993). Resuspended 

7 
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sediment influences the seston quality in terms of organic and pigment content by 

either increasing or decreasing it, depending on the quality of the resuspended 

sediment itself (Wainright, 1990; Grant et al., 1997). 

Food concentration is a major factor influencing growth and reproduction of 

suspension feeding bivalves (Yukihira et al.,1998ab). Relationships between food 

concentration and food quality versus feeding rates and energetics have been well 

studied (Widdows et al., 1979; Bayne and Newell 1983; Cranford and Gordon, 1992; 

Navarro et al., 1992; Hawkins and Bayne, 1992; Bayne, 1993). Yet, controversy over 

which feeding strategies are responsible for improved energy gain over a wide range 

of food concentration has not been fully appreciated. To most workers physiological 

compensation such as the ability to preferentially ingest organic materials through the 

production of pseudofaeces, regulation of clearance rates (Hawkins and Bayne, 1992; 

Bayne, 1993; Iglesias et al., 1992; Navarro et al., 1992), and alteration of metabolic 

activities to reduce energy expenditure (Grant and Thorpe, 1991) are important 

strategies for bivalves feeding upon diets with low organic content. For some, 

physiological compensations are denied, and responses to suspended seston are 

determined entirely by the physical properties of ciliary mechanisms of pumping and 

filtration (Jorgensen et al, 1988, Jorgensen, 1990 & 1996). In these cases preferential 

selection does not occur (Jorgensen, 1996; Defossez and Daguzan, 1996). 

Recent studies (Deslous-Paoli et al., 1992; Stenton Dozey & Brown, 1992; 

Cranford and Hargrave, 1994; Urrutia et al., 1996 & 1997; Barille et al., 1997; 

Hawkins et al., 1996 & 1998, ) have observed feeding responses that maximise 

energy acquisition, when feeding upon high concentrations of natural seston with a 

low organic fraction. Urrutia et al., ( 1997) observed a lack of reduction or slight 

increase in clearance rates when cockles (Cerastoderma edule) were exposed to a 
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highly turbid environment. Consequently, filtration rate (the product of clearance rates 

and seston concentration) increased disproportionally. This response was however, 

coupled with production of pseudofaeces, and therefore ingestion was regulated to 

some extent. Similar characteristics have also been observed for other species such as 

the oyster Crassostrea gigas (Deslous-Paoli et al., 1992), the clam (Mercenaria 

mercenaria) (Stenton Dozey and Brown, 1992), the scallop (Placopecten 

magellanicus) (Cranford and Hargrave, 1994), and the mussel (Mytilus edulis) 

(Hawkins et al., 1996) when exposed to short-term variations in seston concentration. 

These results indicated that bivalves compensated, within limits, to the dilution of 

food matter by pre-ingestive rejection of unwanted materials through pseudofaeces 

production, thereby preferentially retaining organic matter for ingestion (Hawkins et 

al., 1996). Together with faster clearance rate, growth is maintained or enhanced to 

some extent. 

Epifauna and infauna bivalve species also display different feeding responses 

to varying concentration of suspended particles (Shumway et al., 1985; Hawkins and 

Bayne, 1992; Bacon et al., 1998). For instance, epifaunal bivalves, such as scallops 

(P. magellanicus) (Bacon et al .. 1998) and mussels (M. edulis) (Hawkins and Bayne, 

1992), which live a few centimetres above the substrate, regulated ingestion by 

decreasing clearance rates and increasing pseudofaeces production when exposed to 

increasing suspended sediment concentration. An infauna] clam (Mya arenaria), 

which lives in direct contact with flows very near to the bottom, regulates ingestion 

by reducing clearance rate but maintaining low volume of pseudofaeces produced 

(Bacon et al., 1998). Thus, the ecological distribution of bivalve species and seston 

charcteristics to which they are exposed maybe correspondingly reflected in their 

feeding responses (Yukihira et al., 1998b). These strategies may have been developed 
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as adaptive features to counteract the depressing effect low food quality during 

resuspension events (Kiorboe and Mohlenberg, 1981 ). 

High densities of bivalves species, such as in aquaculture areas (Kaspar et al., 

1985), on sand banks (Thouzeau et al., 1991 ), estuarine areas (Kuenzi er 1961 ), or in 

places like the blackish Baltic Sea (Kautsky and Evans, 1987) are able to deplete the 

water mass of plankton, both within the benthic boundary layer as well as in an entire 

coastal embayment. This possibly lead to eutrophication control (Officer et al., 1982), 

nutrient depletion in aquaculture areas (Kaspar et al., 1985), and increase in the 

deposition of organic matter (Doering et al., 1987). Indeed, the increase of organic 

deposition may increased the return of remineralised nutrient to the water column, 

supporting a large portion of phytoplankton demand (Doering et al., 1987). Thus, 

these bivalves can influence primary production and ultimately the production of 

pelagic consumers (Kelly and Nixon., 1984; Doering et al., 1987; Alpine and Cloem, 

1992). 

2.3 General Ecology of Scallops (Pecten novaez.elandiae ), mussels (Perna 

canaliculus ), and pipis (Pap hies australis) 

Pecten novaezelandiae are epifauna and are found on substrates ranging from fine 

gravel to muddy sand (Morton and Miller, 1973; Bull, 1976). Bull (1976) reported 

that P. novaezelandiae are found on soft mud in Pelrous Sound, New Zealand, and are 

even found in some of the more sheltered bays (eg Miro Bay, New Zealand) where 

silt accumulates rapidly. Perna canaliculus, the greenshell mussel, is also epifaunate, 

and grow naturally on sandy bottoms in deeper water and in the lower intertidal and 

sublittoral zones of coastal shores (Paine 1971; Morton and Miller, 1973). Paphies 
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australis, on the other hand is an infauna! species inhabiting mostly sandflats within 

estuarine shores (Caroll and Wells, 1995), and the dynamic regions of harbour 

entrances (Hooker, 1995; Hull 1996). The seston characteristics in open coastal 

waters and estuaries vary greatly depending on meteorological and tidal conditions 

(Fegley et al., 1992; Grant et al., 1997; Yukihira et al., 1998). Consequently, these 

bivalves species may possess different feeding responses as adaptive features to 

counteract the effects of resuspension on seston quality. 

2.4 Methods and Materials 

2.4.1 Feeding Experiments 

Experiments were performed at the field laboratory, Butters Wharf, Port of Tauranga, 

during May and September 1998. Bivalves species Pecten novaezelandiae, Perna 

canaliculus and Paphies australis used in the experiments were collected from a 

natural population sited within Tauranga Harbour, and placed in a submerged cage at 

the wharf two weeks prior to each experiment. In experiment 1, the species were 

exposed to non-ashed clay/silt sediments ( organic content 22.1 ± 2.6 % ) ranging from 

20 to 300 mg r1 added to natural seston. In experiment 2, ashed sediments (organic 

content 0.02 ± 0.01 % ) were used but with narrower range of concentrations, 5 to 150 

mg r1 (Table 2.1, 2.2, 2.3). To provide a direct comparison of feeding responses to 

ashed and non-ashed sediments, non-ashed treatment (20 mg r1 + natural seston) was 

used during experiment 2. 



Table 2.1 Pecten novaezelandiae. Mean concentrations of total particulate matter (TPM), total pigment, and particulate organic 

matter (POM) fraction of diet (ashed or non-ashed sediments+ natural seston), and mean concentration of natural TPM 

and POM fraction used in the diet mixture. Temperature ranges recorded during the experiments are also shown 

SCALLOP (P. novaezelandiae) 

EXPERIMENT 1 (May 1998) Non-ashed sediment 

Component TPM TPM POM POM Total pigment Temperature 

Source diet natural diet natural diet 

(mg r1) (mg r1) (fraction) (fraction) (µg mg"I) oc 

I. Natural seston (mean± sd) 12.2± 5.6 12.4 ± 6.2 0.29± 0.13 0.29 ± 0.11 122.0 ± 32.1 15.0 - 16.6 

2. Natural seston + 20 mg r1 (mean± sd) 39.3 ± 8.9 15.5 ±4.4 0.17 ± 0.04 0.27±0.03 81.5 ± 23.7 14.6-17.7 

3. Natural seston + 60 mg r1 (mean± sd) 82.2 ± 10.5 10.3 ± 3.5 0.14 ± 0.02 0.31 ± 0.08 47.6 ± 11.4 15.3 - 16.3 

4. Natural seston + 150 mg r1 (mean± sd) 205.3 ± 27.6 33.2 ± 18.8 0.10± 0.01 0.20±0.05 29.2 ± 15.8 14.9 - 16.9 

5. Natural seston + 600 mg r1 (mean± sd) 733.3 ± 164.7 36.1 ± 12.3 0.10 ± 0.01 0.22±0.05 17.5 ± 8.7 15.0-17.2 

EXPERIMENT 2 (September 1998) Ashed sediments 

1. Natural seston (mean± sd) 26.3 ± 24.7 26.3 ± 24.7 0.33 ± 0.14 0.33 ± 0.14 75.2 ± 23.4 15.3 - 16.4 

2. Natural seston + 5 mg r1 (mean± sd) 60.5 ± 55.8 55.5 ± 55.8 0.17 ± 0.04 0.20±0.06 36.3 ± 6.68 15.0-16.9 

3. Natural seston + 20 mg r1 (mean± sd) 48.6 ± 11.4 28.6 ± 11.4 0.12 ± 0.02 0.21 ±0.04 52.6± 20.4 15.4- 15.9 

4 Natural seston + 60 mg r1 (mean± sd) 96.5 ± 11.08 36.5 ± 11.08 0.09±0.02 0.25 ±0.04 25.3 ± 6.9 14.5 - 16.9 

5 Natural seston + 150 mg r1 (mean+ sd) 191. 3 ± 13.0 41.03 ± 13.0 0.07±0.04 0.32j:0.02 9.3_± 2.514.6 - 17.0 --



Table 2.2 Perna canaliculus. Mean concentrations of total particulate matter (TPM), total pigment, and particulate organic matter 

(POM) fraction of diet (ashed or non-ashed sediments+ natural seston), and mean concentration of natural TPM and POM 

fraction used in the diet mixture. Temperature ranges recorded during the experiments are also shown 

MUSSEL (P. canaliculus) 

EXPERIMENT 1 (May 1998) Non-ashed sediment 

Component TPM TPM POM POM Total pigment Temperature 

Source diet natural diet natural diet 

(mg r1) (mg 1"1) (fraction) (fraction) (µg mg.1) oc 

1. Natural seston (mean ± sd) 13.0±7.0 13.4 ± 7.4 0.28 ±0.09 0.28 ± 0.08 116.3 ± 51.6 15.1 -17.4 

2. Natural seston + 20 mg r1 (mean± sd) 43.9 ± 10.6 21.0 ± 11.l 0.16± 0.04 0.25 ±0.09 60.4 ± 17.7 15.0- 16.9 

3. Natural seston + 60 mgr• (mean± sd) 90.l ± 13.2 25.4 ± 14.7 0.12±0.01 0.23 ± 0.05 46.0 ± 13.5 14.9 - 16.9 

4. Natural seston + 150 mg r1 (mean± sd) 176.4 ± 13.4 27.9 ± 27.9 0.11 ± 0.01 0.23 ±0.04 29.0± 8.5 14.9 - 17.0 

5. Natural seston + 300 mg r1 (mean± sd) 331.5 ± 32.1 56.3 ± 41.5 0.10±0.02 0.19 ± 0.09 18.8 ± 6.4 15.3-17.1 

EXPERIMENT 2 (September 1998) Ashed sediments 

1. Natural seston (mean ± sd) 48.2± 23.2 48.2 ± 23.2 0.15 ± 0.04 0.15 ± 0.05 61.3 ± 29.4 15.6- 15.9 

2. Natural seston + 5 mg r1 (mean± sd) 41.6 ± 16.3 36.6 ± 16.3 0.19 ±0.03 0.22±0.05 41.0± 6.4 13.4- 15.5 

3. Natural seston + 20 mg r1 (mean ± sd) 43.8 ±7.5 23.8 ± 7.5 0.12 ± 0.02 0.22±0.04 29.2 ± 11.1 15.6 - 16.9 

4. Natural seston + 60 mg r 1 (mean± sd) 112.6 ± 22.7 52.6 ± 22.7 0.11 ± 0.02 0.26 ± 0.12 16.4± 6.3 15.3 - 15.9 

5. Natural seston + 150 mgr• (mean± sd) 194.5 ± 24.7 44.5 ± 24.7 0.05 ±0.ot 0.29± 0.19 12.0 ± 1.9 15.6- 16.5 



Table 2.3 Paphies australis. Mean concentrations of total particulate organic matter (TPM), total pigment, and particulate organic 

matter (POM) fraction of diet (ashed or non-ashed sediments + natural seston), and mean concentration of natural TPM 

and POM fraction used in the diet mixture. Temperature ranges recorded during the experiments are also shown 

PIPI (P. australis) 

EXPERIMENT 1. (May 1998) Non-ashed sediment 

Component TPM TPM POM POM Total pigment Temperature 

Source diet natural diet natural diet 

(mg r 1) (mg 1"1) (fraction) (fraction) (µg mg·•) ·c 
l. Natural seston (mean± sd) 39.0± 23.8 39.0± 23.8 0.26± 0.20 0.26 ± 0.20 105.0± 39.8 14.6- 17.0 

2. Natural seston + 20 mgr• (mean± sd) 46.8 ± 15.0 26.7 ± 14.9 0.15 ± 0.02 0.24±0.10 68.5 ± 16.7 15.0-17.1 

3. Natural seston + 60 mgr• (mean± sd) 77.1±11.4 18.8 ± 9.2 0.15 ± 0.02 0.17±0.12 35.8 ± 9.4 14.3 - 16.9 

4. Natural seston + 150 mgr• (mean± sd) 176.7 ± 17.0 25.8 ± 14.4 0.12 ± 0.04 0.23 ± 0.10 29.1 ± 9.8 15.3 - 17.0 

5. Natural seston + 300 mg r• (mean± sd) 322.2 ± 19.6 13.7 ± 11.6 0.11 ± 0.04 0.21 ± 0.06 22.9 ± 8.8 15.2 - 17 .3 .......................................................................................................................... -........................................... -................................. ,_ ............................................ _,,, .................................................. ,_ ........ __ ,.,_,,, ..................................................................................... .. 

EXPERIMENT 2 (September 1998) Ashed sediments 

I. Natural seston (mean± sd) 47.4 ± 35.1 47.4 ± 35.l 0.22±0.05 0.22 ± 0.05 53.2± 18.0 15.1 - 15.9 

2. Natural seston + 5 mg r• (mean ± sd) 20.1 ± 3.6 15.1 ± 3.6 0.20±0.03 0.27 ±0.03 86.2 ± 28.0 14.6-17.3 

3. Natural seston + 20 mg r• (mean± sd) 58.0± 32.1 38.0± 32.1 0.13 ± 0.02 0.24±0.08 28.2±9.0 15.6- 18.9 

4 Natural seston + 60 mgr• (mean± sd) 124.4 ± 58.7 64.37 ± 58.7 0.07±0.02 0.20±0.08 24.2 ± 5.5 14.0- 15.3 

5 Natural seston + 150 mg r1 (mean± sd) 178.0± 11.5 28.0 ± 11.5 0.03 ± 0.01 0.27 ± 0.11 11.5 ± 1.5 13.8 - 16.3 
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Clay and silt used in the experiments was obtained after sieving sediment 

collected from Stella Passage through a 65 µm mesh sieve. According to Healy and 

Roberts (1997), the accumulated black silt/mud sediment within the Passage had 

relatively low concentrations of heavy metals, but had high organic fraction. The clay/silt 

fraction was preserved by drying at 100 °C overnight. Its organic content was 22.1 (± 2.6) 

% and total pigment was 25.7 (± 0.9) µg mg-•. Prior to experiment 2, the sediment was 

combusted at 500 °C overnight, ensuing a very low organic content (0.02% ± 0.01 %) and 

total pigment (0.16 ± 0.02 µg mg-1) content. 

Twelve to fourteen hours prior to each feeding experiment Pecten novaezelandiae, 

Perna canaliculus, or Paphies australis (depending on the random order of bivalve 

species) were starved in a closed circulation system containing aerated filtered seawater 

to provide a standardised hunger. The temperature of the system was maintained constant 

at ambient levels (Table 2.1, 2.2 and 2.3). 

After the starvation period, 'healthy' bivalves as depicted by sufficient gaping 

were placed in flow through feeding chambers ( 18.5 cm length by 13 cm width and 

volume of 1.6 1). The inflow port of the chamber consisted of an upward curved tygon 

plastic tube mounted at the inflow port and an horizontal slot placed after the water 

~urrent reached the animal, to minimise turbulence across the bottom (Iglesias et al., 

1998). The purpose of the slot was to prevent biodeposits from being washed out through 

the outflow port (Fig. 2.1 ). 

The diet mixtures (silt and clay + natural seston) selected in random order were 

directly pumped from a header tank to eight feeding chambers at flow rates between 160 

and 190 ml min-• (Fig 2.2) The diet mixture were kept in suspension by an electrical 
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stirrer. Each experiment commenced when bivalves began feeding as indicated by 

sufficient shell gaping, and lasted for 8 hours. Seven feeding chambers held live 

specimens, one animal for Pecten novaezelandiae, and Perna canaliculus, and two for 

Paphies australis due to to their smaller size and lower feeding rate. The eighth chamber 

held an empty shell to correct for sedimentation (Iglesias et al., 1998). 

Food concentration, organic and total pigment content of diets were determined 

every two hours from the header tank. Three replicate of water samples were filtered onto 

ashed and pre-weighed 45 mm Whatman GFC filters, rinsed with isotonic ammonium 

formate to dissolve salts, dried in an oven at 80°C for 24 hours, weighed to give total 

particulate matter (TPM, mg r1) concentration, and then combusted in a furnace at 480°C 

for 12 hours before reweighing to give particulate inorganic matter (PIM, mg r1) 

concentration. Particulate organic matter (POM, mg r1) represented the difference 

between TPM and PIM. Total pigment (chlorophyll a and pheaophytin a) were 

determined by fluorometric procedures according to Arar and Collins ( 1997) on three 

replicates. 

UNIVEn:::nv C. \ ... , .... -;-o 
L 11:rn.~ ,, Y 
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Figure 2.1 Feeding chamber used in the experiments 

Peristaltic pump Peristaltic pump 

Feeding chambers + Diet mixture + Feeding chambers 

\ l I 

Figure 2.2 Schematic drawing of the equipment used during the feeding experiment 
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2.4.2. Calculation of Feeding Rates 

The feeding rates were determined following the biodeposition method of Iglesias et al. 

(1992). The method involves quantitative collection of biodeposition produced. An 

advantage of this approach is that it does not require sampling of the outflow from the 

feeding chambers. When this method was compared with the depletion in particle 

concentrations in an open or flow-through feeding chamber, Iglesias et al. ( 1998) 

concluded that results from both methods were similar. Indeed, comparison of both 

methods by Urrutia et al. ( 1996) revealed a high degree of correspondence on clearance 

rate between estimates from both methods, with coefficient of determination of 0.86. 

The method assumes that the POM:PIM ratio is the same for particles captured by 

the bivalves gill and for particles sampled in the water column. The values for feeding 

rates as estimated according to the procedures outlined below assumed all particles are 

retained with 100% efficiency. No previous work has evaluated retention efficiencies for 

the species used in this study, however, previous studies have shown that mussels, 

Mytilus edulis (Lucas et al., 1987), retained particles >4 µm with 100% efficiency 

whereas the retention efficiency for the scallop Placopecten magellanicus (Cranford and 

Gordon, 1992) decreases progressively from 95% at 8 µm to 15% at 2 µm. The bulk of 

sediments used in this study consisted of silt/clay, <33% non-ashed and <26% ashed 

sediments were less than 4 µm (Appendix A. I and A.2). 

Faeces and pseudofaeces were collected and then separated at the end of each 

experiment. Where possible two aliquots of biodeposits were separated for the 

determination of organic and total pigment content. This separation was taken into 
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account when calculating the total biodeposition production rate, organic, inorganic and 

total pigment concentrations. In addition, when separating biodeposits from deposited 

sediment was physically impossible, materials in control chambers was collected and 

treated in the same way as the biodeposits to obtain a quantitative reference of 

sedimentation (Iglesias et al., 1998). 

Pseudofaeces (RR, mg h-1) and egestion (ER, mg h- 1) production rates were 

determined by weighing after both were filtered and dried at 80°C for 24 hours. The 

weight established after combusting at 480°C for 12 hours gave the inorganic content of 

pseudofaeces (/RR, mg h- 1) and faeces (/ER, mg h-'). Whereas the organic content of 

pseudofaeces (ORR, mg h- 1) and faeces (OER, mg h- 1) represented the difference between 

the biodeposition production rates (RR and ER) and inorganic content (/RR and /ER). 

Total pigment (chlorophyll a and pheaophytin a) were determined by fluorometric 

procedures according to Arar and Collins ( 1997). 

Based on the assumption that absorption of inorganic matter by bivalves is 

negligible (Conover, 1966), the sum of IRR and /ER equalled the amount of inorganic 

filtered (/FR, mg h- 1) from suspension. From the rate of inorganic filtration, and the PIM 

concentration in the diets, the clearance rates (CR1 I h- 1) were calculated (Iglesias et al., 

1992, 1996; Urrutia et al., 1996) as: 

/FR 
CR=-

. PIM 

Filtration rate (FR, mg h- 1) for TPM was calculated as: 

FR=CRxTPM 

(2.1) 

(2.2) 
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Similarly, filtration rate for organic matter (OFR, mg h-1) was estimated as: 

OFR=CRxPOM (2.3) 

Total ingestion rate (IR, mg h-1) represents the amount of food actually ingested by the 

animal and it was estimated by: 

IR= FR-RR (2.4) 

and organic ingestion rate as (OIR, mg h-1) was estimated as: 

0/R = OFR - ORR (2.5) 

2.4.3. Selection Efficiency 

Selection of high quality food particles was measured by the difference in POM in 

pseudofaeces relative to that in the food (Navarro et al., 1992). If POM in pseudofaeces 

was lower than in food then selection has occurred, yet this estimate only represents a 

qualitative measurement of selection (Ward and MacDonald, 1996; Bacon et al., 1998). 

Ward and MacDonald (1996) introduced the compensation index (C/), a term which 

expresses the fraction of organic ingested matter assumed to have been selected relative 

to diet organic fraction. A positive result signifies that a bivalve has altered the ingested 

organic fraction by pre-ingestive selection through pseudofaeces production. CI is 

calculated as: 



CI=IOF-DOF 
DOF 
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(2.6) 

where IOF is the ingested organic fraction and DOF is the diet organic fraction. 

Similarly, Cl for total pigment was also estimated using the same equation (2.6) but total 

pigment was used instead of organic fraction, i.e: 

CI= IR,01a1pigmen1 - Diet,a,a1pigmen, 
Diet,o,a1 pigmen, 

2.7) 

where IR total pigment, the relative quantity of total pigment ingested (µg mg-1) is estimated 

from: 

IR . _ (Diet,,,,a,pigmen, x FR) -(PSF,01a1pigmen1 x RR) 
total pigment - IR (2.8) 

where Diettotal pigment, is the total pigment contained in the food; PSFtotal pigment is the total 

pigment in the pseudofaeces; FR, RR, and IR are the same as those designated above. 

Similarly, this method gives a more realistic estimate of selection to the net energy 

balance of the feeding bivalves, as it considers the rate of total pigment cleared from 

seston and rejected in pseudofaeces compared to the total amount of pigment ingested per 

unit time. 
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2.4.4 Bivalve Energetics 

Scope for growth (SFG; J h-1 g-1) represents the amount of energy available to bivalves 

for growth and reproduction after maintenance requirements are met. It was estimated by: 

SFG = AB-(R+U) (2.9) 

where AB is the absorbed ration, R is the energy loss due respiration, and U is the energy 

loss due to ammonia excretion (Widdows, 1985). 

Ammonium excretion rates were not measured, therefore values of the SFG 

calculated from the difference between absorbed ration and respiratory loss would be a 

slight over-estimate of the true SFG (Bayne and Newell, 1983 & Navarro et al., 1991 ). 

Excretory losses are considered negligible, they only represent a small fraction of losses 

when compared to respiratory losses (Bayne and Newell, 1983). 

SFG is an energy measurement, therefore all estimates of absorption rates and 

oxygen consumption were converted to joules assuming I mg organic matter= 20.78 J, 

and 1 ml 0 2 = 20.36 J (Crisp, 1971 ). 

Organic absorption rates (OAR; mg h- 1) represent the amount of organic material 

absorbed per unit time, by bivalves across the gut, and was estimated as (Iglesias et al. 

1996): 

OAR = 0/R - OER (2.10) 



where 0/R is the organic ingestion rates and OER 1·s the org · t· t , amc eges 10n ra e 

Absorption efficiency (AE) was estimated by: 

AE=OAR 
OIR 
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(2.11) 

Respiration rates (ml 02 h-1 g-1) were estimated following the procedures of 

Pilditch (1997). At the conclusion of each feeding experiment, four bivalves were 

transferred to individual respiration chambers containing 2.5 to 3.0 l of the experimental 

diets, with a fifth chamber containing empty shells to account for bacterial respiration. 

Chambers were placed in a water bath maintained at ambient temperature and incubated 

in the dark. Throughout the incubation period, the water in the chamber was circulated 

from above with a magnetically driven impeller. After an acclimation period of 30 

minutes, water samples were collected in BOD bottles by gently pressing down the 'o' -

ring sealed lid into the chamber forcing out water through a sampling port, where oxygen 

concentration was measured with an Omega PHH71 D02 meter. A second reading was 

taken 1 hour later. If oxygen depletion was <10%, another reading was taken 30 minutes 

later. The oxygen consumption rate (V02, ml 02 h-1) was computed according to Pilditch 

(1997) as: 

= VO ~ (t;+ 1)- ti 
{02hnitial - f 02}jinal 2X£..J u· 

i+I Yl 

(2.12) 
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where [02hnitial is the initial oxygen concentration, [02).final is the final oxygen 

concentration, ti is the time between successive 0 2 measurements, and Vi is the chamber 

volume when the measurement was taken. 

2.4.5 Standardisation of Physiological Rates 

At the conclusion of each experiment, all bivalve species were excised and kept in a 

freezer until they were oven dried at 90 °C for 72 h then weighed. To reduce potential 

variation in feeding and energetic rate estimates that may arise due to differences in body 

size, rates were standardised to an equivalent of 1 gram dry tissue weight using the 

formula 

(2.13) 

where Ys = standardised physiological measurement, Ye = uncorrected physiological 

measurement, Ws = standardised weight of animal, We = the observed weight of the 

animal and b is the weight exponent for the physiological rate function. A weight function 

of 0.68 was used for clearance and rejection rates in this study. Similarly, metabolic rates 

were also standardised to 1 gram dry tissue weight but with a weight exponent of 0.76 

used for all species. Both of these weight exponent functions were similar to values 

published on other species (Bacon et al. 1998). 



25 

2.4.6. Statistical Analysis 

To determined whether the feeding behaviour of bivalves varied with diet concentrations, 

a set of regressions were fitted to experimental data, following standard least squares 

procedures using Minitab version 10.5. Regression analyses were performed according to 

the functional relationships listed in Table 2.4. The ANOVA test (a. = 0.05) was 

performed on the regression functions. A significant ANOV A indicated that the changes 

in total particulate matter explained variation in feeding rates and energetics. The 

functions with highest r2 was accepted as the one that best explained the relationship 

between seston concentration and the dependent variable (Harraway, 1995). 

A student t-test was used to determine if compensation indices ( Cl) were 

significantly different from zero. If the data deviated from normality, a non-parametric 

Wilcoxon rank test was used (Zar, 1996). 

One way ANOVA (a.= 0.05) was used to determine if TPM concentrations and 

POM contents (20 mg r1 ashed or non-ashed sediment + to natural seston) were 

significantly different from one another within each species. Also, a one-way was 

employed to determine if the feeding rate and energetic were significantly different 

between the diet mixtures within each bivalve species. 
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Table 2.4 Functional relationships used to described the feeding physiology and 
energetic data 

Regression Description 

simple linear 

polynomial 

logarithmic 

exponential 

b is a constant value 

Formula 

y=b+mx 

y = b +mlogx 

y= b""' 

m is a coefficient corresponding to each x value 

x is seston concentration 

y is a dependent variable 
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2.5 Results 

2.5.1 Experimental Diets 

Natural TPM to which clay and silt was added ranged between (mean± 1 SD) 10.3 ± 

3.5 to 56.3 ± 41.5 mg r1, and 13 2 + 3 8 to 64 37 + 58 7 mg 1-1 d · · t 1 · - · · - . urmg expenmen 

and 2 respectively. Despite the variation in natural seston, Tables 2.1, 2.2 and 2.3 

indicate a progressive decrease in the POM fraction and total pigment concentrations 

with increasing concentrations of TPM. The reduction in POM fraction and total 

pigment concentration was greater when ashed sediments were added to natural 

seston. The temperature ranged between 14.3 - 17.7 and 13.8 - 18.9 °C for 

experiments 1 and 2 respectively. 

2.5.2 Comparison of Feeding Physiology and Energetics Between Experiment 1 

and 2 for Individual Species 

2.5.2.1 Feeding Rates of Scallops (Pecten novaezelandiae) 

Figure 2.3a illustrates the relationship between clearance rate (CR) to increasing 

levels of TPM, as best described by logarithmic and polynomial functions for 

experiment 1 and 2 respectively (Table 2.5). In experiment 1 CR displayed maximum 

values when TPM was 82.2 (± 10.5) mg r1 before declining to 0.03 (± 0.009) 1 h· 1g·1 

when TPM reached 205.3 (± 27.6) mg r1• Difficulties encountered with sampling 

during this experiment did not allow the determination of CR, other feeding rates, and 

corresponding energy budgets at lower diet concentrations. However, CR observed in 
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experiment 2 displayed a positive increase to a maximum CR recorded when TPM 

concentration was 96.5 (± 11 08) mg r 1 be~ore dee · · h f h · · 
· 1 1 reasmg wit urt er mcreases m 

TPM concentration. 

The relationships between "e,i t' t (RR) · · • Jee 10n ra e , 1.e pseudofaecal production, and 

TPM were best expressed by logarithmic functions for both experiments (Table 2.5). 

In experiment 1, RR decrease from 19.29 (± 6.86) mg h-1 t 1 to 5.92 (± 2.03) mg h-1 g·t 

when TPM concentrations increased from 82.2 (± 10.5) mg r 1 to 205.3 (± 27.6) mg rt. 

Inversely, during experiment 2 RR increased at a decreasing rate (Fig 2.3b). RR 

increased from 9.84 (± 3.69) mg h-t g·t to 58.28 (± 44.21) mg h"1 g-t when TPM 

concentration increased from 60.5 (± 55.8) mg r 1 to 191.3 (± 13.0) mg r 1. In addition, 

scallops have the capacity to modify the quality of the ingested matter by rejecting 

proportionately less organic particles in pseudofaeces relative to that in diet (Fig 2.4a 

and 2.5a). Furthermore, the compensation index (Table 2.6) indicated that scallops 

produced a sufficient quantity of pseudofaeces to significantly increase the ingested 

organic fraction when the POM fraction of diet was diluted to an average of 0.14 (± 

0.02) when TPM concentration was 82.2 (± 10.5) mg rt in experiment I, and to ~0.12 

(± 0.02) at 48.6 (± 11.4) mg r 1 TPM concentration in experiment 2. On the contrary, 

scallops were unable to increased the quality of total pigment ingested as indicated by 

non significant Cl. 

Despite the decrease in CR and the concurrent increase in RR when TPM 

increased beyond 96.5 (± 11.08) mg r 1 in experiment 2, the estimated ingestion rates 

(/R) (Fig 2.3c) actually increased from 9.88 (± 0.97) mg h-1 g·t to 10.99 (± 0.97) mg h-

1 g-1 as TPM concentrations increased from 96.5 (± 11.08) mgr' to 191.3 (± 13.0) mg 

r 1• In experiment 1, negative ingestion rate was attained when TPM increased beyond 

82.2 (± 1 o.5) mg r 1• 
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Figure 2.3 Pecten novaezelandiae. (a) Clearance (b) rejection and (c) ingestion rates 
standardised to 1 g tissue weight for scallops, exposed to different 

concentrations of total particulate matter in experiment 1 (non-ashed 
sediment) and experiment 2 (ashed sediment). Data represent the mean of 

7 replicates 
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(a) Scallop 

733.3 

(b) Mussel 

331.5 

(c) Pipi 

322.15 

Comparison of organic fraction in the diet, pseudof aeces, and ingested 

matter(± I SD) of scallops (Pecten novaezelandiae), mussels (Perna 

canaliculus), and pipis (Paphies australis) exposed to non-ashed 

sediments added to natural seston during experiment 1. Data are the 
mean of 12 replicates for diets and 7 replicates for pseudofaeces and 

ingested organic fraction. Note: nd referred to no data 
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matter(± I SD) of scallops (Pecten novaezelandiae), mussels (Perna 

canaliculus), and pipis (Paphies australis) exposed to ashed sediments 

added to natural seston during experiment 1. Data are the mean of 12 

replicates for diets and 7 replicates for pseudofaeces and ingested 

organic fraction. 
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added to natural seston during experiment l. Data are the mean of 12 

replicates for diets and 7 replicates for pseudofaeces and ingested 
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Table 2.5 Pec~en novaezelandiae. Functional relationship between total 

particulate matter (TPM) and feeding rates and energetics establishec 

for scallops when exposed to non-ashed sediment (experiment 1) anc: 

ashed sediment (experiment 2). Bracketed values are 95% confidence: 
intervals 

Function df p 

Experiment 1 (Range of TPM concentration: 12.2 (± 5.6) - 733.3 (± 164.7) mg 1"1) 

Feeding rates 
CR= 0.66 (0.25) - 0.24 (0.l l)log10 TPM 

RR= 36.70 (18.4)- 11.00 (7.7)log10 TPM 

IR= 5.52 (3.05)- 2.10 (l.27)log10 TPM 

Energetics 
OAR= 2.20 (1.22) - 0.87 (0. l 3)log10 TPM 

AE = 0.72 (0.15)- 0.27 (0.13)log10 TPM 

Resp.= 0.42 (0.27)- 0.14 (0.13)log10 TPM 

SFG = 74. 80 (33.51)- 12.44 (8.26)log10 TPM 

0.56 
0.35 
0.42 

0.43 

0.63 
0.22 
0.20 

17 

17 
17 

17 
17 
18 
18 

0.000 
0.008 
0.003 

0.002 
0.002 

0.039 
0.048 

Experiment 2 (Range of TPM concentration: 26.3 (± 24.7) - 191.3 (± 13.0) mg 1"1) 

Feeding rates 
CR= -0.041 (0.22)- 0.008 (0.005)TPM - 0.0003 (0.00002)TPM2 0.29 32 0.004 

RR= -102 (46.07) + 69.5 (24.85)log10 TPM 0.50 33 0.000 

IR= -15.8 (6.04) + 12.0 (3.26)1og10 TPM 0.63 33 0.000 

Energetics 
OAR= -2.68 (2.39) + 2.06 (l .29)log10 TPM 0.24 33 0.003 

AE = 1.43 ( 1.05) - 0.44 (0.1 O)log10 TPM 0.24 32 0.003 

Resp.= -0.56 (0.32) + 0.03 (0.007)- 0.0001 (0.00003)TPM2 0.80 17 0.000 

SFG ns 

Note: ns denotes non significant relationship with TPM 



Table 2.6 

TPM 
Diet (mg 1"1) 

Experiment 1. 

12.4 ± 5.6 
39.3 ± 8.9 
82.2 ± 10.5 
205.3 ± 27.6 
733.3 ± 164.7 

Experiment 2. 

26.3 ± 24.7 
60.5 ± 55.8 
48.6 ± 11.4 
96.5 ± 11.08 
191.3 ± 13.0 
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Pecten novaezelandiae. Summary of compensation index (Cl) values 

for organic fraction and total pigment, when scallops were exposed to 
different total particulate matter (TPM) concentrations composed of 

different particulate organic matter (POM) fractions during experiment 
1 (non-ashed sediment) and 2 (ashed sediment) 

POM fraction 
Diet (fraction) 

0.29 ±0.13 
0.17 ± 0.04 
0.14±0.02 
0.10 ± 0.01 
0.10 ±0.01 

0.33 ± 0.14 
0.17 ± 0.04 
0.12±0.02 
0.09 ±0.02 
0.07 ±0.04 

Organic fraction 
CI t-test 

5.4±1.1 
-1.0 ± 0.0 
-1.0 ± 0.0 

0.7 ±0.9 
1.0 ± 1.2 
0.8 ±0.6 
1.1 ± 0.3 
2.9 ± 2.2 

P<0.05 
ns 
ns 

ns 
ns 
p<0:05 
p<0.05 
p<0.05 

Total pigment 
CI t-test 

19.9 ± 13.9 
-2.9 ± 3.5 
-1.0 ± 0.0 

-8.6±7.3 
-29.9 ± 21.1 
-7.4 ± 8.7 
-27.2 ± 11.6 
-51.1 ± 53.0 

ns 
ns 
ns 

ns 
ns 
ns 
ns 
ns 

Note: ns denotes not significantly different from zero 
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2.5.2.2 Scallop (Pecten novaezelandiae) Energetics 

Organic absorption rates (OAR) '"or p t z · · · 
1 1 ec en novaeze andiae, dunng expenment 1, 

decreased from a maximum of 1.54 (± 1.36) mg h-t f 1 to minimal values of <0 mg h-t 

t' when TPM increased to 205.3 (± 27.6) mg rt (Fig. 2.6a) as best described by a 

logarithmic equation (Table 2.4 ). In experiment 2, OAR increased at a decreasing 

rates with increased in TPM concentrations (Fig.2.6a), despite the fact that POM 

fraction had been diluted by the addition of ashed sediment (Table 2.1 ). The 

relationship was best described by a logarithmic function (Table 2.4). 

For both diets, absorption efficiency (AE) decreased as TPM concentrations 

increased (Fig. 2.7a) in a relationship best described by logarithmic functions (Table 

2.5)_ 

The relationships between respiration rate and TPM were best expressed by a 

logarithmic function in experiment 1, and a polynomial function in experiment 2 

(Table 2.5). Respiration rate reduced significantly with increasing TPM 

concentrations during experiment I. A polynomial relation in experiment 2 revealed 

that Pecten novaezelandiae displayed a maximum value of respiration rate when TPM 

concentration was 96.5 (± 11.08) mg rt before decreasing (Fig 2.6b). 

As a consequence of different patterns observed for energy gain through 

organic absorption and expenditure via respiration over a wide range of TPM 

concentrations, different patterns in scope for growth (SFG) were revealed (Fig 2.6c). 

In experiment 1, SFG decreased from maximum value recorded at 82.2 (± 10.6) mgr' 

to zero when TPM reached 407.6 mg r' according to a logarithmic function (Table 

2.5). In experiment 2, SFG was not significantly affected by TPM concentrations. 

Nevertheless, the values were still very low. 
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Pecten novaezelandiae. (a) Organic absorption rate (OAR), (b) 

respiration rate (Resp.) and (c) scope for growth (SFG) standardised to 
1 g dry tissue weight for scallops, exposed to different concentrations 

of total particulate matter in experiment 1 (non-ashed sediment) and 

experiment 2 (ashed sediment). Data are the mean of 7 replicates for 

OAR, and mean of 4 replicates for Resp. and SFG (± 1SD) 
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2.5.2.3 Feeding Rates of Mussel (Perna canaliculus) 

In experiment 1 CR was negatively correlated with TPM (Fig. 2.8a) and was best 

described by a logarithmic function, while in experiment 2 the relationship between 

CR and TPM was best described by a polynomial function (Table 2.7). The 

polynomial relationship revealed two maxima in CR values at the extremes of TPM 

concentrations. The lowest CR value was recorded when TPM concentration was at 

112.6 (± 22.7) mg r1 (Fig 2.8a). 

The relationship between rejection rates (RR) and TPM differed between 

experiments. When non-ashed sediment was used in experiment 1, RR increased at a 

low rate with increasing TPM concentrations, but slightly decreased when the TPM 

concentrations increased beyond 176 (± 13.4) mg r1 (Fig 2.8b). This relationship was 

best described by a polynomial equation (Table 2.7). On the contrary, the use of ashed 

sediments in experiment 2 produced an exponential relationship between the variables 

(Fig. 2.8b and Table 2.7). Mussels feeding on ashed sediments produced relatively 

more pseudofaeces than mussels feeding on non-ashed sediments (Fig. 2.8b ). 

Considering the decrease in CR and low RR in experiment 1, the estimated 

ingestion rates (IR) was consistently low as TPM concentrations increased (Fig. 2.8c). 

At the lowest TPM concentrations (13.0 ± 7.0 mg r1) IR was 3.12 ± 3.90 mg h-1 g·1 

whereas at 331.5 (± 32.1) mg r1 IR was 2.06 ± 3.90 mg h-1 g·1 (Fig 2.8c). Inversely, in 

experiment 2, IR increased from 10.56 (± 5.18) to 26.73 (± 5.87) mg h-1 g"1 when 

TPM concentrations increased from 41.6 (± 16.3) mg r 1 to 194.5 (± 24. 7) mg r 1• 
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Perna canaliculus. (a) Clearance (b) rejection and (c) ingestion rates 

standardised to 1 g dry tissue weight for mussels, exposed to different 

concentration of total particulate matter in experiment 1 (non-ashed 

sediment) and experiment 2 (ashed sediment). Data represent the mean 

of 7 replicates (± 1 SD) 
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Table 2.7 Perna canaliculus Funcf 1 1 . . · 10na re at1onsh1p between total particulate 
matter (TPM) and feeding rates and energetics established for mussels 
when exposed to non- h d d" . . as e se 1ment (experiment I) and ashed 
sediment (experiment 2). Bracketed values are 95% confidence 
intervals 

Function df p 

Experiment 1 (Range of TPM concentration: 13.0 (± 7.0) _ 331.5 (± 32.1) mg r1) 

Feeding rates 
CR= 1.20 (0.23) - 0.44 (0.12)Jog10 TPM 

RR= 4.65 (1.01) + 0.25 (0.09)TPM + 0.0005 (0.0000l)TPM2 

IR 

Energetics 
OAR 

0.69 
0.35 
ns 

ns 
~ M 

Resp.= -0.03(0.12) + 0.003(0.002)TPM + 0.000009(0.000006)TPM2 0.39 

SFG ns 

27 
26 

17 

0.000 
0.000 

0.014 

Experiment 2 (Range of TPM concentration: 41.6 (± 16.3) -194.5 (± 24.7) mg 1"1) 

Feeding rates 
CR= 1.30 (0.42)- 0.02 (O.Ol)TPM + 0.0008 (0.00004)TPM2 0.41 32 0.000 
RR= 7.81 (3.21) 0.0149(0.00l)TPM 0.59 33 0.000 

IR= 8.89 (3.64) + 0.08 (0.03)TPM 0.40 33 0.000 

Energetics 
OAR= 2.31 (l.63) - 0.041 (0.02)TPM - 0.002 (0.0005)TPM2 0.47 32 0.003 

~ = 0.82 (0.21) + 0.01 (0.005)TPM - 0.00005 (0.00002)TPM2 0.50 32 0.003 

Resp. = 2.31 ( 1.54) - 0.042 (0.02)TPM - 0.002 (0.0005)TPM2 0.53 17 0.000 

SFG = 38.4 (24.73)-17.2 (13.19)1og10 TPM 0.30 18 0.013 

Note: ns denotes non significant relationship with TPM 
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Mussels have the capability to alter th . 
e amount of ingested matter by rejecting 

proportionately less organic particles in pseudof 1 · . . 
aeces re ative to that m diet (Fig 2.4b 

and 2.5b ). Furthermore, the compensation index (C1) (T bl · · a e 2.8) md1cated that 

mussels produced sufficient pseudofaeces to signi'fi·cantly increased the ingested 

organic fraction when particulate organic matter (POM f t' ) d'l d , rac 10n was 1 ute to 

::;;0.15 ± 0.04 and to S0.16 ± 004 in experiment 2 and J t· l s· ·1 · respec 1ve y. 1m1 ar to 

scallops, mussels were unable to increase the quality of total pigment before ingestion 

as indicated by non-significant CI. 

2.5.2.4 Mussel (Perna canaliculus) Energetics 

The organic absorption rate ( OAR) of Perna canaliculus was not significantly affected 

by TPM in experiment 1 (Fig 2.9a), whereas in experiment 2; the relationship between 

OAR and TPM concentration (Fig 2.9a) was best described by a polynomial function 

(Table 2.7). The function indicated that OAR decrease slightly at lower TPM 

concentrations before increasing as TPM concentration increased further. 

Similarly, AE was also not affected by increasing TPM concentrations when 

non-ashed sediments were utilised (experiment 1). When ashed sediment was utilised 

(experiment 2), the relationship was best described by a polynomial function (Fig 

2.7b, Table 2.7). The function revealed that AE decreased slightly when TPM 

concentration increased from = 50 mg r 1 to < 120 mg r 1 but increased as TPM 

concentrations increased further. 

Figure 2.9b illustrates the relationship between respiration rates and TPM 

concentrations. In both experiments, the relationships were best described by 



Table 2.8 

TPM 
Diet (mg 1"1) 

Experiment I. 

13.0 ±7.0 
43.9 ± 10.6 
90.1 ± 13.2 
176.4± 13.4 
331.5 ± 32.1 

Experiment 2. 

48.2±23.2 
41.6 ± 16.3 
43.8 ±7.8 
112.6± 22.7 
194.5 ±24.7 
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Perna canaliculus. Summary of compensation index (Cl) values for 

organic fraction and total pigment, when mussels were exposed to 

increasing total particulate matter (TPM) concentrations composed of 

different particulate organic matter (POM) fractions during experiment 
I (non-ashed sediment) and 2 (ashed sediment). 

POM Organic fraction Total pigment 
Diet (fraction) CI t-test CI t-test 

0.28 ±0.09 0.7±0.8 ns -0.1 ± 0.5 ns 
0.16±0.04 3.2 ± 0.4 P<0.05 -1.1 ± 2.9 ns 
0.12±0.01 2.7±2.6 ns -2.0 ± 2.4 ns 
0.11 ±0.01 7.0 ± 1.5 P<0.05 -10.3 ± 9.2 P<0.05 
0.10±0.02 5.2±0.7 P<0.05 -11.8 ± 8.8 P<0.05 

0.15 ±0.04 0.2±0.1 P<0.05 -1.7 ± 1.6 ns 
0.19±0.03 0.5 ±0.9 ns *-37.9 ± 80.9 ns 
0.12±0.02 0.5 ±0.6 p<0.05 -5.0±5.6 ns 
0.11 ±0.02 0.6 ±0.3 p<0.05 -18.7 ± 10.5 ns 
0.05 ±0.01 2.8 ±0.8 p<0.05 -17.7 ± 11.5 ns 

Note: ns denotes not significantly different from zero 
* Wilcoxon rank test 
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Perna canaliculus. (a) Organic absorption rate (OAR), (b) respiration 

rate (Resp.) and (c) scope for growth (SFG) standardised to 1 g dry 

tissue weight for scallops, exposed to different concentrations of total 

particulate matter in experiment 1 (non-ashed sediment) and 

experiment 2 (ashed sediment). Data are the mean of 7 replicates for 

OAR, and mean of 4 replicates for Resp. and SFG (± lSD) 
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polynomial functions (Table 2 7) H · · · · owever, resp1rat1on rates observed in experiment 

1 were comparatively lower to respiration rates b d · · o serve m expenment 2. In 

experiment 2, the polynomial curve re al d th 1 · h · · · ve e at a s 1g t decrease m resp1rat10n rates 

at lower TPM concentrations preceded a high increased respiration rate when TPM 

concentration increased beyond 120 mg r 1• 

Scope for growth (SFG) was positive when the diet mixture was composed of 

non-ashed sediments in experiment 1, and it was not affected by TPM concentrations 

(Fig. 2.9c). SFG decreased to 0.54 (± 1.35) Jh.1 g·1 at 194.5 (± 24.7) mg r 1 TPM 

concentration during experiment 2 when ashed sediments were used in the diet 

mixture. The relationship was best described by a logarithmic function (Table 2.7). 

2.5.2.5 Feeding Rates of Pipi (Paphies australis) 

Clearance rate (CR) was low and not affected by TPM concentrations when non ashed 

sediment was used in the diet mixtures in experiment 1 (Fig 2.10a). Whereas the 

relationship between the two variables in experiment 2 was best described by a 

polynomial function (Table 2.9 and Fig. 2.10a). CR decreased dramatically from a 

maximum of 0.77 (± 0.25) lh-1 g·1 recorded at 20.1 (± 3.6) mg r 1 to a minimum value 

at 47.4 (± 35.1) mg r 1 TPM concentration. Following that a slight increase with TPM 

concentration was observed. 

Rejection rate (RR) for both experiments were best described by linear 

equations (Fig 2.10b, Table 2.9). However, P. australis only have the capacity to 

modify the organic content of the ingested material by rejecting proportionately less 

organic particles in pseudofaeces at the lowest TPM concentrations in both 

experiments, 39.0 (± 23.8) mg r 1 in experiment 1 and 20.1 (± 3.6) mgr' (Fig 2.3c and 
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2.4c). Beyond these TPM concentrati c1 . . . ons was not s1gmf1cantly different from zero. 

Similarly, CI values for total · pigment were not significantly different from zero 

(Table 2.10). 

The estimated ingestion rate (IR) for P. australis in experiment 1 was 

consistently low but stable as TPM concentrations increased. IR was 1.74 (± 2.58) mg 

h"1 g"1 and 0.88 (± 1.30) mg h-1 g"1 at the lowest and highest TPM concentrations 

respectively (Fig 2.10c). In experiment 2, IR initially decreased from 8.72 (± 3.33) mg 

h-1 g·1 to 0.60 (± 1.30) mg h"1 g"1 as TPM concentration increased from 20.1(± 3.6) mg 

r 1 to 47.4 (± 35.1) mg r 1. However, as TPM increased to 178.0 (± 11.5) mg r 1 IR also 

increased to 10.92 (± 3.24) mg h"1 g·1• 

2.5.2.6 Pipi (Paphies australis) Energetics 

The relationship between organic absorption rate (OAR) and TPM concentration in 

experiment 1 could not be explained sufficiently by either linear, polynomial, 

logarithmic or exponential functions (Fig 2.11 a). However, OAR attained zero values 

when TPM concentrations at 176.7 (± 17.0) mg r1• In experiment 2, a logarithmic 

equation (Table 2.9) best described the relationship between the two variables. Still, 

OAR decreased dramatically as TPM concentrations inreased beyond 20.1 (± 3.6) mg 

r1• Similarly, the efficiency at which these organic fractions are absorbed (AE) was 

not significantly affected by TPM concentrations in experiment I, whereas in 

experiment 2, a logarithmic function (Table 2.6) best described the relationship (Fig 

2.7c). 

Energy expenditure as depicted by curves for respiration rates (Fig 2.11 b) 

showed that in experiment I, respiration rate reached a maximum of >0.4 ml 0 2 h-1 g"1 
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within the range of 200-220 mg r1 TPM before decreasing with further increases in 

TPM concentration. In contrast, respiration rates in experiment 2 were not 

significantly affected by TPM concentration. 

Fig 2.1 lc illustrates that SFG were high at the lowest TPM concentrations 

(Table 2.3), but decreased to near zero as TPM concentration increases further. The 

realtionships were best described by logarithmic functions (Table 2.9). 
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Experiment 2 
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Paphies australis. (a) Clearance (b) rejection and (c) ingestion rates 

standardised to I g dry tissue weight for pipis, exposed to different 

concentration of total particulate matter in experiment I (non-ashed 
sediment) and experiment 2 (ashed sediment). Data represent the mean 

of 7 replicates (± I SD) 
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Table 2.9 Paphies australis. Functional relationship between total particulate matter 

(TPM) and feeding rates and energetics established for pipis when 

exposed to non-ashed sediment ( experiment 1) and ashed sediment 

(experiment 2). Bracketed values are 95% confidence intervals 

Function df p 

Experiment 1 (Range of TPM concentration: 39.0 (± 23.8) - 322.2 (± 19.6) mg r1) 

Feeding rates 
CR 
RR= 1.52 (3.47) + 0.05 (0.02)TPM 

IR 

Energetics 
OAR 

ns 
0.45 
ns 

ns 
AE ns 
Resp. = -0.284 (0.22) + 0.008 (0.006)TPM - 0.00002 (0.000009)TPM2 0.76 

SFG = 26.9 (22.98) - 13.0 (11.43)log10 TPM 0.24 

28 

17 
18 

0.000 

0.000 
0.028 

Experiment 2 (Range of TPM concentration: 20.1 (± 3.6) -178.0 (± 11.5) mg 1"1) 

Feeding rates 
CR= 0.93 (0.23) - 0.018 (0.006) TPM + 0.0001 (0.00003) TPM2 0.55 32 0.000 

RR= -0.42 (4.06) + 0.11 (0.04)TPM 0.49 33 0.000 

IR= 11.5 (3.6) - 0.25 (0.09)TPM + 0.001 (0.0005)TPM2 0.60 32 0.000 

Energetics 
OAR= 2.26 (1.03) - 1.16 (0.26)log10 TPM 0.36 32 0.000 

AE = 1.44 (0.49) - 0.52 (O. IO)log10 TPM 0.33 32 0.000 

Resp. ns 

SFG = 68.8 (28.51)- 32.7 (15.43) log10 TPM 0.52 18 0.000 

Note: ns denotes non significant relationship with TPM 
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Table 2.10 Paphies australis. Summary of compensation index ( C/) values for 

organic fraction and total pigment, when pipi was exposed to 
increasing total particulate matter (TPM) concentrations composed of 
different particulate organic matter (POM) fractions during experiment 
I (non-ashed sediment) and 2 (ashed sediment) 

TPM POM 
Diet (mg 1"1) Diet (fraction) 

Organic fraction 
CI t-test 

Experiment I. 

39.0 ± 23.8 0.26±0.20 1.1 ± 0.6 P<0.05 
46.8 ± 15.0 0.15 ± 0.02 1.0 ± 1.4 ns 
77.1 ± 11.4 0.15 ±0.02 1.2 ± 1.5 ns 
176.7 ± 17.0 0.12±0.04 -0.5 ± 0.3 ns 
322.2± 19.6 0.10±0.04 0.8 ±0.5 ns 

Experiment 2. 

47.4 ±35.1 0.22±0.05 0.03 ±0.3 ns 
20.1 ±3.6 0.20±0.03 0.5 ± 0.1 P<0.05 
58.0 ± 32.1 0.13 ±0.02 *0.1 ± 0.5 ns 
124.4± 58.7 0.07 ±0.02 4.1 ±4.1 ns 
178.0 ± 11.5 0.03 ± 0.01 1.2 ± 0.6 ns 

Note: ns denotes not significantly different from zero 
* Wilcoxon rank test 

Total pigment 
CI t-test 

-0.6 ± 1.0 ns 
0.3 ±2.9 ns 
0.1 ±0.0 ns 
-0.2±2.5 P<0.05 
-30.6 ± 37.4 P<0.05 

-52.0±0.0 P<0.05 
-8.3 ± 5.3 ns 
-101.4± 117 ns 
-153.1 ± 120 ns 
-43.6 ± 25.5 ns 
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Paphies australis. (a) Organic absorption rate (OAR), (b) respiration 

rate (Resp.) and (c) scope for growth (SFG) standardised to 1 g dry 

tissue weight for pipis, exposed to different concentrations of total 

particulate matter in experiment 1 (non-ashed sediment) and 

experiment 2 (ashed sediment). Data are the mean of 7 replicates for 

OAR, and mean of 4 replicates for Resp. and SFG (± lSD) 
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2.6.3 Feeding rates and Energetics of Bivalves Exposed to 20 mg 1"1 TPM 

Concentrations Added to Natural Seston 

2.6.3.1 Scallops (Pecten novaezelandiae) 

TPM concentrations were similar between the non-ashed and ashed sediments (Table 

2.11 and 2.12), but, POM fraction were significantly different (p<0.001) between the 

two sediment treatments. POM was higher when non-ashed sediment was used in the 

diet mixture than ashed sediment. 

CR and RR were similar between the two diets despite the differences in the 

POM fraction (Fig. 2.12 and Table 2.13). In addition, the scallop was able to 

significantly alter the organic content of ingested matter (Table 2.14) when exposed to 

these TPM concentrations. Furthermore, the sediment quality had no significant effect 

on OAR and AE (Table 2.13). However, organic content had a significant (p<0.05) 

effect on respiration rate. High respiration rates were reported when the diet was 

composed of ashed sediment (Fig. 2.12). Despite these differences SFG did not differ 

between diets 

2.6.3.2 Mussels (Perna canaliculus) 

As a consequence of a substantial fluctuations in the natural seston concentration 

(Table 2.11), the diet TPM concentrations used in both diet mixture were significantly 

different (p<0.05) (Table 2.12). High TPM concentrations were recorded in the diet 

mixture containing ashed sediment. Similarly, POM concentrations were significantly 
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different between the two diets mixture. A diet made up of the ashed sediment had 

lower POM concentrations than a diet composed of h d d' non-as e se 1ment. 

CR was significantly different between the diet qualities (p<0.05) (Table 

2.13). A diet composed of ashed sediment which had higher TPM concentrations had 

significantly lower CR (Fig 2.12). Inversely, the use of non-ashed sediment in the diet 

mixture which had lower TPM concentration had significantly higher CR. Despite the 

differences in TPM concentration and POM fraction, the amount of sediments rejected 

as pseudofaeces (RR) were not significantly different between the two diet mixtures. 

In addition, at these TPM concentrations, the mussel can still increased the ingested 

organic fraction as depicted by significant CI (Table 2.14). 

The use of ashed and non-ashed sediments in the diet mixtures had no 

significant effect on OAR, AE, respiration rate, or on SFG (Fig 2.12 and Table 2.13), 

eventhough the two diet mixtures contained different TPM·concentrations and POM 

fractions. 

2.6.3.3 Pipis (Paphies australis) 

Similar to the mussel diets, TPM concentrations were significantly different (p<0.05) 

between ashed and non-ashed diets (Table 2.11 and 2.12). A diet composed of ashed 

sediment had significantly higher TPM concentration than the non-ashed diet mixture 

(Fig 2.12). Similarly, POM fraction were significantly different between the diets. 

Low POM fraction was reported when ashed sediments were used in the diet mixture 

and vice versa for non-ashed sediment. 

Similar to mussels, CR for pipis were significantly different between the diet 

qualities (p<0.05) (Table 2.13). A diet composed of ashed sediment which had higher 
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TPM concentrations had significantly lower CR (Fig 2.12). On the contrary, the use of 

non-ashed sediment in the diet mixture which had lower TPM concentration had 

significantly higher CR. Despite that, the diet mixtures containing different TPM 

concentrations and POM fractions had no significant effect on RR. Pipis were unable 

to significantly alter the ingested organic fraction at these TPM concentrations (Table 

2.14). 

OAR, AE, respiration rates and SFG were siginificantly different (p<0.05) 

between the diet mixtures (Table 2.13). Higher rates were recorded for diet composed 

of non-ashed sediment than a diet composed of ashed sediment (Fig 2.12). 



Table 2.11 Mean concentrations of total particulate matter (TPM) , total pigment, and particulate organic matter (POM) 

fraction in the diet mixtures composed of 20 mg r1 of either ashed or non-ashed sediments during experiment 2 

(September 1998). Mean concentrations of natural TPM, and proportion of POM used in the dietary mixture are 

also shown 

Component TPM TPM POM POM Total pigment 

Source diet natural diet natural diet 

(mg 1"1) (mg 1"1) (fraction) (fraction) (µg mg"1) 

SCALLOP (Pecten novaezelandiae) 

1. Natural seston + **20 mg 1"1 (mean± sd) 48.6 ± 11.4 28.6 ± 11.4 0.12 ± 0.02 0.21 ± 0.04 52.6 ± 20.4 

2 Natural seston + *20 mg 1"1 (mean± sd) ---------49.2 ± 12.74 ____ 29.17 ± 12.7 ___ 0.16 ± 0.02 -----0.23 ± 0.06 ----- 43.1 ± 10.1 ___ _ 

MUSSEL (Perna canaliculus) 

l. Natural seston + **20 mg r1 (mean± sd) 

2. Natural seston + *20 mg 1"1 (mean± sd) 

PIPI (Paphies australis) 

I. Natural seston + **20 mg r1 (mean± sd) 

2 Natural seston + *20 mg 1"1 (mean± sd) 

** ashed sediments 

* non-ashed sediments 

43.8 ± 7.5 

33.4 ± 2.9 

58.0± 32.1 

33.2 ± 3.8 

23.8 ± 7.5 

13.4 ± 2.9 

38.0± 32.1 

13.2± 3.8 

0.12 ± 0.02 

0.14 ±0.01 

0.13±0.02 

0.18 ± 0.03 

0.22±0.04 

0.27±0.03 

0.24±0.08 

0.36± 0.10 

29.2 ± 11.1 

57.6 ± 23.5 

28.2± 9.0 

62.7 ± 17.8 



Table 2.12 

Species 
Scallop 

Mussel 

Pipi 
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Summary of p values from a one-way ANOV A comparing total 

particulate matter (TPM) concentration and particulate organic matter 
(POM) fraction within the diets of scallops (Pecten novaezelandiae), 

mussels (Perna canaliculus), and pipis (Paphies australis) for the 20 

mg r1 sediments added to natural seston 

Diet conposition Source of variation df p 

TPM Diet 1 0.904 

Error 22 

POM fraction Diet 1 0.000 

Error 22 

TPM Diet 1 0.000 

Error 22 

POM fraction Diet 1 0.005 

Error 22 

TPM Diet 1 0.014 

Error 22 

POM fraction Diet 1 0.001 

Error 22 
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Figure 2.12 (a) Clearance rate (CR), (b) rejection rate (RR), (c) organic absorption 

rate (OAR), (d) absorption efficiency (AE), (e) respiration rate (Resp.), 

and (f) scope for growth (SFG) for scallops (Pecten novaezelandiae), 

mussels (Perna canaliculus), and pipis (Paphies australis) when 
exposed to 20 mg 1-1 diet composed of either ashed or non-ashed 
sediment mixed with natural seston. Data are the mean of 7 replicates 

for CR, RR, OAR, AE, and 4 replicates for Resp. and SFG (± 1SD) 
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Table 2.13 Summary of p values from analysis of variance 
comparing feeding rates and energetics for scallops (Pecten 

novaezelandiae), mussels (Perna canaliculus), and pipis (Paphies 

australis), when exposed to two different diet mixtures composed of 20 

mg r1 of either ashed or non-ashed sediments mixed with natural seston 

Species Physiological rate Source of variation df p 
Scallop 

Mussel 

Pipi 

CR Diet 1 0.903 
Error 12 

RR Diet 1 0.242 
Error 12 

OAR Diet 1 0.199 
Error 12 

AE Diet 1 0.105 
Error 12 

Respiration Diet 1 0.020 
----------------------------------------------- Error __________________________________________________________________ §. ________________________________ _ 

-s,;c met 1 0.145 

CR 

RR 

OAR 

AE 

Respiration 

Error 6 
Diet 
Error 
Diet 
Error 
Diet 
Error 
Diet 
Error 
Diet 

1 
12 
1 
12 
1 
12 
1 
12 

0.017 

0.390 

0.276 

0.529 

0.715 1 
6 ---------------------------------------------------···· Error _________ ·----------------------------------------··--------------------------------····----·--· 

SFG 

CR 

RR 

OAR 

AE 

Respiration 

Diet 
Error 
Diet 
Error 
Diet 
Error 
Diet 
Error 
Diet 
Error 
Diet 

1 0.508 

6 

1 0.000 
12 
1 0.100 

12 

1 0.000 

12 
1 0.000 
12 

1 0.048 
______________________ Error ____________________________________________________________________ §. __________________________________ _ 

--------------------------- - Diet 1 0.009 
SFG 6 

Error 
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Table 2.14 Summary of compensation index {Cl) values for organic fraction and 

total pigment, when scallops (Pecten novaezelandiae), mussels (Perna 

canaliculus), and pipis (Paphies australis) were exposed to 20 mg r• 
of non-ashed sediment (experiment 1) and ashed sediment (experiment 
2) added to natural seston 

TPM POM 
Diet (mg r1) Diet (fraction) 

Organic fraction 
CI t-test 

Total pigment 
Cl t-test 

Scallop 

**48.6 ± 11.4 0.12 ±0.02 0.8 ±0.6 P<0.05 -29.9 ± 21.1 ns 
*49.2 ± 12.74 0.16 ± 0.02 1.5 ± 1.7 P<0.05 -90.8 ± 172.3 ns 

Mussel 

**43.8 ± 7.5 0.12 ± 0.02 0.5 ±0.6 p<0.05 -37.9 ± 80.9 ns 
*33.4 ± 2.9 0.14 ± 0.01 0.1 ± 0.1 p<0.05 -17.7 ± 11.5 ns 

Pipi 

**58.0 ± 32.1 0.13 ±0.02 0.1 ± 0.5 ns -101.4 ± 117 ns 
*33.2± 3.8 0.18 ±0.03 -0.002 ± 0.03 ns -1.2 ± 1.5 ns 

Note: ns denotes not significantly different from zero 
** ashed sediments 
* non-ashed sediments 
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2. 7 Discussion 

2.7.1 Feeding Responses to Different Diet Concentrations and Qualities 

Like many bivalve species, Pecten novaezelandiae, Perna canaliculus, and Paphies 

australis possess some compensatory mechanisms to regulate the amount of ingested 

organic matter, when exposed to varying levels of suspended sediments with different 

qualities, to maximise energy gain. These mechanisms include regulation of clearance 

rates and/or pseudofaeces production which ultimately result in selection of organic 

matter (Hawkins et al., 1990; Willows, 1992; Bayne et al., 1993). 

P. novaezelandiae, and P. canaliculus responded differently as shown by 

clearance and pseudofaeces production rates when exposed to increased concentration of 

particulate matter composed of different qualities. When the diet is composed of high 

organic fraction, a decrease in clearance rates was observed in both species (Fig. 2.3a and 

2.8a). Coupled with low pseudofaeces production, the reduction in clearance rates 

observed for P. canaliculus may be used to stabilise organic intake since the organic 

absorption rates were similar between the 13 (± 7) mg r1 and 333.5 (± 32.1) mg r1 TPM 

concentrations. Studies have also shown with increasing concentrations of diets 

composed of algal mixtures, suspension feeding bivalves generally decrease clearance 

rates (Foster-Smith, 1975; Winter 1978, Yukihira et al., 1998). According to Navarro et 

al., (1992) reduction of clearance rate would contribute to saving energy when such 

sorting is irrelevant, that is, on high diet quality. In contrast to P. canaliculus, the 

reduction of clearance rates observed for P. novaezelandiae at high sediment 
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concentrations may be related to ph · 1 · · ys1ca contramt, such as the capacity to produce 

pseudofaeces (Barille et al., 1997). The hypothesis of physical contraint rather than 

physiological clearance rate reduction is supported by the fact that P. novaezelandiae 

received relatively no benefit from reducing clearance rate, since the ingested organic 

fraction and compensation indices were greatly reduced between 82. 2 (± 10.6) mg r1 and 

205.3 (± 27.6) mg r1 TPM concentration. Indeed, it was observed in this study that P. 

novaezelandiae ceased to produce pseudofaeces immediately after being exposed to TPM 

concentration of 205.3 (± 27.6) mg r1, however, shell gaping was still observed, a sign of 

debility. This is similar to an observation of Dickie (1958, cited by Pilditch (1997)) when 

Placopecten magellanicus was under stress. In comparison, normal feeding activites were 

observed when P. novaezelandiae were exposed to slightly lower TPM concentrations 

(191.3 ± 27.6 mg r1) in experiment 2. Therefore, a slight increase in TPM concentration 

beyond this value may result in great reduction of ingested organic fraction and organic 

absorption rates. 

A positive correlation between clearance rate and fluctuations of natural seston, 

with low organic fraction, has been described for the cockle Cerastoderma edulis, 

(Iglesias et al., 1992) and mussel Mytilus edulis, (Newell and Shumway, 1993; Hawkins 

et al., 1996). This study demonstrated a similar trend when P. canaliculus, in particular, 

was fed with diets of low quality. However, depending on the feeding behaviour or 

capability to tolerate high TPM concentrations, clearance rates would decrease at some 

point with further increases in TPM concentrations as observed for P. novaezelandiae. In 

similar circumstances, Barille et al., ( 1997) also observed an increase in clearance rate for 

Crassostrea gigas, before decreasing after reaching 90 mg r1• This decrease may be also 
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due to physical constraint if ingested organic fraction decreased as pallial organs are 

clogged with sediments Therefore 90 1-1 • h · · · mg m1g t be considered as an optimum 

concentration for C. gigas. For P. novaezelandiae an optimum TPM concentration may 

be higher than the concentrations used during experiment 2, since ingested organic 

fraction was increasing despite the decreasing clearance rates. However, it is anticipated 

that further increase in TPM concentration would elevate stress conditions resulting in 

great reduction in CR (Bayne and Newell, 1983). Indeed, CR reduced dramatically when 

scallops was exposed to >200 mg r1 during experiment 1 (Fig 2.3a) in this study. 

Because diet was diluted considerably in experiment 2 compared to experiment 1, 

high pseudofaeces production rates for the P. novaezelandiae and P. canaliculus were 

observed. For instance, at 180 mg r1 TPM, the diets organic fraction in experiment 2 for 

P. canaliculus was less by a factor of two compared to organic fractions in experiment 1. 

Consequently, pseudofaeces production in experiment 2 for P. canaliculus increased four 

times compared to the rates observed in experiment 1. Although a lower pseudofaeces 

production was observed for P. novaezelandiae, similar differences in production rates 

between the diets were also observed. These observations are different from those 

observed by Bacon et al., (1998), where pseudofaeces production rates for an epifaunal 

scallop Placopecten magellanicus were similar between low and high diet qualities. The 

discrepancy may be due in part to the low range of food concentrations used in their 

experiment. When bivalves species were exposed to natural sestons (Barille et al.,1997; 

Hawkins et al., 1996, 1998) and to experimental diets representative of natural seston 

(Iglesias et al., 1992; Navarro et al., 1992; Bayne et al., 1993), consisting of low organic 

fraction, high rates of clearance and pseudofaeces production were observed. In fact, 
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these high feeding rates are employ d t · · e o compensate for low food quality (Hawkins et 

al., 1996). In support, ingested organic fraction and organic absorption rates in this 

current study remained high even when low quality diets were used. Similarly, 

compensation index values were positive when the organic fraction was diluted to some 

level (Table 2.1, 2.2 and 2.3), implying that selection of organic fraction is one of the 

main feeding strategies adopted to maximise energy intake when low food qualities are 

encountered. Nevertheless, it should be noted that both experiments were conducted at 

different times of the year, therefore the differences observed in the feeding rates may 

also be related to the environmental factors such as seasonal changes (Brown, 1988). 

The feeding strategy shown by an infaunal species P. australis is exceptional. It 

tends to have low clearance rate with one exception (Fig. 2.10a) and produces relatively 

low amounts of pseudofaeces even at high TPM concentrations for both diet qualities. 

Bacon et al., ( 1998) showed that an infaunal clam Mya arenaria did not rely on the 

production of pseudofaeces to regulate the amount of ingested organic fraction. This 

study demonstrated a similar phenomenon. A negative consequence of the low clearance 

rate, however, is that the chances of increasing the volume of nutritious particles through 

selection are less as a reduced volume of water was swept over the palps. This 

phenomenon was supported by the fact that P. autsralis could not produce sufficient 

pseudofaeces, to modify the quality of ingested organic fractions, as shown by reduced 

compensation index values when TPM concentrations were high. Therefore, the 

production of pseudofaeces at high TPM concentration were used entirely to get rid of 

excess particles from the feeding apparatus. Bacon et al., (1998) suggested that such a 

strategy may be associated with morphological constraints imposed by the feeding and 
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digestive process. Indeed, post-ingestive processes are more important than pre-ingestive 

selection for M. arenaria. If post-ingestive processes were important to P. australis, then 

this would be reflected in high organic absorption rates and absorption efficiency values, 

which was not observed in this study. Therefore, this study indicated that P. australis can 

only feed efficiently on low TPM concentration. 

Furthermore, retention efficiency of different particles sizes may also contribute 

to the amount of energy absorbed if different particles sizes contained different quantity 

of organic materials. Defossez and Hawkins (1997) observed that Mytilus edulis, 

Ruditapes philipinarum and Tapes decussatus preferently rejected as pseudofaeces 

particles within the range of 7 .5 - 22.5 µm depending on the species and the conditions 

they were exposed to. In some turbid estuaries such as in the estuary of Marennes-Oleron, 

France (Barille et al., 1997), finer grained sediments (3-6 µm) contain high organic 

contents, so Barille et al. ( 1997) speculated that turbid estuarine dwellers with a gill 

porosity in the 3-6 µm range would benefit greatly. However, the retention efficiency of 

finer particles has been shown to decrease with increasing concentration of clay and silt 

in natural seston (Barille et al., 1993). Consequently, retention of high quality finer 

sediments may be reduced with negative selection as a result (Bacon et al., 1998). In this 

study, particularly in experiment 2, organic content of different particles sizes are 

presumably similar due to the ashed nature of the sediment. Therefore, compensation 

indices in the absence of natural seston for each particles size would be the same. The 

differences in the observed compensation index values for P. novaezelandiae and P. 

canaliculus in this study were a reflection of organic materials contained in the natural 

seston. If particle sizes in the natural seston fall within the (unknown) ranges of selected 
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ingested materials then preferential selection was bas d rt· 1 · H "f e on pa 1c es size. owever, 1 a 

wide range of particle size existed in the natural seston then selection by Pecten 

novaezelandiae, Perna canaliculus, and Paphies australis was based on organic content 

or possibly other qualitative factors of the particles such as carbon and nitrogen (Ward 

and MacDonald, 1996) regardless of particle sizes. Thus, this would justify the need to 

characterise different particles sizes and their subsequent organic contents of natural 

seston that composed the diets of these bivalve species. 

2. 7 .2 Effect of food concentration and quality on energetics 

The important outcome of changes in feeding processes was to maximise the amount of 

ingested food material over a wide range of suspended sediment concentrations and 

qualities. Therefore, it would be expected that organic absorption rates and absorption 

efficiency would be elevated up to an optimum level at certain TPM concentration before 

decreasing. This optimum level may differ between individuals of same species due to 

size differences (Griffiths and King 1979 a, b; Navarro and Winter, 1982; Yukihira et al., 

1998 a) or differ between bivalve species (Hawkins et al., 1998; MacDonald et al., 1998; 

Yukihira et al., 1998 b). 

Previous workers have observed that absorption efficiency for the hard clam 

Mercenaria mercenaria, (Bricelj and Malouf, 1984) cockle Cerastoderma edule, (Iglesias 

et al., 1992, 1996) clam Mya arenaria, (MacDonald et al., 1998) scallop Placopecten 

magellanicus, (MacDonald et al., 1998) increased with increasing food quality, but 

independent of food concentrations. This study showed similar trends only for P. 
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novaezelandiae and P. australis when exposed to decreasing levels of organic content as 

TPM concentration increased for both diet qualities. The reason behind this phenomenon 

has not been fully established. However, according to Barille et al., (1997) negative or 

low values obtained for AE were associated with the contribution of endogenous 

materials in faecal losses such as enzymes or fragments of digestive epithelium which are 

not reabsorbed when bivalves are exposed to very low diet organic fraction which may 

exceed the gross AE. Whereas production of specific digestive enzymes meeting the 

needs of each bivalve species (Brock, 1989) would result in high AE. In addition, 

bacterial activities within the bivalve may facilitate the breakdown of detritus materials 

and therefore increase absorption (Crosby et al., 1990). 

Perna canaliculus displayed a different trend for AE compared to Pecten 

novaezelandiae and Paphies australis. The difference may be associated with the feeding 

behaviour of this species. As more organics were selected through production of 

pseudofaeces for ingestion, organic absorption rates increased and so the efficiency in 

organic absorption increased. Yet, the mechanism(s) responsible for regulating AE in 

response to food content is still unclear. Bayne et al. ( 1987) observed that gut passage 

time is positively correlated with AE, a function which depends on ingestion rate. 

However, this positive function decayed within weeks. Cranford (1995) speculates that 

because gut passage time is controlled by ingestion rates which can be altered 

immediately in response to food quality, an initial increase in gut passage time due to 

increase in ingestion may have contributed to the initial rapid increase in absorption 

efficiency. 
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Respiration rates between and within species were quite different when exposed 

to different diet quality. The differences may be due to a positive relationship between 

metabolic activities and feeding activities (Griffith and Griffith, 1988). Because Pecten 

novaezelandiae and Perna canaliculus generally have high clearance rates and 

pseudofaeces production rates when exposed to ashed sediments, respiration rates were 

also high. Inversely, when these species are exposed to high diet quality, the lower 

respiration rates were probably due to a reduction in feeding rates. 

Other studies revealed that respiration rates for Mytilus edulis (Widdows et al., 

1979; Bayne et al., 1993) and Spisula subtruncala (Molenberg and Kiorboe, 1981) were 

independent of food concentration and quality, while others showed that respiration rates 

for infaunal Cerastoderma edule (Navarro et al., 1992 and 1994) and Mya arenaria 

(Grant and Thorpe, 1991; MacDonald et al., 1998) were significantly affected by food 

concentration and quality. The decline in respiration rates noted by some workers (Grant 

and Thorpe, 1991) was considered as a mechanism to conserve energy. This is supported 

by the fact that the reduction in respiration rates for P. canaliculus and P. novaezelandiae 

when exposed to ashed and non-ashed sediments respectively, lead to consistence 

positive scope for growth regardless of TPM concentration. In addition, the similarities 

observed in scope for growth for P. australis is a reflection of metabolic activities as 

feeding rates were similar between the diet qualities. On the contrary, the high respiration 

rates observed for P. canaliculus, when exposed to high concentrations of ashed 

sediment, was a clear reflection of high feeding rates observed at these high TPM 

concentrations. Consequently, the bivalve received no benefit in terms of scope for 

growth, eventhough organic absorption rates were high at high TPM concentrations. 
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For most, scope for growth revealed a depressing effect of increased diet 

concentrations. These effects maybe related to the fact that the species used in this study 

may eventually stop feeding at high TPM concentrations that provoke the clogging of 

their pallial organs (Barille et al., 1997) and/or due to the fact that energy intake cannot 

meet the increasing demands of metabolic activities (Bayne and Newell, 1983). 

Therefore, positive scope for growth values attained for Perna canaliculus and Pecten 

novaezelandiae when exposed to non-ashed and ashed sediment would eventually take 

zero values if TPM concentrations increased further. Despite that, scope for growth was 

still positive even at high TPM concentrations (see results). Hawkins et al., (1996) 

demonstrated that Mytilus edulis displayed positive net energy balance even at 80 mg r1 

of natural seston. Similarly, scope for growth for Crassostrea gigas (Barille et al., 1997) 

was positive until natural seston exceeded 150 mg r1• Therefore, the feeding strategies 

which include alteration of clearance rates, pre-ingestive selection through pseudofaeces 

production, a combination of both, post-ingestive mechanisms, or reduction in metabolic 

activities enable suspension filter-feeding bivalves to support growth in times of elevated 

food concentrations. 

2.7.3 Comparison Between Feeding Rates and Energetics at 20 mgl-1 Sediment 

Added to Natural Seston 

The feeding rates and energetics of Pecten novaezelandiae were not significantly 

different between the diets, except for respiration rates. The diet composed of different 

POM fraction but similar TPM concentration. Therefore, the similarity between the 
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responses indicated that scallops have the ability to counteract the depressing effect of 

lower POM fraction to obtain sufficient energy, similar to the amount of energy gained 

when the diet had higher POM fraction. 

Clearance rates (CR) was only significantly different when Perna canaliculus was 

exposed to different TPM concentrations and POM fraction. Despite the differences in 

CR, the amount of energy gained were still similar. Perusal of the data (Fig 2.12a) 

showed that overall difference in clearance rate (the amount of water cleared of 

suspended particles per unit time) was only different by a small margin. A large different 

would be reflected in the amount of energy gained. This phenomenon was observed in 

the feeding resposes of Paphies australis, whose clearance rates were significantly 

different when expt>sed to different TPM concentrations. Consequently, lower energy was 

gained when TPM concentration was high. Again this supported the fact that the feeding 

responses and energetics of P. australis were greatly affected by high TPM concentration. 

2.8 Conclusion 

-
Pecten novaezelandiae and Perna canaliculus regulated the amount of energy intake by 

increasing clearance rates and pseudofaeces production, except when organic fraction is 

high as such production is unnecessary (Navarro et al., 1992). Clearance rates and 

selection of organic materials through pseudofaeces production were higher when both 

species were exposed to ashed sediments than when exposed to non-ashed sediments. 

This gave the advantage of ingesting similar or at some point elevated organic fraction as 

TPM concentrations increased. However, the adverse consequence for some bivalves 
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such as Perna canaliculus when exposed to ashed sediments is a low scope for growth as 

more energy is lost through metabolic activities due to high feeding activities. 

Paphies australis can only feed efficiently at low TPM concentrations (39.0 ± 

23.8 mg r1 in experiment I and 20.1 ± 3.6 mg r1 in experiment 2). Above these values 

pipis were unable to compensate for increased sediment concentration and therefore had 

very low scope for growth. 

The most capable bivalves, judged by the amount of net energy gain (scope for 

growth), when exposed to a wide range of food concentrations with high food quality, 

were the mussels (Perna canaliculus) followed by the scallops (Pecten novaezelandiae), 

and the least tolerant were pipis (Paphies australis). Furthermore, when ashed sediments 

(low food quality) were utilised, P. novaezelandiae demonstrated beneficial strategies of 

compromising diet depression, enabling it to maintain relatively low but constant net 

energy gain over a wide range of TPM concentrations. P. canaliculus showed a 

logarithmic decrease in SFG exhibiting very low values at the highest diet concentration. 

Again, P. australis was the least tolerant species. 



CHAPTER3 

Effects of Resuspended Sediments Caused 
by Dredging on Seston Concentration and 
Quality 

3. 1. Introduction 

Fine sediments comprise most of the materials in deepened navigational channels which 

have accumulated over time as a consequence of weakened water currents (Yell and 

Riddell, 1995; Healy and Roberts, 1997). Such sediments of fine particle size typically 

have low settling rates once resuspended when dredged. Their potential impacts on the 

ambient water quality, however, are strongly determined by relative concentration and 

quality in the water column (Kester et al., 1983). These impacts include possible release 

of contaminants from the sediment to the aqueous phase and increase in turbidity (Kester 

et al., 1983; Ryan, 1989; Yell and Riddell, 1995). In addition, fine sediments can be 

transported over considerable distances from the source (Jago et al., 1993) affecting water 

quality in neighbouring areas. 

Several studies undertaken on dredging have aimed to better understand the 

impact of contaminants released by dredge spoils and subsequent bioaccumulation 

(Young and Pearce, 1975; Davis 1983; Kester et al., 1983; Ahlf and Munawar, 1988; Al­

Madany et al., 1991; Toumazis, 1995), impact of disposal on sediment bathymetry 
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(Harms, 1989; Mathew, 1997) or direct impact of disposal on benthic communities 

(Foster et al., 1991; Wood, 1994). Some also sought ways to minimise negative impacts 

of dredged spoils on the marine ecosystem by considering various dredging and disposal 

methods (Yell and Riddell, 1995). 

Despite numerous works on the impact of dredging, limited studies have focused 

on the effect of suspended sediment caused by dredging on natural seston concentration 

and quality. However, previous works have shown that the quality of natural seston can 

be influenced by the concentration and quality of resuspended sediments. Where 

resuspended sediment contains high concentrations of organic matter, resuspension might 

be considered beneficial as it might enhance the seston quality in terms of organic content 

to suspension feeders (Wainright, 1990). Inversely, high concentrations of inorganic 

matter might dilute the concentration of organic matter or phytoplankton in the water 

column (Grant et al. 1997) giving low quality. 

This study aims to quantify the effect of suspended sediments caused by dredging 

on natural seston concentration and quality. The study was undertaken during an intensive 

maintenance dredging operation at Stella Passage, Port of Tauranga. Surficial black 

silt/mud in the passage are low in heavy metal concentrations, but have a high proportion 

of organic to inorganic material (Healy and Roberts, 1997). 

Toe null hypothesis assumed that the organic content and concentration of natural 

seston were similar between the dredged zone and surrounding areas during and after 

dredging. The observed seston concentrations in terms of particulate organic matter (mg r 

1) and total pigment (µg r1), were used to interpret potential impacts of resuspended 
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sediment caused by dredging on seston concentration and quality from water samples 

collected at study sites. 

3.2 Methods 

3.2.1 Sample Collection 

Water samples were collected on 10th November 1998 in Stella Passage using the Port of 

Tauranga survey boat. Sampling of four study sites (Fig 3.1) was performed during an ebb 

tide which coincided with dredging operations. One site (site 1) was located within the 

dredging zone. Two other sites, each located 200 metres downstream (site 2) and 200 

metres upstream (site 3) from the dredge, while, a control site was located at 500 metres 

upstream (site 4). At each site surface and bottom (within 0.5 metres from sediment) 

water samples were collected. A 5-litre water sampling device attached to weight was 

used for collecting water samples. 

Sampling was repeated threes times over each site. The first samples were 

collected while dredging was in operation, while the latter two sampling periods occurred 

after dredging ceased. Sampling commenced at site 1 and finished at site 4. The time 

taken between each successive sampling was approximately 1 hour. Positions (Appendix 

A.3) fixing for each study site was provided by a global positioning system (GPS). Even 

though there was a slight displacement in positions during each successive sampling, 

results were grouped together according to the sites described above. 



73 

Three replicates of water samples were filtered on pre-ashed, weighed 45mm GF/C 

Whatman filters then washed with isotonic ammonium formate, dried at 80 °C for 24 

hours, and weighed to give total particulate matter (TPM, mg r1). Particulate inorganic 

matter (PIM, mg r1) was determined after ashing at 480 °C for 12 hours. Particulate 

organic matter (POM, mg r1) represented the difference between TPM and PIM. Total 

pigment (chlorophyll a and phaeophytin a) analysis was performed on three replicates 

using fluorometric technique according to Arar and Collins ( 1997). 

The particle size was determined by Malvern Instruments Mastersizer. However, a 

very low resolution due to low concentrations of particles observed in the samples 

suppressed further procedures, so the analysis was aborted. 

3.2.2 Statistical Analysis 

A one way ANOV A test using Minitab 10.51 was employed to test the following 

null hypotheses. 

H01 : The surface concentrations of total particulate matter (TPM) and particulate 

organic fraction (POM fraction) between the dredged site and adjacent sites were 

not significantly affected by dredging 

H02: After dredging ceased the surface concentrations of TPM and POM (fraction) 

between the dredged site and adjacent sites were similar. 

H03: The concentrations of TPM and POM (fraction) near the bottom, between the 

dredged site and adjacent sites were not significantly affected by dredging 
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804: After dredging ceased the concentrations of TPM and POM (fraction) near the 

bottom, between the dredged site and adjacent sites, were similar. 

Data for TPM and POM were log10 transformed prior to analysis to ensure normality and 

homogeneity of variance. 

The data for total pigment deviated from normality or homogeneity even after 

transformation. Therefore, a non-parametric Kruskel-Wallis (K-W) procedure was 

employed to detect significant differences of total pigment (µ r 1) between concentrations 

recorded at different sites and depths. A non-parametric post hoc Nemenyi test (Zar, 

1996) similar to a Tukey test was employed to detect which means were different, if K-W 

test was significant. Concentrations recorded at different times for each depth were 

pooled together. 

3.3 Results 

3.3.1 Total Particulate Matter (TPM, mg 1"1) 

During dredging, time I, (Fig. 3.2) the surface TPM concentration was significantly 

higher (P<0.001) at the dredged site than sites 2, 3, and 4. Following the conclusion of the 

dredging operation, the concentration at the dredged site decreased from 9.67 (± 0.58) mg 

r1 during dredging to 3.33 (± 0.40) mgr' at time 2. Concurrently, an increased in TPM 

concentration was observed between time 1 and 2 at 200 metres downstream from 2. 77 (± 

0.88) to 6.23 (± 0.76) mg r'. At time 3 TPM concentrations were constantly low at all 

sites. Despite that, the ANOV A test showed that TPM concentrations were significantly 
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different (P<0.001) between s1·t AT k · es. u ey test revealed that TPM concentrations were 

significantly higher at sites 1 and 4 compared to sites 2 and 3. 

A different trend in TPM concentrations was observed close to the bottom. During 

dredging at time 1, the bottom TPM concentrations were not significantly different 

(P>0.05) between sites. Despite that, the concentrations remained high at the dredged site 

even after the conclusion of the dredging operation, i.e at time 2 and 3. The ANOV A test 

revealed that at time 3, the bottom TPM concentration at the dredged site was 

significantly higher (P<0.05) compared to sites 2, 3, and 4. 

3.3.2 Particulate Organic Matter (POM, mg r1 and fraction) 

The surface POM concentrations were <3 mg r 1 at all sites (Fig 3.2), except at the 

dredged site during dredging (time 1), when POM concentration was 3.37 (± 0.32) mgr'. 

Despite that, the surface POM fractions (Fig 3.3) were significantly different (P<0.001) 

between sites during dredging (time 1). A lower fraction was observed at the dredged site 

compared to sites 2, 3 and 4. In addition, the surface POM fraction decreased from 0.66 

(± 0.08) to 0.30 (± 0.05) between dredging (time 1) and after dredging (time 2) at 200 

metres downstream. At time 3 after dredging, the surface POM fractions were not 

significantly different (P>0.05) from each other. 

The bottom POM fractions (Fig 3.3) were not significantly different (P>0.05) 

from each other during dredging nor after dredging, despite high POM concentrations 

(Fig 3.2) recorded at the dredged site (site 1) and at 200 metres downstream (site 2) 

during and after dredging. 
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3.3.3 Total Pigment (µg )"1) 

A Kruskal-Wallis test indicated that total pigments were significantly different 

(P<0.05) between sites (Fig. 3.4a). Following a non-parametric post hoc test, the surface 

total pigment concentration at site 1 was lower compared to the bottom concentrations 

recorded at site 1 and 4. Despite that, the proportion of chlorophyll a to phaeophytin a 

(the breakdown product of chlorophyll a) were similar between all sites and depths (Fig 

3.3b). The average ratio was= 3.5:6.5 (chlorophyll a:phaeophytin a). 



Figure 3.2 
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Total particulate matter (TPM) and Particulate organic matter (POM) 

obtained at site 1 (dredged site), site 2 (200 metres downstream), site 3 

(200 metres upstream), and site 4 (500 metres upstream) for surface and 

bottom depths. Data are the mean of 3 replicates (± 1 SD). 
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Figure 3.3 
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Particulate organic matter (fraction) obtained at site 1 (dredge site), site 2 

(200m downstream), site 3 (200m upstream), and site 4 (500m upstream). 

Data are the mean of 3 replicates (± 1 SD). 
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(a) 

• Chlorophyll a • Phaeophyte a (b) 

(a) Concentration of total pigment, and (b) percentage of chlorophyll a to 

phaeophytin a, obtained at the study sites. Data are the mean of 6 

replicates (± 1 SD). 
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Range of concentrations for total particulate matter, particulate organic 

fraction and total pigment encountered naturally during experiment 1 and 
2. 

Experiment TPM POM Total pigment 

(mg r 1) (fraction) (µgr•> 

1 7.8- 126.7 0.19-0.72 0.48- 10.34 
2 5.2-165.6 0.13-0.61 0.54-9.18 
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3.4 Discussion 

The axis between the study sites was parallel to the ebb current direction. The water 

passing site 4 was carried directly to site 3 by ebb current. Since the dredging operation 

(site 1) was down stream, less variation in TPM and POM concentrations existed between 

site 3 and 4. However, water masses from the dredged site were carried directly to site 2 

downstream. Therefore, the existence of significant horizontal differences in the means of 

TPM and POM measured were expected. 

Ebb waters were dominated by waters coming from Waimapu estuary, Welcome 

Bay, Rangataua Bay, and Waipu Bay (Fig 1.1). The bulk of these water masses went 

under the Tauranga Harbour Bridge; yet, a portion of this water mass, especially from the 

Waipu Bay went through an opening adjacent to Whareroa point (Fig 3.1). The meeting 

of these water masses may have created a divergence in water movement resulting in 

resuspension of bottom sediment as seen by water discolouration (pers. obser.). Coupled 

with resuspended sediments from dredging, together these resuspensions may dilute the 

surface POM fraction at sites I and 2. 

The POM fraction recorded in this survey were within, or in a few cases higher 

than, the ranges of POM fractions recorded for natural seston during the feeding 

experiments (Table 3.1). Similarly, the high resuspended matter recorded at the surface of 

site 1 may also affect the total pigment concentration by diluting it. This relationship was 

similar to other observations (Anderson and Meyer, 1986; Berg and Newell, 1986; Grant 

et al., 1997) where a negative relationship existed between food concentrations and 

seston volume. 
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The volume of resuspended materials (TPM) recorded in this study did not exceed 

10 mg r•, and it was comparatively less than natural seston used in the feeding 

experiments (Table 3.1). However, this comparison is limited only to the surface and 

bottom water samples. Therefore, getting more water samples representing other depths 

between the surface and bottom could yield a different TPM concentration. Nevertheless, 

resuspended sediments as measured in Nephelometric turbidity unit (NTU) by 

Kensington (1990) and Sander (1993) showed that high turbidity was recorded at the 

dredge and disposal sites but decreased rapidly within minutes after each activity. 

Kensington ( 1990) also found that, the turbidity levels were consistently higher at the 

bottom than at the surface over the dumping ground. Although, in this study, 

resuspension was caused by dredging, the results still show that the TPM concentration 

observed at the dredged site decreased rapidly, while the concentration at the bottom 

remained consistently high even three hours after dredging. Ebb currents played a 

significant role in the observed trends for at least with the surface values. Nevertheless, 

this result was limited to a 200 metres downstream. 

This study indicated that resuspended sediment from dredging has limited impact 

on the local food quality in terms of organic content and total pigment concentration, for 

at least 200 metres downstream from the dredged zone, considering the level encountered 

naturally. The high organic content in the dredged sediments may have contributed to 

high organic values observed during dredging, limiting the impact of resuspension on 

seston quality. Thus getting more samples at other depths would probably yield similar 

results. 



CHAPTER4 

Conclusions and Recommendations 

Suspension feeding bivalves are often the dominant macrofauna in most benthic 

communities in estuaries and open coastal waters (Kautsky and Evans, 1987; 

Thouzeau et al., 1991 ). They play a significant role as a coupling agent between the 

benthic and pelagic environments. Turbidity affects the feeding behaviour and 

energetics of bivalves, by either affecting the feeding apparatus (gills) directly, or 

indirectly by affecting the food quality. This study was undertaken to investigate 

some aspects of the relationship between turbidity and the feeding physiology and 

energetics of three New Zealand filter-feeding bivalves, scallops (Pecten 

novaezelandiae), mussels (Perna canaliculus), and pipis (Paphies australis). 

Secondly, it investigated the effect of resuspended sediment caused by dredging on 

seston concentration and quality. This chapter provides a brief summary of the main 

findings, discusses the implications of these findings, and provides suggestions for 

future study. 

4.1 Summary of the Main Findings 

1. The naturally occurring seston obtained from Tauranga Harbour used in the 

diet mixture fluctuated substantially in quality and quantity. The TPM concentration 

ranged from 5.2 - 165.6 mg r1• The utilisable food content of seston also fluctuated 

greatly, the POM content ranged between 13% - 72%, whereas total pigment 

(chlorophyll a plus phaephytin a) concentration ranged from 0.48 - 10.34 µg r1• 

86 
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2. Pecten novaezelandiae had a positive scope for growth until TPM increased 

beyond = 190 mg r'. Net energy gain was accomplished by (1) selecting more 

nutritious particles for ingestion when POM content became diluted to S 14%, and (2) 

reduction of energy expenditure through alteration of respiration losses. If the diet 

contained a high POM fraction, clearance rates (the volume of water swept clear of 

particles per unit time) decreased with increasing TPM concentration, but increased 

up to a limit (120-140 mg r1) when the diet had a lower POM content. 

3. When the diet had a high POM content, Perna canaliculus supported growth 

by clearing less water, reducing the amount of particles rejected as pseudofaeces, and 

reducing the amount of energy expired through respiration. Consequently, SFG was 

uniformly high as TPM concentrations increased to 332 mg r1• Inversely, when the 

diet had a low POM content, P. canaliculus had higher clearance rates, and rejected 

more particles as pseudofaeces as TPM concentrations increased. Selection for 

nutritious particles occurred when the POM content was diluted to S 16% in both diet 

mixtures. As a consequence of high feeding rates, respiration rate also increased. 

Therefore, as TPM concentrations increased the balance between energy gain and 

expenditure produced low SFG. 

4. Paphies australis generally had low clearance and rejection rates, and could 

only select higher nutritious particles at the lowest TPM concentrations in both 

experiments. As TPM concentrations increased beyond these low values (39 mg r1 in 

experiment I and 20 mg r1 in experiment 2), SFG decreased dramatically to almost 

zero. 
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5. When compared to natural variations, dredging had a limited effect on seston 

concentration and quality in the water column, within 200 metres up and downstream 

from the dredging operation. 

4.2 Implications for Dredging Management 

Resuspension of sediment is often associated with dredging operations. As the results 

of this study indicated, the effects of this sediment are not uniform on all suspension 

feeding bivalves, some can tolerate high suspended loads while others can not. By 

knowing the locations of benthic organisms, relative to the dredging site, as well as 

the organisms tolerance levels to suspended matter, then the allowable volume of 

resuspension that should not be exceeded during dredging operations can be 

evaluated. For example, high loads of suspended sediment may have no significant 

effect on high tolerance benthic organisms, therefore the volume may be kept high, 

and vice versa for intolerant species. In addition, sufficient knowledge on the general 

characteristics of the proposed dredged materials in terms of utilisable food level such 

as organic content, and contaminant levels are also essential. If the sediments contain 

high organic content, and less contaminant levels, then high resuspension may 

enhance the quality of seston and ultimately have beneficial effects on the affected 

marine biota. By integrating these concepts into dredging management, then any 

deleterious effect on the adjacent biota may be minimised. 

The results also showed that no dead bivalve was reported during the 

experiments, even though they were exposed to suspended sediment for 8 hours. This 

indicates that these bivalves can recover from periodic exposure to high turbidity. 

Since resuspended sediment caused by dredging operations typically remains in the 
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water column less than 8 hours, it can be assumed that these bivalves can fully 

recover after being exposed to this type of resuspension. Nevertheless, these results 

are only limited to bivalve being exposed to fine suspended sediments, but not to 

inundation and blanketing by settling particles. 

4.3 Recommendations for Future Studies 

The relationship between seston characteristics and bivalve feeding behaviour is 

based on limited data relating to Tauranga Harbour sediments and certain bivalve 

species (scallops, mussels, and pipis). The generality of these relationships could be 

enhanced if more studies are undertaken. The following studies are recommended. 

1. Investigation of the seston concentration and quality over the natural bivalve 

populations. This will provide knowledge on the seston characteristics to which 

bivalve populations are naturally exposed. 

2. Characterisation of the seston component in terms of particles sizes and their 

subsequent quality (such as organic, carbon, nitrogen, lipid and protein) as bivalves 

may rely on a particular particle size for food. 

3. Exposing the bivalve species to increasing levels of suspended sediments for a 

longer period, thus establishing a relationship between the variables on a long-term 

basis. This will provide a better understanding of the tolerance capacity of certain 

bivalve species which can thrive on persistent high load of sediments commonly 

encountered in estuaries, open coastal waters and near outfall areas. 
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4. Determination of the amount of nutrients taken up and released to the water 

column by bivalves over a wide range of seston concentrations. This has a potential 

effect on other marine populations and general ecology of the Harbour, since bivalves 

have been known as coupling agents between the benthic and pelagic environments. 



Appendix 

A.1 Particle sizes of non-ashed sediment used in the first feeding experiment in 

May 1997, and part of the second experiment in September 1997 
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sample ID: 15D 
sample File: MISC 
sample Path: A:\ 

Result: Analysis Report 
Sample Details 

Run Number: 2 
Record Number: 16 

sample Notes: Non-ashed Sediment 

Measured: Sun, Feb 07, 1999 3:14PM 
Analysed: Sun, Feb 07, 1999 3:14PM 
Result Source: Analysed 

Range Lens: 300RF mm 
presentation: 30HD 
Analysis Model: Polydisperse 
Modifications: None 

Distribution Type: Volume 
Mean Diameters: 
D [4, 3] = 21.23 um 

Size Low (um) In% 
0.05 0.00 
0.06 0.01 
0.07 0.01 
0.08 0.03 
0.09 0.05 
0.11 0.08 
0.13 0.14 
0.15 0.21 
0.17 0.31 
0.20 0.42 
0.23 0.54 
0.27 0.64 
0.31 0.70 
0.36 0.72 
0.42 0.75 
0.49 0.79 
0.58 0.82 
0.67 0.89 
0.78 1.02 
0.91 1.17 
1.06 1.34 
1.24 1.53 
1.44 1.72 
1.68 1.91 
1.95 2.10 
2.28 2.29 
2.65 2.46 
3.09 2.62 
3.60 2.76 
4.19 2.88 
4.88 2.98 
5.69 3.05 

System Details 
Beam Length: 2.40 mm Sampler: MS17 
[Particle A.I.= ( 1.5295, 0.1000); Dispersant A.I.= 1.3300] 

Result Statistics 
Concentration= 0.0143 %Vol Density= 2.650 g /cub.cm 
D(v,0.1)= 1.15um D(v,0.5)= 12.37um 
D [3, 2] = 2.63 um Span = 4.321 E+OO 

Size High (um) 
0.06 
O.Q7 
0.08 
0.09 
0.11 
0.13 
0.15 
0.17 
0.20 
0.23 
0.27 
0.31 
0.36 
0.42 
0.49 
0.58 
0.67 
0.78 
0.91 
1.06 
1.24 
1.44 
1.68 
1.95 
2.28 
2.65 
3.09 
3.60 
4.19 
4.88 
5.69 
6.63 

Under% 
0.00 
0.01 
0.03 
0.05 
0.10 
0.19 
0.32 
0.53 
0.84 
1.26 
1.81 
2.45 
3.15 
3.87 
4.62 
5.41 
6.23 
7.12 
8.14 
9.32 

10.66 
12.19 
13.92 
15.83 
17.93 
20.21 
22.67 
25.29 
28.06 
30.94 
33.91 
36.96 

Size Low um 
6.63 
7.72 
9.00 

10.48 
12.21 
14.22 
16.57 
19.31 
22.49 
26.20 
30.53 
35.56 
41.43 
48.27 
56.23 
65.51 
76.32 
88.91 

103.58 
120.67 
140.58 
163.77 
190.80 
222.28 
258.95 
301.68 
351.46 
409.45 
477.01 
555.71 
647.41 
754.23 

In% 
3.10 
3.15 
3.21 
3.29 
3.40 
3.55 
3.74 
3.96 
4.21 
4.46 
4.63 
4.64 
4.44 
4.00 
3.34 
2.55 
1.75 
1.05 
0.54 
0.03 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

Obscuration: 21.8 % 

Residual: 0.600 % 

Specific S.A. = 0.8606 sq. m I g 
D (v, 0.9) = 54.59 um 
Uniformity = 1.362E+OO 

Size Hi h um 
7.72 
9.00 

10.48 
12.21 
14.22 
16.57 
19.31 
22.49 
26.20 
30.53 
35.56 
41.43 
48.27 
56.23 
65.51 
76.32 
88.91 

103.58 
120.67 
140.58 
163.77 
190.80 
222.28 
258.95 
301.68 
351.46 
409.45 
477.01 
555.71 
647.41 
754.23 
878.67 

Under% 
40.06 
43.22 
46.43 
49.72 
53.12 
56.67 
60.41 
64.37 
68.57 
73.03 
77.66 
82.30 
86.73 
90.73 
94.07 
96.63 
98.38 
99.43 
99.97 

100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 

-------~-~--------Vy__g_o!_l!lu~m~e:3_.21%~-------------10 .... 
--~~100 

0 
0 
0 
0 
0 
0 

oL_---;;-:-....-.-
0.01 0.1 

1.0 10.0 
Particle Diameter (µm.) 

rn Instruments Ltd. 
rn, UK 
iB4 892456 Fax:01 4 892789 

Mastersizer S long bed Ver. 2.14 
Serial Number: 

.., 0 
-~o 
J10 

-~--~-_Jo 
1000.0 

p. 
09 Feb 99 09: 1 
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A.2 Particle sizes of ashed sediment used during the second feeding experiment in 

September 1997 



N S T R U M E N T S 

sample ID: SE 
sample File: MISC 
Sample Path: A:\ 
sample Notes: Ashed Sediment 

Result: Analysis Report 
Sample Details 

Run Number: 1 
Record Number: 15 

Measured: Sun, Feb 07, 1999 3:09PM 
Analysed: Sun, Feb 07, 1999 3:09PM 
Result Source: Analysed 

Range Lens: 300RF mm 
Presentation: 30HD 

System Details 
Beam Length: 2.40 mm Sampler: MS17 
[Particle A.I. = ( 1.5295, 0.1000); Dispersant A.I. = 1.3300) 

Obscuration: 20.2 % 

Residual: 0.587 % Analysis Model: Polydisperse 
Modifications: None 

Distribution Type: Volume 
Mean Diameters: 
D (4, 3) = 21.29 um 

Size Low Cum) In% 
0.05 0.01 
0.06 0.01 
0.07 0.02 
0.08 0.04 
0.09 0.07 
0.11 0.11 
0.13 0.17 
0.15 0.25 
0.17 0.34 
0.20 0.44 
0.23 0.54 
0.27 0.61 
0.31 0.64 
0.36 0.63 
0.42 0.63 
0.49 0.64 
0.58 0.64 
0.67 0.68 
0.78 0.79 
0.91 0.91 
1.06 1.05 
1.24 1.21 
1.44 1.38 
1.68 1.55 
1.95 1.73 
2.28 1.91 
2.65 2.10 
3.09 2.29 
3.60 2.47 
4.19 2.65 
4.88 2.83 
5.69 3.00 

Result Statistics 
Concentration= 0.0149 %Vol Density= 2.650 g /cub.cm 
D(v,0.1)= 1.36um D(v,0.5)= 14.17um 
D (3, 2) = 2.77 um Span= 3.573E+OO 

Size High (um) Under% Size Low um In% 
0.06 0.01 6.63 3.17 
0.07 0.02 7.72 3.35 
0.08 0.04 9.00 3.53 
0.09 0.08 10.48 3.74 
0.11 0.15 12.21 3.96 
0.13 0.27 14.22 4.19 
0.15 0.44 16.57 4.44 
0.17 0.69 19.31 4.67 
0.20 1.03 22.49 4.89 
0.23 1.47 26.20 5.10 
0.27 2.00 30.53 5.11 
0.31 2.61 35.56 4.94 
0.36 3.25 41.43 4.55 
0.42 3.88 48.27 3.94 

0.49 4.51 56.23 3.16 

0.58 5.15 65.51 2.30 

0.67 5.80 
0.78 6.48 
0.91 7.27 
1.06 8.18 
1.24 9.23 
1.44 10.44 
1.68 11.82 
1.95 13.37 
2.28 15.10 
2.65 17.02 
3.09 19.12 
3.60 21.40 

23.87 4.19 
4.88 26.53 

29.35 5.69 
32.35 6.63 

76.32 1.48 
88.91 0.80 

103.58 0.34 
120.67 0.00 
140.58 0.00 
163.77 0.00 
190.80 0.00 
222.28 0.00 
258.95 0.00 
301.68 0.00 
351.46 0.00 
409.45 0.00 
477.01 0.00 
555.71 0.00 
647.41 0.00 
754.23 0.00 

Specific S.A. = 0.8179 sq. m / g 
D (v, 0.9) = 52.01 um 
Uniformity = 1.126E+OO 

Size Hi h um Under% 
7.72 35.52 
9.00 38.87 

10.48 42.40 
12.21 46.14 
14.22 50.09 
16.57 54.29 
19.31 58.72 
22.49 63.40 
26.20 68.29 
30.53 73.39 
35.56 78.50 
41.43 83.44 
48.27 87.99 
56.23 91.92 
65.51 95.08 
76.32 97.38 
88.91 98.86 

103.58 99.66 
120.67 100.00 
140.58 100.00 
163.77 100.00 
190.80 100.00 
222.28 100.00 
258.95 100.00 
301.68 100.00 
351.46 100.00 
409.45 100.00 
477.01 100.00 
555.71 100.00 
647.41 100.00 
754.23 100.00 
878.67 100.00 

,--------~--:---~--:---:-~VY._oQl~u~m~euo/o~-----~-----------i 10 

o L__...-----;:;-:-•11111••1!1.o 10.0 
0.01 0.1 Particle Diameter (µm.) 

•rn Instruments Ltd. 
-rn, UK 

84 R~2456 Fax:01684 892789 

Mastersizer S long bed Ver. 2.14 
Serial Number: 

1000.0 

p. 
09 Feb 99 09: 



A.3 Positions of the study sites recorded during water sampling within Stella 

Passage 

Sites time GPS readings 

1 1 274 535 °E 

710 511 °N 

2 274 535 °E 

710511 °N 

3 274 546 °E 

710 500°N 
--;---------------------1 274 584 °E 

2 

3 

710 707°N 

274 580°E 

710 672°N 

274 627°E 

710 707°N 
--3--------------------T---- 214 303 °E 

710 303 °N 

2 

3 

274440°E 

710 311 °N 

274443°E 

710 2§~-~--________________________ 1___ 27 4-370 °E 

4 709 982°N 

2 

3 

274 394°E 

709 999°N 

274 334°E 

709 986°N 
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