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ABSTRACT

Context. Wave energy dissipation by viscous and resistive damping in magnetic coronal plasmas is addressed. A two and one half
dimensional, line-tied magnetic channel is considered whose footpoints are disturbed by buffeting motions of the photosphere.

Aims. The aim of the analysis is to determine how effectively shear Alfvén waves, driven by footpoint motions and resonating in the
channel, can be damped by visco-resistive friction.

Methods. The problem is analyzed using a mixture of numerical and analytic techniques. Dynamic simulations, based on a cyclic
footpoint driver, show that phase mixing resulting from variations in the magnetic field of the channel is instrumental in setting up
a permanent “resonance regime” for the system. Analytic methods are used to analyze the resonance regime and to develop scaling
laws for the rate of energy dissipation.

Results. We show that in the general case where the Alfvén velocity profile may be linearized around the resonance, the dissipation
rate is “fast” in that it is not limited by small damping coefficients. Although large energies can accumulate within the channel in the
limit of very small damping, we show that by tuning the driver to low frequencies, both the energy level and the dissipation rate can

be made insensitive to the level of the damping.
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1. Introduction

The problem of heating the solar corona remains a major chal-
lenge in space physics. Although early studies favoured heating
by acoustic waves (Athay & White 1978), it now seems likely
that coronal magnetic field is intrinsically linked to the heat-
ing mechanism. Magnetic heating could occur via several dis-
tinct processes. One possibility is provided by the visco-resistive
damping of Alfvén waves generated in the lower solar atmo-
sphere (Berghmans et al. 1996; Ruderman et al. 1997). An al-
ternate mechanism is provided by Parker’s coronal heating hy-
pothesis where heating occurs by in situ Ohmic dissipation at
specialized sites, defined by “micro-sheets” in the corona (see
also Mikic et al. 1989). In the case of the solar flare, it is the lib-
eration of energy by magnetic reconnection that is expected to
account for the explosive release (Priest & Forbes 2000).

In this study we focus on the visco-resistive dissipation of
shear Alfvénic disturbances in generic magnetic configurations
characterized by a well-defined Alfvén profile. Although our fi-
nal aim is to study the visco-resistive damping of Alfvén waves
in X-point geometries, we restrict our present analysis to a strat-
ified 1D magnetic channel, as in Craig & Fruit (2005). In fact,
as confirmed by the X-point study of Fruit & Craig (2006), wave
energy decay in a line-tied one-dimensional field contains much
of the essential behaviour in the more complicated 2D problem.
Specifically, Craig & Fruit (2005) studied energy dissipation
within a 1D current sheet by considering an initial value prob-
lem in which wave energy, present in the system at ¢ = 0, is re-
sistively and viscously damped. The initial stage of the damping
was shown to follow an energy decay law of the form exp(—az?),
identical to the one derived by Heyvaerts & Priest (1983) and
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subsequent authors. But a radical change of behaviour occurs in
the later decay due to the emergence of self-similar modes and/or
quasi-eigenmodes, which effectively provide a brake on the rate
of energy dissipation.

Our present purpose is to extend the analysis of Craig &
Fruit (2005) by considering a driven problem in which energy
is continuously supplied by boundary motions. As motivation
we note that since coronal magnetic field lines are effectively
“frozen in” to the photosphere, their footpoints are constantly
buffeted due to random photospheric motions. If these displace-
ments are fast enough, they generate MHD waves that propa-
gate along the field lines (Hollweg 1987). Inhomogeneities in
the magnetic plasma then promote a transfer of wave energy into
heat via phase mixing (Heyvaerts & Priest 1983) and/or resonant
absorption (Ionson 1978; Tirry et al. 1997; Fruit et al. 2002).

At present, it is not clear whether resistive or viscous damp-
ing accounts for the bulk of wave energy losses. The main dif-
ficulty with resistive damping (see e.g. Priest & Forbes 2000)
is the low resistivity of typical coronal plasmas. Since the di-
mensionless resistivity 77 is an inverse Lundquist number of or-
der 107'% (Spitzer 1962), rapid Ohmic dissipation cannot be
achieved in the absence of huge, possibly non-physical, current
densities. It seems that viscous damping should be more robust
since viscosity is not burdened by such weak damping coeffi-
cients (v > 7). Indeed Hollweg (1986) has already emphasized
theoretically that viscosity should be important in a wide variety
of coronal processes. Yet the difficulty remains, that viscous dis-
sipation is highly anisotropic in a magnetically stratified plasma,
and that an accurate description requires a detailed tensor de-
scription (Braginskii 1965). It appears therefore, that viscous
damping could depend sensitively on the magnetic geometry of
the plasma.
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In the present study we take the simplest approach and as-
sume collision Laplacian forms for the viscous and resistive
terms. Although anisotropic viscous effects are neglected, this
assumption will be least damaging if the damping mechanism is
found to be insensitive to the amplitude of the dissipation coef-
ficients. In fact we will show that resonant effects deriving from
oscillatory footpoint motions can lead to damping rates which
are effectively independent of the dissipation coefficients. This
result, first pointed out by Heyvaerts & Priest (1983), is true as
long as the Alfvén speed can be linearized around the resonant
line. In what follows we consider more general forms for the
Alfvén profile and by introducing the quality factor Q, discuss
not only the dissipation rate, but also the energy stored in the
resonating system.

In Sect. 2 we describe the MHD formulation of the problem.
We point out that resonance effects lead to a blow-up of the ideal
system and, in the case of finite dissipation, we employ numeri-
cal results to highlight the main features of the damping. These
results are interpreted analytically in Sect. 3 where theoretical
scaling laws are derived to explain the bulk energetics. In par-
ticular, we point out in Sect. 3.6 that when the system is driven
appropriately, both the energy dissipation and the energy stored
in the resonator become insensitive to the damping coefficients.

2. Shear Alfvén waves in a current sheet
2.1. Introduction

We adopt the two and a half dimensional planar MHD equations
as described in Craig & Fruit (2005). The basic geometry is that
of a macroscopic current channel of length 2L sandwiched by
rigid walls at y = +1 (in suitable units). The unperturbed mag-
netic field By(y) is assumed to vanish at the origin but can take
any smooth variation along y. This simple geometry, shown in
Fig. 1, can be regarded as a 1D prototype for more complex
X-point configurations.
The Alfvén velocity is given by

Bo(y)

VHop(y)

where the density profile p(y) is chosen so that the equilibrium
magnetic forces are balanced by the pressure gradient. It is the
non-uniformity of va(y) which promotes phase mixing and leads
to rapid dissipation of shear wave disturbances. In particular,
footpoint motions drive a set of standing shear Alfvén waves
along the x-axis which feed energy into the system. Our aim is
to determine how this wave energy is damped and to examine
how the gradient in the Alfvén speed influences the dissipation
rate.

In what follows we adopt a dimensionless formulation in
which magnetic field intensities, plasma densities and lengths
are scaled according to typical reference values. Velocities and
time are then measured in units of the Alfvén speed vs and the
Alfvén time 75 respectively. For magnetic plasmas in the low
solar atmosphere (low corona, upper chromosphere) the Alfvén
time is typically around 10 s.

va(y) =

2.2. MHD equations and boundary conditions

It is easily shown that the axial wave fields, v(x, y, f) and b(x, y, 1),
satisfy the visco-resistive MHD equations

o ob )
5 vA(y)@x +vV-u, (1)
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Fig. 1. The geometry of the background magnetic field: By = Bo(y)x
and sketch of the shear disturbances propagating along the magnetic
field lines.
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Note that collisional Laplacian forms are assumed to account
for dissipation due to viscous and resistive damping (with v and
n constant). In this case the dimensionless resistivity 7 is an in-
verse Lundquist number which can be as small as 10~!# for coro-
nal plasmas. In a magnetic plasma the viscosity is a actually a
strong function of the magnetic field (Braginskii 1965) which
achieves the hydrodynamic value vy ~ 107> only in a narrow
strip about the neutral line y = 0 where the magnetic field is
sufficiently weak. In stronger fields the cross field viscosity is
reduced by (wpt)* where 7 is the collision time and wp the gy-
rofrequency. In solar environments, the cross field viscosity may
be reduced to the level of the resistivity 7. Here, for analytic sim-
plicity and generality, we consider only a small, uniform value
for the viscous coefficient v. We recognize however, that for ac-
curate computations in general X-point topologies, the strong-
field Braginskii tensor viscosity should be employed. An accu-
rate viscous term should also be weighted with the inverse mass
density, since significant density variations may be required to
balance the equilibrium magnetic forces, at least in the case of
low beta plasma.

To complete the problem the boundary conditions must be
specified. As in Craig & Fruit (2005) and for numerical simplic-
ity, rigid walls at y = =1 imply that both v and b vanish on these
surfaces. The conditions on x = +L are altered however, since
energy is now fed into the system by shearing motions on the
left and right hand boundaries. This form of “driving” can be in-
corporated by superposing appropriate volumetric source terms
on to the right hand side of (1) and (2).

Consider, for instance, conditions which represent ‘“anti-
symmetric” driving, namely

v(x ==Ly t)=+V(y,1),

b
P(x=+Ly.1=0.
ox

The standard reduction (see Heyvaerts & Priest 1983; Ruderman
1999)

W =u(x,y,t) - (x/L)V(y,1),
Z = b(x,y,1),
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gives
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with the new boundary conditions

Z
W(x ==+L,y,t) = g—(x ==L, y,t)=0
x

and Wiy =+1,0)=Z(x,y=+1,0)=0.

Equations (3), (4) form the basis of our analysis. The sys-
tem coincides with the “undriven” system of numerous authors
(Heyvaerts & Priest 1983; Hood et al. 1997; Craig & Fruit 2005)
when the volumetric source terms are turned off and it is similar
to the system of Ruderman et al. (1997) written in cylindrical
coordinates. For the remainder of the paper we specialize to the
sinusoidal driving term

V(y,t) = Vo(y) sin Q¢ 5)

where the amplitude V) is taken to be a smooth function satisfy-
ing Vp(x1) = 0.

2.3. Fourier representation of the solution

Since the system (3)—(4) is homogeneous in the x-direction, the
velocity and magnetic fields may be expanded in Fourier series
so that the boundary conditions in x are automatically satisfied.
Specifically we take

- nax
Wx,y,1) = Wa(y, 1) si (—) 6
(4.0 Z]] (w.nsin(~ (©)
1 - nwx
Z(xy.0) = 5Zo(y. 1) + ; Zn(y, 1) COS(T) )
and use the representation
- 2
% - Z:; 5 sinELx with s, = (=" = 8)
Each mode is now governed by the system:
oW, nm\? Pw, o0V] oV
= Z, =) Wa n a4 | TS5 9
o1  easnty (L) o Y ayZ} g O
07, nm\? 0%z,
= nwaW, —(—) Z, , 10
gr oA L " 6y2] (10)
where
v
wWAlY) = n—- (1)

L

In Sect. 3 we provide an analytic description of the damping in
the permanent regime of the driven system. For the present let we
briefly mention the ideal case (7 = v = 0). It is easy to show that
each field line behaves like an harmonic oscillator of frequency
wa = wa(y). When the system is driven by a sinusoidal excita-
tion of frequency €2, a resonant phenomenon develops about the
field line whose eigenfrequency matches the driving frequency
wa(y:) = Q. Without any dissipative processes these resonant
oscillations grow unboundedly in time. That is, using standard
methods (see Sect. 3.2) we find that for

Q = nwa(yr)
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we obtain a resonance line whose amplitude grows linearly in
time according to

v,
Oy, 1) = (=1)"—2(Qt cos Qt — sin Q1)
niw

v,
bu(ys, 1) = (—1)" =2 Qt sin Q1.
ni

12)

(13)

A key point is that the energy supplied from the boundary can
accumulate only in a very narrow region around the resonance.
This implies that when viscous and/or resistive effects are in-
cluded, the resonance energy can be dissipated quite efficiently.

2.4. Numerical examples of the driven system

We now turn to a numerical simulation of the full sys-
tem (9)—(10), using a classical second-order difference scheme.
For numerical purposes we assume L = 1, v = 10*and = 0
and specialize to a linear Alfvén profile, namely wa (y) = my.

Figure 2 illustrates typical velocity profiles. Shown are a se-
ries of snapshots of W(y, t) plotted against y, based on the driving
parameters Q = Vj = 1. The evolution may be decomposed into
three distinct phases: (1) the development of corrugations due
to phase mixing; (2) the emergence of a resonant line located at
y: ~ 0.3; and (3) the establishment of a permanent oscillatory
regime with constant amplitude.

In the initial phase, gradients in the Alfvén speed lead to the
build up of sharp cross field corrugations. These begin to smooth
out when visco-resistive damping becomes effective, after a time
of order (v+1)!/3. This stage has been extensively studied by nu-
merous authors (Hood et al. 1997; Craig & Fruit 2005) and will
not be pursued here. Of more interest is the new feature which
derives from the driving, namely, the appearance of a resonant
line located where Q = wa(y;) or y; = 1/x. Contrary to the
ideal case, the oscillations around the resonant line are stabilized
by the dissipation mechanism — viscous damping in the present
case. We find that the final oscillatory amplitude reaches a well
defined maximum determined by the level of the damping. This
phase is characterized, not by phase mixing, but by a global os-
cillation at the driving frequency Q. Thus while phase mixing
is instrumental in setting up the conditions required for reso-
nance, it plays no discernable role once the permanent regime is
established.

Figure 3 represents the total energy (kinetic plus magnetic)
of the oscillations as a function of time for a range of viscosities
(from bottom to top v = 1073~10"#~107). Not surprisingly, the
smaller the resistivity is, the longer it takes to reach the perma-
nent stage. More specifically, as can be easily estimated from the
diagram, we find that both the duration of the transient phase, as
well as the total amount of energy stored in the final regime,
scale as v~!/3. The next section is devoted to an analytic expla-
nation of these features.

3. Analytic description of the driven system

Our aim is to develop an analytic description of the driven sys-
tem and to construct robust visco-resistive scaling laws that ac-
count for the energy conversion from the driver into the plasma.
We also explore the influence of Alfvén speed profile va(y) on
the development of the permanent regime.

3.1. Simplified analytic system

To interpret the numerical results of Sect. 2.4 we use a simpli-
fied version of system (9)—(10) which retains only the dominant
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=20 =30 Fig.2. Temporal sequence of the oscillations
5 5 during the transient phase. The velocity field
W(y, t) is represented as function of y for var-
W o W o ious times specified above each graph. The re-
sistivity is nought and the viscosity is v = 107*.
First phase mixing is observed with corruga-
-5 -5 tions across the field lines and then, a reso-
-1 -0.5 0 05 1 -1 -0.5 0 0.5 1 nance effect emerges around a specific field line
y Y where most of the energy is concentrated.
48 With the above assumptions the modal system reduces to (for
oL notational simplicity we drop the mode number subscript 7 in the
W and Z fields)
3s5f |
ow o*w 2%
— = —nwsAWZ+Vv— — Sp—, 14
1 | = ADZ 4V =g, (14)
iz &’z
25k ~ — = nwa W+ e 15
: = W + 115 (15)
2 1 . o .
System (14)—(15) is fourth order when both resistivity and vis-
150 | cosity are present and therefore not amenable to convenient an-
alytic description. As far as the permanent regime is concerned,
1+ 41 however, our computations show that the system behaves com-
parably if either resistivity or viscosity is switched off. We there-
051 1 fore specialize to the case of negligible resistivity in the follow-
ing analysis.
00 5 10 15 20 25 30 35 40 45 50

Fig. 3. Temporal growth of the total wave energy for three values of vis-
cosity: from bottom to top v = 1073, 107*, 107>, Both the time required
to reach the permanent regime and the final average energy stored in the
system decrease as v~!/3

physical effects. We concentrate mainly on the low Fourier har-
monics since firstly, these receive the bulk of the energy supplied
by the driver; and secondly, long wavelength disturbances are
the most difficult to dissipate by visco-resistive processes. When
strong dissipation does occur, it is due to the steep cross-field
gradients produced by phase mixing. This suggests that only the
dominant cross-field derivatives need to be retained. We also
make the physically plausible assumption that the driver V(y)
has a global spatial scale much larger than any dissipation length
scale. In this case the contribution of the driver to “in-situ” vis-
cous dissipation (see (9)) can also be neglected.

3.2. General solution in the permanent regime

In the case n = 0 it is possible to write a formal solution for
W(y, t), by taking a Laplace transform with respect to time, in
which + — p (say). The transformed solution can then be ex-
pressed as a convolution product involving the source function
V(y,t) and the Green’s function G(y, y’, p). Although this pro-
cedure can be carried out explicitly in the case of the ideal so-
lution of Sect. 2.4, the inversion to recover W(y, ) depends on
a detailed knowledge of the singularities of G and is made dif-
ficult because the Green’s function is not generally expressible
as a named analytic function. Even if it were, it seems unlikely
that a closed expression detailing the full transient behaviour of
W(y, t) for arbitrary v could be recovered. On the other hand the
source function introduces poles at p = +iQ, which accounts for
the permanent regime in which all the field lines oscillate at the
same frequency Q. Restricting attention to this stage we write
the driving as Im(Vo(y) €*¥) and take W = Im(F(y) ¢'¥). Then
F satisfies

—iVQF" + (nPwi(y) — Q*)F = Q%s,Vo(y), (16)
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where the prime denotes the derivative in y. This equation pro-

vides our basic tool for exploring the oscillatory regime.
Consider for a moment the W and Z fields expressed in terms

of the real and imaginary parts of F(y) (R and I respectively):

W(t,y) = R(y) sin Qf + I(y) cos Qt (17
Z(t,y) = % (I(y) sin Q1 — R(y) cos Q). (18)

We see from (18) that energy equipartition is respected only at
the resonant line where nwa = Q. For field lines whose eigen-
frequency is higher than Q the magnetic energy dominates the
kinetic energy. Conversely, for field lines sufficiently close to
the neutral line satisfying y < y, the energy is almost entirely
kinetic.

Returning to the study of (16), we note that only special
forms of wa admit solutions in terms of named functions. Even
in the simplest case where wa o y the general solution involves
parabolic cylinder functions which must be superposed to ap-
proximate the actual smooth solution. We find a more direct
and informative method is provided by the technique of matched
asymptotic expansions (Ruderman et al. 1997; Ruderman 1999).

3.3. Local solution around the resonance
It is useful to rewrite (16) in the form

vQF” + K(y)F = S (y), (19)

with K(y) = n*wi(y) — Q% and S = Q?s, V. Note that advec-
tive term K vanishes at y = y;, and that S is assumed to vary
only over a global scale (O(1)). Equation (19) has been already
considered by Ruderman et al. (1997), working in cylindrical
geometry, in the case where K(y) varies linearily around the res-
onance y,. We first summarize their approach before discussing
the limitations of the linear approximation and generalizing to
more complicated forms of K(y).

Figure 4 represents the variation of the function K in y for
different driving frequencies Q, assuming a sinusoidal profile
for va. Two cases will be considered depending on how wa
varies around the resonant point. In the first place we assume that
K can be linearized according to K(y) = a(y — y;) with a of or-
der unity (see top panel). In the next section, we analyze the case
where the driving frequency is chosen such that the resonant line
corresponds to a maximum of wa. Then K(y) is quadratic around
y = y; (see central panel of Fig. 4). The bottom panel of Fig. 4
shows the limits of the linearization. When Q is very small, the
resonant line is located very close to the neutral sheet and the lin-
earizing K(y) around that point represents a poor approximation
to the actual variation. In this case the analytic treatment given
below is expected to break down for very low frequencies.

Ruderman et al. (1997) showed that viscous effects are ex-
pected to play an important role only in a narrow region of width
¢ about the resonant line y = y,. The width of the resonant layer
can be obtained by comparing the advective and diffusive terms
in (19):

(VQ)W
o=—| -
a

Outside this region the viscous effect may be ignored and the
ideal solution remains valid

QZ
n2wy (y) - Q2

(20)

$nVo(y)- 21

S
Fout(y) = E =

K(y)

0 A
_Q2 %T Y

K(y) b
y'r
0/\ y
—0?
K(y) N
; y/\

—

Fig. 4. Sketch of the function K(y) = nzwi(y) — Q2 in the case of a
sinusoidal profile for various driving frequency Q. The resonant line
corresponds to the point K = 0. a) General case where the function K
can be linearized accurately around the resonance; b) case of a quadratic
variation around the resonant point; ¢) when € is small, the linearization
is no longer a good approximation of K on the diffusion scale 6.

Inside the dissipation region K = a(y — y;) and S ~ S (y;) can be
considered constant. Then (19) becomes

VQF! +a(y — yo)Fin = S (yr). (22)

Introducing

Ul [PV LU} 23)
vQ

and using the definition of 6 we get

Fl! — zF;, = i8S. (24)

This last Eq. (24) is an inhomogeneous Airy equation whose
solution can be written as (Abramowitz & Stegun 1970):

Fin = in SHi(z) + aAi(z) + BBi(2), (25)

where @ and § are two constants and Ai, Bi and Hi are Airy
functions.

The inner solution remains valid as long as the first order
expansion of K holds, i.e. when

K" (yoly — y:l* < 2K (yo)ly — yil

— ly —y] < 2K’ /K" <« 1.

The condition is not severe and overlaps the range of validity of
the outer solution as long as the resonant line is not too close
to the neutral sheet (see Fig. 4c) where both K’ and K" vanish.
There is thus a common interval § < y — y; < 1 where the two
expressions (21) and (25) represent the same solution and must
be matched asymptotically as v — 0. This matching implies
that the coefficients @ and 8 should be identically zero. Note that
Ruderman et al. (1997) writes the solution (25) in the form of its
integral representation but both results are in exact agreement.
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Fig. 5. Real and imaginary parts of function F' computed directly from
Eq. (19) (solid line) and compared with the analytical expression (26).
Following values have been chosen: v = 1073, Q = 1, a linear profile
for the Alfvén speed and Vi (y) = sinzy. The agreement between the
two curves over the whole spatial domain confirms that the asymptotic
matching approximation provides an excellent description of the actual
perturbation.

We conclude that an inner region of width § centred on y;,
can be defined where the perturbation field takes the form
Finly) = 25, QVo(y)oHi (i)

14

(26)

For sufficiently small viscosity, this expression matches the ideal
solution in the outer region |y—y;| > ¢. In fact Fig. 5 indicates that
this approximation holds good over the entire interval, provided
only that Vy(y;) is replaced by Vy(y). This comparison, which is
based on the Alfvén profile wy = 7y with v = 1073, Q = 1,
and Vy(y) = sinmy, shows that the Airy function can represent
the global solution (19) reasonably well even when v is not es-
pecially small. Of course, the agreement improves progressively
asv — 0.

Finally, we mention the viscous scaling laws that derive nat-
urally from the analysis. We see that the width of the resonance
line where most of the dissipation occurs scales as v'/3. This
scaling leads to an energy dissipation rate which is independent
of v (see Sect. 3.5). However, this favourable result should be
balanced against the amplitude of F' — and thus the axial wave
energy — which, according to (24), builds up as v_!/3. The inter-
pretation of these scalings is discussed further in Sect. 3.5 below.

3.4. Particular case of an extremum in the Alfvén velocity
profile

We now consider the case where the Alfvén velocity profile is
maximum at the resonant line y,, so that the advective term can
be approximated by a quadratic expression K(y) = b(y — y,)*
with b a constant of order unit. The width of the diffusive zone
is again determined by comparing the advective and diffusive
terms:

e 1/4
5:(7) : 27)
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This scaling suggests that the region of resonance is broad-
ened slightly when the line is centred around a maximum in the
Alfvén velocity.

In the inner region of width § Eq. (19) reduces to

WVQF! + b(y — y)* Fin = S (yy). (28)

With

R i L) (29)
vQ)

we find that the analogue of Eq. (24) is

Fl — i Fy, = —iS. (30)

In this case the solution can be expressed in terms of Bessel func-
tions of order 1/4 (see Abramowitz & Stegun 1970):

Fin = —ixS f 4G Y1 (2) = J1 a2 Y )] . (31)
0

This expression may be compared with solution (26) based on
the linear approximation. Since the Airy function Hi can be writ-
ten as an integral over Bessel functions of order 1/3, we see that
the passage from a linear to a quadratic Alfvén profile is reflected
in some function — say H — which can be expressed in terms of
fractional order Bessel functions. In particular, the generic form

2

Finty) = ims, o Voo (=2 (32)
% 0

accounts for both (26) and (31). The scaling with viscosity is

contained in the dependence of § on v. In the quadratic case we

have 6 ~ v'/# and so the amplitude of perturbation fields scales

as 62 /v ~ y~112,

3.5. Dissipation rate around the resonance

We now explore how the energy dissipation rate scales with vis-
cosity. Since the dissipation is most efficient near the resonant
line, we can simplify the calculation by taking

+6 2
g ow,
v( ) dy.

W=-—
Yr—0 8y

(33)

Using expressions (17), (32) and the change of variable u = (y —
y;)/ 0, this becomes

+0 263 +1
' 12 Q6

V|Firl dy = —ﬂzsi—ng

Yr—0 v -1

W= |H'*du.  (34)

The remaining integral is simply a number which cannot affect
the scaling with viscosity.

For the linear Alfvén profile of Sect. 3.3, we recall that inner
region scales as & ~ v!'/3. In this case (34) confirms that the
dissipation rate scales independently of the viscosity. Physically,
the system behaves like a high quality resonator: viscous effects
may influence the initial development of the resonance layer, but
once the layer is established, the dissipation rate scales as VO,

Figure 6 displays the dissipation rate ‘W as a function of
time for three values of viscosity (v = 1073,y =107, v = 107°).
It does indeed take longer to reach the permanent regime for
small v, but in all cases the same dissipation rate is achieved.
This result could be very important in the context of coronal
heating.
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Fig. 6. Temporal growth of the dissipation rate ‘W for three values of
viscosity: from left to right v = 1073, 107, 107, Although it takes
longer to reach the permanent state in a low viscous plasma, the final
dissipation rate does not depend on the viscosity.

However, this result should be tempered by the fact that the
wave energy & ~ W?26) scales as v_!/3. For very small viscosi-
ties, the amount of energy stored in the oscillator may become
tremendous and non physical, unless some feedback mechanism
moderates the driver. We will show in paragraph 3.6, however,
that this drawback can be eluded by judicious choice of the driv-
ing frequency.

Before this discussion, we would like to point out a rather
strange result of our analysis. When the resonance line corre-
sponds to a maximum in the Alfvén velocity profile — we use
here a sinusoidal function of the form v = sin 7y which is max-
imum at y = 0.5 —, the diffusive region broadens 6 ~ v'/4 and
the dissipation rate (34) scales as v 1/4_ 1t means that the less
viscous a plasma is, the more energy it dissipates during one
oscillation period. This surprising behaviour is yet confirmed by
Fig. 7 which displays as a function of v the maximum dissipation
rate obtained for Q = m(va)max/L = mif L = 1.

Once more, to interpret these results correctly we should bear
in mind two points: first, that the permanent state takes longer to
achieve with a quadratic profile because the relatively weak vari-
ation of the Alfvén velocity does not enable strong phase mixing
around the maximum; second, that the global wave energy is
divergent, & «« W26 ~ v"!/2 as v — 0. Nonetheless, in this par-
ticular situation where the driving frequency corresponds to a lo-
cal maximum in the Alfvén profile, the driver supplies globally
more energy to the oscillator than it does in other circumstances.
Consequently, these regions of maximum Alfvén velocity could
constitute favorable sites for wave energy deposition.

3.6. Interpretation using the quality factor

According to the previous results, the rapid dissipation of wave
energy in the sheet relies on an "external driver" whose prop-
erties are decoupled from the wave dissipation dynamics of the
current sheet. To establish the resonant regime, the driver must
feed energy into the sheet and both the setting up time of the
resonance line, and the saturation of the global wave energy, de-
pend on the level of the dissipation. In particular, the super fast
dissipation obtained for the quadratic Alfvén profile ‘W ~ y~1/4,
is achieved at the expense of wave energies that scale as v='/2. A
similar conclusion holds for the resonance line associated with
the linear Alfvén profile, despite the relatively modest (v~'/3)
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Fig. 7. Variation of the dissipation rate with viscosity in the case of a

parabolic profile around the resonance. The log-log fit shows that ‘W

scales as v~1/4,

build up in global wave energy. Since this behaviour is not sus-
tainable in the limit v — 0 we might expect some feedback
mechanism to moderate the driver. Specifically, if footpoint mo-
tions are assumed to provide the external energy source, then
such motions will be influenced if wave energy densities in the
resonance line become comparable to energy densities in the
“external” regions governing the driver. On the other hand, our
analytic treatment does not explore the whole range of frequen-
cies. For example, low driving frequencies  excite resonant
lines that lie very close to the neutral sheet y = 0. In this sit-
uation, the linearization of the function K (see Sect. 3.3) repre-
sents a very crude approximation of the parabola as displayed in
Fig. 4. Bearing in mind that the scaling laws derived in 3.3 are
unlikely to be reliable in this case, it is wise to explore the limit
of low frequency driving using numerical methods.

Our aim is to quantify the energy dissipation versus the
amount of global wave energy as Q becomes small. For that mat-
ter, we can introduce the quality factor Q as the ratio between the
average total energy stored in the oscillator and the dissipation
rate over one period,

&

0=—"
wE

(35)

In some resonant systems, such as a laser cavity or an electric
circuit, energy losses are considered a nuisance and the quality
factor should be chosen as high as possible. In this case it may
be possible to sharpen the resonance by tuning to a narrow band
of favourable frequencies. Here, on the contrary, we are mainly
interested in the effectiveness of the energy dissipation, so our
aim is to keep Q as low as possible (soft resonance).

In top panel of Fig. 8 we show the quality factor Q as a
function of the driving frequency Q for five values of v ranging
from 107 to 1073, For this computation, a linear Alfvén profile
is used. All curves display a minimum for a frequency around
Qumin ~ 0.1, the precise position depending on the viscosity. This
minimum corresponds to a resonant line lying very close to the
neutral line. Although, for moderate (fixed) Q > Qp,, the qual-
ity factor reflects the expected v~!/3 scaling, the analytic theory
begins to break down for Q — Qpi,. Note, in particular, that
when the viscosity is large, the quality factor is relatively insen-
sitive to the driving frequency. In this case Q =~ 1 is achieved



314

G. Fruit and I. J. D. Craig: Rapid dissipation in a current sheet driven by footpoints motions

Fig.8. Top panel: plot of the quality
factor (35) versus the driving frequency
Q for five values of viscosity: from

top to bottom v 1077, 107°, 1073,

0.4

1074, 1073, A linear Alfvén profile is
used here and the source term has a si-
nusoidal dependence dependance in y:
Vo = sinzy. A minimum is clearly vis-

ible for each curves and sharpens as v
decreases. Near this minimum the dis-
sipation of energy is optimal. Bottom

o
o

left panel: global wave energy stored
in the current sheet as a function of v
for Q = 0.9 (squares) and Q = 0.06
(stars). Wave energy scales according
to a power law in both cases, but the ex-
ponent becomes very small at low fre-
quency. Bottom right panel: dissipation
rate as a function of v with the same
pattern as for the energy. The plot con-

for a broad range of frequencies and the oscillator can dissipate,
over one period, as much energy as it stores. As v decreases how-
ever, the resonance becomes more sensitive to the driver and Q
begins to rise. Yet even with viscosity as weak as v = 107/, a
range of frequencies can be found where Q remains quite small
0 <3.

We conclude that, as far as the minimum quality factor is
concerned, the problem may be quite insensitive to the viscosity.
The implication is that, by tuning the driver, we can achieve a
response which is favourable, both in terms of the stored wave
energy and the dissipation rate. This interpretation is confirmed
in the bottom panels of Fig. 8. The energy stored remains moder-
ate in a very low viscous plasma if the oscillator is driven at low
frequency Q ~ 0.1 which corresponds, according to the coronal
parameters of Sect. 2.1, to a driving period of around 10 s, while
the dissipation rate ‘W is still independent of the viscosity. Of
course, to be of practical significance for heating the corona, we
must suppose that the power spectrum of the driver is capable of
supplying significant energy in a band around this frequency.

4. Discussion and conclusion

In this paper we have considered the viscous and resistive energy
dissipation of externally-driven, shear Alvén waves in a line-tied
magnetic channel. An important aspect of the geometry is the
inhomogeneity of the background magnetic field. Specifically,
the presence of a neutral line at y = O allows perturbations to
develop strong, cross-field gradients by phase mixing. It follows
that waves generated by quasi-periodic motions of the footpoints
can be damped very effectively, despite the smallness of the dis-
sipation coeflicients (v and 7). The wave damping can be “fast”
— that is, independent of the viscous and resistive dissipation
coefficients.

firms that the dissipation rate remains
independent of the viscosity whatever
the frequency is.

10

‘We have concentrated mainly on the permanent “resonance”
regime established by cyclic, shearing motions of the footpoints.
The system can resonate when it contains field lines that oscil-
late at a frequency Q that matches the external driver. In our
model Q < 1, corresponding to Alfvénic periods of a several
seconds or greater (in the low corona, say), defines the resonance
band of the fundamental global oscillation. Once the system is
driven into its permanent regime, the dissipation rate becomes
insensitive to the level of the viscous and resistive damping. The
actual scaling of the rate depends on the form of the Alfvénic
profile va(y) and for quadratic (as opposed to linear) profiles the
dissipation rate can actually increase with v (assuming viscos-
ity is the dominant damping mechanism). But in order to set up
the conditions for resonance, the magnetic channel must be able
to absorb energy continually from the external driver. The level
at which the energy density in the channel saturates is found to
depend inversely on the magnitude of the damping coefficient.
It follows that, to avoid unrealistic energies at low damping lev-
els, some feedback must be present between the driver and res-
onance region. In fact the build-up of energy may not be too
serious in practice, given the relatively modest energy accumu-
lation (& ~ v~'73 for va(y) ~ y) and the fact that the dimension-
less viscosity can be as large as 10~ for plasmas in the solar
atmosphere.

We have also pointed out, however, that the rise in global
wave energy as v — 0 can be mitigated by tuning the system
to a sufficiently low driving frequency Q < 0.1, corresponding
to driving timescales exceeding 10 s for the low corona. The
response of the system — in terms of both the stored wave en-
ergy and the dissipation rate — then becomes largely independent
of damping. In this case the resonance region may be capable
of quite rapid energy dissipation, perhaps approaching flare-like
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scales of a few hundred seconds, without accumulating large en-
ergies in the resonance channel.

In practise of course, the spectrum of driving frequencies is
thought to be determined by the buffeting of magnetic footpoints
in the low solar atmosphere. For the present mechanism to be ef-
fective there must be sufficient power in the driver, particularly
at low frequencies. The Fourier spectrum associated with foot-
point disturbances is largely unknown, but it seems likely that
low frequency modes will supply the bulk of the power (Milano
& Gomez 1997). What can be said is that the present study sup-
ports the view that energy residing mainly in the low frequency
modes may be absorbed within a resonating magnetic channel
and rapidly dissipated by visco-resistive damping. The model
therefore reinforces the view that the energy supplied by foot-
point motions in the low chromosphere may act as a source for
coronal heating.

Acknowledgements. This work was supported by the Marsden Fund (02-UOW-
050 MIS).

315

References

Abramowitz, M., & Stegun, I. A. 1970, Handbook of Mathematical Functions
(National Bureau of Standards)

Athay, R. G., & White, O. R. 1978, ApJ, 226, 1135

Berghmans, D., De Bruyne, P., & Goossens, M. 1996, ApJ, 472, 398

Braginskii, S. I. 1965, Rev. Plasma Phys., 1, 205

Craig, 1. J. D., & Fruit, G. 2005, A&A, 440, 357

Fruit, G., & Craig, 1. J. D. 2006, A&A, 448, 753

Fruit, G., Louarn, P., Tur, A., & LeQuéau, D. 2002, 107

Heyvaerts, J., & Priest, E. R. 1983, A&A, 117, 220

Hollweg, J. V. 1986, ApJ, 306, 730

Hollweg, J. V. 1987, ApJ, 320, 875

Hood, A. W., Gonzalez-Delgado, D., & Ireland, J. 1997, A&A, 324, 11

Tonson, J. A. 1978, ApJ, 226, 650

Mikic, Z., Schnack, D., & van Hoven, G. 1989, ApJ, 338, 1148

Milano, L., & Gomez, D. 1997, Apl, 490, 442

Priest, E. R., & Forbes, T. 2000, Magnetic Reconnection (Cambridge U Press)

Ruderman, M. S. 1999, AplJ, 521, 851

Ruderman, M. S., Berghmans, D., Goossens, M., & Poedsts, S. 1997, A&A, 320,
305

Spitzer, L. 1962, Physics of Fully Ionized Gases (John Wiley & Sons)

Tirry, W. J., Berghmans, D., & Goossens, M. 1997, A&A, 322, 329



