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Abstract. Evolutionary data mining is used in this paper to investigate
the concept of support and resistance levels in financial markets. Specif-
ically, Differential Evolution is used to learn support/resistance levels
from price data. The presence of these levels is then tested in out-of-
sample data. Our results from a set of experiments covering five years
worth of daily data across nine different US markets show that there is
statistical evidence for price levels in certain markets, and that Differen-
tial Evolution can uncover them.
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1 Introduction

Do price levels exist in market series? The idea of price levels — often referred
to as “support” and “resistance” — has been prevalent anecdotally for nearly as
long as financial markets have existed. These phenomenon are a staple feature
in most trading and finance textbooks (e.g. [3]), which typically teach people
to buy assets at support lines (because prices are likely to rise from them) and
conversely sell assets at resistance lines (because prices are likely to fall). But is
there statistical evidence that support and resistance lines exist?

Answering this question is the focus of this paper. We adopt a machine
learning-based methodology, utilizing Differential Evolution (DE) [4], in an at-
tempt to learn price levels from market data. We then compare these optimized
levels to randomly selected levels in order to determine appreciable differences.
Specifically, if a set of levels where price reverses are found in the training/in-
sample data, then we want to know if these levels continue to persist in chrono-
logically subsequent testing/out-of-sample data. If the levels do persist, then it
can be said that the concepts of support and resistance have foundation. On the
other hand, if the best levels found in-sample cannot be used to predict rever-
sals out-of-sample, then we can conclude confidently that the dual concepts of
support and resistance have no foundation.

To date, there has been little consideration of this question in the applied
machine learning/finance research literature. Most other approaches deal with
pattern-based turning point prediction and often ignore absolute prices. This



research, on the other hand, focuses on turning points based on absolute price
levels. The question is whether or not the market “remembers” these old levels
and therefore whether history may repeat predictably. Note that the levels used
here are basically horizontal lines; we leave the generalization of the method to
angled trend lines and channels for future work.

Our results described in this paper show that in some markets, especially
indices such as the Dow Jones Industrial Average, the presence of price levels
can be detected with statistical significance.

2 Background

In this section, we cover the concept of a “price level” in a little more detail and
briefly explain the variant of DE used here.

2.1 Price Levels in Markets

A support or resistance line is, by definition, a point in the market where price
has an increased probability of reversal. For the purposes of this paper, a good
price level is therefore any price that the market often reaches but infrequently
penetrates. To illustrate this concept, consider Figures 1 and 2.
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Fig. 1. Example of a poor level with excessive distance from price.

Fig. 2. Example of a poor level with excessive penetrations by price.

Fig. 3. Example of a strong level with a high ratio of failed to successful penetrations.

These figures both depict poor levels. In the first case, price never reaches
the level and therefore there is no opportunity for price to reverse at the level.



In the second case, price frequently penetrates the level, so the level is clearly
not a support or resistance for price.

Figure 3, on the other hand, depicts conceptually a good level. In this case,
price frequently reverses at the level, and when it does eventually break through,
the level that was formally support now becomes resistance. The same concept
is depicted again in Figure 4, this time somewhat more realistically using can-
dlesticks.

Fig. 4. Figure similar to Fig. 3 but depicted more realistically using candlesticks.
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For example, in Fig-
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can therefore estimate the probability of a failed penetration at the level as 2
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This is the essence of how we measure the value of a price level in this paper.



2.2 Differential Evolution

Lack of space prevents a complete description of the DE algorithm here. Essen-
tially, DE is an evolutionary optimization algorithm for continuous spaces first
proposed in [4]. The algorithm has been used in financial applications previously
[1].

There are two main reasons for using DE in this research. Firstly, DE’s
proponents claim that the algorithm’s global convergence properties are very
good, and this has been demonstrated in past studies. Secondly, DE requires very
few user-specified parameters. Furthermore, a recent study [2] has elucidated the
best combinations of parameters for different problem sizes. In the experiments
described here, the problem size (i.e. the number of dimensions) V'S is set to 10,
and the corresponding set of parameter values (according to [2]) that we use is
given in Table 1.

In all of our experiments, we use the standard DE/rand/1/bin variant of DE
described in [4].

3 Differential Evolution for Price Level Identification

In this section, the basic adaptation of DE for price level identification is de-
scribed. We also describe the randomized algorithm used as a control case in the
experiments in the next section.

3.1 Individual Representation

Recall that the aim of this research is to use DE to optimize a set of levels, such
that the probability of penetration failures at those levels is maximized. The
set of levels found would thus correspond to a set of support/resistance levels.
Ideally, the size of this set of levels should be variable because, for example, in
one market at a particular time there may be many active levels, but in another
market (or in the same market but at a different time) there may only be a few
active levels.

However, varying the number of levels like this poses difficulties when DE
is applied to the problem, because DE expects vectors to be fixed-length. We
therefore modify the problem slightly and require that the cardinality of the set
of levels be fixed to V' S. In other words, a set S of price levels can be defined
according to Equation 1. The levels [y, l1, etc, can therefore be encoded directly
as vector elements for DE to optimize.

S = {lo,ll, ...,lvsfl},li R (1)

An issue is that the individual levels, if unconstrained, may be “optimized”
to the same single best value. This was in fact the case in early testing of the
algorithm: if a single level proved to have high value, then it was usually the
case that DE would set [y, [1, etc, all to that price, with the net result being
that only a single level was discovered.



The solution to this problem is to limit the values of each variable [; € S to
non-overlapping ranges. Let us assume that the price series being used is divided
into a training series Ty that is followed chronologically by a testing series T7.
To is used for optimization, and 77 is set aside (it will be used later to calculate
the out-of-sample values of the best individual from the Tj optimization phase).

From the training series Ty, a price range can be straightforwardly calculated,
and this range can be divided by the number of levels V'S to give a range size
per level, as Equation 2 shows.

high(Ty) — low(Tp) @)
VS

Once the range is known, then upper and lower bounds on the value of each
level can be calculated, Equations 3 and 4 show.

rangeSize =

lower; = low(Ty) + (i X rangeSize) (3)

upper; = lower; + rangeSize (4)

We therefore modify the standard DE algorithm and require that:

lower; < 1; < upper;,Vi; € S. (5)

This is achieved by (i) initializing all new individuals with values for I; se-
lected uniformly and randomly in the appropriate range and (ii) scoring all
offspring individuals with levels outside of the appropriate range with maximum
negative value, i.e. such individuals are allowed to be generated by the search
process but are immediately “aborted”.

3.2 Value Function

Evolutionary search algorithms require a value function that is either maximized
or minimized by the search process. In our case, the value function is an estimate
of the probability of the failure of price to penetrate the levels in the current set
of levels S being considered. Value should therefore be maximized.

Recall that we have a training set Tj used to estimate value for each set S —
and more generally, let T be any series of daily Open-High-Low-Close (OHLC)
data.

Given some T and a particular level [ € S, let us define two useful functions:
f(1,T), specifically the number of failed penetration attempts of price against
level [ in the series T' (i.e. the number of wicks that intersect | where the open
and close of the day are both on the same side of the level); and (I, T), the total
number of intersections between price and [ in 7' (i.e. the number of bars in T’
that overlap [ regardless of whether it is only a wick or a full candlestick body).

Obviously, then, it follows that ¢(I,T) > f(I,T) will always hold.

To illustrate these functions, consider Figure 4. If the figure depicts the only
touches to the level I in T, then f(I,T) =4 and t(I,T) = 5.



Clearly, then, for each level | we will want to maximize the ratio of the
first function to the second function in order to find good levels that are likely
to “repel” price. Mathematically, this is expressed in the function defined by
Equation 6.

2ues f(1LT)
(Xiest(l,T)) + K

A constant K is added to the denominator in order to reduce the value of
levels with only a small number of touches. For example, suppose V.S = 1,
S ={l}, f(I,T) =1 and ¢(I,T) = 1. Then the ratio of f to g expressed as a
percentage is 100%, but the sample size is very small and this result is therefore
unreliable.

With K fixed to 10 (which is K’s value in all experiments reported here),
the value of this level is reduced appropriately to % For the level depicted in
Figure 4, the value would therefore be ﬁ = %, which is an underestimate of

the true probability of a failed penetration but certainly reasonably greater than
1

V(s,T) = (6)

ﬁ.
In summary, the optimization problem that we will use DE for can be ex-
pressed as the problem of finding a set Spg such that V(Spg,Tp) is maximized,

with the out-of-sample value of interest denoted by V(Spg,T1).

3.3 Control Case

In order to evaluate the efficacy of DE for price level identification, we need
something to compare it to. In this research, we consider the case of simply
randomly generating the levels subject to the constraints expressed by Equations
1-5. This is performed using the training data Ty and is used as the control for
our evaluation. We refer to such a randomly generated set of levels by Sgny and
therefore the out-of-sample value (of the control algorithm for a single trial) is
V(Srn,T1).

Note that we also use the exact same method to randomly initialize new
individuals at the start of each DE run — thus the key difference being tested is
the ability of DE to optimize levels within each level’s range.

4 Evaluation

In this section, the details of the evaluation and the results are covered.

4.1 Datasets

Three US stock indices and six US company stock markets were selected for
the evaluation. The indices (S & P 500, Dow Jones Industrial Average and the
Nasdaq Composite) were chosen because they are representative of the market
at large. The six companies were chosen randomly from those that make up the



Table 2. Markets analyzed in this study. Market data is daily OHLC bars for five years
to 3rd August 2012. Three month volume data from [5] as at 14th August 2012 is also
given for the company stock markets, so as to provide an indication of the liquidity of
each market.

Symbol|Market Volume (3m)
SPY |S & P 500 na
DJIA |Dow Jones Industrial Average|na
COMP |Nasdaq Composite Index na

AAPL |Apple 14,696,400
BA Boeing Airlines 4,163,520
CELG |Celgene 3,622,660
JEC |Jacobs Engineering Group 955,114
JNJ Johnson & Johnson 15,793,800
KMB [Kimberly-Clark 2,845,560

respective indices, the only criteria being that (i) they needed to have at least
five year’s worth of price data available and (ii) no two companies from the same
industry were chosen. Table 2 lists details of the selected markets.

For each market, daily OHLC data for the five years to 3rd August 2012 was
downloaded from Yahoo! Finance [5].

4.2 Method

For each of the market data sets listed in Table 2, we conducted 50 trials.

Each trial consisted of (i) selecting a random 1 year subsample from the five
year’s worth of data, of which the first 6 months was used for training (7Tp) and
the second six months for testing (77);(ii) generating a random set of levels Sgy
given Ty which are subject to the constraints specified by Equations 1-4; and
(iii), generating an optimized set Spg using differential evolution to maximize
the value function on Tj.

The out-of-sample values Val(Sgrn,T1) and Val(Spg,T1) were then com-
puted and recorded.

Thus, a total of nine markets x 50 trials or 450 experiments were conducted.

4.3 Results

We present the results first graphically using standard box-plots in Figures 5-7 .
Each figure depicts the results of applying each algorithm — randomized control
and DE — fifty times to a random 1 year sub-sample of each five year market
price series. We will then we discuss the statistical significance of the results.
Examining firstly the results on the index data in Figure 5, we can see that
the DE algorithm does indeed find levels in two out of the three indices that
lead to out-of-sample improvements. For example, in the Dow Jones Industrial
Average data, median out-of-sample value improves from approximately 0.47 to



0.51. Similarly, the S & P 500 index also appears to exhibit price levels, but the
mean out-of-sample value is less: the improvement is from a median of 0.34 to
0.36 instead. (Remember that value is a significant underestimate of the true
probability of a failed penetration due to the smoothing factor K in the value
function.)

The NASDAQ Composite Index,
on the other hand, exhibits an out-of-
sample experimental decrease in me-
dian value from 0.36 to 0.34. However,
it should be noted that out that the
variance in the level values for this in-
dex is quite high in the control case, -
but when DE is applied, the optimiza-
tion process decreases variance con-
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Figures 6-7 depict the results of
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results in improvements in some cases PN SPXDE  DIARN  DNADE  COMPAN  COMPOE
(namely, Apple, Johnson & Johnson
and Boeing Airlines), but in other
cases it fails to improve median value.
The probable explanation for this may
be market volume: according to Ta-
ble 2, these are the three stocks with
largest volume. The remaining three
markets have less volume, therefore
less liquidity, and therefore the presence of price levels appears to be more diffi-
cult to detect.

Finally, we performed a series of statistical significance tests to verify the
results inferred visually from the box plots. For each market, two statistical
tests were carried out: a standard T-Test comparing the mean out-of-sample
performance of the control algorithm vs DE, and a non-parametric Wilcoxon
signed rank test comparing the medians. Both tests are those implemented in
the widely used statistical computing package R [6].

Fig. 5. Market-algorithm (x axis) vs out-
of-sample value for best individual (y axis),
for indices.

The results of these tests are shown in Table 3, where lower p-values indicate
increased likelihood that the out-of-sample means/medians over fifty trials are
not the same. A number of the tests, particularly those on the Dow Jones In-
dustrial Average data and Boeing Airlines, are significant with 95% confidence
(in fact, the DJIA tests are also significant at 99% level). Conversely, the tests
show no significant differences for some of the other markets such as Apple and
Celgene — although several of the test are close to significant.
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Fig. 6. Market-algorithm (x axis) vs out-of-sample value for best individual (y axis),
for stocks 1-3.

5 Conclusion

To conclude, this paper has investigated the concept of price levels — anecdotally
“support” and “resistance” — in markets. We have used Differential Evolution
to learn these levels in markets. The learned levels were then compared to levels
selected randomly. The results indicate that in some markets (especially those
with higher liquidity) these levels do exist, and their presence can be detected
with statistical significant using our approach.
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Table 3. P-values from paired statistical significance tests comparing the mean (T-
Test) and median (Wilcoxon) out-of-sample values of the best individuals obtained
using DE compared to randomized level selection. Circles denote significant differences
in the means/medians at 95% confidence.

T-Test|Wilcoxon
SPY [0.062 [0.013 e
DJIA [0.003 ¢[0.003 e
COMP|(0.069 [0.121
AAPL [0.677 (0.478

BA 0.023 ¢(0.043 e
CELG [0.861 |0.905
JEC ]0.293 |0.255
JNJ  ]0.071 |0.135
KMB (0.104 (0.107




