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Time-of-flight range imaging is analysed using stochastic calculus. Through a series of interpretations
and simplifications, the stochastic model leads to two methods for estimating linear radial velocity: maxi-
mum likelihood estimation on the transition probability distribution between measurements; and a new
method based on analysing the measured correlation waveform and its first derivative. The methods are
tested in a simulated motion experiment from (−40)—(+40) m/s, with data from a camera imaging an
object on a translation stage. In tests maximum likelihood is slow and unreliable, but when it works it
estimates the linear velocity with standard deviation of 1 m/s or better. In comparison the new method
is fast and reliable but works in a reduced velocity range of (−20)—(+20) m/s with standard deviation
ranging from 3.5 m/s to 10 m/s. © 2017 Optical Society of America
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INTRODUCTION

Time-of-flight (ToF) range imaging [1] is a form of full field opti-
cal lidar for measuring, at each pixel, the distance to the imaged
point in the scene. ToF range imaging is an active multiframe
imaging method. The light source and sensor shutter are modu-
lated in homodyne, and the phase offset between the backscat-
tered light return and the sensor is linearly proportional to the
ToF of the light. A second electronic phase shift is added be-
tween the light source and sensor modulations which is stepped
in sequence between frame integrations, effectively sampling the
correlation waveform. The phase of the correlation waveform
then is directly determined by the ToF of the light. The phase
of the correlation waveform is computed, from which the ToF,
and subsequently the distance, is computed. If objects move
during the data capture process, then the ToF changes which
spoils the data. Thus, the fact that ToF requires multiple frames
acquired over time places a restriction on the application of ToF
range imaging to static scenes. Motion causes a critical error to
ToF range imaging, one which is not trivially solved, requiring a
complete reevaluation of how the data is acquired and processed.
The motion information is inherently encoded by the ToF range
imaging data acquisition modality, and the topic of this work
is to analyse the effect of motion find new efficient methods for
motion estimation.

Early investigations into motion in ToF range imaging exam-
ined the detection of motion and use of a dynamic algorithm that
reduced the number of frames [2] when motion was detected.

These ideas were later extended to a detection and restoration
method that reconstructs the distance based on frames that are
automatically deemed not corrupted by motion [3]. Modelling
the effect of radial motion on the measured correlation waveform
lead to a method for reducing motion artefacts, and application
of optical flow on the amplitude of the correlation waveform
was used to facilitate correction of motion error [4]. Range flow,
the application of optical flow to range data, was applied to ToF
range image distance measurements [5]. Range flow was subse-
quently used as the foundation for motion segmentation from
ToF range data [6]. In these works motion was either treated as
something to be mitigated, or estimated using computer vision
techniques that assumed that the effect of motion on the range
image data is small to begin with.

More recent work broached motion in ToF range imaging
as something to be measured. Coded exposure using specialist
camera hardware, in conjunction with optical flow, was used to
estimate and correct motion to a subframe level [7]. Continu-
ous wave modulation without phase stepping encoded radial
velocity as the frequency of the correlation waveform [8]. Con-
current multi-camera ToF ranging alleviates interframe effects,
and measurement of motion follows by operating one camera
in homodyne mode and the other in heterodyne mode [9, 10].
Development of the theory of heterodyne ToF ranging revealed
that the integration process intrinsic to the camera operation
exposed motion as a coefficient. Data from the second camera
running in homodyne with the light source normalised for other
factors, such as brightness and distance, leading to an estimate
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of radial motion.
Motion in ToF ranging can be viewed as a manifestation of

the Doppler effect. The classical method for estimating instanta-
neous frequency is to use the Wigner distribution, e.g [11, 12],
a practical method but one that requires a comparitively large
number of measurements to what is typically used in ToF rang-
ing. Stochastic calculus [13, 14] has been applied to the estima-
tion of the instantaneous frequency of pure sinusoids [15, 16]
using statistical bootstrapping, but under restrictive assump-
tions on the amplitude and the nature of the noise.

In this paper we undertake a first foray into rethinking the
problem of motion in ToF range imaging. We do so by applying
stochastic calculus to amplitude modulated continuous wave
ToF range imaging to derive a general model of the measurement
of noisy ToF data. The model is then used to solve the problem
of radial velocity estimation from a single camera operating in
homodyne mode. The emphasis is on practical methods for
velocity estimation that are efficient in terms of computational
power. Hence multiple approximations and simplifications are
made in the development to lead to a simple and practical so-
lution. In Section 2 we briefly review ToF range imaging and
stochastic calculus, and then apply stochastic calculus to the ToF
ranging equations to derive a general model. Then, in Section 3
we make a series of simplifying assumptions and apply parame-
ter inference techniques to derive methods for estimating linear
radial motion from ToF ranging data. In Section 4 experimen-
tal tests are described and in 5 the results are presented and
discussed.

OPTICAL RANGE IMAGING AND STOCHASTIC CALCU-
LUS

Time-of-Flight Range Imaging
ToF range imaging is an active multiframe method of imaging
lidar. A ToF range imaging camera measures, at each pixel, the
time taken by light to travel to the scene, backscatter from it and
return to the camera. The ToF of light is measured indirectly by
periodically amplitude modulating the light source at frequency
f , typically at rates of tens up to the low hundreds of megahertz.
The travel distance d, hence travel time, induces a phase shift, φ
in the light return,

φ =
4π f d

c
, (1)

where c is the speed of light in air or a vacuum. The sensor
is similarly homodyne modulated with the light source, which
then demodulates the returning light signal, and the demodu-
lated light return is integrated by the pixel.

There are three unknowns in ToF range imaging, the phase,
the brightness of the return α, and the background light β. Set-
ting the phase between the light source and the sensor to θn, the
total integrated intensity In is

In = α cos(φ + θn) + β. (2)

Thus, the total integrated intensity is dependent on the ToF
of the light. Stepping θn to several discrete phase steps, we
acquire a set of phase step images. Typically the phase steps, θn,
are evenly spaced over a span of 2π rad, i.e θn = n∆θ, where
∆θ = 2π/N and n = 0, . . . , N − 1. The profile of In over n at
each pixel is called the correlation wavefunction, and the phase,
φ, is found from In by Fourier analysis.

The effect of linear radial motion is to stretch or compress the
correlation wavefunction. This effect is represented one of two

ways. The first, more physically accurate, is to represent φ as
a linear function in time from initial phase φ0 and with rate of
change ∆φ, viz φ(t) = φ0 + n∆φ. The second, more pragmatic,
representation is to multiply θn by parameter k,

In = α cos(φ0 + kθn) + β. (3)

The two representations are equivalent, and describe a change in
frequency of the correlation waveform. Conversion between the
two is straightforward: equating the arguments of the cosine for
each parameterisation, φ0 + n∆φ + θn = φ0 + kθn, we see that
kθn = n∆φ + θn. Consequently k− 1 = n∆φ/θn, a fact that will
be useful later.

Stochastic Calculus
Stochastic calculus is concerned with the analysis of noisy pro-
cesses that vary in time [13, 14]. Stochastic calculus is an exten-
sion of the familiar deterministic calculus to continuous func-
tions of random variables, where random variables are useful for
modelling noise. The rules provided by stochastic calculus give
meaningful understanding of integration and differentiation of
functions that contain variables that are random in nature. It
is the differentiation rules that are of particular interest in this
work, through which we will understand the effect that radial
motion has on the optical ToF measurements, and subsequently
estimate k from analysis of the In in Eq. (3). Furthermore, as the
name suggests, stochastic calculus leads to statistical modelling,
specifically finding probability distribution functions describ-
ing the transition of time series data from one state to the next.
These statistical models form powerful tools for determining
interesting model parameters from data suck as k.

We recall the two types of functions that stochastic calculus
operates on [13, 14]. The first is the class of deterministic func-
tions that classical calculus operates on. In this work the first and
second derivatives are assumed to exist and be continuous. The
second class of functions are the so called Weiner processes W(t),
which are useful for describing noise. A Weiner process is ran-
dom in time with mean 0 and the differences W(s)−W(t), s > t,
have variance s− t. The derivative dW(t) does not exist in the
classical sense, instead it is understood to be a process such that
samples from dW(t) are identified with samples from a Gaussian
distributed random variable with variance 1. From these facts
it should be apparent that generating a sequence of Gaussian
pseudo-random data of variance 1 in the computer, and then
taking the cumulative sum, simulates a Weiner process.

It must be emphasised that a stochastic differential, such as
dW(t), is shorthand for the integration required to find W(t).
Bearing in mind this shorthand representation, an important
result arises from products of the differentials dt and dW(t),
namely (dW(t))2 = dt, dt2 = 0, dW(t)dt = 0, and all higher
order powers are zero (see e.g. [13] for a more complete justifi-
cation). This is the so called box calculus, a set of rules which
together with the differential form shorthand representation is
useful for simplifying functions of Weiner processes.

In general, a stochastic process is one that is modeled by a
stochastic differential equation (SDE), that contains a differential
of a random process. A time dependent stochastic process X(t)
has the form [13]

dX(t) = µ (X(t), t) dt + σ (X(t), t) dW(t), (4)

where the functions µ and σ represent, respectively, the drift and
diffusion coefficients of X. For simplicity, in what follows we
will suppress the notational dependence on t, unless required for
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clarity. Like the differentials above, a SDE should be interpreted
as shorthand for the integral required to find X, given some
initial condition X(0). If µ and σ do not depend on X then dX
is called an Itô process, and we can take the integral directly, if
not then some substitution must be made to remove the explicit
dependence via Itô’s theorem, below.

Central to modern stochastic calculus is a class of stochastic
processes called martingales [13, 14]. A martingale is a stochastic
process for which the conditionally expected value of future
values of X(t) is the most recently observed one. So, given a
series of observations of a martingale, X0, . . . , Xn, the expected
value of the next observation,

〈Xn+1|X0 . . . , Xn〉 = Xn, (5)

where 〈·〉 denotes expectation. Accordingly, a supermartingale
(submartingale) has nonincreasing (nondecreasing) conditional
expectation,

〈Xn+1|X0 . . . , Xn〉 ≤ Xn, (〈Xn+1|X0 . . . , Xn〉 ≥ Xn) . (6)

The relevance of martingales to this work is in the statistical
method of martingale estimation for finding parameters [17,
18], the principles of which we later leverage to estimate radial
motion.

Differentiation in deterministic calculus has an important
extension in stochastic calculus known as Itô’s theorem [13, 14].
which can be intuitively understood as the chain rule for func-
tions of stochastic variables. However, it is more properly under-
stood as the application of Taylor’s series expansion to functions
of variables perturbed by random fluctuations. Consider a mul-
tivariate function f (x) of vector x of length J. The Taylor series
expansion is, explicitly to second order,

f (x + ∆x) = f (x) + ∑
i=1

∂ f
∂xi

∣∣∣∣
xi

∆xi

+
1
2

J

∑
j=1

J

∑
i=1

∂2 f
∂xi∂xj

∣∣∣∣
xi ,xj

∆xi∆xj + HOT, (7)

where HOT stands for higher order terms. Now, from the box
calculus

dX2 = (µdt + σdW)2

= (µdt)2 + (σdW)2 + 2µσdtdW = σ2dt. (8)

Likewise, for two different processes Xi and Xj with covariance
Σ2

i,j we have

dXidXj = Σ2
i,jdt. (9)

Substituting Xi for the xi into the Taylor series and taking the
limit ∆Xi → dXi one arrives at the main result of Itô’s theorem

dF =
J

∑
i=1

∂ f
∂xi

∣∣∣∣
Xi

dXi +
1
2

J

∑
j=1

J

∑
i=1

Σ2
i,j

∂2 f
∂xi∂xj

∣∣∣∣
Xi ,Xj

dt. (10)

The result of applying Itô’s theorem to a function of a stochastic
variables results in a SDE, and therefore is shorthand for the
function F(X) which is the Itô integral of Eq. (10) (see [13] for
more detail).

Itô’s theorem is an elegant result that tidily summerises func-
tions of stochastic processes, such as those that describe optical
modulation. Therefore, it is useful for analysis of ToF range
imaging in the presence of noise, as we do below.

A Stochastic Description of Time-of-Flight Ranging
Noise enters the ToF ranging measurement process through
jitter [19, 20], the statistical nature of light and light detection,
thermal noise in the electronics, and discretisation error in the
conversion of analog signals to digital data. In short, every
stage of the measurement process is touched by the influence
of random effects. Analysis of ToF ranging for change in the
parameters in time therefore requires careful consideration of
the influence of the noise. Stochastic calculus is the natural tool
for this analysis, opening the door to the use of a rich and mature
body of analysis tools [17, 18].

The parameters of the ToF ranging process are henceforth
enumerated in the vector x = (φ, α, θ, β), where we assume time

dependence on each element of x. Let Σ =
(

σφ, σα, σθ , σβ

)
, and

assume zero covariance between the parameters. The stochastic
processes that govern the ToF ranging process are assumed to
follow the drift diffusion model (so called Itô processes [13])

dXi =
dxi
dt

dt + σidWi, i = 1 . . . 3, (11)

where the Wi are time-dependent Weiner processes. The Xi are
each Weiner process with deterministic drift parameters, thus
each are Gaussian random variables with mean xi and variance
tσ2 [13].

The noise associated with β is dominated by electronic ther-
mal noise, with contribution from discretisation noise, so the use
of a Weiner process is a close approximation. For the other pa-
rameters, the use of Weiner processes is an approximation based
on an appeal to the central limit theorem. Such approximation is
easily justified for α (related to the light intensity) at large values
due to the Poisson nature of photon statistics [21], but breaks
down for low light levels. The distribution for random jitter is
unknown but is commonly modelled as Gaussian [22].

The stochastic observation model is of F where (c.f Eq. (2))

f (x) = α cos(φ + θ) + β⇒ F(X) = X2 cos (X1 + X3) + X4.
(12)

Itô’s theorem for multivariate functions and the zero covariance
between variables yields the SDE

dF = cos(X1 + X3)
dα

dt
dt

− X2 sin(X1 + X3)

[
dφ

dt
+

dθ

dt

]
dt

− X2 cos(X1 + X3)
[
σ2

θ + σ2
φ

]
dt +

dβ

dt
dt

− X2 sin(X1 + X3)
[
σφdW1 + σθdW3

]
+ cos(X1 + X3)σαdW2 + σβdW4. (13)

Eq. (13) is the most general form of the ToF ranging stochastic
process we present. This model describes the rate of change
of samples of the correlation wavefunction with variation in
brightness and phase over time. Arguably the most surprising
part of Eq. (13) is the second cosine term arising from the second
derivatives in Eq. (10) which implies that random fluctuations
in φ or θ will bias the range imaging process.

In Fig. 1 we show examples of simulations of the stochastic
ToF ranging correlation wavefunction model for motion towards
the camera and varying proportions between the noise variance
variances. In each, 1000 simulations are performed of 1001 phase
steps. The starting phase is π/4 and the velocity is approxi-
mately 5 m/s towards the camera. The shaded region represents
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Fig. 1. Example stochastic processes based on the ToF model. The solid line is the deterministic model f (x). The left graph is of
small noise, specifically σφ = σθ = 0.0016 rad, σα = 0.01 AU (where α = 100 AU), and σβ = 0.1 AU. The middle graph has
comparatively large jitter to the left graph of σφ = 0.008 rad, whereas the right graph has comparatively large amplitude noise of
σα = 1 AU.

three standard deviation margins, and the solid lines are f (x)
in Eq. (12) above. The increasing width of the shaded regions
with phase represents the increasing uncertainty in predicting
future intensity values, assuming exact knowledge at zero phase
of the intensity and correlation waveform parameters. When all
noise variances are small there is no distinct shape to the noise
variance. When either the jitter (σφ or σθ), or the amplitude noise,
σα, is large then there is distinctive shape to the noise variance.

Eq. (13) is a one-dimensional process with multiple time-
varying parameters. The objective of this work is to find just one
of those parameters, namely dφ/dt, and subsequently in what
follows we make successive approximations leading to tractable
solutions for the estimation of radial motion.

RADIAL LINEAR MOTION ESTIMATION

The parameters in Eq. (13) describe the rate of change of φ and
α, therefore inference of these terms from a sampling of the
correlation waveform using the SDE leads to estimation of radial
motion.

Consider the following parameterisation of Eq. (13)

dF = k1X2 cos(X1 + X3)dt− k2X2 sin(X1 + X3)dt +
dβ

dt
dt

− X2 sin(X1 + X3)
[
σφdW1 + σθdW3

]
+ cos(X1 + X3)σαdW2 + σβdW4. (14)

where

k1 =
1

X2

dα

dt
− k3, (15)

k2 =
dφ

dt
+

dθ

dt
, (16)

k3 = σ2
φ + σ2

θ . (17)

The parameter k3 is interpreted as the total variance due to jitter,
k1 depends on the amplitude, the rate of change of the amplitude,
and jitter, and k2 is the sum of radial motion and the controlled
change of phase used to construct the correlation waveform. The
parameter k2 is equivalent to k in Eq. (2), hence estimation of k2
leads to an estimate of the radial velocity. The assumption of
linear radial motion implies to a close approximation

dα

dt
= 0 ⇒ k1 = −k3. (18)

Finally, from Fig. 1 we see that F is essentially a function that fluc-
tuates randomly about the deterministic model, f . The simplest,
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Fig. 2. The Itô process approximation of the ToF ranging
stochastic model. The solid line is the deterministic model
f (x). No distinct shape is present in the noise.

most pragmatic example of such a process is an Itô process [13]
with constant variance, σ2, and deterministic drift, viz.

dF ≈
[

k1α cos (φ + θ)− k2α sin (φ + θ) +
dβ

dt

]
dt + σdW. (19)

In Fig. 2 an example of the simplified model is shown ac-
cording to Eq. (19) with constant β, α = 100, and σ = 0.6. The
deterministic drift and contant variance in dF leads to no distinct
shape in the noise variance with phase. Therefore we regard
Eq. (19) a Gaussian additive noise dominated model, c.f Fig. 1.

Modelling of Probability and Statistical Estimation of Parame-
ters

The solution to the SDEs above is the function F(X), or approxi-
mations thereof, obtained by inserting stochastic variables for
the deterministic one into f (x). Such a solution is called a strong
solution [13] and describes the individual paths that satisfy the
SDE. The strong solution leads us back to the traditional signal
processing based approaches for estimating parameters such
as φ and the motion k2. Here we are interested in statistical
approaches to parameter inference that follow naturally from the
modelling of stochastic variables.

The first step to statistical inference is the modelling of the
statistical distributions. In stochastic calculus this amounts to
finding the transition probability function (TPF). The TPF de-
scribes the probability that a stochastic variable F will transition
from one value F(t) to another value F(s), t < s. Given a TPF
p( f , t, y, s) denoting the probability of transition between value
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y at time s and value f at time t, and g(y; T) = Pr(F = y; T)
denoting the probability that F is measured equal to y at some
time T, then p( f ; t) = Pr(F = f , t), the probability distribution
for earlier measurements, is

p( f ; t) =
∫

y∈R
g(y; T)p( f , t, y, T)dy. (20)

Solutions in terms of the TPF capture important information
about the mean and variance of the stochastic variable in time.
The use of statistical distributions lends itself naturally to infer-
ential techniques which we use to validate our stochastic ToF
model.

Derivation of the TPF is performed by solving the backward
equation, a deterministic partial differential equation which, for
a SDE, e.g. Eq. (4), is defined by the solution of [13]

1
2

σ2 ∂2 p
∂ f 2 + µ

∂p
∂ f

= − ∂p
∂t

. (21)

Fortunately, we do not need to solve Eq. (21) directly, instead
the Feynman-Kac formula provides an indirect route via the
conditional expectation [13]

p( f ; T) = 〈g(F(T); T)|F = f (t)〉

=
∫ ∞

F=−∞
g(F(T); T)g(F = f (t); t)dF, (22)

where 〈·〉 denotes expectation over X.
To facilitate the derivation of p, we use Eq. (19), which has

integral

F ≈ k1
k2

α sin (φ0 + k2θ(t)) + α cos(φ0 + k2θ(t)) + β + σW, (23)

and expected value

〈F〉 ≈ k1
k2

α sin (φ0 + k2θ(t)) + α cos(φ0 + k2θ(t)) + β. (24)

The TPF for a drift-diffusion equation with deterministic mean
is well known to be a Gaussian distribution [13], therefore we
choose g(·) = G(·; m, σ), the Gaussian probability density func-
tion with mean m and standard deviation σ, and make the simpli-
fying assumption of homoscedasticity, leading to the following
result for the Feynman-Kac formula

p( f ; T) =
∫ ∞

F=−∞
G(F; F(T), σ)G(F; f , σ)dF

=
1

2πσ2

∫ ∞

F=−∞
e−

(F−F(T))2

2σ2 e−
(F− f )2

2σ2 dF, (25)

where f = 〈F〉. Eq. (25) is a convolution. The convolution of two
Gaussians is also a Gaussian with variances summed, therefore,

p( f ; T) =
1

2πσ2 e−
( f−F(T))2

4σ2 . (26)

Eq. (26) represents the probability that f = F at time T.
Therefore, given such a noisy measurement, the optimal model
f = 〈F〉 is one which maximises p at t = T. In other words,
it constrains the function f only at T. There are six unknown
variables in Eq. (19), therefore infinitely many such functions
that maximise p. To fully constrain f more measurements are
required leading to a problem of maximising a joint probability.
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Fig. 3. Simulation of the estimation of the radial velocity pa-
rameter by MLE.

Taking a series of measurements at phase steps, T = θi, the joint
probability pJ( f ) is then

pJ( f ) =
1

(2πσ2)
N

N

∏
i=1

e−
( f−F(θi))

2

4σ2 . (27)

Maximum likelihood estimation (MLE) [23] is used to find
k2, see the simulation results in Fig. 3. The data were generated
with α = 1 and standard deviation of noise 0.01. Failure in MLE
occurred due to local solutions. In numerical simulations MLE
failed in about one third of all phase step sets. The nonlinear
nature of Eq. (27) means that there is no known closed form solu-
tion, necessitating an iterative algorithm. Over the six variables,
O(36N) operations are required at each iteration, but the total
number of iterations is indeterminate. Therefore, MLE is also
slow, requiring 582 seconds to process 1000 phase step sets in the
simulation. Faster noniterative processing methods are clearly
required, and is the topic of the following section.

Motion Estimation

To derive a fast motion estimation procedure we require a sim-
plified SDE with one motion dependent parameter. Prima facie
martingale estimation [17, 18] seems appropriate, but dF has
non stationary mean, therefore is not a martingale. It is both a
local super and submartingale, each in non-overlapping regions,
but those exact regions depend on φ which is unknown a priori.
Therefore we need to derive an alternative, albeit biased, method
to estimate the motion.

To such end, we make a small jitter approximation by ne-
glecting k1. Doing so also neglects the biasing effect seen in the
second cosine term in Eq. (13). But, we will see that accepting
some jitter bias leads to a tractable solution. Now, consider the
Itô process

dF(θ) =
∂ f
∂θ

dt + σdW, (28)

where
f (θ) = α cos(φ0 + kθ) + β, (29)

and here k is a radial velocity factor, like Eq. (3), where k >
1 indicates motion away from the camera and k < 1 motion
towards the camera. Combining Eqs. (28) and (29) results in

dF(θ) = −kα sin(φ0 + kθ) + σdW. (30)

Clearly, given measurements F(θi), the differences F(θi) −
F(θi−1) have expected value 〈F(θi)− F(θi−1)〉 = −ka sin(φ0 +
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kθi) [17]. Therefore, an appropriate method to find the estimate,
k̂, of k from N measurements of Fi is to compute the following

k̂ =
∑N−1

i=1 F(θi)− F(θi−1)

−∑N−1
i=0 α sin(φ0 + kθi)

. (31)

We are left with the problem of finding α sin(φ0 + kθi).
A modified measurement procedure to compute k̂ is as fol-

lows. Define the phase steps θi and offset ∆θ. For each i take
three measurements in the following order: F(θi), F(θi + ∆θ),
F(θi + π/2)1. We therefore have the given approximate ex-
pected values,

〈F(θi + ∆θ)− F(θi)〉 ≈ −2∆θkα sin(φ0 + kθi), (32)

〈F(θi + π/2)〉 ≈ α sin(φ0 + kθi) + β. (33)

The process of taking three measurements means that two mea-
surement integration time intervals are required between F(θi),
and F(θi + π/2), which gives rise to the factor of 2 in Eq. (33).
Finally, to eliminate β we apply the discrete Fourier transform
(DFT) and utilise the first order bin, leading to the following
estimate

k̂ =
1

2∆θ

∣∣∣∣∣∑N−1
i=1 (F(θi)− F(θi−1)) ej2π(i−1)/N

∑N−1
i=0 F(θi + π/2)ej2πi/N

∣∣∣∣∣ . (34)

An appealing feature of Eq. (34) is it requires O(N) operations
to compute k̂.

In practice, the ToF camera modulation signals for the light
source and sensor are both generated using digital logic (for
simplicity and reduced cost). Assuming the camera bandwidth
is adequate, then the square wave modulation is preserved in
the operation of the sensor and light source, and the correlation
waveform is triangular in shape. Therefore Eq. (29) becomes

f (θ) = α
∞

∑
m=0

1
(2m + 1)2 cos ((2m + 1)(φ0 + kθ)) + β. (35)

Consequently

∂ f
∂θ

= −αk
∞

∑
m=0

1
(2m + 1)

sin ((2m + 1)(φ0 + kθ)) , (36)

is a square wave and Eq. (34) is prone to severe harmonic er-
ror. An alternative procedure becomes apparent when we note
that the radial velocity parameter affects the amplitude of the
expected value of the differences, 〈F(θi + ∆θ)− F(θi)〉 ≈ ∂ f /∂θ.
Therefore, let AF and A∆F be respectively the amplitudes of the
measured noisy signals F(θi) and F(θi + ∆θ)− F(θi) in i, and
find the estimate of the velocity as

k̂ = c1
A∆F

2∆θAF
, (37)

where c1 is some constant determined by the bandwidth of the
ToF range image camera system, hence number of harmonics
present in the measurements. Eq. (37) also only requires O(N)
operations. From Eq. (29), k = 1 corresponds to no motion,
therefore in general the calculation k̂− 1 is proportional to the
change in position per raw frame. If the camera runs at N raw
frames per raw frame set times M raw frame sets per second,

1Here the measurements are dependent on θi , a programmable parameter on
the camera, which are not chosen to strictly increase in time.
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Fig. 4. Simulation of the estimation of radial motion by the
ratio of amplitudes.

then there are NM raw frames per second, therefore the final
estimate of velocity is

MNc2

(
k̂− 1

)
. (38)

The coefficients c1 and c2 are determined by calibration. We call
Eq. (37) the ratio of amplitudes method.

In simulation we test the ratio of amplitudes method with
α = 100, noise with variance σ2 = 1, and the third and fifth
harmonics. Results of the simulation are shown in Fig. 4. Com-
paring Fig. 4 with Fig. 3 the variance in the estimate of the motion
parameter is increased and there is some bias for larger values
of k. However, unlike MLE, ratio of amplitudes returned an
estimate in every test, and in O (N) operations.

EXPERIMENTATION

We test the radial velocity estimation using a prototype propri-
etary ToF range imaging camera [8] on which we can set the
phase step sequence. A white foam board target with diffuse
reflectance is affixed to a 3 meter translation stage (macro Dy-
namics Inc, Croydon, PA, USA) and moved in coordination with
the camera data acquisition. The translation stage has maximum
speed of 2.3 m/s. The hardware is controlled and coordinated
using MatLab (The Mathworks, Natick, Massachusetts, United
States). We require much faster speeds, so the motion is simu-
lated by moving the target to discrete positions 0.005 m apart
and acquiring the raw frames. In processing we then select the
required frames from the data set to reconstruct a phase step
set with motion. Pixels in an 11× 11 pixel (121 pixels) square
window on the white foam board were processed. Like in [8]
we assume that the motion is sufficiently slow such that α is
constant during each individual raw frame.

Because of harmonic content we only test the MLE and ratio
of amplitude methods. MLE was performed using the mle rou-
tine in MatLab with the fmincon optimisation function. In the
ratio of amplitude method the coefficients c1 and c2 are found
by inspection. While Eq. (34) was useful for the exposition, it
is not tested with real data for the reasons given above, and
left for future work when we have a device that can produce a
correlation waveform free of harmonic content (see for e.g [24]).

There are two parameters to test for in the motion estimation:
the number of phase steps and the phase range that the phase
steps span. The phase steps are then set evenly distributed over
the phase range. For motion towards the camera, the phase
steps are effectively compressed. Therefore, for motion towards
the camera, if we choose the usual phase range of 2π then the
measurements will not span one full period of the correlation
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waveform. The ratio of amplitudes depends on the observation
of at least one peak and one trough of the correlation waveform,
so the phase range must be greater than 2π. In our experiments
we test 3π and 4π.

The modulation frequency of the camera is set to 70 MHz (am-
biguity distance of 2.143 m) and the phase range is divided into
eighteen even steps. These are pragmatic choices: the modula-
tion frequency must be high enough that one ambiguity distance
fits within the 3 m translation stage; but low enough that we
have as many phase steps available as possible, as determined
by the ratio of the internal system reference clock frequency of
the camera to the desired modulation frequency. We test various
numbers of phase steps by decimating the eighteen phase steps
into multiples, viz. six, nine and eighteen. Three provides in-
adequate coverage of the correlation waveform, therefore three
steps is not tested.

RESULTS AND DISCUSSION

In Fig. 5 we show the results for estimation of linear radial
motion by MLE. Velocity indicates the displacement of the trans-
lation stage per phase step frame multiplied by the frames per
second. Assuming thirty phase step sets per second, that is,
thirty range images per second, and N phase steps we have
30N phase step images per second. Therefore, a displacement
of 0.005 m per frame (the minimum tested) gives a velocity of
0.15N m/s in simulation. Sign indicates direction of the motion,
negative is towards the camera and positive is away.

Linearity in the estimates is herein assessed as deviation
from the reference line with respect to the standard deviation
as indicated by the error bars. For six phase steps spread over
3π, MLE estimates the radial velocity between (−10)—0 m/s,
(+20)—(+30)m/s, and nowhere else. The MLE velocity esti-
mation grossly failed for six phase steps over 4π due to insuffi-
cient sampling of the correlation waveform. Overall MLE radial
motion estimation from six phase steps is not recommended.
For nine phase steps the linearity is within uncertainly in the
range (−20)—(+20) m/s, but underestimates the speed above
+20 m/s towards the camera. For eighteen phase steps the lin-
earity degrades above velocities of 20 m/s in both directions,
but is good overall.

The estimation by MLE is required on average 0.95 s to pro-
cess each phase step set. MLE is sensitive to initialisation val-
ues and hence difficult to perform consistently. Therefore MLE
estimation of velocity is only recommended for non-realtime
applications where initialisation parameters are well known.
Overall the MLE algorithm failed in about 21% of tests. Missing
points in Fig. 5 represent velocities where no estimate is obtained
over the 121 pixels tested (3π, 18 steps), despite attempts on a
best effort basis. However, where estimates were obtained, the
standard deviation in the velocity estimates were typically less
than 1 m/s, and frequently were better than 0.3 m/s, as seen in
the small error bars in Fig. 5 for nine and eighteen steps.

As the speed increases the change in brightness as seen by
the camera increases, therefore the validity of the approximation
made in Eq. (18) decreases. The results in Fig. 5 show that the lin-
earity decreases with speed which coincides with the increased
brightness change. However, the results herein indicate that
the approximation is adequate for speeds up to about 20 m/s
(72 km/h or 44.7 mph). Surpassing this limit requires explicit
modelling of the brightness change, and is left for future work.

The use of the Gaussian distribution in MLE arises from the
use of Weiner processes in the stochastic model. The Gaus-

sian distribution is an adequate approximation of the statistics
assuming large photon numbers for the Poisson photon and
detector shot noise statistics [21]. The Gaussian also models
electronic thermal noise. However, in physical reality the noise
is the sum of two random variables drawn from, respectively, a
Gaussian and a Skellam distribution (the Skellam distribution
being the model for the difference of two Poisson random vari-
ables). There is no known solution to the distribution of a sum
of Gaussian and Poisson/Skellam random variables. In imaging
poorly reflecting objects the MLE approach taken here may break
down and more careful modelling of the noise distributions may
be required [25], in future work we will investigate this issue
further.

In Fig. 6 we show the results for estimation by the ratio of
amplitudes, viz. Eq. (37). The intensity change with distance was
a confounding factor for high velocities, and no good estimates
were obtained beyond 20 m/s, hence the change in axis limits
between Figs. 5 and 6. Also, a small jitter approximation was
made in the derivation of the ratio of amplitudes method, the
understanding of the full impact of which is left for future work.
The error bars are up to ±6 m/s for 18 steps over 3π and up to
±10 m/s over 4π, whereas for 9 steps the error bars are less than
±3.5 m/s over 3π and less than±4 m/s over 4π. Comparing the
error bars in Figs. 5 and 6 it is immediately apparent that MLE is
more robust to noise than the ratio of amplitudes. Unlike MLE,
however, the ratio of amplitudes always returns an estimate and
in fixed efficiency ofO(N) operations per pixel. On the real data
the average processing time was 4 ms, a 243 times speed increase
over MLE. Increasing N decreased ∆θ, which lead to less signal
in the estimate of A∆F and greater noise in k̂. From the F-test
under regression analysis the estimated velocity significantly
predicted the radial velocity (p = 0 in each case for N = 9 and
18), but note that the sample sizes are in the thousands, and the
standard deviations are a better indicator of prediction power.

For the six phase steps distributed over 3π the ratio of ampli-
tudes method provides good linearity for motion away from the
camera but failed for motion towards the camera. The ratio of
amplitudes method requires adequate sampling to obtain mea-
surements of the extrema of the correlation waveform. Motion
towards the camera decreases the range phase which causes an
apparent reduction in the phase step size. The risk here is that
the measurements may not cover both one peak and trough of
the correlation waveform, in which case the estimate of AF is
inaccurate. In contrast, over 4π the six phase steps worked well
for motion towards the camera but, confoundingly, not away. A
reasonable explanation for why six phase steps fails over 4π for
motion away from the camera is that the sampling density of the
correlation waveform is inadequate to reliably provide samples
of both extrema of the correlation waveform, and thereby pro-
vide good estimates of AF and A∆F. Thus we observe a tradeoff
in using the proposed ratio of amplitudes method for estimating
radial velocity with a small number of samples that leads to one
of two failure cases. Namely, that reducing the span increases
the density of the samples but risks the inability to observe both
a peak and a trough, and vice versa.

For nine and eighteen phase steps the ratio of amplitudes
performed better over a span of 3π than 4π in terms of both lin-
earity and standard deviation. Over 4π, nine steps did not have
adequate sampling density to accurately estimate the velocity of
motion away from the camera. Overall, in our tests nine steps
over a span of 3π provided the best tradeoff of accuracy and
precision.
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Fig. 5. Estimation of radial velocity by maximum likelihood esimation for various numbers of phase steps. Top row are evenly
spaced over 3π, bottom row are over 4π. The solid line is for reference. Motion towards the camera corresponds to negative veloc-
ity. Error bars indicate one standard deviation in estimation. The linearity improves with the number of phase steps.
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Fig. 6. Radial velocity estimation by ratio of amplitudes, Eq. (37), for various numbers of phase steps. Top row are evenly spaced
over 3π, bottom row are over 4π. The solid line is for reference. Error bars indicate one standard deviation. The reduced phase step
size with increased number of steps leads to more noise in the estimate of A∆F, hence the increase in noise.
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CONCLUSION

We have investigated the application of stochastic calculus to
ToF range imaging and successfully used the resultant model
to estimate linear radial motion. Two methods for motion esti-
mation were developed and tested: MLE using statistical dis-
tributions derived from the stochastic model, and a new closed
form method we call the ratio of amplitudes. Estimation was
tested for six, nine, and eighteen phase steps, six was found
to be unreliable, whereas nine and eighteen steps were more
reliable than six. MLE performed better than ratio of amplitudes
in terms of random noise, but MLE was more than 200 times
slower and was not able to provide an estimate in every example.
In contrast ratio of amplitudes is efficient and always produces
an estimate of radial motion.

Two major aspects are raised for future work. The first aspect
is that the general stochastic model derived implies that the vari-
ance in the transition probability between measurements should
have a specific shape, depending on the relative variances of
the noise sources. Also, more interestingly, the stochastic model
implies that random jitter biases the estimation of phase, even
for a static scene. These are important metrological questions,
and future investigations we will delve into the consequences
of this result. The second aspect is the extension of the results
presented herein to nonlinear motion and, most challengingly,
nonlinear motion due to the passage of an edge over a pixel dur-
ing data acquisition. This will be extended to the measurement
of transverse motion.
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