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Abstract

The peri-urban interface (PUI) exhibits characteristic qualities of both urban and rural
regions, and this complexity has meant that risk assessments and long-term planning for
PUI are lagging, despite these areas representing new developing settlement frontiers. This
study aims to address this knowledge gap by modifying an existing approach to quantify
and assess flood risk. The risk triangle framework was used to map exposure, vulnerabil-
ity and biophysical variables; however, in a novel application, the risk triangle framework
was adapted by presuming that there is a variation in the degree of exposure, vulnerability
and biophysical variables. Within Australia and globally, PUIs are often coastal, and flood
risk associated with rainfall and coastal inundation poses considerable risk to communi-
ties in the PUI; these risks will be further exacerbated should projections of increasing
frequency of extreme rainfall events and accelerating sea-level rise eventuate. An indicator-
based approach using the risk triangle framework that maps flood hazard, exposure and
vulnerability was used to integrate the biophysical and socio-economic flooding risk for
communities in PUI of the St Georges Basin and Sussex Inlet catchments of south-eastern
Australia. Integrating the flood risk triangle with future scenarios of demographic and cli-
mate change, and considering factors that contribute to PUI flood risk, facilitated the iden-
tification of planning strategies that would reduce the future rate of increase in flood risk.
These planning strategies are useful for natural resource managers and land use planners
across Australia and globally, who are tasked with balancing socio-economic prosperity
for a changing population, whilst maintaining and enhancing ecosystem services and val-
ues. The indicator-based approach used in this study provides a cost-effective first-pass risk
assessment and is a valuable tool for decision makers planning for flood risk across PUIs in
NSW and globally.
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1 Introduction

The peri-urban interface (PUI) is broadly defined as the transitional area between urban
and rural areas. There is a considerable debate regarding the definition of the PUI (Allen
2003; Simon 2008). Some define PUI as the land experiencing growth immediately adja-
cent to an urban centre (Burnley and Murphy 1995). Others consider PUI to extend to the
maximum commuting distance from the rural countryside to the urban area (Nelson and
Dueker 1990). Historically it has been perceived that the land use patterns and human
behaviours within urban and rural areas were characteristically different and that bounda-
ries could be established on the basis of the differing character between these areas (Simon
2008). However, as urban expansion is rarely uniform, differentiation between rural and
urban areas is difficult. Accordingly, issues regarding definition, what are the characteristic
qualities of a peri-urban area and how they can be defined spatially, have hampered efforts
to establish long-term planning and management of the land and resources base of the PUI
(Allen 2003; Buxton and Low Choy 2007; Simon 2008). Historic presumptions regard-
ing the capacity to distinguish urban and rural areas have meant that planning has strug-
gled to manage the dynamics of the transitional interface between rural and urban areas
(Simon 2008). This study addresses the knowledge and management gap for PUIs through
a spatial approach to managing hazard, exposure, vulnerability and risk. The approach can
be applied across regional and global settings and can be modified for the type of risk
(i.e. flood, drought or bushfire). The spatial tool and associated data have the capacity to
improve and guide natural resource management and land use planning.

This study highlights the need for considerable redress to improve long-term planning
for the PUI to accommodate both rural priorities and the increasing needs of expanding
urban areas. Allen (2003) proposed that the dichotomy in the planning system for urban
and rural areas is deeply ingrained and will fail to meet the planning needs of PUI unless
an approach that responds to specific environmental, social, economic and institutional
aspects is taken. This study directly addresses this knowledge gap using biophysical, expo-
sure (land use) and vulnerability (socio-economic) data to provide significant advances for
PUI land use planning and coastal management policies. Climate change and hazard risk
reduction add further urgency to the need for adequate planning in the peri-urban region
that responds to the specific environmental, social, economic and institutional needs of
PUI. Environmental, climate change and hazard risk assessments tend to focus on areas
of high natural resource value or high socio-economic value and neglect the PUI, with
the outcome being significant environmental degradation and hazard exposure (Douglas
2012). Yet, as urban areas swell in areal extent to accommodate population growth, peri-
urban areas represent areas of future hazard risk. This study is significant for land use plan-
ners and coastal managers, across spatial scales (local, regional and global) as the approach
highlights that planning for hazards and risks in peri-urban areas, the new frontiers of
urban hazards, is imperative for not only reducing risk to peri-urban populations, but also
minimising risks to potential future population centres (Allen 2003).

In Australia, 85% of the population live within 50 km of the coast (Trewin 2004), which
includes considerable PUIs and commuter zones connected to major cities. ‘Sea-change’
lifestyle-driven population growth in coastal peri-urban areas (Burnley and Murphy 2004)
is a key driver of demographic changes in Australia and a critical issue when planning
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for peri-urbanisation. Sea-change, and the landward tree-change equivalent, has been
likened to ‘amenity migration’, a term used internationally to describe the demographic
phenomenon arising from people locating closer to natural amenity and lifestyle oppor-
tunities (Gosnell and Abrams 2011; Gurran and Blakely 2007). Whilst this phenomenon
can bring jobs to service the increasing population, the new ‘migrants’ or ‘changers’ are
often of retirement age, or depending upon proximity to major urban centres, may com-
mute elsewhere for work; this establishes a unique set of demographic conditions for PUI
planning. The increase in the number of PUIs is not exclusive to Australia, with many first
world countries experiencing demographic change as people migrate out of cities for an
improved work-life balance. In addition, the recent COVID-19 pandemic appears to have
led to a further increase in the demand and net migration to PUIs, according to COVID-19
impact assessments conducted by local government forecasters in NSW (Wollondilly Shire
Council 2021). However, long-term patterns of migration are uncertain due to the scale and
duration of the pandemic (Bernard et al. 2020). This further highlights the importance of
this study and the need to improve land use planning and risk assessments in the face of a
changing climate and periods of uncertainty for migration and socio-economic status.

Climate change adds an additional risk dimension to peri-urban populations, altering
an area’s risk profile in various ways. For example, as the atmosphere warms, projections
indicate an increasing potential for extreme rainfall events and flooding risk in many areas
of Australia, with national projections indicating a tendency for an increase in the inten-
sity and/or proportion of extreme rainfall (Whetton et al. 2015). Projections indicate that
sea-level rise around Australia is comparable to, or even slightly higher than global mean
sea-level projections for the suite of Representative Concentration Pathways (RCP) (Whet-
ton et al. 2015), which will further exacerbate flood risk in coastal PUIs, by increasing the
vertical position that flood risk may occur and should be accommodated when planning for
risk in PUIs.

Fine-resolution modelling approaches, including model utilising-mathematical equa-
tions to simulate coastal processes, can be used to characterise the risk of coastal PUIs to
flooding of sea-level rise at scales needed for local government assessment and planning
(see for example Hartnett and Nash 2017; Wang et al. 2018). However, these approaches
are computationally resource intensive and require considerable input data that are not
likely to be available for PUIs that have historically received minimal attention. Further-
more, this kind of fine resolution modelling tends to focus on biophysical aspects of flood
risk and sea-level rise risk, but rarely integrate models with socio-economic aspects, which
are critical for defining the character and risk of PUIs. Whilst the use of sophisticated simu-
lation modelling approaches can be warranted and useful, a practical and readily applicable
method is based on developing indicators or indexes using raster (pixel)-based GIS spatial
modelling. This approach has been shown to be a cost-effective means of integrating and
mapping qualitative and quantitative factors that influence risk (KaZmierczak and Cavan
2011; Nguyen et al. 2016). These approaches have been widely applied for considering
coastal vulnerability to sea-level rise and have been integrated with socio-economic and
demographic data to provide a more holistic indication of risk and vulnerability (Nguyen
et al. 2016). They can also be used to provide a first-pass risk assessment highlighting loca-
tions where more data-intensive and expensive models can be more fruitfully deployed.

Indicator-based approaches using the risk triangle framework have been widely
used to map flood risk (Crichton 1999; Granger 2003; Kazmierczak and Cavan 2011).
According to this framework, the flood hazard is a spatial representation of the areas lia-
ble to flood, i.e. its geographical extent. Flood hazard can be mapped using biophysical
data layers that are based on Earth Observation (EO) datasets of terrain elevation, land
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cover and hydrological dynamics. Flood vulnerability defines which sectors of the com-
munity lack the resources needed to prevent, cope and recover from a major flood event.
Exposure refers to the land use zones susceptible to flood damage; this often focuses
upon urban density and the importance of infrastructure in relation to responding and
recovering from a flood event, i.e. residential, commercial and industrial buildings,
transport links, access to essential facilities, healthcare facilities, schools, universities
and critical services such as police stations and fire stations. Essentially the risk triangle
assumes that the risk can be reduced when the length of the sides is shortened. To apply
this framework, spatial datasets that characterise flood hazard, vulnerability and expo-
sure are typically mapped and combined to provide a spatially explicit indication of land
and communities in PUI at high risk. See Fig. 1.

In this study, flood risk associated with a PUI in south-eastern Australia is examined
and an indicator-based approach has been modified and investigated for its effective-
ness as a means for a first-pass assessment of flood and sea-level rise risk when plan-
ning for PUIs. This study innovatively adapts an existing framework to consider sea-
level rise and changing population demographics by weighting significant factors. This
novel approach provides the opportunity to further develop a consistent approach to
mapping flood hazard, vulnerability and exposure which can be applied across regional
and global scales and modified (i.e. swap spatial datasets) for other phenomena (i.e.
drought or bushfire). Understanding the contemporary and future dynamics of flood risk
and population change requires in-depth analysis of historical land use changes, leg-
acy impacts and future trajectories of change. This study generates land cover archives
which are crucial for monitoring and developing relationships between observed
changes and coastal processes and pressures. Moreover, in recent years, there have been
significant advances in Earth observation technologies, including the addition of new
sensors, improvements to the resolution of existing sensors and advanced data archiving
capabilities. For example, improvements in Light Imaging and Radar (LiDAR) are pro-
viding highly accurate digital elevation models (DEMs) which provide an insight into
the biophysical characteristics of the landscape. With the advent of these new datasets
and capability, there is a considerable opportunity to improve the accuracy and preci-
sion of mapping of coastal hazard and risk. Given the extent and scale of coastal PUIs
in Australia, this study provides the most cost-effective means of developing risk assess-
ments and is the only feasible way of quantifying changes at local, regional and national
scales and across remote locations.

Fig. 1 Risk triangle, as described
by Crichton (1999)

Exposure
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We focus on the Sussex Inlet district, located on the south coast of NSW. This is an
ideal locality for considering the multi-faceted aspects of flood risk as the district is largely
peri-urban in character and includes a range of natural assets (e.g. beaches, lakes, and for-
ests) that attract populations to the region, and a range of socio-demographic character-
istics (e.g. an ageing population, transient residents, increased population in summer and
holiday periods, unemployment and lack of residents and visitors in winter months) that
when combined influence the flood risk of the land and communities of the PUI. As parts
of the study area are low-lying coastal land, flooding is of particular concern in the region,
and major flood events are known to have occurred in February 1971, June 1991 and
August 2015. Should sea levels rise as projected, it is probable that the frequency of major
flood events will increase as the base level increases. It is important to note that whilst this
study focuses on the flood risk, Sussex Inlet experiences significant cumulative risk from
flood and coastal inundation, drought and fires. The successive events (December 2019/
January 2020: drought and fire, July 2020: flood and March 2021: flood) often compound
the recovery of the landscape and local economy and pose a continual threat to life and
property.

The aim of this study was to establish the biophysical and socio-economic flooding risk
for communities in peri-urban areas of the St Georges Bain and Sussex Inlet catchments
and use this as an indication for future flooding risk in the context of a changing climate
and socio-economic context. This aim was achieved by:

e Quantifying the changes in land cover within the St Georges Basin and Sussex Inlet
district at 10-year intervals (1987, 1997, 2007 and 2017) using a time-series of Landsat
imagery to provide an indication of the landscape patterns of peri-urbanisation in the
region;

e Compiling a flood hazard map using biophysical layers (slope, elevation, land depres-
sion and land cover); flood vulnerability map using socio-economic data (2016 census
data) and a flood exposure map using the Landsat land cover mapping and land cover
data from the Spatial Services Digital Topographic Database;

e Creating a flood risk map that integrates flood hazard, vulnerability and exposure maps
to provide an indication of flood risk associated with peri-urbanisation; and,

e [Interpreting flood maps to distinguish factors contributing to peri-urban flood risk.

The results can be used to inform planning strategies that aim to reduce future flood risk
associated with climate change and the PUIL This study aimed to provide decision-making
guidance for urban and coastal planners and managers to assist with optimising the increas-
ing urban demand in the PUI whilst minimising flood risk.

2 Methods
2.1 Study area

Sussex Inlet lies primarily within the catchment of St Georges Basin and is located on
the southern shore of the narrow entrance that connects St Georges Basin with the ocean.
Other villages that occur within the catchment of St Georges Basin include Wandandian,
Bewong, Basin View, St Georges Basin (town), Sanctuary Point and Old Erowal Bay.
These townships are located on the northern and western sides of St Georges Basin. The
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townships of Cudmirrah and Berrara are regarded to be part of the Sussex Inlet District and
are located near the entrances of Swan Lake and Berrara Creek, respectively. As the peri-
urban area of Sussex Inlet and District is associated with three estuaries, St Georges Basin,
Swan Lake and Berrara Creek, and biophysical processes associated with flooding are best
defined on the basis of drainage basins, the boundaries for the flood risk assessment study
area have been defined on the basis of the catchment of the three estuaries associated with
Sussex Inlet and District (see Fig. 2).

St Georges Basin, the largest estuary within the study area, is defined as an immature
barrier estuary as the degree sediment infill of the bedrock valley over the past 7000 years
has been low and the water body is extensive (Roy et al. 2001). St Georges Basin has a
surface area of ~40 km? and drains a~390 km? catchment (Roy et al. 2001). Tributary
creeks into the basin include Cow, Tullarwalla, Pats, Home, Wandandian, Stony, Erowal
and Tomerong. The township of Sussex Inlet is primarily located on flood-tide delta sands
located behind coastal barrier sands that have accumulated at the entrance to St Georges
Basin over the past approximately 7000 years (Troedson et al. 2015). As such, much of
the township is very low-lying and is at risk from coastal inundation. As the entrance to
St Georges Basin is always open, the township of Sussex Inlet is exposed to flood risk
associated with both marine and terrestrial drivers. Consequently, coastal inundation in
the region may be a function of rainfall, sea-level rise, storm activity and wave set up in
the basin. Other townships located within the catchment of St Georges Basin are variably
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Fig.2 Study site encompassing the Sussex Inlet and District and associated catchments
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located on a range of lithology including bedrock and low-lying fluvial delta sediments
(Troedson et al. 2015).

Swan Lake and Berrara Creek are both smaller in surface area (~4 km? and~0.15 km?,
respectively) and catchment size (~32 km? and ~36 km 2) than St Georges Basin and have
been classified as saline coastal lagoons (Roy et al. 2001). Unlike their larger neighbour,
the entrances of both Swan Lake and Berrara Creek intermittently close. Intermittent
estuaries, known in Australia as Intermittently Closed and Open Lakes and Lagoons or
ICOLLs, exhibit unique management issues (McSweeney et al. 2017; Saintilan et al. 2016).
Accordingly, manual entrance opening may be undertaken either to reduce coastal flooding
when water levels within the lakes are high or to improve water quality when water levels
are low by reinstating tidal exchange.

Whilst the majority of the study area comprising the three catchments is forested
(~80%), with the remaining areas comprised of grazing and urban land use, the land use
has changed significantly since 1970 from a primarily agricultural region to a community
experiencing urbanisation and tourism. The region has a number of residential and com-
mercial properties built on low elevation land and as such flooding is a significant risk
factor. An important development was the canal estates in 1971 within the Sussex Inlet
Township.

Sussex Inlet exhibits characteristics consistent with an increasing ‘sea-change’ popula-
tion and is more socially disadvantaged than the national average according to the Socio-
Economic Indexes for Areas (SEIFA) index developed by the Australian Bureau of Statis-
tics (ABS). This is likely due to the higher than average proportion of retirees, unemployed
and people with low levels of income (as determined from ABS 2016). The 2016 census
data identify an ageing population with 42.6% > 60 years of age. Other towns in the Shoal-
haven region have an average of 31.9%, whilst Sydney has 15.7%. Moreover, 20.6% of
the population lives at or below the poverty line, with 6.9% unemployed. The number of
family households (i.e. medium density housing including semi-detached, townhouses and
terraced houses) and apartments is significantly lower in Sussex Inlet compared to Shoal-
haven and high proportion (36.7%) of houses are unoccupied, reflecting the large number
of holiday homes.

2.2 Land cover mapping

To determine the spatial and temporal land cover distribution, four cloud-free Landsat
scenes georeferenced to UTM Zone 56 were acquired from the United States Geological
Survey for 1987, 1997, 2007 and 2017. The scenes were converted to GDA94, Zone 56
and processed to surface reflectance by the Queensland Department of Science, Informa-
tion Technology and Innovation. The extent and distribution of each land cover category
was extracted by applying a supervised maximum likelihood classification algorithm. The
land cover was split into four broad categories: water bodies, urban, cultivated (i.e. farm-
land) and uncultivated (i.e. wild remnant land). The classification was validated through
reference to aerial photography, NSW Globe digital photography and land use mapping
available through Spatial Data Services NSW Government. From the classification the area
of each land cover was extracted to identify change over time. As the land cover distribu-
tion maps were derived from Landsat scenes, they have a pixel resolution of approximately
30 m. To determine temporal patterns of change in land cover, an image subtraction was
undertaken by applying the Raster Calculator in ArcGIS to the land cover maps generated
for 1987 and 2017.
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2.3 Flood hazard mapping

Four spatial data layers were used to indicate flood hazard (described as Hazard indica-
tors in Table 1): elevation, slope, land depressions and land cover data (derived from the
Landsat land cover mapping). Elevation, slope and land depressions were derived from
a LiDAR survey collected in 2010 and 2011 and provided by NSW Land and Property
Management Authority. The rationale behind each data layer is indicated in Table 1.
Elevation provides an insight into exposure, with regions of lower elevation indicating
enhanced exposure to storm surges, wave activity, flooding, rainfall and runoff and ero-
sion. The slope was derived within the ArcGIS Spatial Analyst feature. A steep slope
will have increased runoff; however, the wave/storm surge will be lessened due to a
reduced wave run up. Land depressions indicate localised sinks in the sediment where
water may accumulate and flood. The depressions are generated using the fill DEM
and subtracting the DEM. The land cover is considered in order to delimit impervi-
ous surfaces, i.e. urban land, where enhanced runoff and flooding are likely, as opposed
to undisturbed densely vegetated areas (uncultivated) with slower run off velocity and
greater substrate permeability.

Each hazard indicator layer was categorised into groups on the basis of cell characteris-
tics that related to the degree of flood hazard (described in Table 1 as cell description) and
assigned a flood hazard score, with 1 indicating a low flood hazard and 3 (4 for the eleva-
tion layer) indicating a high flood hazard (described in Table 1 as cell score). The areas
defined as water bodies, as derived from the land cover classification, were not included in
the hazard map as the areas are permanently wet, and not perceived to have any additional
hazard associated with flooding.

A final flood hazard map was derived by adding each hazard indicator together using
the raster calculator tool in the spatial analyst extension of ArcGIS. As the land cover data
have the lowest resolution, this layer was used as the base layer to combine with the other
biophysical layers. Accordingly, the ensuing flood hazard map had a pixel resolution of
30 m, with pixel cells ranging between 12 and 3.

2.4 Flood vulnerability

Flood vulnerability was determined based on socio-economic data derived from 2016 cen-
sus data (ABS 2016). Vulnerability studies have previously used a wide range of indicators
to represent community resilience inducing economic, community and infrastructural fac-
tors (Bruneau et al. 2003; Norris et al. 2008; Cutter et al. 2010). Based on these studies and
available data, we have chosen indicators that align with the consensus within the research
community to provide a comparative approach to measure vulnerability. Data collated at
the state suburb scale from statistical area 1 (SA1) data were used for mapping flood vul-
nerability. Suburbs were assigned a vulnerability score for each of the indicators used: age,
relationship status, number of residents in a dwelling, education level, language, children
(i.e. lone parents, dependents and non-dependents) and employment status. The description
of vulnerability indicators, cell scores and cell descriptions are provided in Table 2.

Following the approach for flood hazard mapping, a flood vulnerability map was derived
by adding all flood vulnerability indicator layers using the raster calculator tool. A final
flood vulnerability map was derived with cell scores ranging between 33, indicating high
flood vulnerability, and 11, indicating low flood vulnerability.
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2.5 Flood exposure

Flood exposure mapping used spatial data layers acquired from the Landsat land cover
mapping to identify urban localities. Urban density was calculated by overlaying a 1 ha
grid onto the 30 m resolution land cover classification. The percentage of each cell occu-
pied by urban land was extracted to provide a density score. The importance of infrastruc-
ture was also quantified using land cover mapping derived from Spatial Services Digital
Topographic Database with high importance placed on critical services and residential
areas. The complete criteria for exposure are detailed in Table 3.

The final flood exposure map was derived using the raster calculator tool to add flood
exposure indicator layers together. The resulting map had cell scores ranging between 7,
indicating high flood exposure, and 2, indicating low flood exposure.

2.6 Flood risk

Flood risk was determined by integrating flood hazard, vulnerability and exposure. To
ensure that each layer contributed equally to the final flood risk map, the input flood haz-
ard, vulnerability and exposure maps were scaled to have scores between 1 and 10; this
ensured that no input layer had a greater weighting than another. The inclusion of census
data at SA1 scale resulted in boundaries between census units becoming an artefact in the
final vulnerability map. Accordingly, a flood risk map that included flood hazard and expo-
sure, whilst excluding flood vulnerability was also prepared which indicated biophysical
data with infrastructure exposure alone, thereby preventing census boundaries from being
inherited in the flood risk assessment.

2.7 Land cover change

Over the 30-year study period (1987-2017), the study area experienced an 80% increase in
(peri)urbanisation from 14.45 to 25.98 km? (Fig. 3, Table 4). This conversion to peri-urban
and urban land has predominantly been at the expense of uncultivated remnant land (6.44
km?) and cultivated farmland (3.06 km?). The cultivated land which has been converted to
urban land is primarily on bedrock associated with the Sydney Basin (Table 5), and is char-
acterised as having relatively low elevation and moderate slope (mean elevation=24.8 m,
mean slope=23.6°). Uncultivated land that was converted to urban area is largely associ-
ated with estuarine sediments (57%) or low elevation (mean elevation=9.7 m) and slope
(mean slope=4.1°) (Table 5). Where converted uncultivated land was associated with bed-
rock geology, the elevation was typically higher (mean elevation=29.6 m), but was still of
low slope (mean slope=3.7°) (Table 5). The majority of urbanisation has occurred along
the northern shoreline of St Georges Basin, within the suburbs of Basin View, St Georges
Basin and Sanctuary Point. Significant peri-urbanisation also occurred along Sussex Inlet
Road and was associated with the conversion of cultivated farmland.

Cultivated land also increased by 30% over the 30-year study period (an increase of
5.2 kmz). Whilst some cultivated land was converted to urban areas, the increase in culti-
vated land was achieved through the conversion of uncultivated remnant land on bedrock
geology, of relatively high elevation (mean elevation=43.0 m) and moderate slope (mean
slope =3.0°). Over the study period, urban areas and cultivated land were characterised by
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(a) 1987

(b) 1997

(c) 2007 (d) 2017

Urban

Beach
Cultivated land
Uncultivated land

Water

Cultivated land converted to urban
Uncultivated land converted to urban

Fig.3 Decadal changes in land cover for the St Georges Basin plus region a 1987, b 1997, ¢ 2007, d 2017
and e areas converted to urban land between 1987 and 2017

Table 4 The area (km?) of the five major land cover types (water, cultivated land, urban and uncultivated
land) in 1987, 1997, 2007 and 2017 and the associated percentage of each land cover type within a high,
medium and low vulnerable zone

Land cover type 1987 1997 2007 2017 1987 to 2017 loss or gain
Urban 14.45 18.68 21.61 25.98 +11.53

Beach 0.74 0.73 0.71 0.73 No-significance
Cultivated land (farmland) 21.80 23.95 25.46 26.98 +5.18

Uncultivated land 346.52 340.03 339.58 331.81 —14.71

Water 134.54 134.66 130.69 132.55 -1.99

low slopes; however, there was a temporal pattern of urban expansion into low elevation
cultivated land, whilst cultivated land was progressively located at higher elevations within
the study area.
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2.8 Flood hazard

Preliminary flood hazard analysis indicated that high hazard areas were associated with
regions of low elevation (< 1 m) and were primarily along the coastline of Cudmirrah and
Berrara, and on the shoreline of St Georges Basin, particularly near Sussex Inlet. Regions
of low hazard were generally further inland and included parts of Wandandian, the canal
estates at Sussex Inlet and north of Swan Lake. The majority of the study area was regarded
to be of low flood hazard (>5 m elevation). National Parks (Conjola and Jerrawangala)
constituted the major areas where slope exceeded 4°; however, parts of the northern shore-
line of St Georges Basin near Basin View and St Georges Basin (town) also exhibited high
slopes that would offset their flood hazard. Low slope regions (<2°) occurred where water
was already known to accumulate including the canal estates of Sussex Inlet, and parts of
Wandandian, Bewong and Sussex Inlet. Depressions, where water could accumulate, were
found throughout the study area. Shallow depressions were regarded to be of higher hazard
as they would fill rapidly, whilst deeper depressions were regarded to be less hazardous as
they could store more water and take longer to fill.

The flood hazard map was generated by summing the standardized index values for ele-
vation, slope, land depression and land cover spatial data (Fig. 4). This analysis indicated
that urban areas of Wandandian, Bewong, Sussex Inlet and Cudmirrah, followed by Sanc-
tuary Point and Erowal Bay, were amongst the areas with the highest flood hazard. Due to
the high elevation and high slope characteristics of national parks and state forests within
the study area, uncultivated land was regarded to have the lowest flood hazard.

2.9 Flood vulnerability

Figure 5a-h shows all the separate socio-economic indicators used to generate the flood
vulnerability map (Fig. 51). Worrowing Heights was found to have the highest vulnerability
score when combined (labelled V in Fig. 5i); this is not surprising as the suburb scores a
high hazard in all individual indicators, except regarding children and relationship status.
This is likely to be due to the presence of a large age care facility and nursing home with
a high population of single elderly residents, with a low income and high unemployment.
The suburbs of least concern are Wandandian, Tomerong, Jerrawangala and Jervis Bay
labelled W, X, Y and Z, respectively, in Fig. 5i, with a high proportion of residents in full-
time employment, more than one resident per household, below 59 years old and a rela-
tively high mean weekly income. The only indicators representative of a high hazard are
related to the popularity of these particular suburbs for tourism and commuter individuals
and families. The residents of these suburbs include young single professionals (i.e. high
proportion of single resident properties) and families with dependent children currently in
high school education.

2.9.1 Flood exposure
A strong spatial correlation between urban density (Fig. 6a) and the importance of
infrastructure (Fig. 6b) was evident, and accordingly resulted in higher flood exposure

(Fig. 6¢). The essential services that increased flood exposure in urban areas such as
Sussex Inlet, Sanctuary Point, Erowal Bay and Basin View included energy corridors,
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(a) Elevation (b) Slope

B Hion hazard 3) <2%

Moderate hazard (2) 2% to 4%

- Low hazard (1) >4%

B Hioh hazard (3) <0t0 1 m

Moderate hazard (2) 1m to 2m
Low hazard (1) 2m to 5m

Very low hazard (0) >5m

(d) Land cover

B Hioh nazard 3) 0 t0-5m B +ioh hazara (3) beach and urban
Moderate hazard (2) -5m to -15m Moderate hazard (2) cultivated land

- Low hazard (1) <-15m - Low hazard (1) uncultivated land

(e) Combined hazard map
(scaled 1 to 10)

Hazard score

10

NoWw s w;

@ N o ©

A
- — KM
Fig.4 Flood hazard mapping a elevation, b slope, ¢ land depression, d land cover and e combined map
substations, roads and residential properties. Regions with infrastructure of moderate
importance were generally located on the outskirts of suburbs, whilst regions with low

infrastructure importance were associated with uncultivated or cultivated land located
distal from the urban centres.
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(b) ()

o (3
I High V (3) >60 B Fion v ) <so% B o v @530% !

Low V (1) <59 Moderate V (2) 50% to60% Moderate V (2) 20% to 30%

. Low V (1) >60% . LowV (1) <19%

(a)

(d)

> A A

. High V (3) <$800 . High V (3) >5%
Moderate V (2) 60% t079% Moderate V (2) $801 to $1200 Moderate V (2) 1% to 4%
. Low V (1) >59% . Low V (1)>$1201 . Low V (1) <1% 0-:-:1_sz

(9) (h)

b}

Vscore } Vscore

| B 6 I e o | I a

7 5 3 5 3
Fig.5 Social vulnerability (V) using socio-economic data derived for state suburbs from 2016 Census
data (grey colouring indicates areas with no available census data): a Age, b relationship status (% married
or de-facto), ¢ number of residents (% of households with just one resident), d education (% of residents
with only a high school education, e household income (mean weekly income), f language (% speaking a
language other than English), g children: a combination of the percentage of lone parents, children under
15 years old, dependent students and percentage of non-dependent children, h employment (combined per-
centage of full-time employment and unemployment) and n) vulnerability combined. Worrowing Heights is
identified by the ‘V’ and Wandandian, Tomerong, Jerrawangala and Jervis Bay are labelled W, X, Y and Z,
respectively

2.9.2 Flood risk

By combining flood hazard, vulnerability and exposure, areas of high flood risk were
found to include Sussex Inlet, particularly near the canal estates, Tullarwalla, Sanctuary
Point and Old Erowal Bay, whilst areas with the lowest flood risk were uncultivated land
associated with national parks and state forests (Fig. 7a). Due to the coarse resolution
of socio-economic data derived from census data, suburb boundaries remained an arte-
fact within the generated flood risk map. To determine the overall effect of this artefact
on flood risk, exclusion of these data from the secondary flood risk map indicated that
flood risk was more so associated with environmental gradients within biophysical fac-
tors such as elevation and slope (Fig. 7b). High infrastructure importance along Sussex
Inlet Road remained obvious in the final flood risk map, reflecting the importance of
this transport route in modulating flood risk, particularly for residents of Sussex Inlet.
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(a) Urban density A (b) Importance of infrastructure

Urban density score
3 (<33.3%)
2 (33.4% to 66.6%)
1(66.7% to 100%

High importance (residential,
energy corridor, energy substation
and roads)
Medium importance (industrial,
ccommercial, landfill, recreation
facilities and government and
private facilities (i.e. gaol, schools
and religious centres).
Low importance (waterways,
horticulture, grazing pasture,

quarry, nature reserve and forests

(c) Flood exposure combined

Exposure score

6 3
5 2
«

Fig.6 Flood exposure a urban density, b importance of infrastructure and ¢ flood exposure combined

N

FTTTA

3 Discussion
3.1 Landscape pattern of peri-urbanisation

The PUI of Sussex Inlet District offers a semi-rural lifestyle with highly valued natural cap-
ital assets within commuting distance of growing urban centres such as Nowra and Wollon-
gong, and it is likely these factors contributed to population increase over the study period
from 3167 in 1991 to 4247 in 2016 (+ 1080). To accommodate this growing population,
land cover mapping indicated that there has been an 80% increase in urban areas, including
peri-urban areas, and 30% increase in cultivated land. Incongruously, the natural capital of
the study area that likely contributed to population increase over the study period, mapped
as uncultivated land, beaches and water, exhibited an almost equivalent decline in extent
as the increase in (peri)urban and cultivated land. Accordingly, desires for connection with
natural landscapes that results in increasing PUI as people seek a ‘sea-change’ or ‘tree-
change’ lifestyle are driving a decline in the natural landscape values that they are seeking.

The observed pattern of PUI expansion was not atypical and occurred in close proximity to
existing PUI, transport links and infrastructure. Where cultivated land was converted to (peri)
urban land use, slope and elevation were not deemed to contribute to flood hazard, and it was
considered unlikely that new (peri)urban areas were exposed to high flood hazard. However,
the analysis of land use change did indicate that the incremental pattern of (peri)urban expan-
sion and displacement of cultivated land into previously uncultivated areas may not be lever-
aging landscape factors to optimise land use efficiency. Whilst PUI expansion into previously
cultivated land had a higher elevation and similar slope to (peri)urban areas that were not con-
verted over the study period, areas converted from uncultivated to cultivated land had a higher
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Kilometers
6

0 15 3

Fig.7 a Flood risk map generated by integrating flood hazard, vulnerability and exposure; b Flood risk
map generated by integrating flood hazard and exposure, whilst excluding flood vulnerability to eliminate
inherited suburb boundaries in the final map

slope and elevation than cultivated areas that were not converted over the study period. Addi-
tionally, as soil development from the sandstones of the Sydney Basin produces soils with
low fertility (Leishman and Thomson 2005), this displacement meant that a greater proportion
of newer cultivated land was situated on less fertile soils, rather than the more fertile sedi-
ments that accumulated on alluvial and coastal floodplains. Accordingly planning decisions
that minimise flood hazard as the PUI foot print increases are displacing rural activities to less
suitable landscapes.
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3.2 (Peri)urbanisation flood risk

Our analysis of flood hazard indicated that the biophysical aspects of flood risk were
concentrated around low-lying areas associated with the townships of Wandandian,
Bewong, Sussex Inlet and Cudmirrah. This is not surprising given the desire for hous-
ing to occur on low slope land that provides ease of access and offers considerable slope
stability. However, flood risk assessments that focus solely upon biophysical aspects of
flooding have been criticised as they do not explicitly indicate the values or assets that
are at risk, or consider a wider range of variables that contribute to the risk of these val-
ues/assets. In this study we aimed to establish the flooding risk for communities in the
PUI associated with Sussex Inlet and St Georges Basin. Mapping the spatial vulnerabil-
ity of communities in response to extreme hazards has been the focus of numerous stud-
ies (Chakraborty et al. 2005; Kazmierczak and Cavan 2011; Lindley et al. 2006; Nelson
et al. 2010) and frameworks have been suggested by Udale-Clarke et al. (2005) to guide
spatial mapping of flood risk. Often these approaches only take into account the initial
impact of the event and the immediate danger to residents, e.g. drowning. Instead, vul-
nerability assessments need to spatially identify members of the community who are
more susceptible to direct harm and damage and who are at risk long-term as they strug-
gle to recover as a consequence of their socio—economic status (Clark et al. 1998).

This study modified the risk triangle frame work to incorporate and weight a range
of demographic factors that may indicate those members of the community who are
more susceptible to harm associated with flooding. We also acknowledge the limita-
tion of social vulnerability assessments relying on census data because these do not
account for social capital inherent to specific communities that can provide important
support for both flood response and recovery; nor for human behaviour dynamics that
can change risk profiles (Chamlee-Wright and Storr 2009; Aerts et al. 2018). By incor-
porating demographic indicators of vulnerability into this assessment, our results sug-
gest that the community of Sussex Inlet and District are vulnerable to extreme flood
events, due in large part to their ageing population. Nearby urban centres of Nowra and
Wollongong exhibit a greater concentration of young professionals without children as
they provide greater employment opportunities, improved transport networks and rec-
reational/entertainment activities. Whilst some economic benefits are provided to the
community of Sussex Inlet due to the influx of visitors in summer months, this benefit is
quickly offset through winter when holiday homes are vacant and income to the region
becomes depleted. On the other hand, the significant influx of visitors during the sum-
mer and holiday periods presents considerable challenges to emergency services should
flood events occur because of their lack of experience with local flood risk. In contrast,
Tullarwalla, Jerrawangala, Tomerong and Yerrigong, located further from the more
densely populated areas of Sussex Inlet, Sanctuary Point and Worrowing Heights, are
characterised by reduced vulnerability. These townships, located closer to the Princes
Highway, the main transport route to the urban centres of Nowra and Wollongong, sup-
port a higher proportion of families, as opposed to the ageing populations that dominate
the more populous areas.

Whilst the vulnerability assessment provided greater insight into flood risk, some
drawbacks remained that primarily related to the spatial resolution of demographic data.
Biophysical data derived from remote sensing are dependent upon the resolution of sen-
sors fixed to satellites, aircraft or drones, with the typical pixel size now expected to be
less than 30 m (i.e. the pixel size of Landsat and SRTM data). In contrast, demographic
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data that can be used to indicate socio-economic composition of communities are com-
monly derived from census data, which are limited in spatial resolution due to a need
to maintain individual privacy. In this study we used census data at the suburb scale,
which provided an indication of the mean and range in various indicators of vulnerabil-
ity. This approach does not provide an indication of the extreme demographic outliers in
the community that will include those people that have the highest and lowest levels of
vulnerability (e.g. the vulnerability of a highly mobile young professional family will be
inaccurately indicated as high if they reside in an ageing community). The low resolu-
tion of socio-economic data in this study resulted in suburb boundaries being conspicu-
ous in the final risk assessment. To address this issue, we propose separating vulnerabil-
ity from the flood risk map and assessing risk on the basis of both the vulnerability map
and integrated flood hazard and exposure map.

3.3 Factors contributing to (peri)urban flood risk

By interpreting both the flood vulnerability and integrated flood hazard/exposure maps,
this study found that the Sussex Inlet urban centre exhibited was the highest flood risk of
urban centres in the study area. This contrasts the prevailing view of many residents that
the occurrence of canals in the town affords some protection due to their capacity to store
flood waters (pers comm.). These popular views are at odds with the results of the biophys-
ical analyses and are further offset by the demography of the town. More specifically, the
biophysical flood hazard assessment demonstrates that the township is low lying and canals
create a network for transport of water throughout the township resulting in more of the
community associated with a shoreline and therefore at risk. In addition, the community
was characterised to be more vulnerable by virtue of their demography (i.e. ageing popula-
tion with a median age of 60); and the concentration of people and high value infrastruc-
ture in this region increases the exposure of the community to flood risk. This exposure is
further affected by a single transport route from the township to Princes Highway and the
nearest urban centres (i.e. Sussex Inlet Road). Other townships exhibiting moderately high
vulnerability included the Sanctuary Point and Worrowing Heights. Here the biophysical
flood hazard was not as high as elsewhere (e.g. Sussex inlet and Wandandian); however,
demographic factors of flood vulnerability owing to the ageing population of low income
significantly contributed to the flood risk scoring.

3.4 Planning and managing peri-urban flood risk

Ageing or commuter communities seeking sea-change or tree-change lifestyles will create
greater pressure for peri-urban expansion in regions such as Sussex Inlet and St Georges
Basin, and this analysis indicates that this implicitly contributes to their flood risk, par-
ticularly as they seek residences with sea views on low-lying low slope land where infra-
structure is available. Population projections for the Shoalhaven region forecast a 24.06%
growth in population from 101,970 in 2016 to 128,733 in 2041 (based on 2016 census data,
resource: https://forecast.id.com.au/shoalhaven/population-summary), and this will create
considerable complexity for planners tasked with accommodating the lifestyle desires of
incoming ‘changers’ whilst maximising landscape values for existing non-urban land uses.
Climate change and associated sea-level rise will compound this complexity with sea-level
rise and temperature increases accelerating in the future with the degree varying on the
basis of future scenarios or RCPs (IPCC 2013).
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The risk triangle framework was adapted to incorporate climate change and changing
population demographics to map peri-urban flood risk and identify factors contributing to
flood risk (Fig. 8a), and by abstraction can feasibly be used to inform planning and man-
agement options that minimise future flood risk associated with peri-urbanisation. In this
regard risk minimisation would be seeking to mitigate factors that increase flood hazard,
exposure and/or vulnerability, whilst accounting for projected climate and demographic
change. Applying a business as usual scenario to planning that was based on past patterns
of peri-urban expansion in the region would see all sides on the risk triangle increase,
and flood risk increase accordingly. This scenario is not unreasonable given future demo-
graphic and climate change projections indicate that we have already committed to increas-
ing flood risk in the region. More specifically, the combined effects of sea-level rise and
increasing rainfall will exacerbate the frequency and extent of nuisance flooding, and based
on the previous characteristic ‘sea-change’ and ‘tree-change’ demographic patterns, this
business as usually scenario would increase the exposure of populations to flooding, and
ultimate increase flood risk (Fig. 8b).

Planning should ultimately seek to minimise risk and given the current commitment to at
least 0.38 m of sea-level rise and 2 °C of warming, even drastic action to mitigate climate
change by reducing atmospheric carbon concentrations will still result in an increase in
flood risk. However, there are some planning and management strategies that could feasibly

(@) (b) (c) (d) (e) _
NS s T \z z
. A _
E

Exposure E E

Hazard will increase with
climate change: a
predicted sea level rise of
0.38t0 0.73m and a
temperature increase of 2
t0 3.7°C (RCP 6.0)
predicted by 2100

T Projected increase in
local population

Local strategies : Evacuation plans and
emergency shelters.

Regional strategies: planning to minimise
local vulnerability, e.g. discourage
development in high risk areas,
encourage demographic diversification,
improve accessibility and transport links

Climate mitigation
strategies i.e. reducing
carbon concentrations

Exposure
Predicted Short—Ate'rm: Property-buy-back, retreat and
increase in local | retrofitting. o
population Long-term: Prevent development sprawl in risk areas

by promoting in-fill development in low risk areas

Fig.8 Conceptual diagram indicating how the a risk triangle framework can be used to aid planning and
management to minimise flood risk, considering a range of possible futures, such as b a business as usual
scenario where all sides of the triangle increase; and approaches that reduce the overall risk by minimis-
ing ¢ exposure, d vulnerability and e both exposure and vulnerability. This provides the means to consider
f future management and planning strategies that reduce the rate of increase in flood risk due to climate
change and increasing population pressure
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minimise the rate of increasing flood risk with climate change. One strategy is to specifi-
cally target reducing the exposure (Fig. 8c) through property buyback or land swap schemes
(DIPNR 2005), retreat from high hazard areas and retrofitting of at-risk infrastructure and
dwellings can effectively minimise flood exposure at a local scale. These responses, how-
ever, may not be financially viable over longer planning horizons of 50-100 years and at the
regional scale and do not address the future need to accommodate population increases. Given
the difficulty in reversing the extent of (peri)urbanisation in the region, some may argue that
reducing flood exposure may not be a feasible long-term strategy.

However, with endorsement by higher levels of the government through coastal planning
policies (Coastal Management Act, 2016 and Coastal Management SEPP) and the increas-
ing need to manage the cumulative risks (flood and coastal inundation, drought and fire)
NSW strategic land use planning and local council coastal management plans are able to
manage future developments within Shoalhaven. The management plans, policies and legis-
lations are designed to balance the needs of the local community and economy for a chang-
ing demographic and population, whilst maintaining the coastal environment and associated
ecosystems. As such, the existing management protocols have the potential to improve the
planning and assessment of coastal developments in Sussex Inlet to manage for current and
future hazards and protect coastal and marine assets. In this way, the flood exposure and sub-
sequent flood risk could be managed through careful land use planning by NSW government
and Shoalhaven Council. Proactive strategies that could be implemented to reduce the rate of
increase in flood exposure include preventing further developments in flood risk areas and
encouraging population density to increase within the current peri-urban footprint by increas-
ing dwelling density. However, given the current characteristic ‘sea-change’ demography of
the region, this strategy may not be appealing to the community.

Altering the factors contributing to flood vulnerability (Fig. 8d) can be implemented at the
local scale by developing adaptation strategies, such as increased community participation in
emergency planning, increased redundancy of evacuation routes and options of shelters for
residents in areas of high risk. Implementation of strategies that are effective at the scale of
the region or urban centre would require careful planning that alters patterns of demographic
change within the region, a factor that can feasibly be achieved with planning. For example,
development of transport links that improve accessibility to larger centres creates a commuter
corridor and can foster local business development that would create new employment oppor-
tunities, as well as function as evacuation routes. As climate change will increase flood hazard,
strategies that reduce flood exposure and vulnerability will be more effective at reducing flood
risk (Fig. 8e). From a planning and emergency management perspective, it is also impera-
tive to consider a multi-hazards risk approach when implementing adaptation strategies. Care
should be taken to ensure that planning interventions to mitigate flood risks do not result in an
increase in other hazards. The study area, for example, also has high vulnerability to wildfires
which are likely to be exacerbated under climate change (Hennessy et al. 2005; Bardsley et al.
2018).

4 Conclusion
Planning for hazards and risks in peri-urban areas has received little attention, despite an
increasing need to accommodate rural priorities, urban growth and an expanding peri-

urban population. In this paper we have addressed this knowledge gap by developing flood
risk maps for a peri-urban area by adapting the risk triangle framework to incorporate
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sea-level rise and changing population demographics. This study demonstrates the insights
gained from flood risk visualisation and being able to explicitly interpret factors contrib-
uting to flood risk. The approach does not assume all indicators of flood risk are equal
in terms of significance and driving power and as such provides a novel opportunity to
develop a consistent approach to mapping risk, which can be applied across spatial scales
using high resolution remotely sensed data and products. By mapping flood risk using an
indicator-based approach, we found that the Sussex Inlet township exhibited the highest
flood risk of all urban centres in our study area due largely to the influence of the low-lying
nature of the township, conveyance of flood waters throughout canals and the demographic
character of the community which increased flood hazard and exposure. Integrating the
flood risk triangle with future scenarios of demographic and climate change, and consider-
ing factors that contribute to peri-urban flood risk, facilitated the identification of planning
strategies that would reduce the future rate of increase in flood risk, such as increasing
urban density using multi-storey dwellings, and fostering local business development. The
maps generated in this study constitute useful information for decision makers tasked with
planning and managing flood risk in the region, and the approach can be used to improve
planning strategies (such as the Coastal Management Act, 2016 and Coastal Management
SEPP) to minimise flood risk in peri-urban areas.
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