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Abstract

The Integrated Nested Laplace Approximation (INLA) provides fast and accurate Bay-

esian inference for complex hierarchical models. For INLA, and other deterministic

methods, the hyperparameter space is explored and points are laid out in a grid struc-

ture. These points are used in some numerical integration scheme for which marginal

posterior distributions are computed. The main drawback is that the number of points

increase exponentially with the number of hyperparameters. The grid is a type of quasi-

Monte Carlo (QMC) point set. Low discrepancy sequences (LDS) are QMC point sets

that are well known to have significant advantages over grids in terms of convergence

and accuracy, and suffer less from the so-called curse of dimensionality.

This work makes several important contributions. We introduce a new method us-

ing LDS to compute marginal posterior distributions for hyperparameters, discuss the

convergence properties of the approximations and show that they converge to the true

posterior. We also show how these methods can be incorporated into the INLA infer-

ence framework, and we outline important extensions that improve the accuracy of our

approximations with little extra computational effort needed. Lastly, we build a unique

spatio-temporal model of residential crime in Hamilton, using INLA’s stochastic par-

tial differential equation approach to a Log-Gaussian Cox Process, and use an LDS to

approximate the latent parameters of the model.

Our results show that for a fixed number of points or computational time, LDS

methods can outperform general grid-based methods, leading to better marginal poste-

rior approximations. Modifying the method for the purposes of incorporation to INLA,

we show that we can outperform INLA’s grid with respect to computational speed, and

obtain accurate and flexible approximations to the model hyperparameters.
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Chapter 1

Introduction

Bayesian methods are very flexible and widely used in many applications, yet from

a computational perspective they can be challenging. The computational burden can

be prohibitive when trying to perform inference on complex data and models with hi-

erarchical structures. Increased access to computers in the mid to late 1980’s led to

an explosion of research in computational Bayesian inference, specifically in Markov

chain Monte Carlo (MCMC) methods. Developments in this area continue to this day,

though as data has become increasingly big and models increasingly more complex,

MCMC methods in many cases can struggle to provide inference in a computationally

efficient manner. However, MCMC methods remain very popular and are the most

widely used class of methods for performing Bayesian inference.

Developments of alternative methods for Bayesian inference have gained promi-

nence over the years. From Approximate Bayesian Computation (ABC) methods de-

veloped in the early 2000’s, and the machine learning algorithms such as variational

Bayes (VB) and expectation-propagation (EP), to name a few, these methods have

gained some popularity amongst users. One such alternative method, the integrated

nested Laplace approximation (INLA), was developed for the class of latent Gaussian

models (LGM), a widely used class of generalised additive model with a hierarchical
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structure. Through its clever use of the properties of Gaussian distributions, Gauss

Markov random fields, sparse matrices, and a few other computational ‘tricks’, it is

able to perform accurate inference for LGMs in much less time than MCMC, in some

cases, several orders of magnitude faster!

1.1 Motivation

The development of INLA is still ongoing, and is being used extensively for many dif-

ferent statistical problems. However, INLA does have some computational challenges,

particularly with LGMs with too many hyperparameters. One reason is that the addition

of a hyperparameter in the model can add a large amount of additional latent parame-

ters, thus increasing the amount of computation needed. Another reason is that finding

the marginal posteriors for the hyperparameters is challenging and requires enough

samples in the hyperparameter space to obtain a satisfactory approximation. Initially,

INLA approximated the hyperparameter marginals via a brute force method, by laying

out a grid point set and using numerical integration. Whilst grids are fine to use in

small dimensions (two or three), in dimensions higher than two or three, they become

extremely inefficient. Recent developments by the INLA team have gone a long way

to overcoming this hurdle, but these new methods can sacrifice accuracy somewhat.

Overall, the development of INLA has highlighted the challenges faced by grid-based

Bayesian methods in general.

From a numerical integration perspective, the grid is a type of quasi-Monte Carlo

(QMC) point set, and is known for performing poorly in high dimensions. Advance-

ments in the QMC community led to the development of low discrepancy sequences

(LDS), and over the years these have been successfully used to perform integration in

hundreds, or even thousands of dimensions. We look to formally combine LDS point

2



sets and Bayesian inference via INLA in an attempt to further increase INLA’s compu-

tational efficiency.

1.2 Thesis Objectives

We have two main objectives we wish to achieve in this thesis:

1. To explore the possibility of using LDS point sets to perform Bayesian inference.

We start by looking at grid-based methods in a general setting and how they can

be used to approximate marginal distributions, then look at ways of extending

these ideas to build a general algorithm for using LDS point sets for approxima-

tions. For numerical integration, LDS point sets have significant computational

advantages over grid point sets, thus we are interested in exploring what compu-

tational advantages any LDS-based method would have over grid-based methods.

These objectives are explored primarily in Chapter 4 of this thesis.

2. To implement LDS-based methods into the general INLA inference framework,

and to perform our new methods on a real-world challenging problem. We ex-

plore how this can be achieved and what computational advantages we might

gain from the implementation. The incorporation of LDS-based methods into

INLA is explored in Chapter 5, and implementation on a real-world challeng-

ing problem is done in Chapter 6. Parts of this work was done in collaboration

with the INLA development team based in King Abdullah University of Science

and Technology, Saudi Arabia (previously based out of Norwegian University of

Science and Technology, Norway).

1.3 Thesis Outline

Here, we give a brief outline of each chapter in this thesis:

3



Chapter 2: Computational Bayesian Inference

We provide the reader with some preliminary material on Bayesian inference and hier-

archical models. We also introduce the latent Gaussian model. Computational methods

of Bayesian inference using sampling based techniques (such as MCMC) are discussed

before providing the reader with the details of the INLA methodology.

Chapter 3: Quasi-Monte Carlo Methods

A short preliminary chapter that discusses some aspects of quasi-Monte Carlo inte-

gration, including discrepancy, error, and point sets. We introduce the reader to the

significant point sets that we have used in the thesis, including the grid point set, the

Korobov lattice, and the maximal-rank lattice. We also briefly discuss embedded and

extensible lattices.

Chapter 4: Marginal Posterior Estimation using Low Discrepancy Sequences

We give some preliminary material on numerical integration for solving an (s − 1)-

dimensional integral with an s dimensional point set, and also introduce the orthogonal

projection matrix that we make extensive use of for our approximations. We then intro-

duce grid-based methods of Bayesian inference before introducing our own LDS-based

methods. The LDS method makes use of a least-squares polynomial. We first prove that

a weighted least-squares polynomial is equivalent to using an ordinary least-squares

polynomial. We present convergence theorems and proofs that the LDS method with

a least-squares polynomial converges to the true marginal, and converges much faster

than grid-based methods.

Chapter 5: Incorporation of LDS Methods and the INLA Methodology

This chapter provides details about how we can incorporate LDS-based methods into

the whole INLA methodology. We first introduce the reader to the so-called autore-

4



gressive (AR) model, before providing details and code about how to perform INLA

inference on the autoregressive model of order 1 (known as an AR(1)) model using R.

The LDS method described in the previous chapter may not be suitable for the purposes

of INLA, so we propose certain modifications in a new algorithm to make our meth-

ods more compatible. Further accuracy gains can be made with an extension that can

better account for skewness in the hyperparameters. We perform the full hyperparame-

ter inference on two examples and compare our results to INLA’s grid approximations

and its default strategy known as the numerical integration free algorithm (NIFA). The

results show that our method is superior to INLA’s grid approximations in terms of

accuracy and computational speed. The results also show that we can obtain more

accurate results than the NIFA approximations though NIFA is faster computationally.

Chapter 6: Latent Field Approximations for Continuous Models of Crime Using

LDS and INLA

The previous chapters have discussed hyperparameter inference, but recent develop-

ments have enabled us to perform inference on the latent parameters too. We give a

brief introduction to modelling crime as a spatio-temporal process. We introduce the

datasets and the spatial domain before diving into the methodology. The log-Gaussian

Cox process (LGCP) is discussed as well as INLA’s stochastic partial differential equa-

tion (SPDE) approach using a finite element mesh. The stationarity assumption is dis-

cussed and we introduce the so-called barrier model, which takes into account physical

barriers inside the spatial dependence structure.

We constuct the spatio-temporal model of crime with barriers as an LGCP and

use INLA’s SPDE methodology to perform inference for all parameters. Using a new

development which allows the user to design their own point set for INLA to use, we

perform inference on the latent variables using LDS. We are interested in identifying

potential future hotspots of crime, so we use the results to perform predictions of crime
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hotspots and use standard hotspot predictive analysis to measure these predictions.

Chapter 7: Conclusions and Further Work

We outline our conclusions here and discuss potential further work that may answer

any open questions that this thesis has not yet answered.
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Chapter 2

Computational Bayesian Inference

We start by giving a brief overview of computational Bayesian inference. Though

Bayesian inference is easy in theory, it can be very hard in practice due to computa-

tional issues surrounding the calculation of the so-called posterior distribution. This is

especially true for models with complex structures. We start with Bayesian inference

before introducing Bayesian hierarchical models and look at a specific type of model

known as the latent Gaussian model (LGM). We also discuss some of the current com-

putational methods used for performing Bayesian inference. For a full comprehensive

look at Bayesian theory, please refer to [62, 68]. For more on Bayesian hierarchical

models, see [20, 24].

From here, we move to the computational methods of Bayesian inference. Sampling-

based methods are a common approach, the most common being Markov chain Monte

Carlo (MCMC). We give details on MCMC before moving on to the integrated nested

Laplace approximation (INLA). INLA is a relatively new method of computational

Bayesian inference which provides accurate and fast inference for the class of LGMs.

We provide details of how the INLA algorithm works, but for the most up-to-date ac-

count of INLA’s features, see [75]. For a good overview of computational Bayesian

inference from an applications perspecive, we refer the reader to [27].
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2.1 Bayesian Inference

Probability models are used in statistical analyses to summarise an observed dataset

y = (y1, y2, . . . , yn) through a set of s unknown parameters θ = (θ1, θ2, . . . , θs). The

Bayesian approach treats the unknown parameters as random variables with some prob-

ability distribution or “degree of belief”. Let π(y|θ) be the likelihood function, a func-

tion that gives the relative probabilities to all possible values of θ that comes from the

data. We also set a prior probability distribution π(θ) to represent our (subjective) be-

liefs of the values of θ prior to any data being observed. The posterior distribution,

denoted by π(θ|y), represents the updated beliefs from our prior distribution after ev-

idence from the data has been taken into account. The posterior distribution is found

through Bayes’ theorem

π(θ|y) =
π(θ)π(y|θ)

π(y)
. (2.1)

The posterior is sometimes expressed in its unnormalised form,

π(θ|y) ∝ π(θ)π(y|θ), (2.2)

π(θ|y) ∝ prior × likelihood.

The denominator in (2.1) is the marginal likelihood, and is obtained by integrating the

numerator of (2.1) with respect to θ over the support Θ

π(y) =

∫
Θ

π(θ)π(y|θ)dθ, (2.3)

and the value of (π(y))−1 is the proportionality constant.

The posterior distribution is a summary of everything we now believe about the

parameter values. Bayesian point estimation, interval estimation and inferential pro-

cedures are all performed through the posterior. To perform Bayesian inference on an
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individual parameter θi, we must marginalise the posterior by integrating out all other

parameters. Let θ−i denote all parameters except θi. We have

π(θi|y) =

∫
Θ\Θi

π(θ|y)dθ−i, (2.4)

where Θ \Θi is the support after the exclusion of the ith marginal space. For a compre-

hensive look at Bayesian inference, including prior and likelihood choices, see [6] and

[10].

The Bayesian approach to statistics has its roots in the 18th century. Bayesian statis-

tics enjoys many advantages over frequentist methods, such as the ability to add extra

available knowledge through the prior distribution and the ability to make probability

statements about the parameters. However, one of its big disadvantages is computa-

tional. In very few cases, this s-dimensional integral in (2.3) has a closed form solu-

tion. For most cases however, (2.3) does not have a closed form solution and must be

approximated. Methods exist where one can approximate the posterior with a Gaus-

sian distribution. Otherwise, some type of numerical integration strategy must be used.

Since the 1980s, there have been many algorithms designed to approximate the poste-

rior distribution, and to this day remains an open research topic. We discuss several

methods of computing posteriors in the upcoming sections.

2.1.1 Bayesian Hierarchical Models

Bayesian hierarchical models are statistical models structured in several different stages

that estimate parameters under the Bayesian paradigm. We have a stage of latent pa-

rameters between observed data at the bottom stage, and the parameters governing the

process at the top stage (called the hyperparameters). This type of modelling can be

used when we have data from different populations that we believe have the same dis-

tribution, but may have different parameter values. Observations y = {y1, . . . , yn}
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may be arranged in K groups {g1, . . . , gK}. Observations are no longer regarded as

independent as individuals from one group would have similar traits to each other, but

different traits to those from another group. This would indicate hidden factors that

cause dependencies within each group.

We define the terminology similar to that of [86], where we have three stages. The

observation stage is defined by data conditioned on all latent parameters φ and hyper-

parameters θ1. The latent process stage is defined by latent parameters φ given hyper-

parameters θ2 and the hyperparameter stage, defined by hyperparameters θ = (θ1,θ2).

The model has the following form

Hyperparameter stage : θ ∼ π(θ),

Latent process stage : φ ∼ π(φ|θ2), (2.5)

Observation stage : y ∼ π(y|φ,θ1),

where π(y|φ,θ1) is the conditional likelihood given latent parameters φ and hyper-

parameters θ1, π(φ|θ2) is the conditional distribution of latent parameters φ given

hyperparameters θ2, and π(θ) is the joint distribution of the hyperparameters. This

three-stage hierarchical Bayes model has a joint density that is the product of the three

stages

π(y,φ,θ) = π(θ)π(φ|θ)π(y|φ,θ).

Applying Bayes’ theorem, we have

π(φ,θ|y) =
π(θ)π(φ|θ)π(y|φ,θ)∫

(Θ,Φ)
π(θ)π(φ|θ)π(y|φ,θ)d(θ,φ)

.

Marginalisation for both latent and hyperparameter posteriors can be computed via
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integration:

π(φi|y) =

∫
π(φi|θ,y)π(θ|y)dθ,

π(θi|y) =

∫
π(θ|y)dθ−i.

The integrals cannot usually be solved analytically. We introduce a specific Bayesian

hierarchical model known as latent Gaussian models, which generally describe all the

models studied throughout this thesis. In upcoming sections we discuss how the inte-

grals above can be approximated, and how inference can be performed on this model.

2.1.2 Latent Gaussian Models

Latent Gaussian models (LGM) are a subclass of so-called structured additive regres-

sion models, and are widely used in statistical applications [24]. Let the response vari-

able y = {y1, . . . , ynd} belong to the exponential family, where the mean µi is linked to

a structured additive predictor ηi through some link function g(·) such that g(µi) = ηi.

This predictor ηi accounts for the different covariates additively. A structured additive

regression model is given by,

ηi = α +

nf∑
j=1

f(j)(uji) +

nβ∑
k=1

βkzki + εi. (2.6)

The α term represents the overall mean, f(j)(·) are unknown functions of the covariates

ui, the βk’s represent linear effects of the known covariates zi, and the εi’s are the error

terms. Let φ be a vector of all unknown latent parameters {ηi, α, f(j)(·), βk}. Note that

we include the ηi’s rather than the εi’s in φ. Next, we define the latent Gaussian model.

Definition 2.1.1. A latent Gaussian model (LGM), is a structured additive regression

model (2.6), where all latent parameters φ are assigned Gaussian priors.

Let θ be the vector of hyperparameters, with dim(θ) = s. These hyperparameters
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may or may not be Gaussian. We can also describe the LGM using a hierarchical

structure,

Hyperparameter stage : θ = (θ1,θ2) ∼ π(θ),

Latent process stage : φ|θ2 ∼ π(φ|θ2) = N (φ;µ(θ2),Q−1(θ2)),

Observation stage : y|φ,θ1 ∼ π(y|φ,θ1) =

nd∏
i=1

π(yi|φi,θ1). (2.7)

The bottom stage is the observation stage, which is formed by the likelihood function of

the nd independent observations y, given the latent parameters φ and possible hyperpa-

rameters θ1. For the middle stage (the latent process stage), the conditional distribution

of the latent parameters, given hyperparameters θ2, is also known as the latent Gaus-

sian field. As such, it has a multivariate Gaussian distribution with µ(θ2) a mean vector,

and covariance matrix (denoted here as the inverse precision matrix) Q−1(θ2). The top

stage is the hyperparameter model (or hyperpriors), which are the prior distribution for

the hyperparameters. The joint posterior for the unknowns φ and θ is given by:

π(φ,θ|y) ∝ π(θ)π(φ|θ)

nd∏
i=1

π(yi|φi,θ)

∝ π(θ)|Q(θ)|nd/2 exp

(
−1

2
φTQ(θ)φ

)
exp

(
nd∑
i=1

log(π(yi|φi,θ))

)

∝ π(θ)|Q(θ)|nd/2 exp

(
−1

2
φTQ(θ)φ+

nd∑
i=1

log(π(yi|φi,θ))

)
.

Applications of LGMs are numerous due to the additive structure and the flexibility and

different forms that the unknown functions f(j)(·) can take.

We revisit parameter estimation and Bayesian inference for LGMs in upcoming

sections. Various different methods can do this, though one method in particular is

specifically designed to perform inference in an efficient way under this setting.
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2.2 Bayesian Computing

Although Bayesian theory has been known and developed for over two centuries, doing

Bayesian inference was (and still can be) hard due to computational issues surrounding

the integration of various quantities. For many years, Bayesian inference was limited

only to a very small class of problems. This was when the likelihood is assumed to

be from the exponential family of distributions, and a corresponding prior was chosen

from the conjugate family. See [9, 10] for more on conjugate priors.

Since the 1980s, there have been many developments in the field of Bayesian com-

puting. This section highlights sampling-based methods for performing Bayesian in-

ference, starting with Monte Carlo methods before moving into Markov Chain Monte

Carlo (MCMC) methods. Sampling-based methods can be computationally intensive

but have become more popular as computers have become more powerful - to the point

where they are the most widely used methods in Bayesian inference.

2.2.1 Monte Carlo Integration

Suppose we wish to calculate the integral over some domain D,

I =

∫
D

g(x)f(x) dx, (2.8)

where g(x) is some function of the random variable X and f(x) is the density function

of X . We can approximate the integral numerically by generating a random sample

of values {x(1), x(2), . . . , x(n)} drawn independently and identically (iid) from f(·) and

calculating the empirical mean

Î =
1

n

n∑
i=1

g(x(i)). (2.9)

13



The strong law of large numbers [5, 35] dictates that, as n → ∞, Î converges almost

surely to the true value I , that is

1

n

n∑
i=1

g(x(i))
a.s−→
∫
D

g(x)f(x)dx = I. (2.10)

The estimator Î is an unbiased estimator, and the accuracy of the approximation is in-

versely proportional to the square root of n. For more details of the properties of this

estimator, refer to [70].

We know that Bayesian inference revolves around the posterior distribution of the

parameter θ (for simplicity, assume here that θ is univariate). We know the posterior

distribution up to a normalising constant (2.2). The posterior mean is given by

E(θ|y) =

∫
Θ

θ π(θ|y) dθ.

We can also calculate the posterior mean of a function g(·) with

E(g(θ)|y) =

∫
Θ

g(θ) π(θ|y) dθ.

The integral above has the same form of (2.8), with the density function f(x) being the

posterior distribution π(θ|y). Assuming we can sample from the posterior, we can use

Monte Carlo integration to find the posterior mean, by setting g(θ) = θ and generating

an iid random sample {θ(1), θ(2), . . . , θ(n)} directly from π(θ|y) and finding the empir-

ical mean similar to (2.9).

This is straightforward when π(θ|y) is a known distribution. When we do not have

that information, indirect Monte Carlo sampling methods such as Sampling-Importance

Resampling can be used. We choose not to provide details about these methods, but

interested readers may refer to [30, 69] for an overview of all these types of methods.

14



These methods become very inefficient for high dimensional parameter space however,

and are only recommended for s ≤ 2.

2.2.2 Markov Chain Monte Carlo

The Markov Chain Monte Carlo (MCMC) method is currently the dominant method

of performing Bayesian inference. MCMC is a sampling-based method that generates

a correlated sample from the posterior distribution from which all inferences can be

made. Given that MCMC is a popular method and the surrounding theory is very well

known, we very briefly outline MCMC and discuss some variants that are currently

used today.

A random or stochastic process is a process that evolves over an index set, governed

by some probabilistic law. It is a collection of (dependent) random variables {X(t), t ∈

T} for some index set T . The possible values that a stochastic process can take are

collectively called the state space of the process, denoted by χ. A stochastic process

with state space χ is a Markov chain if, for any A ⊂ χ

q(X(t) ∈ A|X(0), X(1), . . . , X(t−1)) = q(X(t) ∈ A|X(t−1)).

The equation above states that the probability distribution of X(t) conditioned on all

past variables depends only on the variable at the last state X(t−1). The conditional

probability distribution q(X(t) ∈ A|X(t−1)) is called the transition probability.

An MCMC algorithm generates (correlated) values from a chosen target distribution

π, typically the posterior, by drawing values from a Markov chain that has a long-run

stationary distribution equal to π. As π is the stationary distribution, if X(t) ∼ π, then

X(t+1) ∼ π, so once the chain reaches π, the distribution of X(t) does not change with

t. For a discrete state space, the Markov chain must satisfy certain properties in order
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for us to obtain a unique stationary distribution, namely irreducibility, aperiodicity,

and positive recurence. A Markov chain satisfying these three properties is called an

ergodic Markov chain. It has a unique stationary distribution π that characterises the

behaviour of the chain after it runs for a sufficient period of time (referred to as the

burn-in time), regardless of the starting value. The ergodicity theorem states that the

empirical average of the ergodic Markov chain converges almost surely to the expected

value E(g(X)) for l→∞:

1

l

l∑
t=1

g(X(t))
a.s−→
∫
χ

g(x)π(x)dx = E(g(X)).

The ergodicity theorem is similar to the law of large numbers used for iid MC samples,

but differs by assuming non-independent correlated samples. For more on the Ergodic

theorem and proofs, see [32]. For more on Markov chains with continuous state space,

see [82].

In practice, the target distribution π is set to be the posterior distribution π(θ|y)

which is known up to the proportionality constant. We generate a sequence of l val-

ues {θ(1), . . . , θ(b), θ(b+1), . . . , θ(l)} from a proposed Markov kernel q(·|·), where value

θ(b) is the point at which the chain is considered to have converged to the target. This

value is found via various tests and diagnosis plots, such as traceplots. The values

{θ(b), θ(b+1), . . . , θ(l)} are considered to be a correlated, random sample from the poste-

rior distribution. Although we have the ergodicity theorem, methods such as thinning

can be used to reduce the dependency of the sample. All inferences are then made with

the final sample.

The most basic MCMC algorithm is the Metropolis-Hastings algorithm [33, 59],

which provides the starting point for the more advanced MCMC algorithms. Given a

set of parameters θ = {θ1, . . . , θs}, we give a simple version of the Metropolis Hast-
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ings method in Algorithm 1, where all parameters θ are evaluated at once.

Algorithm 1 Metropolis-Hastings algorithm
Start at value θ(0)

for t = 1, . . . , l do
Generate θ′ from a proposal q(·|θ(t−1))

Compute the acceptance probability pt = min
(

1,
π(θ′)q(θ(t−1)|θ′)

π(θ(t−1))q(θ
′|θ(t−1))

)
Generate ut ∼ U(0, 1)
if ut ≤ pt then
θ(t) = θ′

else
θ(t) = θ(t−1)

The choice of proposal q gives flexibility to the algorithm, but this also determines

its performance. Strategies such as the random walk, independent sampler and the

Gibbs sampler are widely used and all have their advantages and disadvantages. For

instance, the random walk is very simple and easy to implement, but usually takes a

long time to move through the parameter space. The Gibbs sampler, first introduced

by the authors of [28], uses a blocking structure θ = (θk,θ−k) and the proposal den-

sity for each block of parameters is the true conditional density given all parameters

outside that block and the data. The acceptance probability will always be 1 and ev-

ery new value θ′ will be accepted. Despite this, the Gibbs sampler will move slowly

around the parameter space if the parameters in the blocks are highly correlated. Since

the introduction of these methods, many different variants of these MCMC algorithms

have been developed with the aim of increasing their computational speed and accu-

racy. However, given all the developments, for large datasets and complex models such

as LGMs they can be computationally burdensome. Reasons for this include the poten-

tially high correlation between components of the latent field, and the dependency of

hyperparameters and latent parameters when the number of latent parameters is large.

For this reason and more, great emphasis has been placed on developing MCMC algo-

rithms that are more computationally efficient through the choice of proposal q.

17



The Metropolis-adjusted Langevin algorithm (MALA) [71] is a variant of the ran-

dom walk Metropolis Hastings algorithm and uses a stochastic differential equation

(SDE) instead of a random walk to move through the parameter space. MALA relies

on the gradient and the second derivative of the (unnormalised) log-posterior to make

proposals that move into areas of the parameter space with higher density. There is

a large body of empirical evidence that at the extra price of computing the gradients,

MALA provides a substantial speed-up in convergence on certain types of problems

[31]. MALA can also be used on some LGMs successfully, for instance in [19] and

[81]. However, instability can occur if the posterior is light-tailed, see [12], and thus

the construction of this algorithm needs care. Improvements and extensions of MALA

exist, such as manifold-MALA, simplified manifold-MALA and position-dependent

MALA, all made to improve the stability issues.

Many other MCMC methods exist, such as Hamiltonian (or hybrid) Monte-Carlo,

adaptive MCMC, particle MCMC, and are widely used. We choose not to cover these

here but interested readers can refer to [31] and its corresponding references for a com-

plete look at these methods. Over the last decade, deterministic approaches such as

variational Bayes [51] and expectation-propagation [57] approaches have become espe-

cially prominent in machine learning. In the next section, we provide an in-depth look

at a particular deterministic method, designed specifically for performing fast Bayesian

inference on LGMs.

2.3 Integrated Nested Laplace Approximations

Section 2.2 gave a brief overview of sampling-based methods for Bayesian inference.

These methods relied on generating a random sample from the posterior, and inferences

made using the sample. A downfall of these methods is they can be computationally ex-
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pensive. A methodology, called the Integrated Nested Laplace Approximation (INLA),

developed by the authors of [74] and designed specifically for LGMs, is a determin-

stic algorithm and uses Laplace approximations and a set of carefully selected points

to approximate posterior distributions. It has been shown to be orders of magnitudes

faster than many MCMC algorithms, whilst providing accurate results. It also has the

advantage of having the ability to easily yield model comparison quantities and var-

ious predictive measures for full Bayesian analyses. Since its initial development, it

has become widely used on a very wide range of applications (see [56] and [75] for a

comprehensive — but not full — list).

The starting point for INLA is the Laplace approximation. We start this section with

an overview of the Laplace approximation before briefly discussing its relationship with

the LGM. A more in-depth look at inference and the algorithm are given later.

2.3.1 Laplace’s Method

Laplace’s method [83] is used as a technique to approximate the posterior distribution

analytically. Suppose we wish to approximate the integral

∫
f(x)dx

where f(x) is some twice-differentiable function, and has a unique global maximum.

We can represent log(f(x)) through a Taylor series expansion of the second order

around x = x0:

log(f(x)) ≈ log(f(x0)) + (x− x0)
d log(f(x))

dx

∣∣∣∣
x=x0

+
(x− x0)2

2!

d2 log(f(x))

dx2

∣∣∣∣
x=x0
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Let x∗ = argmaxx log(f(x)) be the mode and set x0 = x∗. Then the first derivative of

the above becomes zero, and the approximation becomes

log(f(x)) ≈ log(f(x∗)) +
(x− x∗)2

2!

d2 log(f(x))

dx2

∣∣∣∣
x=x∗

.

We can rewrite f(x) as exp(log(f(x)) and approximate the integral,

∫
f(x)dx =

∫
exp(log(f(x))dx

≈
∫

exp

(
log(f(x∗)) +

(x− x∗)2

2!

d2 log(f(x))

dx2

∣∣∣∣
x=x∗

)
dx

= exp(log(f(x∗))

∫
exp

(
(x− x∗)2

2!

d2 log(f(x))

dx2

∣∣∣∣
x=x∗

)
dx.

We can see that the integrand looks similar to that of a Gaussian distribution. If we set

σ2∗ =
(
d2 log(f(x))

dx2

∣∣∣
x=x∗

)−1

we get

∫
f(x)dx ≈ f(x∗)

∫
exp

(
− 1

2σ2∗ (x− x
∗)2

)
dx.

The integrand above is the kernel of a Gaussian distribution with mean x∗ and variance

σ2∗. The integral
∫
f(x)dx on the interval (α, β) can be approximated by

∫ β

α

f(x)dx ≈ f(x∗)
√

2πσ2∗(Φ(β)− Φ(α)), (2.11)

where Φ(·) is the cumulative density function of the Gaussian distribution with mean

x∗ and variance σ2∗.

Note that Laplace’s method can easily be extended out to the multivariate case,

where x = (x1, . . . , xs) is an s-dimensional vector, and

d2 log(f(x))

dx2

∣∣∣∣
x=x∗
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gives a matrix of second derivatives, or Hessian matrix.

2.3.2 INLA and LGMs

Section 2.1.2 gave an introduction to the LGM. We attach a Gaussian prior to all latent

parameters φ, and assume that the latent field is Gaussian (see (2.7)). All LGMs we

consider for the INLA method have two main properties.

• Assumption 1: The latent Gaussian field admits conditional independence prop-

erties, that is:

φi⊥φj|φ−(i,j) ⇐⇒ Qij = 0.

Here, ⊥ denotes independence, and φi⊥φj|φ−(i,j) states that φi and φj are condi-

tionally independent, given φ−(i,j).

The statement above says that the conditional independence property implies that

the latent Gaussian field is a Gauss-Markov random field (GMRF) with a sparse

precision matrix. This is a big key to INLA’s fast computational time, as sparse

matrices are much faster to deal with than dense covariance matrices. For details

of GMRFs and the innovative algorithms that can be used to deal with sparse

matrices, see [72].

• Assumption 2: The dimension of θ (i.e, the number of hyperparameters in the

model) must be “small”.

Recommendations are for the dimension to be typically around two to five. Mod-

els exist where the hyperparameter dimension is six or more, and work has been

done by the INLA team to come up with solutions to increase this number, see
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[56] and [75]. New recommendations are that under certain conditions, the num-

ber of hyperparameters can be up to, but not higher than 20.

2.3.3 INLA Inference

Given an LGM, INLA performs Bayesian inference on all latent parameters and hyper-

parameters via computation of their posterior marginals

π(φi|y) =

∫
π(φi|θ,y)π(θ|y)dθ i = 1, . . . , nφ

π(θj|y) =

∫
π(θ|y)dθ−j j = 1, . . . , s,

where nφ are the number of latent parameters. These integrals cannot be solved analyt-

ically, so the posterior marginals above are approximated by

π̃(φi|y) =

∫
π̃(φi|θ,y)π̃(θ|y)dθ i = 1, . . . , nφ (2.12)

π̃(θj|y) =

∫
π̃(θ|y)dθ−j j = 1, . . . , s. (2.13)

We denote π̃ as an approximation to π.

INLA makes use of both Laplace’s Method (Section 2.3.1), and the Laplace ap-

proximation, as shown in [83]. The approximation is based on finding a marginal dis-

tribution by dividing out by the conditional distribution rather than through integration

of a joint distribution. For example, let the joint distribution of x and z be π(x, z). Then

π(x, z) = π(x|z)π(z)

π(z) =
π(x, z)

π(x|z)
.

The equations above tell us we can find the marginal π(z) by dividing the joint distri-

bution by the conditional distribution π(x|z), rather than integrating out x. This leads
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to the identity

π̃(z) ∝ π(x, z)

π̃(x|z)
, (2.14)

where the conditional distribution π̃(x|z) is approximated with a Gaussian distribution,

and π̃(z) is the approximate marginal distribution of z.

The process for approximating the posterior marginals in (2.12) and (2.13) starts

with approximating the joint posterior of the hyperparameters by the Laplace approxi-

mation, using (2.14), and performing numerical integration techniques to integrate out

θ−j for π̃(θj|y). The next task is to compute π̃(φi|θ,y), which along with π̃(θ|y) can

be used to find latent posterior marginals π̃(φi|y) through numerical integration.

The approximation of the joint posterior of the hyperparameters is as follows:

π(θ|y) =
π(φ,θ|y)

π(φ|θ,y)

=
π(φ,θ)π(y|φ,θ)

π(y)

1

π(φ|θ,y)

∝ π(θ)π(φ|θ)π(y|φ,θ)

π(φ|θ,y)
(2.15)

≈ π(θ)π(φ|θ)π(y|φ,θ)

π̃G(φ|θ,y)

∣∣∣∣
φ=φ∗(θ)

= π̃(θ|y).

The quantity π(y) is the marginal likelihood, giving the proportionality sign in the

third line of (2.15). The fourth line of (2.15) approximates π(θ|φ,y) with a Gaussian

π̃G(φ|θ,y), using the multivariate version of Laplace’s method (described in Section

2.3.1), and φ∗(θ) is the mode for a given configuration of θ. Due to π(φ|θ,y) being

a priori distributed like a GMRF, the approximation π̃G(φ|θ,y) is sufficiently accurate

[74]. Posterior marginals π̃(θj|y) can then be found by numerical integration. We ex-
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plain various methods to do this in upcoming sections.

The next task is more involved, due to the computation of π̃(φi|θ,y) and the dimen-

sion of φ being generally much larger than θ. Three methods are available to compute

π̃(φi|θ,y).

1. Gaussian Approximation: The first, and computationally fastest, is to compute

them directly from the Gaussian approximation π̃G(θ|φ,y), where all that is left

is to compute the marginal variances using the identity found in [80]. Although

fast, this is the least accurate method due to potential errors in location and/or

skewness [73].

2. Laplace Approximation: A more accurate approximation is to treat φ as the

vector φ = (φi,φ−i) and use another Laplace approximation as in (2.14),

π(φi|θ,y) =
π((φi,φ−i)|θ,y)

π(φ−i|φi,θ,y)

=
π(φ,θ|y)

π(θ|y)

1

π(φ−i|φi,θ,y)

∝ π(φ,θ|y)

π(φ−i|φi,θ,y)

≈ π(φ,θ|y)

π̃G(φ−i|φi,θ,y)

∣∣∣∣
φ−i=φ

∗
−i(φi,θ)

= π̃LA(φi|θ,y),

where π̃LA(φi|θ,y) is the Laplace approximation of π(φi|θ,y) and φ∗−i(φi,θ)

is the mode for a given configuration of φi and θ. The conditional distribution

π(φ−i|φi,θ,y) is approximated by π̃G(φ−i|φi,θ,y) using Laplace’s method de-

scribed in Section 2.3.1.

This strategy is the most accurate. However, because this strategy needs to re-

compute π̃(φi|θ,y) for every value of φi and θ, it is the most computationally
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prohibitive. Modifications exist to ease the computational burden (see [74]) but

this is regarded as the most expensive strategy.

3. Simplified Laplace Approximation: This new approximation method performs

a third-order Taylor series expansion on π̃(φi|θ,y). This allows for the correction

to the location and skewness to the Gaussian approximation via the skew-normal

distribution [3]. For details of the simplified Laplace approximation computa-

tions, see [74]. This approximation is sufficiently accurate and fast, and is the

default strategy for the approximation of π(φi|θ,y).

With the computation of π̃(θ|y) and π̃(φi|θ,y) complete, π̃(φi|y) in (2.12) is found

numerically through a finite weighted sum

π̃(φi|y) ≈
∑
k

π̃(φi|θ(k),y)π̃(θ(k)|y)∆k (2.16)

for some chosen integation points θ(k) with a corresponding set of weights ∆k. The

choice of integration points are the main focus of the next section.

2.3.4 INLA Algorithm

The mechanics within INLA to compute the necessary approximations are performed

in several parts:

Exploration of π̃(θ|y): Rather than represent the joint posterior parametrically, INLA

searches the hyperparameter space and selects a set of suitable evaluation points

{θ(k)} for the numerical integration in (2.16). Note that the hyperparameter space

is usually reparameterised in order to deal with more regular densities. Two

different strategies are used to choose the points, and both require the following

steps:
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1. Find the mode θ∗ of π̃(θ|y) by optimising its log density with respect to θ

through some quasi-Newton method.

2. At the mode θ∗, compute the negative Hessian matrix H.

3. Let Σ = H−1. Compute the eigen-decomposition Σ = VΛ1/2VT , where

V is the matrix of eigenvectors and Λ is the diagonal matrix of eigenvalues.

Then, define a new variable z with standardised and orthogonal compo-

nents, such that

θ(z) = θ∗ + VΛ1/2z.

4. Explore log(π̃(θ|y)) through the z-parameterisation to locate the bulk of the

probability density. There are two exploration strategies, the grid strategy

and the central composite design (CCD).

(i) The grid strategy starts with a point at the mode (z = 0), and goes in

the positive direction of the first axis z1 with some step length δz and

continues as long as

log(π̃(θ(0)|y))− log(π̃(θ(z)|y)) < δπ, (2.17)

where δπ is the maximum log-density difference at which we stop tak-

ing points. Then we switch in the opposite direction and repeat the

process. This is done for all axes (z1, . . . , zs). We then fill in all the

intermediate values by taking all different combinations of the points

already chosen so long as (2.17) holds. This builds up a set of point

laid out in a type grid structure where all points are evenly spaced, and

the weights ∆k in (2.16) are taken to be equal.

(ii) The CCD approaches the integration problem as a design problem.

Starting with the mode θ∗ and Hessian H, relevant points in the θ-
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space are selected for performing a second-order approximation to a

response variable (see Section 6.5 of [74] for full details of the design).

Approximating π(θj|y): After selecting suitable evaluation points {θ(k)} using either

the grid or CCD, INLA re-uses these points along with an interpolation algorithm

to approximate the hyperparameter marginals. For the grid, INLA takes the mean

of the function evaluations over all rows and columns of the grid and fits an in-

terpolant (spline) through the mean of the function evaluations (we discuss this

more in Chapter 4). An interpolating scheme called the asymmetric Gaussian

interpolation is used with the CCD points. Details of this scheme can be found

in [56], but we will not discuss this scheme further.

Also available is a numerical integration free algorithm (NIFA), a method which

bypasses numerical integration completely. For NIFA, the following structure of

π̃(θi|y) is assumed

π̃(θi|y) =


N(0, σ2

i+), θi > 0

N(0, σ2
i−), θi ≤ 0.

(2.18)

Thus, the posterior is assumed to be Gaussian with different variances on each

side of the mode. The computation of σ2
i+, and σ2

i−, for all i = 1, . . . , s is ex-

plained in [75]. This strategy is the most computationally efficient since it re-

quires no numerical integration. However, the assumption that the marginal pos-

teriors of θ are unimodal is a drawback. Due to its computational speed, NIFA

is currently the default method in INLA for the computation of hyperparameter

marginals. We explore this more with some examples in Chapter 5.

Approximating π(φi|θ,y) and π(φi|y): For a chosen strategy to compute π̃(φi|θ,y)

(Gaussian, Laplace or simplified Laplace), for each point in {θ(k)}, the posteriors
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π̃(φi|θ(k),y) are evaluated on a grid of selected values for φi. The latent posterior

marginals π(φi|y) are computed via numerical integration as in (2.16).

2.4 Discussion

Latent Gaussian models are an important and large class of models. The older and more

vanilla MCMC methods struggle with this model, due to the dependency of the param-

eters of the latent field, and also the strong dependence of θ and φ. INLA has been

designed specifically for inference on LGMs and use various techniques and properties

of the Gaussian to overcome a lot of the computational burden. However, there has

been some success with the more modern MCMC algorithms such as MALA. In fact,

in a few cases, there have been claims that there is little difference in the performance

between the two algorithms, and a case where MALA supposedly outperforms INLA

[81]. However, the authors of INLA do not see their method as a rival for MCMC, rather

an alternative method for certain models where a fast approximation is preferred, rather

than a slow “exact” method.

INLA does have its limitations. First, the system will break down if the latent

field φ|θ is not unimodal. Whilst this is a drawback, multimodal posteriors are gener-

ally very hard to compute using any method, including MCMC. Secondly, the number

of hyperparameters must be small. The grid strategy is the most accurate method to

compute π(θj|y), but in higher dimension this requires many more points as the com-

putational cost grows exponentially with the number of hyperparameters. Whilst the

CCD and NIFA strategies have gone a long way to increasing the number of hyper-

parameters by decreasing the number of integration points needed, it is at the expense

of some accuracy for the computation of π̃(θj|y). In later chapters we look at alterna-

tives to grid-based sampling methods, and using alternative deterministic point sets to

potentially increase computational benefits.
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Chapter 3

Quasi-Monte Carlo Methods

This chapter will give a brief overview of the topics in Quasi-Monte Carlo (QMC)

methods that we use throughout the thesis. We introduce QMC integration and discuss

several properties of low discrepancy point sets, before looking into the construction of

the specific point sets that we will use.

3.1 Quasi-Monte Carlo Integration

Recall that Section 2.2.1 described Monte Carlo (MC) integration as applied to Bayesian

inference. We discuss this briefly in a more general and multivariate setting and a slight

change in notation. We wish to estimate

If =

∫
[0,1)s

f(u) du, (3.1)

where u = (u1. . . . , us) is an s-dimensional vector in the unit hypercube [0, 1)s, with

f : [0, 1)s → R a real-valued function. We can draw a random sample of independent

and identically (iid) distributed values and approximate (3.1) with the estimator

ÎN =
1

N

N∑
i=1

f(u(i)), (3.2)
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where the points PN = {u(1), . . . ,u(N)} are sampled over [0, 1)s. The estimator is an

unbiased estimator and converges almost surely to the true value as N →∞. Also, the

central limit theorem tells us that

ÎN − If
σf/
√
N

d−→ N (0, 1) (3.3)

where d−→ represents convergence in distribution and σf is the standard deviation of f .

We can construct confidence intervals for the estimator ÎN of the form

(
ÎN ± zα/2

σ̂√
N

)
(3.4)

where zα/2 is the 100(1− α/2)th percentile of the standard normal distribution, and σ̂

is the sample standard deviation found by

σ̂ =

(
1

N − 1

N∑
i=1

(f(u(i))− ÎN))2

)1/2

. (3.5)

The probabilistic error is therefore in O(1/
√
N). Although this is independent of the

dimension s, the rate is considered to be slow. Improvements to the performance can be

made in two ways, either by reducing the variance σ2
f of the function, or by generating a

point set that is more uniformly distributed than the random sample (discussed more in

Section 3.1.1). We choose not to discuss variance reduction techniques, but interested

readers can consult [47] for more details.

Quasi-Monte Carlo (QMC) integration differs from MC integration by replacing

random point sets with deterministic point sets. The aim is to improve efficiency by

generating a QMC point set that is more uniform than the random point set. Uniformity

of a point set can be measured through the idea of discrepancy, which is a measure of

the deviation of a point set from the uniform distribution. The next section discusses
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the generation of particular QMC point sets that have low discrepancy, known as low

discrepancy point sets, or low discrepancy sequences (LDS). Note that, even though a

point set is a subset of an infinite sequence, we use the abbreviation LDS for both low

discrepancy point sets and low discrepancy sequences since in practice, we use only

the finite subset of each sequence.

3.1.1 Discrepancy and Error

Discrepancy is a distance measure of the empirical distribution of a point set and the

uniform distribution, calculated via the Kolmogorov-Smirnoff statistic. The most com-

mon measure of discrepancy is the star discrepancy which we define shortly. First, we

consider the set of hyper-rectangles

J(v) = {u ∈ [0, 1)s : 0 ≤ uj < vj, 1 ≤ j ≤ s},

where v = (v1, . . . , vs) ∈ [0, 1)s. Note that these hyper-rectangles have a corner at the

origin, and are sometimes referred to anchored hyper-rectangles. Given a point set PN ,

we count how many of the points lie within the hyper-rectangle, which we denote as

C(PN ,v). Dividing this quantity by N gives us a measure of the empirical distribution

induced by PN . We compare this quantity with the volume of the hyper-rectangle∏s
j=1 vj through the Kolmogorov-Smirnoff statistic which gives the star discrepancy.

Definition 3.1.1. The star discrepancy of a point set PN , denoted by D∗(PN), is given

by

D∗(PN) = sup
v∈[0,1)s

∣∣∣∣∣
s∏
j=1

vj −
C(PN ,v)

n

∣∣∣∣∣ . (3.6)

A low discrepancy sequence is a sequence of points that has a star discrepancy

D∗(PN) = O(N−1(log(N))s). An important result in the QMC theory is the Koksma-

Hlawka inequality, which gives an upper bound to the integration error.

Definition 3.1.2. The Koksma-Hlawka inequality states that, for the integration error
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εN = |If − ÎN |,

εN ≤ V (f)D∗(PN), (3.7)

where D∗(PN) is the star discrepancy of the pointset PN , and V (f) < ∞ is the total

variation of the function f in the sense of Hardy and Krause.

Hence, for functions with bounded variance, the integration error is bounded above

by O(N−1(log(N))s). Comparing this with the MC error of O(1/
√
N), for fixed di-

mension s, the QMC error converges faster to zero than the MC error for functions that

are sufficiently smooth, and for a point set with sufficiently large N . The error bound

however suggests that the accuracy deteriorates as the dimension s increases.

3.2 Low Discrepancy Sequences

Low discrepancy sequences are split into two main families, lattices rules and digital

nets/sequences. We have chosen to use lattices in this work, due to their ease of coding

and the availability of tables and software tools to generate optimal lattice point sets.

For a more in-depth look at lattices, interested readers can refer to [79], and for infor-

mation on digital nets and sequences see [22, 23]. This section will focus on the rank-1

lattice and point sets related to it, the Korobov lattice and the maximal-rank lattice. We

briefly look at the idea of extensible lattices before giving a small introduction to the

main software tool we use to generate the lattices.

One extra property of many low discrepancy sequences that we choose to define

here, is the fully projection regular property. If a point set PN has low discrepancy,

it would be good if the projections of PN also has low discrepancy, and also that the

number of projection points is N . For a given subset X = (j1, . . . , jd) ⊆ {1, . . . , s} of

indices, PN(X) denotes the d-dimensional point set

PN(X) = {(ui,j1 , . . . ui,jd), i = 1, . . . , N}.
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We have the following definition

Definition 3.2.1. A pointsetPN is Fully Projection Regular if all its projectionsPN(X)

contains N unique points.

This property is important in both the context of LDS in general, and has an affect

on the construction of our algorithms in the following chapter.

3.2.1 Lattices

We give a brief introduction to lattice point sets before moving into the particular con-

structions.

Definition 3.2.2. Given a dimension s, a lattice point set PN is defined by the integra-

tion lattice Ls that takes the form

Ls = {v1w1 + · · ·+ vsws,v ∈ Zs},

where the vectors w1, . . .ws ∈ Rs form a linearly independent basis. The lattice point

set is obtained by taking all integer linear combinations that lie in the unit hypercube,

PN = Ls ∩ [0, 1)s.

Note that different bases w1, . . .ws can lead to the same point set.

Let W be the s× s matrix whose ith row is wi. The number of points in PN can be

shown to be 1/det(W), where det(W) is the determinant of W [47]. The components

of the basis vectors must be rational numbers, and can be expressed as fractions of the

form l/N , where N is the number of points in PN .

The notion of rank r and invariants N1, . . . , Nr are used to reduce the number of

possible bases. Here, r is the smallest integer satisfying three conditions.
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1. Nl|Nl+1 ∀ l < r.

2. N1 · · ·Nr = N .

3. PN can be written as

PN =

{(
i1
N1

z1 + . . .+
ir
Nr

zr

)}
(3.8)

for some vectors z1, . . . zr ∈ Zs.

The choice of vectors z1, . . . zr is not unique, however the rank and invariants can be

uniquely determined. Thus, in the context of parameter searches for good lattice point

sets in paractice, we fix the parameters s, n, and r, and search for “good” vectors

z1, . . . zr. We refer to these vectors as generating vectors.

Many different types of lattice point sets exist, see [79] for a good overview of the

different types of constructions. However, we choose to focus on those that are relevant

to this thesis.

Rank-1 Lattice

The rank-1 lattice is a popular lattice point set. It is often referred to as the method

of good lattice points. We denote the rank-1 lattice as RN,s which signifies the rank-1

lattice has N points and s dimensions. We define the rank-1 lattice below and give its

representation based on (3.8).

Definition 3.2.3. Given one generating vector z = (z1, . . . , zs) of s integers, the

rank-1 lattice point set, denoted byRN,s, is given by

RN,s =

{
i− 1

N
(z1, . . . , zs) mod 1, i = 1, . . . , N

}
,

where the modulo operation is performed component-wise.
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The components of the generating vector should be chosen to be relatively prime

with N , so gcd(zj, N) = 1, for j = 1, . . . , s. Choosing a generating vector as such

results in the rank-1 lattice being fully projection regular (see Definition 3.2.1).

Figure 3.1: Left: A rank-1 lattice R8,2 is an example of a fully projection regular point set. Note
that the projections onto each axis are equally spaced, thus the projections are also a low discrepancy
sequence. The figure on the right in a random generated point set. It too is fully projection regular,
though the projections lead to uneven spacing in each dimension.

Korobov Lattice

The Korobov lattice, proposed by Korobov in [42], is a special case of the rank-1 lattice.

For a fixed dimension s and number of points N , we define a generating constant αz

chosen to be an integer, for which 1 ≤ αz ≤ N − 1. We denote the Korobov lattice

by KN,s which signifies the Korobov lattice as having N points in s dimensions. The

generating vector for a Korobov lattice is given by

z = (1, αz, α
2
z, . . . , α

s−1
z ), (3.9)

We define the Korobov lattice point set.

Definition 3.2.4. Given the generating vector in (3.9), the Korobov lattice point set
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(hereafter referred to as Korobov Lattice), denoted by KN,s is given by

KN,s =

{
i− 1

N
(1, αz, α

2
z, . . . , α

s−1
z ) mod 1, i = 1, . . . , N

}
. (3.10)

Since s and N are predetermined, the only parameter to be chosen is the generating

constant αz. Similar to rank-1 lattices, αz should be chosen to be relatively prime with

N . However, some choices based on this criteria may not always yield desirable point

sets. For example, choosing αz = 1 is relatively prime with N , but substituting into

(3.10) gives

KN,s = {(0, . . . , 0)(1/N, . . . , 1/N), . . . , ((N − 1)/N, . . . , (N − 1)/N)} .

These points lie on a diagonal line. This is shown in the right hand side plot in Figure

3.2. Though care should be taken when choosing αz, there are several tables available

to determine a good choice of αz for a given s and N available in the literature. See,

for instance [11, 45].

Figure 3.2: Three examples of a two-dimensional Korobov lattice with N = 64 points, with αz =
27, 43, 1 respectively.

Maximal-Rank Lattices

The maximal-rank lattice, or rank-s lattice, is a lattice point set with number of generat-

ing vectors equal to the dimension s. Maximal-rank lattices are constructed by scaling
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a rank-1 lattice and copying it into subcubes over [0, 1)s. Dividing each dimension into

m partitions leads to ms subcubes. We define the maximal-rank lattice point set below

Definition 3.2.5. The maximal-rank lattice point set, denoted byMn,m,s, is given by

Mn,m,s =

{(
i− 1

n
z mod 1

)
+

(k1, . . . , ks)

m
,

i = 1, . . . , n, kj = 0, . . . , (m− 1), j = 1, . . . , s
}
, (3.11)

where n is the number of points generated in the rank-1 lattice component of (3.11).

The total number of points N generated by the maximal-rank lattice is n ×ms, or

number of points generated by the rank-1 lattice times the number of subcubes. An

obvious disadvantage of the maximal-rank lattice is that by construction, the point set

will not be fully projection regular. Since we are takingms copies of a point set, we will

have only m× n distinct points, rather than N . Figure 3.3 shows both the construction

of the maximal-rank latticeM8,2,2 (left), and the projections onto each one dimensional

axis (right).

Figure 3.3: A maximal-rank lattice point setM8,2,2. The plot on the left shows the copies of a two-
dimensional lattice with 8 points is copied twice in each dimension. The right shows that the maximal-
rank lattice is not fully projection regular. There is a total of 64 points, however we only have 32 unique
points after projecting.
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Extensible Lattices

Usually, for generation of a rank-1 or Korobov lattice for an s-dimensional problem, we

fix the number of pointsN and conduct a search for a best generating vector (or constant

in the case of a Korobov lattice). However, a problem arises where, if more points are

required, a new point set must be generated. Extensible lattices, first proposed by the

authors of [34], were constructed such that it is possible to increase the number of

points N without discarding points already generated. These constructions make use

of the radical inverse function. For integers i ≥ 0 and base b ≥ 2, the radical inverse

function ψb(i) is as follows; if i =
∑∞

a=1 iab
a−1, where ia ∈ {0, 1, . . . , b− 1}, then

ψb(i) :=
∞∑
a=1

ia
ba
.

For example, if i = (· · · , i3, i2, i1)b is the base b representation of i, then ψb(i) =

0.(i1, i2, i3, · · · )b. The extensible rank-1 lattice sequence, having a generating vector

z = (z1, . . . , zs) ∈ Zs has its ith point given by

u(i) = ψb(i− 1) z mod1 (3.12)

for i ≥ 1 and where ψb(i) is the base b radical inverse function applied to i. The exten-

sible Korobov lattice is similar to (3.12), but with generating vector given by (3.9).

3.2.2 The Rectangular Grid

The rectangular grid (hereafter referred to as the grid, or n-point grid) is a type of QMC

point set that can be used for numerical integration, but is only effective for small s. It

is not an LDS as its discrepancy is not O(N−1(log(N))s), and lacks some other prop-

erties of LDS as well. However, in the context of this thesis, it makes up an important

part of our work and we choose to mention it here.
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The n-point grid is simply made up of rows and columns of n points in s dimen-

sions, and we denote the n-point grid by Gn,s. We define an equally spaced n-point grid

as follows.

Definition 3.2.6. The points of an equally spaced, n-point grid is given by

Gn,s =

{(
g1 − 1

n− 1
, · · · gs − 1

n− 1

)
, gj = 1, . . . , n, j = 1, . . . , s

}
, (3.13)

where the total number of points N = ns.

It has been shown by Niederreiter in [60] that the star discrepancy is

D∗(Gn,s) = 1− (1− 1/N)s,

thus D∗(Gn,s) ∈ O(N−1/s). The convergence, whilst going to zero with large N , is

slower than the MC convergence for s > 2.

Figure 3.4: A grid G5,5 with a total of 25 points. The right hand side plot shows that the grid is not
fully projection regular, with only n = 5 unique points after projecting.

The grid is not fully projection regular. Similar to the maximal-rank lattice, the
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points line up in such a way that the projection onto a single dimension yields just n

unique points rather than N . Figure 3.4 shows a simple example of the structure of the

grid (left) and its projections (right).

3.2.3 Lattice Builder

Lattice Builder is a software tool developed by the authors of [46] that uses a num-

ber of algorithms to find generation vectors/constant for rank-1 and Korobov lattices.

It can perform random and/or exhaustive searches for a given number of points N ,

dimension s and for various measures of discrepancy. It can be used to generate em-

bedded lattice point sets PN1 ⊂ PN2 ⊂ . . . ⊂ PNk with increasing number of points

N1 < N2 < . . . < Nk for some positive number k. When k =∞, this is an extensible

lattice, but for practical purposes, Lattice Builder assumes that k is finite. Figure 3.5

shows an example of an embedded Korobov lattice where a best generating constant

was found using the Lattice Builder software. Note that we denote an embedded Ko-

robov lattice by K∗N,s.

Figure 3.5: An example of an embedded Korobov lattice, where the generating constant is kept fixed
while we increase the number of points from 32 to 64, and 64 to 128 points. For these Korobov lattices,
the generating constant αz = 19. The blue dots in the middle plot show the new points added to the left
plot as we move from a K∗

32,2 to K∗
64,2. Similarly, the red points on the right plot show the new points as

we increase N from 64 to 128.
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3.3 Discussion

We have given a very brief overview of QMC integration and the relevant point sets

in the class of LDS, namely lattices. We briefly looked at the most relevant lattices to

us, namely rank-1 lattices, Korobov lattices and maximal-rank lattices. Extensible and

embedded lattices are also mentioned, as well as the software tool of Lattice Builder,

which we use to generate the optimum point set for a given set of parameters. We also

mention the grid, which was briefly described in Section 2.3.4 (though the algorithm

that generates that grid is different to the formula described in (3.13), they are essen-

tially the same).

The plan for the next phase of this thesis is to combine computational Bayesian

inference and LDS. Chapter 2 mentioned that the grid can be used to perform Bayesian

inference on a vector of hyperparameters (θ1, . . . , θs) through INLA. The next chapter

touches upon how grids can be used to perform Bayesian inference, before proposing a

new method of using the various lattice points described in Section 3.2.1.
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Chapter 4

Marginal Posterior Estimation using

Low Discrepancy Sequences

The previous chapters discussed Bayesian inference and elements of QMC integration.

We combine the two ideas to introduce new methods of Bayesian inference, with the

main emphasis on using LDS points to estimate hyperparameters. As mentioned previ-

ously, the INLA methodology uses a grid to perform Bayesian inference (see Section

2.3.4). We take a numerical integration perspective here, and introduce the general al-

gorithm for using grids to solve an (s − 1) dimensional integral. We then propose a

new method which uses LDS points. The computational efficiency gained from using

LDS points over the grid is significant, and as such we present the surrounding theory,

convergence theorems, and examples.

INLA and its use of grids have inspired other works, such as [2, 37, 61, 87]. In the

case of estimating hyperparameters with a grid-based approach, it is relatively simple in

concept and fairly straightforward to implement. A set of grid points is placed in an ap-

propriate support region. After evaluating the function at those points, we average out

over rows and columns and fit an interpolant between the function evaluation means.

The accuracy of the approximation is dependent on several things. The construction of
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the support is important as we need to generate points and evaluate the function where

the bulk of the probability density lies. Also, if the initial approximation to the function

(such as the Laplace approximation π̃(θ|y) (2.15)) is poor, the approximations will be

of no use. The quality of the pointset used is important, and ties in with the idea of

discrepancy (see Definition 3.1.1). We focus on the quality of points used for now and

assume that the functional approximation is exact, and that an appropriate support is

available.

Two major drawbacks of using the grid are (1) the potential inability to properly

estimate the shape of the distribution, and (2) it is computationally prohibitive in higher

dimensions. The first problem can occur when the distribution being estimated is highly

skewed or multimodal and the grid points are laid out in such a way that fails to capture

the behaviour of the function. The second (and larger) problem can be attributed to

the number of grid points increasing exponentially with the number of dimensions. We

propose an alternative point set to the grid, a maximal-rank lattice point set, to tackle

the first problem. Due to the structure of the maximal-rank lattice (described in (3.11)),

we regard this as a grid-based approach. We also propose a fully-projection regular

LDS point set (such as the Korobov lattice) with a least-squares polynomial smoother

to tackle the first problem, and also argue that this method is far more computationally

efficient than any grid-based approach.

4.1 Preliminaries and Notation

We introduce some useful preliminary ideas as well as the notation that we will use

throughout this chapter. Let π(θ) denote the s-dimensional joint distribution, with

θ = (θ1, . . . , θs) the parameters of interest. Note that we drop the dependence on the

data y for notational convenience. The usual situation in Bayesian analysis applies

here, in that
∫

Θ
π(θ)dθ cannot be computed analytically. We also assume that the joint
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posterior is absolutely integrable, that is π ∈ L1[Θ] as π ≥ 0. We wish to approximate

the marginal densities of θ, that is π(θ1), . . . , π(θs).

4.1.1 Approximation to (s− 1)-Dimensional Integrals

Consider the Monte-Carlo approximation to the following s-dimensional integral

Iπ =

∫
Θ

π(θ)dθ ≈
s∏

k=1

(bk − ak)×
1

N

N∑
j=1

π(θ(j)),

= Vol(Θ)× 1

N

N∑
j=1

π(θ(j)), (4.1)

where Θ = [a,b] is the support, with a = (a1, . . . as) ∈ Rs and b = (b1, . . . bs) ∈ Rs.

Also, {θ(j)} ∈ Θ for j = 1, . . . , N denotes any point set generated within the support,

at which the function π is to be evaluated. The volume term Vol(Θ) is required since

Θ 6= [0, 1). Equation (4.1) shows us that the approximation is simply the product of

the volume of the region and the mean function evaluations. We can approximate the

marginal densities in a similar fashion. Let θi be the ith component of θ, with π(θi)

being the ith marginal density of π(θ). To marginalise for our variable of interest θi,

we integrate out all other variables θ−i over the new support Θ \ [ai, bi)

π(θi) =

∫
Θ\[ai,bi)

π(θ)dθ−i. (4.2)

We can approximate the (s− 1)-dimensional integral in (4.2) as

∫
Θ\[ai,bi)

π(θ)dθ−i ≈
∏s

k=1(bk − ak)
bi − ai

× 1

N

N∑
j=1

π(θi;θ(j)),

= Vol(Θ \ [ai, bi])×
1

N

N∑
j=1

π(θi;θ(j)).

Here π(θi;θ(j)) are the so-called orthogonal projections of π(θ(j)) projected onto the

ith marginal space [ai, bi) (we define these in upcoming sections). Note that the volume
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of this space is excluded in the volume since we are not integrating out θi.

Consider that the marginal distribution of θi is to be evaluated at n distinct points

θi = θil for l = 1, . . . , n. Suppose also that we have ν function evaluations at each θil ,

thus giving a total of N = n× ν points. As an example, for the n-point grid, ν = ns−1.

The marginal distribution of θi at each distinct point can be approximated by

π(θi = θil) =

∫
Θ\[ai,bi]

π(θ1, . . . , θi = θil , . . . θs)dθ−i

≈ Vol(Θ \ [ai, bi])×
1

ν

ν∑
j=1

π(θi = θil ;θ(j)) = π̂(θil). (4.3)

We refer to π̂(θil) as the pointwise mean, which is obtained by averaging out all ν

function evaluations at the point θil .

4.1.2 Orthogonal Projections

We give some details on orthogonal projection. First, we express the point set {θj} ∈

Θ, j = 1, . . . , N in matrix form



θ(1)

θ(2)

...

θ(N)



T

=



θ1,1 θ2,1 . . . θs,1

θ1,2 θ2,2 . . . θs,2
...

... . . . ...

θ1,N θ2,N . . . θs,N



T

(4.4)

and use each row to evaluate the joint posterior, thus giving us a vector of function

evaluation points. Let Ψ be the augmented matrix of points and function evaluations,
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having size (s+ 1)×N ,

Ψ(s+1)×N =



θ1,1 θ2,1 . . . θs,1 π(θ(1))

θ1,2 θ2,2 . . . θs,2 π(θ(2))

...
... . . . ...

...

θ1,N θ2,N . . . θs,N π(θ(N))



T

∈ Rs+1.

An orthogonal projection matrix Pi is used to project Ψ onto the ith marginal space.

Let Pi = A(ATA)−1AT , where A(s+1)×2 is a unit basis vector for R2 with the ith entry

being 1 and the rest zeroes, and the (s+1)th entry also being 1 with the rest being zeroes.

As an example, the unit basis vector A and corresponding orthogonal projection matrix

Pi for s = 3 and i = 2 is

A(4×2) =



0 0

1 0

0 0

0 1


, P(4×4) =



0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1


.

To approximate the ith marginal π(θi), we orthogonally project Ψ onto the ith marginal

space by multiplying Pi ×Ψ

PiΨ = ψi =



0 . . . θi,1 0 . . . π(θ(1))

0 . . . θi,2 0 . . . π(θ(2))

...
...

...
...

...
...

0 . . . θi,N 0 . . . π(θ(N))



T

(4.5)
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Ignoring all columns with zeroes, we have



θi,1 π(θ(1))

θi,2 π(θ(2))

...
...

θi,N π(θ(N))



T

∈ R2. (4.6)

Since all but the ith and (s+ 1)th columns are all zeroes, this reduces the dimension of

ψi from R(s+1) to R2.

4.2 Grid-Based Methods for Bayesian Inference

This section will present a general algorithm in which to perform Bayesian inference

using the grid point set, as described in Definition 3.2.6 and (3.13). Whilst other works

that have used grid-based inference differ in the details, they all follow the same general

structure. We also present the details of the steps that we will use throughout the chapter

with regards to grid-based inference.

4.2.1 The Grid Algorithm

We present the general algorithm for grid-based inference:

Algorithm 2 Grid-based method for Bayesian inference

1) Optimise π(θ) for mode π∗ and Hessian Hπ

2) Construct an appropriate support [a,b)
3) Generate a grid Gn,s over the support and evaluate π(θ(j)),∀θ(j) ∈ Gn,s
4) Numerical integration for pointwise means π̂, fit a smoother between pointwise
means, and normalise
5) Re-use Gn,s and π(θ) for the estimation of the latent parameters (see Section 2.3.3
and (2.16))

The first four steps in the algorithm are used for the estimation of the marginal pos-
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teriors of the hyperparameters, while Step 5 is for the marginal posteriors of the latent

parameters. We focus here on the first four steps for the approximation of the hyper-

parameter posterior marginals. The optimisation step can be performed using any type

of quasi-Newton method, such as the BFGS algorithm [16]. The mode and Hessian

are important for the construction of the support, in which the points π(θ(j)) ∈ Gn,s

are generated. A simple method is to use the diagonal quantities of the Hessian to

approximate the marginal standard deviations, then expand out by ±δ, δ > 0 standard

deviations from the mode on every axis. The INLA method uses the mode and Hessian

to create a set of Eigen-axes to explore the space, fills the space with grid points and

stops when the density is sufficiently close to zero (see Eq. (2.18)), thus partially ful-

filling the requirements of Step 3.

Step 4 requires us to numerically integrate our function evaluations to obtain the

pointwise means, for which we then fit a smoother and normalise. The numerical inte-

gration here requires computing pointwise means, as explained in (4.3). The function

evaluations π(θ(j)) all project to an abscissa point θil and are all averaged out to obtain

pointwise means π̂(θil). For each marginal, we have n pointwise means. An inter-

polant, such as a cubic spline, is fitted through the pointwise means. A cubic spline

estimation to the marginal would be

π̃sp(θi) =



P 3
1 (θi), ai = θi,1 ≤ θi < θi,2

P 3
2 (θi), θi,2 ≤ θi < θi,3

...

P 3
n−1(θi), θi,n−1 ≤ θi < θi,n = bi

,

where π̃sp(θi) is the cubic spline approximation to π(θi) and P 3
k (θi) is the kth cubic

polynomial fit between the co-ordinates (θi,k, π̂(θi,k)) and (θi,k+1, π̂(θi,k+1)). Normali-

sation requires us to integrate π̃sp(θi) over the support [ai, bi) which can be performed
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analytically or otherwise. The final approximation for the marginal posterior is

π(θi) ≈
π̃sp(θi)∫ bi

ai
π̃sp(θi)dθi

. (4.7)

Example 4.2.1. To demonstrate the approximation of the marginals using the grid, we

start with a very easy example. Let (θ) = (θ1, θ2) be our parameters of interest, and

assume that the joint posterior distribution is a bivariate Gaussian, with mode centred

at the origin and covariance matrix Σ = I2, that is the 2× 2 identity matrix. The joint

posterior is given by

π(θ) = (2π)−1 exp

(
−1

2
θTθ

)
. (4.8)

This of course can be done analytically via separation of variables, using the property

of exponentials (exp(u + v) = exp(u) exp(v)) and integrating out each variable of

interest. The result is that each marginal is the standard Gaussian

π(θ1) = (2π)−1/2 exp

(
−1

2
θ2

1

)
π(θ2) = (2π)−1/2 exp

(
−1

2
θ2

2

)
. (4.9)

We construct the support in Step 2 by setting δ = 3, thus going out three standard

deviations from the mode in every direction, giving the support [(−3,−3), (3, 3)]. We

generate G5,2 inside the support, giving a total of N = 25 points. The support box and

the position of the points with respect to the joint distribution can be seen in Figure 4.1.

Looking at the marginal space for θ1, we can see the grid points project to five different

abscissa points on the first axis, (−3,−1.5, 0, 1.5, 3). To complete Step 3, we evaluate

the function at all points. For an approximation of the density at each abscissa point,

we average across all function evaluations that project to it giving the pointwise means.

The results are shown in Table 4.1.

Figure 4.2 shows the process for Step 4. The pointwise means are found and plotted.
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Figure 4.1: Contour plot of the joint posterior, with mode centred at the origin. The left figure shows
the support box (dashed line) generated by going out three standard deviations from the mode (step two).
The 5-point grid G5,2 is placed within the support box (red points), as shown by the figure on the right.

Table 4.1: Pointwise means for each abscissa point for θ1.

Abscissa Pointwise Mean
-3 0.000591

-1.5 0.017274
0 0.053206

1.5 0.017274
3 0.000591

An interpolant (cubic spline) is fitted through the pointwise means giving us the shape of

the marginal. Lastly, we normalise the curve by integrating the cubic spline with respect

to θ1 (as described in (4.7)). The bottom graphs in Figure 4.2 shows the comparison

between the grid approximation to the marginals versus the true marginal given by

(4.9). We see that the approximation is near exact.

4.2.2 Using Maximal-Rank Lattice point sets

Example 4.2.1 illustrates the simplicity of using the grid to approximate marginal pos-

teriors. In low dimensions it requires very few points, and for univariate, symmetric

distributions it provides good approximations. However, for marginals that are highly
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Figure 4.2: The process of Step 4 - averaging out for pointwise means (top), fitting a spline through
pointwise means (middle) and normalising (bottom). The bottom figures also gives a comparison be-
tween the grid approximation (black, solid line) and the true density (red, dashed line).

skewed or multimodal it may require many more points than are computationally desir-

able. Figure 4.3 shows a four-dimensional mixture distribution that was approximated

by G5,4 (N = 625 points) and G10,4 (N = 10000 points). This highlights the two

main criticisms and how they can be related. The 5-point grid failed to capture the

true shape of the marginal. Whilst it did capture the multimodal nature of the mixture

distribution, it failed to locate the modes properly as we did not average out at enough

abscissa points. Therefore in order to correctly capture the shape, we needed to double

the amount of abscissa points to evaluate at, thus requiring a 10-point grid. This lead

to a very good approximation. Unfortunately this came at the cost of increasing the

number of points by 16 times what we originally used.

We propose an alternative point set to the grid, the maximal-rank lattice. Due to
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Figure 4.3: Approximating the marginals of a four dimensional mixture distribution using G5,4 and
G10,4. The G10,4 approximated this shape very well, though required 10000 points to do so.

the grid-like structure of the maximal-rank lattice (as described in (3.11)), we can also

use these as the point set described in Algorithm 2. We first demonstrate how it works,

with the same bivariate Gaussian example as demonstrated with the grid. We then give

another example which illustrates the advantage of using the maximal-rank lattice over

the grid. The advantage is that we can evaluate the joint posterior at more locations,

which can lead to a better approximation of the shape of the distribution, especially

those which are highly skewed or multimodal. In lower dimension (say s = 2 or 3) the

number of points used is comparable to the grid. In higher dimensions, we show that

we can obtain accurate estimates of marginal posteriors with less points than the grid.

Example 4.2.2. We estimate the marginals of the standard bivariate Gaussian, this

time with the maximal-rank lattice. The density is given by (4.8) and the marginals

by (4.9). We use the same support box and place a maximal-rank lattice inside. We

generateM2,4,2, a two-point LDS copied four times in each dimension. With n = 2,
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Figure 4.4: Contour plot of the joint posterior, with mode centred at the origin. The left figure shows
the support box (dashed line) generated by going out three standard deviations from the mode (step two).
The maximal-rank lattice M2,4,2 is placed within the support box and centred, as shown by the red
points on the right-hand side graph.

m = 4, and s = 2, this gives the total points N = 2 × 42 = 32, with n × m = 8

abscissa points. Due to how the maximal-rank lattice is generated, we centre it within

the support bounds by shifting the intial two-point LDS. This is shown in Figure 4.4.

Figure 4.5 shows the process of Step 4. We can see that we generate eight pointwise

means, fit the spline and normalise. Similar to the grid, the approximated marginals

are very good compared to the true marginals.

Example 4.2.3. We compare the results of the grid and maximal-rank lattice on a multi-

variate beta distribution. The joint posterior is the product of several beta distributions,

given by

π(θ) =
s∏
i=1

θ
(αi−1)
i (1− θi)(βi−1)

B(αi, βi)
,θ ∈ [0, 1]s,

where B(α, β) is the beta function, and where αi > 0 and βi > 0 for all i = 1, . . . , s

are the shape parameters. Whilst this is very easy to do analytically, we use it to

demonstrate the difference between the grid approximations and the maximal-rank ap-

proximations. Let s = 5. We generate a 5-point grid G5,5, giving N = 55 = 3125
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Figure 4.5: The process of Step 4 - averaging out for pointwise means (top), fitting a spline through
pointwise means (middle) and normalising (bottom). The bottom figures also gives a comparison be-
tween the maximal-rank approximation (black, solid line) and the true density (red, dashed line).

points. We also generate a maximal-rank latticeM2,4,5 with two points and four copies

in each dimension, giving N = 2× 45 = 2048 points.

Table 4.2: Kullback-Leibler divergence (K-L Div) and Hellinger distance (H.Dist) results for the
multivariate beta approximations. The maximal-rank lattice outperformed the grid for all marginals
according to both measures.

K-L.Div H.Dist
Marginal G5,5 M2,4,5 G5,5 M2,4,5

1 0.004276 0.000075 0.03417 0.00434
2 0.012995 0.000682 0.06112 0.01339
3 0.009344 0.004773 0.05113 0.03650
4 0.001157 0.000749 0.05421 0.01390
5 0.026038 0.005657 0.08541 0.04011

The approximations, as presented in Figure 4.6, show that the maximal-rank lattice

approximations were far more accurate then the grid approximations. This is despite
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Figure 4.6: Approximation of the marginals of a multivariate beta distribution, using both the grid
and a maximal-rank lattice.

the fact it uses fewer points. For the more skewed marginals (four and five), the grid was

unable to properly capture the shape. In order for the grid to capture the shape, we may

have to extend this out to a 6-point grid, which more than doubles the amount of points

of the 5-point grid (7776 points compared with 3125 points). We use two measures

for accuracy, the Kullback-Leibler divergence [44] and Hellinger distance [48]. Both

measures are commonly used to compute the distance between two probability distri-

butions. The values in Table 4.2 indicate that the maximal-rank lattice approximations

had the smaller distance values between the approximation and the true, indicating that

these were the more accurate approximations. The overall accuracy for the maximal-

rank lattice was satisfactory, with all KLD and Hellinger distance measures being very

close to zero.
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4.2.3 Discussion of Grid-Based Inference Methods

We have introduced the algorithm to perform grid-based inference, demonstrated how

it approximates marginals, and extended this out to maximal-rank lattices. Grid-based

methods are nice to use in low dimension due to their simplicity. The grid approxima-

tion does well for univariate and symmetric distributions. For more skewed distribu-

tions and in higher dimensions we can do better with a maximal-rank lattice, both in

terms of accuracy and computational efficiency, as shown in Example 4.2.3. However,

the computational savings are not that great. Both the grid and the maximal-rank lat-

tice increase exponentially as the dimension increases which is problematic for high

dimensional problems. Next, we introduce a new method that not only captures shape,

but also significantly reduces the number of points for high dimensional problems, thus

easing the computational burden of approximating marginals.

4.3 LDS-Based Methods of Bayesian Inference

We discuss Bayesian inference using LDS. This is applicable to any LDS, but we re-

strict ourselves to Korobov lattices (Definition 3.2.4), due to their ease of use and the

ability to find optimum generating vectors using the software Lattice Builder (Section

3.23). Recall from Section 3.2.1, that lattice point sets of rank-1 are fully projection

regular (Definition 3.2.1). Therefore we cannot approximate in the same way as we

did with the grid-based methods, as we have N unique abscissa points and nothing to

average out over. However, we can get around this by fitting a polynomial through the

function evaluations. We explain the details in the upcoming section.

4.3.1 The LDS algorithm

We present an algorithm to perform LDS-based inference:
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Algorithm 3 LDS-based method for Bayesian inference

1) Optimise π(θ) for mode π∗ and Hessian Hπ

2) Construct an appropriate support [a,b]
3) Generate an LDS LN,s over the support and evaluate π(θ(j)), ∀θ(j) ∈ LN,s
4) Orthogonally project π(θ(j)) onto the ith marginal for π(θi;θ(j)), fit a least-squares
polynomial through π(θi;θ(j)) and normalise
5) Re-use LN,s and π(θ) for the estimation of the latent parameters (see Section 2.3.3
and (2.16))

Performing the orthogonal projections (as described in Section 4.1.1 and Section

4.1.2) to the function evaluations results in a scatter of points on each marginal space.

Since each point projects to its own one-dimensional component, we could think about

it as its own pointwise mean. However, fitting a cubic spline interpolant through this

would not result in an appropriate approximation, due to the scatter of points resulting

from the orthogonal projections of LDS points (see Figure 4.8 (top)). A solution to

this problem is to fit a least-squares polynomial through the scatter to approximate the

shape. From there, the polynomial can easy be normalised (similar to (4.7)), and the

LDS points can be re-used to estimate the latent parameters.

The details of fitting the least-squares polynomial are as follows. After generating

θ(j) ∈ LN,s, j = 1, . . . , N and projecting onto the ith marginal, we have ψi as described

in (4.5). The first column of ψi contain the abscissa points, and the second column

contains the corresponding function evaluations. Let the vector of function evaluations

be denoted by π. Let V be the design matrix when fitting a least-squares polynomial

of degree p. The design matrix is a Vandermonde matrix

V =



1 θi,1 θ2
i,1 · · · θpi,1

1 θi,2 θ2
i,2 · · · θpi,2

...
...

... . . . ...

1 θi,N θ2
i,N · · · θpi,N


.
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The least-squares approximation to the marginal posterior is

π̃LS(θi) = V (V TV )−1V Tπ

where π̃LS(θi) is the least-squares approximation to π(θi). Normalisation gives us our

final approximation

π(θi) ≈
π̃LS(θi)∫ bi

ai
π̃LS(θi)dθi

.

An open question here is what degree of polynomial should be chosen? A polynomial

with low degree may not capture the shape properly, whereas a polynomial with too

high a degree can lead to Runge’s phenomenon [76]. This phenomenon occurs when

oscillations occur at the edges of the interval when using a polynomial of high degree

for interpolation. For now, we use the polynomial degree as a “tuning” parameter,

but we will formulate strategies to answer this question in upcoming sections and the

following chapter.

Example 4.3.1. We demonstrate Algorithm 3 using the bivariate Gaussian example.

After constructing the support box we place the Korobov lattice L32,2 within the sup-

port. The Korobov lattice we have chosen has N = 32 points, and the generating

constant was found using Lattice Builder. After evaluating the function for all lattice

points, we orthogonally project the function evaluations on each marginal space, re-

sulting in a scatter of points (top graphs in Figure 4.8). Through those projections we fit

a least-squares polynomial of degree eight (middle graphs of Figure 4.8). The resulting

approximation after normalising results in a very close approximation.

4.4 Convergence Theorems and Results

We discuss the approach of fitting a least-square polynomial through a set of orthogo-

nally projected function evaluation points to approximate a marginal distribution. We
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Figure 4.7: Contour plot of the joint posterior, with mode centred at the origin. The left figure shows
the support box (dashed line) generated by going out three standard deviations from the mode (Step 2).
The Korobov lattice L32,2 is placed within the support box, as shown by the red points on the right-hand
side graph.

assume here that we have N = n × ν points, such that π(θi) is evaluated at n distinct

points θi,l for l = 1, . . . , n and that for each θi,l, there are ν points whose ith abscissa

coordinate is θi,l. This not only covers an n-point grid where ν = ns−1 or a maximal-

rank lattice where ν = n ×ms−1, but any general point set when the n points θi,l are

fixed, and ν points are selected (either randomly or determinstically) for each value of

θi,l. The choice of points are important, and determines the convergence properties and

computational efficiency.

The orthogonal projections result in a scatter of points that have non-constant vari-

ance in each marginal space (see Figure 4.9). This suggests fitting a weighted least-

squares polynomial through the projections π(θi = θi,l;θ(j)) on θi, where the weights

are proportional to the variances. We show however that a least-squares fit or its

weighted version are equivalent when the degree of the polynomial is n − 1. We then

study the convergence properties of the polynomial approach, and present some theo-

rems and proofs. First, we give some matrix definitions for the upcoming least-squares

analysis.
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Figure 4.8: The process of step four for the LDS algorithm - projection of the function evaluations
(top), fitting a least-squares polynomial through the projections (middle) and normalising (bottom). The
bottom figures also gives a comparison between the LDS approximation (black, solid line) and the true
density (red, dashed line).

4.4.1 Matrix Definitions

Let PN,s be any point set as described at the beginning of this section. Let V be the de-

sign matrix when fitting a least-squares polynomial through the orthogonal projections

π(θi;θ(j)) on θi. The coordinates of the projections correspond to n unique abscissa

points θi,l, l = 1 . . . , n. The design matrix V is of size N × n and has a block structure

V =



1 t1 t2
1 · · · tn−1

1

1 t2 t2
2 · · · tn−1

2

...
...

... . . . ...

1 tn t2
n · · · tn−1

n


,
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Figure 4.9: An example of the orthogonal projections for G5,2 and K32,2. Note that the projection
onto each marginal space results in scatter of points that have non-constant variance.

where each element tp1 ∈ V , (p = 0, 1, . . . , n− 1) is a column vector of size ν × 1 and

contains only the element θpil . We can more conveniently express V as the Kronecker

product (see Appendix) of a Vandermonde matrix V and an ν × 1 column vector of

ones,

V = V ⊗ 1ν×1,

where

V =



1 θi,1 θ2
i,1 · · · θn−1

i,1

1 θi,2 θ2
i,2 · · · θn−1

i,2

...
...

... . . . ...

1 θi,n θ2
i,n · · · θn−1

i,n


.

Note that V is a Vandermonde matrix of size n×n, is of full rank and is invertible since

all its elements are unique.

For weighted least-squares, we give a weight wl to the projections corresponding to
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an abscissa point θi,l. We define the weight matrix W that has size N × n by

W =



w1Iν 0Iν · · · 0Iν

0Iν w2Iν · · · 0Iν
...

... . . . ...

0Iν 0Iν · · · wnIν


,

where Iν is an identity matrix of size ν × ν. Similarly to M , we can express W as a

Kronecker product

W = W ⊗ Iν ,

where

W =



w1 0 · · · 0

0 w2 · · · 0

...
... . . . ...

0 0 · · · wn


is a square and diagonal matrix of weights, with size n× n.

4.4.2 Theorems

Let π̃LS(θi) denote the least-square polynomial approximation to π(θi) and π̃WLS(θi)

denote the weighted least-squares polynomial approximation to π(θi). Also, for no-

tational convenience, we will express the othogonally projected function evaluations

π(θi;θ(j)) simply as π = (π1,π2, . . . ,πn)T . Note that each element in π is a ν × 1

vector of function evaluations π(θ) corresponding to θi,l. If PN,s is any point set de-

scribed at the beginning Section 4.5, then the following theorem holds. A basic knowl-

edge of Kronecker products and their properties are needed for these proofs, many of

which follow the basic rules of matrices. These can be found in most linear algebra

textbooks, such as [52].
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Theorem 4.4.1. For any i, π̃LS(θi) = π̃WLS(θi).

Proof. The least-squares approximation π̃LS(θi) can be expressed as

π̃LS(θi) = V (V TV )−1V Tπ

= (V ⊗ 1)
(
(V ⊗ 1)T (V ⊗ 1)

)−1
(V ⊗ 1)Tπ

= (V ⊗ 1)
(
(V T ⊗ 1T )((V ⊗ 1)

)−1
(V T ⊗ 1T )π

= (V ⊗ 1)(V TV ⊗ 1T1)−1(V T ⊗ 1T )π

= (V ⊗ 1)
(
(V TV )−1 ⊗ ν−1

)
(V T ⊗ 1T )π

= ν−1(V ⊗ 1)(V TV )−1(V T ⊗ 1T )π

= ν−1
(
V (V TV )−1V T ⊗ 11T

)
π

= ν−1(In ⊗ 11T )π, (4.10)

and the weighted least-squares approximation π̃WLS(θi) can be expressed as

π̃WLS(θi) = V (V TWV )−1V TWπ

= (V ⊗ 1)
(
(V ⊗ 1)T (W ⊗ Iν)(V ⊗ 1)

)−1
(V ⊗ 1)T (W ⊗ Iν)π

= (V ⊗ 1)
(
(V T ⊗ 1T )(W ⊗ Iν)((V ⊗ 1)

)−1
(V T ⊗ 1T )(W ⊗ Iν)π

= (V ⊗ 1)(V TWV ⊗ 1T Iν1)−1(V T ⊗ 1T )(V ⊗ Iν)π

= (V ⊗ 1)
(
(V TWV )−1 ⊗ ν−1

)
(V T ⊗ 1T )(W ⊗ Iν)π

= ν−1(V ⊗ 1)(V TWV )−1(V T ⊗ 1T )π

= ν−1
(
V (V TWV )−1V TW ⊗ 11T Iν

)
π

= ν−1(In ⊗ 11T )π = π̃LS(θi) (4.11)

Theorem 4.4.2. For any i, π̃LS(θi) passes through π̂(θi,l), for l = 1, . . . , n.
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Proof. From (4.10), we have that

π̃LS(θi) = ν−1(In ⊗ 11T )π

= ν−1



Jν 0ν · · · 0ν

0ν Jν · · · 0ν
...

... . . . ...

0ν 0ν · · · Jν





π1

π2

...

πn


=



π̂(θi,1)

π̂(θi,2)

...

π̂(θi,n)


, (4.12)

where each element Jν or 0ν is a square matrix of size ν × ν that contains either all 1’s

or all 0’s respectively.

Theorem 4.4.2 implies that this approach is equivalent to the interpolating polyno-

mial approach, where a polynomial with degree n−1 is fitted to n function evaluations,

for which the convergence properties can be studied using the existing literature in nu-

merical analysis. For an arbitrary set of fixed abscissa points θi,l, the convergence prop-

erties for the interpolating polynomial is poor in general. If the points θi,l are chosen

either as Chebyshev nodes (linearly transformed to [ai, bi], see [43]), or as equidistant

points, the resulting interpolating polynomial will converge to the true function under

strong smoothness conditions on the function. For the next two theorems, we will as-

sume that θi,l are chosen as either Chebyshev nodes or equidistant points respectively.

The points θ(j) ∈ Θ \ [ai, bi) can be sampled randomly, as a grid, or as an LDS. Note

that the theorems and proofs we present from here until the end of this section were

originally proved by the lead author in [38].

Theorem 4.4.3. If π(θi) is infinitely differentiable such that

max
ξ∈[ai,bi)

|π(n)(ξ)| ≤ L, ∀n,

for some L <∞ such that L
2(n−1)

(
bi−ai

2

)n � (n− 1)!, ∀n, and θi,l for l = 1 . . . , n cor-
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respond to Chebyshev nodes on the interval [ai, bi], then π̃LS(θi)→ π(θi) as n→∞.

Proof. As ν →∞,

π̂(θi,l) =

∏s
k=1(bk − ak)
bi − ai

× 1

ν

ν∑
j=1

π(θi = θi,l; θ(j))→ π(θi = θi,l) (4.13)

Equation (4.13) holds due to Koksma-Hlawka inequality if the points θ(j) are sampled

using a LDS, and due to the Law of Large numbers if θ(j) are sampled randomly. Then,

from Theorem 4.4.2 and the standard result in approximation theory [18], it can be seen

that

max
θi∈[ai,bi)

|π(θi)− π̃LS(θi)| ≤ max
θi∈[ai,bi)

|π(n)(θi)|
n!

max
θi∈[ai,bi)

n∏
i=1

|θi − θi,l|.

This implies that

max
θi∈[ai,bi)

|π(θi)− π̃LS(θi)| ≤
L

n!
max

θi∈[ai,bi)

n∏
i=1

|θi − θi,l|

It can be shown (see for example [18]) that if the points θi,l correspond to the Chebyshev

nodes on [ai, bi), then

max
θi∈[ai,bi)

n∏
i=1

|θi − θi,l| ≤
1

2(n−1)

(
bi − ai

2

)n
,

and therefore,

max
θi∈[ai,bi)

|π(θi)− π̃LS(θi)| ≤
L

2(n−1)n!

(
bi − ai

2

)n
.
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Theorem 4.4.4. If π(θi) is infinitely differentiable such that

max
ξ∈[ai,bi)

|π(n)(ξ)| ≤ L, ∀n

for some L < ∞ such that L
(
bi−ai
n−1

)n � 1, ∀n, and θi,l are equidistant points then

π̃LS(θi)→ π(θi) as ν →∞ and n→∞.

Proof. Using (4.13) and again from [18], it can be shown that if θi,l are equidistant then

max
θi∈[ai,bi)

n∏
l=1

|θi − θi,l| ≤
(n− 1)!

4

(
bi − ai
n− 1

)n

and thus,

max
θi∈[ai,bi)

|π(θi)− π̃LS(θi)| ≤
1

4(n+ 1)
L

(
bi − ai
n

)n+1

� 1

4(n+ 1)
.

If the function is only n times differentiable then the results of the previous two

theorems indicate that interpolation obtained using a polynomial of degree n − 1 will

still be good as long as the derivatives are sufficiently bounded. Although these results

give us the conditions in which π̃LS(θi) converges to π(θi), the results may not be of

practical importance since they require O(νns) function evaluations to evaluate all one

dimensional marginals. This may not be computationally efficient or even feasible de-

pending on the size of s.

A more computationally feasible approach is to use an LDS. We generate an LDS

where N = n × ν is (equally) partitioned into n parts, thus each partition having ν

points. Let [θiu , θiu+1) be the uth partition on the axis θi for u = 0, . . . , n− 1. We have
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the following approximation,

1

(θiu+1 − θiu)

∫
Θ\[ai,bi)

∫ θiu+1

θiu

π(θ) dθi dθ−i ≈
∏s

k=1(bk − ak)
bi − ai

× 1

ν

ν∑
j=1

π(θ(j)),

(4.14)

where θ(j) ∈ Θ\[ai, bi)×[θiu , θiu+1) and u = 1, . . . , n. We denote the RHS of (4.14) by

π̃(θiu+1). We fit a least-squares polynomial of degree n−1 to the orthogonal projections

of π(θ(j)) on the ith marginal space.

Theorem 4.4.5. π̂LS(θi) passes through π̂(θiu) for u = 0, . . . , n− 1.

Proof. Follows from Theorems 4.4.1 and 4.4.2, though the block sizes in the Vander-

monde matrix is now n× ν.

Note that Theorem 4.4.5 also implies that the approach is equivalent to an interpo-

lating polynomial approach. For the following theorem, let ∆θi denote the length of a

partition on the axis of θi. We have ∆θi = θiu+1 − θiu , so then θiu+1 = θiu + ∆θi.

Theorem 4.4.6. π̂(θiu+1)→ π(θiu) as ν →∞ and ∆θi → 0.

Proof. We have that, as ν →∞,

π̃(θiu+1)→
1

(θiu+1 − θiu)

∫
Θ\[ai,bi)

∫ θiu+1

θiu

π(θ|y) dθi dθ−i. (4.15)

Equation (4.15) holds due to the Koksma-Hlawaka inequality. Note that

1

∆θi
→ d

dθiu
as ∆θi → 0. (4.16)

Therefore as ν →∞ and ∆θi → 0,

π̃(θiu)→ d

dθiu

∫ θiu+1

θiu

∫
Θ\[ai,bi)

π(θ) dθ−i dθi,

using (4.15) and (4.16) and changing the order of the integration in (4.15). Theorem
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4.4.6 is then proven since we have that,

d

dθiu

∫ θiu+1

θiu

∫
Θ\[ai,bi)

π(θ) dθ−i dθi =
d

dθiu

∫ θiu+1

θiu

π(θi) dθi

= π(θiu),

with the last equality following from the fundamental theorem of calculus.

The partitions θiu , u = 1, . . . , n are all equally spaced. The last theorem shows the

the least-squares approximation converges to the true marginal.

Theorem 4.4.7. If π(θi) is infinitely differentiable such that

max
ξ∈[ai,bi)

|π(n)(ξ)| ≤ L(n), ∀n,

∃L <∞ such that L(n) ≤ L and L
(
bi−ai
n

)n+1 � 1∀n, and θi,l are equidistant points

then π̃LS(θi)→ π(θi) as ν →∞ and n→∞.

Proof. The result follows from Theorems 4.4.3, 4.4.4 and 4.4.5

Note that if the function is only n times differentiable then the results in Theorem

3.6 indicate that interpolation obtained using a polynomial of degree (n − 1) will still

be good as long as the derivatives are sufficiently bounded. This approach requires

O(νn) function evaluations, where typically ν < n(s−1) and therefore this approach is

computationally efficient compared to using an n-point grid.

4.4.3 Examples

We use some examples to illustrate both the convergence properties and the compu-

tational advantages of the LDS method over grid-based methods. Firstly, we an ex-
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ponential example to illustrate Theorem 4.4.7. We revisit the multimodal example,

introduced in Figure 4.3. Last of all, we demonstrate how the LDS approach works in

higher dimension at which point the grid is not computationally feasible.

Example 4.4.1. The exponential distribution, like many distributions, is smooth and

has smooth derivatives. However the derivative does not exist at zero. We show that

it still satisfies smoothness conditions imposed by Theorem 4.4.7. Suppose that one of

the marginal posterior distributions is exponential with rate parameter λ > 0. We have

that

π(θi) = λ exp(−λθi).

The nth derivative is

π(n)(θi) = (−1)nλn+1 exp(−λθi),

and also

sup
θi

|π(n)(θi)| = lim
θi→0+

|π(n)(θi)| = λn+1.

The support Θ = [a, b) = [0, b) for some finite b < ∞. Then, ∃n′ > 0 and c < 1 such

that ∀n′ > n′ + 1, b
n−1
≤ 1

nc
≤ 1. Furthermore, for any λ < ∞, ∃n′′ > n′ such that

∀n > n′′, λn+1( 1
nc

)n � 1.

It can be seen here that the conditions for Theorem 4.4.7 are met and π̃LS(θi) →

π(θi) as ν →∞ and n→∞. Figure 4.10 demonstrates this, with the approximations

converging as n and ν increase.

Example 4.4.2. Recall Figure 4.3, which illustrated the need for the grid to have more

abscissa points to estimate the shape for a multimodal distribution. Using a Korobov

lattice, we can more than halve the amount of points needed to accurately approximate

the posterior marginals for this example. We generate a K4096,4 and approximate the

marginals using a least-squares polynomial. Figure 4.11 shows both the grid approx-
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Figure 4.10: The least-squares approximation to the posterior marginals where the marginals are ex-
ponential distributions. The dashed line is our approximation, and the red solid line is the true marginal.
The points used were from a Korobov lattice. Note, as both n and ν increase, the approximation con-
verges to the true marginal.

imation and the LDS approximation. Both methods approximated the marginals well,

as shown by the low Kullback-Leibler divergence and Hellinger distances (Table 4.3).

The Korobov was slightly more accurate in all but the first marginal.
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Figure 4.11: The multimodal mixture distribution example, estimated by G10,4 with a cubic spline,
and K4096,4 with a least-squares polynomial. Both strategies accurately captured the shape and approxi-
mated well, though the Korobov lattice did this with less than half the points (4096 compared to 10000
grid points).

Example 4.4.3. We provide an example that is not computationally feasible for the grid,

but can be performed using a Korobov lattice. Let our joint posterior be a product of s

gamma distributions, so we have

π(θ) =
s∏
i=1

βαii
Γ(αi)

θαi−1
i exp(−βiθi),

where αi > 0 and βi > 0 are rate and shape parameters respectively, and Γ(·) is the

Gamma function. Let s = 12. Our standard 5-point grid would need 512 points, which

is around a quarter of a billion points. A 3-point grid would require around half a

million points which is feasible, but would not capture the shape effectively, especially
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Table 4.3: Kullback-Leibler divergence (K-L Div) and Hellinger distance (H.Dist) results for multi-
variate, multimodal example given in Example 4.4.2. The 10-point grid was more accurate for the first
marginal, but the Korobov was more accurate for the other three marginals. Note the Korobov lattice
generated had less than half the points of the grid.

K-L.Div H.Dist
Marginal G10,4 K4096,4 G10,4 K4096,4

1 0.00123 0.00148 0.01751 0.01788
2 0.04944 0.00468 0.02445 0.01406
3 0.04944 0.00476 0.02445 0.01406
4 0.01913 0.01033 0.02426 0.01471

since the marginals are skewed. Figure 4.12 shows the results for the Korobov approxi-

mation with a least-squares fit. We were able to get a good approximation with K217,12,

a Korobov lattice with 131072 points.

4.5 Discussion

This chapter gave an overview of grid-based methods for Bayesian inference, which

are appealing due to their simplicity and ease of implementation. However, they suffer

the drawbacks of a limited ability to capture the target distributions shape, and the fact

that the number of points increases exponentially with dimension. We introduced the

maximal-rank point set, which goes some way to improving the ability to capture the

shape. Although the maximal-rank can outperform the grid in terms of accuracy, the

number of points also increase as dimension increases.

We introduced LDS-based methods for Bayesian inference as a way of overcom-

ing the computational burden of approximating marginals in high dimension. We fit

a least-squares polynomial through function evaluations that are projected onto each

marginal space. We provided the theory that shows that the approximation converges,

and also provided some examples of the computational benefits of using an LDS-based

approach. We argue that this approach will outperform grid-based methods with re-

spect to accuracy and computational efficiency in almost all cases. Our goal now is to
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Figure 4.12: Results for the 12D gamma example. We used aK217,12 with a least-squares polynomial
fit. The approximations (dashed line) are close to the true marginal (red solid line) for all marginals.

use these methods in a full Bayesian inference framework. The next chapter will look

at incorporating this method into INLA, including modifictions to the LDS-algorithm,

an extension to improve accuracy even further for little to no cost, as well as three

examples to assess performance.
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Chapter 5

Incorporation of LDS Methods and the

INLA Methodology

We proposed a method in Chapter 4 for marginal posterior estimation using LDS point

sets. We showed through examples and convergence theorems that these methods can

outperform grid-based methods with respect to computational speed and accuracy. Al-

though the LDS-based method works quite well, there can be issues with regards to the

polynomial chosen to fit through the function evaluations. For instance, there is some

chance of unstable approximations if the degree of the polynomial is too high. From a

practical perspective, this is inconvenient as it creates more tuning to find a polynomial

degree that is suitable.

This chapter discusses several modifications to the LDS-based methods proposed

in Chapter 4, in the hopes of making it more useful in practice. One of the key mod-

ifications comes about through INLA’s use of variance-stabilising transformations, to

reparameterise the hyperparameters into something that closely resembles a Gaussian.

Starting from here, we continue to develop the method towards something that is fast,

accurate and useful. We start this chapter by giving the reader a brief introduction

of INLA using the software package R [63], as well as introducing the autoregres-
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sive model. We then propose several modifications and use the autoregressive model

to illustrate our new methods. We finish by analysing two real-world latent Gaussian

models, which we will use to compare our proposed methods with INLA’s integration

strategies.

Note that all computations in this chapter and the following chapter, were performed

using an Intel(R) Core i7-4770 CPU @ 3.40GHz, 64-bit Windows OS, with 8GB RAM.

5.1 Using R-INLA

The purpose of this section is to demonstrate how INLA works in a practical setting.

The INLA methodology is almost exclusively performed using R-INLA (see www.r-

inla.org), which contains all the necessary code and functions to perform the required

inference. Since its inception, R-INLA has been widely used for a number of appli-

cations [56, 75]. We give all necessary code to perform basic inference on a simple

autoregressive model, and continue on using this model to show the incorporation of

LDS methods into INLA. The R package {INLA} cannot be downloaded from the

usual R website, but is available from the R-INLA website. For more details about

R-INLA, see [78].

5.1.1 The Autoregressive Model

The autoregressive (AR) model is a commonly used model in time series analysis. The

AR model represents a type of stochastic process, where the variable of interest φt

depends linearly on its previous values and a random error term. We use the index t to

represent the value at time t. The AR process of order P , denoted as AR(P ), is defined

as

φt =
P∑
i=1

ρiφt−i + εt
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where ρ1, . . . , ρP are the model parameters and εt are the error terms. We consider the

case where P = 1, which gives rise to the autoregressive model of order 1, denoted as

AR(1). The AR(1) process for a multivariate Gaussian vector (φ1, . . . , φnd) is given by

φt = ρφt−1 + εt, t = 2, . . . , nd

where εt ∼ N (0, τ−1
x ), and the initial value is given by

φ1 ∼ N (0, (τx(1− ρ2))−1), |ρ| < 1.

We have two hyperparameters in this model, the precision parameter τx and correlation

parameter ρ. We perform a reparameterisation to represent the hyperparameters as a

function that is “more Gaussian”. Let θ denote a hyperparameter, and let f be the

function corresponding to the reparameterisation. We have

f(θ) = θz, (5.1)

where θz denotes the reparameterised hyperparameter. A suitable reparameterisation of

these hyperparameters is given by the following. Let κ be the marginal precision given

by

κ = τx(1− ρ2).

Then, the hyperparameter θκ is given by

θκ = log(κ).

The hyperparameter θρ is represented as

θρ = log

(
1 + ρ

1− ρ

)
.
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We can simulate this process using the arima.sim(...) function from the R package

{stats}. In addition to this process, we will generate observations y = {y1, . . . , ynd} assuming

the following model

yt = φt + et, (5.2)

where et ∼ N (0, τ−1
y ) and φt is the AR(1) process. This adds a third hyperparameter, the pre-

cision for the Gaussian observations τy. We reparameterise τy with the following representation

θτ = log(τy).

Thus, our hyperparameters are given by θz = {θκ, θρ, θτy} and latent parameters {φt}, t =

1, . . . , nd. Note that θz denotes the reparameterised hyperparameters. We will assume this

model through the majority of this chapter. We will show how to simulate data and perform

inference on this model using R-INLA, before moving on to performing inference using modi-

fications of the LDS-based methods introduced in the previous chapter.

5.1.2 Data Simulation and Inference

We start by generating some data based on (5.2). We let nd = 100, ρ = 0.65, κ = 1, and

τy = 100. We can use the following R-code to perform this:

### Generate data ###

set.seed(781984)

nd = 100; rho = 0.65; tau = 100

phi = arima.sim(nd, model = list(ar = rho))

y = phi + rnorm(nd, sd = 1/sqrt(tau))

The data generated is shown in Figure 5.1. All inference using INLA is done via the

inla(...) function. There are many options as to the inputs we can use inside this function,

see [55]. However, we will go through the necessary inputs in this section.

We first organise all the data in a data frame. We have observations y, and we set up the

index from 1 to nd. Any other covariates would be added to this data frame. Next, we must

define the model. We can use the function f(...) to define the AR process, and we can input
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Figure 5.1: Simulated data for the AR(1) process.

other necessary details in this function, such as priors for the hyperparameters corresponding

to the AR process (in our case, θκ and θρ). Covariate information need not be input using

f(...), but can be input using its column name in the data frame. We will call this model

“formula” in the code. Lastly, we use the inla(...) function to perform the inference for

all parameters in the model. The following code will perform inference on our AR(1) process:

### Libraries ###

library(INLA)

### Data frame ###

data = data.frame(y, idx = 1:n)

### Formula ###

formula = y ˜ -1 + f(idx, model="ar1",

hyper = list(rho = list(fixed = FALSE,

prior = "betacorrelation",

param = c(5, 1)),

prec = list(fixed = FALSE,

prior = "loggamma",

param = c(1, 1))))

### inla(...) call ###

res = inla(formula, data = data, family = "gaussian",

control.family = list(hyper = list(prec = list(

fixed = FALSE,

prior = "loggamma",

param = c(100, 1)))),

control.inla = list(int.strategy = "ccd",
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strategy = "simplified.laplace"))

The formula in the code includes a ‘-1’ to specify that there is no intercept in this model.

We have assigned a scaled-Beta prior for θρ and log-Gamma priors for θκ and θτy . The

scaled-Beta prior is a prior primarily used for a correlation parameter since ρ ∈ (−1, 1), and

is a Beta distribution scaled to have domain in (−1, 1). The prior for θτy is defined in the

control.family argument in the inla(...) function itself, rather than in the formula.

We also define the likelihood model for our observations through the family argument. The

control.inla argument allows the user to use different integration point sets and integra-

tion strategies as outlined in Section 2.3.3. We have used the central composite design (CCD)

as our point set and the simplified Laplace strategy for the approximations of the latent field,

though it should be noted that these are currently the default options in INLA and is not neces-

sary to give these arguments.

Figure 5.2: Posterior marginal estimates for the hyperparameters of the AR(1) example using R-INLA
default settings. The top row are the estimates of {θτy , θκ, θρ}, with the bottom row the estimates for
{τy, κ, ρ}. The red-dashed line is the true value of the hyperparameter.

The object res stores all of the computations. Using the function names(res) outputs

a list of elements that can be extracted from the object, including summaries and marginals
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of all model parameters, marginal log-likelihood and other useful diagnostics. We can use the

summary function to output the estimates for the parameters and also show the time used to

perform the calculations. The posterior mean of the hyperparameters are very close to the true

values. The inferential process using INLA takes less than 1.3 seconds.

> summary(res)

Call:

c("inla(formula = y ˜ -1 + f(...

Time used:

Pre-processing Running inla Post-processing Total

0.4500 0.6170 0.2180 1.2851

The model has no fixed effects

Random effects:

Name Model

idx AR1 model

Model hyperparameters:

mean sd 0.025quant 0.5quant

Precision for the Gaussian observations 99.9298 9.9978 81.4311 99.5465

Precision for idx 0.9366 0.1889 0.5983 0.9276

Rho for idx 0.6217 0.0753 0.4686 0.6233

0.975quant mode

Precision for the Gaussian observations 120.7410 98.9161

Precision for idx 1.3359 0.9146

Rho for idx 0.7619 0.6230

Expected number of effective parameters(std dev): 97.98(0.00)

Number of equivalent replicates : 1.021

Marginal log-Likelihood: -125.63

We can obtain the marginals for the latent field and hyperparameters in two ways. The first

is to simply use the plot function on the inla object, plot(res). Another way is to extract

them directly from the object itself. The following code performs this task:

### Obtain posterior marginals to thetas

theta.tau = res$internal.marginals.hyperpar[[1]]
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theta.kappa = res$internal.marginals.hyperpar[[2]]

theta.rho = res$internal.marginals.hyperpar[[3]]

### Obtain posterior marginals to hyperparameters

tau = res$marginals.hyperpar[[1]]

kappa = res$marginals.hyperpar[[2]]

rho = res$marginals.hyperpar[[3]]

### Approximations to the latent field

latent = res$summary.random

The above code extracts the estimated marginals for the reparameterised hyperparameters

{θτy , θκ, θρ}, and the true hyperparameters {τy, κ, ρ}. Plotting these estimates gives Figure 5.2,

which shows that the marginal posteriors are consistent with the true values. We can also plot

the means of the latent parameters, which is shown in Figure 5.3.

Figure 5.3: Latent field approximation for the AR(1) example. The approximation closely match the
data.

The last INLA function of interest to us is the inla.hyperpar(...) function, which

gives improved estimates of the hyperparameters by re-running INLA but with a grid point set.

We demonstrate this with the following code:

res.hp = inla.hyperpar(res,

diff.logdens = 20,

dz = 0.5)

The diff.logdens and dz arguments specify the grid structure. The diff.logdens

argument determines how far away from the mode you go (see criterion (2.17)), and the dz
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argument specifying how dense the grid will be. Interested readers can try the code and obtain

the summary output and the plots for the object res.hp. We obtain only very slightly better

estimates, but increase computation time drastically relative to our first estimates (around 9.3

seconds), due to the fact that the grid specified uses upwards of 8000 points compared with the

15 points used previously.

We now move back to LDS-methods and present some modifications to improve perfor-

mance. We also present an extension to help improve accuracy further with no significant

computational burden.

5.2 LDS Method Modifications

The LDS methods presented in the previous chapter do come with some drawbacks. We know

that our polynomial approximations converge to the true posterior distribution as the number of

points n increases. In practice however, it can be hard to find a suitable degree of polynomial

to choose. We can make n partitions along the parameter axis and fit a polynomial of degree

n− 1. If we do not have enough points in each partition, we will not get a good approximation

to the pointwise means and thus, the estimation will not be of use. Also, as we increase the

number of partitions, the polynomial approximation can become unstable and lead to Runge’s

phenomenon.

We give details on how the LDS methods can be modified to improve performance and help

with the problem of the polynomial degree. Since INLA uses a reparameterisation on each hy-

perparameter to make the shape more Gaussian, this implies we can fit a quadratic polynomial

in the log(θz)-scale. This also suggests that we can make a minimum of three partitions along

the parameter axes. Care must be made when finding the pointwise means however. The func-

tion evaluations must be found and averaged out in the actual-scale rather than the log-scale as

log(mean) 6= mean(log). The pointwise means are transformed in the log(θz)-scale, then the

polynomial can be fitted in this scale before transforming the polynomial from the log(θz)-scale

to the θz-scale. After normalisation, we can transform back the reparameterised hyperparame-
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ters θz back to the original hyperparameters θ and perform inference on these.

Although the hyperparameter transformation makes the process of marginalisation easier,

it is not guaranteed that the hyperparameters θz are perfectly Gaussian. Thus, the strategy

of fitting a quadratic very much constricts us to a Gaussian estimate after transformation. To

account for potential discrepancies in scale, location and skew, we propose another iteration

of the algorithm that fits a cubic polynomial found by analysing the residuals of the quadratic,

i.e the difference between the pointwise means and the fitted quadratic. This can be done with

little extra computational effort. We discuss details of the so-called polynomial correction in

upcoming sections.

5.2.1 Modified LDS for Hyperparameter Estimation

Recall Algorithm 3 in Section 4.3.1. We modify Step 4 to include partitioning, transformations

and polynomial fitting with the following algorithm. Since we begin with a reparameterisation

of the hyperparameters, Steps 1, 2, and 3 are all performed for the purposes of approximating

the marginals π(θz,i). Approximating π(θi) simply requires an inverse transformation of the

hyperparameter f−1(θz) = θ.

Algorithm 4 Step Four Modifications for LDS-based Bayesian Inference

4a) Orthogonally project function evaluations π(θz,(j)) onto the ith marginal for
π(θz,i;θz,(j)) for j = 1, . . . , N
4b) Create n partitions of the θz,i axis. Here, [θz,i,u, θz,i,u+1) is the uth partition,
denoted as θz,i,u′ , and where u = 1, . . . , n
4c) Find pointwise mean for each partition similarly to (4.3), where the pointwise
mean of the uth partition is given by π̂(θz,i,u′)
4d) Transform pointwise means to log(θz)-scale, and fit a least-squares quadratic
polynomial through log(π̂(θz,i,u)), u = 1, . . . , n
4e) Transform polynomial to θz-scale and normalise for each marginal for π̃(θz,i),
then back-transform to θ-scale for π̃(θi)

We discuss Algorithm 4 in more detail. After projection of the function evaluation coordi-

nates, we partition the ith marginal space with n partitions with equal interval lengths ∆θz,i.

We do not assume that each partition will have the same number of points (for example, having
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N = 2x points and n = 3 partitions will never yield the same number of points in each parti-

tion). However, since we are generating a fully projection LDS that yields equally spaced points

in its one-dimensional projections, equally spaced partitions will have a very similar number of

points. Let νu denote the number of points in the uth partition. Obtaining the pointwise means

is very similar to the grid, though the function evaluations do not project onto a single point,

but project onto an interval. The natural abscissa point to take would be to take the midpoint of

the interval 0.5 × (θz,i,u+1 + θz,i,u) which is the one we use in practice. The ordinate for the

pointwise mean is given by

π̂(θz,i,u′) =
1

νu

νu∑
j=1

π(θz,i,u′ ;θz,u′,(j)), (5.3)

where θz,u′,(j) are the points sampled that lie in the uth partition. Doing this for all u = 1, . . . , n

partitions giving us n pointwise means.

Figure 5.4: An illustration of Step 4a (orthogonal projection) and Step 4b (partitioning) of Algorithm
4. We orthogonally project function evaluations onto each marginal space, and partition each space. In
this example, we have n = 7 partition of equal length and N = 512 points.

We transform the n pointwise means to the log(θz)-scale, and fit the quadratic polynomial
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via least-squares. The quadratic polynomial is given by

π̃log(θz,i) = β̃i,0 + β̃i,1θz,i + β̃i,2θ
2
z,i, (5.4)

where π̃log(θz,i) is the unnormalised log-approximation to the marginal posterior π(θz,i), in

which the coefficients β̃ are found through a least-squares approximation. The quadratic is

then transformed back to the θz-scale and normalised, which gives the approximation to the

reparameterised hyperparameter,

π̃MLS(θz,i) =
exp(β̃i,0 + β̃i,1θz,i + β̃i,2θ

2
z,i)∫

[ai,bi]
exp(β̃i,0 + β̃i,1θz,i + β̃i,2θ2

z,i)dθz,i
, (5.5)

where π̃MLS(θz,i) is the approximation of the marginal posterior for θz,i via the modified LDS

method. For the approximation of the true hyperparameter, let f−1(θz) = θ. So, we have

π̃MLS(f−1(θz,i)) =
exp(β̃i,0 + β̃i,1f

−1(θz,i) + β̃i,2(f−1(θz,i))
2)∫

[ai,bi]

(
exp(β̃i,0 + β̃i,1f−1(θz,i) + β̃i,2(f−1(θz,i))2)

)
dθz,i

=
exp(β̃i,0 + β̃i,1θi + β̃i,2θ

2
i )∫

[ai,bi]
exp(β̃i,0 + β̃i,1θi + β̃i,2θ2

i )dθi

= π̃MLS(θi) (5.6)

Example 5.2.1. We demonstrate the process for Algorithm 4 by continuing with the AR(1) ex-

ample described in Section 5.1.1. For now, we use INLA output from the res object to construct

a suitable support boundary in which to generate a Korobov Lattice, as well as calculate the

function evaluations for each point in the lattice. Figure 5.4 shows the projected function eval-

uations for each hyperparameter (note that we have evaluated for hyperparameters θz) and

the partitioning of the marginal space. We have n = 7 partitions and N = 512 points in this

example. Note that all partitions have the same number of points, except for the first partition

that has one extra point, as 512 = 74 + (6× 73).

Figure 5.5 shows us the pointwise mean coordinates (red points). We can see that the

abscissa point is the midpoint of each partition interval, with the pointwise mean ordinate given

by (5.3). The logs are taken of the pointwise mean coordinates, and the quadratic polynomial is
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Figure 5.5: Step 4c in Algorithm 4. For each marginal, and for each partition, find the pointwise
means. This is done in the θz-scale.

Figure 5.6: Transformation of the pointwise means in the log-scale, and fitting a quadratic polynomial
through the pointwise means. The top set of plots show the pointwise means (red points) with the logged
function evaluations (grey points). The bottom set of plots show each set of pointwise means fit with a
quadratic polynomial. This is Step 4d in Algorithm 4.

fitted through them, as shown in Figure 5.6. The top plots in Figure 5.7 give our approximation

given by (5.5), which is the quadratic transformed back to θz-scale and normalised (red solid

line). The bottom plots show the approximations transformed back to θ from θz . We compare

this to INLA’s grid approximation. Note that we use the inla.hyperpar function and set

a very dense grid (over 8000 points), thus these are very close to what we would consider the

true marginals. Our modified approach approximations are close to INLA’s approximations,

with both approximating the marginals and parameter estimates well (parameter estimates are

shown in Table 5.1). The main drawback however is that we cannot capture any skewness of

the reparameterised hyperparameters, since we are only fitting a quadratic polynomial.
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Figure 5.7: The final posterior marginal approximations, in both θz and θ scale. We compare our
approximations (M-LDS, red lines) with INLA’s grid approximation (INLA-grid, black lines). The true
value is given by the green line.

Table 5.1: Posterior means of the θz marginals for both INLA and modified LDS, with comparisons
to the true value of each hyperparameter.

Parameter True INLA grid Modified LDS
θτy 4.6052 4.6042 4.5939
θκ 0 -0.0735 -0.1296
θρ 1.5506 1.4409 1.5179

5.2.2 Cubic Correction

The hyperparameter marginal approximations using the method set out in Algorithm 4 gives a

Gaussian approximation to the reparameterised hyperparameter marginals. However, it is not

guaranteed that all hyperparameters θz will have a Gaussian shape. We propose a correction

to the quadratic approximation by analysing the residuals, given by the difference between the

polynomial fit given by (5.4) and the pointwise means. We can view (5.4) as the initial approx-

imation that can be updated by a cubic polynomial to correct for location, scale and skew.

The process changes Algorithm 4 slightly, by adding the polynomial correction process

after Step 4d. The polynomial correction is summarised in Algorithm 5. Since we have n

87



Algorithm 5 Cubic Correction to Quadratic Approximation

4d) Transform pointwise means to log(θz)-scale, and fit a least-squares quadratic
polynomial through log(π̂(θz,i,u)), u = 1, . . . , n
4d) (i) Obtain residuals found by the difference between π̃log(θz,i) evaluated at uth

abscissa point and the corresponding pointwise mean
4d) (ii) Fit a cubic polynomial through residuals via least-squares
4d) (iii) Correct initial quadratic approximation with the cubic coefficients

pointwise means, we can find the uth residual for marginal i, denoted as Ru(θz,i), by

Ru(θz,i) = π̃log(θz,i)|u − log(π̂(θz,i,u)) (5.7)

where π̃log(θz,i)|u is the quadratic polynomial evaluated at the uth abscissa point, and log(π̂(θz,i,u))

is the uth pointwise mean. The cubic polynomial fitted through the residuals is done via least-

squares, which we denote as

PR(θz,i) = β′i,0 + β′i,1θz,i + β′i,2θ
2
z,i + β′i,3θ

3
z,i. (5.8)

Figure 5.8: Fitting a cubic polynomial through the residuals of the quadratic approximation and the
log pointwise means. The coefficients of the cubic are used to update the quadratic.

The polynomial correction update for the unnormalised log-approximation to the marginal

posterior π(θz,i) is

π̃log,P (θz,i) = (β̃i,0 − β′i,0) + (β̃i,1 − β′i,1)θz,i + (β̃i,2 − β′i,2)θ2
z,i + β′i,3θ

3
z,i. (5.9)

From here, Step 4e in Algorithm 4 can be performed to find the final approximations by using
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the expression in (5.9) and substituting into (5.5) and (5.6).

Figure 5.9: Cubic correction for all three hyperparameter approximations. The residuals described in
(5.7) are given by the red points.

Figure 5.10: Marginal posterior approximations with INLA grid (black solid line), modified LDS fit
(red solid line) and the cubic correction (blue dashed line). The cubic correction moves away from the
quadratic fit and towards INLAs grid.

Example 5.2.2. Continuing from Example 5.2.1, where Figure 5.7 gave us the initial approxi-

mation given by (5.5). We update this approximation by going back to the quadratic fit in Figure

5.6 and updating this with a cubic polynomial fit through the residuals. The cubic polynomials

used to correct the quadratic are shown in Figure 5.8. Figure 5.9 shows both the initial fit and

the cubic correction. It is clear to see that the correction fits the pointwise means much closer,

especially for θκ and θρ. Performing the necessary transformation yields the final results in
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Figure 5.10. The cubic corrections (blue dashed lines) have moved away from the initial fit and

moved towards INLA’s dense grid approximation.

5.2.3 Latent Field Approximation

A recent update by the INLA developers have allowed the user to define their own points in

which to evaluate the hyperparameters, rather than setting up a grid or CCD pointset. Since

these points are used in the numerical integration process by (2.16) this allows us to use any

point set to evaluate the latent field posteriors. Note that INLA will not use the user-defined

points to estimate the hyperparameter marginals, but will estimate using NIFA (see Section

2.3.4). Details for the user-defined points can be found by running the R-script vignette("int-design",

package = "INLA"), which gives details on how to construct the data frame of points with

corresponding weights. Let design be the data frame of our user defined points and weights.

The following code runs the same AR(1) example but with the design point set:

### Libraries ###

library(INLA)

### Formula ###

formula = y ˜ -1 + f(idx, model="ar1",

hyper = list(rho = list(fixed = FALSE,

prior = "betacorrelation",

param = c(5, 1)),

prec = list(fixed = FALSE,

prior = "loggamma",

param = c(1, 1))))

### inla(...) call ###

res = inla(formula, data = data, family = "gaussian",

control.family = list(hyper = list(prec = list(

fixed = FALSE,

prior = "loggamma",

param = c(100, 1)))),

control.inla = list(int.strategy = "user.std", int.design = design,

strategy = "simplified.laplace", force.diagonal = TRUE))

Here, we assume the design point set corresponds to the points in the θz-scale, thus using

the command int.strategy = "user.std" in the control.inla argument. If we
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generated the points in the typical θ-scale, we would run the command int.strategy =

"user". Figure 5.11 is the output from running the model again, using all the available options

for int.strategy (emperical Bayes, CCD and grid), as well as using the above res call,

with a LDS design (L64,3), all having equal weights. We see little to no difference between all

strategies. However, we must note that it is important that our support for the design must be in

the same region as the grid or CCD. Taking a support too large or too small can result in some

deviation from the other approximations.

Figure 5.11: Latent field approximation for the AR(1) example using all available integration strate-
gies. There is little to no difference in the approximations between the three INLA strategies and using
the LDS.

5.3 Applications and Results

We have proposed modifications to the LDS-based methods described in Chapter 4, first by par-

titioning and fitting a quadratic as our approximation to the reparameterised hyperparameters

θz , then by updating the approximation via analysing residuals and correcting the quadratic

with a cubic. The AR(1) example used exclusively in the previous sections showed that the

modifications yielded good approximations. We apply the modifications and the cubic correc-

tion to two more examples, with the aim of demonstrating further the new methodology for

estimating hyperparameter marginal posteriors. The first example is a case study of a spatial

analysis of childhood undernutrition in Zambia. The second is a spatio-temporal study of low

birth weights in Georgia. Information, details and data for the Zambia example can be found

on the R-INLA website and [54]. Details and links to the data and materials for the Georgia

example can be found in [8].
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5.3.1 Child Undernutririon in Zambia

The Zambia dataset was first introduced by [40] who used spatial factors to analyse undernutri-

tion among children in the 57 regions that comprise Zambia. Child undernutrition is measured

by the height of a child relative to their age. A Z-score is used to determine the stunting of a

child, which is defined by

Zi =
AIi −MAI

σ
, i = 1 . . . , nd

whereAIi is the ith child’s anthropometric indicator (height relative to age),MAI and σ are the

median and standard deviation of the referenced population. We assume the scores are condi-

tionally independent Gaussian random variables with unknown mean ηi and unknown precision

τz .

Figure 5.12: INLA approximations of marginal posteriors for θz and θ in the Zambia model. For
this, we use an extremely dense grid and consider these the most accurate approximation.

Several factors are considers such as age, body mass index of the child’s mother, and sev-

eral categorical variables including gender, education, mothers employment status and locality.

This dataset has been used by [41] as an introduction to BayesX for the analysis of Bayesian

semiparametric regression using MCMC techniques. It was also used to introduce the same
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idea using INLA. In both studies, they considered the model presented by [40]

η = µ+ zTi γ + bmii × f1(districti) + f2(agei) + fs(districti) + fu(districti). (5.10)

Here, µ is the overall mean, zTi γ represent all covariates z as having a linear effect. Also,

fu(districti) is the spatially unstructured component that is i.i.d Gaussian distributed with

mean 0 and unknown precision τu, and fs(districti) is the spatially structured component

which varies smoothly from region to region. This is modelled as an intrinsic Gauss Markov

random field (IGMRF) – a conditional autoregressive (CAR) prior [7] – with unknown preci-

sion τs. Previous studies believed that age covariate has a non-linear effect, and that the bmi

covariate can be used as a weight for the IGMRF f1(·). Both of these components have un-

known precision τ1 for bmi and τ2 for age.

Figure 5.13: Zambia: Plots of initial quadratic approximation (black solid line) and cubic correction
(blue dashed line) with the red points as pointwise means.

The latent Gaussian field for (5.10) is φ = {µ.{γ}, {fu(·)}, {fs(·)}, {f1(·)}, {f2(·)},η},

with hyperparameters θ = {τZ , τu, τs, τ1, τ2}. We assign vague Gamma priors for each el-

ement. We are interested in estimating the posterior marginal for each hyperparameter. We
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will first use the grid strategy in INLA before using the methods proposed in Algorithm 4 and

Algorithm 5. The reparameterisation INLA uses for the precision hyperparameters is the log

function, thus θz = {log(τZ), log(τu), log(τs), log(τ1), log(τ2)}. Note that the grid we use is

extremely dense (a total of 59442 points), and as such we consider this an extremely accurate

approximation (INLA grid approximations shown in Figure 5.12).

Figure 5.14: Zambia: Marginal posterior approximations for the elements of θz , showing the INLA
dense grid approximation (black), initial fit (red) and the cubic correction (blue-dashed). In all cases, the
cubic correction performed well with respect to INLA’s dense grid.

Initial Results

We apply the steps in Algorithm 5 by updating the quadratic approximation with the coefficients

found by fitting a cubic through the residuals. Prior to this, we generate an embedded Korobov

LatticeK512,5, for which the generating constant αz = 19. Note that 512 points is less than 116

times the number of points used by INLA’s dense grid. For the puposes of this exercise, we use

the approximations of the mode and Hessian found by INLA to generate the support (±3 stan-

dard deviations from the mode on each θz-axis). We also use INLA to manually compute the

function evaluations for each point in K512,5. After projecting function evaluations onto each

axis, we make 15 equally spaced partitions and find the pointwise means. The logged pointwise

means and the initial quadratic polynomial fit through those points are shown in Figure 5.13
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with the red points and solid black line respectively.

Figure 5.15: Zambia: Marginal posterior approximations for the elements of θ after transformation
from θz .

A cubic polynomial is fitted to the residuals of the initial fit and the coefficients are used

to update the initial fit. The updated fit is shown in Figure 5.13 as the dashed blue line. The

initial fit for θZ and θs are very good, and as such the cubic correction does not update them.

There is a slight skew to θ1 and θ2 which cannot be captured by the initial fit. However, the

cubic correction captures this skew well. The cubic correction also updates θu slightly, with a

small shift in location and skew. The transformations from the approximations in the log(θz)-

scale to θz scale shows how the initial approximation (red solid line) has shifted towards INLAs

dense grid approximation (Figure 5.14). It especially highlights how the cubic correction has

approximated the two more heavily skewed posterior marginals θ1 and θ2. For completeness,

we give the results for the second transformation from θz to θ in Figure 5.15, which are the

final approximations and follow from the results shown in Figure 5.14.
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Figure 5.16: Zambia: The grid structures in the dimensions θZ and θ1 for INLA’s low density grid
and INLA’s high density grid.

Comparisons with INLA Low Density Grid

We give comparisons of the cubic correction with a grid that is less dense than that given earlier

in this section, and has a more comparative number of points to our Korobov Lattice. We choose

a grid that has 2655 points which is around five times more than that of our Korobov lattice and

is far less dense than that of our earlier grid. Figure 5.16 gives the density of the grid in just

two dimensions (θZ and θ1). Whilst this might not look like much difference, remember that

the number of points increases exponentially with dimension. The resulting approximations

shown in Figure 5.17 show that the less dense grid failed to capture the shape and spread for

all posterior marginals and is outperformed by the cubic correction, despite having less points.

This is consistent with the results of our method even in its most vanilla form.

Comparisons with Numerical Integration Free Algorithm (NIFA)

NIFA (2.18) is the current default setting in INLA for the estimation of hyperparameters (see

Section 2.3.4). Though it is extremely fast and quite accurate, there is some room for improve-

ment with respect to accuracy. We compare the cubic correction with NIFA in Figure 5.18, and

give Kullback-Leibler divergence and Hellinger distance results in Table 5.2. Note that we only

show the θz approximations. It follows that the distance measure between two distributions is

invariant under transformation.
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Figure 5.17: Zambia: Comparisons between INLA’s low density grid and the cubic correction. The
low density grid approximations are poor, despit having roughly five times more points than the cubic
correction.

The results show that there is very little difference between the NIFA and the cubic cor-

rection. From the naked eye, there is very little between the approximations. However, the

Kullback-Leibler divergence and Hellinger distances in Table 5.2 shows that for all marginals,

the cubic correction did approximate better than the NIFA. The NIFA approximation is fixed,

thus this is the best approximation this method can give. It also assumes that the marginal is

Gaussian, with different standard deviations on each side of the mode. Therefore, this approxi-

mation can only give univariate estimates to π(θz,i|y). We give an example of this problem in

the second application.

Table 5.2: Zambia: Distance measures comparing INLA’s dense grid with both the NIFA and cubic
correction methods. The cubic correction gave the more accurate approximations for each hyperparam-
eter marginal according to both the Kullback-Leibler divergence and Hellinger distances, though the
differences are very small.

K-L.Div H.Dist
Parameter NIFA Cubic NIFA Cubic
θZ 0.00501 0.00329 0.03961 0.03233
θ1 0.01194 0.00495 0.05664 0.04088
θ2 0.00329 0.00290 0.03058 0.02964
θs 0.01199 0.00248 0.05797 0.02655
θu 0.00787 0.00533 0.04953 0.03967
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Figure 5.18: Zambia: Comparisons between INLA’s NIFA and the cubic correction. They are both
accurate, though the cubic correction approximates slightly better for some marginals.

Embedded Lattices for Extra Computational Efficiency

A small illustration here on how we can effectively decrease the number of points without the

hassle of re-computation. Recall from Section 3.2.1, that an extensible, or embedded lattice,

can be generated to give the user the ability to add more points without discarding all the old

points. By the same token, we can also take points away. For example, let K∗2x,s be an embed-

ded Korobov lattice with 2x points in s dimensions. Expressing the point set in matrix form

as in (4.4), keeping the first row and taking out every second row after will give K∗2x−1,s, and

keeping the first row and keeping every fourth row will give K∗2x−2,s, and so on.

As an example, since we have K∗29,5, we may decide that 29 = 512 points is too many.

We keep the first row of the Korobov lattice, and proceed to keep every 16th point afterwards,

leaving us with K∗26,5, a Korobov lattice with 64 points. We present the posterior marginal ap-

proximations in Figure 5.19. This was our best approximation with such few points, and the

posterior marginals were very close to the dense grid.
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Figure 5.19: Zambia: Posterior approximations using K∗
64,5. Whilst the approximations are not as

precise as the approximations using K∗
512,5, we are using much less points.

5.3.2 Low Birth Weight Counts in Georgia

This example considers the count of new-borns with very low birth weight (less than 2500gm)

in the counties of Georgia, USA. The data was collected over ten years from 2000-2010, with

the aim to perform spatio-temporal disease mapping. This particular example has been used by

[8] to illustrate a spatio-temporal Poisson nonparametric approach. This includes interactions

between different spatial and temporal components.

Our model is a space-time interaction model, which has the form

ηi,t = µ+ fs(countyi) + fu(countyi) + ft1(yeart) + ft2(yeart) + fu,t2(areai × yeart),

where i = 1, . . . , 159 and t = 1, . . . , 11. We have µ as the overall mean, fs(countyi) as the

spatially structured component, modelled as a conditional autoregressive prior with unknown

precision τs, and fu(countyi) as the spatially unstructured component modelled as i.i.d Gaus-

sian with mean 0 and unknown precision τu. Out time components are ft1(yeart), which is

modelled as a random walk of order two [49] with unknown precision τy1 , and ft2(yeart) is the

unstructured time effect modelled as i.i.d Gaussian with mean 0 and precision τy2 . We also have
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Figure 5.20: INLA’s approximation to the marginal posteriors for each hyperparameter in the Georgia
model. With a very dense grid, the second posterior is shown to be multimodal.

an interaction term fu,t2(areai × yeart). We choose an interaction between the unstructured

space and unstructured time variables, thus placing no spatial or temporal structure on the in-

teraction, and so modelling this as i.i.d Gaussian with mean 0, and unknown precision τδ. Thus

we have five hyperparameters θ = {τu, τs, τy1 , τy2 , τδ}. Taking the log of each component will

give θz = {θu, θs, θy1 , θy2 , θδ}.

Again, we use a dense grid within INLA to approximate the marginals. The approximations

are shown in Figure 5.20. We see from the outset that we have a multimodal marginal posterior

for τs which the dense grid has captured. To capture this, we needed quite a dense grid, and

as such used over 100,000 grid points. We first give our initial approximations before giving a

potential solution to the problem of multimodality.

Initial Results

We take the same approach as we did in the Zambia example by generating an embedded Ko-

robov Lattice K∗512,5, computing the function evaluations and partitioning making 15 equally

spaced partitions for each axis. We follow the processes outlined in Algorithm 4 and Algorithm

5, by fitting an initial quadratic polynomial through the pointwise means, finding the residuals,

fitting a cubic polynomial and updating the initial approximation. We display the approxima-

100



tions for the components of θz in Figure 5.21. The initial approximations were not good as

some of the components of θz were quite skewed. However, we see that the cubic correction

was able to rectify this well and gave much more accurate approximations. Of course, the ap-

proximation of θs was not appropriate due to it being multimodal in shape.

Figure 5.21: Georgia: Initial Approximation and cubic corrections for θz (red solid and blue dashed
lines respectively), and comparisons with INLA’s grid. The cubic correction was needed as the initial
fits were not very good. However, we cannot approximate θs well, as expected.

Multimodal Hyperparameters

Up until now we have chosen to fit a cubic polynomial to the residuals to correct our initial

quadratic approximation for skewness. If a density is unimodal, this is all that is necessary.

However, for special cases such as multimodal densities, we can fit a higher order polynomial

correction. Since we fit each hyperparameter independently of the other, this is easily done. We

focus solely on the marginal θs and fit both a quartic and quintic correction.

Figure 5.22 shows the process of fitting the marginal τs using three different corrections. As

shown here and in the initial results, the cubic correction was unable to capture the multimodal

shape. The quartic polynomial has up to three turning points, so can detect up to two modes. It
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Figure 5.22: Georgia: The process of approximating τs by fitting a cubic correction (top row), a
quartic correction (middle row) and quintic correction (bottom row). Note that the first column is fitting
the initial quadratic, and the polynomial update, whilst the second and third columns are approximating
the θs and τs respectively. Going to a higher order polynomial worked well for approximating the
multimodal density.

did not quite capture both modes. However it was a much better approximation than the cubic.

Finally the quintic correction detected both modes and gave a very nice approximation.

Comparisons with NIFA

We end this section by giving some comparisons with INLA’s NIFA method. As discussed

previously, the speed and accuracy of NIFA is very good. However, NIFA does assume the

marginal is a Gaussian with different standard deviations on each side, hence only being able

to give univariate approximations. We give visual comparisons (Figure 5.23) and Kullback-

Leibler divergence and Hellinger distances between INLA’s dense grid (regarded as the true

density) and the approximations in Table 5.3.
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Figure 5.23: Georgia: Comparisons between NIFA and polynomial correction (cubic correction for
all but θs which has a quintic correction).

The polynomial correction we use is cubic for all marginals, except for θs, for which we

use a quintic correction. As expected, for θs, the NIFA approximated this with a unimodal den-

ity. The approximation for θu was slightly off for the NIFA too, with the Kullback-Leibler and

Hellinger distance being much higher than the cubic correction. The other posterior marginals

were well approximated by both methods, and NIFA outperformed the cubic correction for the

marginal θy2 .

Table 5.3: Georgia: Distance measures comparing INLA’s dense grid with both the NIFA and poly-
nomial correction methods. Cubic polynomials were used for all but the second marginal, which used
a quintic. The corrections gave the more accurate approximations for each hyperparameter except θy2
according to both the Kullback-Leibler divergence and Hellinger distances.

K-L.Div H.Dist
Parameter NIFA Poly NIFA Poly
θu 0.30047 0.00923 0.17790 0.04445
θs 0.25381 0.00601 0.22173 0.04080
θy1 0.01446 0.00250 0.05836 0.02597
θy2 0.00459 0.00671 0.03598 0.04059
θδ 0.02541 0.01550 0.06262 0.05712
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5.4 Discussion

We discuss several different modifications to make LDS-based methods more useful in practice.

Starting from INLA’s reparameterisation of the hyperparameters to something that is “more

Gaussian”, we use the projected function evaluations and log-pointwise means to fit a quadratic

polynomial. This can be considered to be a Gaussian approximation to the reparameterised

hyperparameter and it works fairly well. However, we can do better by examining the residuals

between the quadratic fit and pointwise means, and come up with a cubic correction polynomial

to update the quadratic polynomial and account for any disparities in the location, spread and/or

skew.

The results show that the method works well, and outperforms grid-based methods in terms

of both computational speed and accuracy. Using an embedded lattice also allows us to make

further computational gains by simply removing points systematically from the LDS. INLA’s

default method of estimating hyperparameter marginals is the NIFA, which is both fast and

accurate. Our methods are not as computationally efficient as NIFA, but they can be more

accurate and much more flexible, as shown with the multimodal issue. The methods proposed

work well in practice and they can easily be incorporated into the INLA inference framework

as an alternative to grid-based approximations or the NIFA, and the LDS points can easily be

re-used in the estimation of latent parameters.
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Chapter 6

Latent Field Approximations for

Spatio-Temporal Models of Crime

using INLA and LDS

We have predominantly focussed our attention on hyperparameter estimations using LDS-based

methods. This chapter will focus on the problem of latent parameter estimation. Due to recent

upgrades in the INLA methodology, we can input a point set design of our choice and use this

in INLA to perform inference (see Section 5.2.3 for details). We use this new upgrade on the

challenging example of modelling a spatio-temporal point process model of crime in Hamilton,

New Zealand. The results for this work are very much preliminary at this stage with respect to

both the application of an LDS point set to approximate latent fields, and the crime model itself.

We start with brief introductions to crime modelling and the data we are working with. Also,

we present a class of model used for point patterns, called the log-Gaussian Cox process, and

how INLA performs inference on such models. Finally, we present the results of our study of

crime and conclude about how LDS performs when used for approximating latent parameters.
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6.1 Introduction to Crime Modelling

Efficient policing requires optimal use of policing resources, and is especially necessary for

taking more preventative actions against crime as opposed to reactive measures. Intelligence-

led policing, where data-driven methods used in conjunction with criminal theory drives police

resource allocation and decision making, are becoming ever more popular and necessary [53,

65]. Given that criminal activity and some corresponding factors occur within a geographical

context including space and time [25], spatio-temporal modelling may lead to more accurate

prediction of crime than models that do not take space and time variables into consideration.

Prediction analysis can be made in the form of hotspot analysis [64, 66], where certain areas

are identified as having a high intensity of crime.

6.1.1 Spatial Models of Crime

Observations of crime that are geographically referenced in space (such as in latitude/longitude

coordinates or northings/eastings coordinates) is a type of spatial data, and can be defined as

realisations of a stochastic process with spatial indices

Y (s) ≡ {y(s), s ∈ Ω}, (6.1)

where the spatial domain Ω is a fixed subset of Rs (usually, and here, s = 2), and s is the spatial

coordinate or unit. According to [21], there are three general ways to treat spatial data, are-

al/lattice, point-referenced, and spatial point patterns/process. Note that the lattices used in this

context are not to be confused with the lattice point sets we have been using. Previous studies

(for example, see [15, 25]) treat the data as area or lattice data, where y(s) is a random aggre-

gate value over an area unit s with well defined boundaries in Ω. Typically, a lattice treatment

is preferred, where the spatial domain is partitioned into regular polygons and the aggregate

number of crimes is the variable of interest, though some studies analysed crime rates at the

suburban level (for example, see [14]). We take an alternative approach by treating the spatial

domain as continuous (as close as possible), rather than partitioning discretely. We treat the

data as a spatial point process, where y(s) represents the occurence (or not) of an event, and the
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locations s are random. The values of y(s) take values of either 0 or 1. We also wish to add

covariate information, making this a marked point process.

The spatial process defined in (6.1) can be generally extended to include a temporal process.

We include a time dimension such that the data is defined by a process indexed by both space

and time

Y (s, t) ≡ {y(s, t), (s, t) ∈ Ω ⊂ Rs × R}, (6.2)

and are observed at n spatial locations and at T time points. Note the spatial domain is ex-

panded to include a temporal dimension, thus Ω is our spatio-temporal domain.

Research suggests that socio-economic and environmental factors are important to consider

for predicting potential crimes. Past offenders of petty crimes tend to live in areas of high unem-

ployment and low socio-economic status. Urban environments with high amounts of physical

deterioration leave an impression of lawlessness that can lead to anti-social behaviour, and may

empower some offenders to commit crimes due to a perceived lack of risk [14, 65].

Criminology literature also suggests that a strong predictor of crime are repeat and near-

repeat victimisation [17, 67, 84]. Repeat victimisation is a type of crime pattern where a target

is subject to victimisation multiple times, and are empirically likely to be targeted again. Near-

repeat victimisation is the empirically observed pattern where potential targets close to an initial

incident are at a heightened risk of being actual targets. As the distance between the initial vic-

tim and potential targets increase, and as time progresses, the likelihood of a potential target

becoming a victim of crime decreases. This suggests that crimes tend to occur in clusters over

space and time.

6.1.2 Data

The main dataset consists of petty (under $5000 worth of stolen or damaged goods), residential

burglaries in the Hamilton City region, Waikato, New Zealand. Hamilton is New Zealand’s
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fourth largest city and is the major centre of the Waikato province. As of June 2017, Hamilton

has an urban population of 198,600, and has enjoyed a steady annual population growth since

the 1960’s.

We are looking at a three month period from January - March 2014. All burglary locations

are geo-coded using the New Zealand traverse mercator (NZTM) northings and eastings. We

have excluded certain outer suburbs of Hamiton that we have considered too rural (mainly con-

sisting of farmland and lifestyle blocks) such as Tamahere, Gordonton and Whatawhata, and

have also excluded Temple View (roughly four kilometres away from the nearest suburb). A

shapefile was created and acts as the spatial domain, which excludes the two main physical bar-

riers, namely the Waikato river (split into five segments) and Lake Rotoroa (commonly referred

to as Hamilton Lake). Figure 6.1 shows the Hamilton region with physical barriers (in blue),

and the incidence of crime over the four months considered.

We consider three other ancillary datasets. The New Zealand Index of Deprivation (NZDEP)

is a measure of socio-economic status of a particular area. This area is usually defined on the

suburb level, but recent reports define the deprivation index on a smaller geographic area. The

NZDEP measures a range of factors, such as income, employment and population density. For

full details, see [1]. We represent social and physical environments through off-licence liquor

stores and recent incidence of graffiti. Off-licence liquor stores are a primary source for cheap

alcohol and may encourage anti-social behaviour. For each incidence of burglary, we measure

the distance from the burglary to the nearest liquor store and use this distance as a covariate.

Graffiti is also an act of anti-social behaviour and can be used as a measure of perceived lawless-

ness and physical degradation of an area. At each incidence of burglary, we count the number

of incidence of graffiti in the near vicinity (a circle with radius of 500 metres) over the previous

two-week period, with the number of recent graffiti incidence used as another covariate.
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Figure 6.1: All residential burglaries in Hamilton between January and March 2014.

6.2 Methodology

We give a brief overview of the modelling and methodology using INLA’s stochastic partial

differential equation (SPDE) approach. We discuss a new feature of the INLA SPDE approach

which takes into account physical barriers, before discussing approximations using the INLA

SPDE approach with an LDS point set.

6.2.1 Log-Gaussian Cox Processes

The log-Gaussian Cox process (LGCP) is a class of models commonly used for the analysis of

spatial point patterns (see for example [13, 58]). Given a bounded region Ω defined similarly in
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(6.2), a point process model is an inhomogeneous Poisson process where the number of points

in a region ω ∈ Ω is Poisson distributed with mean Λ(ω) =
∫
ω λ(s)ds, where λ(s) is the

intensity of the point process. The likelihood of an inhomogeneous point process, given an

intensity λ for some point pattern Y is given by

π(Y |λ) = exp

{
|Ω| −

∫
Ω
λ(s)ds

} ∏
si∈Y

λ(si).

The likelihood is usually intractible given the integrand
∫

Ω λ(s)ds cannot be calculated explic-

itly and must be approximated via numerical methods or otherwise.

Cox Processes arise from considering the intensity λ(s) itself as a stochastic process (these

are also referred to sometimes as a doubly stochastic process), by treating the intensity as a

realisation of a random field. Modelling the random field by log(λ(s)) = Z(s), where Z(s) is a

Gaussian random field, gives the log-Gaussian Cox process (LGCP). The LGCP can be framed

as a Bayesian hierarchical model, and is a type of latent Gaussian model (2.6) and thus can be

approximated in various ways using INLA.

The most common way to perform an LGCP analysis is to discretise the spatial domain Ω

into a fine grid (for example, see [36]). The authors of [77] argue that there is a large amount

of computational waste. Since Z(s) is a Gaussian random field, the corresponding multivariate

Gaussian vector has a dense covariance matrix, which limits how fine you can make the lattice.

If Z(s) is assumed stationary, the covariance matrix has a block-Toeplitz structure [29] that can

be used to speed computations, though these are unsuitable for second-order approximations.

We can model Z(s) as a conditional autoregressive (CAR) model similar to the two examples in

Section 5.3. However, it has been shown that the binning the observations is the main source of

error in the fine grid, thus requiring an extremely fine grid and wasting computational resources

(see [77] - Corollary A1).
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6.2.2 The Stochastic Partial Differential Equation Approach

The authors of [50] proposed the stochastic partial differential equation (SPDE) approach,

where a continuous spatial process (such as a Gaussian random field) is represented by a dis-

cretely indexed spatial stochastic process (such as a GMRF). We begin with the linear fractional

SPDE proposed by [85]

(κ2 −∆)α/2(τZ(s)) =W(s), (6.3)

where ∆ is the Laplacian, κ > 0 is a scale parameter, α is a smoothness parameter, τ is the

variance parameter, andW(s) is a Gaussian spatial white noise process. The stationary solution

to this equation is a stationary Gaussian field Z(s) with the Matèrn covariance function

Cov(Z(si), Z(sj) =
σ2

Γ(ζ)2ζ−1
(k||si − sj ||)ζBζ(k||si − sj ||). (6.4)

Here, ||si − sj || represents the Euclidean distance between two locations si and sj . Also,

the term Bζ denotes the modified Bessel function of the second kind, and order ζ > 0. The

Bessel function is a measure of smoothness and is kept fixed. The parameter σ2 is the marginal

variance, and κ > 0 is the scaling parameter. The scaling parameter is related to the range pa-

rameter r which is defined as the distance from a point at which the spatial correlation becomes

negligible. The authors of [50] measured the empirically derived definition for the range to be

r =
√

8ζ/κ, and [8] assesses the appropriateness of this quantity for different values of ζ. For a

full discussion of these parameters, including the empirical results for the range parameter, see

[50].

The solution to (6.3) (i.e the Gaussian field) can be approximated through a finite element

mesh, using a basis function representation defined by the triangulation of the spatial domain Ω

Z(s) =
G∑
g=1

Υg(s)Z̃g, (6.5)

where G is the number of triangularisation vertices, {Υg} is the set of deterministic basis func-

tions, and {Z̃g} are the set of Gaussian weights. The basis functions are chosen to have a local
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support, and are piecewise linear in each triangle, so Υg has the value 1 at vertex g and 0 for

all other values. From [50], Neumann boundary conditions are used and the precision matrix Q

for the Gaussian weight vector Z̃ is given by

Q = τ2(κ4C + 2κ2G + GC−1G), (6.6)

where C is a diagonal matrix, with elements Cii =
∫

Υ(s)ds, and the elements of the sparse

matrix G is Gij =
∫
∇Υi(s)∇Υj(s)ds, where ∇ is the gradient. Since G is sparse, the preci-

sion matrix Q is sparse and is dependent on τ and κ. Also Z is a GMRF that has the distribution

N(0,Q−1) and this represents the solution to the SPDE (in the stochastically weak sense).

6.2.3 Non-Stationary Gaussian Fields

Stationarity assumes that the spatial correlation is constant throughout the entire spatial domain.

For modelling real-world situations, this may not be appropriate. For example, the spatial cor-

relation of some phenomena may be influenced by physical barriers, or features such as moun-

tains, lakes and rivers. In these cases, a non-stationary spatial process may be more appropriate.

The SPDE approach is quite flexible and can extend the stationary case by specifying pa-

rameters κ(s) and τ(s), which vary over the spatial domain. This changes the SPDE given in

(6.3) to

(κ(s)2 −∆)α/2(τ(s)Z(s)) =W(s),

and the precision matrix given by (6.6) is modified to be

Q = T(K2CK2 + K2G + GK2 + GC−1G)T,

where T = diag(τ(si)) and K = diag(κ(si)). Note locations si are the mesh vertices. For

more on the SPDE extension to the non-stationary case, see (cite Bolin and Lindgren, Ingebret-

son 2013).
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The so-called barrier model, developed recently by [4], models spatial dependence in the

presence of physical barriers, where the spatial correlation becomes null where a physical bar-

rier lies. Rather than treating the Matèrn covariance (given by (6.4)) as a correlation function

of the shortest distance between two points, the barrier model views it as a collection of paths

through a Simultaneous Autoregressive (SAR) model. The local dependencies are manipulated

in such as way as to cut off paths the are crossing physical barriers. We do not describe the full

details here, but details can be found in [4].

6.3 Spatio-Temporal Point Patterns of Burglaries in

Hamilton

We present the results of the study of spatio-temporal point patterns of petty burglaries in Hamil-

ton, New Zealand. For this study, we are interested in building a spatio-temporal model of

burglaries over eight weeks, and using this to predict crimes for the week proceeding the eight

weeks. We use the LGCP models discussed in 6.2.1 and use INLA’s SPDE approach to per-

form inference on the unknown Gaussian random field. We assume the Gaussian field is non-

stationary, and consider the physical features of Lake Rotoroa and the Waikato river as barriers.

Thus, the spatial correlation along the boundaries of the barriers is 0.

We have two main objectives. The first is to analyse the spatio-temporal point patterns of

crime and perform hotspot analysis on the crime map predictions. The second is to use an LDS

point set inside INLA for the purposes of estimating the latent parameters. We do this in the

same way as shown in Section 5.2.3.

6.3.1 Model Setup

We consider three different models. The first model is a pure spatio-temporal model

Mod1 : ηi,t = µ+ fbarrier(si, t; r, rb = 0, σ, ρ). (6.7)
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where i = 1, . . . , ns indexes the spatial units and t = 1, . . . , T indexes the time units. Here,

ηi,t = Z(si, t). The parameter µ is the overall mean and the function fbarrier represents the

spatio-temporal correlation function for barrier models. For this example, this is a Matèrn

covariance function with parameters r, rb, σ, and ρ. The parameter r is the practical range dis-

cussed in Section 6.2.2. The parameter rb is the spatial correlation where a boundary occurs

and is treated as a constant with value 0. The parameter σ is the marginal variance and ρ is the

temporal correlation parameter and is modelled as an AR(1) process.

As stated in Section 6.1.2, we have three covariates. Deprivation indices, distance to nearest

liquor store, and instances of recent graffiti observations are given the acronyms Dep, Liq and

Graf respectively. For the second model, we add the deprivation index as a covariate

Mod2 : ηi,t = µ+ βdepDepi,t + fbarrier(si, t; r, rb = 0, σ, ρ), (6.8)

where βdep is the linear coefficient for the covariateDep. The third model includes all covariates

Mod3 : ηi,t = µ+ βdepDepi,t + βliqLiqi,t + βgrafGrafi,t

+fbarrier(si, t; r, rb = 0, σ, ρ), (6.9)

where βliq and βgraf are the linear coefficients for the covariates Liq and Graf respectively.

The model fitting process requires a triangulated mesh described in (6.5), which discretises

the spatial domain. Details on the mesh, and the principles of fitting good meshes can be found

in [8], and for mesh setups for barrier models, see [4]. For the LGCP model, rather than bin-

ning all observations into cells, we evaluate the model at all vertices of the mesh, and at every

observation point. This has the advantage of the data being modelled considering its actual loca-

tion, rather than the position of cells. Covariates need to be defined at all observation locations

and all vertices, which for our choice of covariates is easily done with little pre-processing time.

For the hyperparameters r and σ, we consider the so-called penalised complexity (PC)-
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Figure 6.2: The left hand side triangulation mesh discretises the spatial domain. The right hand side
dual mesh shows the Voronoi polygons, which are centred at the vertices of the triangulated mesh. These
volume of the polygons define the integration weights. All vertices outside of the spatial domain (red
solid line) are assigned a zero weighting.

prior, an informative prior derived in [26]. The PC-prior is defined by assigning the parameter

a value, with a corresponding probablility. For the range parameter r, we were quite specific,

assigning it a value of 0.5 (or 500 metres) with a 0.5 probability of being less than 500 me-

tres. This is based on previous studies cited earlier, where the spatial correlation of burglaries

tends to decline after 500 to 1000 metres. A PC-prior was also considered for the correlation

parameter ρ, though we were less specific, assigning a value of 0, with probability 0.95 of be-

ing greater than 0. We keep these priors the same over all three models. We define the SPDE

model on the mesh vertices and observation points, and to fit the LGCP model, these points are

considered to be the integration points. The methods in [50, 77] define the expected number

of events at each point to be proportional to the volume of the polygon from a dual mesh, thus

mesh vertices with larger edges are expected to have a larger expected value. It is clear though

in Figure 6.2 that mesh has vertices outside of the spatial domain, thus those values are given

a weight of zero. The points in the dual mesh correspond to the triangulated mesh vertices, as

shown in Figure 6.2. The corresponding Voronoi polygons give the integration weights of each

point. See references mentioned for full details.
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Recall that for our dataset, we have twelve weeks of burglary data. We use eight weeks of

data to fit an LGCP model, then use this to predict the following week. Performing this over

a 12 week period means that we first use the first eight weeks to predict the ninth week, then

use weeks 2 – 9 (the actual week 9 data, not the predictions) to predict week 10 and so on.

Note that this time period is from January to March 2014, thus we are essentially predicting

for the four weeks in March. We will present the model fit and predictions for all three models

described in (6.7), (6.8), and (6.9) respectively, using both INLA and LDS. Note that for com-

putational reasons we use int.strategy = "ccd" and strategy = "gaussian",

as using int.strategy = "grid" crashed the INLA program. For LDS, we use a K∗64,3

with strategy = "gaussian".

6.3.2 Spatio-Temporal Burglary Maps

We present here the spatio-temporal burglary maps for the first eight weeks, and the corre-

sponding predicted map for the following week. We present the latent field posterior means

for Mod1, Mod2, and Mod3 for the first run of eight weeks, using both INLA points and LDS

points. We also present the corresponding posterior mean and standard deviation predictions

for each model (Figures 6.3 to 6.14).

Comparing the two methods, there seems to be some difference in the latent field estimates.

Using LDS gives a larger range of estimates, thus the intensities on the LDS maps look more

profound then in the INLA estimates. However, on closer inspection, both LDS and INLA maps

have high intensities in roughly the same areas. These are the Hamilton East area close to the

University of Waikato, the south of Hamilton East close to the Waikato river, and Bader in the

south of Hamilton, south-west of the Waikato river. The prediction maps tell a similar story,

where the predicted intensities are most profound in Hamilton East and Bader. Areas of medium

intensities include the central city (adjacent and to the west of the Waikato river), the south-east

of Hamilton lake and the Fairfield-Enderly area, slightly north of Hamilton East. Areas of low

intensity are mainly in the northern suburbs of Rototuna, Flagstaff and Huntington, which are

areas of high socio-economic status and have experienced a high level of development over the
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last decade or so.

The maps and predictions for the following three weeks were similar to the first week, with

only very slight movements in intensities overall. The overall conclusion of the comparisons

between INLA and LDS are the same, that there really is not much difference between the two

methods with respect to estimation. The overall intensities did change from week-to-week, al-

beit only very slightly. The general areas of high intensities did not move much at all. We will

show this in more detail with the upcoming hotspot analysis.

Figure 6.3: The eight week model fit for Mod1 using INLA’s CCD points.
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Figure 6.4: Posterior mean and standard deviation for week 9 predictions, for Mod1 using INLA’s
CCD points.

Figure 6.5: The eight week model fit for Mod1 using LDS points.
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Figure 6.6: Posterior mean and standard deviation for week 9 predictions, for Mod1 using LDS points.

Figure 6.7: The eight week model fit for Mod2 using INLA’s CCD points.
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Figure 6.8: Posterior mean and standard deviation for week 9 predictions, for Mod2 using INLA’s
CCD points.

Figure 6.9: The eight week model fit for Mod2 using LDS points.
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Figure 6.10: Posterior mean and standard deviation for week 9 predictions, for Mod2 using LDS
points.

Figure 6.11: The eight week model fit for Mod3 using INLA’s CCD points.
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Figure 6.12: Posterior mean and standard deviation for week 9 predictions, for Mod3 using INLA’s
CCD points.

Figure 6.13: The eight week model fit for Mod2 using LDS points.

122



Figure 6.14: Posterior mean and standard deviation for week 9 predictions, for Mod3 using LDS
points.

6.3.3 Parameter Estimates and Statistics

Marginal likelihoods can be used as a criteria for Bayesian model selection, as Bayes factors

are defined as the ratio of marginal likelihoods of two competing models. INLA approximates

the marginal log-likelihood, which we will use for model comparisons (for details of the ap-

proximation, see Section 6.2 in [74]). Table 6.1 shows the marginal log-likelihood results for

all three models over the four weeks, using both INLA’s CCD points and the LDS points. Com-

paring INLA and LDS, there is very little difference between the two methods for all three

models over four weeks. Comparing the models, we see a significant increase in the marginal

log-likelihoods of Mod2 compared to Mod1, thus adding the covariate Dep was advantageous.

We see a further increase in marginal log-likelihood for Mod3, though the relative increase was

not as profound.

The parameter estimates in Table 6.2 (covariate estimates) and Table 6.3 (hyperparameter

estimates) also show very little difference between INLA and LDS. Since LDS-based meth-
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Table 6.1: Marginal log-likelihoods for all models, using both INLA and LDS points.

Marginal log-likelihood: INLA Marginal log-likelihood: LDS
Weeks Mod1 Mod2 Mod3 Mod1 Mod2 Mod3
1 - 9 -2358.62 -1775.03 -1734.25 -2361.37 -1774.79 -1735.25
2 - 10 -2373.92 -1803.56 -1763.53 -2376.34 -1802.5 -1765.42
3 - 11 -2389.96 -1833.91 -1787.58 -2386.61 -18362.64 -1787.04
4 - 12 -2381.95 -1817.77 -1777.75 -2390.72 -1815.97 -1778.25

ods for hyperparameter estimates are not implemented in INLA, it will use NIFA algorithm to

estimate the hyperparameters, so we expect little difference between INLA and LDS for hyper-

parameter estimation.

The main difference between INLA and LDS for this example was computational time. For

this particular example, we could get INLA to run each model in 953.7 seconds on average.

Using LDS, the computations took, on average, 4923.4 seconds. Although this may not be the

best representation, since further optimisation may be available if LDS is fully implemented

as an option in INLA (as opposed to using it as a substitute point set), we would expect that

the computational time would be higher for LDS given that INLA’s CCD only used 16 points,

whereas the LDS method used a Korobov lattice with 64 points.

Table 6.2: Posterior means and standard deviations for the covariate coefficient parameters for week
1 only. These were obtained using both INLA and LDS points. The tables show very little difference
between the covariate estimates.

Covariate coefficient estimates using INLA for Week 1
Mod1 Mod2 Mod3

Parameter Mean SD Mean SD Mean SD
µ -1.011 0.0204 -0.3418 0.0287 -0.2985 0.0293
Dep NA NA -0.2349 0.0079 -0.2241 0.0083
Liq NA NA NA NA -0.2702 0.0285
Graf NA NA NA NA 0.0505 0.0302

Covariate coefficient estimates using LDS for Week 1
Mod1 Mod2 Mod3

µ -1.0105 0.0203 -0.3415 0.0288 -0.2985 0.0293
Dep NA NA -0.2349 0.0079 -0.2241 0.0083
Liq NA NA NA NA -0.2702 0.0285
Graf NA NA NA NA 0.0505 0.0306
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Table 6.3: Posterior means and standard deviations for model hyperparameters for week 1 only. These
were obtained using both INLA and LDS points. The estimates are all very similar, since they both use
the NIFA to approximate the hyperparameter posterior distributions.

Hyperparameter estimates using INLA for Week 1
Mod1 Mod2 Mod3

Parameter Mean SD Mean SD Mean SD
θ1(σ) -8.6603 0.7345 -8.6549 0.7347 -8.6548 0.7346
θ2(r) -0.6254 0.9962 -0.6338 0.9951 -0.6348 0.9949
ρ 0.6693 0.4336 0.6692 0.4337 0.6692 0.4337

Hyperparameter estimates using LDS for Week 1
Mod1 Mod2 Mod3

θ1(σ) -8.6609 0.7356 -8.6567 0.7347 -8.6548 0.7346
θ2(r) -0.6258 0.9960 -0.6255 0.9961 -0.6348 0.4337
ρ 0.6693 0.4335 0.6694 0.4338 0.6692 0.4337

6.3.4 Hotspot Analysis - Maps

We are interested in the areas of high intensity. We look at these areas more closely in the

prediction maps. Four hotspot levels are chosen which represent the highest percentage level of

intensity. These four levels are 1%, 2.3%, 5% and 10%. The 2.3% hotspot was chosen as this

represents the realistic amount of space the police can monitor at any one time. The hotspot

maps are shown in Figures 6.15 to 6.20, where the hotspots are shown in red. We also plot the

actual observations of crime that occurred during that week. We present the week 1 results,

though the hotspot maps were quite consistent over all predicted weeks.

There are some interesting observations that we can see. For Mod1 at the 5% and 10%

level (Figure 6.15 and Figure 6.16), both INLA and LDS show hotspots on parts of the bound-

ary. This is more profound in the LDS case, where we have hotspots in the west of Hamilton

(around Nawton and Grandview Heights) and Te Rapa in the north-west. This may be due to

boundary issues with the mesh, though this issue is not present for Mod2 and Mod3. The INLA

hotspot maps show the hotspots are more scattered for 5% and 10% levels, whereas the LDS

hotspot maps are less so, suggesting that it may perform better when trying to capture clusters

of observations. Both models identify the main cluster of crimes around the Hamilton East/U-

niversity area at 1% and 2.3%, and start to capture the Bader area when increasing the level to

5%. At 10%, the hotspots start to capture the central city and the south end of Lake Rotoroa.
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There are no identifiable hotspots north of Enderly/Fairfield area.

Since we are using more points with the lattice than we are using CCD, we expect better

performance in terms of accuracy, and the hotspot maps seem to suggest this. For Mod2 and

Mod3, using INLA with an LDS seems to generate predictive hotspots which capture the clus-

ters slightly better than using the CCD, especially at the higher hotspot levels. We perform more

analysis on this in the next section.

Figure 6.15: Hotspot analysis for Mod1 using INLA’s CCD points.

6.3.5 Hotspot Analysis - Statistics

We present several statistics that are typically used to analyse hotspots. These are presented in

Table 6.4 (using INLA’s CCD) and Table 6.5 (using LDS points). We use the maps to count the

number of occurrences that lie in a hotspot. Let n the number of burglaries that lie in a hotspot,

and N be the total weekly amount of burglaries. The hit-rate is simply the ratio of hotspot
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Figure 6.16: Hotspot analysis for Mod1 using LDS points.

Figure 6.17: Hotspot analysis for Mod2 using INLA’s CCD points.
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Figure 6.18: Hotspot analysis for Mod2 using LDS points.

Figure 6.19: Hotspot analysis for Mod3 using INLA’s CCD points.
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Figure 6.20: Hotspot analysis for Mod3 using LDS points.

burglaries and total number of burglaries

HR =
n

N
.

The predictive accuracy index (PAI) introduced by the authors of [17] is a measure of the accu-

racy of a hotspot, taking into account the size of the hotspot. Let a be the area of the hotspot,

and A be the total area of the spatial domain. We have

PAI =
n/N

a/A
.

A feature of this commonly used statistic is that it will give larger PAI values as the size of

the hotspot decreases, making it hard to compare the performances of each hotspot level. The

authors of [39] introduced the penalised-PAI in which a parameter α is used to penalise the PAI

as a decreases. The penalised-PAI is given by

PPAI =
n/N

(a/A)α
.
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For our example, the penalising parameter α is found empirically for each level of hotspot, and

the values are shown in Table 6.4 under the column “alpha”. Note that when α = 1 we have

PAI, and when α = 0, we have the HR, thus 0 ≤ α ≤ 1.

Table 6.4: Hotspot predictive statistics for INLA, Week 9 predictions

Predictive Statistics for INLA Mod1 - Week 9 Prediction
Level n HR PAI alpha PPAI
1% 7 0.125 12.5 0.76 4.139
2.3% 11 0.196 8.540 0.7 2.754
5% 20 0.357 7.143 0.6 2.155
10% 26 0.464 4.643 0.55 1.647

Predictive Statistics for INLA Mod2 - Week 9 Prediction
Level n HR PAI alpha PPAI
1% 7 0.125 12.5 0.76 4.139
2.3% 11 0.196 8.540 0.7 2.754
5% 18 0.3521 6.429 0.6 1.940
10% 25 0.446 4.446 0.55 1.584

Predictive Statistics for INLA Mod3 - Week 9 Prediction
Level n HR PAI alpha PPAI
1% 6 0.107 10.714 0.76 3.548
2.3% 11 0.196 8.540 0.7 2.754
5% 18 0.3521 6.429 0.6 1.940
10% 26 0.464 4.643 0.55 1.647

The conclusions we draw from the statistics given in Table 6.4 and Table 6.5 are similar to

those that we drew from the hotspot maps. At the lower hotspot levels (1% and 2.3%), both

INLA and LDS models performed similarly, though Mod3 using LDS points performed slightly

better at the 2.3% level. Mod1 at the 10% level using LDS performed the worst, with the low-

est PAI, PPAI and only predicted 19 burglaries, compared to 26 - 29 burglaries for every other

model. The maps showed for Mod1 that there was a problem with predicting hotspots on the

boundaries, and this was particularly a problem with the LDS estimates. However, at the 10%

level, Mod3 using LDS performed the best, predicting 51.7% of all burglaries.

Over all weeks predicted, the results varied, depending on the distribution of all the crimes.

Figure 6.21 show that for week 9, there were a higher concentration of burglaries in the suburbs

of Hamilton East and Bader. The following weeks, the distribution of crimes were more spread,
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Table 6.5: Hotspot predictive statistics for LDS, Week 9 predictions

Predictive Statistics for LDS Mod1 - Week 9 Prediction
Level n HR PAI alpha PPAI
1% 8 0.142 14.286 0.76 4.730
2.3% 11 0.196 8.540 0.7 2.754
5% 14 0.25 5 0.6 1.509
10% 19 0.339 3.393 0.55 1.204

Predictive Statistics for LDS Mod2 - Week 9 Prediction
Level n HR PAI alpha PPAI
1% 9 0.161 16.071 0.76 5.322
2.3% 11 0.196 8.540 0.7 2.754
5% 18 0.3521 6.429 0.6 1.940
10% 26 0.464 4.643 0.55 1.647

Predictive Statistics for LDS Mod3 - Week 9 Prediction
Level n HR PAI alpha PPAI
1% 10 0.179 17.857 0.76 5.913
2.3% 12 0.214 9.317 0.7 3.005
5% 18 0.3521 6.429 0.6 1.940
10% 29 0.517 5.187 0.55 1.837

Table 6.6: Weekly hit rates for hotspot level 2.3%. Though there was little difference between using
INLA and LDS points, there was a significant drop in bumber of crimes predicted, due to the more evenly
spread distribution of burglaries over weeks 10, 11, and 12 (see Figure 6.21).

Hit-rates at the hotspot level 2.3%
INLA LDS

Week Mod1 Mod2 Mod3 Mod1 Mod2 Mod3
10 0.139 0.139 0.139 0.139 0.125 0.139
11 0.104 0.104 0.125 0.167 0.145 0.145
12 0.08 0.08 0.08 0.08 0.08 0.08

thus the hotspot analyses did not perform as well. Table 6.6 shows the hit-rates at the 2.3%

hotspot level. These values were smaller than week 9, where the hit-rate at 2.3% hotspot level

were between 19.6% and 21.4%. This was consistent over all hotspot levels, for both INLA’s

CCD and LDS point sets.

6.4 Discussion

The objective of this chapter was to use an LDS point set in INLA (as outlined in Section 5.2.3)

to perform latent field approximations. We chose to do this on the challenging problem of
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Figure 6.21: Occurrences of burglaries for weeks 9 to 12 with total burglary numbers. The distribution
of burglaries in week 9 were much more concentrated around the Hamilton East and Bader areas.

spatio-temporal point process model, using INLA’s SPDE approach. The primary result was

that we could implement an LDS into INLA, and the approximations were very similar to those

made using INLA’s default CCD points. Computationally however, the LDS method took much

longer to approximate the marginals for the latent field. Our preliminary results showed that

using an LDS took around five times longer than using INLA’s CCD strategy. However, we

draw two positive conclusions from this. First, although using an LDS was slow, it was compu-

tationally feasible. The same could not be said using a grid, as INLA would crash with memory

issues. Secondly, for this example, we did obtain better outcomes using LDS rather than CCD
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since for Mod2 and Mod3, we were able to identify hotspots that had more occurrences of bur-

glaries.

With regards to the crime model itself, this is a work in progress. The main aim is to de-

velop a tool that could be used to help police allocate their time and resources more efficiently.

Our model has incorporated some complexity in it by assuming the spatial correlations are not

stationary, and takes into account physical barriers that may affect spatial correlations. Our

models were able to predict burglary hotspots and potential clusters, and we showed that im-

provements can be made when taking into account socio-economic factors such as deprivation

indices. Since this model is relatively new, there are several ways of improving the models with

respect to accuracy and usability, such as using a more detailed spatial domain, or including

more informative covariates.
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Chapter 7

Conclusions and Further Work

This work on incorporating LDS-based methods has made several important contributions. A

significant contribution is the development of the LDS-based method itself. We cannot numer-

ically integrate in the same fashion as a grid point set, so using orthogonal projections and a

least-squares polynomial is a particularly novel way of marginalising. Along with the initial

development, we have outlined and proved several theorems regarding the convergence of these

approximations. Another contribution was expanding on these ideas and modifying the approx-

imations for compatibility within the framework of INLA. Using INLA’s hyperparameter trans-

formations, we can perform the approximations in two steps, by approximating with a quadratic

polynomial, and updating that approximation with a cubic (or a polynomial of higher order if

necessary). Comparisons using several examples show that these approximations outperform

INLA’s grid approximations for both accuracy and speed, while allowing more flexibility then

INLA’s NIFA approximation, since NIFA cannot approximate any distribution with more than

one mode.

A recent update of the INLA software has allowed us to explore using LDS point sets to

approximate latent parameters. We show that, although computation of the latent parameters

using LDS are much slower than using INLA’s CCD strategy, they are computationally feasi-

ble (unlike INLA’s grid). Also, our example in Chapter 6 seems to suggest that we can obtain

slightly better approximations for predictions. Lastly, we have developed a spatio-temporal
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model of crime which can be a predictive tool to analyse future hotspots of crime. Although

this model is in the early stages of development, with further exploration and work, this could

be developed into something very useful in practice for police to help them allocate their scarce

resources.

Whilst we have made contributions to the development and theory of LDS-based methods

for Bayesian inference and their potential applications to the INLA methodology, we do not

claim that this work is complete. There are a number of open questions that are yet to be

answered. We give an overview of our conclusions before posing some unanswered questions

for future work.

7.1 Conclusions

The motivation of this thesis is outlined in Section 1.1, with thesis objectives set out in Section

1.2. We were intially motivated by INLA’s loss of computational efficiency for latent Gaussian

models with a large amount of hyperparameters, especially when performed using a grid point

set. The two main objectives were to explore the use of LDS is the marginalisation process, and

to create a general algorithm that could be implemented into the INLA inferential framework

which could be used on a real-world example. Our conclusions are as follows:

• LDS-Based Methods

We show that grid-based methods can be improved upon in two ways. The first way is

by substituting a grid with a maximal-rank lattice in the marginalisation process. This

can improve accuracy, especially for marginals that are skewed in shape. However, it

does little to improve speed, since the number of points required increases exponentially

as dimension increases, similar to the grid. The second way is to bypass grids altogether

and use LDS point sets. This requires orthogonally projecting all function evaluations

onto each marginal space and using a least-squares polynomial fit through the scattered

points. We conclude that for approximating marginal densities from multivariate joint

sensities, that this method requires far fewer points than a grid.
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The convergence theorems presented in Section 4.4.2 provide several conclusions about

our methods:

1. Approximations using least-squares is equivalent to weighted least-squares.

2. Under sufficient smoothness conditions and abscissa points corresponding to either

Chebyshev nodes or equidistant points, the least-squares approximation converges

to the target as the number of points evaluated at each abscissa point increases

without bound.

3. Given that the above statement may not be practical in some cases as this requires

so many points, an alternative is to use LDS and partition the points into equally

spaced intervals. Let n be the number of partitions made, and that the pointwise

mean of each partition is found, a polynomial of degree n−1 will pass through the

pointwise means.

4. As the partition lengths become small, and as the number of points increase in each

partition, the least-squares approximation will converge to the true posterior.

However, there is the significant drawback of the choice of polynomial degree. Too low

and we cannot capture the shape, too high inevitably leads to Runge’s phenomenon. Thus

from a practical perspective, LDS-based methods in its initial form may not be suitable

for INLA.

• Modifications and Compatibility with INLA

The modifications presented in Section 5.2, which includes a partitioning process, trans-

formations to the log-scale, approximation with an initial quadratic fit and performing

a skew correction, overcomes the problem of polynomial choice. It also sychronises

well with INLA, since the hyperparameters are initially transformed to something re-

sembling a Gaussian. We conclude using the examples presented in Section 5.3 that our

new approximations perform far better than INLA’s grid-based method with respect to

both computational speed and accuracy. We also conclude that by performing the cor-

rections by analysing residuals, that our method is more flexible than INLA’s numerical

integration free algorithm (NIFA), since NIFA can only approximate unimodal densi-
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ties. However, we cannot claim that our methods are more computationally efficient than

NIFA.

• Latent Field Approximations using LDS

Recent upgrades to INLA has resulted in allowing user-defined points in the INLA algo-

rithm, which allows us to estimate latent parameters using an LDS design. Performing

this on a simple AR(1) model shows no real difference between using an LDS or any

of INLA’s strategies (empirical Bayes (EB), central composite designs (CCD) or grids)

with respect to estimation, though computationally, the grid was far slower. Testing this

on our challenging example in Chapter 6 highlighted a few key points. First, although

using an LDS was computationally slower than using CCD, it was faster than the grid. In

fact, the grid was not computationally feasible and crashed several times with memory

issues. The LDS used 64 points, with the CCD only using 16, thus we would expect

better approximations of the latent parameters. We observed that this was the case and

that our predictive hotspot maps identified more instances of burglaries at higher hotspot

levels than the CCD points.

7.2 Further Work

As stated in the introduction of this chapter, we cannot claim that this work is complete. There

are a number of questions left outstanding, and we make the following suggestions for potential

future work.

• The modified-LDS algorithm with polynomial corrections require a choice of the num-

ber of points and partitions. If we only fit a quadratic as our approximation, the number

of partitions must be three or greater. Going further and fitting a cubic correction re-

quires at least four partitions. We must also have a sufficient number of points in each

partition to get an appropriate estimate for the pointwise mean. More work is needed to

provide guidance on the best number of points or partitions that should be used, given

the dimensionality of a problem. In our examples in Section 5.3 (both of them being five

dimensional problems), we used 15 partitions with 512 points, which worked well as
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there were a good number of points in each partition. For the Zambia problem, we could

go as low as 64 points and 15 partitions, though we could not do this for the Georgia

example. Further analysis into this problem of points and partitions would be beneficial

and may help towards getting this implemented into INLA itself, which would be useful

in solving the next two points.

• A full implementation of our methods into INLA would allow for a deeper analysis of

performance. Currently, we are assessing computational efficiency based on the number

of points used only, not necessarily actual computational time. Whilst we feel that this is

enough to determine what methods are best with respect to speed, it would be beneficial

to make comparisons between, say LDS and grids, with respect to computational time.

• Following from the previous point, full implementation of LDS methods into INLA

would allow to make a full inference analysis of a problem. Estimations of the latent

field in Chapter 6 are performed, but estimations of the model hyperparameters are per-

formed (by default) by the NIFA strategy, since LDS methods are not implemented yet

in INLA. We can of course estimate the hyperparameters separately, however analysis

on the true computational time cannot be performed.

• We use Korobov lattices in the LDS methods we propose, due to their ease of use and

ability to find good generating constants with current software. However, there are many

other LDS point sets that could be explored in this problem. Our general feeling is that it

may not greatly improve approximations, but it could still be a worthwhile task to explore

different point sets.

• The crime models presented in Chapter 6 are currently a work in progress. There are

several ways in which these models could be improved. We have chosen three covariates

that we feel represent social and environmental factors of crime, though we do not claim

that these are the best choice. Boundary problems can arise in the hotspot analysis for

our spatio-temporal model with no covariates, suggesting that a finer mesh defined along

the boundaries may be necessary. Finally, our spatial domain is quite naive, with only

taking into account the physical boundaries of the river and lake. We have not factored in
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areas such as parks, industrial areas and schools. A greater representation of the spatial

domain would make these models more informative for the end-user.

139



Bibliography

[1] J. Atkinson, C. Salmond, and C. Crampton. NZDEP2013 Index of Deprivation. New

Zealand Ministry of Health, NZ, (2014).

[2] H. Austad and N. Friel. Deterministic Bayesian inference for the p* model. AISTATS,

Journal of Machine Learning, 9:41–48, (2010).

[3] A. Azzalini and A. Capitano. Statistical applications of the multivariate skew-normal

distribution. Journal of the Royal Statistical Society: Series B, 61(2):579–602, (1999).

[4] H. Bakka, J. Vanhatalo, J. Illian, D. Simpson, and H. Rue. Non-stationary Gaussian

models with physical barriers. ArXiv e-prints, (2016).

[5] R. Bartoszynski and M. Neiwiadomska Bugaj. Probability and Statistical Inference, 2nd

Edition. Wiley, New Jersey, (1997).

[6] J.M. Bernado and A.F.M. Smith. Bayesian Theory. Wiley, Chichester, (2000).

[7] J. Besag. Spatial interaction and the statistical analysis of lattice systems (with discussion).

Journal of the Royal Statistical Society: Series B, 36(2):179 – 195, (1974).

[8] M. Blangiardo and M. Cameletti. Spatial and Spatio-temporal Bayesian Models with

R-INLA. Wiley, Chichester, UK, (2015).

[9] W.M. Bolstad. Introduction to Bayesian Statistics, 2nd Edition. Wiley, New Jersey,

(2007).

[10] W.M. Bolstad. Understanding Computational Bayesian Statistics. Wiley, New Jersey,

(2010).

140



[11] I. Borosh and H. Niederreiter. Optimal multipliers for pseudo-random number generation

by the linear congruential method. Bit, 23:115 – 129, (1983).

[12] N. Bou-Rubee and M. Hairer. Non-asymptotic mixing of the MALA algorithm. IMA

Journal of Numerical Analysis, 33(1):80–110, (2013).

[13] A. Brix and P.J. Diggle. Spatio-temporal prediction for log-Gaussian Cox processes. Jour-

nal of the Royal Statistical Society: Series B, 63(2):823 – 841, (2001).

[14] M. Brown. Modelling the spatial distribution of suburban crime. Economic Geography,

58(3):247 – 261, (1982).

[15] P.T. Brown, C. Joshi, S. Joe, and N. McCarter. Spatio-temporal modelling of crime using

low discrepancy sequences. Proceedings of the 31st International Workshop on Statistical

Modelling, 2:7 – 12, (2016).

[16] C.G Broyden. The convergence of a class of double-rank minimization algorithms. Jour-

nal of the Institute of Mathematics and Its Applications, 21(1):368–381, (1970).

[17] S.P. Chainey and B.F.A. da Silva. Examining the extent of repeat and near repeat vic-

timisation of domestic burglaries in Belo Horizonte, Brazil. Crime Science, 5(1):1 – 10,

(2016).

[18] W. Cheney and D. Kincaid. Numerical Mathematics and Computing, 2nd Ed. ITP, Bel-

mont, CA., (1994).

[19] O. Christensen, G. Roberts, and M. Skold. Bayesian analysis of spatial GLMM using par-

tially non-centred MCMC methods. Journal of Computational and Graphical Statistics,

15(1):1–17, (2006).

[20] P.D. Congdon. Applied Bayesian Hierarchical methods. Clarendon Press, Boca Raton,

(2010).

[21] N. Cressie. Statistics for Spatial Data. Wiley, UK, (1993).

141



[22] J. Dick, F.Y. Kuo, and I.H. Sloan. High dimensional integration - the quasi-Monte Carlo

way. Acta Numerica, 22:133–288, (2013).

[23] J. Dick and F. Pillichshammer. Digital Nets and Sequences. Cambridge University Press,

Cambridge, (2010).

[24] L. Fahrmeir and G. Tutz. Multivariate Statistical Modelling Based on Generalized Linear

Models. Springer, Berlin, (1994).

[25] J. Fitterer, T.A. Nelson, and F. Nathoo. Predictive crime mapping. Police Practice and

Research: An International Journal, 16(2):121 – 135, (2014).

[26] G.A. Fuglstad, D. Simpson, F. Lindgren, and H. Rue. Constructing priors that penalize

the complexity of Gaussian random fields. ArXiv e-prints, (2015).

[27] A. Gelman, J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari, and D.B. Rubin. Bayesian

Data Analysis, 3rd Edition. Chapman and Hall, New York, (2014).

[28] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions and the Bayesian

restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence,

PAMI-6(6):721–740, (1984).

[29] J.E. Gentle. Matrix Algebra. Theory, Computations and Applications in Statistics.

Springer, New York, (2007).

[30] W.R. Gilks and P. Wild. Adaptive rejection sampling for gibbs sampling. Journal of the

Royal Statistical Society: Series C, 41(2):337–348, (1992).
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