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Abstract

Graphical Processing Units are de-facto standard for acceleration of data par-

allel tasks in high performance computing. They are widely used to accelerate

batch machine learning algorithms. High-end discrete GPUs are characterized

by a very high number of cores (thousands), high bandwidth memory opti-

mized for the stream access and high power requirements. Integrated GPUs

are characterized by a medium number of cores (hundreds), medium band-

width memory shared with CPU optimized for the random access and low

power requirements. Data stream processing applications are often required

to provide response within the limited time frame, operate on data in relatively

small increments and have strict power requirements if deployed on the embed-

ded devices. This work evaluates performance of integrated and discrete GPUs

belonging to the same chip family on several variants of k-nearest neighbours

algorithm over sliding window and stochastic gradient descent using OpenCL

and novel Heterogeneous System Architecture platforms. We conclude that

integrated GPUs provide a niche solution catering for to small work sizes that

offers better power efficiency and simplicity of deployment.
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Chapter 1

Introduction

Real world applications such as industrial monitoring, sensor networks or fi-

nancial data, generate large unbounded streams of data which have to be pro-

cessed within the pre-defined response time. For instance, acquirers connected

to international payment systems such as Mastercard are required to produce

payment authorization message within the payment system specified time-

frame or face financial penalties for each violation. The industrial or security

monitoring system has to detect abnormal conditions and take the appropriate

action. The data volume and computational complexity required for the data

stream processing is often well above the capabilities of a single server and

the problem is tackled by deploying stream processing systems based on either

proprietary or open source real-time frameworks such as Apache Storm[63] or

Apache Spark[80]. Graphical Processing Units (GPUs) are an industry stan-

dard accelerator for a high performance computing used for a wide variety of

scientific and industrial tasks and existing machine learning frameworks such

as Microsoft CNTK[22] incorporate GPU offload to speed up computations.

Deployment of GPUs in a cluster environment presents certain challenges due

to the high power consumption and fast interconnect requirements. The de-

veloper should also be aware of the GPU memory management and in clusters

of heterogeneous GPUs of the different hardware computing capabilities and

thus different scheduling requirements. An integrated GPU on the other hand
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is present in most modern processors, tightly coupled with the system mem-

ory and might provide a cheap alternative to speed up computation without

difficulties associated with discrete GPU deployment. Integrated GPUs on

the embedded devices are used to satisfy growing computing requirements

in robotics, avionics and medical diagnostics while maintaining or decreasing

their weight, size and power requirements. A number of papers investigated the

possibility of using integrated on-chip GPUs in high performance computation.

Jasson[55] performs simple benchmarks such as vector addition and chained

kernel execution and concludes that iGPU performs better for the small prob-

lem sizes, Ching et al[38] highlight the CPU-GPU data transfer bottleneck of

the discrete GPU computation and perform benchmarks of the database man-

agement system performance. The other avenue is the embedded computing

where GPU offload is seen as a way to conserve power - Grasso et al.[52] re-

port 8.7 speedups with 32% of the power consumed by Mali GPU compared to

Cortex-A15 core using their benchmark application. The recent Heterogeneous

System Architecture(HSA) [21] is standard for a heterogeneous computation

on CPUs, GPUs and other programmable and fixed-function devices with a

high-bandwidth shared memory access. The HSA-based application interface

can be deployed in both desktop and embedded settings. The current reference

standard implementation is supported by AMD on A-series APU. This work

attempts to investigate integrated GPU performance on machine learning al-

gorithms such as k-nearest neighbours used in latency constrained applications

such as network intrusion and fraud detection and an algorithm requiring it-

erative processing of the small workloads such as stochastic gradient descent.

The performance is evaluated on discrete GPU and integrated GPU. The in-

tegrated GPU tests were performed using standard OpenCL drivers and a

reference HSA Runtime for Linux platform. This work is organized as follows:

chapter 2 presents GPU programming concepts and notable frameworks, chap-

ter 3 describes system architecture, chapter 4 describes several approaches to

solving and parallelising k-nearest neighbours problem, chapter 5 describes
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stochastic gradient descent and its parallelisation, chapter 6 contains perfor-

mance benchmarks and chapter 7 presents conclusions and future work.



Chapter 2

General Purpose GPU

Computing

2.1 Introduction

The modern Graphical Processing Units (GPU) greatly outpace CPUs in arith-

metic throughput and memory bandwidth for data-parallel tasks. Since 2001

efforts were made to port data parallel algorithms to GPUs - first using shader

languages such as HLSL, then with the release of Nvidia G80 in 2006 using

extensions to the C programming language - CUDA[14]. Presently there is

a number of programming frameworks targeting specifically GPU architec-

ture such as CUDA[67], OpenCL[13], RenderScript[18], DirectCompute[6] and

more generic parallel-processing frameworks such as OpenMP[16] and AMP[4]

which provide GPU backend as one of the targets. The differences in the

hardware architecture between CPU and GPU is reflected in the program-

ming model of the traditional GPU-specific languages which contain hardware

architecture specific language constructs. This chapter provides an overview of

GPU architecture and most known programming frameworks and lists limita-

tions of the traditional GP GPU programming. It also discusses the OpenCL

2.0 standard, which addresses some of the limitations and describes the Het-

erogeneous System Architecture (HSA), an optimized platform architecture



2.2. GPU ARCHITECTURE 5

for OpenCL 2.0.

2.2 GPU Architecture

Figure 2.1: CPU versus GPU hardware architecture. Reproduced from
NVIDIA GPU ARCHITECTURE and CUDA PROGRAMMING ENVIRON-
MENT by Alan Tatourian[88]

The main differences between modern CPU and GPU architectures are

the level of parallelism and ability to directly address tiered memory. Mod-

ern CPU with 2 hex-cores support a maximum of 12 threads (24 with hyper

threading), where the minimal unit of execution for the NVIDIA GPU (called

wavefront) is 32 threads. Modern GPUs implement a SIMT (Single Instruc-

tion - Multiple Thread) execution model (AMD/NVIDIA desktop GPUs) first

introduced by NVIDIA in the G80 model[14]. The single unit of scalar instruc-

tions called kernel is scheduled to execute in blocks of data-parallel threads on

SIMT hardware. Each instruction in a block is executed in a lock-step. The

control divergence is emulated by masking - the device executes instructions

from both branches of the conditional statement[19][67]. The CPU thread is

a heavy-weight entity which is centered around execution of a specific task for

an extended period of time. Whenever the CPU needs to preempt the running

thread, its register state is stored and another thread takes over. This makes

a context switch a costly operation and operating systems attempt to mini-

mize number of context switches per second. The GPU context switch is an

extremely lightweight operation and is routinely used for the latency-hiding -
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whenever the wavefront is waiting on data, the GPU schedules another wave-

front for execution. The GPU registers are private for each thread and are not

reallocated until thread execution completes.

Modern CPUs provide a flat view of the operating system memory while

GPUs divide memory in tiers based on the access speed:

• private/register - private to the current thread

• local - shared within a threadblock

• global - accessible by every thread

Figure 2.2: GPU Memory Tiers. Reproduced from NVIDIA GPU AR-
CHITECTURE and CUDA PROGRAMMING ENVIRONMENT by Alan
Tatourian[88]

GPU programming uses the following abstractions:

• Kernel - a unit of execution

• Thread - a single unit of processed data

• Threadblock - a group of threads sharing the same kernel and local mem-

ory.
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The unit of scheduling is called wavefront in AMD terminology or warp in

NVIDIA and typically consists of 32 threads on NVIDIA and 64 on AMD hard-

ware. The GPU chip is equipped with a number of SIMT cores which execute

the same instruction for each warp. Divergence of control results in underload

of the processing units and reduces performance. The branching should be

reduced to wavefront granularity to avoid wasting execution cycles[84][67]. It

should be noted that the wavefront size is a hardware specific feature and its

optimization should be performed at the run-time.

2.3 General Purpose GPU Computing Frame-

works

Existing General Purpose GPU (GP GPU) computing frameworks can be clas-

sified by the level of provided hardware abstraction: high-level frameworks

integrate with existing high-level programming language such as Java to pro-

vide parallel computing capabilities without exposing any hardware details[15].

Traditional GPU languages such as CUDA[67] expose task scheduling and

memory management giving the expert user fine-tuning capabilities. Low

level languages provide an intermediate binary format compatible with mul-

tiple hardware targets. The tree of the GP-GPU technologies is presented in

the Figure 2.3.

2.3.1 High Level Languages

OpenACC and OpenMP are high level parallel programming frameworks that

specify a set of annotations, environment variables and library routines for

shared memory parallelism in C/C++ and Fortran programs[1][16]. Microsoft

C++ AMP[4] is a C++ library which enables parallel computations for CPU

and GPUs (using Microsoft DirectX Shading Language). The Rootbeer GPU

compiler provides for transparent compilation of Java code into CUDA[74].

Aparapi provides a way to generate OpenCL kernel code from Java, theoret-
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Figure 2.3: GP GPU technologies tree. Reproduced from C. Nugteren, Im-
proving the Programmability of GPU Architecture, p. 21 [69]

ically allowing code which can be executed on CPU and offloaded to GPU if

needed[2]. Project Sumatra is a OpenJDK project which focuses on the de-

velopment of Hotspot virtual machine extensions capable of offloading JDK 8

Stream API[12] computations to the GPU[15].

2.3.2 GPU-specific Languages

GPU-specific languages provide a programming model consistent with the

GPU hardware implementation.

• CUDA - A programming language for NVIDIA hardware based on the

C language. Kernels are expressed as C-functions for one thread with

parallelism defined at run-time by specifying dimensions of the execution

grid and the thread blocks[67]

• OpenCL 1.X builds upon ideas implemented in CUDA by adding de-

vice management APIs and providing hardware-agnostic programming

specification. OpenCL gives a write once-run anywhere guarantee but

does not give any performance consistency guarantees across different

hardware[86].
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• RenderScript - an Android GPU computing component which uses OpenCL

with Java binding programming model - C-style kernels and Java-based

control code. RenderScript does not provide any APIs for the workgroup

size control in a bid to provide performance portability between different

devices[18].

• DirectCompute/HLSL - Microsoft extension to Direct3D API for gen-

eral purpose computing. It uses a proprietary scripting language first

introduced in DirectX 9 that has limited support for double precision

computing. DirectCompute only allows to specify the workgroup size at

the compile time[6].

2.3.3 Low-Level Languages

The low level assembly representation is used to abstract compiler implemen-

tation from the actual hardware since each model or even revision may have

a different instruction set. The translation is performed by a Just-In-Time

compiler before the kernel execution. Each vendor provides different low level

specifications: NVIDIA CUDA uses Parallel Thread Execution and Instruction

Set Architecture (PTX ISA)[17], Khronos Group specifies Standard Portable

Intermediate Representation(SPIR)[20], and HSA Foundation specifies Het-

erogeneous System Architecture Intermediate Language (HSAIL)[21].

2.3.4 Limitations

Input Size The massively parallel nature of GPU platforms require a certain

amount of data to be passed to the kernel to achieve maximum performance.

Figure 2.4 shows execution time of a kernel which assigns index to each array

element Xi = i on AMD A8-7600 integrated GPU. The execution time starts

to increase when input size is above 1024 and remains constant for lower val-

ues. Maximum performance on the integrated GPU of AMD A8-7600 will be

achieved when input size will exceed 1024 elements.
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Figure 2.4: Kernel launch time on integrated Radeon R7 GPU(µsec).

GPU Memory Size and Host-GPU Transfer The discrete GPU requires

transfer of data from the host to the GPU memory which adds additional

overhead to the computations and requires task partitioning according to the

memory specification of the GPU[83]. Memory transfer is a bottleneck for

Aparapi and its developers allow explicit memory management[2]. This effec-

tively reduces a framework which promises general CPU-GPU interoperability

to a mere Java wrapper of the OpenCL API.

Kernel Launch Constant time is needed to setup kernel launch which might

offset any gain from parallelization if the data can be processed faster sequen-

tially. Some algorithms have stop conditions that have to be checked to find

out if the algorithm requires additional iterations. OpenCL 1.X specification

does not allow scheduling of the kernel execution from within the kernel itself.

In this case we need to synchronize with the host portion of the program to

set up additional kernel launches introducing a bottleneck.

2.4 OpenCL 2.0

OpenCL 2.0 standard[13] introduces several features which attempt to address

limitations of GPU programming:
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• Shared Virtual Memory - both host and kernel code share the same

address space thus either hiding memory transfers (discrete GPU driver

stack) or if backed by the hardware architecture such as HSA eliminate

the need for it[21].

• Dynamic Parallelism - OpenCL 2.0 allows scheduling of kernels from

within a kernel without host interaction reducing the host CPU-GPU

synchronization bottleneck.

• Pipes - the pipes feature allows for passing data from kernel to kernel

without processing the whole input.

2.5 HSA Platform

AMD introduced the Heterogeneous System Architecture platform as an opti-

mized platform architecture for OpenCL 2.0. Its specification introduces a set

of requirements that allow both GPUs and CPU to share the same memory

space, synchronize execution using signals and atomics, and to schedule exe-

cution both from the GPU and the CPU[21]. Task execution is performed by

agents which represent CPU or GPU nodes. The task execution is scheduled

via queues and synchronized using signals. HSA memory model guarantees

sequential consistency for the correctly synchronized programs. At the mo-

ment (Feb 2016) there is a OpenCL 2.0 - HSAIL compiler available[10] and a

Linux-based runtime environment[9].

2.5.1 HSA Queues

HSA uses queues to schedule code execution. A HSA queue is a ringbuffer

which contains packets with either call or synchronization parameters. The

queue maintains two indexes - read index and write index. Write index is

modified by the user and used to submit packets to the queue. The read

index is updated by the packet processor whenever the packet is taken for
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execution. As soon as a packet is written to the queue, the ownership is

taken by the HSA packet processor and it may change packet contents at any

time[21]. Compared to traditional dispatch where the execution is scheduled

via user-mode and kernel-mode driver layers, the HSA dispatch intends to

be lightweight and a source-agnostic way of scheduling execution. The HSA

Queues support work-stealing, that is several HSA agents may be attached to

the queue to share the workload. A developer may opt to provide his own

queue implementation. This feature allows to schedule CPU code execution

from within the GPU kernel.

2.5.2 HSA Signals

HSA uses signals to perform synchronization between the host and kernels

being executed or to signal completion of the task. A signal is essentially a

shared memory variable modified by the HSA agent. The runtime environment

provides a way to check the value of the signal or wait for the specific value.

2.5.3 HSA Memory Model

Sequential consistency was first defined by L. Lamport as “ ..the result of any

execution is the same as if the operations of all the processors were executed in

some sequential order, and the operations of each individual processor appear

in this sequence in the order specified by its program.” Modern processors

(ARM, x86, Itanium, POWER) introduce a relaxed memory model to allow a

range of hardware optimizations to provide better performance by reordering

load and store operations[62]. The HSA platform specification states[21]

The HSA memory consistency model is a relaxed model based

around RCsc semantics on a set of synchronizing operations. The

standard RCsc model is extended to include fences and relaxed

atomic operations. In addition HSA includes concepts of memory

segments and scopes.

Similar to Java Memory Model[61] it guarantees sequential consistency for cor-

rectly synchronized programs, that is ’synchronizing operations meet the re-

quirements for sequential consistency within each scope/segment instance’[21].
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This specification introduces several memory segments:

• Global segment, shared between all agents.

• Group segment, shared between work-items in the same work-group in

a HSAIL kernel dispatch.

• Private, private to a single work-item in a HSAIL kernel dispatch.

• Kernarg, read-only memory visible to all work-items in a HSAIL kernel

dispatch.

• Readonly, read-only memory visible to all agents

Each particular memory location is always associated with one and only one

segment and all operations apply to only one segment with the exception of

fence operations[21]. In addition to memory segments the HSA memory model

introduces scopes : wavefront, work-group, component and system. They can

be used to reduce visibility of the memory operation compared to the default

supported by the segment. The global segment may use any of the specified

scopes, group segments are limited to wavefront and workgroup scopes [21].

Different workgroups accessing a global variable within the same workgroup

scope will work with different instances of the variable. Write serialization

only applies to the operations within the segment/scope that they specify.

2.5.4 Implementation Notes

At the time of writing (February 2016) the HSA Runtime implementation

ignores sequential barrier flag thus iterative algorithms have to explicitly syn-

chronize kernel execution using signals to avoid starting a new kernel before

the previous one finishes. Constant time is needed to setup kernel launch, e.g.

for AMD A8-7600, it is 6 µsec using HSA.
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2.6 Conclusion

Modern specifications, such as OpenCL 2.0 and HSA, attempt to address some

of the latency issues of GPU programming by the introduction of shared mem-

ory and lightweight dispatch/data passing mechanisms. This work will focus

on the evaluation of suitability of those technologies for latency-sensitive pro-

cessing of data streams.



Chapter 3

System Architecture

We have implemented a data stream processing library which provides a set of

classification algorithms for Massively Online Analysis(MOA)[32]. This library

uses existing linear algebra package ViennaCL[75] which allows multiple back-

ends such as CUDA, OpenCL or CPU. We have built some machine learning

algorithms such as nearest neighbours search and stochastic gradient descent

using its interfaces.

3.1 MOA interface

The ViennaCL library is implemented in C++ and as such requires Java Native

Interface[11] to be used to interface from the Java Virtual Machine. Java

Virtual Machine manages its own memory space and garbage collection may

move data at any time. JNI provides two mechanisms to access array data

from native code. First is copying - a java pointer is locked by a critical

section and array content is copied to the native array. Second one skips the

copying and provides direct access to the java pointer. Both involve entering

and exiting a critical section and impose significant performance loss due to

the copying and locking overhead. Those costs can not be avoided but can be

minimized by moving them to the instance creation/modification time - the

object constructor will call the native method which allocates the native data

structures and moves data from the Java storage to the native one.
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The alternative solution uses the java.misc.Unsafe class to manipulate

offheap memory directly. The native code allocates GPU shared virtual mem-

ory and passes the pointer to the Java implementation. Java code uses java.misc.Unsafe

methods to update data in parallel to training.

3.2 GPU Memory Limits

The library implementation stores the instance data as the native ViennaCL

types. This implies that for GPU ViennaCL backends the data will be stored

in GPU memory that may be insufficient for larger problems. In such case

partitioning will be used - the problem data is kept in the Java memory as a

collection of weka.core.Instance objects and offloaded to GPU-backed context

on as needed basis. The weka.core.Instance class represents the attribute val-

ues as a vector of double precision numbers. Modern consumer GPUs provide

far better floating point performance than double performance. For instance

modern AMD GPUs have 8x scale, that is floating point performance is 8x bet-

ter than double one (R390, R290). NVIDIA GPUs have 32x scale(Maxwell)[8].

There are several works that explore using fixed precision numbers to reduce

memory requirements of machine learning tasks[77][53]. This work provides

standard single or double precision floating-point implementation of the ma-

chine learning algorithms not covering the alternative floating point represen-

tations.

3.3 HSA Backend

This work adds a new HSA backend to the ViennaCL library based on the

HSA Runtime[21]. This implementation is tuned for Kaveri AMD APU and

uses the same set of OpenCL kernels as the OpenCL backend. In the HSA

backend the main system memory is transparently mapped to GPU memory

and vice-versa, allowing to use vector or matrix element-addressing operations

without first copying data to the CPU memory space.
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3.4 OpenCL 2.0 features

At the time of writing (February 2016) the OpenCL 2.0 features such as work-

group functions and device enqueue impose significant performance impact.

The library uses Shared Virtual Memory buffers to facilitate easy switching

between OpenCL and HSA backends. The ViennaCL types are constructed

from cl mem representation of the shared virtual memory buffers.

3.5 Conclusion

The library provided as a part of this work is heterogeneous. It uses a Java

platform at the top level to interface with MOA and perform high-level com-

putation. The linear algebra primitives and GPU interface are implemented

in C++ and interface with the Java part via Java Native Interface. To reduce

the overhead of Java to native code data transfers, this implementation uses

sun.misc.Unsafe that might be incompatible with future Java releases. The

library does not use OpenCL 2.0 features as tests show that they provide a

negative performance impact at the time of writing. The training interface uses

a latency-hiding trick to maximize GPU load for the model training. The test

interface getV otesForInstance performs synchronously and strives to provide

the result with the lowest possible latency.



Chapter 4

k-Nearest Neighbours

4.1 Introduction

The k-Nearest Neighbours method[40] is a non-parametric method used for

classification and regression. It computes for a given instance the distances

to the examples with known labels and either provides a class membership

for the classification which is a class most common among nearest neighbours,

or an object property value which is an average of the nearest neighbours.

The error rate is bounded by twice the Bayes error if the number of exam-

ples approaches infinity[40]. Online implementation of the algorithm uses a

sliding window of example instances updated by the data stream. Window

size, instance dimensionality and allowed error bounds define the optimal ap-

proach to solving the k-Nearest Neighbours problem. Exhaustive Search has

high computational complexity for the queries, but provides a constant up-

date time. Exact Clustering Methods partition the search space to achieve

logarithmic query complexity at the expense of the window update time. Ap-

proximate Clustering Methods reduce search space dimensionality to provide

an approximate result with a given error bound. GP GPU computing may be

used to accelerate their runtime though success for discrete GPUs depends on

developer ability to eliminate branching, optimize memory access, and avoid

excessive Host-GPU transfers. The latter poses a most significant problem
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for online k-Nearest neighbours implementations. This chapter reviews the

Exhaustive Search, some of the Exact Clustering Methods and Approximate

Clustering Methods and provides notes on GP GPU implementation.

4.2 Exhaustive Search

The exhaustive approach to Nearest Neighbour search is to compute distance

to each instance present in the sliding window. The computational complex-

ity of the query O(Nd) where N - number of instances and d - number of

attributes. The GP GPU implementation of the exhaustive search consists of

distance calculation and selection phase. The distances to the query can be

computed using standard vector and matrix routines provided by GP GPU li-

braries implementing Basic Linear Algebra Subroutines(BLAS)[7][5][75]. The

selection phase finds the nearest examples to the query out of all the computed

distances. Sismanis et. al[83] provide time complexity of reduced sort algo-

rithms, evaluate their performance on GPU and propose to interleave distance

calculation and selection phases to hide latency as shown in Figure 4.1. This

approach allows to obtain better performance on low window sizes[66].

The data for the distance calculation should be offloaded to GPU, while

it performs the selection phase. The sliding window is partitioned, if needed,

across multiple GPUs according to the GPU memory capabilities and does not

use instances spatial information.

Figure 4.1: Interleaved distance calculation and sorting phases
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4.2.1 Distance Calculation

The optimal implementation depends on the size of the window and number

of attributes present[85]. For the small instance size (≤ 100) and windows of

less than 104 elements one thread per instance implementation will provide

the best solution. Best all around distance calculation should apply different

strategies depending on the window size and number of attributes[85]. The

alternatives are presented in the Figure 4.2.

Figure 4.2: Left; Four matrix-vector multiplication kernels designed to per-
form well at different shapes m n of the matrix. Middle; Tuning mesh. Right;
Best kernel in practice. The dashed line indicates the minimum 21504 rows
needed in the matrix for full occupancy of the Nvidia Tesla C2050 card in
a one-thread-per-row kernel. Note the logarithmic axes. Reproduced from
High-Performance Matrix-Vector Multiplication on the GPU by Hans Henrik
Brandenborg Sørensen[85]

The distance calculation primitive provided as part of this master thesis

uses one thread per row approach.

4.2.2 Selection

Alabi, et.al[26] evaluated different selection strategies based on bucket sort

algorithm and Merril-Grimshaw[64] implementation of radix sort.

Figure 4.3 shows performance of different selection strategies - merge sort

from AMD Bolt library[3], bitonic sort similar to reference AMD implemen-

tation and radix select based on Alabi, et. al. implementation[26]. The CPU

sort and choose is a clear winner for small window sizes, e.g. 4096 for the

test hardware. The larger windows should be processed by radix select. The
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threshold will be different for each CPU/GPU combination and should be

tuned by the runtime.
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Figure 4.3: Selection Algorithm Performance for K=128. Test configuration
GPU R9 390, CPU AMD A8-7600, AMD Catalyst version 15.20.

4.2.3 Conclusion

Exhaustive Search is a basic building block of the k-nearest neighbours algo-

rithms. It is mandatory if we need to obtain an exact solution and is used to

refine approximate methods results. The distance calculation parallelisation

strategy should be adapted to the instance and windows size. Radix sort-based

algorithm should be used for selection.
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4.3 Exact Clustering Methods

Clustering techniques are widely used to limit the number of distance calcu-

lations needed for a nearest neighbour search. Space partitioning by vector

dimensions is used by the k-d tree method[49], the random projection tree[48]

provides a data structure splitting the search space along random vectors.

Metric trees such as ball tree[70], cover tree[31], random ball cover[36] provide

solutions for finding nearest neighbours in general metric space by organizing

data points in groups around some centroids.

4.3.1 k-d Tree

The k − d tree [49] is a balanced binary tree where each node represents a set

of points P ∈ {p1 . . . pn} and its children are disjoint and almost equal sized

subsets of P . The tree is constructed top-down, the initial set of points is split

along the widest dimension or using other criteria until the predefined number

of points in child nodes is reached. The tree can be constructed in O(nlogn)

time and occupies linear space. Weber etal[89] have shown that k − d tree is

outperformed by the exact calculation at moderate dimensionality ( n > 10 )

and results in full processing of the data points if the number of dimensions is

large enough. It follows that the k − d tree requires N � 2dimensions points to

examine less points than exhaustive search.

The listing of the k − d tree construction and nearest neighbours search

pseudocode is shown in the Figure 4.4. Parallel k−d tree construction on GPU

utilizes breadth-first approach[90][81] - the k− d tree is constructed top-down

with the split criteria computed in parallel for all nodes at the specific level.

The priority queue based nearest neighbours search using k-d trees as shown

in Figure 4.4 does not benefit much from the GP GPU parallelism due to the

branch divergence and irregular memory access patterns[51]. The k − d tree

search approach presented by Gieske et. al[51] focuses on parallel execution of

nearest neighbour queries in a lazy fashion. The query points are accumulated
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1 tree node create tree(pointList, level)
2 {
3 int dim = select dim(pointList); // select split dimension according to
4 // pre−defined criteria, e.g. level mod total dimensions
5 splitVal = select split value( pointList, dim); // select split value
6 // according to pre−defined criteria
7 // e.g. median value of point[dim]
8 left = {};
9 right = {}

10 for (point : pointList )
11 {
12 if (point[dim] > splitVal)
13 right += point;
14 else
15 left += point;
16 }
17 node = {
18 .location = splitVal,
19 .dim = dim,
20 .left = create tree(left, level + 1),
21 .right = create tree(right, level + 1)
22 };
23 return node;
24 }
25

26 void search(Heap nearest neighbours, tree node root, point p)
27 {
28 if (root.is leaf())
29 nearest neighbours.update(root);
30 else
31 {
32 split = root.location;
33 dim = root.dim;
34 if (p[dim] < split ) // search ”closest” node
35 search(nearest neighbours, root.left, p)
36 else
37 search(nearest neighbours, root.right, p)
38

39 distance to split plane = abs(split−p[dim]);
40 distance to point = abs(nearest neighbours.furtherst point()[dim]−p[dim])
41 if (distance to point >=distance to split plane) // outer radius of NN heap
42 intersects the split plane
43 {
44 if (p[dim] < split )
45 search(nearest neighbours, root.right p)
46 else
47 search(nearest neighbours, root.left, p)
48 }
49 }
50 }

Figure 4.4: k-d tree construction and NN-search pseudocode
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in the leaf nodes of the kd-tree until enough of them are present and then they

are processed as a batch. This solves the issue of GPU underutilization and low

performance if leaf nodes are processed sequentially for each example. Another

approach would be to compute distances to the leaf nodes split planes[90] to

provide a short-list of the leaf nodes for k-nearest neighbours search.

4.3.2 Random Projection Trees

The k − d tree provides an effective partitioning mechanism for low data di-

mensionality but suffers in higher dimensions[89]. Many machine learning

problems that are expressed in high dimensional space have lower intrinsic

dimension as shown in Figure 4.5. Random projection tree exploits this fact

Figure 4.5: Distributions with low intrinsic dimension. The purple areas in
these figures indicate regions in which the density of the data is significant,
while the complementary white areas indicate areas where data density is
very low. The left figure depicts data concentrated near a one-dimensional
manifold. The ellipses represent mean+PCA approximations to subsets of the
data. Our goal is to partition data into small diameter regions so that the data
in each region is well-approximated by its mean+PCA. The right figure depicts
a situation where the dimension of the data is variable. Some of the data lies
close to a one-dimensional manifold, some of the data spans two dimensions,
and some of the data (represented by the red dot) is concentrated around a
single point (a zero-dimensional manifold). Reproduced from Learning the
structure of manifolds using random projections by Freund Yoav et al.[48]

by splitting data along randomly chosen unit vectors as opposed to splitting

along dimension axises in the k-d tree method as shown in Figure 4.6 [48]. The

method performs a one dimensional random projection of the data points and

splits them at the median of the projections.

The random projection tree split rules are presented in Figures 4.7 and 4.8.

Figure 4.9 illustrates node selection for random projection tree median split
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Figure 4.6: Left: Partitioning produced by k-d tree. Right: Partitioning pro-
duced by Random Projection Tree. Reproduced from Learning the structure
of manifolds using random projections by Freund Yoav et al.[48]

1 tree node random tree max(pointList, num dimensions)
2 {
3 v = random vector(num dimensions);
4

5 x = pointList[ random() ];
6 y = max (distance( y in pointList, x) );
7 sigma = uniform random(−1;1) ∗ 6 ∗ distance(x,y) / sqrt(num dimensions);
8 split = median ( dot(v, x in pointList)+ sigma ) ;
9 left = {}

10 right = {}
11 for (x in pointList)
12 {
13 if (dot(v,x) <= split)
14 left += x;
15 else
16 right +=x;
17 }
18 node = {
19 .vector = v,
20 .split = split,
21 .left = create tree(left, num dimensions),
22 .right = create tree(right, num dimensions)
23 };
24 return node;
25 }

Figure 4.7: Random Projection Tree Pseudocode - Random Tree Max [41]
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1

2 tree node random tree mid(pointList, num dimensions, c)
3 {
4 diameter = max( distance(x in pointList, y in pointList));
5 avg diameter = mean(distance(x in pointList, y in pointList));
6 if ( diameter <= c∗ avg diameter)
7 {
8 // small node, split using random projection threshold
9 v = random vector(num dimensions);

10 split = median( dot(x in pointList, v) );
11 left = {}
12 right = {}
13 for (x in pointList)
14 {
15 if (dot(v,x) <= split)
16 left += x;
17 else
18 right +=x;
19 }
20 node = {
21 .rule type = dotproduct
22 .vector = v,
23 .split = split,
24 .left = create tree(left, num dimensions),
25 .right = create tree(right, num dimensions)
26 };
27 return node;
28 }
29 else
30 {
31 // large node. split by the distance from median
32 meanPoint = mean(x in pointList)
33 split = median( distance(x in pointList, meanPoint);
34 left = {}
35 right = {}
36 for (x in pointList)
37 {
38 if (distance(x, meanPoint) <= split)
39 left += x;
40 else
41 right +=x;
42 }
43 node = {
44 .rule type = distance
45 .mean = meanPoint,
46 .split = split,
47 .left = create tree(left, num dimensions),
48 .right = create tree(right, num dimensions)
49 };
50 return node;
51

52 }
53 }

Figure 4.8: Random Projection Tree Pseudocode - Random Projection Tree
Median Split[41]
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(a) Small node, the maximum di-
ameter is less than the mean di-
ameter multiplied by the constant

(b) Large node, the maximum
diameter exceeds mean diameter
multiplied by the constant

Figure 4.9: Random projection tree median split node types

rule.

The projections along the chosen random vectors may be computed in a

batch as a matrix by vector multiplication. The computation of projections

of high dimensional data for the split criteria can be also viewed as a ran-

dom projection operation described by Johnson and Lindenstrauss[56] and be

implemented more efficiently than the naive approach.

4.3.3 Random Projection

The seminal paper by Johnson and Lindenstrauss[56] established that for eu-

clidian spaces any x ∈ Rn can be embedded into Rk with k = O(logn/ε2)

by projecting x in Rk using projection k × n matrix Φ without distorting

inter-point distances by more than (1 ± ε) and k ≥ O(logn). Johnson and

Lindenstrauss[56] has shown that Johnson-Lindenstrauss condition holds for

matrices with the following properties:

• Spherical symmetry - For any orthogonal matrix A ∈ O(d), Φ multiplied

by A and Φ have the same distribution.

• Orthogonality - rows are orthogonal to each other

• Normality - the rows are unit-length vectors

[24]
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The lower bound of k was refined in several papers[47][42][54][23] with Das-

gupta and Gupta[42] proving it to be k ≥ 4(ε2/2− ε3/3)−1ln(n) for ε ∈ (0, 1),

where k - projection dimensionality, n - source dimensionality, ε - error. For

high n this bound will still be too large to effectively employ low dimension-

ality search methods such as k − d tree. An alternative would be to utilize

very low dimensional space and then use disjunction to find the desired result.

This approach is essentially an iterative random projection tree search where

the dataset is split along leaf nodes.

The efficient implementation of the random projection-based algorithms re-

quires a simple approach to construct Φ and a way to compute projection faster

than naive multiplication of data point by k×nmatrix. Achlioptas[23] achieved

relatively sparse transformation matrix for random projection by proving that

Johnson-Lindenstrauss condition holds if elements of the projection matrix are

chosen independently according to the following distribution:


+(n/3)−1/2, P = 1/6

0, P = 2/3

−(n/3)−1/2, P = 1/6

where n - source dimension and P - probability. This method provides a 3-

fold speedup over the original one [56], since 2/3 of the transformation matrix

elements are zero. Nir Ailon and Edo Liberty[25] have developed an almost op-

timal random projection transformation with runtime of O(nlogn) as opposed

to O(kn) of the naive implementation. The main idea of the method is the ap-

plication of the Heisenberg principle in its signal processing interpretation that

both signal and its spectrum can not be both sharply localized. Thus applying

Fourier transform to the sparse input vector will increase its support and will

allow to make the transformation matrix even more sparse. To prevent the op-

posite, sparsification of the dense vector, the input data elements signs are ran-

domly inverted with probability 1/2. The sparse transformation matrix used

to complete the random projection[24] can be replaced by subsampled fourier
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transform[25]. Nir Ailon and Edo Liberty define k = O(δ−4log(N)log4n),

where N - number of instances, n - source and k - projected dimensionality,

that will preserve input vector norms by a given relative error δ[25]. The

reference implementation used in this work is based on Gabriel Krummen-

acher implementation of subsampled randomized Fourier transform https:

//github.com/gabobert/fast-jlt/tree/master/fjlt. This algorithm is

well suited for GPU implementation as it consists of FFT followed by element-

wise operation. The last step (select random D elements) introduces irregular

memory access that can not be worked around unless multiple transformations

are performed in parallel. Figure 4.10 shows comparative performance of dense

matrix multiplication for random projection and Fast Johnson-Lindenstrauss

transform. For the selected hardware configuration the latter starts to out-

perform matrix multiplication starting from N ≥ 16384. It should be noted

that FLJT has lower memory requirements than O(kn/3)) as it does not re-

quire to store transformation matrix and is thus capable of projecting higher

dimensional data on the same hardware.

4.3.4 Random Projection Tree Search

The random projection tree search can be performed in the same DFS manner

as the k-d tree search. We may abort the search if the query point ends in

the center leaf of a large node as shown in Figure 4.9 to obtain approximate

solution.

4.4 Approximate Clustering Methods

The nearest neighbours search method in high dimensional space provides lit-

tle benefit over exhaustive search where an exact distance is computed to each

point in the database[89][29] unless the data has low intrinsic dimensionality.

The approximate methods provide means to overcome this limitation by solv-

ing the problem of finding neighbours whose distance from the query point

https://github.com/gabobert/fast-jlt/tree/master/fjlt
https://github.com/gabobert/fast-jlt/tree/master/fjlt
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Figure 4.10: Fast Johnson-Lindenstrauss transform[25] vs. sparse matrix
implementation[23] using ViennaCL. Test configuration GPU R9 390, CPU
AMD A8-7600, AMD Catalyst version 15.20. The matrix multiplication test
was aborted due to the out of memory error.

are at most c > 1 times greater than distance to the closest neighbour. The

approximate solution can be used to find exact one by computing distance

to each approximate nearest neighbour and choosing closest ones. Modern

approximate methods use dimensionality reducing techinques such as random

projection[73] and data set ordering using space filling curves[73][57][58] to

improve query performance.

4.4.1 Locality Sensitive Hashing

Locality Sensitive Hashing[54] is a method that captalizes on the idea that

there exists such hash functions h(x), x ∈ Rd, that for points p, q ∈ Rd, radius
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R and an approximation constant c the following properties hold

 ‖p− q‖ ≤ R,P [h(p) = h(q)] ≥ P1

‖p− q‖ ≥ cR, P [h(p) = h(q)] ≤ P2

where probability P1 > P2. The LSH algorithm uses a concatenation of L� d

such functions to increase the difference between P1 and P2[54]. Initially it

was proposed to use Hamming distance as this function satisfies all required

properties[54]. Later it was shown that other families of hash functions such

as lp distance[43], Jaccard coefficient [34][35] and angular distance(random

projection)[37] are also locally sensitive. The algorithm selects L concatena-

tions of the hash functions and uses them to transform input dataset points

v ∈ Rd into lattice space ZL storing them as L hash tables. The exact query is

performed by concatenating contents of the L bins corresponding to the hash

codes of the query, and then computing exact distances. The approximation is

obtaining by stopping as soon as k points in cR distance from the query point

are found. The method is GP GPU friendly as hash codes of the data points

can be computed in massively parallel manner.

Alcantra A.F.[28] investigated several approaches to the hash table con-

struction and retrieval on GPUs and has shown that the suitability of particu-

lar method is hardware dependent, iterative data structure content modifica-

tion is difficult since insertion failure results in full hash table rebuild, which

is offset by the fast rate of construction. For instance, Alcantra et al[27] use

a tiered approach. A first-level hash function assigns an item to a bucket

sized to fit into workgroup local memory and then performs rounds of cuckoo

hashing[71] within the local memory until the hash table is built. Overall

he notes that hash tables perform better than binary search despite uncoa-

lesced memory access though radix sort/binary search remain a better option

if queries are sorted and executed in bulk [28].
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4.5 Space Filling Curves

Space filling curves[76] are curves that traverse all points of n-dimensional

space in a given region providing a mapping from n-dimensional to 1-dimensional

space. The GP GPU nearest neighbours algorithms[58][57][73] utilize z-order

curve introduced by G. Morton in 1966 - an ordered list of numbers composed

by interleaving bits of instance attributes[65]. This curve is often used due to

the fact that the mapping can be constructed in O(d) time and is easily im-

plemented on GPU. A sample z-order curve is shown in Figure 4.11. A z-order

Figure 4.11: Z-Order Curve. Red lines highlight some region jumps. Green
shows locality-preserving region.

curve mostly preserves data locality - points that are close in the n-dimensional

space are also close together along the curve, but as shown in Figure 4.11 the

z-order curve has jumps. To compensate for them existing GP GPU algo-

rithms generate several curves from the input data shifted several times by

some random vectors[58][57] to move the points into its locality-preserving re-

gions. The shift search method by Li et al.[57] experimentally quantifies the

shift value.

Sieranoja S.[82] generalized a z-order lookup table mapping algorithm for

arbitrary number of dimensions. It can be translated into GPU implementa-
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tion with minimal changes.

4.6 k-Nearest Neighbours using HSA archi-

tecture

The HSA architecture might allow to take OpenMP[16] approach for GP GPU

acceleration of the nearest neighbours search by embedding parallel primitives

such as FJLT and exhaustive search into existing algorithms without redesign-

ing them to conform to the GPU architecture.

k-d tree queries The k-d tree queries require all or nothing approach -

the algorithm design and data structures should be implemented in GP GPU

specific manner to obtain higher throughput at the expense of latency[90][51].

In chapter 5 we will investigate whether it is possible to offload part of the

computation to GPU without algorithm redesign to achieve performance im-

provement over serial version.

Random Projection Tree Construction and Queries The random pro-

jection tree can be built in the breadth first manner similar to existing GPU

implementations of k-d tree algorithm. This approach requires pass over whole

sliding window for each update. In chapter 5 we will investigate whether the

online update of the random projection tree benefits from from offloading pro-

jection and thresholding to GPU.

Z-Order-based queries The significant problem in z-order query evalua-

tion is a maintenance of the candidate lists for large k[57]. The cost of GPU-

host transfer in this case is prohibitive and Li et al work around it by executing

multiple queries at once so that it is more beneficial to perform sort as opposed

to search[57]. In chapter 5 we will investigate whether it is efficient to perform

single queries using z-order lists using approach by Li et al[57] for small k.
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The approximate z-order based method can utilize random projections to

shorten morton code length while preserving the relative distances to speed

up queries and sliding window updates.

4.7 Conclusion

Current approach to use GP GPU for k-nearest neighbours problem is to design

algorithms tailored for the target GPU platform. In chapter 6 we will investi-

gate whether it is feasible to use GPU offload in a way similar to OpenMP[16]

- by replacing parts of the serial algorithm with parallel primitives. HSA

platform promises smaller overhead for heterogeneous computations and in

chapter 5 we will investigate whether the improvement is sufficient to disre-

gard latency hiding methods common to the current GP GPU implementations

using z-order k-nearest neighbours as an example.



Chapter 5

Stochastic Gradient Descent

5.1 Introduction

Stochastic gradient descent is an iterative optimization method used in a wide

variety of machine learning tasks. It minimizes the objective function Q(w, x)

dependent on the set of parameters w and set of examples x by updating

parameters along the gradient of the randomly chosen example xi : w =

w − λ5 Q(w, xi), where λ is the iteration step size. also called the learning

rate. In classical learning applications Q(w, x) is a prediction loss function

and the method aims to find the set of parameters w that provides a local

minimum of an error on a training set. In online learning application Q(w, x)

is a regret function and the method aims to provide a best approximation of

y(x) where y is a classification associated with example x. Stochastic gradient

descent may use an average gradient of several examples - a mini-batch to

achieve lower variance. This chapter gives an overview of the approaches for

stochastic gradient descent parallelisation, describes Hogwild! and 1bit SGD

algorithms used in this work, and discusses a HSA algorithm implementation.

5.2 Approaches for SGD parallelisation

The stochastic gradient descent algorithm is inherently sequential. Ways to

parallelise it across computing clusters are explored in a number of papers[50][68][60][91][78].
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Langford et al[91] proposed a pipelined approach to SGD parallelisation.

The input vector is divided into partitions that are processed in parallel by

slave worker threads producing subgradients on each step. The subgradients

are sent to the master worker that recomputes the resulting parameter vec-

tor and distributes it again to the slave threads. The authors observed that

algorithm sensitivity to the delay in the weights update depends on the infor-

mation gained from each example and that after a certain delay threshold the

algorithm performance becomes much worse [91]. This highlights a problem

for any parallel implementation of SGD - one has to minimize communica-

tion to achieve maximum computation speedup without introducing critical

delay that will hurt convergence of the algorithm. The subsequent works

[78][50][92][45][72] provided a way to balance the parallelism and delay either

by model parallelism - partitioning data into independent sets and processing

them in parallel [50][92], delaying update communication[78][45][72], or by re-

moving a synchronization requirement for parameters update[68]. The state

of the art cluster methods use a combination of all those techniques[45][72] to

solve large scale optimization problems.

The single node stochastic gradient implementation often deals with data

parallelism - for a given mini-batch its gradients are computed in parallel. This

operation requires a parallel calculation of the objective function given model

parameters and a set of example instances - essentially a vector (parameters) by

matrix (examples) multiplication to obtain the current approximation. Davis

and Chang[44] explore single-precision matrix-vector multiplication and con-

clude that modern CPUs gaining last-level cache sizes and external memory

bandwidth, increasing data sizes of computational problems and constrained

memory size of the consumer GPU cards create a barrier to adoption of GP-

GPU, though they suggest that on-chip GPUs may be excellent building blocks

for future heterogeneous processors.
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5.3 Hogwild!

The Hogwild! algorithm[68] uses an assumption that updates to the parameter

vector w can be performed in a lock-free manner since each individual update

only affects a small portion of it. The algorithm uses independent workers that

have access to the shared parameter vector w. Each worker samples uniformly

at random an example x and computes an update vector λ5 Q(w, xi). The

worker then proceeds to apply updates to each element of the parameter vector

w with non-zero gradient using atomic add function. The update may be im-

plemented as either a compare-and-swap operation ensuring that no individual

update is lost or as a replacement with the possibility to loose a certain portion

of updates to the individual vector components. In both cases w is not locked

and the implementation scales linearly with the number of available processors

in replacement case and nearly linearly for compare-and-swap update as shown

in tests using KDD Cup 2011[46] and Netflix prize[30] datasets [68].

5.3.1 Best Ball Optimization

The implementation of the Hogwild! algorithm (http://i.stanford.edu/

hazy/victor/Hogwild/) contains a best ball autotuning method. The user

picks a range of model parameters (e.g. learning rate) and the algorithm

evaluates the corresponding models in parallel. After a pre-defined number of

iterations the model with the lowest harmonic mean of the root mean square

error is selected and its parameter vector is propagated to all other models.

5.3.2 Backoff scheme

The Hogwild! algorithm uses a diminishing learning rate. The algorithm uses

a global synchronization point at the end of K iterations to reduce it by a

constant β and continues running for the next β−1K iterations.

http://i.stanford.edu/hazy/victor/Hogwild/
http://i.stanford.edu/hazy/victor/Hogwild/
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5.4 1bit SGD

The Hogwild! algorithm is inherently non-deterministic. The updates of the

parameter vector are performed concurrently in a lock-free manner and may

be lost should several updates contain a modification of the same parameter

vector element wi if update is performed with replacement. In both compare-

and-swap and replacement cases the workers use parameter vector with non-

deterministically partially applied updates to perform the next iteration. 1Bit

SGD[78] approaches the communication bottleneck from a different angle. It

works on the same assumption as Hogwild! - the updates from each mini-

batch only affect a small portion of the parameter vector and adds a further

constraint - only updates that are greater than a certain threshold should be

communicated. In 1Bit SGD workers exchange gradient updates quantized to

one bit - that is all workers share a quantization constant τ and communicate

gradient vector element that should be updated by this constant. The differ-

ence between computed value and quantization constant is stored locally by

the worker and added to the next iteration gradient update [78].

This approach allows nearly linear speed-ups in a cluster setting[87] as

opposed to previous results such as[79].

5.5 Stochastic Gradient Descent using Open-

CL/HSA architecture

This work implements the Hogwild! algorithm for linear models on Heteroge-

neous System Architecture and OpenCL platforms and compares its perfor-

mance with the baseline MOA single-threaded implementation.

The implementation stores parameter vector in the memory-mapped file

making it trivial to implement concurrency either as multiple threads or as

multiple processes. The best ball optimization is not implemented though

it would be trivial to launch several instances of the model and synchronize
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parameters with the best model at the pre-defined intervals.

The 1bit SGD thresholding is used to minimize the number of updates

to the shared parameter vector performed by the individual workers - only

updates exceeding the quantization parameter τ are written to the memory-

mapped file. The quantization also allows to work around the absence of

the floating-point precision atomic compare-and-swap operation in OpenCL

specification. The workers use atomic add and subtract operations instead to

submit results to the shared memory. The designated worker locks the param-

eter vector at specified intervals to recalculate the quantization parameter τ so

that the quantization error is minimized, and then applies cumulative update.

The algorithm is parametrized by a number of mini-batches it processes

simultaneously - B. The residual quantization error is stored in matrix E with

each row representing the residual error for the respective mini-batch. The

parallel implementation processes as follows. Sparse matrix-vector multiplica-

tion is used to obtain a vector of dot-products. For each dot product a loss

function value and corresponding update value are computed. The reduce op-

eration is used to obtain a cumulative weight update value and to average it

across all mini-batches. Finally a weight update kernel is launched with each

thread processing separate Wib - individual weight from a specific mini-batch

b ∈ B. The parameter vector is updated by λτ , where λ is the learning rate,

using the atomic add function if the update value exceeds the threshold, or

added to the corresponding element of residual error matrix E. Based on E

and the iteration number an average quantization error is calculated for each

column and τ used for the next iteration is updated. The pseudocode for the

algorithm is presented in Figure 5.1. The 1Bit SGD technique is used to work

around the lack of floating point atomic functions as the algorithm only counts

number of positive and negative τ updates.
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1 // X − input data
2 // Es,El − residual error for ”too small” and ”too large” cases
3 // W − weights
4 // lambda − weight update function
5 // g(x) − gradient function
6 // tau − quantization parameter vector (tau[i] > 0)
7 // temp weights − weight updates used during training step (integer)
8 tau training step(X, Es, El, lambda, g, tau)
9 {

10 parallel for (mini batch in X)
11 {
12 W = read weights();
13 mini batch = g(mini batch, W); // compute gradients for each example
14 vector minibatch gradients = average gradients(individual gradients) +
15 Es[mini batch] + El[mini batch];
16

17 parallel for ( mg[i] in minibatch gradients)
18 {
19 if (abs(mg[i]) < tau[i])
20 {
21 // update ”too small” error
22 Es[mini batch] = mg[i];
23 }
24 else
25 {
26 lambda(i, sign(mg));
27 // update ”too large” error
28 El[mini batch] += mg[i] < 0 ? mg[i] + tau[i] : mg[i] − tau[i];
29 }
30 }
31 }
32 commit weights();
33 return update tau(tau,Es, El);
34 }
35

36 // atomic update of temporary weights
37 lambda(i, sign)
38 {
39 atomic add(temp weights[i],sign);
40 }
41

42 read weights()
43 {
44 return W + learning rate ∗ temp weights ∗ tau;
45 }
46

47 commit weights
48 {
49 W = W + learning rate ∗ temp weights∗tau;
50 }

Figure 5.1: Hogwild!-based stochastic gradient descent
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5.6 Conclusion

The proposed stochastic gradient descent algorithm is massively parallel with

a single global synchronization point that occurs once in several mini-batches

to recompute τ value. Chapter 6 will compare runtimes of the algorithm on

integrated and discrete GPU using HSA and OpenCL platforms respectively.



Chapter 6

Experimental Results

6.1 Experiment Setup

The experiments were performed using AMD A8-7600 Radeon R7 10 Compute

Cores 4C+6G CPU and integrated GPU, 16Gb DDR3 1600 RAM and AMD

Radeon R9 390 as a discrete GPU. The hardware summary is given in Table

6.1. Catalyst 15.8 drivers were used in OpenCL tests unless otherwise speci-

fied and AMDKFD driver version 1.6 was used in HSA tests unless otherwise

specified. The experiments were run using Java Virtual Machine 1.8u45 for

Window and Linux platforms. The operating systems used were Window 8.1

and Ubuntu Linux 14.04.

Device Hawaii Spectre
Revision Graphics Core Next 1.1
Computing Cores 2560 384
Clock Speed 1010Mhz 720Mhz
Bus Width 512Bit 128Bit
Memory Clock 1500Mhz 800Mhz
Thermal Design Power (TDP) 275W 65W

Table 6.1: Hardware Summary
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6.2 Experiment Data

The experiments used Infinimnist MNIST dataset generator[59], synthetic data

streams produced by MOA[32] and Twitter data stream from January 2016.

Infinimnist was used to generate a dataset containing digits from 10000 to

99999 with 784 numeric attributes and an average 167 non null values per

instance. MOA data streams were used to illustrate the edge cases and vali-

date the correctness of the algorithms implementation. The twitter data was

represented as a two class classification problem - two popular hashtags were

chosen as classes and tweets containing them were represented as a bag of

words. The data generated has 39794 instances with 5591 numeric attributes.

Each instance has an average of 3 non-null attributes per instance.

6.3 Evaluation

The evaluation of k-Nearest Neighbours algorithms was performed using MOA

EvaluatePeriodicHeldOutTask with k = 5 unless otherwise specified.

6.4 k-Nearest Neighbours

This section details experimental results obtained for the implemented k-

nearest neighbours algorithms: exhaustive search, k-d tree, random projection

tree and z-order search.

6.4.1 Exhaustive Search

The nearest neighbours queries rely on the exhaustive search primitive to find

the exact solution. The tests below used the distance measure implemented as

1 instance per thread GPU kernels for small dimensionalities and 1 workgroup

per instance for larger ones. The latencies of both approaches were measured

for the Spectre GPU and single float precision were measured as shown in

Figure 6.1 where the kernel switch threshold was set to 256. The spikes on the
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graph correspond to the large power of two strides between work-items for the

first kernel and work-groups for the second one that result in global memory

read requests serialized over the same memory channel. This can be solved

by the introduction of an extra column to the attribute vector to avoid large

power of two strides.
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Figure 6.1: Latency of the distance calculation for an arbitrary number of
dimensions

Figures 6.2,6.3 show latency of the algorithm and speedup compared to the

reference MOA implementation.

The tests did not show any difference in the algorithm accuracy due to the

single float calculation as the minimum non-negative distance between data

points exceeded the rounding error.

The twitter data is extremely sparse and though the dense representation

has unreasonable memory requirements it still shows reasonable performance

as shown in Figure 6.4 and can be used to process small windows.

The HSA implementation shows better performance on small window sizes

(≤ 1024 for MNIST) where discrete GPU is affected by the fixed data transfer

cost. It should follow the same pattern as the OpenCL implementation after

breakeven point, but in fact the latency scales linearly with the number of

scheduled work items.
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Figure 6.2: Latency of k-NN exhaustive search on Infinimnist stream

6.4.2 k-d Tree

The reference MOA implementation tree leaf size was increased to 256 to limit

the number of tree splits over sliding window and additionally updateRanges

method of NormalizableDistance class was changed to iterate only over at-

tributes present in the sparse instance. This has resulted in much faster

(1500x) data evaluation without affecting training performance. Figure 6.5

shows training and evaluation latency on Inifinimnist dataset and Figures 6.6,

6.7 show respective speedups.

The training performance speedup was obtained due to the parallel calcu-

lation of ranges for the distance function. The bounds were calculated in a

parallel fashion, one workgroup per attribute peaking out at 700x speedup for

the optimal window size on Spectre integrated GPU.

The HSA backend severely underperforms compared to OpenCL. The lat-
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Figure 6.3: LinearNN Speedups on Infinimnist Stream

ter uses buffers with CL MEM ALLOC HOST PTR and achieves zero-copy for

the coarse memory buffers. The HSA performance is affected by the lack of

optimizations present in the OpenCL driver. The cost of scheduling additional

workgroups is linear according to Figure . The additional test was performed

to compare performance of the OpenCL and HSA drivers in regards to the

number of scheduled workgroups. A kernel without any operations was exe-

cuted with different number of scheduled workgroups. The results are shown

in the Figure 6.8. It appears that unlike OpenCL HSA stack schedules no

operation wavefronts for execution thus causing performance degradation.

6.4.3 Random Projection Tree

The random projection tree performance on Infinimnist is shown in Figures

6.9, 6.10, 6.11 and 6.12.
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Figure 6.4: LinearNN Latency of CPU MOA and Spectre OpenCL implemen-
tations on Twitter Stream

The random projection tree training has lower speedup than the k-d tree

due to the lack of expensive batch operations such as calculation of min-max

for the attribute values in the tree split. The projections are performed im-

mediately as instances are added to the tree and instances are redistributed in

the leaf nodes before evaluation using cached values. Thus the performance in-

crease obtained from the parallel computations is hidden by the kernel launch

overhead even in the zero-copy scenario. Figure 6.14 shows comparative train-

ing performance of k-d tree and random projection tree methods. The random

projection tree training involves less CPU intensive easily parallelised opera-

tions and thus while overall performance is better for the random projection

tree, the speedup from GPU parallelisation is far worse than in the k-d tree

case. The matrix multiplication method of random projection outperformed

FJLT in line with the benchmark in Figure 4.10 for the selected number of

attributes (784).

6.4.4 Z-Order Search

Z-Order search provides a compromise in regard to testing and training speed

between exhaustive search and exact space partitioning methods.The map-



6.4. K-NEAREST NEIGHBOURS 48

1

10

100

1000

10000

100000

1e+006

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

L
at

en
cy

(m
se

c)

Number of Instances

CPU (Test)

Hawaii (Test)

OpenCL Spectre (Test)

HSA Spectre (Test)

CPU (Train)

Hawaii (Train)

OpenCL Spectre (Train)

HSA Spectre (Train)

Figure 6.5: k-d Tree training and evaluation latency on Infinimnist

ping procedure speedup compared to single-threaded CPU implementation is

shown in the Figure 6.15. Figure 6.14 shows training times for Z-Order search

and tree-based methods described above. The experiment used a simplistic ap-

proach to searching z-order curves - the data dimensionality was reduced using

random projection, a z-order computed and a fixed 256 instances region was

sampled around the query location. The results were concatenated to provide

the result in line with [57]. The test was performed using 16384 instances slid-

ing window on Infinimnist stream and the results are presented in Figure 6.16.

The method accuracy can be improved if instead of the search in the fixed win-

dow the curve is iteratively traversed in batch increments until stop conditions
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Figure 6.6: k-d Tree evaluation speedup on Infinimnist

such as closest point in the current batch being outside the query radius or a

time limit are reached. The test was performed using RandomRBFGenerator

data stream and Figure 6.13 summarizes this approach.

6.5 Stochastic Gradient Descent

This work implements Hogwild![68] based variation of stochastic gradient de-

scent using multinomial hinge gradient function and two versions of the up-

dater:

• 1-Bit SGD-based - the updates to weight values are performed atomically
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Figure 6.7: k-d Tree training speedup on Infinimnist

by a pre-computed quantization constant. The individual weight updates

are not lost.

• Direct - the updates are performed with replacement - a value is read

out, updated and atomically stored. It is possible to loose individual

weight updates if two workers update the same weight.

The 1-Bit updater requires a global synchronization step to update quantiza-

tion constant that can be performed with a certain delay. Figure 6.18 shows

effect of the delay in a test with 1 update worker, minibatch size 1 and a data

stream generated by MOA RandomRBFGenerator with default parameters

- 10 numeric attributes and 2 classes. The Direct method runs without any
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Figure 6.8: No operation kernel execution

synchronization steps but is prone to the update loss depending on the number

of workers and sparseness of the data stream. The Figure 6.17 shows that even

for dense data the error is not significantly affected even if the workers are not

synchronized.

The minibatch size used in further tests was set to 64 as per Figure 6.19.

The performance of direct updater and 1bit updater with 1 synchronization

per 1000 iterations was identical. Figure 6.20 shows performance depending

on number of the worker processes. The single threaded implementation out-

performs GPU due to the reads and writes to the shared memory. The HSA

implementation is capable to accessing the shared memory segment directly



6.6. GPU UTILIZATION AND ESTIMATED POWER DRAW 52

1

2

3

4

5

6

7

8

9

10

11

512 1024 2048 4096 8192 16384

L
at

en
cy

(m
se

c)

Window Size(Instances)

CPU (Matrix Multiplication)

OpenCL Hawaii (Matrix Multiplication)

OpenCL Spectre (Matrix Multiplication)

HSA Spectre (Matrix Multiplication)

OpenCL Hawaii (FJLT)

OpenCL Spectre (FJLT)

HSA Spectre (FJLT)

Figure 6.9: Random Projection Tree evaluation latency on Infinimnist dataset

from the kernel and thus achieves positive speedup.

6.6 GPU utilization and estimated power draw

The average GPU utilization and estimation of the power draw obtained during

training and evaluation on OpenCL platform are shown in the Table 6.2. The

utilization tests were performed with window size 8192 on Infinimnist dataset.

Z-Order mapping used 64 curves with 256 bytes Morton codes. SGD test

was performed using the single worker and 64 instances minibatch size.The

comparsion with HSA driver was not performed due to the lack of monitoring
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Figure 6.10: Random Projection Tree evaluation speedup on Infinimnist
dataset

software.

Table 6.3 shows comparison between spedup and power draw of Hawaii

card over Spectre integrated GPU using OpenCL drivers. On average inte-

grated GPU shows 1.6x times more power efficient performance. High power

to speedup ratio for SGD test can be explained by the shared memory update

bottleneck.
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Figure 6.11: Random Projection Tree training latency on Infinimnist dataset

Figure 6.12: Random Projection Tree training speedup on Infinimnist dataset

Spectre Hawaii
Algorithm Load Power Draw Load Power Draw
exhaustive search 50% 32.7W 30% 82.5W
k-d tree train 38% 24.7W 27% 74.25W
r-p tree train 38% 24.7W 27% 74.25W
z-order mapping 75% 48.75W 40% 110W
sgd(single worker) 65% 42.25W 34% 93.5W

Table 6.2: GPU Load/Power Draw (roughly estimated as percent of Thermal
Design Power), Infinimniset dataset
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Figure 6.13: RandomRBFGenerator Z-Order compared to Exhaustive Search
Kappa Statistic (Relative Difference %)

Algorithm Speedup Ratio Power Ratio Power to Speedup
exhaustive search 1.67 2.52 1.50
k-d tree train 1.81 3.0 1.65
r-p tree train 2 3.0 1.5
z-order mapping 1.37 2.25 1.64
sgd(single worker) 1.01 2.21 2.18

Table 6.3: Hawaii/Spectre power to speedup comparison, Infinimnist dataset
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Chapter 7

Conclusions and Future Work

We have provided implementations of k-nearest neighbours algorithms and

stochastic gradient descent for OpenCL platform on Windows 8 with Cat-

alyst drivers and Linux HSA platform. We have compared their respective

performance compared to the single-threaded MOA implementation.

7.1 k-Nearest Neighbours

The exhaustive search is the basic primitive used in all other kNN implemen-

tations. Figure 6.1 highlights a well-known issue in GP GPU programming -

lack of the algorithm performance portability as the specific distance calcu-

lation algorithm shows significant degradation for different work sizes. The

algorithm and scheduling have to be chosen dynamically in line with the di-

mensionality of the task and hardware capabilities to obtain best execution

speed. High performance GP GPU computing libraries address this issue by

either keeping a hardware database of parameters [75] or auto-tuning [64]. We

have hardcoded the threshold values for the algorithm choice and scheduling

based on the tests performed on the target platform, but it is desirable to add

an auto-tuning procedure to the software.

The single float precision is sufficient for k-nearest neighbours classifica-

tion on chosen datasets. The further improvement should concentrate on data

quantization to investigate low-precision representation of data as it can sig-
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nificantly reduce required memory bandwidth.

This work did not evaluate sparse representation of the data, but a test of

sparse versus dense matrix multiplication has shown that the break-even point

for the sparse matrix multiplication is 1% of the non-null values present in the

matrix. Matrix multiplication of CSR matrices in ViennaCL with the higher

fill ratio will be outperformed by dense representation.

k-d tree evaluation has not shown any significant speed-up and in fact worse

than exhaustive search due to the additional time required for the tree traversal

and instances not being rearranged for the sequential access. Random Pro-

jection tree shows better performance due to the GPU buffers rearranged for

sequential instance access within the tree node and tree structure adjusted to

the manifolds of the data that minimizes number of node traversals compared

to the k-d tree.

k-d tree training has shown a significant speedup compared to the serial

implementation due to the parallelisation of the min-max computation as MOA

implementation computes min-max over full sliding window for each level of the

tree. Random Projection tree performs parallelisable operation (projection)

only once per instance in the sliding window resulting in lower overall speedup.

Z-Order search is a family of approximate methods that shares similarities

with locally sensitive hashing and tree search. The data locality preserving

regions of the z-order curve can be considered as tree node leaves and they are

commonly used as input for the tree generation. The projection on the z-order

curve can also be viewed as a hash code calculation and data locality preserving

property of space filling curves allows to think that locality sensitive condition

holds. The algorithm provides flexibility to the user allowing to compromise

for quality or runtime. It is also one of the most GPU friendly algorithms

resulting in highest utilization. The bottleneck of the current implementation

is the computation of the intersection set of the data points found in different

curves as it is performed on CPU. The more efficient version might use atomics

to flag the instances that should be considered for the short list and then either
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apply scan and scatter primitive to compose a list of instances for the one

thread per instance distance function or abort computation when the flag is

set for one workgroup per instance kernel.

7.2 Stochastic Gradient Descent

Stochastic Gradient descent was implemented with double floating point pre-

cision. A number of works suggests that double precision is unnecessary [33]

and single floating point or even 16-bit fixed point is sufficient for common

applications of SGD such as neural network training [53][39][77]. The main

bottleneck of the implementation was the access to the shared memory seg-

ment to update model weights. The future implementation could benefit from

lower precision calculations and weights cached in the GPU memory.

There were no difference in performance between 1-bit and direct updaters

due to the staggered weight updates as observed by debug timestamping of

the updates in each worker. The HSA implementation that directly updated

shared memory from within the GPU kernel has shown the same behaviour.

The algorithm might behave differently on discrete GPU if the weight update

would be parallelised inside GPU memory by using multiple queues within the

same OpenCL context.

7.3 Discrete and Integrated GPU comparison

This works compares performance of R9 390 Hawaii discrete GPU and AMD

A8-7600 Spectre integrated GPU. The collected benchmarks show that de-

spite discrete GPU begin 6 times more powerful core-wise (384 vs 2560)and

with 8 times more memory bandwidth (128 bit vs 512 bit bus) it does not

directly translate into algorithm speedup. Best results for the discrete GPU

are obtained when an optimal batch of data is processed with little or no syn-

chronization with the CPU. Example would be the exhaustive search with best

speedup for Spectre 10x with 512 instances window size and 70x for Hawaii
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with 8192 instances window. The CPU-GPU communication-intensive task

such as k-d tree evaluation with work sizes underutilization both GPUs results

in single-digit best (1.5 Hawaii and 1.3 Opencl Spectre) speedups. At small

work-sizes (up to 8192) the performance on the benchmarked tasks of discrete

GPU and integrated one are comparable due to a number of reasons - discrete

GPU underutilization and higher scheduling and data transfer overhead per

instance processed. At certain tasks and work sizes the integrated GPU pro-

vides even better speedups, e.g. 2x over discrete GPU in 1024 window size k-d

tree training benchmark or on par with the discrete GPU, e.g. z-order curve

mapping. It should be noted that integrated GPU consumes considerable less

power as shown in Tables 6.2, 6.3. Thus the integrated GPU provide a power-

efficient alternative to the deployment of discrete GPU for small batch sizes

common for the data stream processing.

7.4 Heterogeneous System Architecture

The HSA platform provides means for the efficient offload of parallel com-

putation to the GPU device where tight coupling with the CPU is required.

Unfortunately the current driver implementation underperforms compared to

traditional OpenCL drivers on exhaustive search and k-nearest neighbours

benchmarks, but shows positive speedup in a shared memory parallel SGD

implementation. Current ViennaCL-based implementation followed OpenCL

execution model and benchmarking was limited to direct comparison of mem-

ory access and scheduling performance of HSA and OpenCL drivers. The

features of the platform such as possibility to enqueue CPU computation from

the GPU kernel should be further investigated as they allow for the possibility

of seamless lock-free data stream processing.
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7.5 Conclusions

The integrated GPUs are suitable for the latency constrained data stream

processing tasks and provide a better performance return on deployment and

operating costs due to the lower power consumption and presence in most mod-

ern embedded, desktop and server CPUs (e.g. Intel Xeon E3). While discrete

GPU shows better performance on larger work sizes, integrated GPUs have

better performance-to-power ratio and perform on-par with discrete GPUs for

small work sizes.
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