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Abstract 

The present work is devoted to investigate ways of identifying cracks in skeletal 

structures by frequency monitoring. This is a challenging problem as the number of 

cracks, their severity and location all need to be found. It has been shown that roving 

bodies with rotary inertia could be used to find the total number of cracks and their 

locations without any knowledge of their severity. The Dynamic Stiffness Method 

was chosen due to its capabilities in enabling an exact solution while facilitating 

addition of new elements such as springs and masses to the structure in the same 

way as in the approximate Finite Element Method (FEM). Using the Dynamic 

Stiffness Matrices (DSM), it was possible to derive an interesting and useful 

relationship between the determinants of the DSM of the following: the original 

undamaged structure, the cracked structure and the structure with a hinge at the 

potential crack location. This relationship is a simple equation which gives the 

determinant of the cracked structure as the sum of the determinant of the 

undamaged structure multiplied by the rotational stiffness of the beam at the crack 

and the determinant of a structure with a hinge at the same crack location. 

 

Experimental results from literature are used to validate the application of the found 

features in beam structures and frameworks to identify damages or dynamic 

properties. A semi-experimental methodology is proposed to treat multi-cracked 

structures where, as a first step, the roving inertia method is used to identify the 

number and location of the cracks in a simple way without the need to perform any 

calculations or theoretical analysis. The theoretical basis of this method is explained 

using the DSM. Experimental work was carried out on a cantilever beam to verify 

the applicability of the roving inertia method but no conclusive results were 

obtained. Further experimental investigations are needed to study the practical 

feasibility of the method. It is hoped that once the locations of all cracks are 

identified, the severity of the cracks can be found using the frequency 

measurements as the determinants of the DSM are linear functions of crack severity. 
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1 Chapter 1 

Introduction 

Structural integrity of engineering constructions and structures is affected by the 

normal process of deterioration which can compromise their safety and serviceability. 

In the past few decades many efforts have been undertaken by engineers to detect and 

localize damage in its early stage using vibrational measurements as is implicit in the 

comprehensive literature review on structural health monitoring and damage 

identification made by Doebling, et al. [1], Sohn, et al. [2] , Sinou [3] and An, et al. [4] 

the latest in 2015. 

 

In the words of Doebling, et al. [5] “The vibration based identification methods rely 

on the fact that damage generates singularities in the modal parameters”. Therefore to 

characterise the dynamics of the structure, most of the vibration measurements came 

from acceleration data processed through the Fourier Transform [6] in order to extract 

modal parameters such as natural frequencies. 

 

Recently, considerable amount of research is focused on other signal processing 

techniques to overcome limitations of fixed resolution in the Fourier transform 

windowing, which include techniques like wavelet transform [7] using longer 

windows for low frequencies and shorter windows for higher frequencies. Other 

methods coined as data-driven methods are focused on statistical feature extraction to 

create statistics-based models that can be continuously monitored in order to indicate 

whether or not the structure has deviated from its normal condition [8]. There is 

another approach to check structural deviation by means of residual errors and 

optimization techniques such as genetic algorithms [9] or artificial neural networks 

[10]. It is also possible to find some published works [11, 12] which combine 

techniques, and reviews for particular methodologies such as Reda Taha, et al. [13] for 

wavelet transform, Hao and Xia [14] for genetic algorithms,  Stache, et al. [15] for 

model updating, Hossain, et al. [16] for artificial neural networks and Tibaduiza, et al. 

[17] for principal components analysis. 
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1.1 Background and Motivation 

Damage identification on the basis of dynamic measurements is usually conducted by 

means of numerical procedures in view of the difficulty in obtaining explicit solutions 

to both the direct and inverse analysis problems. However, analytical studies of simple 

structural systems, such as straight beams subject to concentrated damages have been 

conducted by several authors. Caddemi and Caliò [18] presented a list of the most 

representative works in this regard, and indicated that only a few authors have 

successfully addressed aspects regarding the identification of single cracks; leading to 

explicit expressions for the solution of the inverse problem. Greater attention has been 

devoted in recent years to the solution of the direct analysis problem of vibrating beams 

in the presence of multiple concentrated cracks, in order to gain a deeper insight and 

better understanding of the problem with the ultimate aim of addressing the inverse 

formulation. However, several characteristics, particularly concerning the case of 

identification of damage and positions of multiple cracks by means of dynamic tests, 

remain unsolved [19]. 

 

Several studies introduced concentrated damages on beams by considering a local 

reduction of the flexural stiffness. According to the latter model, and following the 

fracture mechanics principles [20-23], a crack can be macroscopically represented as 

an elastic link connecting the two adjacent beam segments [24]. More precisely, a 

model in which an internal hinge enclosed in a rotational spring, whose stiffness is 

dependent on the extent of damage, proved to be accurate and is often used [25-29]. 

 

There is an increasing concern regarding the breathing mechanism on cracks. As a 

crack breathes when in an oscillatory movement, its originally separated surfaces enter 

in contact, closing an initial open crack [30]. Under the action of the excitation force, 

crack opening and closing will alternate as a function of time making the equations of 

motion non-linear. There is no exact solution to these equations, and therefore a 

numerical method must be adopted [31]. 

 

1.2 Damage identification and the inverse problem 

The purpose of damage identification is to define the variables that characterise the 

occurrence of potentially risky changes in a built structure. Initial technologies 

developed a model of the structure to define as baseline for detection [32]. The 
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extracted modal parameters of this baseline are compared with those obtained from the 

structure in operation. An error function is introduced that is to be minimised when 

updating the initial model and analysing its sensitivities. The technology is known as 

the direct problem as opposed to the inverse problem which can be used to find the 

parameters that cause the change in the structural response using the baseline model 

and the measured parameters [33]. 

 

Fritzen [29] explained the difference between direct and inverse methodologies in the 

following way. An undamaged system with a set of parameters 𝚿0 has an output signal 

𝑦0 as its signature. A damage generates a new set of parameters 𝚿𝑑 . The forward 

problem finds the output signal 𝑦𝑑 from a reference signal using the system parameters, 

𝑦𝑑 = 𝑓(𝚿0, 𝚿𝑑 , 𝑦0), 

while the inverse problem finds the damage parameters using the inverse of the 

function evaluating both signal outputs and the reference parameters 

𝚿𝑑 = 𝑓−1(𝚿0, 𝑦0, 𝑦𝑑). 

 

Using vibration measurements, the parameters of the physical system are to be 

determined from the knowledge of its dynamical behaviour, implying that spectral 

information has to be extracted from the measured data, and therefore the correctness 

of the obtained model is highly dependent on the signal processing and noise treatment. 

Regarding the function that modelled the structure, it is important to develop a very 

accurate mathematical model, so that it correctly captures the actual structural dynamic 

behaviour in some predetermined frequency range to be sure that the changes in the 

measured quantities are only caused by structural damage. 

 

1.3 Aims and objectives 

The last section implies that models are valid in certain frequency ranges, for example, 

when the crack is simulated by the addition of a rotational spring the dynamic response 

in low-frequency vibration measurements, will have similar effect because the damage 

is treated as a local stiffness reduction. A significant advantage in using low-frequency 

vibration measurements is that the low-frequency modes are generally global and 

therefore the vibration sensors may be mounted remotely from the damage site [33]. 

However, the changes in the frequency are usually very small at lower modes and one 

needs to bear in mind that the solution of the inverse problem has two sets of unknowns, 
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the locations and severity. These initial attempts to solve relatively simpler inverse 

problems of identifying idealised artificial cracks lead to the main objectives of this 

research with the following questions: 

 Is it possible to separate the crack stiffness and location effects in the 

determination of the natural frequencies? 

 Is it possible to identify more than one crack? 

 

1.4 Methodology and scope 

As mentioned previously, the field of damage identification in engineering problems 

is very broad. However, this thesis will be limited to methods that are used to infer 

damage from changes in vibration characteristics of skeletal structures. 

 

1.5 Thesis layout 

Including the present introduction, there are seven chapters in this thesis. Chapter 2 

introduces the Dynamic Stiffness Matrix (DSM) presenting a general formulation from 

the idea of Banerjee [34] applied to axial loaded beams. 

 

In Chapter 3 it was decided to use the DSM to find the natural frequencies of single 

beam units with symbolic manipulation tools in Matlab® to see how the crack stiffness 

(severity) affected the determinantal equation. From this an interesting linear 

determinantal relationship emerged: it was found that the determinants of the dynamic 

stiffness matrices of undamaged, damaged structures and a structure with a hinge at 

the crack location were linearly related, and the rotational stiffness at the crack also 

appeared as a constant in this equation. This relationship is expressed in Equation (3.6) 

and its derivation is proved for frame structures in Section 3.2; this development is the 

main contribution of this thesis and some implications are explained in Chapter 6. 

 

Section 3.3 deals with the closed-form solution for four common boundary conditions 

on beams, addressing the effect of crack location in the analysis on the normalised 

determinant for the hinged structure evaluated at the natural frequency for the 

undamaged case. This normalised plot provides the exact frequency variation with the 

important benefit of eliminating the dependency on the crack severity for beams. 
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Section 3.5 presents a by-product of the research with another interesting relationship 

between the determinant of a cracked structure and the square of the bending moment 

in an undamaged beam at the would-be crack location - a relationship that can also be 

inferred from previous publications [27, 35]. The knowledge of this relationship is not 

necessarily required or useful in the damage identification process, but it is a property 

that leads to a better understanding of the effect of the crack position in specific 

vibration modes for skeletal structures. 

 

In Chapter 4 the DSM was used to understand the effect of a point mass on a cracked 

structure, and assess an interesting idea that appeared to hold some promise in the 

identification of cracks proposed in an earlier work [36]. Zhong and Oyadiji [36] use 

a probe mass roving along the length of the beam knowing that a crack will produce a 

discontinuity in the otherwise continuous graph of mass locations versus measured 

frequencies. The assessment shows that while some changes in the slope of the 

frequency vs mass location plot was observed, the changes were found to be small and 

if one did not know the location of the crack they could be missed. 

 

Chapter 5 introduces the use a roving body possessing rotary inertia and explains, 

through the DSM, the parameters that can make observable a sudden change in the 

frequency at the crack location. 

 

Chapter 6 uses experimental results in an attempt to validate the application of the 

found features to damage identification in frameworks and dynamic properties 

identification in beam structures. 

 

A summary of the conclusions is presented in Chapter 7 as well as some questions to 

be addressed in future. 

 





 

 

2 Chapter 2 

Continuous Elements Method 

The term "continuous" is used to clarify that no a priori spatial discretization is 

introduced and the discretisation of the structure into elements is determined by its 

geometric properties rather than a priori knowledge of the result to be obtained. 

Therefore geometrically simple structures need not to be cut down to pieces in order 

to get reasonable precision [37]. 

 

2.1 Continuous versus Finite 

The Finite Element Method (FEM) is a method in which a system is discretised into a 

finite number of elements and is based on the principle that the smaller the element the 

more precise the result will be. The expected behaviour of the field variable such as 

the displacement of a structure or the temperature of a body is approximately modelled 

within each element using polynomial expressions. When faced with vibrational 

problems, each element is described by two matrices, the mass matrix which account 

for the inertial effects and the stiffness matrix that accounts for the elastic and 

geometric resistance and the degrees of freedom at the interconnecting nodes form the 

eigenvector. 

 

On the other hand Continuous Element Methods avoid discretization by using the 

analytical solution of the underlying differential equations to define the exact shape 

functions of the expected behaviour. In dynamic problems, each element is described 

by a matrix that accounts at the same time the elastic and inertial effects with frequency 

dependent components. This matrix is called the Dynamic Stiffness Matrix (DSM) and 

provides the analyst with much better model accuracy when compared to finite element 

or other approximate methods and it is independent of the number of elements used in 

the analysis [38]. As no approximations concerning the displacement are made, the 

method is exact and the results can be obtained to any degree of accuracy that is only 

limited by machine precision. 

 

The application of the dynamic stiffness matrix to solve free vibration problems of 

structures (or structural elements) is quite simple. First, the DSM of all the individual 
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elements in a structure are assembled in the usual way as it is done in the FEM (except 

that there is only one matrix for each element to assemble, i.e. there are no separate 

mass and stiffness matrices). Then a suitable eigensolution procedure can be adopted 

to obtain the natural frequencies. 

 

The direct treatment of continuous systems, though historically older (it is reported 

Koloušek worked in the subject since 1940 [37]), has never reached the degree of 

popularity of the FEM mainly because of the limited set of structural elements for 

which the DSM is currently available and the versatility of the FEM which can be used 

for irregular boundaries and varying loading and material properties. In addition, the 

solution procedure using the DSM leads to what is perceived as a non-linear 

eigenvalue problem, and the elements of the dynamic stiffness matrix are generally 

highly irregular (transcendental) functions of the frequency (going through zeros and 

infinities). 

 

Another cause for the lack of popularity of the DSM, is that at present it has been 

developed predominantly for one-dimensional elements such as rods, shafts, and 

beams or beam-columns. The main sources of understanding to initial readers are the 

book by Koloušek and McLean [39] and the article by Williams and Banerjee [40] 

who covered already several aspects of the continuous solution of both prismatic and 

non-prismatic members. The latter formulations have also been applied to more 

rigorous member theories including coupling effects due to torsion. In recent years 

there has been an important effort to expand the solutions for plate and shell problems 

subject to various boundary conditions [41] shapes [42] and materials [43]. 

 

2.2 Dynamic Stiffness General Formulation  

The general formulation for the DSM is given in a comprehensive work by Banerjee 

[34] where the derivation of the governing differential equation of motion of the 

structural element is the first step in the procedure. 

For a structural element undergoing free undamped vibration its governing differential 

equation of motion can be symbolically written as 

ℒ(𝐮) = 0 (2-1) 
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Equation (2.1) is a set of partial differential equations (PDEs) where ℒ is a differential 

operator and 𝐮 is the corresponding displacement vector which is a function of two 

independent variables, namely time 𝑡 and position 𝑥. This equation could be derived 

by applying one of many techniques available in the literature such as Newton’s laws, 

D’Alembert’s principle, Lagrange’s equations, principle of virtual work or Hamilton’s 

principle. 

 

An analytical solution of the above differential equation could be obtained using 

separation of variables method assuming harmonically varying displacements with the 

general solution of the PDE is expressed in the form 

𝐮(𝑥, 𝑡) = 𝛟(𝑥)e𝑖𝜔𝑡 (2-2) 

where 𝛟(𝑥) represents amplitudes of displacements vector, usually known as modal 

shape for a specific frequency and 𝑖 = √−1. 

 

The time dependent terms in the PDE disappears but the variable 𝜔 , the circular 

frequency becomes a parameter of the modal shape 

𝛟(𝑥) = 𝐔(𝑥, 𝜔)𝐂 (2-3) 

with 𝐂 a constant vector and a frequency dependent vector 𝐔(𝑥, 𝜔), which relates the 

modal displacements. 

In the next two steps the end conditions for displacements and actions are applied to 

Eq. (2.3) in order to obtain the nodal displacement and action vectors 

𝐝 = 𝐃(𝑥, 𝜔)𝐂 (2-4) 

𝐚 = 𝐀(𝑥, 𝜔)𝐂 (2-5) 

where 𝐝 and 𝐚 are the displacement and action vectors which correspond to the nodal 

displacements (translation and rotation) and actions (force and moment). 𝐃(𝑥,𝜔) and 

𝐀(𝑥, 𝜔) are frequency dependent square matrices. 

The constant vector 𝐂 = 𝐃−1(𝑥, 𝜔)𝐝 can now be eliminated from Eqns. (2.4) and (2.5) 

to give 
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𝐚 = 𝐊(𝑥, 𝜔)𝐝 = 𝐀(𝑥, 𝜔)𝐃−1(𝑥, 𝜔)𝐝 (2-6) 

where 

𝐊(𝑥, 𝜔) = 𝐀(𝑥, 𝜔)𝐃−1(𝑥, 𝜔) (2-7) 

is the required dynamic stiffness matrix. 

In Eq. (2.7) the two steps needed to obtain the dynamic stiffness matrix are: (i) to invert 

the 𝐃(𝑥,𝜔) matrix to give 𝐃−1(𝑥, 𝜔); and then (ii) to pre-multiply the inverted matrix 

(i.e. 𝐃−1(𝑥, 𝜔)) by the 𝐀(𝑥, 𝜔) matrix to give 𝐊(𝑥,𝜔). Computer implementation of 

these steps can be accomplished either numerically or algebraically. Figure 2.1 

explains in a flowchart, the symbolic computation of the exact dynamic stiffness 

matrix [38]. 

 

Figure 2.1. Flowchart to create dynamic stiffness matrix 

2.3 Formulation of Dynamic Stiffness for an axially loaded beam  

For the Euler-Bernoulli beam theory there are already well explained procedures to 

obtain the governing partial differential equation of motion, for example as explained 

by Clough and Penzien [44] using D’Alambert’s principle or Rebecchi [45] using 

Hamilton’s principle. 

 

To use D’Alambert’s principle, we start from the infinitesimal beam element of length 

𝛿𝑥 depicted in Figure 2.2 located between axial coordinates 𝑥 and 𝑥 + 𝛿𝑥. Following 
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the Euler-Bernoulli beam theory assumptions, shear deformations are neglected and 

beam cross section remains plane and perpendicular to the beam axes after deformation. 

 

Figure 2.2. Infinitesimal Euler-Bernoulli beam element 

Figure 2.2 is a free body diagram and shows the response 𝑣(𝑥, 𝑡) of the infinitesimal 

element affected not only by the bending moment 𝑀(𝑥, 𝑡) and the transverse force 

𝑉(𝑥, 𝑡) acting on both sides of the element but also by the element inertial effect 

𝑓𝐼(𝑥, 𝑡) and the internal axial force 𝑁. Summing all forces acting transversely gives 

𝑉(𝑥, 𝑡) − [𝑉(𝑥, 𝑡) +
𝜕𝑉(𝑥, 𝑡)

𝜕𝑥
𝛿𝑥] − 𝑓𝐼(𝑥, 𝑡)𝛿𝑥 = 0 (2-8) 

which reduces to 

𝜕𝑉(𝑥, 𝑡)

𝜕𝑥
= −𝑓𝐼(𝑥, 𝑡) (2-9) 

From D’Alambert’s principle the intensity of inertial equivalent static force, using 𝜇 

as the linear density, is given by 

𝑓𝐼(𝑥, 𝑡) = 𝜇
𝜕2𝑣(𝑥, 𝑡)

𝜕𝑡2
 (2-10) 

Therefore Eq.(2.9) becomes 

𝜕𝑉(𝑥, 𝑡)

𝜕𝑥
= −𝜇

𝜕2𝑣(𝑥, 𝑡)

𝜕𝑡2
 (2-11) 

It may be noted that the same result would be obtained by applying Newton’s second 

law to the free-body shown in Fig.2.2. 
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The second equilibrium relationship, Eq. (2.12) is obtained by summing moments 

about a point located in the centre of the right surface of the element. 

𝑀(𝑥, 𝑡) + 𝑉(𝑥, 𝑡)𝛿𝑥 + 𝑁
𝜕𝑣(𝑥, 𝑡)

𝜕𝑥
𝛿𝑥 − [𝑀(𝑥, 𝑡) +

𝜕𝑀(𝑥, 𝑡)

𝜕𝑥
𝛿𝑥] = 0

𝑉(𝑥, 𝑡) =
𝜕𝑀(𝑥, 𝑡)

𝜕𝑥
− 𝑁

𝜕𝑣(𝑥, 𝑡)

𝜕𝑥

 

(2-12) 

Note that because the direction of the axial force does not change with the beam 

deflection, there is no effect on the transverse equilibrium equation, but due to the 

changes in the line of action of the axial force, a moment has to be included in the 

moment-equilibrium equation. 

 

Differentiating Eq. (2.12) with respect to 𝑥 and assuming the axial force constant gives 

𝜕𝑉(𝑥, 𝑡)

𝜕𝑥
=  

𝜕2𝑀(𝑥, 𝑡)

𝜕𝑥2
− 𝑁

𝜕2𝑣(𝑥, 𝑡)

𝜕𝑥2
 (2-13) 

The moment-curvature relationship is 

𝑀(𝑥, 𝑡) = 𝐸𝐼
𝜕2𝑣(𝑥, 𝑡)

𝜕𝑥2
 (2-14) 

Then substituting Eq. (2.11) and Eq.(2.14) into Eq.(2.13) gives 

𝜕2

𝜕𝑥2
[𝐸𝐼

𝜕2𝑣(𝑥, 𝑡)

𝜕𝑥2
] − 𝑁

𝜕2𝑣(𝑥, 𝑡)

𝜕𝑥2
+ 𝜇

𝜕2𝑣(𝑥, 𝑡)

𝜕𝑡2
= 0 (2-15) 

where 𝐸𝐼 is the flexural rigidity. 

To obtain the solution to the governing beam vibration equation stated in Eq. (2.15), 

the separation of variables technique is applied. Using this technique it is assumed 

𝑣(𝑥, 𝑡) = 𝑌(𝑥) τ(𝑡), a product of τ(𝑡) a harmonic function in time e𝜔𝑡   and 𝑌(𝑥) a 

function in space. Differentiating with respect to 𝑥 and denoting it with prime gives, 

differentiating now with respect to 𝑡 and denoting it with dots leads to Eq. (2.18) with 

𝜔, the circular frequency as the most relevant parameter. 

𝜕2𝑣(𝑥, 𝑡)

𝜕𝑡2
= 𝑌(𝑥) τ̈(𝑡) = − 𝜔2𝑌(𝑥) τ(𝑡) (2-18) 

 

𝜕𝑣(𝑥, 𝑡)

𝜕𝑥
= 𝑌′(𝑥) τ(𝑡) (2-16) 

𝜕2𝑣(𝑥, 𝑡)

𝜕𝑥2
= 𝑌′′(𝑥) τ(𝑡) (2-17) 
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Substituting Eqns. (2.17) and (2.18) into Eq. (2.15) gives a fourth order spatial 

Ordinary Differential Equation (ODE) with constant coefficients as given in Eq. (2.19), 

𝐸𝐼
𝜕2

𝜕𝑥2
[𝑌′′(𝑥)] − 𝑁

𝜕

𝜕𝑥
[𝑌′(𝑥)] − 𝜇 𝜔2𝑌(𝑥) = 0

𝑌′𝑣(𝑥) −
𝑁

𝐸𝐼
𝑌′′(𝑥) −

𝜇

𝐸𝐼
𝜔2𝑌(𝑥) = 0

 

(2-19) 

 

Introducing the parameters 𝜆 for the frequency defined in Eq. (2.20) and the axial 

parameter 𝜎 defined in Eq. (2.21), Eq. (2.19) is rewritten as Eq. (2.22)  

𝜆4 =
𝜇

𝐸𝐼
𝜔2 (2-20) 

2𝜎2 =
𝑁

𝐸𝐼
 (2-21) 

𝑌′𝑣(𝑥) − 2𝜎2𝑌′′(𝑥) − 𝜆4𝑌(𝑥) = 0 (2-22) 

The exponential form e𝑟𝑥 is assumed for the solution of the above differential equation. 

Substituting this into Eq. (2.22) leads to the characteristic equation given in Eq. (2.23). 

𝑟4 − 2𝜎2𝑟2 − 𝜆4 = 0 (2-23) 

Equations (2.24) and (2.25) define the four roots for the characteristic equation as well 

as two frequency-load  parameters 𝜙1 and 𝜙2. 

𝑟1,2 = ±√(𝜆4 + 𝜎4)
1

2⁄ + 𝜎2 = ±𝜙1 (2-24) 

𝑟3,4 = ±𝑖√(𝜆4 + 𝜎4)
1

2⁄ − 𝜎2 = ±𝑖𝜙2 (2-25) 

 

The analytical solution of Eq. (2.22) using the four roots is then expressed in the 

exponential form as, 

𝑌(𝑥) = 𝐶1e
𝑟1𝑥 + 𝐶2e

𝑟2𝑥 + 𝐶3e
𝑟3𝑥 + 𝐶4e

𝑟4𝑥 (2-26) 

or in terms of trigonometric and hyperbolic functions, 

𝑌(𝑥) = 𝐺1cosh(𝜙1𝑥) + 𝐺2sinh(𝜙1𝑥) + 𝐺3cos(𝜙2𝑥) + 𝐺4sin(𝜙2𝑥) (2-27) 
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In order to obtain the assembly capabilities used in the FEM, the spectral element of 

length 𝐿𝑒  will use two nodes with two degrees of freedom (DOF), transverse 

displacement and rotation at each node that have to be related with the nodal actions 

(forces and moments) following the sign convention shown in Figure 2.3. 

 

Figure 2.3. Nodal sign convention 

Following the sign convention described for the spectral element and adjusting it for 

the differential element depicted in Figure 2.2, the displacement and force vectors at 

the boundaries used in Eqns. (2.4) and (2.5) must be defined as 

𝐝 =

[
 
 
 
𝑣′(0, 𝑡)
𝑣(0, 𝑡)

𝑣′(𝐿𝑒 , 𝑡)
𝑣(𝐿𝑒 , 𝑡) ]

 
 
 
=

[
 
 
 
𝜃𝑖

𝛿𝑖

𝜃𝑗

𝛿𝑗]
 
 
 

𝑒𝑖𝜔𝑡 = 𝐃[

𝐺1

𝐺2

𝐺3

𝐺4

] 𝑒𝑖𝜔𝑡 (2-28) 

𝐚 = [

−𝑀(0, 𝑡)
𝑉(0, 𝑡)
𝑀(𝐿𝑒 , 𝑡)
−𝑉(𝐿𝑒 , 𝑡)

] =

[
 
 
 
𝑀𝑖

𝑉𝑖

𝑀𝑗

𝑉𝑗 ]
 
 
 
𝑒𝑖𝜔𝑡 = 𝐀[

𝐺1

𝐺2

𝐺3

𝐺4

] 𝑒𝑖𝜔𝑡 (2-29) 

 

Substituting Eqns. (2.28) and (2.29) into Eq. (2.7), the DSM for an uniform beam 

element can be obtained, leading to an equation of the form Eq. (2.6) as follows 

[
 
 
 
𝑀𝑖

𝐹𝑖

𝑀𝑗

𝐹𝑗 ]
 
 
 
= 𝐸𝐼 [

𝑆𝑒 𝑄𝑒

𝑄𝑒 𝑇𝑒

𝑆𝐶𝑒 −𝑄𝑞𝑒

𝑄𝑞𝑒 −𝑇𝑡𝑒
𝑆𝐶𝑒 𝑄𝑞𝑒

−𝑄𝑞𝑒 −𝑇𝑡𝑒

𝑆𝑒 −𝑄𝑒

−𝑄𝑒 𝑇𝑒

]

[
 
 
 
𝜃𝑖

𝛿𝑖

𝜃𝑗

𝛿𝑗]
 
 
 

 (2-30) 

Here the elements of the matrix are called dynamic stability functions [46] and are 

listed in the following table, 
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Table 2.1. Dynamic stability functions for an axially loaded Euler-Bernoulli beam 

𝑆𝑒 
(𝜙1

2 + 𝜙2
2)[𝜙1cosh(𝜙1𝐿𝑒)sin(𝜙2𝐿𝑒) − 𝜙2sinh(𝜙1𝐿𝑒)cos(𝜙2𝐿𝑒)]

(𝜙1
2 − 𝜙2

2) sinh(𝜙1𝐿𝑒) sin(𝜙2𝐿𝑒) + 2𝜙1𝜙2[1 − cosh(𝜙1𝐿𝑒) cos(𝜙2𝐿𝑒)]
 

𝑇𝑒 
𝜙1𝜙2(𝜙1

2 + 𝜙2
2)[𝜙2cosh(𝜙1𝐿𝑒)sin(𝜙2𝐿𝑒) + 𝜙1sinh(𝜙1𝐿𝑒)cos(𝜙2𝐿𝑒)]

(𝜙1
2 − 𝜙2

2) sinh(𝜙1𝐿𝑒) sin(𝜙2𝐿𝑒) + 2𝜙1𝜙2[1 − cosh(𝜙1𝐿𝑒) cos(𝜙2𝐿𝑒)]
 

𝑄𝒆 
𝜙1𝜙2(2𝜙1𝜙2 sinh(𝜙1𝐿𝑒) sin(𝜙2𝐿𝑒) + (𝜙1

2 − 𝜙2
2)[1 − cosh(𝜙1𝐿𝑒) cos(𝜙2𝐿𝑒)])

(𝜙1
2 − 𝜙2

2) sinh(𝜙1𝐿𝑒) sin(𝜙2𝐿𝑒) + 2𝜙1𝜙2[1 − cosh(𝜙1𝐿𝑒) cos(𝜙2𝐿𝑒)]
 

𝑆𝐶𝑒 
(𝜙1

2 + 𝜙2
2)[𝜙2sinh(𝜙1𝐿𝑒) − 𝜙1sin (𝜙2𝐿𝑒)]

(𝜙1
2 − 𝜙2

2) sinh(𝜙1𝐿𝑒) sin(𝜙2𝐿𝑒) + 2𝜙1𝜙2[1 − cosh(𝜙1𝐿𝑒) cos(𝜙2𝐿𝑒)]
 

𝑄𝑞𝒆 
𝜙1𝜙2(𝜙1

2 + 𝜙2
2)[cosh(𝜙1𝐿𝑒) − cos (𝜙2𝐿𝑒)]

(𝜙1
2 − 𝜙2

2) sinh(𝜙1𝐿𝑒) sin(𝜙2𝐿𝑒) + 2𝜙1𝜙2[1 − cosh(𝜙1𝐿𝑒) cos(𝜙2𝐿𝑒)]
 

𝑇𝑡𝑒 
𝜙1𝜙2(𝜙1

2 + 𝜙2
2)[𝜙2sin (𝜙2𝐿𝑒) + 𝜙1sinh (𝜙1𝐿𝑒)]

(𝜙1
2 − 𝜙2

2) sinh(𝜙1𝐿𝑒) sin(𝜙2𝐿𝑒) + 2𝜙1𝜙2[1 − cosh(𝜙1𝐿𝑒) cos(𝜙2𝐿𝑒)]
 

 

The equation presented in Eq. (2.30) may be presented in the form 

𝐚 = 𝐊𝐝 (2-31) 

where 𝐚 is the action vector, 𝐊 is the Dynamic Stiffness Matrix and 𝐝 is the nodal 

displacements (or degrees of freedom). 

 

2.4 Summary  

This chapter was devoted to explain the conceptual development of the continuous 

element method and application to derive the DSM components of beam elements 

through the analytical solution of their governing differential equations of motion in 

free vibration. The DSM for beam elements will be used to understand the effects of 

elements of local flexibility or/and inertia in structural systems, such as portal frames, 

whose discretization is performed using beam elements. 

 





 

 

3 Chapter 3 

Crack Effect 

As all materials contain imperfections or defects, the difficulty is to decide when a 

structure is 'damaged' and to do so, definition of fault has to be made. Worden and 

Dulieu-Barton [47] explain the differences in the following way: "A fault is when the 

structure can no longer operate satisfactorily. If one defines the quality of a structure 

or system as its fitness for purpose or its ability to meet customer or user requirements, 

it suffices to define a fault as a change in the system that produces an unacceptable 

reduction in quality. Damage is when the structure is no longer operating in its ideal 

condition, but it can still function satisfactorily, but in a suboptimal manner. A defect 

is inherent in the material and statistically all materials will contain a known amount 

of defects. This means that the structure will operate at its optimum if the constituent 

materials contain defects". With this definitions in mind, faults and defects are not 

considered in this work, which is devoted to the analysis of damaged structures where 

the structural discontinuity does not affect an adequate operation. 

 

3.1 Vibration of damaged structures 

In the context of structural health monitoring, damage is defined as changes to the 

material and/or geometric properties of a system which adversely affect its current or 

future performance [48]. It can be appreciated from the literature mentioned in the 

introduction that crack is one type of structural damage that has received considerable 

attention in many publications. Cracks are treated in the form of small slots that 

generate changes in the cross sectional areas breaking the structural continuity. 

 

A state of the art review for the vibration of cracked structures was presented by 

Dimarogonas [49], in which Kirmser [50] and Thomson [51] are credited as the earliest 

researchers on vibrational characteristics of a beam with local discontinuities. A recent 

review paper by Shirazizadeh, et al. [52] gives a wide range of crack spring models. 

 

In view of obtaining a closed-form solution for the effect of a crack in a structural 

system, a concentrated crack and its reduction in the sectional area has to be modelled 

as a set of massless springs connecting undamaged components. These springs possess 
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translational, rotational and axial stiffness whose values are defined according to the 

properties of the connecting sections and the crack severity [53, 54]. Among them, the 

rotational spring model has been an acceptable approach towards an exact solution, as 

can be seen from for recent works in beams [55] frames [56] and plates [57, 58]. 

 

3.1.1 Rotational spring model 

Even in the early studies, structural discontinuity is treated in the form of a small slot 

that generates a beam with different cross sectional areas to replace the notched section 

of the beam. Dimarogonas [49] states that using the results from fracture mechanics 

Irwin [24] represents intensities of the concentrated cracks by the rotational stiffness 

of springs using the local compliance computed from the strain energy density function. 

An important difference is remarked between a crack and a notch. The former, as is 

treated in the fracture mechanics theory, generates a singularity at the crack tip and the 

latter produces an area reduction such as that produced by a saw cut. With this 

difference taken into in account, when speaking of continuous cracked beam theory, 

Christides and Barr [59] are credited as the pioneers to develop a cracked Euler-

Bernoulli beam theory by deriving the differential equation and associated boundary 

conditions for a uniform Euler-Bernoulli beam containing one or more pairs of 

symmetric discontinuities. However, because the crack function proposed avoids the 

singularity at the crack tip, it treats the crack as a notch. 

 

Nowadays the word notch is no longer used. Instead the term ‘open crack’ is 

mentioned and mathematically treated as the former since the paper presented by 

Chondros, et al. [20] based on the model of  Christides and Barr [59] which considers 

the crack as a local flexibility and assumes that the effect of the crack is apparent in its 

neighbourhood only. Chondros, et al. [20] treat the cracked beam as two uniform 

beams connected by a rotational spring at the crack location and to validate the 

assumption, compare the results obtained by the open-crack model with those 

measured for a simply supported beam with fatigue propagated cracks reporting 

consistent measurements for crack depths up-to half the beam height. Neither the 

nonlinearity effects generated by crack closure during the bending [60] nor crack 

growth (fatigue cracks) are considered in these researches and these assumptions are 

kept throughout the present work. Due to the fact that natural frequency reduction for 
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a breathing crack is much smaller than the one for an open crack [61] it is difficult to 

recognize their effects by frequency monitoring only as is intended in this work. 

 

3.1.2 Beams with multiple cracks 

A paper by Ruotolo and Surace [62] is one of the early articles considering beams with 

several cracks along the length, formulating additionally the inverse problem of 

damage assessment for cantilever beams using genetic algorithms in the optimization 

of a finite element model. Since then several authors investigated this phenomenon 

applying different approaches. Shifrin and Ruotolo [63] proposed a method in which 

the entire beam is dived into (n+1) beam elements connected by massless springs 

representing the n cracks. The discontinuity is converted into a function by means of 

Dirac's deltas and Heaviside step functions. When the integration is performed, a 

system of n+2 linear equations with n+2 unknowns is obtained. Zheng and Fan [64] 

used a modified Fourier series to compute the natural frequencies of Euler–Bernoulli 

and Timoshenko beams with standard linear eigenvalue equations. In the same year 

Khiem and Lien [65] used a transfer matrix approach; the method built a 4x4 global 

matrix multiplying orderly, according with the compatibility conditions, the transfer 

matrices for beams and cracks. A system of four linear equations is obtained from the 

product of the global matrix and the boundary conditions vector whose solution leads 

to a nonlinear eigenvalue problem of finding the frequency that nulls the determinant 

of the global matrix. 

 

Caddemi and Caliò [18] presented an exact closed-form solution that could be used for 

either damaged or undamaged beams. The work gives a good description of the 

mathematical process to arrive at the exact closed-form expression for the vibration of 

the Euler-Bernoulli beam with multiple concentrated cracks without requiring the 

enforcement of continuity conditions just by enforcing the standard boundary 

conditions. This method even works for the general case of rotational and translational 

spring supports. The concept adopted is modelled via generalised functions (Dirac's 

delta based) on the Euler-Bernoulli partial differential governing equation for beams 

but taking into consideration the local effect in the flexural stiffness of concentrated 

cracks. The novelty of their approach is the integration of these generalised functions 

by means of distribution theory. The general solution for multi-cracked beams is 

assumed as a combination of the standard trigonometric and hyperbolic functions 
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where the coefficients are generalised functions, but when the inverse problem has to 

be faced, its applicability is unknown. 

 

Section 3.2 will present a novel form of see the frequency equation of a cracked 

structure that stands not only for beams but also to frames that could be easily 

accommodated in order to solve the inverse problem of a single cracked structure and 

could be iterative applied to solve the direct problem of multiple damaged structures. 

 

3.2 Uncoupling severity and location 

Although the methodology being discussed is applicable to any structure with a DSM, 

for illustrative purposes let us consider the vibration of a beam section with a crack at 

the coordinate 𝑥𝑐, represented by a spring limiting the relative rotation of the beam 

segments at the hinge which connects the structure parts at the crack location (Figure 

3.1). 

 

≡ 

 

Figure 3.1. Equivalent representation of cracked section 

The nodal actions 𝐚𝑐  are related to the nodal displacements 𝐝𝑐  (or the degrees of 

freedom) in the damaged structure through 𝐊𝑐 the global stiffness matrix. The degrees 

of freedom of the damaged structure consist of the rotations at the crack and all other 

degrees of freedom in the structure (𝐝0) which are no shown in Fig. 3.1. The actions 

corresponding to these displacements are 𝐚0. The rotations at each end of the spring 

are the two extra degrees of freedom that account for the rotational discontinuity 

generated by the stiffness reduction; for this demonstration let us allocate these extra 

degrees of freedom in the final two rows and columns of the global matrices.  

𝐚𝑐 = 𝐊𝑐(𝑥𝑐, 𝜔, 𝑘)𝐝𝑐, 𝐚𝑐 = [

𝐚0

𝑀𝐿

𝑀𝑅

], 𝐝𝑐 = [
𝐝0

𝜃𝐿

𝜃𝑅

] 

Following the above mentioned steps, the dynamic stiffness matrix for the cracked 

structure is presented in the form 

𝐊𝑐 = [

𝐊0(𝑥𝑐, 𝜔) 𝐁1(𝑥𝑐, 𝜔) 𝐁2(𝑥𝑐, 𝜔)

𝐁1
T(𝑥𝑐, 𝜔) 𝑘11(𝑥𝑐, 𝜔) + 𝑘 −𝑘

𝐁2
T(𝑥𝑐, 𝜔) −𝑘 𝑘22(𝑥𝑐, 𝜔) + 𝑘

] (3-1) 
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where the last two rows and columns relate to the rotational degrees of freedom on 

either side of the crack, and the first row and column contain the sub-matrices for all 

other degrees of freedom of the structure.  Thus 𝐊0(𝑥𝑐, 𝜔) is a square submatrix; 

𝐁1(𝑥𝑐, 𝜔) and 𝐁2(𝑥𝑐, 𝜔) are column vectors, 𝑘11(𝑥𝑐, 𝜔) and 𝑘22(𝑥𝑐, 𝜔) are scalars 

and 𝑘  is the stiffness of the rotational spring representing the crack severity. A 

Gaussian elimination will offer a more manageable expression for the determinant of 

the cracked structure, maintaining focus on the last two rows that contain the crack 

related elements. After eliminating the elements below 𝐊0(𝑥𝑐, 𝜔) in Eq. (3.1), 𝐊𝑐 

becomes, 

𝐊𝑐
∗ = [

𝐊0
Δ
(𝑥𝑐,𝜔) 𝐁1

∗
(𝑥𝑐, 𝜔) 𝐁2

∗
(𝑥𝑐,𝜔)

0 𝑘11
∗

(𝑥𝑐,𝜔) + 𝑘 𝑘12
∗

(𝑥𝑐,𝜔) − 𝑘

0 𝑘21
∗

(𝑥𝑐,𝜔) − 𝑘 𝑘22
∗

(𝑥𝑐,𝜔) + 𝑘

], 

where 𝐊𝟎
𝚫(𝑥𝑐 , 𝜔) is an upper triangular square matrix, 𝐁1

∗(𝑥𝑐 , 𝜔) and 𝐁2
∗(𝑥𝑐 , 𝜔) are updated 

column vectors and 𝑘𝑖𝑗
∗ (𝑥𝑐 , 𝜔) updated scalars defined as follows, 

𝑘11
∗ (𝜔) = 𝑘11(𝑥𝑐, 𝜔) − 𝐁1

T(𝑥𝑐 , 𝜔)𝐊0
−1(𝑥𝑐, 𝜔)𝐁1(𝑥𝑐, 𝜔) 

𝑘12
∗ (𝜔) = 𝑘21

∗ (𝑥𝑐, 𝜔) = −𝐁1
T(𝑥𝑐, 𝜔)𝐊0

−1(𝑥𝑐, 𝜔)𝐁2(𝑥𝑐, 𝜔) 

𝑘22
∗ (𝜔) = 𝑘22(𝑥𝑐, 𝜔) − 𝐁2

T(𝑥𝑐 , 𝜔)𝐊0
−1(𝑥𝑐, 𝜔)𝐁2(𝑥𝑐, 𝜔) 

Thus the determinant of the dynamic stiffness matrix of the cracked structure is 

𝐷𝑐(𝑥𝑐 , 𝜔) = |𝐊0
Δ(𝑥𝑐 , 𝜔)|[(𝑘11

∗ (𝜔) + 𝑘)(𝑘22
∗ (𝜔) + 𝑘) − (𝑘12

∗ (𝜔) − 𝑘)2]

= |𝐊0
Δ(𝑥𝑐, 𝜔)| [(𝑘11

∗ (𝜔)𝑘22
∗ (𝜔) − (𝑘12

∗ (𝜔))
2
) + 𝑘(𝑘11

∗ (𝜔) + 𝑘22
∗ (𝜔) + 2𝑘12

∗ (𝜔))]
 (3-2) 

 

The above analysis can be applied to the structure with a hinge at the position 𝑥𝑐 by 

setting 𝑘 = 0, i.e. 

𝐷ℎ(𝑥𝑐, 𝜔) = |𝐊0
Δ(𝑥𝑐, 𝜔)| [(𝑘11

∗ (𝜔)𝑘22
∗ (𝜔) − (𝑘12

∗ (𝜔))
2
)] (3-3) 

It could also be applied to the uncracked structure by setting 𝑘 = ∞ . However 

knowing that the continuity of the slope does not change, it can be stated 𝜃𝐿 = 𝜃𝑅 =  𝜃. 

Therefore it is more appropriate to equate the two rotations at the location of the crack 

by a single degree of freedom, adding the corresponding matrix elements so that the 

dynamic stiffness matrix of the undamaged structure 𝚱𝑢 becomes 

𝚱𝑢 [
𝐝0

𝜃
] = [

𝐊0(𝑥𝑐, 𝜔) 𝐁1(𝑥𝑐, 𝜔) + 𝐁2(𝑥𝑐, 𝜔)

𝐁1
T(𝑥𝑐, 𝜔) + 𝐁2

T(𝑥𝑐, 𝜔) 𝑘11(𝑥𝑐, 𝜔) + 𝑘22(𝑥𝑐, 𝜔)
] [

𝐝0

𝜃
] (3-4) 

Performing partial Gaussian elimination to 𝐊𝑢 gives 

𝐊𝑢
∗ = [

𝐊0
Δ(𝑥𝑐, 𝜔) 𝐁1

∗(𝑥𝑐, 𝜔) + 𝐁2
∗(𝑥𝑐, 𝜔)

0 𝑘∗(𝑥𝑐, 𝜔)
] 
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where, 

𝑘∗(𝑥𝑐 , 𝜔) = 𝑘11(𝑥𝑐 , 𝜔) + 𝑘22(𝑥𝑐 , 𝜔) − (𝐁1
T(𝑥𝑐 , 𝜔) + 𝐁2

T(𝑥𝑐 , 𝜔))𝐊0
−1(𝑥𝑐 , 𝜔)(𝐁1(𝑥𝑐 , 𝜔) + 𝐁2(𝑥𝑐 , 𝜔)) 

𝑘∗(𝑥𝑐 , 𝜔) = (𝑘11
∗ (𝑥𝑐 , 𝜔) + 𝑘22

∗ (𝑥𝑐 , 𝜔) + 2𝑘12
∗ (𝑥𝑐 , 𝜔)) 

Thus the determinant of the dynamic stiffness matrix of the uncracked structure 

𝐷0(𝑥𝑐, 𝜔) is 

𝐷0(𝑥𝑐, 𝜔) = |𝐊0
Δ(𝑥𝑐, 𝜔)|[(𝑘11

∗ (𝑥𝑐, 𝜔) + 𝑘22
∗ (𝑥𝑐, 𝜔) + 2𝑘12

∗ (𝑥𝑐, 𝜔))] (3-5) 

Rearranging Eq. (3.2) using the obtained expressions in Eqns. (3.3) and (3.5) the 

determinant of the dynamic stiffness matrix of the cracked structure 𝐷𝑐(𝑥𝑐 , 𝜔) will be 

seen as 

𝐷𝑐(𝑥𝑐, 𝜔) = 𝑘𝐷0(𝑥𝑐, 𝜔) + 𝐷ℎ(𝑥𝑐, 𝜔) (3-6) 

The right hand side is the sum of the determinant of the dynamic stiffness matrix of 

the structure with a hinge at the location 𝑥𝑐 denoted by 𝐷ℎ(𝑥𝑐, 𝜔) and the determinant 

of the dynamic stiffness matrix of the uncracked structure multiplied by the stiffness 

of the rotational spring. Equation (3.6) could be rearranged in terms of the spring 

flexibility, in Eq. (3.7) with 𝑓 = 1 𝑘⁄  to provide a physical interpretation on the effect 

of a local flexibility in an otherwise healthy structure in which 𝑓 = 0, means no crack 

is present. 

𝑓𝐷𝑐(𝑥𝑐, 𝜔) = 𝐷0(𝑥𝑐, 𝜔) + 𝑓𝐷ℎ(𝑥𝑐, 𝜔) (3-7) 

It should be noted that a closed-form solution similar to Eq. (3.6) was previously 

presented by Khaji, et al. [66] for simple beams but until now it has not been proven 

to hold for frames. At this stage it is appropriate to stress that the main achievement of 

this work is summarized with Eq. (3.6). Its potential implications include a means to 

separate the location effect and the severity effect in a cracked structure which are 

explained later. 

 

3.3 Closed-form solutions for beams using the DSM 

In this section for the very first time in literature is explained how to reach closed-form 

solutions for cracked and undamaged Euler-Bernoulli beams expanding the DSM 

determinant. This close-form solutions for beams with common boundary conditions 

are sought as a simplified form of Eq. (3.6) and analysed in Section 3.4 to offer a clear 

demonstration of the of the significance of each term presented on Eq. (3.6). 

 

A beam of length 𝐿 containing an open crack concentrated at a specific axial location 

𝑥𝑐 = 𝐿𝑎  is depicted in Fig. 3.2.a, and modelled by connecting two elements one 
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between nodes i-c of length 𝐿𝑎 = 𝑥𝑐 and the other between nodes c-j of length 𝐿𝑏 =

𝐿 − 𝐿𝑎 as shown in Fig. 3.2.b. 

 

(a) Beam of height h with an open crack of depth d within its length L. 

 

(b) Rotational spring model of a crack connecting two beam segments. 

Figure 3.2. Cracked beam representation 

Such a crack is represented by a rotational spring of stiffness 𝑘, which is assumed to 

be related to the crack-depth ratio (𝑑/ℎ) by a suitable empirical formula [52, 67]. The 

presence of the rotational spring results in separate moments and rotations at the 

intermediate node c ( 𝜃𝐿 at the left side of the crack and 𝜃𝑅 at the right side of the crack) 

defining the spring DSM by Eq. (3.8) which relates moments at each side of the spring 

with the rotations, 

[
𝑀𝐿

𝑀𝑅
] = [

𝑘 −𝑘
−𝑘 𝑘

] [
𝜃𝐿

𝜃𝑅
] (3-8) 

The overall DSM of the combined system Eq. (3.9) is assembled connecting 

independent DSM Eq. (2.30) of beam elements 𝐿𝑎  and 𝐿𝑏  through spring DSM 

resulting from the expression 

𝐚𝑐 = 𝐊𝑐(𝑥𝑐, 𝜔, 𝑘)𝐝𝑐, 𝐚𝑐 =

[
 
 
 
 
 
 
𝐹𝑖

𝑀𝑖

𝑀𝐿

𝐹𝑐

𝑀𝑅

𝑀𝑗

𝐹𝑗 ]
 
 
 
 
 
 

, 𝐝𝑐 =

[
 
 
 
 
 
 
 
𝛿𝑖

𝜃𝑖

𝜃𝐿

𝛿𝑐

𝜃𝑅

𝜃𝑗

𝛿𝑗 ]
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𝐊𝑐 = 𝐸𝐼

[
 
 
 
 
 
 
 

𝑇𝑎 𝑄𝑎

𝑄𝑎 𝑆𝑎

𝑄𝑞𝑎 𝑆𝐶𝑎

𝑄𝑞𝑎 −𝑇𝑡𝑎 0
𝑆𝐶𝑎 −𝑄𝑞𝑎 0

𝑆𝑎 + 𝑘̅ −𝑄𝑎 −𝑘̅

0 0
0 0
0 0

−𝑇𝑡𝑎 −𝑄𝑞𝑎 −𝑄𝑎 𝑇𝑎 + 𝑇𝑏 𝑄𝑏 𝑄𝑞𝑏 −𝑇𝑡𝑏
0 0
0 0
0 0

−𝑘̅ 𝑄𝑏 𝑆𝑏 + 𝑘̅
0 𝑄𝑞𝑏 𝑆𝐶𝑏

0 −𝑇𝑡𝑏 −𝑄𝑞𝑏

𝑆𝐶𝑏 −𝑄𝑞𝑏

𝑆𝑏 −𝑄𝑏

−𝑄𝑏 𝑇𝑏 ]
 
 
 
 
 
 
 

 (3-9) 

 

It may be noted that a new stiffness parameter 𝑘̅ = 𝑘 𝐸𝐼⁄  is used to account for the 𝐸𝐼 

which multiplies all dynamic stability functions to form the stiffness terms. The next 

step will be to define the boundary conditions for the cracked beam. When working 

with dynamic stiffness method, the beam fixed at both ends has the simplest 

determinant. In addition we analyse the case when there are no axial load, then from 

Eq. (2.21)  𝛼 = 0, and from Eqns. (2.24) and (2.25) the frequency parameter 𝜙1 and 

𝜙2 are equal to 𝜆 making elements for the DSM of Table 2.1 acquire forms shown in 

Table 3.1. 

Table 3.1. Stability functions for an unloaded Euler-Bernoulli beam 

𝑆𝑒 𝜆[cosh (𝜆𝐿𝑒)sin (𝜆𝐿𝑒) − sinh(𝜆𝐿𝑒)cos(𝜆𝐿𝑒)]

1 − cosh(𝜆𝐿𝑒) cos(𝜆𝐿𝑒)
 

𝑆𝐶𝑒 𝜆[sinh(𝜆𝐿𝑒) − sin(𝜆𝐿𝑒)]

1 − cosh(𝜆𝐿𝑒) cos(𝜆𝐿𝑒)
 

𝑇𝑒 𝜆3[cosh(𝜆𝐿𝑒) sin(𝜆𝐿𝑒) + sinh(𝜆𝐿𝑒)cos(𝜆𝐿𝑒)]

1 − cosh(𝜆𝐿𝑒) cos(𝜆𝐿𝑒)
 

𝑇𝑡𝑒 𝜆3[sinh(𝜆𝐿𝑒) + sin(𝜆𝐿𝑒)]

1 − cosh(𝜆𝐿𝑒) cos(𝜆𝐿𝑒)
 

𝑄𝒆 𝜆2[sin(𝜆𝐿𝑒) sinh(𝜆𝐿𝑒)]

1 − cosh(𝜆𝐿𝑒) cos(𝜆𝐿𝑒)
 

𝑄𝑞𝒆 𝜆2[cosh(𝜆𝐿𝑒) − cos(𝜆𝐿𝑒)]

1 − cosh(𝜆𝐿𝑒) cos(𝜆𝐿𝑒)
 

 

Before the determinant terms are expanded, simplification of common collected terms 

has to be made to gain better manageability of the expansions. The terms to expand 

contain some DSM elements which are abbreviated for convenience. These are 𝑠𝑒, 𝑐𝑒, 

𝑆𝐻𝑒 , 𝐶𝐻𝑒  and ∆𝑒  which stand for sin(𝜆𝐿𝑒) , cos(𝜆𝐿𝑒) , sinh(𝜆𝐿𝑒) , cosh(𝜆𝐿𝑒)  and 

(1 − cosh(𝜆𝐿𝑒) cos(𝜆𝐿𝑒)) respectively. Most of the simplifications are reached by 

applying the trigonometric identity between squared sine and cosine functions 

(𝑐𝑒
2 +  𝑠𝑒

2 = 1), and hyperbolic sine and hyperbolic cosine functions (𝐶𝐻𝑒
2 − 𝑆𝐻𝑒

2 = 1) 

𝑇𝑒𝑆𝑒 − 𝑄𝑒
2 = 

(
𝜆3(𝑠𝑒 𝐶𝐻𝑒 + 𝑐𝑒  𝑆𝐻𝑒)

∆𝑒
)(

𝜆((𝑠𝑒  𝐶𝐻𝑒 − 𝑐𝑒  𝑆𝐻𝑒))

∆𝑒
) − (

𝜆2𝑠𝑒  𝑆𝐻𝑒

∆𝑒
)

2

𝜆4(1 + 𝑐𝑒𝐶𝐻𝑒)(1 − 𝑐𝑒𝐶𝐻𝑒)

∆𝑒
2

=
𝜆4(2 − ∆𝑒)

∆𝑒

 (3-10) 
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𝑆𝑒
2 − 𝑆𝐶𝑒

2 = 

𝜆2(𝑠𝑒
2𝐶𝐻𝑒

2 + 𝑐𝑒
2𝑆𝐻𝑒

2 − 𝑐𝑒𝑆𝐻𝑒𝑠𝑒𝐶𝐻𝑒)

∆𝑒
2

−
𝜆2(𝑠𝑒

2 + 𝑆𝐻𝑒
2 − 2𝑠𝑒𝑆𝐻𝑒)

∆𝑒
2

2𝜆2𝑠𝑒𝑆𝐻𝑒(1 − 𝑐𝑒𝐶𝐻𝑒)

∆𝑒
2

=
2𝜆2𝑠𝑒𝑆𝐻𝑒

∆𝑒
= 2𝑄𝑒

 (3-11) 

 

(𝑆𝑒𝑄𝑞𝑒
2 + 𝑇𝑒𝑆𝐶𝑒

2 − 2𝑄𝑒𝑆𝐶𝑒𝑄𝑞𝑒 = 

2𝜆5(𝑠𝑒𝐶𝐻𝑒(1 − 𝑐𝑒𝐶𝐻𝑒)
2 − 𝑐𝑒𝑆𝐻𝑒(1 − 𝑐𝑒𝐶𝐻𝑒)

2)

∆𝑒
3

2𝜆5(𝑠𝑒𝐶𝐻𝑒 − 𝑐𝑒𝑆𝐻𝑒)

∆𝑒
2

=
2𝜆4𝑆𝑒

∆𝑒

 (3-12) 

 

𝑄𝑒
2 − 𝑄𝑞𝑒

2 = 
(
𝜆2𝑠𝑒  𝑆𝐻𝑒

∆𝑒
)

2

− (
𝜆2(𝐶𝐻𝑒 − 𝑐𝑒)

∆𝑒
)

2

−
𝜆4(1 − 𝑐𝑒𝐶𝐻𝑒)

2

∆𝑒
2

= −𝜆4∆𝑒

 (3-13) 

These simplifications will be used in the next sections for a set of boundary conditions 

to give a demonstration of the linear relationship presented in Eq. (3.6). 

 

3.3.1 Clamped-clamped beam 

The 7x7 global matrix Eq. (3.9) for a fixed beam with a crack is reduced to a 3x3 

matrix because the clamped ends eliminate the columns 1, 2, 6 and 7 relative to the 

end displacements and the rows 3, 4 and 5 of the intermediate actions are the remaining 

ones, leading to the matrix  

𝐊𝑐 = 𝐸𝐼 [

𝑆𝑎 + 𝑘̅ −𝑄𝑎 −𝑘̅

−𝑄𝑎

−𝑘̅

𝑇𝑎 + 𝑇𝑏

𝑄𝑏

𝑄𝑏

𝑆𝑏 + 𝑘̅

] (3-14) 

and its determinant after the grouping of terms with the rotational stiffness yields: 

𝐷𝑐 = 𝑆𝑎(𝑇𝑏𝑆𝑏 − 𝑄𝑏
2) + 𝑆𝑏(𝑇𝑎𝑆𝑎 − 𝑄𝑎

2) + 𝑘̅((𝑇𝑎 + 𝑇𝑏)(𝑆𝑎 + 𝑆𝑏) − (𝑄𝑏 − 𝑄𝑎)2) (3-15) 

when performing the process of collecting terms for the expansion of those multiplied 

by 𝑘̅ and using the simplification presented in Eq. (3.10) the expression gain an elegant 

form as follows 

(𝑇𝑎 + 𝑇𝑏)(𝑆𝑎 + 𝑆𝑏) − (𝑄𝑏 − 𝑄𝑎)2 = 𝑇𝑎𝑆𝑎 − 𝑄𝑎
2 + 𝑇𝑏𝑆𝑏 − 𝑄𝑏

2 + 𝑇𝑎𝑆𝑏 + 𝑇𝑏𝑆𝑎 + 2𝑄𝑏𝑄𝑎 

 
=

𝜆4(2 − ∆𝑎)

∆𝑎
+

𝜆4(2 − ∆𝑏)

∆𝑏
+ 𝑇𝑎𝑆𝑏 + 𝑇𝑏𝑆𝑎 + 2𝑄𝑏𝑄𝑎 

 
=

2𝜆4((𝑠𝑎𝑠𝑏 − 𝑐𝑎𝑐𝑏)𝐶𝐻𝑎𝐶𝐻𝑏 + (𝑠𝑎𝑠𝑏 − 𝑐𝑎𝑐𝑏)𝑆𝐻𝑎𝑆𝐻𝑏 + 1)

(1 − 𝐶𝐻𝑎𝑐𝑎)(1 − 𝐶𝐻𝑏𝑐𝑏)
 

 
=

2𝜆4(1 + (𝑠𝑎𝑠𝑏 − 𝑐𝑎𝑐𝑏)(𝑆𝐻𝑎𝑆𝐻𝑏 + 𝐶𝐻𝑎𝐶𝐻𝑏))

(1 − 𝐶𝐻𝑎𝑐𝑎)(1 − 𝐶𝐻𝑏𝑐𝑏)
 

Additionally and thanks to the fact that the sum of each segment length is equal to the 

total length and we can replace the trigonometric terms with the angle sum formulas 



Chapter 3 Crack Effect 

26 

 

cos(𝐿𝜆) = 𝑐𝑎𝑐𝑏 − 𝑠𝑎𝑠𝑏 

cosh(𝐿𝜆) = 𝑆𝐻𝑎𝑆𝐻𝑏 + 𝐶𝐻𝑎𝐶𝐻𝑏 

Leading to the well-known characteristic equation for a clamped-clamped beam of 

length L on the numerator. 

(𝑇𝑎 + 𝑇𝑏)(𝑆𝑎 + 𝑆𝑏) − (𝑄𝑏 − 𝑄𝑎)2 =
2𝜆4(1 − cos(𝐿𝜆)cosh(𝐿𝜆))

(1 − 𝐶𝐻𝑎𝑐𝑎)(1 − 𝐶𝐻𝑏𝑐𝑏)
 

The expansion of the sum of terms 𝑆𝑎(𝑇𝑏𝑆𝑏 − 𝑄𝑏
2) and 𝑆𝑏(𝑇𝑎𝑆𝑎 − 𝑄𝑎

2) unaffected by 𝑘 in 

Eq. (3.15) lead us to the expression 

𝜆5(sin(𝐿𝜆)𝐶𝐻𝑎𝐶𝐻𝑏 + sinh(𝐿𝜆) 𝑐𝑎𝑐𝑏 + 𝑠𝑎𝐶𝐻𝑎 + 𝑠𝑏𝐶𝐻𝑏  − 𝑐𝑎𝑆𝐻𝑎 − 𝑐𝑏𝑆𝐻𝑏)

(1 − 𝐶𝐻𝑎𝑐𝑎)(1 − 𝐶𝐻𝑏𝑐𝑏)
 

In view of the Eq. (3.6) the determinant for the cracked structure at a natural frequency 

𝜔0𝑐 for a beam fixed at both ends has the form 

𝐷𝑐(𝑥𝑐, 𝜔0𝑐) = 𝑘𝐷0(𝑥𝑐, 𝜔0𝑐) + 𝐷ℎ(𝑥𝑐, 𝜔0𝑐) = 0 (3-16) 

with 

𝐷0(𝑥𝑐, 𝜔0𝑐) =
2𝜆4(1 − cos(𝐿𝜆)cosh(𝐿𝜆))

(1 − 𝐶𝐻𝑎𝑐𝑎)(1 − 𝐶𝐻𝑏𝑐𝑏)
 (3-17) 

and 

𝐷ℎ(𝑥𝑐 , 𝜔0𝑐) =
𝜆5(sin(𝐿𝜆) 𝐶𝐻𝑎𝐶𝐻𝑏 + sinh(𝐿𝜆) 𝑐𝑎𝑐𝑏 + 𝑠𝑎𝐶𝐻𝑎 + 𝑠𝑏𝐶𝐻𝑏  − 𝑐𝑎𝑆𝐻𝑎 − 𝑐𝑏𝑆𝐻𝑏)

(1 − 𝐶𝐻𝑎𝑐𝑎)(1 − 𝐶𝐻𝑏𝑐𝑏)
 (3-18) 

An important remark must be mentioned; the common denominator for the expressions 

in Equations (3.17) and (3.18) is the product of the characteristic equations of the two 

fixed beams segments which could be eliminated when multiplying both sides of the 

determinantal equation by them. The obtained characteristic equation has the same 

form as those presented by Caddemi and Caliò [18] and Khaji, et al. [66] with a factor 

equal to 2/λ which comes out after simplification of the 𝜆 factors. 

𝐷̅𝑐(𝑥𝑐, 𝜔0𝑐) = 2𝑘𝐷̅0(𝑥𝑐, 𝜔0𝑐) + 𝜆𝐷̅ℎ(𝑥, 𝜔0𝑐) = 0 (3-19) 

𝐷̅0(𝑥𝑐, 𝜔0𝑐) = 1 − cos(𝐿𝜆)cosh(𝐿𝜆) (3-20) 

𝐷̅ℎ(𝑥𝑐 , 𝜔0𝑐) = sin(𝐿𝜆)𝐶𝐻𝑎𝐶𝐻𝑏 + sinh(𝐿𝜆) 𝑐𝑎𝑐𝑏 + 𝑠𝑎𝐶𝐻𝑎 + 𝑠𝑏𝐶𝐻𝑏  − 𝑐𝑎𝑆𝐻𝑎 − 𝑐𝑏𝑆𝐻𝑏 (3-21) 

 

3.3.2 Clamped-pinned beam 

The 7x7 global matrix Eq. (3.9) for a beam with a crack fixed at the left end and pinned 

at the right end is reduced to a 4x4 matrix because the clamped end eliminates the 

columns 1 and 2 relative to the left end displacements, the pinned end eliminates the 

column 7 relative to the end translational displacement. Additionally there are four 
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zero actions, rows 3, 4 and 5 for the intermediate actions and row 6 for the right end 

moment, bringing the matrix; 

𝐊𝑐 = 𝐸𝐼

[
 
 
 
𝑆𝑎 + 𝑘̅ −𝑄𝑎

−𝑄𝑎 𝑇𝑎 + 𝑇𝑏

−𝑘̅ 0
𝑄𝑏 𝑄𝑞𝑏

−𝑘̅ 𝑄𝑏

0 𝑄𝑞𝑏

𝑆𝑏 + 𝑘̅ 𝑆𝐶𝑏

𝑆𝐶𝑏 𝑆𝑏 ]
 
 
 

 (3-22) 

 

From Eq. (3.6) it may be seen that the terms in the DSM of a cracked structure that 

give rise to the determinant of the original uncracked structure are the ones that would 

have 𝑘̅ as a factor in the expansion of its determinant. Therefore, by collecting the 

terms from the determinant 𝐊𝑐 in Eq. (3.2) that would be associated with 𝑘̅ gives the 

DSM of the original beam 𝐊𝑢 as given in Eq. (3.23) 

𝐊𝑢 = 𝐸𝐼 [

𝑆𝑎 + 𝑆𝑏 𝑄𝑏 − 𝑄𝑎 𝑆𝐶𝑏

𝑄𝑏 − 𝑄𝑎

𝑆𝐶𝑏

𝑇𝑎 + 𝑇𝑏

𝑄𝑞𝑏

𝑄𝑞𝑏

𝑆𝑏

] (3-23) 

whose expansion can be simplified using Equations (3.10), (3.11) and (3.12) to the 

form 

𝐷0(𝑥𝑐, 𝜔0𝑐) =
2𝜆5(sin(𝐿𝜆)cosh(𝐿𝜆) − sinh(𝐿𝜆)cos(𝐿𝜆))

(1 − 𝐶𝐻𝑎𝑐𝑎)(1 − 𝐶𝐻𝑏𝑐𝑏)
 (3-24) 

The remaining terms from the determinant of the matrix Eq. (3.22), could be collected 

in the following way 

𝐷ℎ(𝑥𝑐 , 𝜔0𝑐) = (𝑆𝑏
2 − 𝑆𝐶𝑏

2)𝑆𝑏(𝑇𝑏𝑆𝑏 − 𝑄𝑏
2) − 𝑆𝑎(𝑆𝑏𝑄𝑞𝑏

2 + 𝑇𝑏𝑆𝐶𝑏
2 − 2𝑄𝑏𝑆𝐶𝑏𝑄𝑞𝑏) + 𝑆𝑎𝑆𝑏(𝑇𝑏𝑆𝑏 − 𝑄𝑏

2) 

This is simplified with Equations (3.10), (3.11) and (3.12) as 

𝐷ℎ(𝑥𝑐 , 𝜔0𝑐) = 𝑄𝑏

2𝜆4(2 − ∆𝑎)

∆𝑎
−

2𝜆4𝑆𝑎𝑆𝑏

∆𝑏
+

𝜆4𝑆𝑎𝑆𝑏(2 − ∆𝑏)

∆𝑏
= 𝜆4 (2𝑄𝑏

(2 − ∆𝑎)

∆𝑎
− 𝑆𝑎𝑆𝑏) 

leading to the expression 

𝐷ℎ(𝑥𝑐 , 𝜔0𝑐) =
𝜆6(sin(𝐿𝜆) 𝐶𝐻𝑎𝑆𝐻𝑏 + sinh(𝐿𝜆) 𝑐𝑎𝑠𝑏 + 2𝑠𝑏𝑆𝐻𝑏 − 𝑆𝐻𝑎𝑆𝐻𝑏𝑐𝑎𝑐𝑏 − 𝐶𝐻𝑎𝐶𝐻𝑏𝑠𝑎𝑠𝑏)

(1 − 𝐶𝐻𝑎𝑐𝑎)(1 − 𝐶𝐻𝑏𝑐𝑏)
 (3-25) 

The form expressed by Eq. (3.19) after simplification of the 𝜆 factors and multiplying 

both sides by the common denominator (1 − 𝐶𝐻𝑎𝑐𝑎)(1 − 𝐶𝐻𝑏𝑐𝑏). 𝐷0(𝑥𝑐, 𝜔0𝑐) takes the 

well-known form of the characteristic equation for a clamped-pinned beam  

𝐷̅0(𝑥𝑐, 𝜔0𝑐) = sin(𝐿𝜆)cosh(𝐿𝜆) − sinh(𝐿𝜆)cos(𝐿𝜆) 

and  

𝐷̅ℎ(𝑥𝑐, 𝜔0𝑐) = sin(𝐿𝜆)𝐶𝐻𝑎𝑆𝐻𝑏 + sinh(𝐿𝜆) 𝑐𝑎𝑠𝑏 + 2𝑠𝑏𝑆𝐻𝑏 − 𝑆𝐻𝑎𝑆𝐻𝑏𝑐𝑎𝑐𝑏 − 𝐶𝐻𝑎𝐶𝐻𝑏𝑠𝑎𝑠𝑏 

3.3.3 Pinned-pinned beam 

The 7x7 global matrix Eq. (3.9) for a beam with a crack pinned at the ends is reduced 

to a 5x5 matrix after eliminating columns 1 and 7 relative to the transversal 
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displacements. The actions from rows 1 and 7 are not considered in the final matrix 

(3.26)  

𝐊𝑐 = 𝐸𝐼

[
 
 
 
 
 
𝑆𝑎 𝑆𝐶𝑎

𝑆𝐶𝑎 𝑆𝑎 + 𝑘̅

−𝑄𝑞𝑎

−𝑄𝑎

0 0
−𝑘̅ 0

−𝑄𝑞𝑎 −𝑄𝑎 𝑇𝑎 + 𝑇𝑏 𝑄𝑏 𝑄𝑞𝑏

0 −𝑘̅
0 0

𝑄𝑏

𝑄𝑞𝑏

𝑆𝑏 + 𝑘̅ 𝑆𝐶𝑏

𝑆𝐶𝑏 𝑆𝑏 ]
 
 
 
 
 

 (3-26) 

The terms multiplied by 𝑘̅  in the resultant determinant are obtained from the 

determinant of the matrix in (3.27) when the intermediate rotations are treated as only 

one degree of freedom 

𝐊𝑢 = 𝐸𝐼 [

𝑆𝑎 𝑆𝐶𝑎

𝑆𝐶𝑎 𝑆𝑎 + 𝑆𝑏

−𝑄𝑞𝑎 0
−𝑄𝑎 + 𝑄𝑏 𝑆𝐶𝑏

−𝑄𝑞𝑎 −𝑄𝑎 + 𝑄𝑏

0 𝑆𝐶𝑏

𝑇𝑎 + 𝑇𝑏 𝑄𝑞𝑏

𝑄𝑞𝑏 𝑆𝑏

] (3-27) 

and could be simplified as 

𝐷0(𝑥𝑐, 𝜔0𝑐) =
4𝜆6(sin(𝐿𝜆)sinh(𝐿𝜆))

(1 − 𝐶𝐻𝑎𝑐𝑎)(1 − 𝐶𝐻𝑏𝑐𝑏)
 (3-28) 

the remaining terms in the determinant of (3.26) are accommodated as 

+(𝑆𝑏
2 − 𝑆𝐶𝑏

2){𝑆𝑎(𝑇𝑎𝑆𝑎 − 𝑄
𝑎
2) − (𝑆𝑎𝑄𝑞

𝑎
2 + 𝑇𝑎𝑆𝐶𝑎

2 − 2𝑄
𝑎
𝑆𝐶𝑎𝑄𝑞

𝑎
)}

+(𝑆𝑎
2 − 𝑆𝐶𝑎

2){𝑆𝑏(𝑇𝑏𝑆𝑏 − 𝑄
𝑏
2) − (𝑆𝑏𝑄𝑞

𝑏
2 + 𝑇𝑏𝑆𝐶𝑏

2 − 2𝑄
𝑏
𝑆𝐶𝑏𝑄𝑞

𝑏
)}

} 

and simplified from the expressions given in Equations (3.10) to (3.13) to reach the 

final form gives in Eq. (3.29) 

2𝑄𝑏 {𝑆𝑎
𝜆4(2−∆𝑎)

∆𝑎
−

2𝜆4𝑆𝑎

∆𝑎
} + 2𝑄𝑎 {𝑆𝑏

𝜆4(2−∆𝑏)

∆𝑏
−

2𝜆4𝑆𝑏

∆𝑏
}=−2𝜆4(𝑄𝑏𝑆𝑎 + 𝑄𝑎𝑆𝑏)  

𝐷ℎ(𝑥𝑐, 𝜔0𝑐) =
2𝜆7(sin(𝐿𝜆) 𝑆𝐻𝑎𝑆𝐻𝑏 − sinh(𝐿𝜆) 𝑠𝑎𝑠𝑏)

(1 − 𝐶𝐻𝑎𝑐𝑎)(1 − 𝐶𝐻𝑏𝑐𝑏)
 (3-29) 

 

The form expressed by Eq. (3.19) is obtained from Eq. (3.6) after 

simplification of the 𝜆 factors and multiplying both sides by the common 

denominator (1 − 𝐶𝐻𝑎𝑐𝑎)(1 − 𝐶𝐻𝑏𝑐𝑏). 𝐷0(𝑥𝑐, 𝜔0𝑐) takes the well-known 

form of the characteristic equation for a simply supported beam 

𝐷̅0(𝑥𝑐 , 𝜔0𝑐) = sin(𝐿𝜆)sinh(𝐿𝜆) 

𝐷̅ℎ(𝑥𝑐 , 𝜔0𝑐) = sin(𝐿𝜆)𝑆𝐻𝑎𝑆𝐻𝑏 − sinh(𝐿𝜆) 𝑠𝑎𝑠𝑏 

3.3.4 Clamped-free beam 

The 7x7 global matrix Eq. (3.9) for a cantilever beam with a crack is reduced to a 5x5 

matrix after eliminating the columns 1 and 2 relative to the restricted displacements at 

the left by the clamp. The actions from rows 1 and 2 are not considered in the final 

matrix  
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𝐊𝑐 = 𝐸𝐼

[
 
 
 
 
𝑆𝑎 + 𝑘̅ −𝑄𝑎

−𝑄𝑎 𝑇𝑎 + 𝑇𝑏

−𝑘̅
𝑄𝑏

0 0
𝑄𝑞𝑏 −𝑇𝑡𝑏

−𝑘̅ 𝑄𝑏 𝑆𝑏 + 𝑘̅ 𝑆𝐶𝑏 −𝑄𝑞𝑏

0 𝑄𝑞𝑏

0 −𝑇𝑡𝑏

𝑆𝐶𝑏

−𝑄𝑞𝑏

𝑆𝑏 −𝑄𝑏

−𝑄𝑏 𝑇𝑏 ]
 
 
 
 

 (3-30) 

The terms multiplied by 𝑘̅  in the resultant determinant are obtained from the 

determinant of the matrix in (3.30) when the intermediate rotations, those on the main 

diagonal affected by 𝑘, are treated as the same degree of freedom 

𝐊𝑢 = 𝐸𝐼 [

𝑆𝑎 + 𝑆𝑏 −𝑄𝑎 + 𝑄𝑏

−𝑄𝑎 + 𝑄𝑏 𝑇𝑎 + 𝑇𝑏

𝑆𝐶𝑏 −𝑄𝑞𝑏

𝑄𝑞𝑏 −𝑇𝑡𝑏
𝑆𝐶𝑏 𝑄𝑞𝑏

−𝑄𝑞𝑏 −𝑇𝑡𝑏

𝑆𝑏 −𝑄𝑏

−𝑄𝑏 𝑇𝑏

] (3-31) 

and could be simplified as 

𝐷0(𝑥𝑐, 𝜔0𝑐) =
2𝜆4(1 + cos(𝐿𝜆)cosh(𝐿𝜆))

(1 − 𝐶𝐻𝑎𝑐𝑎)(1 − 𝐶𝐻𝑏𝑐𝑏)
 (3-32) 

The remaining terms in the determinant of (3.30) are accommodated as 

(𝑆𝑎 + 𝑆𝑏)(𝑇𝑏𝑆𝑏 − 𝑄𝑏
2) − (𝑆𝑏𝑄𝑞𝑏

2 + 𝑇𝑏𝑆𝐶𝑏
2 − 2𝑄𝑏𝑆𝐶𝑏𝑄𝑞𝑏) 

and simplified from the expressions given in Equations (3.10) to (3.13) to reach the 

final form in Eq. (3.33) 

𝑆𝑎

𝜆4(2 − ∆𝑏)

∆𝑏
+ 𝑆𝑏

𝜆4(2 − ∆𝑏)

∆𝑏
−

2𝜆4𝑆𝑏

∆𝑏
 

𝐷ℎ(𝑥𝑐 , 𝜔0𝑐) =
𝜆5(sinh(𝐿𝜆) 𝑐𝑎𝑐𝑏 − sin(𝐿𝜆) 𝐶𝐻𝑎𝐶𝐻𝑏 + 𝐶𝐻𝑎𝑠𝑎 + 𝑆𝐻𝑏𝑐𝑏 − 𝑆𝐻𝑎𝑐𝑎 − 𝐶𝐻𝑏𝑠𝑏)

(1 − 𝐶𝐻𝑎𝑐𝑎)(1 − 𝐶𝐻𝑏𝑐𝑏)
 (3-33) 

The form expressed by Eq. (3.19) is obtained from Eq. (3.6) after simplification of the 

𝜆  factors and multiplying both sides by the common denominator 

(1 −  𝐶𝐻𝑎𝑐𝑎)(1 −  𝐶𝐻𝑏𝑐𝑏) . 𝐷0(𝑥𝑐, 𝜔0𝑐)  takes the well-known form of the 

characteristic equation for a cantilever beam 

𝐷̅0(𝑥𝑐 , 𝜔0𝑐) = 1 + cos(𝐿𝜆)cosh(𝐿𝜆) 

𝐷̅ℎ(𝑥𝑐 , 𝜔0𝑐) = sinh(𝐿𝜆) 𝑐𝑎𝑐𝑏 − sin(𝐿𝜆)𝐶𝐻𝑎𝐶𝐻𝑏 + 𝐶𝐻𝑎𝑠𝑎
+ 𝑆𝐻𝑏𝑐𝑏 − 𝑆𝐻𝑎𝑐𝑎 − 𝐶𝐻𝑏𝑠𝑏 

 

The results for the cantilever beam could be compared with previous work based on 

the DSM, for example the papers by Banerjee and Guo [53] and Labib, et al. [67].  

The procedure to find the natural frequencies of 𝐷𝑐(𝑥𝑐, 𝜔0𝑐)  uses a Matlab® zero 

finding function on intervals where there is a sign change, with the interval size set to 

0.001rad/s and the zero finding function tolerance set to 1x10-16. Natural frequency 

results from Labib, et al. [67] are presented in Table 3.2 next to those obtained using 

Eq. (3.18) for a beam of 200mm length with rectangular cross sectional area of 

25mmx7.8mm, flexural rigidity 213.548 Nm2 and linear density 1.5308 kgm-1 showing 

that the present method does compare well with these earlier approaches in both the 
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intact case and the damaged scenarios. It is important to mention that Eq. (3.19) does 

not have frequency dependent denominator and therefore there is no need to use the 

Wittrick-Williams algorithm [68]; the differences on the second frequency values 

could be related to the use of a very small tolerance in the Matlab® zero finding 

function. 

Table 3.2. Natural frequencies of a cantilever cracked beam. L&K values from Labib, et al. 

 

 

3.4 The behaviour of the determinantal functions 

The obtained results from the previous section are compiled in the next table following 

the form of the equation (3.19), 

Table 3.3. Closed form for cracked beams with common boundary conditions 

Equivalent expression 

Clamped-clamped 

𝐷0(𝑥𝑐 , 𝜔0𝑐) 1 − cos(𝐿𝜆)cosh(𝐿𝜆) 

𝐷ℎ(𝑥𝑐 , 𝜔0𝑐) sin(𝐿𝜆)𝐶𝐻𝑎𝐶𝐻𝑏 + sinh(𝐿𝜆) 𝑐𝑎𝑐𝑏 + 𝑠𝑎𝐶𝐻𝑎 + 𝑠𝑏𝐶𝐻𝑏  − 𝑐𝑎𝑆𝐻𝑎 − 𝑐𝑏𝑆𝐻𝑏 

Clamped-pinned 

𝐷0(𝑥𝑐 , 𝜔0𝑐) sin(𝐿𝜆)cosh(𝐿𝜆) − 𝑠𝑖𝑛ℎ(𝐿𝜆)𝑐𝑜𝑠(𝐿𝜆) 

𝐷ℎ(𝑥𝑐 , 𝜔0𝑐) sin(𝐿𝜆)𝐶𝐻𝑎𝑆𝐻𝑏 + sinh(𝐿𝜆) 𝑐𝑎𝑠𝑏 + 2𝑠𝑏𝑆𝐻𝑏 − 𝑆𝐻𝑎𝑆𝐻𝑏𝑐𝑎𝑐𝑏 − 𝐶𝐻𝑎𝐶𝐻𝑏𝑠𝑎𝑠𝑏 

Pinned-pinned 

𝐷0(𝑥𝑐 , 𝜔0𝑐) sin(𝐿𝜆)sinh(𝐿𝜆) 

𝐷ℎ(𝑥𝑐 , 𝜔0𝑐) sin(𝐿𝜆) 𝑆𝐻𝑎𝑆𝐻𝑏 − sinh(𝐿𝜆) 𝑠𝑎𝑠𝑏 

Clamped-free 

𝐷0(𝑥𝑐 , 𝜔0𝑐) 1 + cos(𝐿𝜆)cosh(𝐿𝜆) 

𝐷ℎ(𝑥𝑐 , 𝜔0𝑐) sinh(𝐿𝜆) 𝑐𝑎𝑐𝑏 − sin(𝐿𝜆)𝐶𝐻𝑎𝐶𝐻𝑏 + 𝐶𝐻𝑎𝑠𝑎 + 𝑆𝐻𝑏𝑐𝑏 − 𝑆𝐻𝑎𝑐𝑎 − 𝐶𝐻𝑏𝑠𝑏 

 

(La/L ) k Present L&K Present L&K Present L&K

130 1034.6 1034.6 6469.76 6469.6 18152.32 18152

28.8 1022.2 1022.2 6348.91 6348.9 17942.52 17942

8.39 985.98 985.98 6035.94 6036.0 17446.88 17447

130 1037.31 1037.3 6457.02 6456.8 18137.10 18137

28.8 1034.16 134.2 6292.26 6292.3 17879.45 17879

8.39 1024.43 1024.4 5851.88 5852.0 17276.14 17276

1038.21 1038.2 6506.37 6506.3 18218.04 18218

0.4

0.6

Intact Beam

Crack 

location

Spring 

stiffness

Natural frequency, (rad/s)

First frequency Second frequency Third frequency
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and perfect agreement is found when comparing the obtained results with the closed-

form solutions given by Khaji, et al. [66]. 

 

3.4.1 Frequency shift with location 

As was stated in Section 3.3, for a very high value of stiffness, the term 2𝑘𝐷̅0(𝑥𝑐, 𝜔0𝑐) 

in Eq. (3.18) appears to be the dominant one, leading to the simplification 

𝐷̅0(𝑥𝑐, 𝜔0𝑐) =  0, which is actually the characteristic equation for a beam of length L. 

When the spring stiffness decrease, the influence of the term 𝜆𝐷̅ℎ(𝑥𝑐, 𝜔0𝑐) whose 

value depends of the crack position needs to be considered. To determine how 

important this effect is, an analysis of the values of the determinantal function 

𝐷̅ℎ(𝑥𝑐, 𝜔0𝑐) will be performed below, starting from those at the natural frequencies of 

the un-cracked beam in different hinge positions. A plot of the obtained values for the 

function 𝐷̅ℎ(𝑥𝑐, 𝜔0𝑐) for constant 𝜔0𝑐, for the first three eigenvalues for various hinge 

positions are given in Figure 3.3 to Figure 3.6. 

 

Figure 3.3. Non-dimensional plot of the function 𝐷̅ℎ evaluated at different locations for 

constant eigenvalues. Clamped-clamped beam case. 

These plots could be interpreted as the effect of the discontinuity at the particular 

location. This effect is called the normalised frequency change in Labib, et al. [69] and 

to find it, it is necessary to use an approximate method known as delta method. In the 

present work it is only necessary to evaluate the determinantal function 𝐷̅ℎ(𝑥𝑐, 𝜔0𝑐) 

for the modal frequency values of the undamaged beam in each location. 
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The plot in Fig.3.3 indicates that the maximum effect of the crack will occur at the 

fixed ends. It was found numerically that when a severe crack is located very close to 

a clamped end the resulting eigenvalue is almost equal to the one for a pinned end. An 

indication of symmetry is observed when identical values are obtained for cracks 

located at the same distance on either side of the centre of the beam. 

 

Figure 3.4. Non-dimensional plot of the function 𝐷̅ℎ evaluated at different locations for 

constant eigenvalues. Pinned-clamped beam case. 

The plot in Fig.3.4 indicates that the symmetry is broken because of the un-symmetric 

boundary conditions. Additionally, the pinned end was always found to be insensitive 

implying that the value of the determinantal function is dependent onf the bending 

moment. 
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Figure 3.5. Non-dimensional plot of the function 𝐷̅ℎ evaluated at different locations for 

constant eigenvalues. Pinned-pinned beam case. 

 

Figure 3.6. Non-dimensional plot of the function 𝐷̅ℎ evaluated at different locations for 

constant eigenvalues. Clamped-free beam case. 

The plot in Fig.3.6 indicates that the maximum effect of the crack will occur at the 

fixed end and that the free end always will be insensitive giving strengthening the 

previous observation that the determinantal function may be related to the bending 

moment. 
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All the features mentioned for each plot for the determinant of the hinged structure are 

also found in the literature [65] for the normalised changes in frequency for a cracked 

beam with different severity. Therefore, bearing in mind that the determinant of the 

hinged structure is independent of the stiffness value for the spring modelling the crack, 

there is a possible implications that the relative frequency shift variations are 

dominated by the crack location rather than its severity. 

 

3.4.2 Frequency shift with severity 

There is a flaw on the crack literature mentioned by Dimarogonas [49] and implied by 

Labib, et al. [67] regarding the lack of accuracy in the derivation of the flexibility 

generated by a thickness reduction when the non-dimensional crack depth (𝑑/ℎ) is 

higher than 70% where the linearity of the stiffness model is lost. Eq. (3.6) however 

holds for any stiffness value, and it was decided to investigate the behaviour of the 

determinant for a wide range of stiffness using the present approach. 

 

A numerical test in a non-dimensional stiffness range of 106 at the high end and 10 at 

the low end that cover crack-depth ratios (𝑑/ℎ) between 0% to 90% with a Matlab© 

code was developed to tabulate, for different values of stiffness and positions, the 

eigenvalue that made the determinant in Eq. (3.6) vanish. The data showed values of 

𝐷̅0(𝜔0𝑐) lower than one while the values for the function 𝐷̅ℎ(𝑥𝑐, 𝜔0𝑐) are moving in 

the order of hundreds for the first mode in the beam fixed in both ends. 

 

These data are plotted as the ratio of the functions  𝐷̅ℎ(𝑥𝑐, 𝜔0𝑐)/𝐷̅ℎ(0, 𝜔0𝑐) and shown 

in Figure 3.7 where 𝜔0𝑐 is the natural frequency when the crack is located at 𝑥𝑐 found 

using the same procedure as the one for Table 3.2. The proximity between the results 

with (𝑑/ℎ) values lower than 73% shows that approximate methods based on the 

linearity between frequency and stiffness could be effective but now with an exact 

linear relationship in Eq. (3.6) which is valid for the whole range of crack depth, the 

approximate method is no longer needed. 
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Figure 3.7. Functions ratio evaluated at eigenvalues. k=10:106. 

 

For each vibration mode there are points where the eigenvalue is unchanged whether 

or not a rotational spring is located in them, this property generates insensitivity to 

damage for these locations in the specific mode, in Figure 3.7. Intuitively it may be 

said that the points at which the ratio is zero are not sensitive to the stiffness value. 

These are the locations at the natural frequency that makes the function 𝐷ℎ(𝑥, 𝜔) 

equals to zero. 

 

These values are called points of contra-flexure and are located on the abscissa where 

at each mode the moment is zero. Khiem and Lien [65] refer to these as critical points 

at which cracks are unnoticed, and present their values for two boundary conditions. 

Taking a close look at Khiem and Lien [65] values it is noticed that the symmetry seen 

in Figs. 3.3 and 3.5 is not present; one reason for this is because the derivation of these 

points were made from a model of crack that cannot be accurate to higher flexibility 

values and therefore they have been updated in the present work and listed in Table 

3.4. 
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Table 3.4. Contraflexion points location. K&L values from Khiem and Lien. 

 

 

3.5 Frequency shifts and squared moment an interesting moment-

determinant relationship 

Morassi [27] states that the effect of a crack on a frequency is proportional to the 

potential energy density of the corresponding undamaged mode shape evaluated at the 

cracked section implying that frequency sensitivity to damage position depends on the 

square of the curvature of the undamaged mode shape. The same principle was applied 

by Gillich and Praisach [35] finding a correlation between normalised frequency shifts 

and the normalised squared moment when using the expression for the strain energy 

stored in the elastic structure, dependent of the second derivative of the mode shape. 

 

Gillich and Praisach [35] pointed out that for certain vibration modes the shift in the 

natural frequency depends on the position of the crack influenced by the mode shape. 

Additionally, they mention the existence of points of contra-flexure for each vibration 

mode as those where the energy is zero and therefore no frequency shift if the crack is 

located there. 

 

A physical explanation could be obtained by considering the bending moment and the 

fact that a rotational spring produces an angular displacement when a moment is 

applied between its ends, so if there is no moment, the spring, even with a high 

flexibility remains inactive. A mathematical verification will be presented in the next 

paragraphs that stands for any structure which could be modelled by means of a 

frequency dependent dynamic stiffness matrix. 

 

Without loss of generality, for illustrative purposes we consider the portal frame 

structure with a crack at the point 𝐩 = (𝑥1, 𝑥2) located within its length splitting the 

K&L Present K&L Present K&L Present

0.26672 0.257

0.53328 0.5

0.10608 0.127 0.07632 0.0763

0.28544 0.2854

0.51456 0.5146

0.69392 0.675 0.72368 0.7237

0.4 0.5

0.775

-- 0.4 0.5

Boundary condition 

type

1
st
 frequency 2

nd
 frequency 3

rd
 frequency

Pinned-pinned

Clamped-clamped

0.17928

0.62072

0.225
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structure in two parts. Let the internal bending moment at the crack position be M and 

-M. 

 

Figure 3.8. Cracked frame and internal moments 

By Newton’s third law, these actions will be equal and opposite as the crack effect 

represented by a rotational spring does not introduce a discontinuity in moment. Now 

separate the rotational spring from the structure resulting a combination of a hinged 

structure and the spring. Let the rotations of the structure at the two sides of crack 

location be 𝜃1and 𝜃2. The internal moments will now act as external to the hinged 

structure. Then for the split structure the following DSM equation can be derived: 

[
𝑀

−𝑀
] = [

𝐾1 𝐾2

𝐾2 𝐾3
] [

𝜃1

𝜃2
] (3-34) 

where each 𝐾𝑖  submatrix of dimension 1x1 could be obtained from the structural 

stiffness matrix through condensation, leading us to define the internal moments as 

𝑀 = 𝐾1𝜃1 + 𝐾2𝜃2 = 0
−𝑀 = 𝐾2𝜃1 + 𝐾3𝜃2 = 0

 (3-35) 

In the special case when there is no spring in the structure, 𝑀 = 0 and Eqns. (3.35) 

lead to the determinantal equation for the hinged frame in the form, 

𝐷ℎ(𝐩, 𝜔) = 𝐾1𝐾3 − 𝐾2𝐾2 (3-36) 

On the other hand, when using the rotational spring model for a crack, 

𝑀 =  𝑘(𝜃2 −  𝜃1)  

𝜃2 = 𝑀/𝑘 + 𝜃1 (3-37) 

allowing us through substituting Eq. (3.37) into Eqns. (3.35) to obtain the respective 

expressions 
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𝑀

𝜃1
= 𝑘

𝐾1 + 𝐾2

𝑘 − 𝐾2

−
𝑀

𝜃1
= 𝑘

𝐾2 + 𝐾3

𝑘 + 𝐾3

 (3-38) 

Then using Eqns. (3.38) gives the determinantal equation for the cracked structure 

through 
𝑀

𝜃1
−

𝑀

𝜃1
= 0  

𝐷𝐶(𝐩, 𝜔, 𝑘) = (𝐾1 + 𝐾2)(𝑘 + 𝐾3) + (𝐾2 + 𝐾3)(𝑘 − 𝐾2) = 0 (3-39) 

For the intact structure, the continuity in the slope must stand 

𝜃2 = 𝜃1 = 𝜃 (3-40) 

Substituting Eqn. (3.40) into Eqns. (3.35) the moment over rotation ratio gives 

𝑀

𝜃
= (𝐾1 + 𝐾2) = −(𝐾2 + 𝐾3) (3-41) 

This leads us to the determinantal equation for the intact structure by subtracting one 

from the other 

𝐷0(𝐩, 𝜔) = 𝐾1 + 2𝐾2 + 𝐾3 = 0 (3-42) 

From this, we have the determinant for the intact structure in terms of the frequency 𝜔 

and the location of the potential crack p. Eqns. (3.36), (3.39) and (3.42) can be 

combined to state Eq. (3.6) 

𝐷𝐶(𝐩, 𝜔, 𝑘) = 𝑘𝐷0(𝐩, 𝜔) + 𝐷ℎ(𝐩, 𝜔) (3-43) 

Also, multiplying Eqns. (3.41) gives: 

(
𝑀

𝜃
)
2

= −(𝐾1 + 𝐾2)(𝐾2 + 𝐾3) (3-44) 

whose expansion could be seen as 

(
𝑀

𝜃
)
2

= −𝐾2(𝐾1 + 2𝐾2 + 𝐾3) − 𝐾1𝐾3 + 𝐾2𝐾2 (3-45) 

Using Eqns. (3.36) and (3.42) in the Eq. (3.45), 

(
𝑀

𝜃
)
2

= −𝐾2𝐷𝑂(𝐩,𝜔) − 𝐷ℎ(𝐩, 𝜔) (3-46) 

that at a natural mode of the intact structure, 𝐷𝑜(𝐩,𝜔) = 0 , leading us to the 

expression  

(
𝑀∗

𝜃
)
2

= −𝐷ℎ(𝐩, 𝜔) (3-47) 

where 𝑀∗ is the bending moment in the uncracked structure at one of its natural modes. 

Equation (3.47) indicates the dependence of the value of the determinant of the hinged 

structure with the bending moment of the undamaged structure and more precisely, 

dependent on the square moment which is related with the curvature of the undamaged 

mode shape giving support to the observations by Caddemi and Morassi [70] and 
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Gillich, et al. [71]. Particular attention will be addressed to points where the bending 

moment is null at each natural mode, because at those points the determinant of the 

hinged structure is zero. Recalling Eq. (3.6), 𝐷𝐶(𝐩, 𝜔, 𝑘) will be zero at the natural 

frequency irrespective of the values of 𝑘 when the crack is at the point of contra-

flexure. The last demonstration explains the insensitivity to cracks at the points where 

the moment is zero, contra-flexure point, for each particular mode. 

 

3.6 Numerical validation for framework 

Greco and Pau [72] presented the crack effect in Euler frames comparing the natural 

frequencies in free vibration by means of its dynamic stiffness matrices with and 

without a notch within the length of a one-storey frame depicted in Fig. 3.9. 

 

Figure 3.9. Greco and Pau frame 

The frame is made of steel E=200GN/m2 and ρ=7849kg/m3 legs and cap lengths of 

0.8m and 1.0m respectively and rectangular sectional area of 40x8mm2. 

3.6.1 Frequency variations due to cracks 

The circular natural frequencies of the intact structure 𝜔𝑖0  are in the labels of 

Figures 3.10 to 3.12. Each figure depicts the frequency values when a crack modelled 

as a rotational spring of non-dimensional stiffness 100 is located along the frame. 

When the crack “travels” along the components of the frame, the first three natural 

frequencies take the values reported on the vertical axes of each figure. The sudden 

change in the plot occurs at the beam-column intersection, the domains labelled leg 

and cap refer to column and beam respectively. 
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Figure 3.10. Greco and Pau frame, first frequency shift with crack location. 

 

The shift in the first frequency, when the crack is located near the fixed end, is the 

highest on the frame in agreement with what was observed in Figs. 3.3 to 3.6; it is 

observed as well that there is no evidence of a crack at the midpoint of the cap, a well-

known point of contra-flexure for the asymmetric mode. Also, there must be another 

point of contra-flexure somewhere in the leg near the coordinate 480mm from the fixed 

end as can be seen from Fig. 3.10. 

 

 

Figure 3.11. Greco and Pau frame, second frequency shift with crack location. 
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For the second frequency a high value of the frequency shift is noted at the leg-cap 

joint relative to the frequency shift of the fixed end indicating higher rotations on these 

points in the intact case that cannot be equalised because of the reduction in stiffness; 

the reason is the same for the midpoint in the cap but in this case the well-known 

curvature for a symmetric mode is such that the reduction in frequency is the higher 

but for this case is only 0.001 rad/s. 

 

Figure 3.12. Greco and Pau frame, third frequency shift with crack location. 

Figures 3.10 to 3.12 offer more evidence that the frequency shift is highly related to 

the mode shape of the intact structure, more specifically on its curvature, based on the 

fact that the points with high curvature are those with the higher frequency shift and 

those where the crack is ineffective turns out to be points of contra-flexure for the 

particular mode shape. 

 

3.6.2 Determinantal equation from DSM 

Initially we will present the validation of Equation (3.6) for the frequency values that 

produce 𝐷𝐶(𝐩, 𝜔, 𝑘) = 0 , for a constant value of the spring stiffness in different 

assumed positions of damage, obtained when calculating the ratio 

𝑘 = −
𝐷ℎ(𝐩, 𝜔)

𝐷0(𝐩, 𝜔)
 (3-48) 

The overall DSM for calculating each determinant is located right before to the 

graphical sketch of the structure (Figures 3.13-3.15) with the numbers indicating the 

degree of freedom and the labels for the different beams elements correspond to the 
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lengths of the frame components and the DSM elements collected in Table 3.1 as 

follow 

 

Figure 3.13. Intact frame model and DSM to calculate 𝐷0(𝜔). 

The second degree of freedom refers to the lateral displacement of the legs that is 

affected by the mass of the cap 𝑚𝑐𝑎𝑝 by 𝑚 =
𝜔2

𝐸𝐼
𝑚𝑐𝑎𝑝. 
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Figure 3.14. Hinged frame model and DSM to calculate 𝐷ℎ(𝐩,𝜔). 
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Figure 3.15. Cracked frame model and DSM to calculate 𝐷𝑐(𝐩,𝜔). 
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𝑏

0
−𝑄

𝑏

𝑇𝑏 + 𝑇𝑐

𝑄
𝑐

𝑄𝑞
𝑐

0

0

−𝑘̅

𝑄
𝑐

𝑆𝑐 + 𝑘̅

𝑆𝐶𝑐

0

−𝑄
𝑑

0

𝑄𝑞
𝒄

𝑆𝐶𝑐

𝑆𝑐 + 𝑆𝑑]
 
 
 
 
 

[
 
 
 
 
 
𝜃1

𝛿2

𝜃𝟑

𝛿𝟒

𝜃𝟓

𝜃6]
 
 
 
 
 

 

 

The DSM for the hinged and cracked portal have the same DSM only that for the 

hinged frame 𝑘 = 0. 

Tables 3.5 and 3.6 show the values for the two first frequency values that nullify 

𝐷𝑐(𝐩,𝜔)  for the cracked frame and the corresponding determinantal values of 

𝐷0(𝐩,𝜔) and 𝐷ℎ(𝐩, 𝜔) for that particular frequency when the crack and hinge are 

located in different positions along the leg and cap demonstrating perfect agreement 

with Eq. (3.45) even for very low values of stiffness. 
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Table 3.5. Frequency and determinant values versus location. 𝑘 = 100 

  

 

In the case of 𝑘 = 100, a small reduction in the frequency values is noticed while the 

determinantal values although very small, in terms of percentage present a high 

variability i.e. the smallest change is nearly 90% in the reported data for the first 

frequency. 

Table 3.6. Frequency and determinant values versus location. 𝑘 = 0.01 

  

 

In the case of 𝑘 = 0.01, the frequency values are bigger as is expected due to such a 

small stiffness but the most remarkable feature is appreciated when checking the 

variability of the determinantal values in terms of percentage. As is shown in Table 3.7 

Frequency Do Dh

80 52.9558 1.303E-23 -1.303E-21

160 52.9560 7.814E-25 -7.814E-23

240 52.9561 1.339E-25 -1.339E-23

320 52.9561 2.903E-26 -2.903E-24

400 52.9562 3.558E-27 -3.558E-25

480 52.9562 1.233E-27 -1.233E-25

560 52.9561 2.742E-26 -2.742E-24

640 52.9561 2.145E-25 -2.145E-23

720 52.9560 3.328E-24 -3.328E-22

800 52.9560 4.917E-20 -4.917E-18

100 52.9560 1.872E-24 -1.872E-22

200 52.9561 1.056E-25 -1.056E-23

300 52.9561 1.588E-26 -1.588E-24

400 52.9562 2.336E-27 -2.336E-25

500 52.9562 1.989E-29 -1.989E-27

L

e

g

s

C

a

p

Location k =100

(mm) Frequency Do Dh

80 167.9533 -3.079E-23 3.079E-21

160 167.9534 -7.407E-25 7.407E-23

240 167.9535 -8.062E-28 8.062E-26

320 167.9534 -8.963E-26 8.963E-24

400 167.9533 -2.804E-25 2.804E-23

480 167.9532 -6.354E-25 6.354E-23

560 167.9531 -1.577E-24 1.577E-22

640 167.9530 -5.693E-24 5.693E-22

720 167.9530 -5.633E-23 5.633E-21

800 167.9529 -6.259E-19 6.259E-17

100 167.9534 -2.071E-24 2.071E-22

200 167.9534 -3.933E-25 3.933E-23

300 167.9530 -6.672E-25 6.672E-23

400 167.9526 -7.017E-25 7.017E-23

500 167.9524 -7.025E-25 7.025E-23

(mm)

L

e

g

s

C

a

p

Location k =100

Frequency Do Dh

80 50.3388 9.836E-20 -9.836E-22

160 51.2808 6.278E-21 -6.278E-23

240 52.0522 1.135E-21 -1.135E-23

320 52.6047 2.566E-22 -2.566E-24

400 52.9034 3.234E-23 -3.234E-25

480 52.9401 1.134E-23 -1.134E-25

560 52.7413 2.514E-22 -2.514E-24

640 52.3631 1.933E-21 -1.933E-23

720 51.8767 2.923E-20 -2.923E-22

800 51.3526 4.184E-16 -4.184E-18

100 51.8546 1.636E-20 -1.636E-22

200 52.3105 9.512E-22 -9.512E-24

300 52.6586 1.468E-22 -1.468E-24

400 52.8799 2.197E-23 -2.197E-25

500 52.9554 1.883E-25 -1.883E-27

L

e

g

s

C

a

p

Location k =0.01

(mm) Frequency Do Dh

80 166.4911 -2.236E-19 2.236E-21

160 167.5584 -5.831E-21 5.831E-23

240 167.9520 -6.854E-24 6.854E-26

320 167.6578 -8.048E-22 8.048E-24

400 166.8043 -2.561E-21 2.561E-23

480 165.7119 -5.675E-21 5.675E-23

560 164.7399 -1.342E-20 1.342E-22

640 164.0826 -4.582E-20 4.582E-22

720 163.7159 -4.334E-19 4.334E-21

800 163.4638 -4.712E-15 4.712E-17

100 167.6065 -1.818E-20 1.818E-22

200 167.1656 -3.533E-21 3.533E-23

300 163.6550 -5.633E-21 5.633E-23

400 160.0598 -5.491E-21 5.491E-23

500 158.6349 -5.324E-21 5.324E-23

k =0.01

(mm)

L

e

g

s

C

a

p

Location
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there have very similar values for the same positions even for changes in the stiffness 

that cover almost the whole range of crack lengths. 

Table 3.7. Percentage determinant variations with different spring stiffness 

  

a. First frequency b. Second frequency 

The last results give another indication that the severity of a crack acts as a scaling 

factor for the frequency sensitivity which is dominated mainly by the position of the 

crack in the structure. 

 

3.6.3 Bending moment and the determinant relationship 

Regarding the relationship between the bending moment and the determinant of the 

hinged structure at natural frequencies, Tables 3.7 and 3.8 present the determinant 

values of 𝐷ℎ(𝐩, 𝜔) for the two first values of the natural frequency of the intact Greco 

and Pau frame in different locations of the hinge using the DSM (presented in Fig. 

3.14 reproduced here). 

80 - -

160 1568% 1467%

240 484% 453%

320 361% 342%

400 716% 694%

480 188% 185%

560 -96% -95%

640 -87% -87%

720 -94% -93%

800 -100% -100%

100 -

200 1673% 1620%

300 565% 548%

400 580% 568%

500 11639% 11566%

Location
k=100 k=0.01

(mm)

L

e

g

s

C

a

p

80 - -

160 4056% 3734%

240 91774% 84969%

320 -99% -99%

400 -68% -69%

480 -56% -55%

560 -60% -58%

640 -72% -71%

720 -90% -89%

800 -100% -100%

100

200 426% 415%

300 -41% -37%

400 -5% 3%

500 0% 3%

Location
k=100 k=0.01

(mm)

L

e

g

s

C

a

p
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𝐊ℎ𝐝 = 𝐸𝐼

[
 
 
 
 
 
𝑆𝑎 + 𝑆𝑏

−𝑄
𝑎

𝑆𝐶𝑏

−𝑄𝑞
𝑏

0

0

−𝑄
𝑎

𝑇𝑎 + 𝑇𝑑 − 𝑚

0

0
0

−𝑄
𝑑

𝑆𝐶𝑏

0
𝑆𝑏

−𝑄
𝑏

0

0

−𝑄𝑞
𝑏

0
−𝑄

𝑏

𝑇𝑏 + 𝑇𝑐

𝑄
𝑐

𝑄𝑞
𝑐

0

0
0

𝑄
𝑐

𝑆𝑐

𝑆𝐶𝑐

0

−𝑄
𝑑

0

𝑄𝑞
𝒄

𝑆𝐶𝑐

𝑆𝑐 + 𝑆𝑑]
 
 
 
 
 

[
 
 
 
 
 
𝜃1

𝛿2

𝜃𝟑

𝛿𝟒

𝜃𝟓

𝜃6]
 
 
 
 
 

 

According to Eq. (3.44), the determinantal value of the structure with a hinge at a point 

𝐩  is related with the squared moment (
𝑀∗

𝜃
)
2

obtained after multiplication of the 

moments per unit of rotation of each side of the hinge when the DSM is condensed in 

a 2x2 matrix that only possesses the rotations at each side of the hinge at the natural 

frequency of the intact structure. 

The condensation technique sees the original system of equations, as the product’s 

original factors in an arrangement of submatrices and sub-vectors. 

𝐊𝐝 = 𝐸𝐼 [
𝐊1 𝐊2

𝐊3 𝐊4
] [

𝐝1

𝐝2
] 

The system is reduced to, 

𝐸𝐼[𝐊1 − 𝐊2𝐊4
−1𝐊3]𝐪1 = 𝐊𝐶𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑑𝐝1, 𝐝1 = [

𝜃𝟑

𝜃𝟓
] 

In this case the internal moments correspond to the degrees of freedom 3 and 5, and 

must be contained in the final sub-vector defining the submatrices, 

𝐊1 = 𝐸𝐼 [
𝑆𝑏 0
0 𝑆𝑐

] 𝐊2 = 𝐸𝐼 [
𝑆𝐶𝑏 0
0 0

−𝑄𝑏 0
𝑄𝒄 𝑆𝐶𝑐

] 

𝐊3 = 𝐸𝐼 [

𝑆𝑎 + 𝑆𝑏

−𝑄𝒂

−𝑄𝑞𝒃

0

−𝑄𝒂

𝑇𝑎 + 𝑇𝑑 − 𝑚
0

𝑄𝑞𝒅

−𝑄𝑞𝒃

0
𝑇𝑏 + 𝑇𝑐

𝑄𝑞𝒄

0
𝑄𝑞𝒅

𝑄𝑞𝒄

𝑆𝑐 + 𝑆𝑑

] 𝐊4 = 𝐸𝐼 [

𝑆𝐶𝑏

0
−𝑄𝑏

0

0
0
𝑄𝑐

𝑆𝐶𝒄

] 

the moments per unit of rotation of each side of the hinge are calculated as the product 

of the condensed matrix 𝐊𝐶𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑑 by the 2x1 vector of ones referring to the unit 

rotations presented in Tables 3.8 and 3.9 as well as their product 𝑀2 = 𝑀𝐿𝑀𝑅. Due to 

the fact that the moment was calculated using the 2x2 condensed form of the DSM of 

the hinged frame that only possess the rotations at each side of the hinge, there is a 
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“reduced” submatrix 𝐁 = 𝐊3 , which possesses the condensed internal nodes and 

whose effect has to be taken into account by (
𝑀∗

𝜃
)
2

= 𝐷𝑒𝑡(𝐁)𝑀2  giving the 

determinantal value of 𝐷ℎ(𝐩, 𝜔). 

Table 3.8. Determinant and moment values versus location at first frequency.  

 

Looking at the column of the moments, it may be noted that there is a change in the 

sign between the coordinate 400mm and 480mm for the leg, with a minimum on the 

determinantal value at 480mm and it could be implied a contra-flexure point lies in 

between these points. While there is another change of sign in the moments column, 

the determinantal value does not reach a minimum therefore the zero value in the 

moment over rotation ratio reflects a curvature change in the mode shape. 

ω=

Dh(k=0) Det(B) M 2 =M L M R
Det(B)M 2

80 -1.91E-21 1.26E-02 -1.26E-02 1.20E-17 -1.60E-04 -1.91E-21

160 -9.28E-23 5.19E-03 -5.19E-03 3.45E-18 -2.69E-05 -9.28E-23

240 -1.50E-23 2.75E-03 -2.75E-03 1.97E-18 -7.58E-06 -1.50E-23

320 -3.20E-24 1.44E-03 -1.44E-03 1.53E-18 -2.09E-06 -3.20E-24

400 -4.16E-25 5.32E-04 -5.32E-04 1.47E-18 -2.83E-07 -4.16E-25

480 -9.59E-26 -2.37E-04 2.37E-04 1.71E-18 -5.59E-08 -9.59E-26

560 -2.57E-24 -1.00E-03 1.00E-03 2.54E-18 -1.01E-06 -2.57E-24

640 -2.05E-23 -1.91E-03 1.91E-03 5.60E-18 -3.66E-06 -2.05E-23

720 -3.20E-22 -3.21E-03 3.21E-03 3.11E-17 -1.03E-05 -3.20E-22

800 -4.73E-18 -5.58E-03 5.58E-03 1.52E-13 -3.12E-05 -4.73E-18

100 -2.87E-22 -9.60E-03 9.60E-03 3.11E-18 -9.22E-05 -2.87E-22

200 -1.32E-23 -4.74E-02 4.74E-02 5.86E-21 -2.25E-03 -1.32E-23

300 -1.89E-24 1.08E-02 -1.08E-02 1.62E-20 -1.17E-04 -1.89E-24

400 -2.93E-25 3.12E-03 -3.12E-03 3.01E-20 -9.71E-06 -2.93E-25

500 -1.99E-27 2.42E-04 -2.42E-04 3.38E-20 -5.88E-08 -1.99E-27

52.9561687278173

Moment (M L ,M R )

C

A

P

L

E

G

S

Location

(mm)
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Table 3.9. Determinant and moment values versus location at second frequency. 

 

For the table of the second natural frequency and looking at the column of the moments, 

it may be noted that there is a change in the sign between the coordinate 100mm and 

200mm for the cap, with a minimum on the determinantal value at 200mm therefore a 

contra-flexure point could be located in between these points which could be 

appreciated in Fig. 3.11. 

 

3.7 Summary 

The dynamic effect of a crack was studied using the DSM approach identifying two 

interesting properties of the determinantal expressions. The first is a relationship 

between the crack severity and the determinants of the cracked structure, undamaged 

structure and a structure with a hinge at the crack location. The above relationship 

permits to treat separately the two main properties of the crack namely the severity and 

the location of the crack. From the analytical results it seems that location rather than 

severity is the variable with great potential in the damage identification and therefore 

the equivalent structure with a hinge in the crack location and its determinant analysed 

at the natural frequencies will offer a means of extracting the features. 

The second interesting finding is about a relationship between the square of the 

bending moment at the natural frequency of the undamaged structure at one location 

and the determinant of the structure with a hinge at the same location. The above 

relationship, which can also be inferred from the work by Morassi [27] shows that if 

ω=

Dh(k=0) Det(B) M 2 =M L M R
Det(B)M 2

80 4.77E-21 1.14E-02 -1.14E-02 -3.66E-17 -1.30E-04 4.77E-21

160 9.80E-23 3.51E-03 -3.51E-03 -7.96E-18 -1.23E-05 9.80E-23

240 3.83E-25 3.46E-04 -3.46E-04 -3.20E-18 -1.20E-07 3.83E-25

320 8.07E-24 -2.31E-03 2.31E-03 -1.51E-18 -5.35E-06 8.07E-24

400 2.68E-23 -6.50E-03 6.50E-03 -6.34E-19 -4.23E-05 2.68E-23

480 6.14E-23 -2.50E-02 2.50E-02 -9.82E-20 -6.26E-04 6.14E-23

560 1.53E-22 2.47E-02 -2.47E-02 -2.50E-19 -6.12E-04 1.53E-22

640 5.50E-22 8.93E-03 -8.93E-03 -6.90E-18 -7.98E-05 5.50E-22

720 5.43E-21 5.47E-03 -5.47E-03 -1.81E-16 -2.99E-05 5.43E-21

800 6.02E-17 3.92E-03 -3.92E-03 -3.92E-12 -1.54E-05 6.02E-17

100 4.93E-22 1.06E-03 -1.06E-03 -4.43E-16 -1.11E-06 4.93E-22

200 3.32E-23 -1.05E-03 1.05E-03 -3.02E-17 -1.10E-06 3.32E-23

300 6.57E-23 -3.44E-03 3.44E-03 -5.55E-18 -1.18E-05 6.57E-23

400 7.01E-23 -8.44E-03 8.44E-03 -9.84E-19 -7.12E-05 7.01E-23

500 7.03E-23 -9.99E-02 9.99E-02 -7.03E-21 -9.99E-03 7.03E-23

167.9534673639100

Moment (M L ,M R )

Location

(mm)

L

E

G

S

C

A

P
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the hinge is located at a point of contra-flexure, where the bending moment is null in 

a particular mode, the natural frequency at that mode will not be affected. Therefore, 

the determinant of the hinged structure is null, and this clause is extended for a cracked 

structure. The next chapter will be devoted to devise uses for a point mass as a means 

of crack location. 

 





 

 

4 Chapter 4 

Point Mass Effects 

The dynamic effect of discrete masses on continuous beams has been addressed since 

1965 with different mathematical approaches as Naguleswaran [73] mentioned. What 

is clear from the literature is that as in the crack case, the changes in the natural 

frequencies due to an added mass occur not only by the size of the added mass but also 

by the position where it is located; probably that is why Shone [74] suggested that the 

non-dimensional parameters of crack and mass could be related and defined 

mathematically. 

 

A paper titled “The effects of discrete masses and elastic supports on continuous beam 

natural frequencies” by Jacquot and Gibson [75] seems to cover all the questions that 

came out in the subject, but after that several authors had addressed the same subject 

with different approaches like De Rosa, et al. [76] who examined the dynamic 

behaviour of a slender beam carrying concentrated mass at an arbitrary abscissa giving 

approximated results for simply supported and clamped beams using an optimised 

version of the Rayleigh quotient. 

 

Later on, a group headed by Philip D. Cha were focused on reducing the order of the 

characteristic determinant obtained from the assumed modes method or Lagrange’s 

multipliers in conjunction with Lagrange’s equations via algebraic manipulation. They 

initially applied the methodology to several spring-mass systems [77], extended it to 

damped elements [78] and to a miscellany of different discrete elements [79], all their 

findings among works from other authors are collected in Cha, et al. [80] providing 

good cross-references on the subject. 

 

Many of the previous authors reach the exact frequency equation and solve it by 

approximate methods. Banerjee [81] presents a vast number of references on studies 

in free vibration behaviour of beams carrying spring-mass systems and in that context 

claims his work as the first time that the problem is proposed using DSM. His 

parametric study gives comparable results with those by Rossit and Laura [82] and 

avoids the use of the transcendental dynamic stability functions given by Ilanko [83]. 
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4.1 DSM determinant with a crack and additional mass 

As mentioned in Solís, et al. [84] only a significant damage would cause a measurable 

change when the damage detection is carried out by analysing the changes in the 

natural frequencies; they also noted that the damage effect could be veiled by 

environmental changes and experimental uncertainties. To overcome the problem of 

sensitivity of the changes in natural frequencies, Pandey, et al. [85] proposed to use 

the mode shapes to capture the discontinuity produced by the damage. However 

compared with the natural frequency measurements, the identification of mode shapes 

requires additional experimental and mathematical resources, but the effects of 

damage on the modes are only of the order of experimental noise and environmental 

effects, making the identification problem a complicated task [84]. 

 

In order to distinguish easily the changes induced by damage, Zhong and Oyadiji [86] 

used wavelet coefficients as an indicator of damage when they are applied to the 

differences in mode shapes between an undamaged beam and a damaged beam. It may 

be noted that Zhong and Oyadiji [86] and Bahador and Oyadiji [87] performed the 

modal analysis for different positions of a non-structural mass attached to the structure 

in order to make the damage detection method more robust and sensitive. The roving 

mass method proposed by Zhong and Oyadiji [36] involves locating the mass at 

different positions at each round of test, but during the vibration measurement the mass 

is not allowed to move axially, so its velocity effect such as Coriolis acceleration need 

not be considered. 

 

As a demonstrative example of the use of the DSM the related mathematics of the 

procedure will be addressed for the general case as in Chapter 3. In using the DSM, 

the damaged structure with the attached mass 𝑚̅ will be divided in three segments as 

shown in Figure 4.1. 

 

Figure 4.1. Beam segment with point mass and crack 
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The nodal actions are related with the nodal displacements in the modified structure 

through the global stiffness matrix 𝐚𝑐𝑚 = 𝐊𝑐𝑚𝐝𝑐𝑚,  

𝐚𝑐𝑚 = 𝐊𝑐𝑚(𝑥𝑐, 𝑥𝑚, 𝜔, 𝑘)𝐝𝑐𝑚, 𝐚𝑐𝑚 = [

𝐚0

𝑉
𝑀𝐿

𝑀𝑅

], 𝐝𝑐𝑚 = [

𝐝0

𝛿
𝜃𝐿

𝜃𝑅

] 

For this demonstration let us allocate the extra degrees of freedom on the last three 

rows; therefore the first row represents the internal actions and displacements that are 

not pictured in Figure 4.1 collected with the vectors 𝐚0, 𝐝0. Three extra degrees of 

freedom are added, these being the transversal translation 𝛿, at the point mass location 

𝑥𝑚 and; at each side of the crack located at 𝑥𝑐, two rotations 𝜃𝐿and 𝜃𝑅. 

The global stiffness matrix of the damaged structure with the point mass is assembled 

again from the matrix of the undamaged structure. When a point mass 𝑚∗ is located, 

its effect can be represented by a dynamic force associated with the translation at that 

location 𝑉𝑑 = −𝑚𝛿, altering effectively the diagonal element of the corresponding 

dynamic stiffness matrix by 𝑚 = 𝑚̅𝜔2  in the second row. The dynamic stiffness 

matrix for the modified structure is written in the form 

𝐊𝑐𝑚 =

[
 
 
 
 
𝐊0(𝑥𝑐, 𝑥𝑚, 𝜔)

𝐁1
T(𝑥𝑐, 𝑥𝑚, 𝜔)

𝐁2
T(𝑥𝑐, 𝑥𝑚, 𝜔)

𝐁3
T(𝑥𝑐, 𝑥𝑚, 𝜔)

𝐁1(𝑥𝑐, 𝑥𝑚, 𝜔)

𝑘11(𝜔) − 𝑚

𝑘21(𝜔)
0

𝐁2(𝑥𝑐, 𝑥𝑚, 𝜔)

𝑘12(𝜔)

𝑘22(𝜔) + 𝑘
−𝑘

𝐁3(𝑥𝑐, 𝑥𝑚, 𝜔)
0

−𝑘
𝑘33(𝜔) + 𝑘 ]

 
 
 
 

 (4-1) 

where, as mentioned earlier, the last two columns relate to 𝜃𝐿 and 𝜃𝑅, the rotational 

degrees of freedom on either side of the crack, and the first column relates to 𝐝0, all 

the other degrees of freedom of the structure. Thus 𝐊0(𝑥𝑐, 𝑥𝑚, 𝜔) is a square matrix, 

𝐁1(𝑥𝑐, 𝑥𝑚, 𝜔), 𝐁2(𝑥𝑐, 𝑥𝑚, 𝜔) and 𝐁3(𝑥𝑐, 𝑥𝑚, 𝜔) are column vectors, 𝑘 is the stiffness 

of the rotational spring representing the crack, and 𝑘11(𝜔) , 𝑘12(𝜔) = 𝑘21(𝜔) , 

𝑘13(𝜔) = 𝑘31(𝜔), 𝑘22(𝜔) and 𝑘33(𝜔) are scalars dependent of the crack and point 

mass locations. Performing partial Gaussian elimination on the matrix gives 

𝐊𝑐𝑚
∗ =

[
 
 
 
 𝐊0

Δ
(𝜔)

0
0
0

𝐁1
∗
(𝜔)

𝑘11
∗

(𝜔) − 𝑚

𝑘21
∗

(𝜔)

𝑘31
∗

(𝜔)

𝐁2
∗
(𝜔)

𝑘12
∗

(𝜔)

𝑘𝟐𝟐
∗

(𝜔) + 𝑘

𝑘𝟑𝟐
∗

(𝜔) − 𝑘

𝐁3
∗
(𝜔)

𝑘13
∗

(𝜔)

𝑘𝟐𝟑
∗

(𝜔) − 𝑘

𝑘𝟑𝟑
∗

(𝜔) + 𝑘]
 
 
 
 

 (4-2) 

Where 𝐊𝟎
𝚫(𝜔) is an upper triangular square matrix, 𝐁𝟏

∗(𝜔), 𝐁𝟐
∗(𝜔) and 𝐁𝟑

∗(𝜔) are updated 

column vectors and 𝑘𝑖𝑗
∗ (𝜔) updated scalars defined as follow, 
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𝑘11
∗ (𝜔) = 𝑘11(𝜔) − 𝐁1

T(𝑥𝑐 , 𝑥𝑚, 𝜔)𝐊0
−1(𝑥𝑐, 𝑥𝑚, 𝜔)𝐁1(𝑥𝑐, 𝑥𝑚, 𝜔)

𝑘12
∗ (𝜔) = 𝑘21

∗ (𝜔) = 𝑘12(𝜔) − 𝐁1
T(𝑥𝑐 , 𝑥𝑚, 𝜔)𝐊0

−1(𝑥𝑐, 𝑥𝑚, 𝜔)𝐁2(𝑥𝑐, 𝑥𝑚, 𝜔)

𝑘13
∗ (𝜔) = 𝑘31

∗ (𝜔) = 𝑘13(𝜔) − 𝐁1
T(𝑥𝑐 , 𝑥𝑚, 𝜔)𝐊0

−1(𝑥𝑐, 𝑥𝑚, 𝜔)𝐁3(𝑥𝑐, 𝑥𝑚, 𝜔)

𝑘23
∗ (𝜔) = 𝑘23

∗ (𝜔) = 𝑘23(𝜔) − 𝐁2
T(𝑥𝑐 , 𝑥𝑚, 𝜔)𝐊0

−1(𝑥𝑐, 𝑥𝑚, 𝜔)𝐁3(𝑥𝑐, 𝑥𝑚, 𝜔)

𝑘22
∗ (𝜔) = 𝑘22(𝜔) − 𝐁2

T(𝑥𝑐 , 𝑥𝑚, 𝜔)𝐊0
−1(𝑥𝑐, 𝑥𝑚, 𝜔)𝐁2(𝑥𝑐, 𝑥𝑚, 𝜔)

𝑘𝟑𝟑
∗ (𝜔) = 𝑘𝟑𝟑(𝜔) − 𝐁3

T(𝑥𝑐, 𝑥𝑚, 𝜔)𝐊0
−1(𝑥𝑐 , 𝑥𝑚, 𝜔)𝐁3(𝑥𝑐, 𝑥𝑚, 𝜔)

 

Before the expansion for the determinant of the matrix in Eq.4.2, the determinant of 

the hinged structure in the crack location 𝐷ℎ(𝑥𝑐, 𝑥𝑚,𝜔) is obtained when the effects of 

the mass and the crack are nulled and expanded in the next way 

𝐷ℎ(𝑥𝑐, 𝑥𝑚, 𝜔) = |𝐊0
Δ(𝑥𝑐, 𝑥𝑚, 𝜔)| [𝑘11

∗ (𝜔) (𝑘22
∗ (𝜔)𝑘33

∗ (𝜔) − (𝑘23
∗ (𝜔))

2
)

+ 2𝑘12
∗ (𝜔)𝑘13

∗ (𝜔)𝑘23
∗ (𝜔) − 𝑘12

∗ (𝜔)2𝑘23
∗ (𝜔) − 𝑘13

∗ (𝜔)2𝑘23
∗ (𝜔)] 

(4-3) 

Additionally the determinant for the unmodified structure will be obtained when the 

two rotations at the location of the crack are managed in a single degree of freedom, 

so that the dynamic stiffness matrix 𝐊𝑢𝑚 becomes 

𝐊𝑢𝑚 = [

𝐊0(𝑥𝑐 , 𝑥𝑚 , 𝜔) 𝐁1(𝑥𝑐 , 𝑥𝑚, 𝜔) 𝐁2(𝑥𝑐 , 𝑥𝑚 , 𝜔) + 𝐁3(𝑥𝑐 , 𝑥𝑚 , 𝜔)

𝐁1
T(𝑥𝑐 , 𝑥𝑚, 𝜔) 𝑘11(𝜔) 𝑘12(𝜔)

𝐁2
T(𝑥𝑐 , 𝑥𝑚 , 𝜔) + 𝐁3

T(𝑥𝑐 , 𝑥𝑚 , 𝜔) 𝑘21(𝜔) 𝑘22(𝜔) + 𝑘33(𝜔)

] (4-4) 

Performing partial Gaussian elimination gives 

𝐊𝑢𝑚
∗

= [

𝐊0
Δ(𝜔) 𝐁1

∗(𝜔) 𝐁2
∗(𝜔) + 𝐁3

∗(𝜔)

0 𝑘11
∗ (𝜔) 𝑘2

∗(𝜔)

0 𝑘2
∗(𝜔) 𝑘∗(𝜔)

] 

where, 

𝑘2
∗(𝜔) = 𝑘12(𝜔) − 𝐁1

T𝐊0
−1(𝑥𝑐, 𝑥𝑚, 𝜔)(𝐁2

T + 𝐁3
T)

𝑘2
∗(𝜔) = 𝑘12

∗ (𝜔) + 𝑘13
∗ (𝜔)

 

and 𝑘∗(𝜔), the term accounting for the continuity in the point where the crack is 

located for the intact structure is 

𝑘∗(𝜔) = 𝑘22(𝜔) + 𝑘33(𝜔) − (𝐁2
T + 𝐁3

T)𝐊0
−1(𝑥𝑐, 𝑥𝑚, 𝜔)(𝐁2

T + 𝐁3
T)

𝑘∗(𝜔) = 𝑘22
∗ (𝜔) + 𝑘33

∗ (𝜔) + 2𝑘23
∗ (𝜔)

 

The above steps leads to the expansion for the determinant of the unmodified structure 

𝐷0(𝑥𝑐, 𝑥𝑚, 𝜔) as 

𝐷0(𝑥𝑐 , 𝑥𝑚, 𝜔) = |𝐊0
Δ(𝜔)| [𝑘11

∗ (𝜔)𝑘∗(𝜔) − (𝑘2
∗(𝜔))

2
]

𝐷0(𝑥𝑐 , 𝑥𝑚 , 𝜔) = |𝐊0
Δ(𝜔)| [𝑘11

∗ (𝜔)(𝑘22
∗ (𝜔) + 𝑘33

∗ (𝜔) + 2𝑘23
∗ (𝜔)) − (𝑘12

∗ (𝜔) + 𝑘13
∗ (𝜔))

2
]
 (4-5) 

Using the expansions of Eqns. (4.3) and (4.5) in the expansion for the determinant of 

the dynamic stiffness matrix in Eq. (4.2) to the cracked structure in 𝑥𝑐 with a point 

mass located in 𝑥𝑚 𝐷𝑐𝑚(𝑥𝑚, 𝑥𝑐, 𝜔) will be seen as 

𝐷𝑐𝑚(𝑥𝑚, 𝑥𝑐 , 𝜔) = 𝑘𝐷0(𝑥𝑐 , 𝑥𝑚 , 𝜔) + 𝐷ℎ(𝑥𝑐 , 𝑥𝑚 , 𝜔) − 𝑚𝑘𝐷𝑚(𝑥𝑐 , 𝑥𝑚, 𝜔) + 𝑚𝐷𝑚𝑐(𝑥𝑐 , 𝑥𝑚, 𝜔) (4-6) 

𝑓𝐷𝑐𝑚(𝑥𝑚 , 𝑥𝑐 , 𝜔) = 𝐷0(𝑥𝑐 , 𝑥𝑚 , 𝜔) + 𝑓𝐷ℎ(𝑥𝑐 , 𝑥𝑚 , 𝜔) − 𝑚𝐷𝑚(𝑥𝑐 , 𝑥𝑚, 𝜔) + 𝑚𝑓𝐷𝑚𝑐(𝑥𝑐 , 𝑥𝑚, 𝜔) (4-7) 
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with 𝑓 = 1 𝑘⁄  the local flexibility added for the crack, 𝐷𝑚(𝑥𝑐, 𝑥𝑚, 𝜔) the determinant 

accounting for the location of the point mass when there is no crack and 

𝐷𝑚𝑐(𝑥𝑐, 𝑥𝑚, 𝜔) accounting for the locations of the crack and mass simultaneously. 

Each of the previous named functions have the following expansion form 

𝐷𝑚(𝑥𝑐, 𝑥𝑚,𝜔) = |𝐊0
Δ
(𝜔)|𝑘

∗
(𝜔) = |𝐊0

Δ
(𝜔)| [𝑘22

∗
(𝜔) + 𝑘33

∗
(𝜔) + 2𝑘23

∗
(𝜔)]

𝐷𝑚𝑐(𝑥𝑐, 𝑥𝑚,𝜔) = |𝐊0
Δ
(𝜔)| [(𝑘𝟐𝟐

∗
(𝜔)𝑘𝟑𝟑

∗
(𝜔) − (𝑘23

∗
(𝜔))

2
)]

 (4-8) 

By closely observing the obtained terms from the different matrices, it is possible to 

notice that 𝐷𝑚(𝑥𝑐, 𝑥𝑚,𝜔) could be obtained from the matrix in Eq. (4.4) when the row 

and column where the mass effect is included are taken off, as if in that location a pin 

is located. Following the previous manner, 𝐷𝑚𝑐(𝑥𝑐, 𝑥𝑚, 𝜔)  could be obtained by 

nullifying the stiffness value from the matrix in Eq. (4.2) and removing the row and 

column where the mass effect is included. 

The next section deals with the closed form solutions that predict the dynamic 

behaviour of beams carrying a point mass within their length with four common 

boundary conditions. 

 

4.2 Closed-form solutions for added mass in beams 

Rossit and Laura [82] present different approaches to deal with the case of a beam with 

an attached mass in coordinate 𝑥𝑚 along its length. The matrix will be obtained from 

Eq. (4.4), i.e. no crack, and the corresponding characteristic equation stated in Eq. (4.6) 

becomes, 

0 = 𝐷0(𝑥𝑚, 𝜔) − 𝑚𝐷𝑚(𝑥𝑚, 𝜔) (4-9) 

 

From 𝐊𝑚, the initial matrix for the free-free case defined by Eq. (4.10). The point mass 

located at 𝑥𝑐 split the beam in two segments labelled according to Figure 4.2. The 

closed form solution of common boundary conditions rows and columns will be 

deleted according to the null actions and displacements as is explained for each case. 

𝐚𝑚 = 𝐊𝑚(𝑥𝑐, 𝜔, 𝑘)𝐝𝑚, 𝐚𝑚 =

[
 
 
 
 
 
𝑉𝑖

𝑀𝑖

𝑀𝑐

𝑉𝑐

𝑀𝑗

𝑉𝑗 ]
 
 
 
 
 

, 𝐝𝑚 =

[
 
 
 
 
 
 
𝛿𝑖

𝜃𝑖

𝜃𝑐

𝛿𝑐

𝜃𝑗

𝛿𝑗 ]
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Figure 4.2. Free-free beam with point mass added 

𝐊𝑚 = 𝐸𝐼

[
 
 
 
 
 

𝑇𝑎 𝑄𝑎

𝑄𝑎 𝑆𝑎

𝑄𝑞𝑎 −𝑇𝑡𝑎
𝑆𝐶𝑎 −𝑄𝑞𝑎

0 0
0 0

𝑄𝑞𝑎 𝑆𝐶𝑎

−𝑇𝑡𝑎 −𝑄𝑞𝑎

𝑆𝑎 + 𝑆𝑏 𝑄𝑏 − 𝑄𝑎

𝑄𝑏 − 𝑄𝑎 𝑇𝑎 + 𝑇𝑏 − 𝑚∗
𝑆𝐶𝑏 −𝑄𝑞𝑏

𝑄𝑞𝑏 −𝑇𝑡𝑏
0 0
0 0

𝑄𝑞𝑏 𝑆𝐶𝑏

−𝑇𝑡𝑏 −𝑄𝑞𝑏

𝑆𝑏 −𝑄𝑏

−𝑄𝑏 𝑇𝑏 ]
 
 
 
 
 

 (4-10) 

with 𝑚∗ =
𝜔2

𝐸𝐼
𝑚̅ 

4.2.1 Clamped-clamped beam 

For these boundary conditions, rows and columns for 𝛿𝑖, 𝛿𝑗, 𝜃𝑖 and 𝜃𝑗  are eliminated 

from Eq. (4.10) leading to the entities in Eq. (4.11). 

𝐊𝑚 = 𝐸𝐼 [
𝑆𝑎 + 𝑆𝑏 𝑄𝑏 − 𝑄𝑎

𝑄𝑏 − 𝑄𝑎 𝑇𝑎 + 𝑇𝑏 − 𝑚
] (4-11) 

The determinant 𝐷𝑚(𝑥𝑐, 𝜔) could be easily obtained as was established and seen in 

Eq. (4.12). 

𝐷𝑚(𝑥𝑚, 𝜔) = (𝑆𝑎 + 𝑆𝑏) (4-12) 

When the determinant term from the additional mass is expanded using the functions 

from Table 3.1, we obtain the expression in Eq. (4.13). 

𝐷𝑚(𝑥𝑐 , 𝜔) =
𝜆(sinh(𝐿𝜆) 𝑐𝑎𝑐𝑏 − sin(𝐿𝜆)𝐶𝐻𝑎𝐶𝐻𝑏 + 𝑠𝑎𝐶𝐻𝑎 + 𝑠𝑏𝐶𝐻𝑏  − 𝑐𝑎𝑆𝐻𝑎 − 𝑐𝑏𝑆𝐻𝑏)

(1 − 𝐶𝐻𝑎𝑐𝑎)(1 − 𝐶𝐻𝑏𝑐𝑏)
 (4-13) 

 

The common denominator corresponds to the product of the characteristic equation of 

the two fixed beams segments and could be eliminated by multiplying both sides of 

the equation by it, avoiding the poles of the determinant in frequencies close to their 

natural values and the characteristic equation for a beam with a lumped mass is 

obtained and collected in Table 4.1 as 𝐷𝑚(𝑥𝑐, 𝜔) and the closed form solution for a 

point mass attached to a beam is seen as, 

𝐷0(𝑥𝑐, 𝜔) − 𝑚𝐷𝑚(𝑥𝑐, 𝜔) = 0 (4-14) 
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Similarly as in the previous chapter, a plot of the obtained values for the function 

𝐷𝑚(𝑥𝑚, 𝜔) for constant eigenvalues along the beam are given in the next figures next 

to the obtained closed-form solution. 

 

Figure 4.3. Non-dimensional plot of the function 𝐷̅𝑚 evaluated at different locations for 

constant eigenvalues. Clamped-clamped beam case. 

For the case of the clamped-clamped beam shown in Fig. 4.3, the symmetry of the 

boundary conditions is observed. That is why if attention is paid to the second 

eigenvalue, it is observed that when the mass is located in the middle of the beam 

𝐷𝑚(𝑥𝑐, 𝜔) = 0. 

 

4.2.2 Clamped-pinned beam 

For a clamped-pinned beam where the end displacements plus one end rotation are 

limited, the rows and columns for 𝛿𝑖, 𝛿𝑗 and 𝜃𝑖 are eliminated from Eq. (4.10) leading 

to the following simplified DSM. 

𝐊𝑚 = 𝐸𝐼 [

𝑆𝑎 + 𝑆𝑏 𝑄𝑏 − 𝑄𝑎 𝑆𝐶𝑏

𝑄𝑏 − 𝑄𝑎

𝑆𝐶𝑏

𝑇𝑎 + 𝑇𝑏 − 𝑚∗

𝑄𝑞𝑏

𝑄𝑞𝑏

𝑆𝑏

] (4-15) 

𝐷𝑚(𝑥𝑐, 𝜔) = 𝑆𝑏(𝑆𝑎 + 𝑆𝑏) − 𝑆𝐶𝑏
2 = 𝑆𝑎𝑆𝑏 + (𝑆𝑏

2 − 𝑆𝐶𝑏
2) = 𝑆𝑎𝑆𝑏 + 2𝑄𝑏∆𝑎 

𝐷𝑚(𝑥𝑐 , 𝜔) =
𝜆(2𝑠𝑏𝑆𝐻𝑏 + 𝑆𝐻𝑎𝑆𝐻𝑏𝑐𝑎𝑐𝑏 + 𝐶𝐻𝑎𝐶𝐻𝑏𝑠𝑎𝑠𝑏 −sin(𝐿𝜆)𝐶𝐻𝑎𝑆𝐻𝑏 − sinh(𝐿𝜆) 𝑐𝑎𝑠𝑏)

(1 − 𝐶𝐻𝑎𝑐𝑎)(1 − 𝐶𝐻𝑏𝑐𝑏)
 (4-16) 
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Figure 4.4. Non-dimensional plot of the function 𝐷̅𝑚 evaluated at different locations for 

constant eigenvalues. Clamped-pinned beam case 

The symmetry observed for the clamped-clamped case is broken and watching the 

graph one can assure that the pinned end is located in the right side of the beam because 

the effect of the mass is noticed very close to this end. 

 

4.2.3 Pinned-pinned beam 

For a simple supported beam the end displacements disappear, therefore rows and 

columns for 𝛿𝑖  and 𝛿𝑗  are eliminated from Eq. (4.10) leading to the entities in 

Eq. (4.17). 

𝐊𝑚 = 𝐸𝐼 [

𝑆𝑎 𝑆𝐶𝑎

𝑆𝐶𝑎 𝑆𝑎 + 𝑆𝑏

−𝑄𝑞𝑎 0
−𝑄𝑎 + 𝑄𝑏 𝑆𝐶𝑏

−𝑄𝑞𝑎 −𝑄𝑎 + 𝑄𝑏

0 𝑆𝐶𝑏

𝑇𝑎 + 𝑇𝑏 − 𝑚∗ 𝑄𝑞𝑏

𝑄𝑞𝑏 𝑆𝑏

] (4-17) 

 

𝐷𝑚(𝑥𝑐, 𝜔) = 𝑆𝑎𝑆𝑏(𝑆𝑎 + 𝑆𝑏) − 𝑆𝑏𝑆𝐶𝑎
2 − 𝑆𝑎𝑆𝐶𝑏

2 

𝐷𝑚(𝑥𝑐, 𝜔) = 𝑆𝑎(𝑆𝑏
2 − 𝑆𝐶𝑏

2) + 𝑆𝑏(𝑆𝑎
2 − 𝑆𝐶𝑎

2) = 2{𝑆𝑎𝑄𝑏 + 𝑆𝑏𝑄𝑎} 

 

𝐷𝑚(𝑥𝑐, 𝜔) =
𝜆(sin(𝐿𝜆) 𝑆𝐻𝑎𝑆𝐻𝑏 − sinh(𝐿𝜆) 𝑠𝑎𝑠𝑏)

(1 − 𝐶𝐻𝑎𝑐𝑎)(1 − 𝐶𝐻𝑏𝑐𝑏)
 (4-18) 
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Figure 4.5. Non-dimensional plot of the function 𝐷̅𝑚 evaluated at different locations for 

constant eigenvalues. Pinned-pinned case 

The symmetry of the supported ends is clearly seen and the effect of the mass in the 

vicinity implies a pinned support. 

 

4.2.4 Clamped-free beam 

For a cantilever beam, the rotation and displacement of the clamped end 𝛿𝑖 and 𝜃𝑖 are 

eliminated from Eq. (4.10) leading to the entities in Eq. (4.19). 

𝐊𝑚 = 𝐸𝐼 [

𝑆𝑎 + 𝑆𝑏 −𝑄𝑎 + 𝑄𝑏

−𝑄𝑎 + 𝑄𝑏 𝑇𝑎 + 𝑇𝑏 − 𝑚∗
𝑆𝐶𝑏 −𝑄𝑞𝑏

𝑄𝑞𝑏 −𝑇𝑡𝑏
𝑆𝐶𝑏 𝑄𝑞𝑏

−𝑄𝑞𝑏 −𝑇𝑡𝑏

𝑆𝑏 −𝑄𝑏

−𝑄𝑏 𝑇𝑏

] (4-19) 

𝐷𝑚(𝑥𝑐, 𝜔) = 𝑆𝑎(𝑇𝑏𝑆𝑏 − 𝑄𝑏
2) + 𝑆𝑏(𝑇𝑏𝑆𝑏 − 𝑄𝑏

2) − (𝑆𝑏𝑄𝑞𝑏
2 + 𝑇𝑏𝑆𝐶𝑏

2 − 2𝑄𝑏𝑆𝐶𝑏𝑄𝑞𝑏) 

= 𝑆𝑎

𝜆4(2 − ∆𝑏)

∆𝑏
+ 𝑆𝑏

𝜆4(2 − ∆𝑏)

∆𝑏
−

2𝜆4𝑆𝑏

∆𝑏
= 𝜆4 (𝑆𝑎

2

∆𝑏
− 𝑆𝑏 − 𝑆𝑎) 

𝐷𝑚(𝑥𝑐 , 𝜔) =
𝜆(sin(𝐿𝜆)𝐶𝐻𝑎𝐶𝐻𝑏 − sinh(𝐿𝜆) 𝑐𝑎𝑐𝑏 + 𝐶𝐻𝑎𝑠𝑎 + 𝑆𝐻𝑏𝑐𝑏 − 𝑆𝐻𝑎𝑐𝑎 − 𝐶𝐻𝑏𝑠𝑏)

(1 − 𝐶𝐻𝑎𝑐𝑎)(1 − 𝐶𝐻𝑏𝑐𝑏)
 (4-20) 
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Figure 4.6. Non-dimensional plot of the function 𝐷̅𝑚 evaluated at different locations for 

constant eigenvalues. Clamped-free beam case 

The reason for the maximum effect of the mass at the right end in all the eigenvalues 

can be easily understood as it is a free end. 

 

A compilation of the obtained closed form for the common boundary conditions is 

given in Table 4.1 and with it show that even though for the simply supported beam 

the functions 𝐷ℎ(𝑥𝑐, 𝜔0) and 𝐷𝑚(𝑥𝑐, 𝜔0) are the same, it does not stand for the other 

boundary conditions. 
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Table 4.1. Closed form determinants for crack and adding mass to common boundary 

conditions 

Equivalent expression 

Clamped-clamped 

𝐷ℎ(𝑥𝑐, 𝜔0) sin(𝐿𝜆)𝐶𝐻𝑎𝐶𝐻𝑏 + sinh(𝐿𝜆) 𝑐𝑎𝑐𝑏 + 𝑠𝑎𝐶𝐻𝑎 + 𝑠𝑏𝐶𝐻𝑏  − 𝑐𝑎𝑆𝐻𝑎 − 𝑐𝑏𝑆𝐻𝑏 

𝐷𝑚(𝑥𝑐, 𝜔0) sinh(𝐿𝜆) 𝑐𝑎𝑐𝑏 − sin(𝐿𝜆) 𝐶𝐻𝑎𝐶𝐻𝑏 + 𝑠𝑎𝐶𝐻𝑎 + 𝑠𝑏𝐶𝐻𝑏  − 𝑐𝑎𝑆𝐻𝑎 − 𝑐𝑏𝑆𝐻𝑏 

Clamped-pinned 

𝐷ℎ(𝑥𝑐, 𝜔0) sin(𝐿𝜆)𝐶𝐻𝑎𝑆𝐻𝑏 + sinh(𝐿𝜆) 𝑐𝑎𝑠𝑏 + 2𝑠𝑏𝑆𝐻𝑏 − 𝑆𝐻𝑎𝑆𝐻𝑏𝑐𝑎𝑐𝑏 − 𝐶𝐻𝑎𝐶𝐻𝑏𝑠𝑎𝑠𝑏 

𝐷𝑚(𝑥𝑐, 𝜔0) 2𝑠𝑏𝑆𝐻𝑏 + 𝑆𝐻𝑎𝑆𝐻𝑏𝑐𝑎𝑐𝑏 + 𝐶𝐻𝑎𝐶𝐻𝑏𝑠𝑎𝑠𝑏 −sin(𝐿𝜆)𝐶𝐻𝑎𝑆𝐻𝑏 − sinh(𝐿𝜆) 𝑐𝑎𝑠𝑏 

Pinned-pinned 

𝐷ℎ(𝑥𝑐, 𝜔0) sin(𝐿𝜆) 𝑆𝐻𝑎𝑆𝐻𝑏 − sinh(𝐿𝜆) 𝑠𝑎𝑠𝑏 

𝐷𝑚(𝑥𝑐, 𝜔0) sin(𝐿𝜆) 𝑆𝐻𝑎𝑆𝐻𝑏 − sinh(𝐿𝜆) 𝑠𝑎𝑠𝑏 

Clamped-free 

𝐷ℎ(𝑥𝑐, 𝜔0) sinh(𝐿𝜆) 𝑐𝑎𝑐𝑏 − sin(𝐿𝜆) 𝐶𝐻𝑎𝐶𝐻𝑏 + 𝐶𝐻𝑎𝑠𝑎 + 𝑆𝐻𝑏𝑐𝑏 − 𝑆𝐻𝑎𝑐𝑎 − 𝐶𝐻𝑏𝑠𝑏 

𝐷𝑚(𝑥𝑐, 𝜔0) sin(𝐿𝜆)𝐶𝐻𝑎𝐶𝐻𝑏 − sinh(𝐿𝜆) 𝑐𝑎𝑐𝑏 + 𝐶𝐻𝑎𝑠𝑎 + 𝑆𝐻𝑏𝑐𝑏 − 𝑆𝐻𝑎𝑐𝑎 − 𝐶𝐻𝑏𝑠𝑏 

 

An interesting situation occurs for the specific case of a simply supported beam, where 

a mass and a crack have similar effects. Therefore the dynamic effect of a crack could 

be simulated by adding a mass to validate through experimentation, the formulae of 

spring stiffness. 

 

4.3 Point mass in a cracked beam data. Comparison with previous 

work. Zhong and Oyadiji [36] 

As mentioned earlier, the use of a non-structural point mass located in several points 

along the length of the beam will present a discontinuity in the first derivative of the 

frequency plot in the crack location on the otherwise continuous graph of measured 

frequencies. Experimental results were published by Zhong and Oyadiji [36] for a 

simply supported beam of length 2400mm with a constant cross section 100x25mm2 

made of aluminium. The reported data correspond to the values of the two first natural 

frequencies measured when a cut saw at 400mm from the left end was infringed to the 

beam and a probing mass of 4kg was located in 25 different locations along the beam, 

with a probing interval of 100mm. Figures 4.7 and 4.8 show the frequency values 

reported by [36] and those obtained using DSM Eq. (4.1) in addition to the values of 
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the natural frequency when the point mass is added to a undamaged beam using DSM 

as benchmark to compare the frequency changes in both beam states. 

 

To produce the data of the cracked beam, the present case demands the stiffness value 

that represents the flexibility introduced by the cut. Following the model develop by 

Chondros, et al. [20] for a saw cut of 5mm depth in a beam of 25mm thickness, the 

20% non-dimensional crack length generates a 0.38 compliance leading to a non-

dimensional spring stiffness 𝑘 = 255985 for the 2.4m beam. 

 

 

Figure 4.7. First natural frequency vs. added point mass location 

With a first glance to the values measured and those obtained using DSM showed in 

Figure 4.7, one can observe a few matching points. Additionally but almost 

imperceptible it is possible to notice a change in the trend on the experimental data 

before and after the mass passes the crack. 
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Figure 4.8. Second natural frequency vs. added point mass location 

Figure 4.8 for the second frequency although there is not a single match between the 

values reported for the experiment and those obtained using DSM, it is noticed the 

asymmetry in the otherwise symmetric graph of the frequency when there is no crack 

with a more appreciable lean of the line for the cracked beam towards the side of the 

crack. 

 

4.4 Summary 

The use of dynamic effects of point masses on beams for crack identifications was 

analysed comparing data reported from one experiment and those obtained from 

dynamic stiffness matrices. An important remark regarding to the gap between the 

graphs is that the frequency shift remains constant in all the positions but in those 

locations near to the crack. Unfortunately, the last peculiarities were noticed because 

there is expected to be some change in the crack vicinity, and could pass unseen 

otherwise. That is probably why Zhong and Oyadiji [86], [88], [89]  have been looking 

for a way to improve the readability of the changes caused by a crack through the use 

of wavelet transform. The next chapter proposes the use of another inertial property 

that could help to make the presence of a crack more noticeable. 

 





 

 

5 Chapter 5 

Inertial effects on cracks 

The translational dynamic effect of discrete masses on continuous beams was 

addressed in the previous chapter as a tool that could help to identify the crack presence 

by simply looking at the plot of the frequency vs mass location. The obtained graphs 

indicate that there is a change in the slope of the frequency plot at the crack location 

that could be easily missed by the observer as there is no sudden change in the value 

of the frequency. In this chapter not only the translational effects of the added mass 

but the rotational inertia effect will also be considered, bearing in mind that the 

common crack model includes a discontinuity in the slope and the effect of the crack 

could therefore be noticed better by using a roving body possessing rotary inertia. 

 

5.1 DSM determinant with a crack and a mass in the same position 

In Section 4.2 the inertial effect of the roving mass due to a translational displacement 

and the obtained results show that although there is a change in the slope of the 

frequency plot, it needs to be magnified by a posterior procedure like wavelet 

transform to unveil the effect of the mass. A similar magnification of this effect could 

be achieved when the rotary inertia of the appended body is considered. The 

derivations presented here are limited to the case in which the body is appended 

immediately to one side or the other of the crack as this is sufficient for the purpose. 

As was done previously, to gain understanding of the effect of all the additional 

elements, the case for a beam clamped at both ends will be presented. 

 

Figure 5.1 shows the elements involved in the case of a clamped-clamped cracked 

beam and Eq. (5.1) indicates the relationship between those elements in the dynamic 

equation in matrix form using the dynamic stability functions defined in Section 3.3. 
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Figure 5.1. Fixed cracked beam with appended body 

[
𝑀𝐿

𝑉𝑐

𝑀𝑅

] = 𝐸𝐼 [

𝑆𝑎 + 𝑘̅ −𝑄𝑎 −𝑘̅

−𝑄𝑎

−𝑘̅

𝑇𝑎 + 𝑇𝑏

𝑄𝑏

𝑄𝑏

𝑆𝑏 + 𝑘̅

] [

𝜃𝐿

𝛿𝑐

𝜃𝑅

] (5-1) 

The added mass 𝑚̅ at 𝑥𝑐, the crack location, produces a dynamic force associated with 

𝛿𝑐 , the translation at the crack, altering effectively the diagonal element of the 

corresponding dynamics stiffness by 𝑚∗ =
𝜔2

𝐸𝐼
𝑚̅ in the second row. When considering 

the rotational inertia of the added mass, there is a similar dynamic effect, this time in 

the moment associated with the rotational displacement 𝑀𝑑 = −𝐼0𝜃𝑐 . The rotary 

inertia can be expressed in terms of the added mass as 𝐼0 = 𝑒2 𝜔2

𝐸𝐼
𝑚̅ where e is the 

effective eccentricity of the concentrated mass that will produce the same rotary inertia. 

Therefore the rotary inertia effect depends of the location of the mass relative to the 

crack and the global matrix takes the form of Eq. (5.2) when the added inertia is located 

at the left side of the spring or takes the form in Eq. (5.8) (which will be presented 

later) when it is located at the right side of the spring 

[
𝑀𝐿

𝑉𝑐

𝑀𝑅

] = 𝐸𝐼 [

𝑆𝑎 + 𝑘̅ − 𝐼0 −𝑄𝑎 −𝑘̅

−𝑄𝑎

−𝑘̅

𝑇𝑎 + 𝑇𝑏 − 𝑚∗

𝑄𝑏

𝑄𝑏

𝑆𝑏 + 𝑘̅

] [

𝜃𝐿

𝛿𝑐

𝜃𝑅

] (5-2) 

For the case shown in Equation (5.2) the determinant expression could be presented in 

the following form 

(𝐷0(𝑥𝑐, 𝜔) − 𝑚𝐷𝑚(𝑥𝑐, 𝜔) + 𝐷𝑚𝑟(𝑥𝑐, 𝜔) − 𝐷𝑟(𝑥𝑐, 𝜔))𝑘 + 𝐷ℎ(𝑥𝑐, 𝜔)

+ 𝑚𝐷𝑚𝑐(𝑥𝑐, 𝜔) + 𝐷𝑐𝑚𝑟(𝑥𝑐, 𝜔) + 𝐷𝑐𝑟(𝑥𝑐, 𝜔) = 0 
(5-3) 

with 𝜔 the natural frequency and 𝑥𝑐 the crack location. It is important to mention that 

terms like 𝐷0, 𝐷ℎ, 𝐷𝑚 and 𝐷𝑚𝑐 maintain the same definition as in Eq. (4.6) when a 
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point mass is appended to the structure in the location of the crack. Some additional 

terms in Eq. (5.3) come from the expansion of 

−𝐼0(𝑇𝑎 + 𝑇𝑏 − 𝑚∗)(𝑆𝑏 + 𝑘̅)−𝐼0𝑄𝑏
2 

which are defined as follows using the stability functions of Table 3.1. 

 

𝐷𝑚𝑟(𝑥𝑐, 𝜔) = 𝑚∗𝐼0

𝐷𝑚𝑟(𝑥𝑐, 𝜔) = 𝑚∗𝐼0
(1 − 𝐶𝐻𝑎𝑐𝑎)(1 − 𝐶𝐻𝑏𝑐𝑏)

(1 − 𝐶𝐻𝑎𝑐𝑎)(1 − 𝐶𝐻𝑏𝑐𝑏)

 (5-4) 

 

𝐷𝑟(𝑥𝑐, 𝜔) = 𝐼0(𝑇𝑎 + 𝑇𝑏)

𝐷𝑟(𝑥𝑐, 𝜔) = 𝐼0
𝜆3[(𝑠𝑎 𝐶𝐻𝑎 + 𝑐𝑎 𝑆𝐻𝑎)(1 − 𝐶𝐻𝑏𝑐𝑏) + (𝑠𝑏 𝐶𝐻𝑏 + 𝑐𝑏 𝑆𝐻𝑏)(1 − 𝐶𝐻𝑎𝑐𝑎)]

(1 − 𝐶𝐻𝑎𝑐𝑎)(1 − 𝐶𝐻𝑏𝑐𝑏)

 (5-5) 

 

𝐷𝑐𝑚𝑟(𝑥𝑐, 𝜔) = 𝑚∗𝐼0𝑆𝑏

𝐷𝑐𝑚𝑟(𝑥𝑐,𝜔) = 𝑚∗𝐼0
𝜆(𝑠𝑏 𝐶𝐻𝑏 − 𝑐𝑏 𝑆𝐻𝑏)(1 − 𝐶𝐻𝑎𝑐𝑎)

(1 − 𝐶𝐻𝑎𝑐𝑎)(1 − 𝐶𝐻𝑏𝑐𝑏)

 (5-6) 

 

𝐷𝑐𝑟(𝑥𝑐, 𝜔) = 𝐼0 (𝑇𝑎𝑆𝑏 + 𝑇𝑏𝑆𝑏 − 𝑄𝑏
2
)

𝐷𝑐𝑟(𝑥𝑐, 𝜔) = 𝐼0
𝜆4[(𝑠𝑏 𝐶𝐻𝑏 − 𝑐𝑏 𝑆𝐻𝑏)(𝑠𝑎 𝐶𝐻𝑎 + 𝑐𝑎 𝑆𝐻𝑎) + (1 + 𝐶𝐻𝑏𝑐𝑏)(1 − 𝐶𝐻𝑎𝑐𝑎)]

(1 − 𝐶𝐻𝑎𝑐𝑎)(1 − 𝐶𝐻𝑏𝑐𝑏)

 (5-7) 

 

On the other hand if the rotary inertia is on the right side of the crack, the DSM is of 

the form 

[
𝑀𝐿

𝑉𝑐

𝑀𝑅

] = 𝐸𝐼 [

𝑆𝑎 + 𝑘̅ −𝑄𝑎 −𝑘̅

−𝑄𝑎

−𝑘̅

𝑇𝑎 + 𝑇𝑏 − 𝑚∗

𝑄𝑏

𝑄𝑏

𝑆𝑏 + 𝑘̅ − 𝐼0

] [

𝜃𝐿

𝛿𝑐

𝜃𝑅

] (5-8) 

In the above equation the change in the coefficients from Eq. (5.2) is due to the location 

of 𝐼0. The expansion of Eq. (5.2) is unchanged as well as the terms of Eqns. (5.4) and 

(5.5) and the terms that need to be changed due to the relocation of the mass are found 

from the expansion of 

−𝐼0(𝑇𝑎 + 𝑇𝑏 − 𝑚∗)(𝑆𝑎 + 𝑘̅)−𝐼0𝑄𝑎
2 

 

𝐷𝑐𝑚𝑟(𝑥𝑐,𝜔) = 𝑚∗𝐼0𝑆𝑎

𝐷𝑐𝑚𝑟(𝑥𝑐, 𝜔) = 𝑚∗𝐼0
𝜆(𝑠𝑎 𝐶𝐻𝑎 − 𝑐𝑎 𝑆𝐻𝑎)(1 − 𝐶𝐻𝑏𝑐𝑏)

(1 − 𝐶𝐻𝑎𝑐𝑎)(1 − 𝐶𝐻𝑏𝑐𝑏)

 (5-9) 

 

𝐷𝑐𝑟(𝑥𝑐, 𝜔) = 𝐼0 (𝑇𝑎𝑆𝑎 + 𝑇𝑏𝑆𝑎 − 𝑄𝑎
2
)

𝐷𝑐𝑟(𝑥𝑐, 𝜔) = 𝐼0
𝜆4[(𝑠𝑏 𝐶𝐻𝑏 + 𝑐𝑏 𝑆𝐻𝑏)(𝑠𝑎 𝐶𝐻𝑎 − 𝑐𝑎 𝑆𝐻𝑎) + (1 − 𝐶𝐻𝑏𝑐𝑏)(1 + 𝐶𝐻𝑎𝑐𝑎)]

(1 − 𝐶𝐻𝑎𝑐𝑎)(1 − 𝐶𝐻𝑏𝑐𝑏)

 (5-10) 
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Terms 𝐷𝑐𝑚𝑟(𝑥𝑐, 𝜔) and 𝐷𝑐𝑟(𝑥𝑐, 𝜔) will be identical if the crack is located at a line of 

symmetry so that 𝑇𝑎 = 𝑇𝑏 , 𝑆𝑎 = 𝑆𝑏  and 𝑄𝑎 = 𝑄𝑏 ; otherwise the determinants will 

differ, and a frequency shift can be expected in general. 

 

It can be noticed that 𝐷𝑐𝑟(𝑥𝑐, 𝜔) and 𝐷𝑐𝑚𝑟(𝑥𝑐, 𝜔) have an effect on the determinant 

when the flexibility is different from zero, i.e. when there is a crack, and 

accommodates their values related to the opposite side, generating a jump in the 

frequency measurement when the crack is just passed. 

 

Another important observation could be made by looking at the terms present when 

there is no crack. It was demonstrated that the term 𝐷0(𝑥𝑐, 𝜔) has a very small change 

in the presence of cracks, while the inertial terms will have a noticeable change 

especially at higher frequencies, even with low values of the mass as these are affected 

by the square of the frequency, making it valuable for use in damage location if high 

frequency measurements can be used. 

 

5.2 Roving mass in a single cracked cantilever beam 

In the previous section, a clamped-clamped beam was used to demonstrate the 

dependence of the frequency equation on the location of the point mass, and Eq. (5.3) 

was derived as a general expression for any structure where each term, as was shown 

in chapters 3 and 4, is dependent not only on the boundary conditions but also on the 

location of both crack and point mass. To illustrate the inertial effects of the point mass 

roving in a beam, the numerical solution of the frequency equation using DSM 

approach will be presented in graphical form. 

 

5.2.1 Single cracked beam, frequency parameter. 

For a cantilever beam with a crack at 𝑥𝑐 and a point mass with location 𝑥𝑚 roving 

within its length 𝐿, the DSM equation involves three beam segments which lengths 

shown in Figure 5.2 correspond when the body is located between the fixed end and 

the crack making 𝐿𝑎 = 𝑥𝑚, 𝐿𝑏 = 𝑥𝑐 − 𝑥𝑚 and 𝐿𝑐 = 𝐿 − 𝑥𝑐. 
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Figure 5.2. Cracked cantilever beam with appended body 

The nodal actions and nodal displacements in the structure pictured in Fig.5.2 are 

related through 𝐚𝑐 = 𝐊𝑐𝐝𝑐, where 𝐊𝑐 is the DSM taking the form of Eq. (5.11) and 

𝐝𝑐 =

[
 
 
 
 
 
 
𝜃𝑚

𝛿𝑚

𝜃𝐿

𝛿𝑐

𝜃𝑅

𝜃𝑓

𝛿𝑓 ]
 
 
 
 
 
 

 

𝐊𝑐 = 𝐸𝐼

[
 
 
 
 
 
 
𝑆𝑎 + 𝑆𝑏 − 𝐼0

𝑄𝑏 − 𝑄𝑎

𝑆𝐶𝑏

𝑄𝑏 − 𝑄𝑎

𝑇𝑎 + 𝑇𝑏 − 𝑚∗

𝑄𝑞𝑏

𝑆𝐶𝑏

𝑄𝑞𝑏

𝑆𝑏 + 𝑘̅
−𝑄𝑞𝑏 −𝑇𝑡𝑏 −𝑄𝑏

0
0
0

0
0
0

−𝑘̅
0
0

−𝑄𝑞𝑏

−𝑇𝑡𝑏
−𝑄𝑏

𝑇𝑏 + 𝑇𝑐

𝑄𝑐

𝑄𝑞𝑐

−𝑇𝑡𝑐

0
0

−𝑘̅

0
0
0

0
0
0

𝑄𝑐 𝑄𝑞𝑐 −𝑇𝑡𝑐
𝑆𝑐 + 𝑘̅
𝑆𝐶𝑐

−𝑄𝑞𝑐

𝑆𝐶𝑐

𝑆𝑐

−𝑄𝑐

−𝑄𝑞𝑐

−𝑄𝑐

𝑇𝑐 ]
 
 
 
 
 
 

 (5-11) 

 

In the numerical simulation, the mass and the crack will not be coincident to avoid null 

lengths. In a similar way, when the point mass is located between the free end and the 

crack the length of beam segments are defined as 𝐿𝑎 = 𝑥𝑐, 𝐿𝑏 = 𝑥𝑚 − 𝑥𝑐 and 𝐿𝑐 =

𝐿 − 𝑥𝑚. The displacement vector and correspondent DSM have the form 

𝐝𝑐 =

[
 
 
 
 
 
 
 
𝜃𝐿

𝛿𝑐

𝜃𝑅

𝜃𝑚

𝛿𝑚

𝜃𝑓

𝛿𝑓 ]
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𝐊𝑐 = 𝐸𝐼

[
 
 
 
 
 
 𝑆𝑎 + 𝑘̅

−𝑄𝑎

−𝑘̅

−𝑄𝑎

𝑇𝑎 + 𝑇𝑏

𝑄𝑏

−𝑘̅
𝑄𝑏

𝑆𝑏 + 𝑘̅
0 𝑄𝑞𝑏 𝑆𝐶𝑏

0
0
0

−𝑇𝑡𝑏
0
0

−𝑄𝑞𝑏

0
0

0
𝑄𝑞𝑏

𝑆𝐶𝑏

𝑆𝑏 + 𝑆𝑐 − 𝐼0
𝑄𝑐 − 𝑄𝑏

𝑆𝐶𝑐

−𝑄𝑞𝑐

0
−𝑇𝑡𝑏
−𝑄𝑞𝑏

0
0
0

0
0
0

𝑄𝑐 − 𝑄𝑏 𝑆𝐶𝑐 −𝑄𝑞𝑐

𝑇𝑏 + 𝑇𝑐 − 𝑚∗

𝑄𝑞𝑐

−𝑇𝑡𝑐

𝑄𝑞𝑐

𝑆𝑐

−𝑄𝑐

−𝑇𝑡𝑐
−𝑄𝑐

𝑇𝑐 ]
 
 
 
 
 
 

 (5-12) 

 

Numerical results for a clamped-clamped beam of unit length (with 10% of the total 

mass of the beam probing mass with no eccentricity) were generated using Eqns. (5.11) 

and (5.12). The crack is located near the middle span (𝑥𝑐 = 0.495) initially with a very 

high stiffness assuming near zero flexibility to verify results with Eq. (4.6) for the 

intact beam. Figures 5.3 and 5.4 show the results for second and third eigenvalues 

respectively where for both beam scenarios the graphs almost overlap. 

 

 

Figure 5.3. Roving mass on intact cantilever beam. Second eigenvalue shift, e=0 
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Figure 5.4. Roving mass on intact cantilever beam. Third eigenvalue shift, e=0 

It may be noted that the use of high stiffness amounts to enforcing a constraint, the 

idea first proposed by Courant [90] which led to the now popular penalty method. The 

difference between the closed-form solution for an undamaged beam and the one 

obtained using the DSM with a high stiffness for the rotational spring remains small, 

the worst discrepancy being less than 2x10-6 percentage of the third eigenvalue for a 

cantilever beam. This shows that the stiffness values are high enough to effect a 

constraint and still reasonably small so as not to cause numerical problems [91]. Now 

moving towards the inclusion of the rotary inertia effect, meaning the use of a non-

zero eccentricity; for this example eccentricity (𝑒 = 0.01) for the equivalent point 

mass was set to 1% of the length of the beam.  

 

Figure 5.5. Roving mass on intact cantilever beam. Third eigenvalues shift, e≠0 
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The resulting graphs, Figure 5.5, do not show any noticeable effect of the added rotary 

inertia, but the difference can be noted in the third decimal place. The maximum 

change in the frequency due to the rotary inertia effect was near to 0.05% of the third 

natural frequency. 

 

Regarding the combined effect of the mass and the cracks with low stiffness, 𝑘 = 1 

equivalent to a non-dimensional crack length of over 30% (Figures 5.6 to 5.8), a 

reduction in the frequency at the first and second eigenvalues is noted and a sudden 

change in the continuity of the graph for the second one. 

 

 

Figure 5.6. Roving mass on cantilever beam cracked @49.5%. First eigenvalues shift, e≠0 
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Figure 5.7. Roving mass on cantilever beam cracked @49.5%. 

Second eigenvalues shift, e≠0 

Figure 5.8 shows on the other hand that even with a low crack stiffness, there are no 

signs of a crack on the third eigenvalue, basically because the location of the crack lies 

on a contra-flexure point at this eigenvalue, as can be seen back in Fig. 3.6. 

 

Figure 5.8. Roving mass on cantilever beam cracked @49.5%. Third eigenvalues shift, e≠0 

From the last observation we can infer that the determinant factor on the frequency 

shifts due to cracks is the relative position of the crack with the contra-flexure points. 

Therefore, to gain readability in the graphs, the crack location is selected from Fig.3.6 

and from it, the crack was now chosen in a location near the 40% of the length from 

the clamp where according to Fig. 3.6 there are no contra-flexure point for any of the 

first three eigenvalues. 
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Figures 5.9 to 5.11 show the behaviour of the frequency shift of a cantilever beam with 

a point mass roving within the length. In this occasion a reduction in the frequency at 

all the eigenvalues is seen. 

 

 

Figure 5.9. Roving mass on cantilever beam cracked @39.5%. First eigenvalues shift, e≠0 

 

Figure 5.10. Roving mass on cantilever beam cracked @39.5%. Second eigenvalues shift, 

e≠0 

It may be noted from Figures 5.10 and 5.11 that a jump in the slope of the graph 

occurs when the roving mass passes the crack. For the second frequency, as long the 

mass roves from the clamped end on the intact beam, the frequency decrease towards 

a minimum at its mid span; but in the beam cracked at its 40% length, the frequency 

starts to increase immediately after the mass passes the crack. 
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Figure 5.11. Roving mass on cantilever beam cracked @39.5%. Third eigenvalues shift, e≠0 

In the case of the third frequency, the minimum frequency is reached farther than in 

the intact scenario exactly on the crack location. The previous results reveals a 

promising way of conducting damage identification based on the frequency shifts 

only.  

Table 5.1 shows the values of the obtained eigenvalues in the roving mass locations 

when it is near the crack to give an idea of the different changes due to crack and 

roving mass location. 

Table 5.1. First and third eigenvalues for cantilever beams using DSM.  

 

The values in the table show that numerically speaking, identification of the jump in 

the frequency shift due to a crack could be a challenge due to the proximity of the 

order in those values even for crack locations far from points of contra-flexure, 

especially in lower frequencies. There is a property that could emerge from the 

characteristic equation developed in Section 5.2: that is the higher the frequency the 

higher the jump, which means it is easier to identify. This is because the resisting 

moment due to rotary inertia is proportional to the square of the frequency.  

@39% @40% @41% @42% @39% @40% @41% @42%

mo 1.866112 1.865272 1.864383 1.863443 mo 7.658236 7.68354 7.708844 7.733666

mo + ecc 1.866093 1.865253 1.864363 1.863423 mo + ecc 7.657205 7.682342 7.707472 7.732119

@39% @40% @41% @42% @39% @40% @41% @42%

mo 1.596602 1.596229 1.595632 1.594968 mo 7.116941 7.13927 7.181539 7.219826

mo + ecc 1.596597 1.596198 1.595600 1.594936 mo + ecc 7.116941 7.136037 7.178226 7.216438

Intact 1.875104 Intact 7.854756

Cracked @39.5% 1.598713 Cracked @39.5% 7.350299



Chapter 5 Inertial Effects on Cracks 

76 

Therefore a point mass may help to identify a damage when looking at the frequency 

shift graph of higher frequencies where the crack locations is between points of contra-

flexure using a device with enough eccentricity from the neutral axis of the beam so 

as to generate a sufficiently large local moment that could be perceived by the 

measuring equipment. 

 

5.2.2 Single cracked beam: Frequency values. 

For a final verification of the obtained results and the effectiveness of roving a point 

mass to identify the crack location on a beam, a simple experiment was performed 

using available equipment at the University of Waikato (UoW) and simple enough to 

understand the effect of the variables considered as well as to be reproduced anywhere. 

The heart of this work is to capture the effect of cracks mainly through the use of 

frequency measurements. Therefore the experiment relies on the capture of the natural 

frequencies in a structure on the basis of the Frequency Response Function (FRF) 

between an input and an output. 

The UoW possesses the CoCo-80, a commercial vibration analyser developed for 

Cristal Instruments with built-in hardware and software ready to use for vibration 

measurements. The input was generated by an impact hammer developed by Brüel & 

Kjær with interchangeable head tips for low, medium and high frequencies while the 

output was sensed by a triaxial and multipurpose accelerometer developed by the same 

Nordic company. 

The analyser parameter in this case is the defining point for the experiment. Frequency 

resolution in the CoCo-80 is dependent on the frequency range and the resolution of 

the scale. For this reason the best frequency resolution had to be limited to the lower 

band of the spectrum. 

Regarding the specimen, a metallic beam was selected because of the homogeneity of 

the mechanical properties. The experiment was performed with two identical beams 

made of flat aluminium bar of 25mm width and 3mm thickness. The cantilever 

condition was achieved by clamping one end to a supposedly rigid desk (Fig. 5.12) 

and to avoid rotations two bolted steel plates were used to clamp the beam. 
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Figure 5.12. Cantilever fixed end detail  

The clear span of the beams (final length of the beam discounting the bolted plates) is 

480mm and the expected natural frequencies for the three first eigenvalues are 

𝑓1 =  10.71Hz, 𝑓2 = 67.12Hz and 𝑓3 = 187.93Hz supposing an elastic modulus 𝐸 =

70GPa and a mass density 𝜇 = 202.5g/m. 

The CoCo-80 frequency range is set to a maximum of 180Hz making the frequency 

resolution equal to 0.5Hz on the display. The accelerometer is located on the free end 

and the impacting point is marked near the fixed end, after 40s the analyser shows 

three differentiable peaks in the FRF graph (Fig 5.13) at 𝑓1 = 7.74Hz, 𝑓2 = 54.16Hz 

and 𝑓3 = 158.98Hz , corresponding to the first three natural frequencies of the 

cantilever beam. 
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Figure 5.13. Measured FRF peaks for intact aluminium cantilever beam 

The difference between theoretical and experimental frequency values may have many 

causes. Error analysis on the translation from non-dimensional parameters to measured 

dimensions may help to identify the variables with the major impact. Equation (A.1) 

in the appendix indicates that eigenvalues, length and height variations are the most 

influential in the final frequency value. 

The mass of the accelerometer and its connector are 10% of the mass of the beam 

affecting eigenvalues, additionally, material properties ( 𝜇 = 2677kg/m3  and 

𝐸 =  61GPa) were characterised in the Large Scale Laboratory of UoW. 

Table 5.2. Updated frequencies. 

 

 

As realising fully clamped conditions is difficult, the clamped end may have had some 

flexibility. The lack of rigidity in the support will be disregarded because the aim is 

not to validate the frequency equation but to see if there is any sudden shift in the 

frequency as the rowing body passes the crack. This will be addressed in the next 

chapter. 

(Hz)

theory +macc updated

1
st.

1.875 1.726 8.51

2
nd.

4.694 4.423 55.87

3
rd.

7.855 7.502 160.73

frequency
𝑓𝑖𝜆𝑖
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The same experimental set-up is made for the second beam specimen with a reduction 

of almost 50% in its sectional area at 40% of the length measured from the fixed end 

that was found to produce noticeable effect due to the crack in the third natural 

frequency. The FRF peaks (Figure 5.14) are now located at  𝑓1 = 7.74𝐻𝑧 

𝑓2 =  53.46𝐻𝑧 and 𝑓3 = 158.27𝐻𝑧, giving an indication of rigidity loss somewhere 

along the beam. 

 

Figure 5.14. Measured FRF peaks for cracked aluminium cantilever beam 

The same clamp used to avoid rotations on the fixed end will be used as a point mass 

with rotary inertia. For the purpose of this experiment the clamp will be secured for 

both the intact and cracked beam only in four positions labelled as shown in Figure 

5.15 covering two places before the crack and two places after the crack. 
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Figure 5.15. Mass attaching points relative to crack location  

 

It is important to remember that the third frequency will be chosen because the crack 

effect is expected to be higher in this case compared to the first two. The plots of Figure 

3.6 are now separated for each frequency (Figures 5.16 and 5.17) in order to present 

the intervals where the damage has the highest effect in addition with a line called 

sensitivity threshold indicating what will be the crack positions that will be detected 

in the particular frequency. 

 

Figure 5.16. Intervals with high crack effect selection. Second natural frequency 

The threshold line can be designed by modifying the eccentricity of the point mass 

according to the frequency resolution of the equipment and the minimal crack severity 

that is expected to be identified. 
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Figure 5.17. Intervals with high crack effect selection. Third natural frequency 

According to Figure 5.11, on the interval near to 40% of the length, the frequency shift 

increases monotonically when the body is roved towards the free end for the intact 

beam but a sudden increase must be appreciated if there is a crack on that section. 

The point mass location and the measured frequency values for the third frequency are 

presented in Fig. 5.18 as a schematic representation of Fig. 5.15. On the upper half 

there are presented for the intact beam the frequency values in Hertz at each point mass 

location and their relative change respective with the values at the previous location. 

Similar fashion is followed on the lower half now in the presence of a crack at the end 

between sections two and three. 

 

Figure 5.18. Measured third frequency with added mass  

The relative changes obtained between the different locations of the body for the 

undamaged beam remain relatively constant (in the range 6.97% to 7.61%) for this 

frequency in this beam segment. For the cracked beam with the roving body, there is 

a relatively higher change as the body passes the crack (5.8% to 7.69%). This indicates 

that the flexibility due to the crack is amplified in the presence of the roving body, 

although the values obtained do not make a conclusive case for the reasons mentioned 

later. 

Intact (no body) 158.98 Hz 121.00 129.43 139.28 149.13

6.97% 7.61% 7.07%

1 2 3 4

Cracked (no body) 158.27 Hz 121.00 128.02 137.87 148.42

5.80% 7.69% 7.65%

FIXED FREE

CRACK
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Figure 5.19. Experimental results for the third frequency with added mass  

Figure 5.19 shows that the gap between frequencies in the measured section increase 

only between points 2 and 3; on the other hand in position one, there is no change 

between intact and cracked beam while in position four it is possible to appreciate a 

reduction on the measured frequencies for the two states. 

 

 

Figure 5.20. Numerical results for the third frequency with added mass  

Numerical simulation using DSM were performed assuming a non-dimensional 

stiffness 𝑘 = 100, considering the point mass with rotation on the geometrical centre 

and the mass of the accelerometer on the free end. Figure 5.20 shows the plot of the 
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numerical simulation results which hold the same particulars mentioned for the 

experimental ones. The lower frequency values in the experiment may indicate a 

flexibility not considered in the simulation. One probable cause is the clamp rigidity 

assumed perfect that could allow rotations in reality. 

 

A lesson learnt from this is that the fixed boundary conditions are harder to realise and 

free-free beam may be offer a better choice. In practice this means suspending it on 

very flexible supports. 

 

Another lesson learnt from the experiment is the influence of the size of the body on 

the axial coordinate. The roving body has to be as thin as possible as otherwise it limits 

the number of measuring points along the beam. For this case, a 25mm width in a 

480mm beam length allows only 19 measuring points and Fig. 4.11 will become a 

discrete plot as is shown in Fig. 5.21 where a closer look of the cracked case reveals 

two trends on the plot with the crack as their limit. This needs to be born in mind in 

future experimental planning. 

 

Figure 5.21. Discrete values for the third frequency with added mass  

 

5.3 Summary 

This chapter demonstrates that the concept of roving a mass within the length of a 

beam promises to be a powerful tool for damage identification particularly in the 

location of local flexibilities. The theory and numerical simulation indicated that when 

the mass is designed in such a way that its rotary inertia affects the structure, the section 

with the local flexibility (crack) could be discerned accurately leading to a new crack 

location methodology if measurement techniques are improved and experimentally 
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verified. Regarding to the experimental application of the theory, difficulties in 

securing a perfect clamp end, uncertainty of the inertial effect of the attached 

accelerometer and physical limitations on the location of the probe mass demand a 

higher level of sophistication to claim success with the proposed location methodology. 

In the next chapter, the inverse problem will be addressed using frequency shifts only; 

initially to identify location and severity of a structure with one crack, and afterwards 

offers an example to determine the local flexibility when the location is known. 



 

 

6 Chapter 6 

Inverse Problem 

The previous chapters were devoted to presenting the characteristic equations of 

structures in the presence of elements which impact their dynamic response. 

Additionally the numerical simulations offer an understanding of the effect of each of 

these factors on the natural frequencies. Furthermore, it was proven that the 

determinant of a structure could be decoupled as many times as needed, as additional 

non-structural elements with dynamic effect are attached to the system. In this chapter, 

a method to identify the location and amplitude of a flexibility element using only 

natural frequency measurements is presented. System identification will be achieved 

by controlled changes to the system, through the use of an attached mass and the 

decoupling of the determinant of the new system. 

6.1 Identifying local flexibility 

The procedure for identifying a damage starts with a crack being seen as an agent of 

local flexibility which changes the natural frequencies. For this procedure, then the 

natural frequency measurements are needed. Based on the fact that the determinantal 

equation Eq. (3.6) for a single cracked structure is valid for all the natural frequencies 

of the structure and, the first two natural frequencies 𝜔 = 𝜔1  and 𝜔 = 𝜔2  this 

relationship will take the following forms: 

𝐷𝑐(𝑥𝑐, 𝜔1) = 𝑘𝐷0(𝑥𝑐, 𝜔1) + 𝐷ℎ(𝑥𝑐, 𝜔1) = 0 (6-1) 

𝐷𝑐(𝑥𝑐, 𝜔2) = 𝑘𝐷0(𝑥𝑐, 𝜔2) + 𝐷ℎ(𝑥𝑐, 𝜔2) = 0 (6-2) 

Equating 𝑘  from the above equations gives 

𝑘 =
−𝐷ℎ(𝑥𝑐, 𝜔1)

𝐷0(𝑥𝑐, 𝜔1)
=

−𝐷ℎ(𝑥𝑐, 𝜔2)

𝐷0(𝑥𝑐, 𝜔2)
=

−𝐷ℎ(𝑥𝑐, 𝜔3)

𝐷0(𝑥𝑐, 𝜔3)
 (6-3) 

This is because the spring stiffness is a constant for all the natural frequencies. 

Therefore, evaluating the determinant ratio at the measured frequencies at different 

locations will provide us with the values of 𝑘 that nullifies the characteristic equation. 

Those locations where the stiffness value is a constant may be the more likely crack 

positions. If there is more than one possible location, then the search can be narrowed 

down by bringing in further natural frequencies 𝜔 = 𝜔3, … etc. 
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The previous paradigm of damage detection demands a statistical treatment to get rid 

of the severity variable and needs a model for the stiffness of the spring, related to the 

crack geometry and structure load [48]. One of the main features of the proposed 

methodology is the use of functions that are independent of the severity of the damage. 

Therefore using only vibrational measurements, the location of the crack will be 

defined without knowing the severity. 

 

Labib, et al. [69] developed a similar procedure by means of a difference parameter 

dependent only on the location of the crack after normalising the shifts in the assumed 

natural frequencies using the DSM. In his procedure the parameter of the assumed and 

measured natural frequencies are assessed at all the possible locations of the structure 

and those where there are no differences indicate the most probable location of damage. 

To evaluate the procedure Labib [92] worked with a two bay, two storey steel frame 

with clamped bases as shown in Fig. 6.1. 

 

Figure 6.1. Two bay, two storey frame used by Labib (2015). 

The analytical and experimental natural frequencies for the intact structure reported by 

Labib are presented in Table 6.1 as well as those calculated for this report. 

Table 6.1. First six frequencies for 2B2S intact frame 

 

 

f 1  (Hz) f 2  (Hz) f 3  (Hz) f 4  (Hz) f 5  (Hz) f 6  (Hz)

Labid (DSM) 38.54 128.01 142.54 168.92 176.86 193.83

Labid (Exp) - - 140.93 168.46 177.12 194.21

This work (DSM) 38.547 128.039 142.635 169.112 177.238 194.562
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The calculations based on the DSM were repeated because it was noticed that the 

measured frequencies were higher for the fifth and sixth modes while the third and 

fourth values were lower. These calculations perform a Matlab® zero finding function 

on the DSM of the structure discarding by means of the W-W algorithm those 

corresponding to determinant poles. 

 

To illustrate the application of the methodology and its effectiveness in a simple search, 

the two bay two storey damaged frame was used in a numerical experiment. Its 

frequencies are calculated in the same fashion as for the undamaged frame but with 

the DSM updated with the crack severity and location established by Labib. These 

frequencies, obtained numerically from the defined crack, are assumed as acquired 

from an experiment (“pseudo-experimental” data using the same terminilogy as in [72]) 

and listed in Table 6.2.  

Table 6.2. Pseudo-experimental data for intact and cracked frame 

  

Using the expression stated in Eq. (6.3) the respective values for 𝐷0(𝑥𝑐, 𝜔𝑖)  and 

𝐷ℎ(𝑥𝑐, 𝜔𝑖) for a set of ninety nine equally spaced locations were calculated and the 

stiffness values that nullify Eq. (3.6) are obtained for each measured frequency and 

plotted in Figure 6.2. All the obtained curves are located on the positive side of the 

stiffness, and intercept in a unique crossover point at 52% of the cap and in the stiffness 

value of 0.29EI. The positive value of stiffness is consistent with the reduction in the 

natural frequencies for the intact beam and the crossing point indicates that, for this 

particular member, from all the possible stiffness values there is one and only one 

possible crack location. 

f 3  (Hz) f 4  (Hz) f 5  (Hz) f 6  (Hz)

Intact 142.635 169.112 177.238 194.562

Crack @52%, k=100 142.625 169.082 177.212 194.495
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Figure 6.2. Numerical search from pseudo-experimental data on Labib frame 

The previous graph was achieved because of the use of values obtained from the 

numerical simulation, which could only be obtained in a perfect world where the 

measurement equipment is not affected by external sources. In real life, there is no 

such a thing as precise measurements and there will be always many factors of 

uncertainty that need to be considered. As an example of the effect of a small deviation 

in the measurements, Figure 6.3 shows the obtained plot for 𝑓 = 176.94𝐻𝑧, the fifth 

frequency measured by Labib using his equipment frequency resolution of 0.6Hz. 

 

Figure 6.3. Probable stiffness changes on 0.6Hz frequency resolution. 
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Figure 6.3 shows that the frequency resolution for this particular structure matters. The 

negative stiffness value refers to an increment whether in the local stiffness or 

flexibility creating uncertainty about the actual situation and reducing confidence on 

the experimental values 

 

A detailed picture of this issue is presented in Figure 6.4 using Labib measurements 

listed in Table 6.3 with two choices for the 5th frequency, a dashed and dotted line for 

Labid measurement and a dashed line for the one with an increment equal to the 

equipment resolution. 

Table 6.3. Experimental frequencies for intact and cracked frame. Labib (2015) 

 

 

Figure 6.4. Numerical search from Labib measured values on frame 

The real crack location could be captured checking one of the two crossing points 

between the fourth and fifth frequency near to the 35% and 55% of the length. Using 

the third frequency will help to discard one of those probable locations, but instead 

another crossing point between the third and fourth lines occurs near to the 40% of the 

beam element that becomes a triple crossing when the increased fifth frequency is used 

instead of the one reported by Labib breaching the confidence of the experiment. 

 

f 3  (Hz) f 4  (Hz) f 5  (Hz) f 6  (Hz)

Intact 140.93 168.46 177.12 194.21

Crack @52% 140.69 167.24 176.94 192.81
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The use of the DSM method in the characteristic equation leads to an exact solution, 

allowing the formulation of more accurate models with less computational burden. 

However, when using the DSM, small changes in the frequency produce high 

variations in the determinant values. Although this high sensitivity approach generates 

good precision in computer simulation, it becomes a big issue in damage identification 

because most of the damage scenarios produce a frequency spectrum that lies in the 

noise intervals generating a lack of reliability as in the present example. 

 

6.2 System identification 

Identification of parameters in modelled systems was the initial application of 

vibration measurements to validate mathematical and computational models. The 

necessity to maintain an updated model is due to the acceptance that a good initial 

model guarantee a better prediction of the real world. Experiments performed by 

Narkis and Elmalah [93] and Alfano and Pagnotta [94] Türker and Bayraktar [95] are 

just few research publications of parameter identification. This section develop 

procedures to identify the actual values of fixed supports using measured frequencies 

and determinantal equations derived in previous chapters. 

 

The classical boundary conditions are a combination of three supports free, pinned and 

clamped according with or without the restriction of translational and rotational 

displacements. As mentioned in Chapter 3, for a beam with clamped ends when a 

severe crack is located immediately next to the ends, the expected natural frequency 

will be similar to a beam with a pinned end because the crack may allow rotational 

displacement, therefore a clamp allowing rotational displacements could be updated 

using the model proposed in the next paragraph. 

 

The inverse problem is defined to determine the actual rigidity of the fixed end 

modelled as a combination of a pinned support and a rotational spring of stiffness 𝑘. 

The problem is to find the 𝑘 value that solves the characteristic equation for the system 

of Fig 6.5, which may be seen as the special case for the problem posed in Fig 4.1 with 

a known crack location. 
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Figure 6.5. Model for a loose clamp with a probe mass 

The dynamic equation of the system nodal values is defined by 

[
𝑀𝐿

𝑀𝑅

𝑉𝑅

] = 𝐸𝐼 [
𝑆 + 𝑘̅ 𝑆𝐶 −𝑄𝑞
𝑆𝐶 𝑆 −𝑄

−𝑄𝑞 −𝑄 𝑇 − 𝑚∗
] [

𝜃𝐿

𝜃𝑅

𝛿𝑅

] (6-4) 

where the subscripts in the stability functions listed in Table 3.1 have been removed 

because the segment length is equal to the beam length 𝐿𝑒 = 𝐿. 

𝑆 = 𝜆[sin(𝐿𝜆)cosh(𝐿𝜆) − cos(𝐿𝜆)sinh(𝐿𝜆)]

1 − cosh(𝜆𝐿) cos(𝜆𝐿)
 

𝑆𝐶 = 𝜆[sinh(𝜆𝐿) − sin(𝜆𝑙)]

1 − cosh(𝜆𝑙) cos(𝜆𝑙)
 

𝑄 = 𝜆2[sin(𝜆𝐿) sinh(𝜆𝐿)]

1 − cosh(𝜆𝐿) cos(𝜆𝐿)
 

𝑄𝑞 = 𝜆2[cosh(𝜆𝐿) − cos(𝜆𝐿)]

1 − cosh(𝜆𝐿) cos(𝜆𝐿)
 

𝑇 = 𝜆3[sin(𝐿𝜆)cosh(𝐿𝜆) + cos(𝐿𝜆)sinh(𝐿𝜆)]

1 − cosh(𝜆𝐿) cos(𝜆𝐿)
 

With 𝑘 the rotational stiffness, and 𝑚 the frequency parameter dependent on the added 

mass defined as 𝑚∗ =
𝜔2

𝐸𝐼
𝑚̅ with 𝜔 the circular natural frequency. 

 

Expansion of Eq. (6.4) leads to the closed form stated in Eq. (4.6) and rewritten in Eq. 

(6.5), for this case is simpler because the position of the crack in known 𝑥𝑐 = 0, and 

the position of the mass is set at the free end, 𝑥𝑚 = 𝐿. 

𝐷𝑐𝑚(𝜔) = 𝑘𝐷0(𝜔) + 𝐷ℎ(𝜔) − 𝑚𝑘𝐷ℎ𝑚(𝜔) − 𝑚𝐷𝑚𝑐(𝜔) = 0 (6-5) 

Here, 

𝐷0(𝜔) = 𝜆4(1 + cos(𝐿𝜆)cosh(𝐿𝜆))

𝐷ℎ(𝜔) = 𝜆5
(cos(𝐿𝜆)sinh(𝐿𝜆) − sin(𝐿𝜆)cosh(𝐿𝜆))

𝐷ℎ𝑚(𝜔) = 𝜆(sin(𝐿𝜆)cosh(𝐿𝜆) − cos(𝐿𝜆)sinh(𝐿𝜆))

𝐷𝑚𝑐(𝜔) = 2𝜆2(sin(𝐿𝜆)sinh(𝐿𝜆))
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Knowing the inertial effect of the mass and with the measured frequency the equivalent 

spring stiffness of the not so rigid clamped end is calculated with 

𝑘 =
𝐷ℎ𝑐(𝜔) − 𝑚𝐷𝑚𝑐(𝜔)

𝑚𝐷ℎ𝑚(𝜔) − 𝐷0(𝜔)
 (6-6) 

The stiffness value is found for each measured frequency and the average value may 

be set as the one to be used in the updated model. 

Table 6.4. Experimental frequencies for cantilever beam with loose clamp. 

 

If the additional mass is considered as unknown, a homogeneous system of equations 

may be created considering any set of frequencies. For the developing example, each 

of the first three natural frequencies 𝜔1, 𝜔2, and 𝜔3 null 𝐷𝑐𝑚(𝜔) in Equation (6.5) 

giving the equations 

𝐷𝑐𝑚(𝜔1) = 𝑘𝐷0(𝜔1) + 𝐷ℎ𝑐(𝜔1) − 𝑚𝑘𝐷ℎ𝑚(𝜔1) − 𝑚𝐷𝑚𝑐(𝜔1) = 0

𝐷𝑐𝑚(𝜔2) = 𝑘𝐷0(𝜔2) + 𝐷ℎ𝑐(𝜔2) − 𝑚𝑘𝐷ℎ𝑚(𝜔2) − 𝑚𝐷𝑚𝑐(𝜔2) = 0

𝐷𝑐𝑚(𝜔3) = 𝑘𝐷0(𝜔3) + 𝐷ℎ𝑐(𝜔3) − 𝑚𝑘𝐷ℎ𝑚(𝜔3) − 𝑚𝐷𝑚𝑐(𝜔3) = 0

 

or, in matrix form 

[

𝐷𝑚𝑐(𝜔1) 𝐷ℎ𝑚(𝜔1) 𝐷0(𝜔1)

𝐷𝑚𝑐(𝜔2) 𝐷ℎ𝑚(𝜔2) 𝐷0(𝜔2)

𝐷𝑚𝑐(𝜔3) 𝐷ℎ𝑚(𝜔3) 𝐷0(𝜔3)
] [

𝑚
𝑚𝑘
−𝑘

] = [

𝐷ℎ𝑐(𝜔1)

𝐷ℎ𝑐(𝜔2)

𝐷ℎ𝑐(𝜔3)
] (6-7) 

the eigenvector give us the unknown value for 𝑚 and 𝑘 and an additional term to check 

the solution. Unfortunately, the system loaded with the experimental data from Table 

6.4 leads to unrealistic results. The obtained results for 𝑚 differs from those obtained 

from the known inertial probe properties; and the product of 𝑚 and 𝑘 does not agree 

with those obtained individually. 

 

19 14.3

7.24 10.76 10.34

7.74 15.07 14.33

8.24 22.53 21.05

54.66 29.21 26.04

54.16 25.85 23.18

53.66 22.99 20.69

158.48 41.39 35.27

158.98 44.25 37.58

159.48 47.39 40.08
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6.3 Summary 

This chapter proposed the use of the linear relationship of the determinantal equations 

derived from the DSM method for inverse problem applications. The failure in the 

identification of crack location and clamp flexibility indicates the need for more 

controlled experiments that will be addressed in the future work section at the end of 

the conclusions in the next chapter. 

 





 

 

7 Chapter 7 

Conclusions 

7.1 Direct Problem: Properties of the determinantal equations 

Two interesting properties of the determinantal expressions have been discovered 

through numerical experimentation, symbolic manipulation and mathematical proofs. 

The first is the relationship at any frequency 𝜔 , stated as 𝐷𝑐(𝜔) = 𝑘𝐷0(𝜔) +

𝐷ℎ(𝑥, 𝜔); between the crack severity 𝑘 and the determinants of the cracked structure 

𝐷𝑐(𝜔), undamaged structure 𝐷0(𝜔) and a structure with a hinge 𝐷ℎ(𝑥, 𝜔) at the crack 

location 𝑥. 

The above relationship permits to treat separately the two main properties of the crack, 

namely the severity and the location of the crack allowing a simplification to solve the 

inverse problem. 

Regarding to the second interesting finding, it is stated as the relationship 

(
𝑀∗

𝜃
)
2

=  −  𝐷ℎ(𝑥, 𝜔0) between the square of 𝑀∗, the bending moment at the natural 

frequency of the undamaged structure 𝜔0 at any location 𝑥 and the determinant of the 

structure with a hinge at the same location 𝐷ℎ(𝑥, 𝜔0). 

The above relationship, which can also be inferred from the work by Morassi [27] 

shows that if the hinge is located at a point of contra-flexure, where the bending 

moment is null in a particular mode, and therefore, 𝐷ℎ(𝑥, 𝜔0) = 0 , the natural 

frequency at that mode will not be affected by a crack no matter how severe it is.  

Using the stiffness matrix approach for the multi-cracked problem, the effect of each 

of the rotational springs along the length of an Euler-Bernoulli beam could be 

introduced into the required determinant in a recursive way by summing the 

characteristic equations of two beams, one where the beam is continuous in the crack 

location multiplied by the spring stiffness and the other where the crack is replaced by 

a hinge. This is repeated until all crack stiffnesses are included. 

 

7.2 Inverse problem: Crack location 

Using the DSM and numerical simulations it was proven that the roving of a body 

possessing rotary inertia introduces a sudden change in the frequency as the body 

passes through the crack location. It has been shown that the frequency shift due to 
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roving rotary inertia could lead to a simple procedure to identify the number of cracks 

and crack location without the need for any calculations. 

Experiments were performed in an attempt to verify the applicability of simple tools 

and using a roving mass possessing rotary inertia to assess the location of a single 

crack in a cantilever beam. The expected sudden change in the frequency vs mass 

location was not easily discerned because the relatively low resolution of frequency 

measurement in the equipment used and uncertainties in the acceleration sensor and 

the fixity of the roving mass at the clamped end. 

 

7.3 Future Work 

There is an open window to explore the possibility of using the determinant of the 

hinged structure as the only tool for crack location and the use of the parameter 

identification to improve the crack model for high severities. 

Determinantal properties which hold for any structure modelled with the DSM, could 

be extended to axially loaded beams and skeletal structures.  

Experiments on simple structures need to be performed to validate analytical 

predictions of adding local inertias and/or boundary restrictions for parameter 

identifications and their summation effects. In addition, it will be necessary to develop 

mechanical devices that effectively transmit rotary inertia in real-life structures in 

order to validate the presented identification procedure. 

 



 

 

Appendix 

Error analysis 

A non-dimensional frequency parameters are used during the calculations of 

eigenvalues for each DSM. To establish the influence on the final value of the 

measured frequency, an error analysis is performed starting from the parameter 

definition 

𝜆4 =
𝛽4

𝐿4
=

𝜇

𝐸𝐼
𝜔2 =

𝜌𝐴

𝐸𝐼
𝜔2 

𝜔 = (
𝛽

𝐿
)
2

(
𝐸𝐼

𝜌𝐴
)

0.5

 

For a rectangular section area is 𝐴 = 𝑏ℎ, and second moment of area 𝐼 =
𝑏ℎ3

12
 gives 

𝐸𝐼

𝜌𝐴
=

𝐸ℎ2

12𝜌
 

𝜔 = (
𝛽

𝐿
)
2

(
𝐸ℎ2

12𝜌
)

0.5

 

Applying chain rule to the rate of change of the frequency  

𝛿𝜔

𝜔
=

𝜕𝜔

𝜕𝛽

𝛿𝛽

𝜔
+

𝜕𝜔

𝜕𝐸

𝛿𝐸

𝜔
+

𝜕𝜔

𝜕ℎ

𝛿ℎ

𝜔
+

𝜕𝜔

𝜕𝜌

𝛿𝜌

𝜔
+

𝜕𝜔

𝜕𝐿

𝛿𝐿

𝜔
 

And partial derivatives as is indicated 

𝛿𝜔

𝜔
= 2

𝛿𝛽

𝛽
+

1

2

𝛿𝐸

𝐸
+

𝛿ℎ

ℎ
+

1

2

𝛿𝜌

𝜌
+ 2

𝛿𝐿

𝐿
 (A.1) 

 

The error in the eigenvalue values is highly dependent of the boundary conditions and 

the inertial effect of the accelerometer. The errors in the input parameters are as listed 

below 

Elastic Modulus 𝛿𝐸= 10GPa 𝐸= 70GPa 

Section thickness 𝛿ℎ = 0.00005m ℎ = 0.003m 

Volumetric density 𝛿𝜌 = 1kg/m3 𝜌 = 2700kg/m3 

Specimen Length 𝛿𝐿 =0.0005m  𝐿 =0.480m  

 

Assuming that the determination of the eigenvalue is carried out without any error, the 

change in the frequency for the theoretical values of an aluminium bar is 9%. Using 

this error, the theoretical frequency lay in the intervals: 𝑓1 = 10.71 ± 0.97𝐻𝑧 , 

𝑓2 =  67.12 ± 6.07𝐻𝑧  and 𝑓3 = 187.93 ± 16.98𝐻𝑧  none of them covering the 
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measured values 𝑓1 = 7.74𝐻𝑧 , 𝑓2 = 54.16𝐻𝑧  and 𝑓3 = 158.98𝐻𝑧  therefore the 

assumption of correctness in the eigenvalue must be discarded. 

 

Experimental determination of the elastic modulus was obtained from the tensile test 

machine (Figure A.1) located in the Large Scale Laboratory of the University of 

Waikato. The elastic modulus was defined as the average slope of the stress-strain plot 

of five bars (Table A.1) with data. The stress values are calculated from the specimen 

sectional area 12.1x3.05mm2 and the strain from the calibrated initial length of 

50.000mm in the machine built-in routine. 

 

 

Figure A.1. Tensile test machine to determine aluminium elastic modulus. 

 

Table A.1. Elastic modulus measured 

 Bar #1 Bar #2 Bar #3 Bar #4 Bar #5 

Elastic Modulus 61.843GPa 58.408GPa 61.889GPa 60.820GPa 60.277GPa 

Average 60.648GPa 
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The updated input parameters to calculate the error are 

Elastic Modulus 𝛿𝐸= 10GPa 𝐸= 60.648GPa 

Section thickness 𝛿ℎ = 0.00005m ℎ = 0.003m 

Volumetric density 𝛿𝜌 = 1kg/m3 𝜌 = 2677kg/m3 

Specimen Length 𝛿𝐿 =0.0005m  𝐿 =0.480m  

 

Leading to an increment in the error percentage of only 1% which support the 

supposition of flexibility of the clamp. 
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