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FINITE ELEMENT MODELING OF LEAD ACID BATTERIES 

By 

Geoffrey James Foster 

This thesis investigates the finite element method with regard to the macro­

homogeneous theory for flooded porous electrochemical cells, more specifically lead­

acid cells. One- and two-dimensional finite element models are developed for flooded 

porous electrochemical lead acid cells. Chapter One introduces the background of 

the technology of lead-acid batteries, theory fundamentals, previous mathematical 

models for lead acid batteries, and the reason for the work. Chapter Two develop­

s Newman's macrohomogeneous equations for flooded porous electrodes. Chapter 

Three details the finite element theory, and how it is used to solve time dependent 

coupled non-linear partial differential equations. Chapter Four applies finite element 

theory to one-dimensional macrohomogeneous equations that describe lead-acid bat­

teries. The results of the model are compared to previously published papers utilising 

finite difference methods. In Chapter Five, the technique is extend to two-dimensions 

and is validated with previously published papers of models on lead-acid batteries. 

XIV 



CHAPTER 1 
THE LEAD-ACID BATTERY 

1.1 Overview 

This chapter is divided into two parts. The first section discusses lead-acid 

battery technology. This ranges from the historical origin, to its fundamental theory 

and the pertinent parameters which are used to design the battery for its intended 

application. The second part of this chapter leads into the subject of this thesis, i.e. 

mathematical models of lead-acid batteries. The types of models published and how 

they can be used to optimise lead-acid batteries are discussed . The principle model 

reviewed is Newman's macrohomogeneous model. The technique used to numerically 

solve the resultant partial differential equations, the finite element method, is then 

introduced. This is principally the purpose for this thesis. 

1.2 Introduction 

The lead-acid battery system is the most widely manufactured secondary bat­

tery system in the world today. In fact it is manufactured in nearly every country of 

the world. Applications range from small sealed batteries of a few watt-hour capaci­

ty to large batteries of many megawatt-hours capacity. Lead-acid batteries are used 

in small electrical devices such as radios, laptop computers, to cars, to emergency 

power supplies, to submarines and for load load-leveling applications. Over 75% of 

all lead-acid batteries manufactured are for automotive applications. In 1991, 238.3 

million automotive batteries were shipped worldwide [Bullock 94]. Generally, the 

applications for lead-acid batteries can be classified in the following manner. 

1 
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The Starting Lighting Ignition Battery (SLI): SLI is the common term for the 

battery used to start an internal combustion engine and to power the electrical 

system in emergencies when the engine is not running. More storage batteries 

are used in this application than any other. 

Stationary Batteries: Lead storage batteries are applicable to communications 

systems, electric utilities, computer systems, emergency lighting, and railways 

to provide peak loads, emergency power, or filtering of ac power. 

Motive Power Batteries: Lead storage batteries provide power for the propulsion 

of electric lift trucks, mining equipment, street delivery vehicles, and other types 

of materials handling. 

Special Purpose Batteries: Aircraft, submarine, marine, special military, and 

small sealed batteries (SLAB) for consumer applications. 

1.3 A Brief History of Lead-Acid Batteries 

Galvani's "frog leg experiment" in 1789 [Bode 77] can be considered to be 

the starting point for an electrochemical source of current. Following Galvani's ex­

periment, Volta developed his "Volta pile" [Bode 77]. He later postulated his "dry 

contact theory" . 

In 1803 Ritter [Ritter 1803] observed that an electrical current passed between 

two like electrodes in an electrolyte produced polarisation. After the source of current 

has been disconnected the polarised assembly yields a current in the reverse direction. 

Ritter's pile represented the starting point for the secondary battery. 

Plante in 1859 [Plante 1959] found that lead electrodes can be permanent­

ly polarised by an external current source and that the arrangement constituted a 

relatively efficient means of storing energy. It was really the first lead-acid battery. 

He found that the amount of stored energy depended on the amount of lead dioxide 

formed. Nine years later Plante discovered the capacity could be increased by longer 
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or repeated charges in a process he called "forming", which was published 3 years 

later in 1872 [Plante 1872]. The Plante cell was born, and has remained basically the 

same since. 

In 1881 Fraure [Fraure 1881] coated lead foil with lead oxide. Two years later 

Tudor [Vinal 55] pasted the oxide on cast ribbed lead plates which were pre-formed 

according to the Plante method for better adhesion. The flooded porous pasted 

electrodes dramatically increased the capacity of the lead-acid system. Since then an 

assortment of grid designs have been developed for the retention of the active material 

and transmission of electrical current. At first they were perforated or slitted plates, 

but later horizontal and vertical or diagonal rods of various cross sections were added. 

From these earlier designs we have the flooded porous plates used today. 

Antimony was first added to the grids in 1881 [Bode 77]. It has been found to 

increase the hardness, lower the casting temperature of the grid and increase cycling 

life of the plate. It has the disadvantage of increasing water loss of the lead-acid 

battery. 

In 1955 the Calcium-Lead plate was introduced [Bode 77]. It increases the 

structural strength and practically eliminates the so called water loss effect that 

occurs with antimony plates. This allows for low maintenance batteries. 

Essentially, the lead-acid battery has changed only in details of manufacture 

since 1881. The greatest improvements in the development of the lead-acid battery 

have been made because of the porous electrode. 

1.4 Active Materials 

The reaction at the electrodes on charge and discharge are given in the "double 

sulphate" theory: 

The overall discharge reaction of the lead-dioxide electrode is: 

(1.1) 
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This equation shows the relevant stoichiometric ratios and shows the impor­

tance sulphuric acid plays as an active material. However the enthalpy, Gibbs free 

energy and its temperature coefficients for this chemical reaction do not completely 

agree with theory [Bode 77]. For example, the discovery of two forms of lead diox­

ide lead to new thermodynamic values. The free energies of the two lead dioxides 

are practically the same, however the entropies differ considerably. The kinetics of 

the reactions from the stoichiometry and thermodynamics are not yet completely 

explained. Indeed experimentally determined values are generally used. 

A brief description of the physical properties of the reactants follows. For 

further data refer to [Bode 77]. 

1.4.1 Lead Pb 

Although a naturally occurring element, the lead used in the batteries is main­

ly derived from the recycling of the batteries themselves. It is a soft ductile metal 

of atomic number 82. A freshly prepared surface of lead has a metallic luster that is 

rapidly oxidised in air. Its crystal structure is a face-centered unit cell. 

1.4.2 Lead Dioxide PbO2 

PbO2 is polymorphous. The following forms are found or believed to occur: 

a - PbO2 , a rhombic form (columbite); 

f3 - PbO2 , a tetragonal form (rutile); and 

an undetermined pseudotetragonal form [Bode 77]. 

f3 - PbO2 is converted to a - PbO2 during grinding and under high pressure. 

The reverse process is not readily seen. Various chemical procedures are used to 

produce the pure forms. These methods are generally prefered to the electrochemical 

process [Bode 77]. 
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Figure 1.1: Sulphuric acid conductivity as a function of concentration at 25 C. 

1.4.3 Lead Sulphate PbSO4 

During discharge lead sulphate, PbSO4 , is formed on both electrodes. It is an 

insulator and has a low solubility in sulphuric acid. 

1.4.4 Sulphuric Acid H2SO4 

Sulphuric acid is manufactured commercially by the oxidation of sulphur diox­

ide. The concentrated acid is a clear, odorless, colorless oily liquid, containing 98.3% 

H2SO4 by mass. Its density is l.84kg/litre. The density of the electrolyte used for 

battery ranges from 1.2-1.28 kg/litre. The conductivity of sulphuric acid as a function 

of concentration is shown in Figure 1.1 [Nguyen et al 90]. 

1.5 Theory Fundamentals 

1.5.1 Thermodynamics 

Electrochemical reactions transform chemical energy either stored in elec­

trodes or introduced from external sources (fuel cells) into electrical energy. This 
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process occurs on the discharge of the cell. The transformation is direct, although 

there is usually some heat energy associated with the reaction. 

We can use thermodynamics to describe the transition from initial to final 

states. However this gives no insight into the kinetics of the processes involved. 

Neglecting the properties of the internal surfaces and the charges that can 

form with the Nernst layer ( < 10-6m), we can characterise a state function by the 

pressure, the temperature and the chemical composition and the number of moles ni 

of the components. 

First Law of Thermodynamics 

Firstly we consider two state functions: the enthalpy, H(P, T, ni), or heat 

constant at constant pressure and temperature; and the internal energy, U(V, T, ni), 

or heat content at constant volume and temperature. 

The relation between the enthalpy and heat content is given by H = U + pV. 

During the transition from an initial state H1 to a state H2 , energy in the 

form of work A and heat Q is exchanged with the surroundings to which the first law 

of thermodynamics applies: 

6.H A2 - A1 + Q2 - Q1 

6.A + 6.Q 

(1.2) 

The enthalpy of a system increases if the system absorbs heat, 6.Q, and/or 

mechanical work 6.A. 6.A and 6.Q are not state functions, i.e. they depend on the 

path taken during the exchange of energy. 

Second law of Thermodynamics 

We consider a further two state functions: The entropy, S(P, T, ni), the un­

availability of a system's energy to do work; and the Gibbs free energy G(P, T, ni), a 

measure of the ability of a system's energy to do work. 
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The second law of thermodynamics is concerned with changes in the entropy 

of a system: 

(1.3) 

The Gibbs-Helmholtz equation relates the three functions D.H, b.G, and b.S 

D.H - (D.Qrev)p 

b.H -Tb.S 

(1.4) 

For a reversible process, the enthalpy consists of useful available work (mechanical 

or electrical) and heat which is exchanged with the surroundings seen in reversible 

processes. Reversible processes yield the maximum useful work. For irreversible 

processes, more heat than is expected from the entropy term is transferred to the 

surroundings and cannot be recovered if the process is reversed. 

The more negative the Gibbs free energy, b.G, the more useful work can be 

obtained from reactions that proceed spontaneously and reversibly. 

Taking the partial derivatives of G, we arrive at Gibbs's fundamental equation 

for free energy: 

dG ( ~~t dp+ (:) ,,n &'+ t (!!t .. ,., d,-
(1.5) 

k 

Vdp- SdT + Lµidni 
i=l 

where µi is the chemical potential of a system, i.e. µi is the change in Gibbs free 

energy with respect to the change in the amount of substance of the component, ni 

with pressure, temperature and other substances being kept constant. 

Because the absolute value of the enthalpy H and Gibbs free energy G cannot 

be determined, only the difference obtained by using an arbitrary selected reference 

state are used. 



Similarly, taking the partial derivatives of the enthalpy: 

dH = 

where Gp is the molar heat capacity at constant pressure. 

Third Law of Thermodynamics 
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(1.6) 

After taking the partial derivatives of the entropy of a system we can arrive 

at: 

(1.7) 

and a = ( ~ )p,n, where a is the thermal coefficient of thermal expansion. In contrast 

to H and G, S can be determined absolutely. This property is stated in the third 

law of thermodynamics, i.e. 

(1.8) 

1.5.2 Electrochemical Kinetics 

Application of thermodynamics to current producing electrochemical systems 

is only strictly valid at reversible equilibrium when i ➔ 0. 

Obviously, when an electrochemical cell is loaded, neither the current density, 

i, or the deviation of the potential, !1E, can be neglected. 

The difference in electrode potential from the equilibrium potential Erev are 

termed the overpotential or polarisation TJ, and can be defined: 

TJ = E - Erev (1.9) 

The overvoltage depends on the current density i, measured in Am-2 or mAcm-2 . 

The surface area can either be measured in an external geometric surface or an 

internal porous surface. 
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The overvoltages are due to physical, chemical, and electrochemical processes. 

We can further define the overvoltages in the following equation: 

TJ = T/t + T/r + T/d + T/k + T/o (1.10) 

where: 

T/t is the transfer overvoltage due to the transfer of charge carriers at phase boundaries. 

TJr is the chemical or reaction overvoltage 

T/d is the diffusion overvoltage 

T/k is the crystallisation overvoltage 

TJo is the resistance overvoltage 

The reaction and diffusion overpotentials can be grouped together as the concentra­

tion overvoltage. 

Charge Transfer Overvoltage, rJt 

For the charge transfer reaction, 

(1.11) 

The rate is determined from Arrhenius equations of partial reactions: 

(1.12) 

and 

(1.13) 

where K 1 and K 2 are the rate constants of the anodic forward reaction and the 

cathodic reverse reaction. The !:J.G* are free energies of activation ( the difference 

between activation energy before the reaction and after). 
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Concentration Overpotential, Ve 

Concentration overpotentials may build up by diffusion or lack of convection 

or by migration of electrical species in a potential field. The diffusion and convection 

may be effected by movement of the electrolyte. 

The reaction and diffusion overvoltages affect the concentration at the inter­

face, which in turn affects the potential as given by the Nernst equation: 

(1.14) 

where the activity a0 lies in the bulk of the solution and a(O, t) occurs at the surface 

at time t. 

Crystallisation Overpotential, llk 

Adsorbed particles in the crystal lattice or the formation of seed crystals in 

the electrolytes and the electrode cause crystallisation overpotentials. 

Concentration effects are encountered in crystallisation phenomena as the for­

mation of seed or nuclei often shows severe inhibition. For example, when PbSO4 is 

initially formed and no seed is present, a supersaturated solution will occur. There 

must be a threshold amount of supersaturation before the seed can form. The Gibbs­

Thomson equation determines their overvoltage: 

and 

-RT a 
'T/k = --ln(-) 

zF as 

1.6 Flooded Porous Electrodes 

(1.15) 

(1.16) 

Flooded porous electrodes play a very important role in lead-acid battery 

systems for the following reasons: 



Porous electrodes provide an intimate contact of the active electrode 

material with the electrolyte. 

If the intrinsic rate of the heterogeneous electrochemical reaction 

is slow, a porous electrode can increase the kinetics by providing a 

large interfacial area per unit volume. 

The reactants can be stored in the solution virtually on the electrode 

surface by means of the porous electrode. This allows for a sustained 

high-rate discharge. 

The compactness of porous electrodes can reduce the ohmic potential 

drop by reducing the distance through which current must flow. This 

has obvious advantages in reducing the energy losses in batteries. It can also 

allow the design of an electrode which controls the driving potential 

of the reactants. 

Porous electrodes are quite different and considerably more complicated than 

plane electrodes. There are inherent complications due to the intimate contact be­

tween the electrode and the electrolyte. Methods have been developed and are contin­

uing to be developed in order to attain a greater understanding for how and why the 

electrode processes occur nonuniformly through the depth of the electrode. In addi­

tion, methods are needed for the optimisation of porous electrodes for the particular 

application they are required to perform. 

1.7 The Capacity of a Lead-Acid Cell 

The performance of a lead-acid battery is determined by the composition of 

its active masses (which determine its capacity), the type of discharge regime it is 

subject to (outer parameters), and the design of the electrodes (inner parameters). 

The parameters which affect the discharge of a lead-acid cell for a given amount 

of active material are: 



Current density 

Temperature 

Acid concentration 

Type of pretreatment 

Age 

Plate thickness 

The main internal parameters which govern a lead-acid cell are: 

Structure of the solid materials ( chemical composition, crystal morphology) 

Pore structure (porosity, pore distribution, tortuosity, inner surface) 

Electrical properties ( conductivity, impedance). 

Structure of the interface (inhibitors, double layer adsorption) 

1.7.1 Discharge Behaviour 

12 

Despite the specific structures of the active masses, the effects of the discharge 

conditions on the capacity are almost always identical. This discussion is, however, 

directed towards SLI batteries with thin plates. 

Figures 1.2 and 1.3 [Berndt 70], show the general discharge behaviour of posi­

tive and negative electrodes for varying current and temperature. The discharge rate 

varies from 2.5 to 2400 Am-2 and the temperature from -50 to 40°C. We can see that 

for increasing current and decreasing temperature, the capacity decreases. However, 

as the current decreases, the capacity depends less on the load and tends to a max­

imum. We can also state from Figures 1.2 and 1.3 that the electrodes capacity is a 

function of temperature. Note that the discharge current varies between the positive 

and negative active masses. 

Typically, for positive masses with 10 to 25% a -PbO2 , the mass utilisation is 

of the order of 55%. For negative masses, the mass utilisation is approximately 60%. 

Electrodes discharged at high currents can be further discharged with small current 

densities to remove capacity. 
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Figure 1.2: Relative discharge capacity of a PbO2 electrode as a function of -current 
density and discharge temperature. 

Figure 1.3: Relative discharge capacity of a Pb electrode as a function of current 
density and discharge temperature. 
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For the lead dioxide electrode shown in figure 1.2 we note that after a discharge 

at low temperatures more capacity can be taken out at elevated temperatures. The 

maximum value depends on the temperature as it does in cells whose capacity is 

generally determined by the positive electrode active mass. 

In negative electrodes, the sum of high and low current capacity is smaller 

than the capacity obtainable with small currents. 

The specific capacity of a cell as a function of acid concentration has a max­

imum value. This is especially pronounced in thin, lightly loaded plates. This max­

imum coincides approximately at the maximum conductivity of the acid. Howev­

er, with high discharge currents and heavy plates other factors obscure this effect 

[Bode 77]. Figure 1.4 shows the material utilisation as a function of concentration 

According to Vinal [Vinal 55], the capacity of a cell which is determ_ined by 

the positive plate increases linearly with plate thickness. For single electrodes with 

electrolyte surplus no proportionality is found even at small current densities. The 

capacity of thick plates reaches a limiting value that depends on the current density. 

1. 7.2 Volumetric Changes during Discharge 

Differences in chemical composition of charged electrodes are due to the chang­

ing proportions of a-PbO2 and ,B-PbO2 (a detailed explanation of a- and ,B- forms 

of PbO2 is given in Bode ([Bode 77])) established during manufacture. During dis­

charge the two dioxide modifications produce different specific capacities; ,B-dioxide 

is also preferentially discharged in an acidic solution. 

PbSO4 formed during discharge on both the positive and negative plates has 

a larger molar volume than the charged mass. Therefore the volume relationships, 

and with them the porosity and the inner surface, change. Experimentally, only a 

small change of the total volume is found in the positive plate during charge and 

discharge. This change in ~ ½ is taken up by the void volume. For a discharge of 

,B-PbO2 , with a mass utilisation coefficient a ~ 0.55, ~ ½ = -~ Vv = 0.054 lkg- 1. 
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Figure 1.4: Influence of the temperature on the capacity as a function of the acid 
density; discharge with a 5-hour current. Top = positive plate; bottom = negative 
plate. 
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Hence, the porosity p is reduced from 54% to 31%. If the volume change ~½ is 

distributed over the BET (Brunnauer, Emmett, and Teller) surface (a technique 

used to determine the surface area of a porous electrode) [Bode 77] of 4.5 m2g-1 , an 

increase in thickness of 0.0025 µm lead sulphate results, or 60 molecular layers. The 

average particle diameter increases by 0.025 µm. The diameter of the pores decreases 

by approximately the same amount so that the mass transport in the porous positive 

electrode is only slightly influenced during discharge. 

Because of the increase in the volume of solids, the small cracks and pores that 

constitute the microporosity and the major portion of the inner surface are nearly 

filled. The measured BET surface decreases during the discharge from about 4.5 to 

1 m2g- 1 for the positive electrode. 

In the negative electrode, the volume change is~½ = 0.064 lkg- 1 . Distributed 

over the BET surface of 0.5 m2g- 1 , the increase in thickness is 0.13 µm, and a PbSO4 

layer of 0.3 µm thickness forms. The average diameter of the pores changes from 

approximately 4.0 to 3. 7 µm [Simon et al 70]. 

Similarly, volume changes can be deduced from electrical data. For example, 

consider a positive plate discharged at a slow rate, at room temperature. If it delivers 

about 120 Ahkg- 1 , this will correspond to an active mass usage of a = 0.54. This 

corresponds to the formation of 0.108 litres of PbSO4kg- 1 . With an assumed BET 

surface of 4.5 m2kg- 1 , the thickness of the sulphate layer can be calculated to be 

0.024 µm and the specific capacity area will be approximately 100 Cm-2 . 

For the negative plate with a discharge capacity of 150 Ahkg- 1 Pb, we ade­

quately assume an inner surface BET of 0.5 m2g- 1 . This will give a layer thickness 

of 0.27 µm, and will give a specific area capacity of approximately 1100 Cm-2 . 

Experimentally derived specific area values range from 3 to 7 x 103Cm-3 (ge­

ometrical surface) for smooth lead electrodes discharged at small discharge rates and 
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room temperatures [Koch 59]. If we estimate a surface roughness of approximate­

ly 3 to 6, we arrive at corresponding theoretically derived values for typical porous 

electrodes of 5 x 102 to 1 x 104 Cm-2. 

The assumption of uniform coverage of the inner surface with lead sulphate 

is a gross simplification . In fact, the Pb2+ ions formed during discharge on both the 

PbO2 and Pb electrodes first produces an oversaturated solution in the absence of 

crystal nuclei. The discharge starts preferentially at the peaks of the rough electrode 

surface, especially at the tips of dendrites, because this current density is larger than 

in the deeper points [de Levie 67a]. In the region of the valleys, seed formation starts 

and crystal deposit begins. 

Spontaneous crystal formation occurs when the oversaturation is high but 

the material transport controls the crystal growth. Small crystals are formed at high 

current and acid densities and low temperatures. Conversely, large crystals are formed 

at low current and acid densities If crystal seeds are present as in slightly discharged 

positive electrodes or negative plates (due to their barium sulphate content), only 

very slight or no oversaturation occurs. 

In a porous electrode with a pore diameter < 5µm , mass transport occurs over 

short distances. This value is well below the dimension of the Nernst diffusion layer, 

which is estimated to be about 500µm in an unstirred solution without convection. 

Generally, crystals are formed at the interface where lead ions are produced by the 

current. The crystals grow slowly at low current density into compact crystals with 

planes of low indices (hkl values). At high current densities, skeleton shaped and 

needle like crystal groups appear because of the accelerated formation of lead ions in 

non-equilibrated crystallisation from somewhat higher oversaturation. 

Microscopic studies of negative plates show that at the beginning of the dis­

charge the sulphate coverage follows the contours of the lead needles [Simon et al 70]. 
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Figure 1.5: Inversion of the double layer during a change of the electrode potential 

Later, compact lead sulphate crystals are formed. In this kind of discharge, parts of 

the plate are isolated and covered by PbSO4 and can no longer be discharged. 

It has been postulated that this is the reason why the discharge capacity 

of negative plates is never constant if a change is made from high to low current 

densities during a discontinuous discharge. In positive plates this coverage is not so 

severe because the inner surface is several times larger. 

Differences of positive and negative plates structures are summarised in table 

( 1.1). There are also differences on the phase boundary between the electrode and 

electrolyte. The double layer of storage battery plates are often called Helmholtz 

condensers with a fixed boundary [Bode 77]. At the surfaces the water dipoles have 

an orientation which is dependent on the charge. Oppositely charged ions are also 

adsorbed. During charging the potential changes sufficiently to permit a charge 

reversal of the double layer. A voltage range then exists in which there is no charged 

double layer. Only the oriented dipole molecules remain. The potential of this 

charge-free double layer (potential of zero charge) corresponds to the maximum of 

the electrocapillary curves, or Lippmann-potential, as shown in figure 1.6. 

The point of zero charge occurs at + 1. 7 V in a PbO2 electrode in 4M H2SO4 

and at -0.6V in a Pb electrode when referenced to a standard hydrogen electrode. 
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Figure 1.6: Interfacial tension a as a function of applied potential 

Characteristic Structure of Plates 
Inner surface 
Void volume 
Average pore diameter 
Idealised thickness of the PbS04 

layer after deep discharge 
Electrode works above/below the 
potential of zero charge 
Sign of the charge of the electrode: 

during disharge 
during the first stage of charge 
at the end of charge and overcharge 

Specific adsorption 

Positive Plates 
Large 
Macro /Microporosity 
Small 
0.03µm 

Below 

Negative 
Negative 
Positive 
Cations 

Negative Plates 
Small 
Macroporosi ty 
Large 
0.3µm 

Above 

Positive 
Positive 
Negative 
Anions 

Table 1.1: Structural characteristics of the lead-acid plates [Bode 77] 
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1.8 Models of Lead-Acid Batteries 

"Modeling phenomena is as much of a cornerstone of 20th century science as is 

collection of empirical data" [Jam 74]. In practically all fields of science, mathemat­

ical models of the real world become tested by fitting some parameters to empirical 

data. 

The traditional approach for developing new batteries consists of experimental 

cell build-ups and an extensive testing regime. This is costly and very time consum­

ing. Furthermore, and certainly more important from a scientific viewpoint, the 

results from such tests provide only global information and do not provide insight 

into the governing phenomena. 

It is advantageous to develop mathematical models of such cells so that one 

may gain a better understanding of the cause and effect relationships of the phenom­

ena involved, and suggest directions for improvements. 

Complementing experimental testing with mathematical modeling is a cost 

effective approach to the development and design of batteries. Experimental data 

are still needed to verify the predictions of models and to identify any significant 

physical phenomena that may not have been included. But with the help of this 

mathematical tool, extensive experimental testing will no longer be needed. Great 

savings in material, labour and time can be realised in the development of a new 

battery system. 

1.8.1 Empirical Models 

Almost all discharge data of lead-acid batteries are related to discharge dura­

tion purely by Peukert's empirical equation, 

rt=C (1.17) 

where I represents the current, t is time, and n and C are constants determined from 

experimental data. Peukert 's equation is valid only as an interpolation formula in 



21 

the range of n ~ 1.3 ➔ 1.4 for intermediate currents. Basically it states that the 

capacity of cells and batteries drops non-linearly as the discharge current increases. 

A more comprehensive empirical equation was developed by Shepherd [Shep 65] 

taking into account the usage of active material. Shepherd's equations correctly de­

scribe discharge curves for many batteries over a range of current densities. His 

polarisation coefficient and electrical internal resistance, however, have no physical 

significance. They are simply lumped parameters for the two electrodes and are 

correlated to experimental data. 

1.8.2 Resistance Network Models 

Ohmic losses in the current-collecting grids of electrodes, as shown in figure 

1. 7, reduce the performance of a lead-acid battery during high rates of discharge. 

Information of the potential distribution over a grid can be applied to the design of 

grids in order to minimise such losses. 

Tiedemann and Newman [Tied 77] summarised the prior work on ohmic losses 

m lead grids and developed a model to solve Kirchoff's law at each node of the 

bare lead-acid battery grid. The potential distribution on the grid was examined by 

assuming a uniform current density. This model predicted the potential distribution 

on an unpasted battery grid with uniform current density across the face of the grid. 

They attained reasonable agreement with experimental data. 

Tiedemann and Newman [Tied et al 79a] then expanded their earlier model 

to examine the transient behaviour of a lead-acid cell. Cell polarisation between 

the positive and negative electrodes was expressed by using an empirical equation 

whose coefficients were determined based on the porous electrode model developed 

by Tiedemann and Newman [Tied et al 796]. 

Sunu and Burrows [Sunu et al 82] extended Tiedemann's resistance model to 

include the conductivity of active material in the pasted grid. Good agreement was 

found between the predicted potential distribution and experimental data. Sunu 
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Figure 1. 7: Current collecting grids of a typical lead-acid battery electrode 
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and Burrows [Sunu et al 84] expanded this model to account for nonuniform current 

density distribution. Excellent agreement was found between data and predicted 

potential distribution. With this model they could: (a) describe physical changes 

occurring during discharge; (b) quantify interactions between grid design, grid weight; 

and ( c) determine cell performance, and optimise grid designs. Purely resistive models 

like these can not, however, predict the effects of concentration and porosity. Nishiki 

et al [Nish et al 86] developed a simple two-dimensional finite element model of a 

simple cell configuration for current distribution. They showed that even for simple 

geometries, nonuniformities in the current and potential distributions will occur due 

to ohmic drop. This corroborated the two-dimensional current-collector grid models 

of Sunu and Burrows [Sunu et al 82], [Sunu et al 84]. 

1.8.3 Porous Electrochemical Models 

The first use of a mathematical model to describe the behaviour of the lead­

acid battery was applied to the porous positive electrode by Stein [Stein 58]. Euler & 
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Nonenmacher [Euler 60] developed a steady-state one-dimensional macroscopic the­

ory. They showed that for linear polarisation and uniform concentration, the current 

tends to pass from one phase to the other preferentially near the electrolyte-electrode 

interface or the metal backing interface depending, on the relative conductivities 

of the two phases. Newman & Nonenmacher [Newman et al 62] built upon Euler's 

[Euler 60] general equations and showed linearised kinetics leads to an inadequate 

description of the actual electrode when the reaction is distributed non-uniformly 

in the depth of the electrode. They demonstrated that the polarisation equation 

and the mass transport of the reacting species both play a major role in electrode 

performance. 

Dunning & Newman [Dun et al 71] were the first to attempt to predict over­

potential as a function of time in a single battery electrode. The authors used a 

Butler-Volmer type polarisation equation combined with a mass transport of an ac­

tive species given by an empirically derived mass transfer coefficient. Time dependent 

phenomena were handled by assuming that the mass transfer coefficient was a func­

tion of the amount of active material present in any part of the electrode. They 

predicted cell failure caused by an internal mass transfer limitation with a sparingly 

soluble reactant. Their model was unable to predict cell failure by pore blockage. 

Gidaspow & Baker [Gid et al 73] developed a porous electrode model to de­

scribe the transformation of one solid phase into another. Their model predicted cell 

failure due to the pores plugging by PbSO4 deposition. However, they used a linear 

polarisation equation which is valid only at low current densities. 

Simonsson [Sim 73], and Micka and Rousar [Micka et al 73], [Micka et al 7 4], 

[Micka et al 76] used a macro-homogeneous model to disregard the actual geometric 

detail of the pores and describe the porous electrodes as a superposition of the two 

continuous phases, liquid and solid. Simonson predicted that a reaction layer moves 

inward into the lead dioxide electrode due to gradual insulation of the surface by 
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converting lead sulphate crystals. Micka and Rousar modeled a positive Pb02 elec­

trode [Micka et al 73] and a negative Pb electrode [Micka et al 74] separately, and 

afterwards combined the equations to model a complete cell [Micka et al 76]. They 

predicted that for normal temperatures and discharge rates the discharge capacity of 

the cell is positive plate limited. 

Tiedeman & Newman [Tied et al 79b] provided a detailed, one-dimensional 

mathematical model to simulate the discharge behaviour of a complete lead-acid 

cell. Sunu [Sunu 84] developed a similar one-dimensional model and took account 

of a nonuniform concentration in the electrolyte reservoir which the Tiedeman & 

Newman did not include. Gu et al [Gu 87] developed this type of one-dimensional 

model to include the simulation of charge and rest behaviour. These models allow the 

determination of pertinent system parameters over an entire discharge/recharge cycle. 

For example, the effect of thickness and porosity of the electrodes and the separator 

can be evaluated, and the profile of concentration of acid electrolyte throughout the 

depth of the whole cell can be predicted. One-dimensional models cannot, however, 

detail nonuniformities along the cell height. During discharge, the current density 

increases non-linearly towards the top of the cell. This leads to inefficient material 

utilisation and limits cell performance. 

The development of two-dimensional lead-acid cell models, capable of detailing 

information along the cell height, as well as the cell width, is a natural progression. 

A two-dimensional model is capable of describing the experimentally observed acid 

density gradient that can develop in the electrolyte in a rapid discharge or slow 

charge. The acid density gradient is commonly called electrolyte stratification and 

influences the active material utilisation, and hence the capacity attainable in such 

a cell. 

Dimpault-Darcy et al [Dimp 88] solved the porous electrode equations for a 

single Pb02 electrode in two dimensions using the finite difference method. In their 
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model, the constraint that the current density be uniform at the face of the electrode 

resulted in insignificant variations along the electrode height. 

Mao et al [Mao 91] analysed the potential and current distributions in a sealed 

lead-acid HORIZON® cell using a two-dimensional steady-state model. They used 

an IMSL finite element package which allowed them to analyse curved boundaries. 

Their model showed that the active material utilisation and electrode rechargeability 

are strongly influenced by electrode design. 

Alavyoon et al [Alav et al 91] investigated the effects of acid density induced 

free convection and stratification on electrolyte composition in lead-acid cells. They 

dealt with equations in two dimensions for electrolyte velocity and composition but 

did not consider equations including voltage characteristics. They assumed for sim­

plicity that the current density and electrode porosity were distributed uniformly in 

both spatial dimensions, and dilute solution theory was used to describe mass trans­

port. The results predicted by the model agreed well with experimental data, both 

for the velocity and for the concentration fields. 

Bernardi et al [Bern et al 93] expanded the Dimpault-Darcy two-dimensional 

PbO2 electrode model to a complete cell using a finite difference method to solve the 

coupled non-linear equations. They assumed that the effects of free convection are 

ignorable for low rate discharges, and concentrated on voltage characteristics and dis­

tributions of current density, porosity, reaction rate, and active-material utilisation, 

as well as electrolyte composition. Electrolyte transport was described by concen­

tration solution theory. The model predicted significant variations along cell height 

even at relatively low rates of discharge. 

Recently Gu et al [Gu 97] developed a macrohomogeneous model which in­

corporated a combination concentrated/dilute solution theory in one and two dimen­

sions. It not only included the coupled processes of electrochemical kinetics and mass 
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transport, but also accounted for free convection. Convection can become signifi­

cant for low current density discharge/recharges, and causes acid stratification in the 

battery. Gu et al also utilised finite difference methods, this time, however, utilising 

fluid dynamics techniques instead of those previously used, which have basically been 

derivatives of Newman's techniques [Newman 75]. They achieved consistent results 

with previously published articles, whilst reducing solution times. 

1.8.4 Thermal Models 

Choi and Yao developed two-dimensional thermal models for the lead-acid 

batteries to aid in the design for load-leveling [Choi 78] and electric-vehicle propulsion 

[Choi 79] applications. These models were used to determine temperature profiles 

to design an optimum electrolyte circulation process for efficient heat removal in a 

battery system. They determined that electrolyte circulation would be an effective 

means for regulating the heat generated in charging. 

1.9 Scope of the Thesis 

The purpose of this thesis is several fold: Initially it was to develop reliable 

one and two dimensional mathematical models for a flooded porous lead-acid battery. 

Existing mathematical models utilised finite difference methods and matched the 

boundary conditions of each region to the opposing neighbouring region. Each region 

possesses its own set of governing equations. Formulations of this kind often lead 

to long solution times, especially for non-linear partial differential equations. These 

methods do not practically scale up to full three dimensional models; both the solution 

times and the rather awkward boundary conditions severely limit their applicability. 

Also, the existing models are essentially limited to rectangular regions, resulting in 

idealised geometry for the battery model. 

For the above reasons, the method for numerical solution technique was the 

finite element method. The principle aim was the investigation of applicability of the 
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method to Newman's macrohomogeneous equations for concentrated solution flooded 

porous electrodes. If the boundary conditions can be incorporated naturally into the 

variational formulation for the system, then not only could the mathematical and 

numerical models be simplified, but also the solution times would be considerably 

shorter. 

The purpose of the finite element models is to analyse the potential field, 

current distribution, mass transfer, porosity change, and concentration of electrolyte 

of lead-acid cells. The equations modeled are not only applicable to lead-acid cells, 

but to other electrochemical cells of a similar nature. 

Because finite element techniques haven't previously been applied to a fully 

coupled set of electrochemical equations, considerable work has been undertaken on 

their applicability. The approach taken in this regard has been in a more engineering 

form than mathematical form. The principles are applied using intuition, physical 

reasoning and numerical experimentation applied to the problems reflecting the prac­

tice. The emphasis is not on mathematical rigor, exactly formulated definitions and 

assumptions, but rather that it works for practical examples and engineering prac­

tice. Final validation in this approach is that the results agree with results from other 

methods of solution, namely finite difference methods. Good agreement to date has 

been found. 

On the other hand if the approach taken was mathematical, the work would 

have emphasised mathematical rigor, with exactly formulated definitions and assump­

tions. It would be essential for the work to be completely "clean", whether it works 

in all cases characterised by the assumptions made, etc. 

The finite difference method has been used extensively to model electrochem­

ical cells, and has a record of proven success. However the finite element method is 

naturally suited to complicated geometry; general boundary conditions and variable 
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or non-linear material properties can be handled with relative ease. In all these cases 

one meets unnecessary artificial complications with finite difference methodology. 

More recently, especially in the field of computational fluid dynamics the finite 

volume method ( or otherwise known as the cell-centred finite difference method) has 

been developed to encompass more complicated regions. However, it is found that 

the crude finite difference approximations of the integrands limit the effectiveness of 

finite volumes to relatively simple mesh structures and simple treatments of boundary 

conditions [Zienkiewicz 89]. 

The clear structure and versatility of the finite element method makes it possi­

ble to construct general purpose software for applications. The trial and test functions 

defined on the discretised domain provide accurate and robust approximations to the 

unknowns. However, the mathematical generality of the finite element method can 

be a weakness as well as strength: the computational overhead required to set up the 

finite element matrix system of equations can be expensive compared to the set up 

costs of finite volumes on general computational meshes. Furthermore, this overhead 

is relatively fixed: the set up costs for finite elements is largely problem independent 

for a general mesh. Relatively simple physical problems require as much work as 

complex physical phenomena. It is this computational overhead that has lead to two 

camps in computational fluid dynamics, and finite difference based methods are still 

widely used in this field. Essentially, there is no clear cut winner, each method has 

certain advantages over the other. 

To the author's knowledge, this is the first time the finite element method 

has been applied to the transport equations of electrochemical cells in such a funda­

mental way. It is anticipated that the numerical techniques established for this work 

will stimulate future work in this field and allow for the interface with Computer 
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Aided Design (CAD) packages for commercial applications in electrochemical simu­

lations, much the same as has happened in the field of structural and fluid dynamic 

engineering. 



CHAPTER 2 
POROUS ELECTRODE THEORY 

2.1 Macroscopic Description of Porous Electrodes 

2.1.1 Discussion 

A "porous electrode" can range from a single reactive electronic conductor to 

mixtures of solids, including non-conducting reactive materials in addition to elec­

tronic conductors. An electrolytic solution penetrates the void spaces of the porous 

matrix. At any given time, there may be a large range of reaction rates within the 

pores. The distribution of these rates are dependent on: (a) the physical structure 

of the matrix; (b) the conductivities of the matrix and of the electrolyte; and (c) 

various parameters of the electrode which characterise the processes themselves. 

Due to the intricacies of the system it is necessary to develop a model which 

describes the important features of a real electrode without taking into account the 

actual geometry of the pores. Additionally, the model's parameters should be read­

ily obtainable experimentally. Typically, a porous media can be represented by its 

porosity averaged over a unit volume, average surface area per unit volume, and a 

volume-average resistivity to describe the electrolytic phase in the voids, etc. The 

volume averages taken of various variables should be small with respect to the overall 

dimensions but large compared to the pore structure as shown in figure 2.1. In such 

a model, rates of reactions and double-layer charging in the pores will have to be 

defined in terms of transferred current per unit volume. 

A number of early models represent the structure with straight pores, perpen­

dicular to the external face of the electrode, and a one-dimensional approximation is 

introduced and justified on the basis of the small diameter of the pore compared to 
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Figure 2.1: Volume element for macroscopic model 
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its length. de Levie [de Levie 67b] pointed out that the mathematical equations are 

basically equivalent to those of the macroscopic model although certain parameters 

such as the diffusion coefficient have different interpretations. 

2.1.2 Averaged Quantities 

The macrohomogeneous model is an extension of the concepts of conventional 

electrochemical systems, specifically, those of transport phenomena in electrolytic 

solutions and of the kinetics of electrode reactions. The actual geometry of the 

pore is ignored; instead a volume element inside the electrode is averaged. We can 

now define two potentials: <Psoln, the potential of the electrolyte in the pores; and 

<Psolid, the potential in the conducting matrix solid. Similarly, the current density 

can be defined in terms of the pore filling electrolyte current isoln, and the solid 

matrix current isolid· These current densities are referred to the projected volume 

of the electrode, rather than the volumes of the individual phases. Essentially, the 

electrode is now a superposition of the two continua. The quantities are assumed to 

be continuous functions of time and space. 

The porosity, t, is the void volume fraction within the element, and is filled 

with electrolyte. The volume element can also contain volumes of several solid phases 

which may be present. ci is the solution-phase concentration of species i, averaged 

over the pores. Thus the superficial concentration averaged over the volume of both 

matrix and pores is tci. 
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The specific electro-interactive interfacial area a represents the surface area 

of the pore walls per unit volume of the electrode. Also, jin represents the pore-wall 

flux of species i averaged over the same interfacial area. The pore-wall flux to be 

averaged is the normal component of the flux of species i at the pore wall, relative 

to the velocity of the pore wall, and in the direction pointing into the solution. The 

pore wall may be moving slightly due to a dissolution process. Thus ajin represents 

the rate of transfer of the species from the solid phases to the pore solution (per unit 

volume of the total electrode). 

Let Ni be the average flux of species i in the pore solution when averaged 

over the cross-sectional area of the electrode. Thus, for a plane surface of normal 

unit vector n cutting the porous solid, n · Ni represents the amount of species i 

crossing this plane in the solution phase, but is referred to the projected area of the 

whole plane rather than to the area of an individual phase. 

The fluxes of charged species, when appropriately summed, yield a charge 

balance equation for the superficial current density isoln , i.e. 

(2.1) 

Here Fis the Faraday constant and Zi is the valence number of species i; hence ziNi 

represents the charge per mole. 

Similarly, the current density isolid in the matrix phase is defined to refer to 

the superficial area and not to the area of an individual phase. 

2.1.3 Electroneutrality 

If the electric force in a volume element (within the porous electrode) cannot 

create a significant separation of charge over an appreciable distance then it can be 

said to be electrically neutral. The electroneutrality condition for the solution phase 

is thus: 

(2.2) 
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where ci is the concentration of species i in moles/cm3, and zi is the charge number 

of ionic species i. 

Thus the interfacial region which comprises the electric double layer (where the 

electroneutrality condition breaks down) constitutes only a small volume compared 

to any of the phases or the electrode itself. This assumption fails for finely porous 

media and very dilute solutions, where the diffuse layer may be more than 100 A 

thick. Electro-kinetic effects such as electro-osmosis and the streaming potential are 

also ignored. 

The concentration, ci, of ionic species i is defined by: 

(2.3) 

where c is the concentration of neutral electrolyte in moles/ cm3 , and vi is the number 

of ionic species i per electrolyte molecule, 

We can now express the electroneutrality condition for sulphuric acid. H2S04 

can be considered to be a binary electrolyte containing a cation (species + ), an anion 

(species -), and water (species a), whence 

(2.4) 

A single electrode reaction can be represented as 

(2.5) 

where M/; is the symbol representing the species i, si is the stoichiometric coefficient 

of species i, n is the number of electrons e transferred by the electrode reaction, and 

1, 2, o, and e- represent the cation, anion, water, and electron respectively. 

Faraday's Law for the above single electrode reaction in the absence of double 

layer charging is: 

(2.6) 
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where a is the specific interfacial area, Jin is the pore wall flux of species i, and isoln 

is the superficial current density in the pore phase. 

From the assumption of electroneutrality it can be stated that the divergence 

of the total current density is zero, i.e. 

\7 · isolid + \7 · isoln = 0 (2.7) 

Restated, current which leaves the matrix phases enters the pore solution. 

2.1.4 Material Balance of Electrolyte Species 

Within a pore, in the absence of homogeneous chemical reactions, a differential 

material balance can be written for a species i. This equation can be integrated over 

the volume of the pores in an element of the electrode, and surface integrals can be 

introduced by means of the divergence theorem. Careful use of the definitions of 

average quantities yields [Dun 71] the material balance for species i: 

(2.8) 

Accumulation Production Netlnput 

Here f. is the porosity of the matrix and a is the specific interfacial area. Three volume 

averages are represented in equation (2.8): ci is an average over the volume of the 

solution in the pores; )in is an average over the interfacial area between the matrix 

and the pore solution; and Ni is an average of the transport rate of species i per unit 

cross-sectional area through the electrode. Note again that the averages. involve a 

volume which is large relative to the pore structure, but is sufficiently small relative 

to regions in which significant variations occur. 

Equation (2.8) states that the concentration can change at a point within the 

porous electrode because the species moves away from the point or because the species 

is involved in electrode processes (Faradaic electrochemical reactions or double-layer 

charging) or simple dissolution of a solid material. This a}in term is analogous to 



35 

the term which describes the bulk production of a species by homogeneous chemical 

reactions ([Newman 73], p 218). However, in the macroscopic model, the production 

term from the matrix phases occurs throughout the bulk of the electrode ( due to the 

averaging process). 

2 .1. 5 Concentrated Binary Electrolyte 

As the lead-acid battery system has a single binary electrolyte, we can develop 

relatively simple equations using concentrated solution theory. This is aided with the 

fact that thermodynamic and transport data are readily available for the binary 

electrolyte, sulphuric acid. 

The flux of species i can be defined as 

N-
i - D 't""7c +___li__1• - - - eff V z;v;F soln 

Vi 
+cv (2.9) 

Diffusion Migration Convection 

where the subscript i represents the ionic species + or - , ti the transference number 

of ionic species i, and v is the volume average velocity of the pore solution. 

Similarly for water, 

(2.10) 

The effective diffusion coefficient Def f is corrected for porosity and tortuosity 

by the Bruggeman-type ([Mer 62] relation: 

(2.11) 

where ex is a correction for the tortuosity of the porosity of the solid matrix, and is 

generally 0.5 for a porous lead-acid electrode. 

The volume average velocity v and the porosity t: in equations (2.8), (2.9) and 

(2.10) can be expressed explicitly in terms of the volume changes during electrode 

reaction. The electrode porosity varies during electrode reaction due to the volume 



difference between solid products and reactants and can be written as: 

0€. 
at 

1 
nF solid species,i 

36 

(2.12) 

where si is the stoichiometric coefficient of species i defined in equation (2.5) and 

¼ is the molar volume of species i. We now seek an expression for the convective 

velocity v. 

Rewriting equations (2.8), (2.9) and (2.10) for each of the species: 

OEC+ ( de+ t+ ) s+ • at = -v' . -Def! dx + z+F - C+ V - nF y' . lsoln (2.13) 

oEC_ ( de_ t_ ) s _ T"7 • at= -v'. -Dell dx + z_F - c_v - nF v · lsoln (2.14) 

Of.C0 ( dci ) Si . -- = -v' · - D 11- - c v - -v' · 1 1 ot e dx O nF so n (2.15) 

Multiplying equations (2.13), (2.14) and (2.15) by V+, V_ and Vo, respectively 

and summing the three resultant equations gives: 

oE 1 ( - - - ) -a +v'·v=-- s+V++s_V_+soVo v'•isoln 
t nF 

(2.16) 

Combining equations (2.12) and (2.16) leads to an expression for the volume 

average velocity: 

v' · v = - n~ (s+V+ + s_V_ + s0 V0 + _ L __ si¼) v' · isoln 
solid species,i 

(2.17) 

which gives: 

v = --1- (s+ V+ + s_ v_ +so½+ L si¼) isoln 
nF .. solid species,i 

(2.18) 

The material balance equation (2.8) can now be written as: 

(2.19) 

where 

- - s_ nL 
S+ V+ + s_ v_ = - - V 

v_ z_v_ 
(2.20) 
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2.1.6 Electrode Kinetics 

Electrode kinetics do not follow fundamental laws that can be written down as 

reliably as the law of conservation of matter. The overall kinetic behaviour of a porous 

electrode is a result of the mutual dependence of intrinsic kinetics, structural changes, 

current distribution and concentration changes. The porous structure is in itself of 

decisive importance for the electrode kinetics. Specific surface area and pore size 

distribution are important structural parameters. These parameters are not constant 

in the porous lead dioxide electrode because of the structural transformations that 

occur between the solid phases Pb, PbO2 and PbSO4 . 

As the phenomena are so complex, the polarisation equation is used to predict 

the behavior of a complex electrochemical system rather than to have to explain the 

mechanism of the electrode reaction itself. It expresses the dependence of the local 

rate of reaction on the various concentrations and on the potential jump at the 

matrix-solution interface. 

The Butler-Volmer type polarisation equation can be written as 

C ( (!!11£. ) (~ )) y' . isoln = Aaig(-)7 e RT 1/• - e- RT 1/• 

Cref 
(2.21) 

where Aa is the electrochemically active interfacial area per unit electrode volume 

and is electrode specific, ig is the exchange current density evaluated at the reference 

concentration Cref, "( is the order of dependence of the exchange current density on the 

electrolyte concentration, o:a and O:c are anodic cathodic transfer coefficients deter­

mined from experimental data, and T/s is the local value of the surface overpotential. 

The surface overpotential can be defined as the potential difference of the working 

electrode relative to a reference electrode of the same kind positioned adjacent to it, 

just outside the double layer. T/s is equal to the potential difference <Psolid - <Psoln, plus 

an additive term depending on the local solution composition. 
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Ideally, the polarisation equation should not only account for the mechanism of 

the charge-transfer process but also for the morphology of the electrode, the formation 

of covering layers or of crystallites of sparingly soluble species, and the transport 

from such sparingly soluble phases to the site of the charge-transfer process. This is 

a principle limitation of the macroscopic theory to date. 

2.1.7 Ohms Law in the Solid Matrix Phase 

In the solid matrix (active material) phase the movement of electrons is gov­

erned by Ohm's law: 

(2.22) 

where <Psolid is the potential of the solid matrix, isolid is the superficial current density 

transferred through the solid active material, and aeff is the effective conductivity of 

the solid matrix being corrected for porosity and tortuosity by the Bruggeman-type 

([Mer 62]) relation: 

ex 
aeff = at 

Using equation (2.22) we can rewrite the divergence of current (2.7) as: 

2.1.8 Ohms Law in the Pore Solution Phase 

(2.23) 

(2.24) 

The potential loss in solution is governed by Ohm's law and may be written 

in the form [Newman 73] 

(2.25) 

<Psoln is the potential in the pore solution measured with a reference electrode having 

the stoichiometric coefficients Si and number n of the electrons transferred, µe is the 

chemical potential of the electrolyte in J/mole, and "'eff is the effective conductivity 



39 

of the pore solution in mho/cm, and is corrected for porosity and tortuosity by the 

Bruggeman-type ([Mer 62]) relation: 

ex 
K,eff = K,f. 

The chemical potential µe can be defined as [Newman 73]: 

(2.26) 

(2.27) 

where ci is the concentration of the species i expressed in molarity (moles/litre), Ji is 

mean molar activity coefficient if the species, and af is a proportionality constant in­

dependent of composition and electrical state, but characteristic of the solute species 

and the solvent and dependent on temperature and pressure. The pressure depen­

dence is minimal for the liquid phase, and often isothermal conditions are assumed. 

Therefore, 

isoln = - '\i' <Psoln - vRT ( S+ + ntt - soc) '\i'ln(cfi) 
K,eff nF V+ Z+V+ Co 

(2.28) 

2.1.9 Note for Species 

For any arbitrary species i: + represents a cation H+, - represents an anion 

HSO4, and o represents the solvent water. Stoichiometric coefficients are: 

Negative electrode reaction: s+ = -1, s_ = 1, n = 2, s0 = 0, spb = 0, and 

Positive electrode reaction: s+ = 3, s_ = 1, n = -2, s0 = -2, Spb = 1, and 

zi is the charge number of species i; 

vii is the number of ionic species i per mole of species j; 

v+ = 1, v_ = 1; and 

Z+ = 1, z_ = -1. 
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2 .1.10 Electroneu trali ty and Conservation of Charge 

It is a consequence of the assumption of electroneutrality that the divergence 

of the total current density is zero. For the macroscopic model, this is expressed as 

v7 · isolid + v7 · isoln = 0 (2.29) 

Charge which leaves the matrix phases must enter the pore solution. In fact, 

a combination of equations (2.1), (2.9), and (2.2) gives 

v7 . isoln = aF L Zi)in = ain (2.30) 

where in is the average current density (from the matrix phase to the solution phase). 

v7 · isoln is the transfer current per unit volume of the electrode (A/cm3) and has the 

direction of the anodic current. 



CHAPTER 3 
THE FINITE ELEMENT METHOD 

3.1 Introduction 

This chapter introduces the finite element method (fem) as a general technique 

for the numerical solution of time dependent coupled non-linear partial differential 

equations. It is by no means a mathematically rigorous treatment of the fem. The 

emphasis is to build physically and numerically sound reasoning on the mathematical 

techniques in order for elements to be derived and computer programs to be written. 

Firstly, the types of partial differential equations (pde) are classified, and as 

exact solutions can only be obtained for the most trivial examples, numerical proce­

dures are detailed in order solve the pde. The techniques developed are categorised 

as finite element methods. The particular finite element method employed is a Mean 

Weighted Residual method. 

The fundamentals of linear spaces are treated, and the Hilbert space is defined. 

This allows methods to be designed to discretise differential equations of certain forms 

that fit into the linear spaces that are defined. These methods characterise what is 

called the finite element method. 

From here we are able to develop the mechanics of the finite element method, 

i.e. discretisation of the problem, shape functions, evaluation of the element matrices, 

the formulation of the global matrix, where, why and how the boundary conditions 

are applied, and how the resulting matrices are solved. Isoparametric elements are 

introduced along with numerical integration as a way of simplifying the process of 

forming the elemental matrices. 

41 
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Finite element spaces are linear by their definition. Partial differential equa­

tions are often non-linear. The Newton-Raphson method is outlined in order to 

linearise the partial differential equations so that they are applicable to solution by 

finite element techniques. 

Next, time stepping techniques are reviewed. The relative merits of implicit 

versus explicit methods are considered as well as their stability criteria. 

The techniques used to solve large sparse matrices are not treated to any 

substantial degree as today it is possible to use "black box" software which allows one 

to solve the formulated matrix problem with complete confidence for general problem 

classes without having to understand the fine algorithmic details [Barret et al 1994]. 

3.1.1 Classification of Partial Differential Equations 

A second order partial differential equation for two dimensions may be written 

as [Garcia 94]: 

(3.1) 

and is classified as hyperbolic if b2 - 4ac > 0, parabolic if b2 - 4ac = 0, and 

elliptic if b2 -4ac < 0. The general formulations can be extended to higher dimensions 

[Garcia 94]. 

The equations governing the electrochemical system of a Lead-Acid battery 

are a hybrid of the above three classifications. 

Initial Value and Boundary Value Problems 

Boundary value problems (bvp) require that we specify boundary conditions 

in order to solve the solution. Initial value problems (ivp) in addition to requiring 

boundary conditions, require an initial function distribution, say </>(x, 0), in order to 

seek a solution for t > 0. 
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We consider only the two main boundary conditions, Dirichlet and Neumann 

boundary conditions. For second order differential equations, the Neumann bound­

ary conditions is specified as the flux at the boundary, and the Dirichlet boundary 

condition specifies the function at the boundary. For example, a parabolic differential 

equation of the form: 

acp(x, t) - a2¢(x, t) = 0 C O < < L 
at K, ax2 10r X (3.2) 

may possess the following Dirichlet boundary conditions: 

cp(0, t) = <Pa; cp(a, t) = <Pb (3.3) 

the following Neuman boundary conditions: 

_ acp(0,t)) _ F. 
K, ax - a, (3.4) 

and the following initial condition: 

cp(x, 0) = f (x) (3.5) 

If the boundary conditions equal zero, e.g. cp(x, 0) = 0), or a<t,~~t)) = 0, then 

they are termed homogeneous. If the boundary conditions are not equal to zero, they 

are call non-homogeneous. 

For a solution to exist it is required to be unique [White 85]. 

3.1.2 Solutions of Boundary Value Problems 

Classical Solutions 

If we find a solution y(x, t) for a bvp, then we have a classical solution of the 

continuum problem if and only if, ¢ E C2 [0, L] and equation 3.2 are satisfied. C2 [0, L] 

is the set of functions on [O, L] that have two continuous derivatives. Often classical 

solutions are unable to be found, and we approximate to the continuous solution by 

a discrete model, usually the finite difference method. 
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The Variational Formulation 

We reformulate the given differential equation as an equivalent variational 

problem. This basically takes the form of a minimisation problem: 

For u EV such that F(u) ~ F(v) for all v EV (3.6) 

where V is a given set of admissible functions and F : V --+ R is a functional. 

Often the exact solution cannot be solved and an approximation method such 

as the Rayleigh-Ritz method is used. This is called a Variational finite element 

method. A more general variational formulation to the minimisation problem is 

based on the weak formulation [Buchanan 95]. 

Weak Solutions 

The weak formulation of a bvp can be obtained in the following manner: 

Multiply the equation by a test function 1/J. 1/J E C2 [0, a], where 1/;(0) = 0 = 1/J(L). 

Integrate to obtain the resulting weak equation 

The weak solution can be defined as: 

1. </> has a piecewise-continuous derivative; 

2. The weak equation, holds for all 1/; that have piecewise-continuous deriva­

tive; 

3. </>(O) = a and </>(L) = b. 

The Galerkin finite element solution is often used to derive algebraic equations 

which are used to solve for </>. 

The adjective weak is used because the solution does not require two deriva­

tives. Not all differential equations have classical solutions, and the energy and 

weak formulations have their respective merits depending on the problem at hand 

[Cuvelier 85]. 
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The classical solution is a weak solution, and in fact if an energy solution 

exists, it and the weak solution are identical [White 85). 

3.2 Finite Elements/Finite Differences 

The numerical solution of partial differential equations is split up into two 

distinct disciplines, called respectively the finite difference method (fdm) and the 

finite element method (fem). Mathematically speaking, finite differences are a subset 

of finite elements [Zienkiewicz 89]. In the fdm, the differentials are replaced with 

difference quotients involving the values for the unknown at certain (finitely many) 

points. The discretisation process using a fem is different. 

Systems of coupled partial differential equations of considerable complexity, 

such as those describing fluid flow, heat transfer, and electrochemical reactions are 

only accessible with numerical methods [Cuvelier 85). Finite difference methods, 

but even more specifically finite volume methods (fvm) such as those described in 

[Prat 80), are very successful in this area. The robustness of the fvm discretisation 

schemes, employing just "Four Basic Rules", has no counterpart in finite element 

methodology [Cuvelier 85). The main drawback of finite difference-like methods is 

well known, however. When attempting to get rid of inhomogeneous parts of the cal­

culation domain, caused for example by curved boundaries, a considerable overhead 

is introduced, tending to make fdm/fvm methods unworkable. When employing a 

finite element method, curvilinear boundaries and topological complexity present no 

problem whatsoever. They are done in a uniform and natural fashion, in stark con­

trast to finite difference methodology. General boundary conditions and variable or 

non-linear material properties are also handled with relative ease. Further, the clear 

structure and versatility of the fem makes it possible to construct general purpose 

software for applications. 
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In order to formulate an fe discretisation scheme properly, something like a 

Variational or Galerkin principle has to be resorted to. When dealing with very com­

plicated equations, especially those describing transport phenomena with many dif­

ferent high order derivatives, this can turn out to be a serious bottleneck [White 85]. 

3.3 Basic Definitions For Finite Elements 

Consider a sequence of functions 

(3.7) 

The functions are assumed to satisfy certain given conditions, called admissibility 

conditions, relating to the boundary conditions and the degree of continuity. 

If the elements can be linearly combined, for instance, 

(3.8) 

where a and f3 are numbers, they are called elements of a linear space R, and the 

following properties apply: 

(3.9) 

(a+ /3)</> =a</>+ /3</> 

The inner product of two functions ¢1 and ¢2 is denoted by 

(3.10) 

and it represents an operation on ¢1 and </>2 , such as 

(3.11) 

or 

(3.12) 
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The second definition is called the convolution and will not be considered further. 

For real functions, the inner product has the following properties: 

< </>1, </>2 > < </>2, </>1 > (3.13) 

a < </>1, </>2 > < a</>1, </>2 > 

< </>1, </>2 + q>3 > < </>1, </>2 > + < </>1, q>3 > 

< </>1,</>1 > > 0 if </>1 -/= 0 

0 if </>1 = 0 

where </>1 = 0 is a "null" function which exists in the space R. 

A measure (norm) of the function </> can be taken as the square root of the 

inner product of </> by itself and is denoted by 11 </> JI. 

II <I> II = ✓ < </>, <I> > (3.14) 

A sequence of functions such as (3. 7) is said to be linearly independent if 

(3.15) 

only when all ai are zero. 

A sequence of linearly independent functions is said to be complete if a number 

N and a set of constants ai can be found such that, given an arbitrary allowable 

function u, we have 

N 

11 u - I:ai</>i 11 < f. (3.16) 
i=l 

where f. is any small positive quantity. 

The functions <Pi are called basis functions and the coefficients ai are the 

Fourier coefficients. 

If the normalised basis functions are mutually orthogonal, 

(3.17) 



48 

Each additional term we take in the linearly independent and complete sequence <Pi 

will introduce a further ai. For the Nth approximation, we have 

(3.18) 

Thus 

II u(N) II -+ II u II as N-+ oo (3.19) 

The norm of u(N) for a mutually orthogonal complete sequence (if the sequence 

is not orthogonal we will accept that we can always reduce it to an orthogonal one) 

is 

II u(N) II ✓{ (ta,¢,,tai¢i)} 
✓ {tta,a; < M; >} 

and since < <Pi, <Pj >= 0 if i =/- j, we have 

(3.20) 

(3.21) 

Each term in the summation is positive, thus II u(N) II approaches II u II from below 

as N increases. 

II u(N) II ::; II uCM) II ::; II u II with N < M (3.22) 

A linear operator £() is defined as a process which, when applied to a given function 

u, produces another function p: 

C(u) = p (3.23) 

An operator is linear if 

(3.24) 
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This definition is general but we will consider here only differential operators. 

Properties analogous to symmetry and positive definiteness for a matrix can 

also be defined for an operator. Consider a square matrix, a = [aij]- We say a 

is symmetrical when aT = a, where aT is the transpose of a. Symmetry requires 

aij aji. Another way of defining symmetry is to require 

< y,ax > < x,ay > (3.25) 

for arbitrary vectors x and y. Expanding (3.25) and noting that (bcf = crbr, 

< y,ax > = yTax (3.26) 

(3.27) 

shows that (3.25) is equivalent to aT = a. The latter definition is more convenient 

for extension to operators. Positive definiteness is defined by 

< x,ax > 2:: 0 (3.28) 

for all a and equals O only when xis a null vector. This property is extremely valuable 

in establishing solution schemes. 

3.3.1 Hilbert Space 

A Hilbert space (V) has the following properties. It is a linear space; It 

possesses a scalar product with a corresponding norm II . II ; and it is complete (i.e. 

every Cauchy sequence with respect to II . II is convergent). Simply put, a Hilbert 

space is a linear space with a scalar product. 

We can define a Hilbert space, L2(I) of square integrable functions. 

L2 (I) = { v : vis defined on I and! v2dV < oo} (3.29) 

There exists another Hilbert space H 1(I), which, together with their first 

derivatives, are square-integrable, i.e., belong to L2 (I). 
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H 1 ( I) = { v : v and v' belong to L2 (J)} (3.30) 

For boundary value problems with boundary conditions u(a) = u(b) = 0 the 

space HJ ( I) can be defined, i.e. 

HJ(I) = {v E H1(J): v(a) = v(b) = O} 

with the same scalar product and norm as for H 1(J). 

3.4 The Methods of Weighted Residuals 

(3.31) 

The methods of weighted residuals ( mwr) are a numerical procedures that can 

be used to solve a single or set of partial equations of the form: 

£(u) = p; XE 0 (3.32) 

with two prevalent boundary conditions, 

essential (Dirichlet) G(u0)=g; on fu 0 (3.33) 

where the value of the variable is prescribed, and 

natural (Neumann) S ( u) = q; on r q (3.34) 

where u is the exact solution, n is the domain, and r is the external surface of the 

continuum. The function u is approximated by a set of functions ¢k: 

(3.35) 

where ak are undetermined parameters and <Pk are linearly independent functions 

taken from a complete sequence. 

Initially we require that these functions satisfy all the boundary conditions 

of the problem (3.33) and have the necessary degree of continuity as to make the 
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left hand side of (3.32) different from zero. Substituting equation (3.35) into (3.32) 

produces an error function E, which is called the residual: 

(3.36) 

where E equals zero for the exact solution. This error is forced to be zero, in an 

average sense, by setting the weighted integral of the residual equal to zero: 

< E,Wi > = 0, i = 1,2, ... ,N (3.37) 

where wi is a set of weighting functions. 

Application of the mwr produces a set of algebraic equations. There are 

several types of mwr criteria, the most popular being: the collocation method; the 

least-square method; the method of moments; and Galerkin's method. Each will 

produce a different set of values, resulting in many different approximate solutions. 

Depending on the method chosen, the different solutions may all be close to each 

other and to the exact solution. 

The method chosen is the most commonly employed, called the Galerkin 

method, due to its ease of applicability. It will be discussed next. 

3.4.1 Galerkin's Method 

In the Galerkin method the weighting functions are the same trial functions. 

Consider the equation 

.C(u)-p=O (3.38) 

and an approximating function 

(3.39) 

which satisfies the boundary conditions S(u) = q(r). The residual 

(3.40) 
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is orthogonal with respect to the trial functions <h 

(3.41) 

which leads to: 

(3.42) 

If £ is a linear operator, (3.42) produces a system of linear equations from 

which the ak coefficients can be obtained. 

Contrary to other weighted residual methods in which the error is orthogo­

nalised with respect to a set of functions different from the trial functions, in the 

Galerkin procedure the weighting functions are the same as the trial ones. 

3.5 Weak Formulations 

For simplicity we have only considered, up until now, self-adjoint operators and 

essential boundary conditions. However, weighted residual methods are applicable for 

arbitrary operators and boundary conditions. We will now treat a general procedure 

for formulating weighted residual statements which allows only partial satisfaction of 

the boundary conditions, and, of more significance, the use of basis functions having 

relaxed continuity requirements. 

We introduce a classification for the degree of continuity of a function. Con­

sider a function u( x) defined over a region r and having a shape as in Figure 3.1. 

The function is discontinuous at discrete points but is finite throughout the region. 

Its norm satisfies: 

(3.43) 

All functions satisfying (3.43), i.e. those that are square integratable, are said 

to belong to the £ 2 function space. 
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u 

X 

Figure 3.1: Discrete functions 

Imposing restrictions on the continuity of the derivatives leads to a subset of 

spaces, called Sobolov spaces. The space wJ1) (the superscript refers to the high­

est finite derivative, the subscript refers to the square norm measure) contains all 

functions whose first derivative is square integrable. Its definition equation is (in one 

dimension) 

(3.44) 

Higher-order spaces are defined in an analogous way. For example, the wJ2) space 

contains all functions which satisfy 

11 u Iii = / ( u2 + ( !: )' + ( :: n dx < oo (3.45) 

Examples of wJ1) and wJ2l functions are shown in Figure 3.2. Note that 

differentiation lowers the order of the space. If u belongs to wJ2), then ~~ belongs 

to wJ1). The above definitions can be extended to two and three dimensions by 

replacing the scalar operators with vector products. 

All functions satisfying (3.43), i.e. those that are square integrable, are said 

to belong to the £ 2 function space. This space includes most of the functions that 

we shall deal with. 

We now solve the problem of equation (3.38). Let£ be an nth order operator 

and p E wJ2). Also, we do not distinguish between essential and natural bound­

ary conditions. Thus .J - g may represent a combination of essential and natural 

boundary conditions over the exterior domain. 
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Figure 3.2: Types of function: ( a) first-derivative square integrable, wJ1); (b) second­
derivative square integrable, wJ2) 

The classical solution is a function belonging to the wJn+1) space and satisfies 

f = .C(u) - p = 0. 

Using the weighted-residual method, the approximate solution is: 

N 

u = UB + L O'.j<Pj 
j=l 

where u8 satisfies the prescribed boundary condition, 

(3.46) 

(3.47) 

and <Pi are functions belonging to the trial space which satisfy the homogeneous 

boundary conditions, 

(3.48) 

j = 1,2, ... ,N 

The order of the trial space is determined by the order of J and p. 

Our restriction on the approximation gave f = 0 on the boundary. A measure 

of the error is the inner product of the residual, E, and a test (weighting) function, 

w: 

Error measure=< f, w >= l (.C(u) - p)wdO (3.49) 
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If we now release the continuity requirements on the function, i.e. lowering 

the order of the function space, we obtain a "weak" solution. If the weak solution can 

be proved to be unique, it is called the generalised solution. The "optimum" weak 

form is the one for which the trial and test spaces coincide. Optimum refers here to 

the balance between uniqueness and existence. Hence the weighted residual method 

is a numerical scheme for generating a weak solution. 

3.6 Continuity 

Continuity refers to the continuity of the solution along element boundaries. 

The very nature of the finite element method implies a piecewise solution of the 

problem. Functions can be assigned a degree of continuity. A function that is c0 , 

is continuous. A function for which the first derivative is continuous is said to be of 

class C1, similarly if its second derivative is continuous, it is of class C2 . 

Flux discontinuities cannot be modeled well inside an element because the 

shape functions and their derivatives are very smooth functions. On the other hand 

C0 elements permit flux discontinuities on the boundaries. Hence elements can not 

overlap at interfacial boundaries. All the elements considered will be of class C0 

continuity. 

3. 7 The Finite Element Technique 

3.7.1 Overview 

In the fem technique, the matrix for the whole continuum (global matrix) is 

formed by the contributions of the matrices of the elements, which are expressed 

as functions of the nodal unknowns. To this global matrix the essential boundary 

conditions are applied. Similarly the element inputs form a vector of generalised nodal 

actions. Once the system of equations is solved for the unknowns, other functions 

can be calculated. 

The basic steps of the method are: 
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Reformulation of the partial differential equation into an equivalent variational 

formulation via the weak method; 

Discretisation of the region into finite elements; 

Computation of the elemental matrices; 

Assembly of the system matrix; 

Insertion of the boundary conditions; 

Solution of the resulting system of equations; 

Calculation of any other function based on the nodal unknowns; 

output the data. 

The fem is applied to a region. The region is divided into a number of ele­

ments composed of nodes. We seek to solve the nodal unknowns of each element. 

Each element is analysed separately and its properties are generally derived from the 

minimisation of the Galerkin type expression governing the problem, after choosing 

some approximate function for the element variables. These approximation functions 

have to satisfy the admissibility and completeness conditions for the problem. Ad­

missibility implies continuity of the essential variables between the elements for given 

boundary conditions. Completeness is a necessary condition for convergence to the 

exact solution. If both of these conditions are satisfied the solution will converge to 

its correct value as the total number of elements is increased. The element is said 

to be a conforming element. It should be noted that there are elements that satisfy 

only the admissibility condition (i.e. are complete, but not continuous). They are 

called non-conforming elements, but are not considered further. Refer to Cuvelier 

[Cuvelier 85] for a full discussion of such elements. 
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(b) 

Figure 3.3: Finite element discretisation: ( a) one dimension; (b) two dimensions 

Figure 3.3 shows one and two dimensional regions discretised into "finite el­

ements". The nodes are numbered in one dimension, from left to right, and in two 

dimensions, anti-clockwise. 

Two reference systems are used: The local numbering system, which is used 

when referring to a single element; and the global system which is used when consid­

ering the assembled system of elements. 

3. 7.2 Formulation of the Problem 

We reformulate the classical form of the pde by utilising the weighted residual 

method. The particular type of residual method chosen is the Galerkin method (i.e. 

the weighting and trial functions are the same). By integrating the highest order 

differential by parts we arrive at the equivalent weak formulation of the classical pde. 

Consider the time independent pde: 

- v7 • v7 (au) + v7 (f3u) + ,u = J 

with boundary conditions: 

u = go on f1 

au 
a-= g1 on r2 an 

(3.50) 

(3.51) 

where a, (3, ,, J, q, u are some prescribed functions on the domain and r = r 1 + r 2 is 

the total boundary. 
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We multiply equation (3.90) by a function r.p with r.pr 1 = O; integrate over 

f; apply Green's formula; and substitute the non-homogeneous Neumann boundary 

condition at r 2 . That is: 

l {-v' · v'(au) + v'(f3u) + ,u} r.pdD = l f r.pdD (3.52) 

l av'uv'r.pdD + l r.pv'(/3u)dD + l u1r.pdD - [(av'u) r.p]r = l fr.pdD 

l av'uv'r.pdD + l r.pv'(f3u)dD + l u,r.pdD = l fr.pdD + g1r.p(r 2) 

Let r.p be a function with r.p(f 1) = 1, then the weak formulation is: 

Find u with u - g0 r.p0 E V such that 

1r1 
a(u, r.p) = fr.pdD + g1r.p(f2) for all r.p EV 

ro 

where V= the space of functions that vanish at f 1 . 

(3.53) 

(3.54) 

Note that the Dirichlet condition is an essential boundary condition and that 

the Neumann condition is a natural one since it is automatically satisfied by the 

solution u. 

3. 7 .3 Discretisation 

In the space V we choose a finite number of basis functions r.p1, ... , 'PN• When 

the function space spanned by these basis functions is denoted by VN, the approximate 

weak formulation becomes 

Find u with u - g0 r.p0 E VN such that 

1r1 
a(u, r.p) = fr.pdD + gir.p(f 2) for all r.p E VN 

Writing u in the form 

ro 

N 

u = 9o'Po + L u1r.p1 
j=l 

(3.55) 

(3.56) 
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then equation (3.56) is equivalent to 

i = 1,2, ... ,N 

We can rewrite equation (3.58) in matrix form: 

(3.58) 

where: 

(3.59) 

We have assigned the superscript (e) to denote that we are working at the 

elemental level. 

We have now reached a stage where the partial differential equation is suitable 

for numerical evaluation. The function in equation (3.56) is a linear combination of 

basis functions cp1 possessing the properties described in section 3.3. These basis 

functions represent the individual elements. The polynomial basis functions may be 

of varying order. Figure (3.4) shows some first, second and third order elements in 1 

and 2 dimensions. 
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3. 7.4 The Finite Elements 

There exists a vast array of finite elements and techniques for generating 

them. In one dimension, the element can be built from a linear, parabolic, or higher 

order polynomial. There is a greater variety of elements in two dimensions. The 

representative elements are often either triangular or quadrilateral in shape, and are 

again of varying order of polynomial representation. Higher orders of representing 

polynomial functions generally result in faster rates of convergence and therefore 

usually greater accuracy. 

For lower order elements it is often simpler to use direct methods for generat­

ing the elements. Numerical techniques are often used for higher order elements in 

conjunction with Isoparametric transformations. 

Interpolation Functions/Shape Functions 

Interpolation polynomials are chosen to represent the discrete model. Each 

element is defined using an interpolation function to describe its behaviour between 

end points ( called nodes). 

The shape function is the coefficient that appears in the interpolation poly­

nomial. The shape function is a set of basis functions which span a defined space as 

discussed previously for each node of the element. A shape function is written for 

each individual node of a finite element and has the property that its magnitude is 1 

at that node and 0 for all the other nodes in that element. 

Usual terminology is to use N to represent the shape function. I have chosen a 

more descriptive terminology and use rpe, which shows its relation to the interpolation 

polynomial. Let us now look at some of the formulations of some of the elements. 

1-d C0 Linear Element 

The two-node 1-d linear element as shown in Figure 3.4a has the trial solution: 

2 

[r(e)(x; a) = L ajrp?\x) (3.60) 
j=l 
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node I 

quadratic Id element 
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61 

Figure 3.4: Finite elements: ( a) one dimensional elements; (b) two dimensional tri­
angular elements; ( c) two dimensional quadrilateral elements. 

where the shape functions 'Pje)(x) are: 

(3.61) 

1-d c0 Quadratic Element 

The three-node 1-d quadratic element as shown in Figure 3.4a has the trial 

solution: 

3 

[r(el(x; a) = L a1cp?\x) 
j=l 

where the shape functions 'Pje) (x) are: 

(e)( ) _ (x - x2)(x - x2) 
'Pi x - (x1 - x2)(x1 - x3) 

(e)( ) _ (x - x1)(x - x1) 
'Pz x - (x2 - x1)(x2 - X3) 

(e)( ) _ (x - x1)(x - x1) 
'P3 x - (x3 - x1)(x3 - x2) 

2-d c0 Linear Triangular Element 

(3.62) 

(3.63) 

The three-node 2-d C0 linear element as shown in Figure 3.4b has the trial 

solution: 

3 

[r(e)(x, y; a) = L a1cp?\x, y) (3.64) 
j=l 

where the shape functions cp;e\x) are: 

(e)( ) _ a1 + b1x + c1y cp1 x,y - 2~ j = 1,2,3 (3.65) 



and 

b· J Yk -y1 

X1 - Xk 

1 1 X1 Y1 
2 1 X2 Y2 

1 X3 Y3 
1 
2[(x2y3 - X3Y2) - (x1y3 - X3Y1) + (x1Y2 - X2Y1)] 

area of element 

62 

(3.66) 

The subscripts i, k, l have the values 1, 2, 3 for cpie) (x, y) and are permuted cyclically 

for cp~e) (x, y) and cp~e) (x, y). 

The shape functions described above are formulated onto the real element's 

local coordinate system. This gives a physically intuitive feel to the shape function. 

However, shape functions can be considerably simplified and generalised with the 

concept known as isoparametric elements. 

3. 7.5 Isoparametric Elements 

Isoparametric elements are formulated on a natural coordinate system. Nat­

ural coordinates are a local system that permit the specification of a point within 

the element by a set of dimensionless numbers whose magnitudes never exceed unity. 

The shape function uses a parametric mapping on a parent element and then maps 

them to the real element. 

Isoparametric elements employ the standard form for the element trial solu­

tion and the shape functions satisfy the interpolation property. However, the shape 

functions are generated indirectly, by first developing a master set of shape functions 

using a direct approach, and then mapping ( transforming) the master set onto each 

of the real elements in a mesh. The complexity of the mapping generally makes it im­

possible to write down explicit expressions for the resulting shape functions cp)e) ( x). 
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Since the isoparametric approach results in shape functions being defined implicitly 

rather than explicitly, there is necessarily a greater reliance on numerical procedures. 

Isoparametric transformation is the standard approach that the fem relies on 

when it has to deal with curved geometries, which is a strong point of the fem. 

The transformation from straight to curved sides is done as follows. Consider 

that the x, y coordinates can be expressed in terms of curvilinear coordinates: 

X = x(~, TJ), y = y(~, TJ) (3.67) 

The general transformations for a function cp is 

acp acp a~ acp aTJ -=--+--
ax a~ ax aT/ ax 

(3.68) 

acp acp a~ acp aTJ -=--+--
ay a~ ay aTJ ay 

Generally explicit expressions for ~, T/ in terms of x and y are not easily available. 

Taking the derivatives of cp(x, y) with respect to~ and v: 

Inverting gives: 

and 

acp 
ax 
acp 
ay 

1 ( ay acp ay acp) 
I J( e) ( ~, TJ) I aTJ a~ a~ aTJ 

1 ( ax acp ax acp) 
I J( e) ( ~, TJ) I - aTJ a~ + a~ aTJ 

where IJ(e)(~, TJ)I is the determinant of J(e)(~, TJ) and is called the Jacobian. 

(3.69) 

(3.70) 

(3.71) 

(3.72) 
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The Jacobian gives the amount of local expansion or contraction of the coordinates 

due to the mapping and must be finite if the transformation is to be unique. The 

differential area transforms to: 

(3.73) 

The value of IJ(e)(~, 77)1 gives the amount of local expansion or contraction of the 

coordinates due to the mapping. 

3.7.6 2-d C0 Linear Triangular Element 

The shape functions in curvilinear space are: 

'Pl(~, 77) 

'P2 ( ~' 77) 

<p3 ( ~' 77) 

77 

1 - ~ - 77 

3.7.7 2-d c0 Quadratic Triangular Element 

3.7.8 

The shape functions in curvilinear space are: 

'Pl(~, 77) [1 - (~ + 77)][1 - 2(~ + 77)] 

<p2(~, 77) ~(2~ - 1) 

<p3 ( ~' 77) 77(277 - 1) 

<p4(~, 77) 4~[1 - (~ + 77)] 

<p5(~, 77) 4~77 

'P6 ( ~' 77) 477[1 - (~ + 77)] 

2-d c0 Linear 4 N oded Quadrilateral Element 

1 
-(1 - ~)[1 - 77) 
4 
1 
4(1 + ~)(1 - 77) 

(3.74) 

(3.75) 

(3.76) 
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3.7.9 2-d 8 Noded Quadratic Quadrilateral Element 

'Pl(~, TJ) 
1 

--(1 - ~)[1 - TJ)(l + ~ + TJ) (3.77) 
4 

'P2 ( ~' TJ) 1 2 ( -(1-~) 1-TJ) 
2 

cp3 ( ~' TJ) 
1 
-(1 + ~)(1 - 77)(~ - TJ - l) 
4 

cp4(~, TJ) 
1 
2(1 - TJ2)(1 + ~) 

cp5(~, TJ) 
1 
4(1 + ~)(1 + TJ)(~ + TJ - l) 

'P6 ( ~' TJ) 
1 
2 (1 - eH1 + 77) 

cp7 ( ~' TJ) 
1 

--(1 - ~)(1 + TJ)(~ - 77 + 1) 
4 

cpg(~, TJ) 
1 
2(1 - T/2)(1 + ~) 

The (isoparametric) mapping functions for all of the above elements are: 

n 

X = Z:xie)cpk(~,TJ) 
k=l 

n 

Y = L Yke)cpk(~, TJ) 
k=l 

(3.78) 

where n is 3 and 6 for their respective linear and quadratic triangular elements, and 

4 and 8 for their respective linear and quadratic quadrilateral finite elements. 

Computer algebra packages such as Macsyma [Macsyma] make the direct gen­

eration of elements relatively straight forward. They can even generate Fortran or C 

code for use in a finite element program. 
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No Gauss Accuracy of Gauss points Weights, 
points, n quadrature ~nl Wn/ 

1 O(h2) ~11 = 0 W11 = 2 
2 O(h4 ) 61 = -1/3 W21 = 1 

62 = -61 W22 = W21 

61 = - ~~ W31 = 5/9 
3 O(h6) 62 = 0 W32 = 8/9 

63 = -61 W33 = W31 

Table 3.1: Gauss points and weights for Gauss-Legendre quadrature rules for one­
dimensional elements and two-dimensional quadrilateral elements. 

3.7.10 Gaussian Quadrature 

For the isoparametric transformation we need to evaluate the parent element. 

This is done numerically with Gauss Legendre quadrature. The integrals are each of 

the form: For the 1-d elements, 

(3.79) 

for the 2-d triangular elements, 

(3.80) 

and for 2-d quadrilateral elements, 

(3.81) 

where Wnt and Wnt are weight factors and the ~nl are the quadrature points at which 

the integrand is evaluated. 

Gauss-Legendre quadrature is used; the ~nl are the zeros of the nth-degree 

Legendre polynomial and are the Gauss points. The Legendre polynomials are an 

infinite set of orthogonal polynomials. The above tables show the Gauss points and 

weights for both the 1- and 2d shape functions used. 
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No Gauss Accuracy of Gauss points Weights, 
points, n quadrature ~nl T/nl Wnt 

1 O(h2 ) ~11 = 1/3 T/11 = 1/3 Wu= 1 
61 = 1/6 T/31 = 1/6 W31 = 1/3 

3 O(h3 ) 62 = 2/3 T/32 = 1/6 W32 = 1/3 
62 = 1/6 T/33 = 2/3 W33 = 1/3 
~41 = 1/3 T/41 = 1/3 W41 = -27/48 

4 O(h4 ) ~42 = 1/5 T/42 = 1/5 W42 = 25/48 
~43 = 3/5 T/43 = 1/5 W43 = 25/48 
~44 = 1/5 T/44 = 3/5 W44 = 25/48 

Table 3.2: Gauss points and weights for Gauss-Legendre quadrature rules for two­
dimensional triangular elements. 

3. 7.11 Assembly of the System Matrix 

An NxN system matrix is assembled from adding each local element matrix 

from 1 to the total number of elements (NEL) to it. The element matrices· overlap 

where contributions to common nodes are encountered. 

Once the system matrix is assembled the essential (Dirichlet) boundary con­

ditions are inserted. As natural (Neuman) boundary conditions form part of the 

equation, they are incorporated into the elemental matrices. 

3.7.12 Solution Techniques of the Assembled Matrices 

The assembled system of equations form a set of matrices, [A] {x} = {b}. 

There exists a plethora of software available, both commercial and freeware, to solve 

such a system. The Sparse Linear Equation Solver [Kundert 1988] is an excellent free 

black box solver for both symmetric and unsymmetric [A] matrices. The NAG li­

braries also provide excellent commercially supported matrix equation solvers [NAG]. 

3.8 Coupled Partial Differential Equations 

Coupled pdes are a natural extension to fem techniques. An integrated method 

of solution for the coupled electrochemical equations is chosen. The degrees of free­

dom (DOF) are computed directly without numerical differentiation. The method 
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is clear and direct to understand. However, a major disadvantage of this method is 

the fact that the system of equations becomes very large and a lot of computing is 

required. 

Each trial solution uses the same set of trial functions, but a different set 

of DOF. Using the same trial functions loses no generality since they are merely a 

"basis" in terms of which the trial solutions are expanded. It is the numerical values 

of the coefficients of these functions, i.e., the values of the DOF, that determine the 

resulting trial solution. 

3.9 Numerical Solution of Non-Linear Differential Equations 

Non-linear pdes are solved numerically by iteratively solving (i.e. linearising) 

the nonlinear simultaneous equations until a suitable convergence limit has been 

reached. 

There are numerous methods for solving non-linear partial differential equa­

tions, with no one method being suitable for all problems. Two methods are de­

scribed: the Newton-Raphson method; and the modified Newton Method. The 

Newton-Raphson method has stronger convergence properties; however, the modi­

fied Newton method often converges faster (the Jacobian matrix is only calculated 

once). 

3.9.1 The Newton-Raphson Method 

We extrapolate the matrix equation (3.58) to include a general non-linear 

coupled set of equations. The [U], [Kl, [H] and {F} matrices can now have non­

linear terms. We define a vector {a} to take into account coupled equations. For two 

unknowns {a} is: 
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{a} (3.82) 

We set our generalised equation of (3.58) to zero and equate it to a residual 

vector {rk} 

(3.83) 

In the Newton-Raphson method (and indeed in all Newton-type methods), we 

assume that the behavior of the residual vector in the neighborhood of the previous 

solution uk is linear, i.e. 

(3.84) 

Rearranging (3.84) to find the new solution ak+ 1 , 

(3.85) 

where J is the Jacobian matrix, and has the general equation form: 

(3.86) 

The numerical solution is more computationally efficient at solving equations 

(3.84) rather than the inversion technique suggested in equation (3.85). 

Such paths are successively taken unless an appropriate norm of the residual 

vectors satisfies a given convergence criterion, e.g. 

(3.87) 
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Figure 3.5: Newton-Raphson and Modified Newton methods in one-dimensional prob­
lems. 

where II · II stands for the L2 vector norm II a II= c~=i a;) 1/ 2 . Such a tangent 

iteration procedure is illustrated on Figure 3.5 for a one-dimensional case and is 

computationally expensive since the Jacobian matrix is allowed to vary continually 

and hence each iteration implies factorisation or Gauss elimination on a new matrix. 

3.9.2 The Modified Newton Method 

A modified Newton iteration technique is often preferred over the Newton­

Raphson as it assumes that the actual Jacobian matrix may be kept constant for a 

certain number of paths, as shown in Figure 3.5. 

(3.88) 

The modified iteration procedure can be used from the beginning of each 

time step (pure modified Newton method) in which case only one evaluation and 

factorisation of the iteration matrix is needed per time step. The convergence criteria 

lS 

(3.89) 
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Figure 3.6: Division of the time axis into steps .6.t1 , .6.t2 , ... , for time-stepping methods, 
and computed discrete values (ai)n at times tn, n - 1, 2, ... 

with a convergence threshold f. > fk- That is, the corresponding number of itera­

tions to convergence is greater than the standard tangent (Newton-Raphson) itera­

tion procedure. However these types of iterations are generally much cheaper since 

they involve only computations of the current residual vector ( corresponding to the 

previous displacement). 

3.10 Time Stepping Techniques 

3.10.1 Introduction 

In all time-stepping methods, the time axis is divided into a succession of time 

steps .6.ti, i = 1, 2, ... , beginning at time t0 , as shown in Figure 3.6. Some methods 

require the steps to be of uniform length, others allow the steps to be of different 

length. We seek a solution for {a(t)} over the continuous domain oft, using an 

approximate solution that consists of discrete values for {a(t)} at the end of each 

step, starting from the known initial value a0 at time t0 for the ith component of 

{ a(t)}. 

The discrete values {a}n, n = 1, 2, ... , are computed from a recurrence relation 

which relates the values for {a} at two or more successive times. The recurrence 

relation is an approximation to the differential equation. Almost all of these time­

stepping methods can be classified as Linear Multistep (LMS) methods, where linear 

refers to the nature of the recurrence relation, and not to the differential equation 

which can be non-linear. 
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The LMS one-step method chosen relates the discrete values at both ends of 

a single time-step. It is often used for first-order initial-value problems. 

The general time-stepping equation used is often called the 0-time-stepping 

equation. It encompasses three finite difference formulas: 

The backward Euler method (backward difference); 

11 The Crank-Nicolson method (mid-difference); and 

iii The Euler method ( forward difference). 

Of these three time stepping techniques, the backward Euler and the Crank­

Nicholson methods are used as implicit methods, and the Euler method as an explicit 

methods. 

3.10.2 Implicit Time-Stepping Methods 

The main drawback of an implicit method is the relative complexity of the 

associated computer program, especially for non-linear problems. This is for the 

following reasons: 

Implicit methods involve solving a full system of equations of the size of 

the system, with an iteration matrix which has to be updated regularly 

for nonlinear problems; 

11 A re-evaluation of the Jacobian iteration matrix requires the computa­

tion; and of the element level. The computational efficiency of the finite 

element program is of course highly dependent on the cost of this opera­

tion and the way it is implemented in combination with the elimination 

or factorisation of the Jacobian matrix. 

iii Computational strategies for non-linear analysis are more complex not 

only to develop, but also to use, since the user has freedom in the choice of 

the type of iteration method or combination of them in the same solution. 



However, the advantages of the implicit method are: 

1 It is much more flexible than explicit methods. There is no restriction to 

the types of problems that can be solved; and 

11 It is far more stable than explicit methods, and can lead to more econom­

ical solutions as longer time steps can be used. 

3.10.3 The 0 Finite Difference Method 
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As regards notation, each of the following recurrence relations will be derived 

for the nth time step, lltn, which carries the solution from time tn-I to time tn. This 

is illustrated symbolically in Figure 3.7 for a typical DOF ai(t) where we have already 

stepped the solution forward through the first n - 1 time steps. We therefore know 

the solution at time tn-I but not at tn. 

We extend our original pde, eqn (3.90) to the time domain, i.e.: 

OU 
µ ot - \7 · \7 (au) + \7 (,Bu) + ,'U = f (3.90) 

with the respective initial and boundary conditions as prescribed in section 3.90, and 

µ is a coefficient. 

The time dependent component is formulated in exactly the same way as 

discussed in Section 3. 7.3. If we keep the same matrix notation as discussed in 

Section 3.9.1 to account for coupled equations, then we get the following matrix 

equation: 

(3.91) 

where 
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Figure 3. 7: Solution has been computed at the end of the first n - 1 time steps, 
(ai)1, (aih, ... (ai)n-1; next we want to compute the solution (ai)n at time tn. 

a (t)-e,act F,(l) - e,act 

., .. --
' .. ---

<a,>.- appro• (F, ),_, (F J.- appro• 

Figure 3.8: {a} and {F(t)} approximated by linear variation over nth step. 

0 varies from O to 1 over the time step. 

Approximate expressions for {da/dt}o, {a}o, and {F}o may be obtained by 

approximating {a(t)} and {F(t)} by linear polynomials over the step. 0 can be 

written in term of interpolation polynomials in exactly the same manner as the C0 

linear element. Thus: 

{a}o '.:::'. (1 - 0){a}n-l + 0{a}n (3.92) 

and 

{F}o '.:::'. (1 - 0){F}n-l + 0{F}n (3.93) 

which are shown in Figure 3.8 for the ith components of the vectors. Differ­

entiating (3.92) yields: 

1 d{ a }o 
(3.94) 

Substituting (3.92) through (3.94) into (3.91) and placing all the known terms on the 

right hand side (RHS) yields: 

( ~\n [CJ + 0 ([U](e) + [K](e) + [H](e))) { a }n (3.95) 
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This is now in the useful form: 

(3.96) 

where 

(3.97) 

{Feff} (1 - 0){F}n-1 + 0{F}n (3.98) 

+ ( liltn [C] - (1 - 0) ([uj{e) + [K](e) + [H](e))) { a }n-i 

In equation (3.96) we get 

0 = 0 : forward difference 

0 = 1/2 : mid-difference 

0 = 1 : backward difference 

Note 0 can be set to any value between O and 1 to allow the use of optimal 

recurrence relations. 

The Explicit Forward Difference Method 

Equation (3.96) is evaluated at the backward end of the time step, tn-i, i.e. 

(3.99) 

(3.100) 

If [C] can be diagonalised (called lumping), then we can solve {a}n in equation (3.96) 

explicitly, i.e. divide the right hand side (RHS) term by the corresponding left hand 

side (LHS) coefficient on the diagonal of [KeJJ]- This is computationally very fast. 
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Lumping is applied to the element consistent (non-lumped) capacity matrix 

[C](e) prior to assembly. In each row of [C] all the terms are added together and 

placed on the diagonal; the off-diagonal terms are zeroed. If we call the lumped 

capacity matrix [CL], its components are 

n 

CL(e) = '°"C(~) . 1 2 
it L_- ZJ '/, = l l • • • l n 

j=l 

CL(e) - 0 . _J. • ij - '/,, J 

(3.101) 

Lumping can be interpreted as using a different set of shape functions just 

for the capacity integral. The shape functions would be equal to 1 over the part of 

the element touching a given node, and zero everywhere else. The shape functions: 

(i) satisfy the interpolation property 'Pi(xi) = 6ji; (ii) are discontinuous within the 

element; and (iii) do not overlap (this being the essential feature that diagonalises 

the matrix). 

Equation (3.102) conserves the total capacity of the consistent capacity ma­

trix: 

n n n n 

LLCL~;) = LL Ci~) (3.102) 
i=l j=l i=l j=l 

The rate of convergence for [CL], however, may be lower than the consistent capacity 

matrix. Lumping can also can yield a significant increase in accuracy [Hint 76]. Also 

note that the variable µ(x) should be a constant over the element capacity integrals 

whereas with the other two implicit techniques, µ(x) can vary. 

The main advantage of the explicit forward difference method over the other 

two methods is that it is computationally much faster. The disadvantage is that it 

is conditionally stable. 

The Mid-Difference Method 

Equation (3.96) is evaluated at the centre of the time step, i.e. 

(3.103) 
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The function values { a }n-i;2 and { F}n-i;2 are approximated by averaging over the 

step: 

{ } {a}n-1 + {a}n 
a n-1/2 '.::::'. 2 , {F} ~ { F}n-1 + { F}n 

n-1/2 - 2 (3.105) 

[Setfl is a non-diagonal matrix, so equation (3.96) becomes coupled, neces­

sitating [Sef!] to be "inverted". Hence the unknown {a}n is defined implicitly by 

equation (3.96). 

The mid-difference method is very popular. Its accuracy is O(~t2), i.e. the 

error at a given time, in the limit ~t ➔ 0, is proportional to ~t2 This is an order of 

magnitude better than the backward difference method. However, for typical time­

step sizes the solutions often contain small oscillations (which die out as the solution 

steps forward). This means that asymptotic accuracy is frequently not realised. 

The Backward Difference Method 

The components of equation (3.96) become: 

(3.106) 

{ Feff} { F}n-1 + 0{ F}n (3.107) 

+ (~~n [CJ - ([U](e) + [K](e) + [Hj{e))) {a}n-1 

Again, [Seff] is a non-diagonal matrix, so the unknown an is defined implicitly by 

equation (3.96). 

The accuracy of the backward difference method is O(~t). Thus if you halve 

the time step, the error at a given time will generally decrease by approximately one 

half if ~t is small enough. 

The backward difference method is quite well behaved, although it is not 

always optimal in terms of computational efficiency. 
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3.11 Stability of the Time-Stepping Methods 

Stable or unstable behavior can be investigated by examining the free response 

of a multi-DOF system, i.e. when f(x) vanishes: 

{O} (3.108) 

The analytical solution is of the form 

{ a(t)} = { v} e->.t (3.109) 

where A is the eigenvalue. 

After some algebra, we can arrive at a general equation to describe the stability 

of the system for the 0-method: 

where A(t)1 is described by: 

1 - (1 - 0)Ait1t 

1 + 0Ait1t 

N 

i = 1,2, ... ,N 

{ a(t)} = L A1(t){ v }1 
j=l 

(3.110) 

(3.111) 

The stability conditions predicted by equation (3.110) are illustrated in Figure 3.9. 

Note that in order for the successive values to not grow larger, the ratio of two 

successive time-step values must be less than 1, i.e. 

(3.112) 

Applying this inequality to (3.110) yields the following conditions: 

For O::; 0 < 1/2: i = 1,2, ... ,N (3.113) 

For 0 2: 1/2: i = 1,2, ... ,N 

Thus for conditional stability we could write: 

(3.114) 
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Figure 3.9: Stability behavior of one-step time-integration methods for first order 
initial-value problems. 

where 

(3.115) 

Often Amax can be very large, requiring very small time-steps. Thus conditionally sta­

ble methods are really only practical if they are explicit ( as in the forward difference 

method) and computationally fast. 

A simple method to determine Acrit is outlined by Burnett ([Burnett 87]). 

Firstly one derives the exact eigensystem, for example consider the following problem: 

{J2U(x, t) _ 8U(x, t) _ O O L 
a 8x2 µ 8t - < X < (3.116) 

The boundary conditions (b.c.) are U(O, t) = U(L, t) = 0 and a and µ are 

assumed constant. The free response has the form 

U(x, t) = c(x)e-,u (3.117) 

Substituting equation (3.117) into (3.116) yields the eigenproblem 

d2v(x) , !!_ ( ) = 0 
d 2 +/\ vx 

X a 
(3.118) 
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Figure 3.10: A uniform 1-d mesh 

with b.c. v(0) = v(L) = 0. The solution of equation (3.118) is: 

v(x) = asin~x + bcos~x 

Applying the b.c. to equation (3.119) gives: 
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(3.119) 

(3.120) 

Now consider the 1-d mesh given in Figure 3.10 with N + 2. Nodes 1 and 

N + 2 are both constrained, leaving only N free DOF. An eigensolution will therefore 

calculate the first N modes. The fe eigenvalue Amax(AN) will be an approximation 

to the nth exact eigenvalue: 

(3.121) 

where <5 = L/(N + 1) is the distance between the two adjacent nodes. 

Equation (3.121) is an approximation for a uniform 1-d mesh. For a non­

uniform mesh in multi-dimensions: 

(3.122) 

where .x~L is the largest element eigenvalue of any element in the mesh. Thus, 

assuming the upper bound in equation (3.122) is an approximation, Amax can be 

found by finding the largest eigenvalue of any single element. 

3.12 Conclusion 

This chapter has detailed the properties of pdes and the theory of the numer­

ical fem schemes used to solve them. The types of pdes were classified, and it was 
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noted that analytical methods can only be used for the simplest of linear problems. 

Two types of numerical methods were defined for the approximate solutions of pdes, 

the finite difference method (fdm) and the finite element method (fem). The fem 

is covered in detail. The variational formulation of a pde is treated, and how it is 

discretised into a form suitable for computational solution is treated in detail. 

The fem, although strictly linear, can be generalised to pdes that are nonlinear. 

The linearisation technique called the Newton-Raphson method is detailed and it is 

shown how it can be used to linearise a non-linear pde so that is suitable for the fem. 

It is shown that coupled pdes are solved quite naturally with the fem, the 

direct method of solution for pdes is considered in length. 

Finally, the 0 time stepping method is detailed, and the applicability of each 

of its time stepping methods are stated. 

The rest of this thesis will apply the theory covered in this Chapter to the 

solution of one and two dimensional electrochemical systems. 



CHAPTER 4 
1-D FINITE ELEMENT MODEL 

4.1 Introduction 

In this chapter we apply the finite element method, detailed in chapter 3, to 

the one dimensional macrohomogeneous equations which were covered in chapter 2 

for a complete lead-acid battery system. The governing equations including initial 

and boundary conditions are given for the positive and negative plates, the separator, 

and the electrolyte reservoir. The equations are then put into a Galerkin formulation 

and discretised into an elemental residual and Jacobian matrix with the appropriate 

trial functions. The resultant non-symmetric banded sparse matrix is solved with a 

conjugent gradient method. 

The following formulation is not necessarily the only or best way of formulat­

ing the equation set. However, the formulation used to examine and investigate as 

many similarities as possible between the finite element solution method and those 

previously published utilising finite differences. 

4.2 The Mathematical Model 

We consider the one dimensional lead-acid cell as shown in figure 4.1. Each 

electrode is an electrically conductive porous matrix filled with concentrated H2S04. 

The sulphuric acid is assumed to be a binary electrolyte dissociating completely into 

H+ and HS04. During discharge, electrolyte is forced out of the electrode pores as 

they fill with lead sulphate. The convective effects associated with this mechanism 

has been investigated previously in one-dimensional models, [Gu 87], and are not 

significant. Hence convection is ignored. Isothermal conditions apply. 
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Region 2 Region 3 Region 4 

Reservoir Separator-ve electrode ;~~:,. 

Pb · l!lP) 1/jJ ,, 
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@tj) 

Figure 4.1: One-dimensional macro-homogeneous model of a lead-acid cell 

The overall discharge reaction of the positive electrode is: 

discharge 
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PbO2(solid) + 3H+ + HS04 + 2e- ~ PbS04(solid) + 2H20 (4.1) 
charge 

At the same time the discharge reaction of the negative electrode is: 

discharge 
Pb(solid) + HSO4 ~ PbSO4(solid) + H+ + 2e- (4.2) 

charge 

PbO2 and Pb are converted into PbSO4 during discharge, and the reverse 

reactions occur during recharge. Note that water is formed during discharge in the 

positive electrode, and that PbSO4 has a larger molar volume than either Pb or 

PbO2. 

4.2.1 The Governing Equations 

The governing differential equations from Chapter 2 for the electrochemical 

cell show in figure ( 4.1) are: 

Rate of porosity variation: 

(4.3) 

Mass transport of the H2SO4 electrolyte: 

ac a ( ( ) ac) ( ( ) ) aisoln t:(x) at - ax Def f x, C ax + K2 + C X K1 ~ = 0 (4.4) 
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A modified Ohm's law for the solution phase: 

c(x)isoln(x) + ""eJJ(X, c)c(x) a<Pasoln - ""eJJ(x, c)(l - 2t~) RT ac = O (4.5) 
X Fax 

Divergence of current of Ohm's law for the solid phase: 

aisoln _ .!!_ ( ( ) a<Psolid) _ O 
ax ax a ef f X ax - (4.6) 

Butler-Volmer equation describes the electrode's kinetics: 

aisoln A . [ ~T/ _ !!.t:.E.T/] 
-- - a'/,0 e RT - e RT = Q 

ax 
(4.7) 

In these equations, K 1 and K 2 are defined separately for the positive and 

negative electrodes: 

(4.8) 

(4.9) 

and 

Kneg = _ __!_ ( 1 - 2t0 ) 
2 2F - (4.10) 

Kpos = __!_ (2t0 - 3) 
• 2 2F + 

(4.11) 

K 1 accounts for the volumetric change per mole of active material converted in each 

electrode and K 2 accounts for the volumetric ion production or consumption rate. 

The electro-active interfacial area per unit volume, Aa, is electrode specific 

and is defined for discharge as: 

Apos = apos (1 _ U)(pos 
a max 

Aneg = aneg (l _ U)(neg 
a max (4.12) 

and for charge as: 

Apos = apos (U)(pos 
a max 

Aneg = aneg (U)(neg 
a max (4.13) 
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where (i are exponents for the charge dependence of the specific active surface area. 

U is the electrode utilisation and is defined by: 

1 11 
U=-Q jdt 

max O 
(4.14) 

The exchange current densities for the positive and negative electrodes are: 

( ) 
"(pas 

-pas _ -ref,pos C 
2o -io -

Cref 
(4.15) 

( )
"(neg 

-neg _ -ref,neg C 
2o -io -

Cref 
(4.16) 

where "'(i are exponents for the concentration dependence of the exchange current 

density. 

The electrode overpotential, 1J is defined for both electrodes as: 

( 4.17) 

and 

1Jneg = <Psoln - <Psoln (4.18) 

!:iU is the thermodynamic open circuit cell potential. It can either be assumed to 

be a constant, or can be specified as a function of electrolyte concentration and 

temperature (Appendix A.6). 

The parameters a 0 and ac are the anodic and cathodic transfer coefficients. 

Equation 4. 7 is a Butler-Volmer type equation and determines the transfer current 

which drives the electrochemical reaction and determines the relationship between 

the solid and solution phases. Obviously the transfer current density equals zero in 

the reservoir and separator regions. 

The conductivity of the electrolyte and the solid matrix, and the diffusivity 

of the electrolyte change with varying porosities. This is accounted for with the 
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following Bruggeman-type [Mer 62] relations, i.e. 

(4.19) 

Note that the coefficients ~(x, c), and D(x, c) can depend on concentration. Refer to 

Appendix A.6 for their representative equations. 

The porosity is calculated from the divergence of the solution current, ai~~in, 

at each iteration. 

The Reservoir and Separator Regions 

In the reservoir and separator regions (see Figure 4.1), the divergence of cur­

rent is zero, i.e. 

( 4.20) 

Equations (4.3) - (4.7) are modified in the following manner: 

The porosity is obviously constant in these regions, i.e. 

E = Esep = 1 and E = Eres ( 4.21) 

Equation ( 4.4) still applies, but without the current divergence term ait~1n. 

The solid phase potential to zero, reflecting the physics of the system, i.e. 

equation ( 4.6) becomes: 

<Psolid = 0 (4.22) 

Obviously ions are not produced or used in these regions, hence in equations ( 4.20) 

to ( 4. 7) we set: 

(4.23) 
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4.2.2 Initial and Boundary Conditions 

The porosity, 1:, of the system and the sulphuric acid concentration, c, are time 

dependent and require initial conditions, 1:0 and c0 . 

In this section we use physical reasoning to arrive at the appropriate boundary 

conditions. Later we will see the boundary conditions evolve naturally from the weak 

formulation of the partial differential equations. 

We take the external boundary conditions of the model to be the centres of 

the positive and negative electrodes. This allows us to exploit symmetry for two of 

the boundary conditions, i.e. 

(4.24) 

( 4.25) 

At the centre of the electrodes all the current in the solution has been trans­

ferred into the solid phase, i.e. 

isoln = 0 (4.26) 

For constant current discharging and charging, the current enters and leaves the cell 

through the grid collectors. If we take the divergence of the solid current for the 

positive electrode we get at the centre of the electrode: 

pos 8</>solid _ J 
aef f ax - tot ( 4.27) 

where ftot is the total applied current density. Positive values of ftot correspond to 

discharge conditions, and negative values to charging conditions. 

Similarly we can use the same argument for the negative electrode, however, 

we need to assign the solid potential to zero to obtain a particular solution, thus: 

<Psolid = 0 ( 4.28) 
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That is, we assign a reference potential of O volts to the negative electrode at x = 0. 

For constant potential discharging and charging we set the solid potential a 

predetermined value at the centre of the positive electrode. 

<Psolid = V (4.29) 

4.3 Method of Solution 

Equations ( 4.3) to ( 4. 7) are a coupled set of nonlinear partial differential e­

quations. As such we seek a numerical solution. Equations ( 4.4) to ( 4. 7) are solved 

for c, isoln, <Psolid, and <Psoln using finite elements in what is called, in computational 

fluid dynamics, the integrated method [Cuvelier 85]. The equations are linearised 

with a Newton-Raphson technique. 

The boundary conditions ( 4.24) to ( 4.28) homogeneous, except for either e­

quation (4.27) or (4.29) which are non-homogeneous Neuman and Dirchelet boundary 

conditions respectively. Equation ( 4.24) specifies either constant current discharging 

or charging, and is applied at the centre of the positive electrode. Equation ( 4.29) 

specifies either constant potential discharging or charging and is again applied at the 

centre of the positive electrode. 

The porosity, E, is solved from the solution of the coupled equations using 

equation ( 4.3) from the previous iteration. As such, it does not appear explicitly in 

the set of coupled equations, i.e. it is solved from the divergence of current from the 

previous iteration, and the porosity is updated for the model to be solved in the next 

step. 

The general method as outlined in the previous chapter is the method of 

weighted residuals. The particular weighted residual method used is the Galerkin 

method (i.e., the basis functions of the approximation are the same as the test func­

tions). It will have the following outline: 

multiply the equations by arbitrary test functions. <pi; 



integrate over the domain O; 

apply Green's formula if necessary; 

substitute the boundary conditions. 

4.3.1 Galerkin Formulation of the Residuals 
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Firstly, we multiply equations ( 4.4) to ( 4. 7) by arbitrary test functions and 

integrate over the domain, and apply Green's formula. 

The residual for material balance for H2S04 ( 4.4) is: 

R(x, t; a) = j(e) 'Pie) [1:(x/3c(~/; a) - ! ( Def!(x) ac(~:; a)) 

+ (K2 + c(x)Ki) azsoln~:, t; a) l dx 

0 (4.30) 

Integrating the second order term by parts gives: 

R(x' t ·, a) = J(e) (e) ( ) ac(x, t; a) d J(e) acpie) D ( ) ac(x, t; a) d 
'Pi t: X at X + ax eff X ax X 

[ . (-n ac(x,t;a))]Xb J(e) (e) (K ( )K) azsoln(x,t;a) + 'Pi eff ax + 'Pi 2 + C X 1 ax 
Xa 

0 (4.31) 

The residual for ohm's law in solution (4.5) is: 

J
(e) (e) [-: ( )aef>soln(x,t;a) 

R(x, t; a) = 'Pi 'lsoln(x, t; a)c(x) + c(x)Keff x, C ax 

_ ( )RT(l - 2t0 )a(c(x,t;a))] d 
Keff x, C F + ax X 

0 ( 4.32) 

The residual for the divergence of current ( 4.6) is: 

R(x,t;a) = J(e) 'Pie) [azsoln~:,t;a) _ ! (aef!(x)a<Psoli~~,t;a)) l dx = O 

( 4.33) 
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Integrating the second order term by parts gives: 

R(x, t·, a) = (e) 'lsoln x, 'a d 'Pi X ( ) 'Psolid x, 'a d !(e) a-: ( t· ) /(e) a (e)( ) a;;, ( t· ) 
'Pi ax X + ax <7eff X ax X 

+ [ _ (- aJ>solid(x, t; a)) l X& 

'Pi <7eff ax 
Xa 

0 (4.34) 

The residual for electrode kinetics ( 4. 7) is: 

R( t . ) _ /(e) (e) [aisotn(x, t; a) A . ( !!.a.£. 11 _!!.a.£. 11)] d _ O (4 35) X, 'a - <f'i ax - a'lQ e RT - e RT X - . 

This forms the set of the weak formulation of equations (4.4) to (4.7). 

4.3.2 Trial Functions for the Governing Equations 

We seek trial solutions for the previously defined unknowns which can be 

composed of any of the one-dimensional basis functions defined in Chapter 3. Note 

that for the respective basis function derivatives, the partial derivatives of the trial 

functions with respect to both x and t, revert to ordinary derivatives. 

n 

c(el(x, t; a) = L Cj ( t)r.p;e) (x) (4.36) 
j=l 

n 

-:(e) ( t· ) - ~ . (t) (e) ( ) 'lsoln X, , a - L....J 'lsoln,j 'Pj X ( 4.37) 
j=l 

n 

¢~~n(x, t; a)= L <Psoln,j(t)r.p;e)(x) ( 4.38) 
j=l 

n 

¢~~iix, t; a)= L <Psolid,At)r.p;e\x) (4.39) 
j=l 

We can also define basis functions for our other variables, E, K,, a: 

n 

iel(x, t; a)= L Ej(t)r.p;e\x) ( 4.40) 
j=l 
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n 
-(e) ( . ) _ ~ ( ) (e)( ) K,soln X, t, a - ~ K-soln,j t 'Pj X ( 4.41) 

j=l 

n 

a;:ln(x, t; a)= L O"soln,j(t)cp;e\x) ( 4.42) 
j=l 

Substituting the respective trial functions and derivatives of the trial functions 

into their residual equations gives: 

Material balance: 

Ohm's law in solution: 

( 4.44) 

Divergence of current: 

n I (e) (e) dcpj(x). L 'Pi (x) dx 'lsoln,j(t)dx 
j=l 
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(4.45) 

Electrode kinetics: 

!
(e) n d<p(_e\x) !(e) 
~ ~x <p~e\x)isoln,j(t)dx - Aaio (eWTJ - e-WTJ) <p~e)dx = 0 

( 4.46) 

Rewriting the coupled equations ( 4.43) to ( 4.46) in a matrix system of nonlinear 
algebraic equations gives: 

U1,2 0 
0 0 

U3,2 K3,3 

U4,2 0 

(4.47) 

where the subscript notation refers to the row and column number in the [K] 

and [U] matrices. This can be further reduced and put into a single equation for the 

residual: 

( 4.48) 

where 

- (,) [ <(t)<pr<p)'l 0 0 

~ I 0 0 
[Cij] - LI 0 0 0 

(4.49) 
e 

0 0 0 

(4.50) 
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0 

(4.51) 

( 4.52) 

where the subscript r 1 denotes terms arising from the Dirichlet boundary 

conditions, and the subscript f 2, are those terms arising from Neuman boundary 

conditions. 

0 

'Pje)c1(t)isoln(X, t; a)cpie) 
0 

-A0 i0 ( eWri - e-Wri) 'Pie) 

I f mat bal, r I 
{~(t)r} = fohmsol,r 

fv'isoln, f 

!kin, r 

{w(t);} = { 
Cj(t) I 

isoln,j ( t) 
<Psolid,j ( t) 
<P soln,j ( t) 

The Jacobian matrix of the matrix equation (4.48) is calculated from: 

( 4.53) 

(4.54) 

( 4.55) 

(4.56) 

and is relatively straight forward for the set of equations. The Jacobian matrix is: 

[ K,_, U1,2 0 

0 l (e) Ui 1 - ~ -~ 0 U2,2 

[J(w)] = z:J , O de 
diaoln 

d (e) 

0 .:.£L_ 0 
~ ~ e 0 0 -~ 

d<Paolid - d<f>aoln 

(4.57) 
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The non-linear algebraic equations can now be linearised with standard or 

modified Newton iteration, as explained in Chapter 3. The standard Newton-Raphson 

linearisation iteration has the form: 

( 4.58) 

where k denotes the number of the iteration. 

In summary, the model incorporates all the material properties and functions. 

The non-linear equations are linearised with a Newton-Raphson algorithm. 

4.4 Remarks 

4.4.1 Necessary Conditions for the Elements 

We are solving for four functions, c, isoln, </>solid, and <Psoln using the finite 

element technique. The porosity, t, is solved from the previous iteration from equation 

(4.3). 

In the Galerkin equations, c and </>solid appear as first order derivatives. This 

means that the basis functions must be continuously differentiable in each element 

and continuous in the whole domain, n. 

The basis functions for isoln and <Psoln are not differentiated in the Galerkin 

equations. These basis functions have to be continuous in each element, but in the 

domain n they are allowed to be discontinuous. They must be integrable. Once again 

this poses no problems as <Psoln is continuous throughout the domain. 

The conditions for the basis functions of isoln and <Psoln are weaker than the 

conditions for the basis functions of c and <!>solid· An element which satisfies the above 

requirements is said to be conforming. 

4.4.2 External Boundary Conditions 

All the external boundary conditions are homogeneous, except for the solid 

phase potential which has a non-homogeneous boundary condition at the centre of 
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the positive electrode. This term occurs naturally in the formulation of the weak 

statement and lets the model be charged or discharged at constant current. 

4.4.3 Interfacial Boundary Conditions 

The interfaces of concern are between the electrode/separator, the separa­

tor/electrolyte and the /electrolyte/electrode. The separator/electrolyte interface 

poses no problems; we simply adjust the porosities for each region and make sure the 

interface exists on adjoining nodes. 

For the electrode/separator interface and electrode/electrolyte regions we need 

to check the continuity of first order terms for </>solid and c. Both isoln and <Psoln are 

weaker and we only require continuity inside the element and integrability. This poses 

no problems at the interfaces whatsoever. 

The boundary term for the weak statement of the solid phase potential lapla­

cian, %x ( K,( x) aip!/t4 ), needs to be satisfied for the electrode separator/ electrolyte in­

terfaces. Fortunately the boundary term is naturally satisfied with the homogeneous 

boundary term, a¢,8~lid = 0, arising from the electrode regions, and <Psolid = 0 in the 

separator and electrolyte regions. Whence the boundary term in the electrode region 

is satisfied. 

The concentration c is continuous throughout the model and Inter-element 

continuity is naturally satisfied. 

4.5 Numerical Results 

In this section we compare results generated by the one-dimensional finite 

element model with published data from the finite difference models of Gu [Gu 87] 

and Nguyen [Nguyen et al 90]. Gu's model has data for high rate discharges at both 

25C and -18C, and low rate charging at 25C and -18C. It is a particularly rigorous test 

as it gives data for a discharge/rest/charge cycle. Nguyen's model is concerned with 
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a starved lead-acid cell at high rates of discharge. It uses concentration dependent 

coefficients. 

The results presented used 60 linear elements evenly spaced over the modeled 

region. Mesh grading yielded some improvement in solution accuracy and hence 

time of solution (for less elements). However judicial care was needed as this caused 

spurious oscillations in the solution. 

Parabolic elements yielded identical results for less elements in all cases, how­

ever the computational time was approximately the same for the utilised code. The 

time-stepping method utilised was the backward difference method, due to its stabil­

ity, and hence ease of use. In all cases, extensive testing was conducted on the mesh 

and time interval in order to make sure that solution was not controlled by either. 

Linearisation for each time interval was deemed finished when the difference between 

two iterations was less than 10-6 . 

4.5.1 Comparison with the Gu et al Model 

Although Gu et al's model incorporated convective flow in their model, they 

concluded that movement of electrolyte due to this mechanism does not usually rep­

resent a significant contribution to the net flux of sulphuric acid in the cell [Gu 87]. 

According to W. B. Gu, [Gu 97] Gu et al's [Gu 87], model showed good agreement 

with General Motors' experimental data. The material properties used for the base 

conditions in the present finite element model are identical to Gu et al, and are sum­

marised in Appendix A.2. Some of the individual input parameters are not physically 

realistic, but collectively produce realistic cell voltages. Gu et al assumed a constant 

concentration independent, reference lead electrode and a concentration independent 

conductivity, "', and diffusion, D, coefficients. The electrodes do, however, exhibit 

temperature dependence. 

Gu et al [Gu 87] modeled a one-dimensional lead-acid cell and studied the 

dynamic behavior of acid concentration, porosity, and state of charge of the cell 
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during discharge, rest and charge at -18C and 25C. Subsequently, Gu et al [Gu 97] 

published a more complex model that included a comparison of numerical results to 

validate their techniques. Data from both models are used to evaluate the accuracy 

of the finite element model. 

Discharge 

Figure 4.2 shows voltage profiles at -18C and 25C for a discharge of 340 

mAcm-2. The finite element results show excellent agreement with Gu el al's model, 

[Gu 87] up to 90 seconds at 25C and throughout the discharge at -18C. The more 

rapid drop off of cell voltage in the finite element model can probably be attributed 

to the different methods used to calculate the coefficients for the kinetic term in the 

models. The finite element model calculates the state of charge at each time interval 

and adjusts the kinetics, in much the same way as Gu et al [Gu 97]. In fact the drop 

of cell voltage after 90 seconds seems to follow Gu et al's model closely 

Figure 4.3 shows the acid concentration profiles during a 340 mAcm-2 dis­

charge at both -18C and 25C. Again the results agree well with Gu et al's model 

[Gu 87], at -18C. At 25C, the finite element model predicts a slightly higher acid 

concentration in the anode region. The predictions are very close to Gu et al's model 

[Gu 97]. It is seen that all the electrolyte is used up in the cathode at 25C, this is 

responsible for the drop off in cell voltage as exhibited in Figure 4.2. 

Figure 4.4 shows the electrode capacity profiles. Good agreement is seen 

between the models. As the capacity of the electrodes are calculated from the gradient 

solution current, this also implies that the present model reaction rates are almost 

identical to those of Gu et al [Gu 87]. 

Note, the profiles indicate that the electrodes are not very well utilised during 

high rate discharges at both -18C and 25C. 
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Charge 

Charging is simulated according to the Gu et al's model, (Gu 87]. Following a 

discharge at -18C and 340 mAcm-2 to a cutoff of 1.55 V, and a rest period of lh at 

-18C. The cell is charged at two different temperatures, -18C and 25C at a constant 

current of 20 mAcm-2• The results of the predicted cell voltages, concentration and 

state of charge profiles are shown in Figures 4.5, 4.6 and 4.7. Gu et al's, (Gu 87], 

data are plotted overtop. As can be seen, the results compare very well to Gu et al's 

(Gu 87], and et al's [Gu 97]. 

The high constant current discharge, rest, and slow constant current charge 

cycle is a stringent test on the accuracy of a model, and is thus a good test for the 

validity of the one-dimensional finite element model 

Note in Figure 4.6 that the concentration of sulphuric acid is much more 

uniform after the 1 hour rest following discharge (refer Figure 4.3). This indicates 

that it is much more efficient to rest the cell before recharging. 

In Figure 4. 7, note the non-uniform distribution of charge across the elec­

trodes. 

Lead-acid batteries are usually charged under a constant potential with a cur­

rent limit. Gu et al [Gu 87], stated that this could be achieved in their model by 

iterating on the applied charging current. Gu et al [Gu 97] were able to include a con­

stant solid phase potential into their boundary conditions. This greatly simplifies and 

increases the speed of solution of the model. For the current finite element model, the 

constant current charge/discharge is included as a natural boundary condition of the 

finite element formulation, and a constant potential for charge/discharge is achieved 

readily by enforcing essential boundary conditions for the solid phase potential. 

4.5.2 Comparison with the Nguyen et al Model 

Nguyen et al [Nguyen et al 90] developed a one-dimensional macrohomoge­

neous model of the solid/liquid phases for a starved lead-acid battery. The model 
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assumes negligible convection and has a high rate of discharge. The coefficients D, 

"', and ~UPbo2 depend on c, but are not explicitly formulated in terms of c. That 

is, they are calculated from the concentration at the previous time interval. This is 

modified in the current finite element model to include the functional dependence of 

these coefficients at each iteration as shown in equations (5.40) to (5.45) They were 

primarily concerned with the significance of the separator on the performance of the 

battery. 

Nguyen et al modeled an equivalent battery at a high cold-cranking rate of 

728 Amps at -18C on a battery with thirteen 13.9cm by 10.7cm plates in each cell. 

This equates to a discharge density of 408 mAcm-2 per plate for the model. The 

material properties used are from Nguyen et al [Nguyen et al 90], and are summarised 

in Appendix A.3. 

Figure 4.8 compares the results of the current finite element model with those 

of Nguyen et al for the electrolyte concentration profile. The results agree well for 

each time interval. The acid concentration is not limiting the electrochemical reaction 

for this set of conditions, however, the electrolyte consumption is more pronounced 

for the cathode. 

Figure 4.9 compares the polarisation curves for the present model with that 

of Nguyen et al. 

Figure 4.10 shows that the reaction rates from both models agree well. Note 

that the reaction profile is highly non-uniform (non-optimal) through both plates. 

The anode has the higher rate of reaction at the surface, but the cathode has the more 

uniform rate of reaction throughout the electrode. The reaction rate in the cathode 

varies more with time than in the anode, which is consistent with the polarisation 

curves. 
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Figure 4.11 shows the finite element results for the porosity profiles with N­

guyen's data superimposed. The results are in good agreement. The high non­

uniform reaction rates at the front of the negative electrode cause a rapid drop off of 

porosity with time at the surface of the negative electrode. 

Figure 4.12 shows the cell voltage as a function of time for the 408 mAcm-2 

discharge at -18C. The finite element data are approximately O.lV higher over the 

discharge. This could be caused by a number of reasons, but possibly it is because 

the functional dependence of the coefficients (5.40) to (5.45) are included at each 

iteration and not from the previous time step as in Nguyen et al. Also a natural 

boundary condition was used in the finite element model for the solid phase potential 

while the Nguyen et al model used an iterative algorithm to determine the discharge 

regime. Overall, however, the two discharge curves follow the same path through the 

discharge. 

4.6 Conclusion 

The finite element method has been investigated as a method of numerically 

solving the non-linear coupled macrohomogeneous equations of a complete lead-acid 

battery system. The one-dimensional finite element battery model developed model 

uses the "standard" set of Newman's macrohomogeneous flooded porous electrochem­

ical equations [Newman et al 62], and simulates the dynamic behaviour of a complete 

lead-acid battery during cycles of discharge, rest, and charge. The results were care­

fully analysed with the previously published works of Gu et al [Gu 87], and Nguyen 

et al [Nguyen et al 90]. The results of Gu et al, [Gu 97] were also studied in order to 

validate the methods used. The results agree well with published data. 

The equations are equally applicable in each region, this means that match­

ing conditions between different regions is not necessary. Thus the finite elemen­

t algorithm is computationally more efficient than Gu el al [Gu 87], Nguyen et al 
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[Nguyen et al 90]. Typical solution times for each time interval is a few seconds on a 

133Mhz Pentium processor personal computer. 



CHAPTER 5 
2-D Finite Element Model 

5.1 Introduction 

In this chapter we extend the same formulation of the one dimensional e­

quations to two dimensions, utilising the same numerical techniques developed in 

Chapter 4. The models become more complex in terms of the amount of comput­

er resources they use and the geometry that they can describe. Finite difference 

methods are effectively limited to structured meshes in rectangular geometry unless 

complicated interpolation formulae are used. Finite elements, however, can model 

essentially any geometry. This, coupled with the boundary conditions arising more 

naturally than those associated with finite differences, means that the finite element 

method produces more generally applicable models. 

This chapter is split into two parts: First, we define the governing equations 

and general boundary conditions that will be applied later. The Galerkin Weak 

Statement is applied, and the domain to which the equations apply are put in a 

discretised form suitable for numerical solution. The set of nonlinear equations are 

linearised with a Newton-Raphson method and solved at each time step. Secondly, 

the method is verified by comparing its results to those of the previously published 

finite difference model [Bern et al 93], and of a much simpler finite element model 

[Mao 91]. 

113 
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5.2 The Governing Equations 

As noted previously, the overall discharge reaction of the lead-dioxide electrode 

1s: 

(5.1) 

The overall discharge reaction of the lead electrode is: 

(5.2) 

The governing equations are a continuation from Chapter 4, i.e.: 

Porosity Variation: 

(5.3) 

Mass transport for the H2SO4 electrolyte: 

f: -V · (DeJJ(x, y, c)Vc) + (K2 + c(x, y)Ki) V · iaoln = 0 (5.4) 

Ohm's law for the solution phase: 

c(x, y)iaoln + K(x, y, c)V</>aoln - K(x, y, c)(l - 2t~) ~Ve= 0 (5.5) 

Divergence of current of Ohm's law for the solid phase : 

V · iaoln - V · (ae11(x, y)V</>aolid) = 0 (5.6) 

Electrode Kinetics: 

V · laoln - Aa io e RT " - e- RT ,, = O • • [ !!.11.E. ~] (5.7) 

Note that iaoln is now a vector and hence, for two dimensions, we now have 

six equations to solve, as Ohm's law in solution needs to be solved for its x and y 

components. 
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In the reservoir and separator regions (see Figure 5.1), equations (5.5), (5.6), 

(5.4), and (5.3), along with the divergence of solution current density 

y7 · isoln = 0 (5.8) 

apply. 

The coefficients again follow from Chapter 4: The quantities K 1 and K2 in 

the above equations for the positive and negative electrodes are defined as: 

(5.9) 

(5.10) 

Kneg = _J_ (1 - 2to) 
2 2F - (5.11) 

and 

Kpos = J_ (2to - 3) 
2 2F + 

(5.12) 

The quantities Aa and i0 are also electrode specific: 

Apos = apos (l _ U)(pos 
a max (5.13) 

Aneg = aneg (l _ U)(neg 
a max (5.14) 

where (i are exponents for the charge dependence of the specific active surface area. 

Also, the exchange current densities are defined for the positive and negative 

electrodes as: 

-pos _ -ref,pos C ( ) 
-ypos 

io - io -
Cref 

(5.15) 

-neg _ -ref,neg C ( )
-yneg 

io -io -
Cref 

(5.16) 
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where ,i are exponents for the concentration dependence of the exchange current 

density. 

The effect of the porous media on transport is accounted for with Bruggeman­

type relations: 

aeJJ(x, y) = a(x, y)Eexm(x, y), K,eJJ(x, Y, c) = K,(X, y, c)Eex(x, y), (5.17) 

and Def 1(x, y, c) = D(x, y, c)Eex(x, y) 

Note, that the coefficients K,(X, y, c), and D(x, y, c) can depend on concentration (Ap­

pendix A.6). 

The porosity is calculated from the divergence of the solution current, v' · isoln, 

at each iteration. 

5.2.1 Boundary and Initial Conditions 

To model an electrochemical cell in two dimensions requires careful placement 

of the appropriate boundary conditions. As the solution current, isoln, is a vector, 

we have to consider which component is significant. Also, as the solution current is 

first order in the governing equations, we prescribe the solution current density at 

the boundaries. The initial conditions are the same as in the one dimensional model. 

We will treat here the general case for the application of the boundary condi­

tions; the exact boundary conditions will be detailed for their respective models later 

in the chapter. 

Initial Conditions 

The initial conditions are the same as for the one-dimensional model. We 

prescribe an initial porosity, Eo, and initial sulphuric acid concentration, c0 . Equations 

(5.5), (5.6), and (5.7) are then solved for isoln, <Psolid, and <Psoln· 
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Boundary Conditions 

If we consider the battery cell as a whole, it is a closed system and as such 

the concentration at the boundaries is given by: 

(5.18) 

where n represents the normal vector to the boundary surface. Similarly, we can 

apply the same homogeneous boundary condition at positions of symmetry. 

We can apply homogeneous Neuman conditions at positions of symmetry and 

on current collector surfaces, where: 

(5.19) 

For the solid potential we can again apply homogeneous Neuman boundary 

conditions at positions of symmetry.: 

a<f>solid = O 
an (5.20) 

Where current is collected, we can apply either of the following prescribed 

boundary conditions: 

<Psolid = 0 or V (5.21) 

for a constant voltage discharge/charge; or we can apply the following Neuman 

boundary condition: 

a</>solid J 
-(Jeff an = (5.22) 

for a constant current discharge/charge. 

To obtain a particular solution for the non-homogeneous Neuman boundary 

condition, we must set the solid potential, <Psolid, to a constant at a point in one of 

the electrodes. 
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The solution current, isoln, must be prescribed for its respective components 

at the boundary in the present formulation. Fortunately, as long as some thought 

is given to the modeled region, this poses few problems. For appropriately modeled 

regions we may specify that isoln,n = O; that is, the solution current normal to the 

surface is zero. 

5.3 Method of Solution 

The governing equations are coupled and nonlinear. They are put into Galerkin 

finite element form and solved using a modified Newton-Raphson method, as dis­

cussed in Chapter 2. 

5.3.1 Galerkin formulation of the residuals 

First, we put the five equations into Galerkin residual equation form. 

We use the divergence of solution current density to calculate the porosity at 

each time step. The porosity has spatial but no temporal component in the finite 

element formulation. It is calculated for each time step and subtracted from the value 

for porosity at the previous time step. The residual is written as: 

/
fl(e) ( t· ) ~e)dn _ /fl(e) K azx,soln(X, Y, t; a) (e)dn 

R(x,y,t;a) = E x,y, ,a 'Pi H 1 ax 'Pi H 

K uiy,soln x, Y, 'a (e)do 
/

fl(e) !'.l-: ( t· ) 
1 ay 'Pi 

0 (5.23) 

The residual for material balance for H 2S04 from equation (5.4) is: 

R(x, y, t; a) = /
n(e) ~e) [ ( )ac(x, y, t; a) _ !_ (D ( ) ac(x, Y, t; a)) 

'Pi E x,y at ax eff x,y ax 

!_ (n ( )ac(x,y,t;a)) 
ay eff x,y ay 

+ (K2 + c(x, y)Ki) ( azx,soln~: Y, t; a) + azy,soln~ Y, t; a)) l dO 

0 (5.24) 
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Integrating the second-order derivative by parts gives: 

R(x, y, t; a) = (e) c x, y, , a dD r.pi x D c x, y, , a dD 
/

!1(e) a-( t· ) /!1(e) a (e) ( ) a-( t· ) 
r.pz E at + ax elf ax 

r.p i x D c x' Y' ' a dD /
!1(e) a (e) ( ) a-( t· ) 

+ ay elf ay 

/
!1(e) ~e) (K K) aix,soln(X, Y, t; a) aiy,soln(x, Y, t; a)dn 

+ l.{}z 2 + C 1 ax + ay H 

+ /r(e) (-D ac(x,y,t;a)) -dr 
ef f an l.{)z 

0 (5.25) 

We create two equations for Ohm's law in solution, (5.5), for the x and y 

components: 

The residual for Ohm's law in solution in the x-direction is: 

/
!1(e) (e) [-= aJsoln(X, Y, t; a) 

R(x, Y, t; a) = r.pi 'lx,soln(x, y, t; a)c(x, y) + c(x, y)Keff(x, Y, c) ax 

( )( 0 )RTac(x,y,t;a)] 
-Keff x,y,c 1- 2t+ F ax dD 

0 (5.26) 

The residual for Ohm's law in solution in the y-direction is: 

/
!1(e) (e) [-= . aJsoln(X, Y, t; a) 

R(x, Y, t; a) = r.pi 'ly,soln(x, Y, t, a)c(x, y) + c(x, y)Keff(x, Y, c) ay 

_ ( )(l- 20 )RTac(x,y,t;a)]dn 
Keff x,y,c t+ F ay H 

0 (5.27) 

The residual for the divergence of current,(5.6), is: 

( ) /
n(e) (e) [aix,soln(x, y, t; a) aiy,soln(x, Y, t; a) 

R x, y.t; a = r.pi ax + ay 

!_ ( ( )ac/Jsolid(x,y,t;a)) _ !_ ( ( )ac/Jsolid(x,y,t;a))] dn 
ax <Jeff X, y OX 0y <Jeff X, y 0y H 

0 (5.28) 
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Integrating the second-order derivative by parts gives: 

R(x, y, t; a) = (e) ix,soln x, Y, 'a dn ~e) iy,soln x, Y, 'a dn 
/

fl(e) a-: ( t· ) /fl(e) a-: ( t· ) 
'Pi ax + 'Pi ay 

/
fl(e) ar.pie\x) ( )a¢solid(x,y,t;a)dn 

+ ax aef/ X,Y ax H 

/
n(e) ar.pie\x) ( ) a¢solid(x, Y, t; a) dn 

+ ay aeff X,Y ay H 

+ J _ a<Psolid(x, Y, t, a) -df r(e) ( - . ) 
aeff an 'Pi 

0 (5.29) 

The residual for electrode kinetics (5.7) is: 

/
n(e) (e) [aix,soln(x, Y, t; a) /n(e) aiy,soln(x, Y, t; a) 

R(x, y, t; a) = 'Pi ax + ay 

Aaio err-T/ - e-'=#frr, df2 /
fl(e) ( 0 F O F )] 

0 (5.30) 

5.3.2 Trial Functions for the Governing Equations 

The trial solutions follow directly from the one-dimensional case. We can use 

the two-dimensional basis functions defined in Chapter 3 to support approximate 

solutions of the following: 

n 

E(el(x, y, t; a)= L tj(t)r.p;e\x, y) (5.31) 
j=l 

n 

c(e)(x, Y, t; a)= L Cj(t)r.p?)(x, y) (5.32) 
j=l 

n 

-:(e) ( t· ) _ ~ . ( ) (e) ( ) ix,soln X, Y, , a - ~ ix,soln,j t 'Pj X, Y (5.33) 
j=l 

n 

-:(e) ( t· ) _ ~ . ( ) (e) ( ) iy,soln X, Y, , a - ~ iy,soln,j t 'Pj X, Y (5.34) 
j=l 
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n 

¢~~iix, Y, t; a) = L c/>solid,j(t)cp?\x, y) (5.35) 
j=l 

n 

¢~~n(x, Y, t; a)= L c/>soln,j(t)cpje\x, y) (5.36) 
j=l 

We can also use basis functions to interpolate the following variables, E, K, a: 

n 

i_(e\x, y, t; a)= L Ej(t)cp?\x, y) (5.37) 
j=l 

n 
-(e) ( . ) _""' ( ) (e)( ) Ksoln X, Y, t, a - L.....J Ksoln,j t 'Pj X, Y (5.38) 

j=l 

n 

-(e) ( . ) _""' ( ) (e)( ) asoln x, Y, t, a - L.....J asoln,j t 'Pj x, y (5.39) 
j=l 

Substituting the respective trial functions and derivatives of the trial functions 

into their residual equations gives: 

Porosity variation: 

""' (e)( ) (_e)( ) Esoln,j dO - ""' K 'Pj 'y (e)( )A. . ·(t)dn 
n Jn(e) d (t) n Jn(e) d (e) (x ) 

L.....J 'Pi X, Y cp1 X, Y dt L.....J 1 dx 'Pi X, Y 'f'solid,J 
j=l j=l 

n Jn(e) dcp(_e\x y) L K1 J d ' cp~e\x, y)c/>solid,j(t)dn = 0 
j=l y 

(5.40) 

Material balance: 
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(5.41) 

Ohm's law in solution in the x-direction: 

n ln(e) L 'PJe\x, y)cj(t)({)Je\x, y)ix,soln,j(X, Y, t)dO 
j=l 

n n(e) d (e)( ) ~1 (e)( )()(e)() ()(e)( )'Pj x,y ()n + L 'Pj X, Y C t 'Pi X, Y K,ef J,j t 'Pj X, Y dx <Psoln,j t dH 
j=l 

n n(e) d (e)( ) ~1 (e)( 0 )RT (e)( ) 'Pj x,y (). _ - L 'Pj x,y)K,efJ,j(t)(l -2t+ y'Pi x,y dx Cj t d0-0 
j=l 

(5.42) 

Ohm's law in solution in the y-direction: 

Divergence of current: 

~ ln(e) (e) dipj(x, y) . 
L 'Pi (x, Y) d ix,soln,j(t)dO 
j=l X 

~ ln(e) (e) dipj(x, y). 
+ L 'Pi (x) d iy,soln,j(t)dO 

j=l y 

~ ln(e) dip~e\x, y) ( ) dipj(x, y),,.. . ·(t)dO + L d aeff X, Y d 'Psoltd,J 
. l X X 

J= 
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~ /n(e) dr.pie)(x, y) ( ) dr.pj(x, y) /4 . ·(t)dO + ~ d Clef f X, Y d 'Psolid,J 
j=l y y 

+ /r(e) (- oef>solid(x,y,t;a)) ·df 
Cleff Oll 'Pi 

(5.44) 

Electrode kinetics: 

Rewriting the coupled equations (5.40) to (5.45) as a residual rk in terms of 

a matrix-type equation: 

where 

(e) (e) 
'Pi 'Pj 

0 
/n(e) 

[Cij] = L 0 
0 e 
0 
0 

and: 

I o~:o o 
d;,\e) (<) d;,(.•) d;,(<) (<) d;,(•) 
~<P; D,t f,i (t) ~ + ~<P; D,11,;(t) +.­

O 
0 

0 
0 

0 0 
E( t) 'Pie) r.p; e) 0 

0 0 
0 0 
0 0 
0 0 

0 

0 
0 
0 
0 
0 

0 

0 

0 
0 

0 0 
0 0 
0 0 
0 0 

d;,\•) (<) d;, · d;,(•) (<) d;, · 
~<P; cr,11,;(t)=if + ~<P; cr,11,;(t)=if 

0 

(5.46) 

(5.47) 

(5.45) 

(5.48) 



and: 

0 

0 

0 

0 

and: 

0 

0 

0 

0 

0 

0 

0 

0 
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(5.50) 

where the subscript r 1 denotes terms arising from the Dirichlet boundary conditions, 

the subscript f 2 are those terms arising from Neuman boundary conditions. The 

components of equation (5.50) are: 

and: 
fpor,r 

fmatbal, r 
fohmx sol,r 
fohmy sol, r 
f'ili 80tn, f 

!kin, r 

0 
0 

'PJe)c1(t)ix,soln(x, Y, t; a)cp~e) 

'P)e)c1(t)iy,sotn(x, Y, t; a)cp~e) 
0 

-A0 io (eW11 - e-W 11 ) cp~e) 

The degrees of freedom may be represented as: 

lj ( t) 
c1(t) 

ix,soln,j ( t) 
iy,soln,j ( t) 
c/> solid,j ( t) 
cf>soln,j(t) 

(5.51) 

(5.52) 

(5.53) 

(5.49 
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We calculate the Jacobian matrix for the matrix equation (5.46) from: 

(5.54) 

Hence the Jacobian matrix for (5.46) is: 

0 0 ~ ~ 0 0 
diz aoln d!fi,aoln 

0 dK2,2 ~ ~ 0 0 de diz,aoln di11,aoln /(e) 0 dU3 2 _ ~ -~ 0 0 dU3 6 

P(w)J = z: de de diz,aoln d<Paoln (5.55) 
0 dU4 2 _ ~ 0 -~ 0 dU4 6 

de de di11,aoln d<Paoln e 
~ ~ dKss 0 
di11,aoln dia: aoln 

0 
dt/Jaolid 

0 

0 0 ~ ~ -~ -~ 
d(z,aoln di11,aoln d4'aolid d<Paoln 

where the subscript terminology represents the row and column of the respective [Kl, 

[U], and { F} matrices. 

The set of non-linear algebraic equations (5.46) is linearised with a Newton­

Raphson iteration technique as detailed in Chapter 3. It has the form: 

(5.56) 

where k denotes the number of the iteration. 

5.4 Model Discussion 

We are solving for six unknowns, t, c, ix,soln, iy,soln, <Psolid, and <Psoln· The 

governing differential equations are strongly coupled and nonlinear. The model differs 

from the one-dimensional case in that the divergence of current is solved in the 

coupled set of equations and is used to calculate the volume fraction of electrolyte 

' (porosity), t, and the state of charge, SOC, at each interval. In the one dimensional 

model, we calculated the divergence of solution current density once the solution 

current had been solved. 

A fully integrated finite element method is used to solve the whole electro­

chemical cell. This offers considerable simplifications to the numerical simulations, 

as there is no need for matching boundary conditions between the different regions as 

in previous models, for example [Bern et al 93], [Gu 87], [Nguyen et al 90]. One ex­

ception is the model of Gu et al, [Gu 97], which used a computational fluid dynamics 
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finite difference method. They were also able to apply the same governing equations 

over all the regions. 

Virtually any geometry of an electrochemical cell can be modeled with ease 

using this technique. 

5.4.1 Necessary Conditions for the Elements 

The conditions for the elements follow directly from Chapter 4. From the 

Galerkin weak statement, c and <Psolid appear as first order differentials, thus requiring 

that the basis functions be continuously differentiable in each element and continuous 

in the whole domain n. The functions, ix,soln, iy,soln and <Psoln, are not differentiated 

in the Galerkin equations. The basis functions are required to be continuous in each 

element, but can be discontinuous in the domain n. They must be integrable. 

The conditions for the basis functions for isoln and <Psoln are weaker than the 

conditions for the basis functions of c and <Psolid· As previously noted, a finite element 

which satisfies the above is said to be conforming. 

5.4.2 External Boundary Conditions 

The external boundary conditions are the two-dimensional equivalent of the 

one-dimensional model. They are all homogeneous except for the solid phase po­

tential, <Psolid, which can be non-homogeneous for prescribed regions. The boundary 

condition for <Psolid arises naturally in the formulation of the weak statement. 

5. 5 Numerical Results 

5.5.1 Overview 

In this section we firstly benchmark the two-dimensional finite element model 

with those of Bernardi el al [Bern et al 93] and the simple finite element model of 

Mao et al [Mao 91]. The Bernardi et al model is a two-dimensional model that is 

concerned with the mass transport processes and the variations that occur through 

the height of the cell. Mao et al's model, on the other hand, is concerned with the 
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effects of grid design, plate separation and geometry on the potential and current 

density distributions on an "advanced" lead-acid battery. 

The present model is not compared to that of Gu's [Gu 97]. Movement of 

electrolyte does not usually represent a significant contribution to the net flux of 

sulphuric acid in the cell, hence convective flow has been neglected in the governing 

equations. Gu's two-dimensional model results are concerned with stratification and 

are compared with Alavyoon's experimental results, [Alav et al 91], for this phenom­

ena. The inclusion of fluid dynamics equations into the set of governing equations in 

principle offers no more difficulties other than an increase in computational resources. 

An important aspect of the present work is to investigate the applicability of finite 

elements to electrochemical transport equations. 

In the second part of this section several model results are presented for a 

variety of geometries to show the flexibility of the finite element method when ap­

plied to electrochemical systems. This demonstrates the generality of the numerical 

method and its ability to be used to design and optimise lead-acid batteries. 

5.5.2 Comparison with the Bernardi et al Model 

Bernardi et al, [Bern et al 93] modeled a two-dimensional lead-acid cell using 

Newman's macrohomogeneous equations [Newman et al 62]. They assumed negligi­

ble convective flow and adopted concentrated electrolyte theory. The equations are 

identical to those of equations (5.4) to (5.7). The cell setup is shown in Figure 5.1. 

The cell is composed of four regions, a negative Pb electrode, a porous separator, a 

reservoir of electrolyte, and a positive PbO2 electrode. The electrode's active mate­

rial porous matrix is filled with sulphuric acid which occupies the free space within 

the current collector grid. 

The positive and negative electrodes in Figure 5.1 are modeled as one half of 

a plate, i.e., the left and right boundaries are the centres of the respective electrodes 
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Figure 5.1: Schematic of Bernardi's two-dimensional model for a lead-acid cell 

and represent planes of symmetry. The unit cell shown is repeated to form a stack 

of cells. Electrical current is drawn from grid tabs at the top of the electrodes. 

As illustrated in Figure 5.1, the x-direction represents the width of the unit 

cell modeled. The y-direction represents the height of the cell. The z-direction, which 

is not modeled, represents the cells length. As previously stated, natural convection 

effects are not included. Hence the model is applicable for conditions where the strat­

ification is intrinsically stable. An example would be where the electrolyte density 

increases towards the bottom of the cell. The set of equations is not strictly valid for 

the charging of lead-acid batteries, where unstable forms of stratification occur. 

Finally, in order to satisfactorily model a cell in two-dimensions we make the 

assumption that the conductivity of the top border is sufficiently conductive for the 

non-uniformities that arise in the cell length to be ignored. In a typical lead-acid cell, 

the grid is constructed of lead, and there can be significant variations in cell length 

[Sunu et al 81], [Tied et al 79a] and [Morimoto et al 88], especially for high discharge 

currents. Cells with a small aspect ratio (i.e., width/height -+ 0) are also modeled 

well with the present scheme. 
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Figure 5.2: Schematic of the boundary conditions for two-dimensional finite element 
model with Bernardi et al input parameters. 

For the initial conditions, we take the initial porosity and electrolyte concen­

tration to be uniform at the start of discharge. These values are summarisied in 

Appendix A.4. 

Figure 5.2 details the applied boundary conditions for the two-dimensional 

finite element model. Symmetry exists at the centre of each electrode, hence: 

ac 

an 
a<Psoln 

an 
a<Psolid 

an in,soln 0 

where n represents the unit vector normal to the boundary surface. 

(5.57) 

The cell is filled with electrolyte just to the height of the active material 

(y = H) in order to simplify the boundary conditions. In a real cell there is a reservoir 

of electrolyte above the plates. Hence, across the top and bottom boundaries: 

ac a<Psoln • - = -- = In soln = 0 an an ' 
For the bottom of each electrode: 

a<Psolid 

an 0. 

(5.58) 

(5.59) 
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Current is collected at the top of the electrodes surfaces and the solid-phase 

current density is taken to be uniform across the top of the electrodes, hence: 

-aeft 0<Psolid - -I at the top of the positive electrode. 
pos on - y 

and 

ef f O<Psolid f h . l 
-aneg on = ly at the top o t e negative e ectrode. (5.60) 

We set <Psolid = 0 at the top centre of the Pb electrode in order to obtain a 

particular solution. 

The material data used for the simulation are documented in Appendix A.4. 

Results 

In this section we compare the results of the two-dimensional finite element 

model with those of Bernardi et al for the same base input values. 

The linear finite element mesh used for the simulation is shown m Figure 

5.3. Both the mesh density and time interval were extensively convergence tested for 

solution accuracy. The time stepping algorithm used was the backwards difference 

method. The time step interval was 50 seconds. Solution times for a typical transient 

solution for this model were around 4 hours on a 300 Mhz UltraSparc II. The modified 

Newton-Raphson technique is employed to solve the set of non-linear equations as it 

has overall faster solution convergence properties for the coupled set of equations. 

The model is discharged at a constant current density of 2.98 Acm-2 , based 

on the plate cross section. This equates to a current density of 25.8 mAcm-2 over 

the cross sectional area of the separator. The base case parameters are documented 

in Appendix A.4. 

All the graphs have been converted to dimensionless units in the x and y 

directions. The dimensionless cell height is defined as y / H, and the dimensionless 

width is defined as x/ Ltot, where His the cell height and Ltot is the total cell width. 
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Figure 5.3: Quadrilateral finite element mesh used to model lead-acid cell with 
Bernardi et al parameters. 

Figures 5.4 and 5.5 compare the reaction-rate distributions of the current finite 

element and Bernardi et al models at the beginning of discharge. We can see that 

there is good agreement of data between the models. Note that even for this low rate 

of discharge there are large variations in reaction-rates within the cell. For example, 

the reaction-rate doubles from the bottom to the top of the electrodes. Secondary 

current distributions [Newman 73], are responsible for the reaction-rate distribution. 

In the cathode, the solid-phase potential, <Psolid varies approximately 17 m V from the 

top of the electrode to the bottom, as shown in Figure 5.6. The ohmic potential drop 

due to the conductivity of PbO2 is the primary cause of the reaction-rates distribution 

in the cathode. This is in contrast to the anode, where <Psolid varies less that 1 m V 

in the electrode. This is due to the much higher conductivity of Pb. Hence the 

non-uniform reaction-rate in the cathode causes the non-uniform reaction-rate in the 

anode. 

[b] 
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Figure 5.4: Reaction-rate contours at t=O, for the finite element model. 
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Figure 5.5: Reaction-rate contours at t=O, for the Bernardi et al model. 
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Figure 5.6: Solid-phase potential distribution in the positive electrode. 

Figures 5. 7 and 5.8 show the solution potential distribution in the cell region of 

both the current finite element model and the Bernardi et al model at the beginning 

of discharge. The potential contours agree well with one another, and the overall so­

lution potential difference is very close ( ~ 20m V). The values differ because Bernardi 

et al reference the solution potential to the top of reservoir/separator interface. 

In the anode, the solution-phase potential contours are approximately the 

same shape as the reaction rate contours (Figure 5.4). This is because the over­

potential, TJ, ~ <Psoln, and <Psoln is small. 

The concentration, porosity, and local utilisation which is initially uniform, 

will become increasingly non-uniform as the discharge progresses due to the non­

uniform reaction-rate distribution shown in Figure 5.4. 

Figure 5.10 shows the contour distribution of the electrolyte after 1200 seconds 

of discharge for the finite element and the Bernardi et al models. There is reasonably 

good agreement of data between the graphs. The overall trends between both plots 

are very similar, and the values are within a few percent of one another. Sulphuric 
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acid is consumed in both the electrodes during discharge, and PbSO4 is produced. 

However the acid concentration is generally higher in the anode than in the cathode. 

This is because the reaction in the cathode produces water and hence dilutes the 

acid (equation 5.1). Also hydrogen ions are consumed in the cathode [Bode 77] hence 

reducing the ability of the electrode to carry solution current. The region where the 

acid concentration is highest corresponds to where the initial reaction-rate is lowest, 

the bottom centre of the anode. The lowest acid concentration is at the top centre of 

the cathode. This because the region has a high reaction-rate and sulphuric acid has 

a low diffusion constant. Hence the front of the electrodes have a higher concentration 

of acid than at their centres. The acid is consumed at a faster rate than it can be 

replenished with from the reservoir. 

Figures 5.11 and 5.12 show the reaction rate contours for the respective finite 

element and Bernardi et al models after 1200 seconds of discharge. There is reason­

able agreement between the two graphs. The reaction-rate in the electrodes is now 

more uniform with respect to height. PbSO4 produced in the electrodes can cover 

active material and this reduces reaction-rates particularly where they were greatest. 

This means that other, less used areas of the electrode react at more favorable rates 

and hence reaction-rates become more uniform. The other main influence on the 

reaction-rates is the concentration of electrolyte. This influence is two-fold. Lower 

concentrations of H2SO4 mean there is less active material to react; and the con­

ductivity of H2SO4 drops quite dramatically with decreases in concentration, which 

increases the concentration over-potential and reduces the reaction-rates in the cath­

ode. In the model "/neg = 0, and hence H2SO4 has no influence on the kinetics of the 

anode. This results in the anode having a less uniform reaction-rate in they-direction 

than the cathode. 

Figures 5.13 and 5.14 present the porosity contours at 1200 seconds of dis­

charge for the current finite element model and the Bernardi et al model at the base 



138 

"' "' ~ 

0 
0 1 

Cell Width 
cathode reservoir anode 

Figure 5.9: Concentration contour profiles of sulphuric acid in the cell at t=1200s of 
discharge for both the finite element model. Concentration is in molarity units. 
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Figure 5.10: Concentration contour profiles of sulphuric acid in the cell at t=1200s 
of discharge for the Bernardi et al model. Concentration is in molarity units. 
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Figure 5.11: The reaction-rate contour distributions after 1200 s of discharge for the 
current finite element model. 
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Figure 5.12: The reaction-rate contour distributions after 1200 s of discharge for the 
Bernardi et al model. 
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conditions. The porosity values and contours of the two models agree very well. Note 

that as the greater molar volume of PbSO4 compared to PbO2 and Pb causes the 

decrease in porosity as the active material reacts. The regions where the maximum 

reduction of porosity occur are where the reaction-rates are highest, i.e. towards the 

front/top of the electrodes. 

Figure 5.15 compares the calculated cell voltage during a discharge of 25.7 

mA/cm2 based on separator area. There is very good agreement of data. 

The comparison of the contour plot between the present finite element model 

and the Bernardi et al model is a testing benchmark. The results compare well with 

one another, the over all trends are the same, and the numbers agree within a few 

percent of one another. 

5.5.3 Comparison with the Mao et al Model 

Mao et al presented an interesting model in several ways. It was the first 

macrohomogeneous model utilising finite elements; and it is concerned with geomet­

rical parameters and how they influence the discharge characteristics of a lead-acid 

battery; it is a simple model in that it uses a single differential equation to describe a 

lead-acid battery in the steady-state There are several interesting results from their 

model. They show that grid parameters in fact have little influence on the output of 

a battery. Reducing the separator width increases the output current of the battery. 

The transfer current distribution is very sensitive to the electrode reaction kinet­

ics. They infer from this result that the active material utilisation and electrode 

rechargeability are strongly influenced by electrode design and that such design must 

therefore take into account of the kinetics of the electrode reactions. 

An interesting application of the above results is to examine how the grid 

design influences how fast cells can be recharged In a discharged state, the solid 

matrix conductivity is severely reduced as both Pb and PbO2 have been converted 

into PbSO4 , and the electrolyte concentration and conductivity are depleted. How 



143 

o, .............. ___ .......,......., ________ ......., ___________ ____. 

0 1 

Cell Width 

cathode reservoir anode 
Figure 5.13: Porosity contour profiles after 1200 s of discharge for the current finite 
element model. 
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Figure 5.14: Porosity contour profiles after 1200 s of discharge for the Bernardi et al 
model. 
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Figure 5.15: Comparison of the cell voltage during discharge at 25.7 mA/cm2 between 
the finite element and Bernardi et al models. 



146 

does the reaction-rate etc. change as the battery gets more and more discharged? 

How valid are the models under conditions of partial discharge. 

Mao et al [Mao 91] presented a simple two dimensional steady state finite 

element model based on Newman's macrohomogeneous theory utilising the IMSL 

finite element package PDE/PROTRAN [IMSL]. They derived a Poisson partial 

differential equation with a Butler-Volmer forcing function to represent the kinetics 

of the electrochemical reaction, i.e. 

"'2,-1, A . [ ~11 _!!.c.E.11] 0 -K,eff,c V 'f'soln - aZc,0 e RT - e RT = in the cathode; (5.61) 

2 · [ &E.11 _ fkE..11] --K,ef f,a v7 <Psoln - Aaic,O e RT - e RT - 0 in the anode; (5.62) 

where r,,eff,i represents the effective conductivity of the electrolyte in region i multi­

plied by a correction term using the following equation: 

(5.63) 

and Ai is the specific surface area per unit volume of each electrode. 

The electrode over-potential, rJ for the cathode is: 

rJ = <Psolid - <Psoln - !:::..U (5.64) 

and for the anode is: 

rJ = <Psolid - <Psoln (5.65) 

Mao et al make the assumption that the solid matrix conductivities are so high 

that the solid potential, </>solid, varies insignificantly in the modeled electrodes and is 

assumed constant within each electrode. Hence if we make the anode the reference 

potential and set it equal to zero, the overall cell voltage will be: 

½ell = <Psolid,c - <Psolid,a (5.66) 
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Figure 5.16: Schematic description of Mao et al's two-dimensional region modeled. 

The anodic and cathodic current densities j are then calculated for each elec­

trode from the equation: 

• _ 1'£eJ f,i n2 /4 
}i - ~ V 'Psoln (5.67) 

Figure 5.16 shows a cross section of a pair of battery plates. The dashed lines 

detail the region modeled. The boundary conditions of the modeled domain are given 

by: 

O</>soln Q 
-K,eff-- = on (5.68) 

The model is applied to the Electrosource advanced HORIZON® battery 

system and investigates the effects of grid design, plate separation and geometry on 

the potential and current density distributions on battery performance. 

The material data used by Mao et al is given in Appendix A.6. Mao et al's 

data is derived from that of Gu et al's, [Gu 87], but uses different transfer coefficients. 

Gu et al's data is summarised in Appendix A.2. 

Discussion of the Finite Element Model 

We again take equations (5.3) to (5.7) and solve for the base initial conditions, 

viz constant concentration and porosity. The boundary conditions for the model are 

given in Figure 5.17. As before, we apply symmetry at the centre of both electrodes 
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Anode 

SeparalOr 
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Figure 5.17: Schematic description of boundary conditions applied to finite element 
model with Mao et al input parameters. 

and the left and right borders of the modeled region. The left border is the centre 

of the grid in the x-direction, and the modeled region can be reflected to the left 

of the axis of symmetry. Similarly we can reflect the modeled region on the right 

border. The symmetry assumption on the right and left borders is based on negligible 

variations on the modeled scale in the battery. These assumptions obviously break 

down when there are significant variations in the plates on a scale that is not negligible 

on the inter-grid scale. 

The parameters in two-dimensions are on a volume basis, i.e. parameters such 

as current are measured in Acm-3 • In the z-direction, we use standard terminology 

and model a unit length [Zienkiewicz 89]. 

Results 

In this section we will present results with the same input parameters as 

the steady state model of Mao et al. The plots of the solution potential, <Psoln, 

solution current isoln, reaction-rates j are solved from the initial conditions of the 

concentration, c. The cell is discharged at a constant potential, 0.1 V below the rest 

potential of 2.1277V. 
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Figure 5.18: Quadrilateral and triangular finite element meshes used to model Mao 
et al model 

The mesh was rigorously tested for accuracy and convergence to a reliable 

solution. Figure 5.18 shows the linear quadrilateral and triangular finite element 

mesh used. The triangular and quadrilateral meshes yielded the same results. 

Figure 5.19 shows almost identical results for the reaction-rate profiles for the 

current finite element model and the Mao et al model for the same input parameters. 

We can see that the transfer current is highly non-linear within each electrode along 

they axis, peaking at approximately 1 Acm-3 along the front sides of the electrodes, 

and at a minimum at the centre of both electrodes. The reaction rate proceeds at 

almost 3 times the rate at the front of the electrodes than at the centres. 

Figure 5.20 compares the solution potential distributions for the current finite 

element and Mao et al models. The solution potential values differ for both models 

due to the fact that the current finite element model references the solid phase poten­

tial, <Psolid, to the grid wire of the anode, and the solution phase potentials, <Psoln, are 

calculated implicitly in the model. The Mao et al model is simpler and the <Psoln does 

not require a referenced value in order to obtain a particular solution. This results 
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Figure 5.19: The predicted reaction rates of the present finite element model (left), 
and the Mao et at model (right). 

in a symmetric potential distribution between the electrodes. What is important is 

that both results have the same solution potential difference across the cell, and both 

potential distributions are practically identical. This represents good agreement of 

data. 

The solution current isoln in the modeled cell is shown in Figure 5.21. For the 

modeled condition, Figure 5.21 shows a discharge current density of 94 mAcm-3• This 

value is for a unit thick in the z-direction. In Mao et al, the calculated current density 

is calculated by integrating the reaction rate for an electrode. They calculate for the 

base conditions a value of approximately 37 mA for a thickness in the z-direction of 

0.4 cm. This corresponds to a current density of 92 mAcm-3 • 

For completeness we show the other significant unknown in the current finite 

element model, the concentration, c, 10 seconds into discharge in Figure 5.22. We 

can see that at early stages of discharge the concentration profile is also very uniform 
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Figure 5.20: The predicted potential distribution for a discharge at O.lV below open 
circuit voltage. The finite element model is on the left. Mao et al's model is on the 
right. 

Figure 5.21: The predicted solution current distribution at the start of discharge for 
the present finite element model. 
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Figure 5.22: The concentration profile 10 seconds into a discharge at 2.0277V (O.lV 
below open circuit voltage) 

in the x-direction, but that there is significant reduction of electrolyte at the front of 

the cathode. 

5.6 Conclusion 

A two-dimensional finite element model has been developed to simulate the 

discharge behavior of a lead-acid battery, incorporating the coupled processes of 

electrochemical kinetics and material transport for concentrated electrolyte theory. 

The finite element algorithm employs linear, isoparametric triangular and 

quadrilateral C0 finite elements using the electrolyte concentration, c, the compo­

nents of the solution current, ix,soln, iy,soln, the reaction-rates, j, and the solution and 

solid-phase potentials, <l>soln and </>solid, as the dependent variables. The approach 

applies the equations uniformly throughout each region in a lead-acid cell. The 

method easily accommodates arbitrary shapes within the domain and on the bound­

aries, it readily caters for prescribed variations in material properties and facilitates 
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mesh grading. The equations non-linear equations were linearised with a modified 

Newton-Raphson technique. 

The application of higher order elements should result in more accurate so­

lutions, facilitating less elements to be used to achieve the same result. Parabolic 

elements have been developed but were not finished in time for this work to be pre­

sented. 

The present two-dimensional finite element technique has been carefully bench­

marked against two published models. It predicted almost identical results for the 

same simulated parameters. 

The model uses the "standard" set of Newman's macrohomogeneous flood­

ed porous electrochemical equations [Newman et al 62], and applies them uniformly 

throughout the cell. These equations are equally applicable in each region. 

The equations (5.3) to (5.7) are not optimal in terms of computationally effi­

ciency. They were chosen as a starting point to maintain consistency with previously 

published models [Gu 87], [Nguyen et al 90], [Mao 91], [Bern et al 93]. This facili­

tates a way of evaluating the finite element method against other approaches. 



CHAPTER 6 
Conclusion and Future Work 

6.1 Conclusions 

This thesis has investigated the applicability of the finite element method to 

Newmans's macrohomogenous equations [Newman et al 62]. The technique was suc­

cessfully used to model one-dimensional and two-dimensional lead-acid battery sys­

tems. The method of investigation was an engineering approach rather than mathe­

matical. That is, the principles are applied using intuition, analogies from other fields 

such as computational fluid dynamics and numerical experimentation applied to the 

problems reflecting the practice. The emphasis has not been on mathematical rigor, 

exactly formulation definitions and proofs. The validation of this approach is that 

the results be carefully benchmarked against other published methods. This has suc­

cessfully been done with four previously published papers [Gu 87], [Nguyen et al 90], 

[Bern et al 93] and [Mao 91]. There was good agreement of data with all models. 

This techniqe offers signifcant improvements in region modeling, boundary 

condition matching, and computational efficiency over all previously published pa­

pers. Only the recently plublished paper by Gu et al [Gu 97] has treated the equations 

in such a consistant matter to each region of an electrochemical cell, but are unable 

to offer the simplicity and generality in geometry modeling that the presented finite 

element method offers. For instance completely different lead-acid cells with varying 

input material data and completely different geometry can be modeled and simulated 

in less than an hour. 

154 
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6.2 Future Work 

This work is an initial investigation into the applicability of the finite elemen­

t method to Newman's macrohomogeneous equations. It used what can be called 

a "standard" set of macrohomogeneous equations. The recent paper by Gu et al 

[Gu 97], reformulated the standard set of macrohomogenous equations with three 

explicit unknowns, the solid potential, <!>solid, solution potential <Psoln, and acid con­

centration, c. In addition, Gu et al [Gu 97] included fluid dynamics equations and 

were able to solve for stratification. A computational fluid dynamics finite difference 

algorithm was used to solve the set of equations. As stated above, this formulation 

is computationally more efficient. Using the new formulation for the finite element 

algorithm present should result in good improvement in computational time and use 

of computing resources. 

The two-dimensional results presented used linear quadrilateral isoparametric 

elements. Similar linear triangular elements have been developed. Linear elements 

give a constant variation across the element. The application of higher order elements 

should result in more accurate solutions and require less elements to achieve the same 

result. This work is nearly completed. 

The inclusion of fluid dynamic equations in principle pose no problems in the 

solution of the macrohomogeneous equations, apart from increasing computational 

times. 

The techniques presented in this thesis have convergence problems for high 

discharge rates, when the equations become even more non-linear. More advanced 

algorithms could be employed to aid in the solution of the equations. For example, 

in all of the present work to date the total loading function is applied in a single 

step. In other subject areas it is customary to apply the load as a series of small 

increments [Zienkiewicz 89]. This incremental approach essentially traces out the 

non-linear response of the system to a monotonically increasing load function. This 
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approach has been found to have superior convergence properties and it is expected 

that by using this method the macrohomogeneous equations will have a large window 

of convergence [Zienkiewicz 89]. 

This thesis has treated the macrohomogeneous equations as fully coupled sys­

tem of equations. If the equations were decoupled, and solved in an iterative manor, 

huge gains in terms of computational resources could result. This technique is of­

ten applied in computational fluid dynamics [Cuvelier 85]. The algorithm can be 

extended to three dimensions so that a full cell can be modeled. This would allow 

the considerable non-uniformities of reaction-rate, potential and concentration that 

develop along both the electrodes height and width of the electrodes to be analysed. 

Optimisation algorithms extensively used in structural analysis when applied 

to the macrohomogeneous equations could result in interesting and perhaps unex­

pected optimal electrode designs [Zienkiewicz 89] 

However there will be a huge computational burden unless more advanced 

algorithms are developed to reduce the computational resources. Once again work in 

this area should result in excellent gains. The solution method used was the general 

black box solver Sparse [Kundert 1988]. More advanced and optimised algorithms 

will result in faster solution times [Barret et al 1994]. 

The commercial finite element package ANSYS was used to model the bound­

ary domain and generate the quadrilateral mesh. The ANSYS scripting language 

ADPL was used to output the mesh and boundary conditions. ADPL can also be 

used to develop specific selecting commands so that the geometry and mesh making 

phases of an analysis can be a relatively minor exercise. 



APPENDIX A 
Base Parameters for a Lead-Acid Battery 

The following data are the base parameters used for all the models in this 

thesis for lead-acid cells. 

A.1 Lead-Acid Physical Properties used in Simulations 

Table A. l shows constants common for all the lead-acid cells modeled. 

Table A. l: Base lead-acid physical properties used in simulations [Bode 77]. 

Quantity II Value 

Conductivity of solution phase 
Lead 

Lead dioxide 
Conductivity of H2SO4 at 298K, K29s 

at 255K, K255 

Diffusion of H2SO4 at 298C, D298 

at 255K, D2ss 
Faraday's constant, F 

Gas constant, R 
Transference number of H+, t0 

Molecular Weight of respective species 
MWPbS04 

MWPb02 

MWpb 

Density of respective species 
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/JPbS04 

/JPb02 

PPb 

4.8 x 104Scm-2 

5.0 X 1028cm-2 

7.9 X 10-1Scm-2 

2.8 X 10-1Scm-2 

3.02 x 10-5cm2s-1 

8.79 x 10-6cm2s-1 

9.6487 X 104 

8.314 
0.72 

3.0325 X 102 

2.3919 X 102 

2.0719 X 102 

6.3 
9.7 
11.34 
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A.2 Gu et al's Model Input Parameters 

The following values in Table A.2 are base-line values used for the simulation 

data in a lead-acid cell in Gu et al's model [Gu 87]. They are the typical values and 

are referenced from previously published papers. 

A.3 Nguyen et afs Model Input Parameters 

The values in Table A.3 are base-line values used for the simulation data in 

Nguyen et al's [Nguyen et al 90] model for a lead-acid battery. 

A.4 Bernardi et al's Model Input Parameters 

Tables A.4 and A.5 are the base line values used for the Bernardi et al 

[Bern et al 93] two dimensional lead-acid cell model. 

A.5 Mao et al's Model Input Parameters 

The base-line fixed values for Mao et al's model are given in Table A.6. The 

values are taken from from Gu et al [Gu 87] and Bode [Bode 77]. 

A.6 Concentration/Temperature Dependent Parameters 

The equilibrium overpotential ~UPbo2 ( at 25C) is calculated from [Bode 77]: 

~u = 1.9228.0 + 1.47519 X 10-1 1ogm + 6.3552 X 10-2 1og m2 (A.l) 

+ 7.3772 x 10-2 1og m3 + 3.3612 x 10-2 1og m4 

where the molality of sulphuric acid, m, is given at 25C [Bode 77] by: 

m = 1.00322 x 103c + 3.55 x 104c2 + 2.17 x 106c3 + 2.06 x 108c4 (A.2) 

The temperature dependence of the diffusion, D and ion conductivity, ,-.,, of 

sulphuric acid is given by Gu et al [Gu 87]: 

D = D ex ( 2174 _ 2174) 
25 P 298.15 T (A.3) 
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1801 1801 
"'= "'25 exp (298.15 - T) (A.4) 

The temperature and concentration dependence of the diffusion, D and ion 

conductivity, "', of sulphuric is given by [Tied et al 79b]: 

5 (729 2.174x103 ) 
D = (1.75 + 2.6 x 102c) x 10- e · - T 

"'= c x exp (1.1104 + 1.99475 x 102c - 1.6097781 x 104c2 

3.91695 X 103 - 9.9406 X 104c - (7.2186 X 105 /T))) 
+ T 

(A.5) 

(A.6) 

D and "' are formulated explicitly in terms of c in the equations unless stated. 

6.U was not formulated explicitly in terms of c in any of the models. That is, it was 

determined from the previously calculated time-step value of concentration. This 

was due to convergence problems when 6.U was calculated explicitly in the governing 

equations. 



Table A.2: Base parameters used for simulations of lead-acid cell [Gu 87]. 

Quantity II Value 

Cathode length (half) 
Reservoir length 
Separator length 

Anode length (half) 
Initial Porosity: 

€anode 

f.sep 

€cathode 

Maximum electroactive area, 
Aa 
Ac 

Transfer coefficients 
Anode: 

aa 
ac 

Cathode: 
aa 
ac 

Reference exchange current density 
io,anode (25C) 

io,anode (-18C) 
io,cathode (25C) 

io,cathode (-18C) 
Concentrations parameter for io, "/cathode 

"/anode 

(cathode 

(anode 

Theoretical capacity, Qmax,cathode 

Qmax,anode 

Initial acid concentration, Cref 
Exponent for tortuosity correction 

ex 
eXsep 

exm 

0.06 cm 
0.055 cm 
0.014 cm 
0.06 cm 

0.53 
0.73 
0.53 

1.0 x 102cm2 /cm3 

1.0 x 102cm2 /cm3 

0.5 
0.5 

0.5 
0.5 

1.0 x 10-2 Acm-2 

1.0 x 10-3 Acm-2 

2.0 x 10-2 Acm-2 

2.0 x 10-3 Acm-2 

1.5 
1.5 
0.55 
0.55 
5.66 X 103 

5.66 X 103 

4.9 x 10-3molcm-3 

1.5 
3.53 
0.5 

160 
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Table A.3: Base parameters used for simulations of lead-acid cell [Nguyen et al 90]. 

Quantity II Value 

Cathode length (half) 
Separator length 

Anode length (half) 
Initial Porosity: 

€anode 

lsep 

Separator saturation, !sat 

€cathode 

Maximum electroactive area: 
Aa 
Ac 

Apparent transfer coefficients 
Anode: 

aa 
ac 

Conductivity of solid phase 
<7anode 

<7cathode 

Reference exchange current density 
io,anode (25C) 

io,anode (-18C) 
io,cathode (25C) 

io,cathode (-18C) 
Concentrations parameter for i0 , ,cathode 

/anode 

/cathode 

(anode 

(cathode 

Theoretical capacity, Qmax,cathode 

Qmax,anode 

Initial acid concentration, Cref 
Exponent for tortuosity correction 

ex 
fsat 

exm 

0.08 cm 
0.1 cm 
0.09 cm 

0.6 
0.96 
0.95 
0.62 

2.3 x104 cm2 /cm3 

2.3 x105 cm2/cm3 

1.55 
0.45 

1.15 
0.85 

4.8 x 104 S/cm 
5.0 x 102 S/cm 

5.0 x 10-6 Acm-2 

5.0 x 10-7 Acm-2 

3.2 x 10-7 Acm-2 

3.2 xl0-8 Acm-2 

0.3 
1.0 x10-4 

0.3 
1.5 
1.5 
2.62 x103 

3.12 X 103 

4.9 x 10-3 molcm-3 

1.5 
0.95 
0.5 
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Table A.4: Base parameters used for Bernardi et al's lead-acid cell [Bern et al 93]. 

Quantity II Value 

Cell height (active material only), H 
Cell width, Ltot 

Cell length (active material only) W 
Reservoir thickness, Lres 

Separator thickness, Lsep 

Initial Anode porosity, fanode 

Separator porosity, fsep 
Initial Cathode porosity, fcathode 

Separator "' tortuosity exponent, ex3 

Current density based on separator area, Ix 
Current density based on plate cross section, 1;0 s 

Current density based on plate cross section, 1;e9 

Half thickness of plate (including grid), L: 
anode 

cathode 
Volume fraction of inert material: 

anode 
cathode 

Initial Porosity: 
fanode 

fsep 
Separator saturationJsat 

fcathode 

Maximum electroactive area: 
Aa 
Ac 

Apparent transfer coefficients 
Anode: 

8.8 cm 
0.243 cm 
13.8 cm 
0.069 cm 
0.022 cm 
0.53 
0.64 
0.55 
2.19 
0.026 A/cm2 

2.98 A/cm2 

2.98 A/cm2 

0.076 cm 
0.076 cm 

0.2 
0.15 

0.6 
0.96 
0.95 
0.62 

2.3 x 104 cm2 /cm3 

2.3 x 105 cm2 /cm3 

1.55 
0.45 
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Table A.5: Base parameters used for Bernardi et al's lead-acid cell model 
[Bern et al 93]. 

-~------------------,,---------

Cathode: 
aa 
ac 

Conductivity of solid phase 
a anode 

a cathode 

Reference exchange current density 
io,anode (25C) 

io,cathode (25C) 
Concentrations parameter for io, ,cathode 

ranode 

rcathode 

Morphology parameter (anode 

Morphology parameter (cathode 

Theoretical capacity ,Qmax,cathode 

Qmax,anode 

Initial acid concentration,Cre/ 
Exponent for tortuosity correction 

ex 
fsat 

exm 

1.15 
0.85 

4.8 x 104 Scm-1 

5.0 x 102 Scm-1 

5.0 x 10-5 Acm-2 

3.2 x 10-7 Acm-2 

0.0 
0.3 
1.5 
1.5 
2.81 x 103 C cm-3 

2.36 x 103Ccm-3 

4.9 x 10-3 mol cm-3 

1.5 
0.95 
0.5 

Table A.6: Fixed parameters used for Mao et al's lead-acid cell model [Mao 91]. 

Quantity II Value 

Za,o 

Zc,o 

ta 

tc 

ts 

Electrolyte conductivity, K 

Temperature 

100.0 cm2 /cm3 

100.0 cm2 /cm3 

1.0 
1.0 
1.0 
1.0 
2.849 x 10-3 Acm-2 

3.404 x 10-3 Acm-2 

0.61 
0.55 
0.65 
0.79 Scm-1 

25C 



APPENDIX B 
A Note on the Software Utilised 

Almost all the software used was in the public domain, mostly under GNU 

copyright. 

The software was developed under a Linux operating system with the g77 

compiler, linked in tightly with the emacs editor, ftnchek and the gdb debugger. 

No multidimensional finite element software can practically exist without some 

kind of pre- and post- processing. Fortunately two freeware packages, Geom pack and 

Plotmtv are available (amongst others) that were more than adaquate. Initially the 

geometry was input by hand, however during the final stages of the project, the 

commerical finite element package ANSYS was used to generate the geometry and 

mesh the domain. 

B.1 Pre Processing 

The manual input of a mesh in two dimensions is much more time consuming 

than the computer execution of the problem itself. It was originally performed this 

way in the early years of the FEM. Today programs exist that automatically partition 

a domain into a mesh of elements. However, mesh generation techniques tend to be 

commerical, and are generally not published. Geompack by Barry Joe has been 

extensively published [Joe 91], and is available in source code in the public domain 

for non-commerical use. It provides a stable, robust, readily configurable meshing 

package, and has been used extensively in this work. In the final stages of the project, 

ANSYS was used to generate the geometry, mesh the domain and output a specified 

data deck suitable for the finite element code. 
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B.2 Solution 

The programs are all programmed in standard Fortran 77. The solution of 

the non-symmetric [A]{x} = {b} matrix systems utilised several different black box 

routines. The main solver used the "Sparse" package off of Netlib. Naglibs non­

symmetric solver, f04atf was used from time to time when available. 

A pentium 133 with 64M of RAM running Linux was used to for most of the 

code construction and results generation. It provided ample speed for all the one­

dimensional models and small two-dimensional models. An Ultra Spare II running 

at 300Mhz with 384M of RAM was used to run the large two-dimensional models. 

B.3 Post Processing 

All the post processing of the fem models in this thesis utilises Plotmtv, a 

freeware package written by Kenny Toh of Intel Corp. It has a simple but functional 

graphical user interface (gui) on Xll, can displace full 2D and 3D surface, line and 

scatter plots, contour plots as well as vector plot. It can generate either colour or 

greyscale postscript output files. The gui allows one to rotate, zoom, or pan the data 

to generate the most suitable visualisation for the postscript plot. 



APPENDIX C 
Structure of Fem Programs Used 

C.l Program Layout 

The finite element program implements the theory developed in Chapter 3 

and is programmed in the standard top-down manner in Fort an 77. The program 

follows the general structure outlined in figure C.l. 

At the beginning of the interval all the initial conditions are input for the end 

of each time-step. The mesh is then calculated for the required input spacings. The 

program then begins the start of the interval. 

Inside each time interval, the coupled non-linear equations are solved itera­

tively by using either of the two Newton methods discussed in Chapter 3. 

Firstly the equations are "solved" for each element of the grid and assembled 

into their appropriate Jacobian and residual matrices. The relevant boundary condi­

tions are then applied to the assembled system of equations. The resultant assembled 

Jacobian matrix is sparse, banded and non-symmetric. 

The System of equations are then solved using a black-box solver. A detailed 

explanation of the solvers used is given in Appendices B. 

The Newton iteration continues with the new Jacobian (not for the modified 

Netwon method) and residual matrices being calculated and assembled to the ex­

isting Jacobian and residual matrices. This iterative cycle continues until suitable 

convergence is attained. The solution for the time interval is then outputed. 

The program then increments in time and the next solution is solved. The 

theta time-stepping method ( discussed in Chapter 3) is used to give the ability to 
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switch between explicit and implicit methods at each interval. It was found that the 

backward difference method provided the the most stable time-stepping approach. 
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Initial Data 

! 
Mesh Data 

! 
-Start Interval 

! 
Newton Iteratio,. 

! 
Assemble [Al Matrix 

! k+l 
a < £ K 

Add Boundary Conditionf 

! 
Solve 

{l+l} = <l } - [.f ]1 {} } 

! 
Increment Time 

Figure C.l: Block diagram of Newton-type solution technique for each time interval. 



APPENDIX D 
Input Data Format Specification for Two Dimensional FEM Model 

The following data deck documents the input data deck for the two dimen­

sional finite element model used in Chapter 5. 

regions 

D.l Data Deck 

The data deck is specified for six partial differential equations. 

Title 

No. nodes, No. elements, No. regions, No. coeffs, No. derv b.c. , debug level 

time start, No. intervals, theta, time interval 

region(i), amax(i), Qmax(i), ex(i), io(i), ,co(i), ,'(i), aa(i), ac(i), 6U(i), i=l, No. 

region(i), asolx(i), capax(i), i=l, No. regions 

region(i), asoly(i), capay(i), i=l, No. regions 

region(i), dcurx(i), dcury(i), sgsdx(i), sgsdy(i), i=l, No. regions 

region(i), epcoef(i), bconst(i), i=l, No. regions 

region(i), diffx(i), diffy(i), OneK(i), twoK(i), i=l, No. regions 

x(i), y(i), i=l, No. nodes 

n, nmtl(i), (nel(i,j), j=l, nodes in element), i=l, No. elements 

equation(i), initial condition(i), i=l, No. equations 

deriv bc.No(i),deriv b.c.node(i,1),deriv b.c.node(i,2), 1=1,No. dbc 

ib(i), esbcNo(i), bv(i), i=l,nebc 
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