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Abstract— This paper proposes an algorithm for the synthesis
of modular supervisors using extended finite-state machines,
i.e., state machines with variables and guards on the transitions.
Synthesis is performed by iteratively selecting components from
a synchronous composition until a least restrictive controllable
solution is obtained. This method is usually faster and produces
smaller supervisors than standard monolithic synthesis, while
offering the modelling benefits of variables. An example of
manufacturing system control illustrates the approach.

I. INTRODUCTION

Supervisory Control Theory [1] provides a framework for

the synthesis, i.e., automatic computation, of supervisors

for discrete event systems. The theory has been generalised

for Extended Finite-state Machines (EFSMs) [2], [3], which

include variables and improve modelling capabilities for

systems with data dependency or software. Several synthesis

algorithms for EFSMs have been proposed [4]–[6]. The

straightforward synthesis algorithms explore the full system

state space, including all possible combinations of variable

values, and this can result in prohibitively many states. This

complexity can be avoided to some extent using symbolic

representation [5] or abstraction [7], [8].

This paper focuses on the synthesis of least restrictive

and controllable supervisors, i.e., considering only prefix-

closed behaviours, in a modular setting, where the system

model consists of several interacting EFSM components. In

this case, efficient solutions for systems without variables

are known [9]–[12]. These methods decompose the system

into appropriate subsystems, and synthesise local supervisors

that, in combination, achieve the least restrictive controllable

behaviour of the entire system.

These solutions do not generalise directly to EFSMs,

because the composition with EFSM components may in-

troduce new variable assignments and increase behaviour.

Therefore, this paper proposes the use of abstractions that

capture the possible variable changes outside of the consid-

ered subsystem. This results in an incremental procedure that

identifies small groups of EFSMs that are sufficient to ensure

a controllable and maximally permissive supervisor.

In the following, Section II introduces an improved version

of the algorithm [9] for modular synthesis of ordinary finite-

state machines, and Section III generalises this algorithm

for EFSMs. Afterwards, Section IV illustrates the approach
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with an example, and Section V presents some conclusions.

Formal proofs of the technical results can be found in [13].

II. FINITE-STATE MACHINES

A. Definitions

A finite-state machine (FSM) is a tuple F = 〈Σ, Q,Q◦,

→〉, where Σ is a finite set of events, Q is a finite set of

states, Q◦ ⊆ Q is the set of initial states, and → ⊆ Q×Σ×Q

is the transition relation.

The transition relation is written in infix notation, where

x
σ
→ y means the existence of a transition from state x ∈ Q

to y ∈ Q with event σ ∈ Σ. This notation is extended to

traces s ∈ Σ∗ in the standard way. Furthermore, given state

sets X,Y ⊆ Q, the notation X
s
→ Y means x

s
→ y for some

states x ∈ X and y ∈ Y , and X → Y means X
s
→ Y for

some s ∈ Σ∗, and X
s
→ means X

s
→ Y for some Y , and

F
s
→ X means Q◦ s

→ X . A trace s ∈ Σ∗ is accepted by the

FSM if F
s
→, and the language or behaviour of F is the set

of all traces it accepts, L(F ) = { s ∈ Σ∗ | F
s
→}.

In this paper, FSMs do not have accepting states, and all

languages are prefix-closed: trace s ∈ Σ∗ is a prefix of t ∈ Σ∗

if t = su for some u ∈ Σ∗. Language L ⊆ Σ∗ is prefix-

closed, if all prefixes of traces t ∈ L are contained in L.

FSMs executing in parallel are synchronised in lock-

step [14]. The synchronous composition of two FSMs F1 =
〈Σ, Q1, Q

◦
1,→1〉 and F2 = 〈Σ, Q2, Q

◦
2,→2〉 with the same

event set Σ is F1 ‖F2 = 〈Σ, Q1 ×Q2, Q
◦
1 ×Q◦

2,→〉, where

(x1, x2)
σ
→ (y1, y2) if and only if x1

σ
→ x2 and y1

σ
→ y2.

FSMs with different event sets can be composed after the

selfloop operation [15], adding selfloop transitions x
σ
→ x

with the missing events to all states of an FSM; this is not

considered in this section for the sake of brevity, and all

FSMs are assumed to have the same event set Σ.

For the purpose of control, the event set is partitioned into

the sets Σc of controllable events and Σu of uncontrollable

events. Controllable events can be disabled by a control-

ling agent, while uncontrollable events occur spontaneously.

A prefix-closed specification language K ⊆ Σ∗ is Σu-

controllable [1] with respect to (w.r.t.) a prefix-closed plant

language L ⊆ Σ∗ if KΣu ∩L ⊆ K, i.e., if every uncontrol-

lable event continuation possible in L is also possible in K.

If a language K is not controllable, the task of synthesis is

to find a controllable sublanguage K ′ ⊆ K. It is a classical

result of supervisory control theory [1] that the union of

controllable languages is again controllable, and there exists

a unique supremal controllable sublanguage of any given



Algorithm 1: Modular FSM synthesis

Input: plants G = {G1, . . . , Gm}; specification E;
uncontrollable events Σu;

1 G0 ← ∅; S0 ← E; Σ0
u ← ∅; i← 0;

2 while L(Si) is not Σu-controllable w.r.t. L(
∥

∥(Gi)) do

3 Σi+1
u ← Σi

u ∪{µ ∈ Σu |
∥

∥(Gi) ‖ Si → (xG, xS) and

xG
µ
→ and xS 6

µ
→};

4 Gi+1 ← {G′ ∈ G | G′ → xG 6
µ
→ for some µ ∈ Σi+1

u };
5 Si+1 ← supC(

∥

∥(Gi+1), E,Σi+1
u );

6 i← i+ 1;
7 end

8 return Si

language,

supC(L,K,Σu) =
⋃

{K ′ ⊆ L∩K | K ′ is Σu-

controllable w.r.t. L } .

(1)

It is common to require that the result of synthesis is

contained in the plant language L, which is enforced by

the intersection L ∩K in (1). If the plant and specification

are given by FSMs G and E, a standard algorithm [1] with

time complexity polynomial in the number of transitions of

G ‖ E can construct an FSM that accepts (1). This FSM

is denoted supC(G,E,Σu). It can be used as a so-called

supervisor, which restricts the plant through synchronous

composition, enforcing the specification by disabling only

controllable events in the least restrictive way possible.

B. Modular Synthesis Algorithm

In the following, it is assumed that the plant is given by

several FSMs, G = G1 ‖ · · · ‖ Gn, and the specification is

given by a single FSM E. In this case, the complexity to

compute supC(G,E,Σu) is exponential in the number n of

plant components due to the exponential number of states

in the synchronous composition. It has been proposed [9],

[10] to mitigate this complexity by identifying an appropriate

subset of the plants to perform synthesis with.

Algorithm 1 shows such an approach. Here and in the

following, for a set G of state machines,
∥

∥(G) denotes the

synchronous composition of all elements of G, and
∥

∥(∅) =
〈Σ, {x◦}, {x◦}, {x◦} × Σ× {x◦}〉 is the neutral element of

synchronous composition, a state machine that accepts all

events without state change.

The idea of Algorithm 1 is to gradually increase the set

of plants and uncontrollable events considered in synthesis.

At the beginning, the loop entry condition in line 2 checks

whether the specification S0 = E is controllable by itself, in

which case E is returned as the least restrictive solution. This

may succeed if, for example, E has only controllable events.

Otherwise the loop is entered and performs synthesis w.r.t.

selected subsets Gi+1 of plants and Σi+1
u of uncontrollable

events (line 5). Inside the loop, line 2 ensures that the

current result Si is not controllable w.r.t. the full set Σu

of uncontrollable events. Thus, Si disables some event µ ∈
Σu \ Σi

u, which really is uncontrollable but was assumed

controllable in synthesis. By including these events in Σi+1
u ,

they are treated as uncontrollable in the next iteration (line 3).

To ensure the least restrictive result, all plants that in some

state may disable one of these uncontrollable events are also

included (line 4).

The procedure continues until a Σu-controllable solution

is found. Termination is guaranteed, because the set Σi
u of

included uncontrollable events increases with every iteration.

As the result is Σu-controllable w.r.t. a subset of plants,

it is also Σu-controllable w.r.t. the full plant [10]. The ap-

proach [9] ensures least restrictiveness by including all plants

that share an uncontrollable event with the specification, or

with a plant already included. Algorithm 1 improves on this

in line 3, by considering only uncontrollable events that cause

a controllability problem, and in line 4, by only adding plants

that disable an uncontrollable event, as opposed to plants that

have it in their event set.

Prop. 1 confirms that the result Si of Algorithm 1 imple-

ments the least restrictive supervisor. As synthesis within the

loop only includes a part of the plant, the remaining plants

have to be composed with the result to get the exact supremal

controllable sublanguage. A proof is given in [13].

Proposition 1: Upon termination of Algorithm 1, it holds

that L(
∥

∥(G) ‖ Si) = supC(L(
∥

∥(G)),L(E),Σu).

III. EXTENDED FINITE-STATE MACHINES

Extended finite-state machines (EFSMs) add to FSMs

variables and the ability to read and update these variables

on the occurrence of transitions [2], [3]. Examples of such

state machines are shown in Fig. 3.

A. Variables and Updates

An update is a formula constructed from variables, integer

constants, Boolean literals, and the usual arithmetic and logic

connectives. The set of all update formulas is denoted by Π.

A variable v is an entity associated with a finite discrete

domain dom(v) and an initial value v̂◦ ∈ dom(v). Let

V = {v0, . . . , vn} be the set of variables with combined

domain dom(V ) = dom(v0)×· · ·×dom(vn). An element v̂

of dom(V ) is also considered as a valuation that assigns

to each variable v ∈ V a value v̂(v) ∈ dom(v), and by

extension a truth value to each update. The initial valuation

is v̂◦ ∈ dom(V ) with v̂◦(v) = v̂◦ for each v ∈ V . An update

is satisfiable if it is true for at least one valuation, and valid

if it is true for all valuations of its variables. The restriction

of a valuation v̂ ∈ dom(V ) to W ⊆ V is v̂|W ∈ dom(W )
with v̂|W (v) = v̂(v) for all v ∈ W .

A second set of variables, called next-state variables and

denoted V ′ = { v′ | v ∈ V } is used to describe the values

of the variables after a transition. The next-state variable v′

has the same domain as its current-state variable v. Given

v̂ ∈ dom(V ), the valuation v̂′ ∈ dom(V ′) is defined by

v̂′(v′) = v̂(v) for all v ∈ V . For an update p ∈ Π, the term

vars(p) denotes the set of all variables that occur as current-

state or next-state variable in p, and vars′(p) denotes the

set of all variables whose corresponding next-state variables

occur in p. For example, if p is the update x′ = y + 1, then

vars(p) = {x, y} and vars′(p) = {x}.



B. EFSM Definition and Operations

Definition 1: An Extended finite-state machine (EFSM) is

a tuple F = 〈Σ, Q,Q◦,→〉, where Σ is a finite set of events,

Q is a finite set of locations, Q◦ ⊆ Q is the set of initial

locations, and → ⊆ Q×Σ×Π×Q is the extended transition

relation.

A transition between locations x, y ∈ Q with event σ ∈ Σ
and update p ∈ Π is written x

σ:p
→ y. It can occur if F

is in location x and the update p evaluates to true, and

when it occurs, F changes its location to y while updating

the variables in vars′(p) in accordance with p; variables

not in vars′(p) remain unchanged. For example, let x be

a variable with domain dom(x) = {0, . . . , 5}. A transition

with update x′ = x+1 changes the variable x by adding 1 to

its current value, if it currently is less than 5. Otherwise (if

x = 5) the transition is disabled. The update x = 3 disables

a transition unless x = 3 in the current state, and the value

of x in the next state is unchanged. Differently, the update

x′ = 3 always enables its transition, and the value of x in

the next state is forced to be 3.

Given an EFSM F and event σ ∈ Σ, the referenced

variable set is vars(F, σ) =
⋃

{ vars(p) | x
σ:p
→ y }, and

vars(F ) =
⋃

σ∈Σ vars(F, σ). Furthermore, for a set F of

EFSMs, vars(F , σ) =
⋃

F ′∈F vars(F ′, σ) and vars(F ) =
⋃

F ′∈F vars(F ′). Analogous notation is defined for vars′.
This paper imposes some restrictions on system models,

which are needed for the modularity results.

Definition 2: Let F = 〈Σ, Q,Q◦,→〉 be an EFSM.

• F is normalised, if for any two transitions x1
σ:p1

−−−→ y1
and x2

σ:p2

−−−→ y2 with the same event σ ∈ Σ, it holds

that vars′(p1) = vars′(p2).
• F is pure if vars′(F ) = ∅.

• F is state-deterministic if |Q◦| ≤ 1, and for all

transitions x
σ:p1

−−−→ y1 and x
σ:p2

−−−→ y2 such that p1 ∧ p2
is satisfiable, it holds that y1 = y2.

In a normalised EFSM, the set of variables changed by

an event is the same on all transitions. This assumption

helps to recognise the implicitly unchanged variables after

synchronous composition. Every EFSM can be transformed

into a normalised EFSM by a process of renaming similar

to normalisation [3]. As a stronger condition, a pure EFSM

cannot assign any variables, it only restricts events. State-

determinism ensures that the target locations are uniquely

determined from the source location, event, and variable

assignment. It is needed for supervisors to track the location

of the plant by the observation of events and variable values.

In the following, plants are modelled by normalised state-

deterministic EFSMs, while specifications are pure state-

deterministic EFSMs. The synthesised supervisor is not

subject to these requirements and can restrict variable as-

signments.

An EFSM F = 〈Σ, Q,Q◦,→〉 can be unfolded [3], [8]

and interpreted as an FSM with state set Q×dom(vars(F )).
The states (x, v̂) consist of a location x ∈ Q and a valuation

v̂ ∈ dom(vars(F )). A transition between two states, written

(x, v̂)
σ
→ (y, ŵ), exists if F contains a transition x

σ:p
→ y

such that the update p is true if the current-state variables

are interpreted according to v̂ and the next-state variables

according to ŵ, and all variables that do not appear as

next-state variables in the update are unchanged between v̂

and ŵ. This transition relation is also defined for variables

not in vars(F ), which remain unchanged, and for events

not in the EFSM’s event set Σ, which are always enabled

without changing the EFSM’s location or any variables.

The → notation is extended to traces, state sets, and state

machines in the same way as for FSMs. Based on this, the set

of accessible states of an EFSM F is Qacc(F ) = { (x, v̂) ∈
Q × dom(vars(F )) | F → (x, v̂) }.

When comparing EFSMs, variables must be considered in

addition to events, so the following notion of behavioural

inclusion replaces language inclusion as used for FSMs.

Definition 3: An EFSM F1 is behaviourally included in

another EFSM F2, written F1 ⊆v F2, if for every path

(x0, v̂0)
σ1→ (x1, v̂1)

σ2→ · · ·
σn→ (xn, v̂n) (2)

in F1, with v̂i ∈ dom(vars(F1)), there exists a path

(y0, ŵ0)
σ1→ (y1, ŵ1)

σ2→ · · ·
σn→ (yn, ŵn) (3)

in F2 such that ŵi ∈ dom(vars(F2)) and v̂i |V12
= ŵi |V12

for 1 ≤ i ≤ n, where V12 = vars(F1) ∩ vars(F2).
If F1 is behaviourally included in F2 then every path

in F1 corresponds to a path in F2 with the same events

and variable assignments. The two EFSMs typically use the

same variables, but if not, only the common variables are

required to match.

Definition 4: The synchronous composition of two

EFSMs F1 = 〈Σ1, Q1, Q
◦
1,→1〉 and F2 = 〈Σ2, Q2, Q

◦
2,→2〉

is F1 ‖ F2 = 〈Σ1 ∪ Σ2, Q1 × Q2, Q
◦
1 × Q◦

2,→〉, where

(x1, x2)
σ:p1∧p2

−−−−−→ (y1, y2) if x1
σ:p1

−−−→1 y1 and x2
σ:p2

−−−→2 y2.

This definition captures EFSMs with different event sets

through the extended definition of the transition relation

above. Updates in synchronous composition are combined

by conjunction. They may cancel each other out, e.g., if

x1
σ:x′=0
−−−−→1 y1 in F1 and x2

σ:x′=1
−−−−→2 y2 in F2, then the

conjunction x′ = 0∧x′ = 1 is logically false, or equivalently

there is no such transition in F1 ‖ F2. Synchronous compo-

sition can override the assumption of implicitly unchanged

variables in an EFSM. If x1
σ:x=0
−−−−→1 y1 and x2

σ:x′=x+1
−−−−−−→2

y2, e.g., then (x1, x2)
σ:x=0∧x′=x+1
−−−−−−−−−−→ (y1, y2). So the value

of x changes from 0 to 1 in F1 ‖ F2 although implicitly

unchanged in F1.

C. EFSM Controllability and Synthesis

For the supervisory control of EFSM systems, this paper

assumes that all variables are controlled by the plant. The

plant is modelled by a set of normalised EFSMs that rep-

resent the possible system behaviour including all possible

variable changes. The specification is typically modelled by

one or more pure EFSMs, which only restrict the occurrence

of events. The supervisor can also restrict variable changes

associated with controllable events. The following definition

of controllability covers specifications and supervisors.



Definition 5: Let G = 〈ΣG, QG, Q
◦
G,→G〉 and E =

〈ΣE , QE , Q
◦
E ,→E〉 be two EFSMs, and let Σu be a set of

events. E is Σu-controllable w.r.t. G, if for all valuations

v̂, ŵ ∈ dom(vars(G) ∪ vars(E)), all states (xG, xE , v̂) ∈
Qacc(G ‖ E), and all transitions (xG, v̂)

µ
→ (yG, ŵ) in G

such that µ ∈ ΣE ∩Σu, there exists a location yE of E such

that (xG, xE , v̂)
µ
→ (yG, yE , ŵ) in G ‖ E.

Σu-controllability means that, from any accessible state in

the synchronous composition of the plant G and specifica-

tion E, if an uncontrollable event is eligible in the plant,

then it is also eligible in the specification. In addition, the

specification must allow any assignment to next-state vari-

ables prescribed by the plant. The condition (xG, xE , v̂)
µ
→

(yG, yE , ŵ) is applied to the synchronous composition G‖E,

so it requires the plant and specification to be able to take

the transition together. This allows a pure specification to

follow the plant’s assignments to next-state variables.

If a specification is not controllable, synthesis is used to

find a supervisor in the form of an EFSM composed with the

plant. Unlike the specification, the supervisor may include

next-state variables on its updates. Thus, the supervisor can

disable (controllable) events completely or under certain

circumstances, and it can remove some of the plant’s variable

assignments from a controllable transition.

Definition 6: Let G and E be two EFSMs, and let Σu be

a set of events. A supremal supervisor for E w.r.t. G and Σu

is an EFSM S such that

(i) vars(S) ⊆ vars(G) ∪ vars(E);
(ii) G ‖ S ⊆v G ‖ E;

(iii) S is Σu-controllable w.r.t. G;

(iv) For any EFSM S′ that satisfies (ii) and (iii), it holds

that G ‖ S′ ⊆v G ‖ S.

Def. 6 characterises the possible synthesis results for a

plant G and specification E. A correct supervisor can only

use variables that appear in the plant or specification (i). This

syntactic condition is convenient but not essential, as any

extra variables can be unfolded into locations to construct an

equivalent supervisor. A correct supervisor must satisfy the

specification through behavioural inclusion after composition

with the plant (ii), and it must be controllable (iii). It

also must be least restrictive or supremal, i.e., any other

supervisor that controllably satisfies the specification has less

possible behaviour, again in composition with the plant (iv).

A supervisor satisfying these four conditions can be com-

puted by means of a standard fixpoint iteration [13] on the

unfolded state set of G ‖ E. The result of this procedure is

denoted supC(G,E,Σu) in the following.

D. Modular Synthesis Algorithm

The idea of modular synthesis (Algorithm 1) is to identify

a suitable subsystem to perform synthesis and use the result

to control the entire system. This is based on modularity

properties, according to which synchronous composition of

a state machine with another only ever restricts the be-

haviour [10]. Then controllability w.r.t. a part of the plant

implies controllability w.r.t. the entire plant.

c σ : v′ = ∗

Fig. 1. The EFSM chaos(σ, v).

EFSMs do not have this property. When EFSMs are com-

bined in synchronous composition, new next-state variables

can be added to transitions, possibly changing variables that

were implicitly unchanged. To enable modular synthesis with

EFSMs, one solution is to replace the parts of the system

not considered in a synthesis attempt by an abstraction that

includes all possible variable changes. This abstraction is

called chaos EFSM.

Definition 7: Given an event σ and a variable v, the chaos

EFSM for σ and v is defined as

chaos(σ, v) = 〈{σ}, {c}, {c}, {(c, σ, v′ = ∗, c)}〉 . (4)

The EFSM chaos(σ, v) is shown in Fig. 1. The update

v′ = ∗ means that the variable v can assume any value from

its domain in the next state. Formally, this update is true for

all valuations, but it includes the next-state variable v′ so

that v is no longer implicitly unchanged.

In the synchronous composition F1 ‖ F2 of two EFSMs,

some variables in F1 may be changed by transitions in F2. A

variable v can be changed after composition of a transition

in F1 that does not mention v′ with a transition in F2 that

mentions v′; or by a transition with an event that only

appears in F2. By inspection of the next-state variables

on the transitions of F2, it can be determined that certain

variables are not changed in F2, or are only changed on the

occurrence of certain events. The following Lemma 2 shows

how to identify the specific chaos EFSMs to capture possible

variable changes in another EFSM.

Lemma 2: Let F1 and F2 be two EFSMs, and let

C =
∥

∥({ chaos(σ, v) | v ∈ vars(F1) ∩ vars′(F2, σ) }) . (5)

If (x1, x2, v̂)
σ
→ (y1, y2, ŵ) in F1 ‖ F2 then (x1, c,

v̂|vars(F1))
σ
→ (y1, c, ŵ|vars(F1)) in F1 ‖ C, where c is the

single location of C.

In a synchronous composition F1‖F2, Lemma 2 allows F2

to be replaced by chaos EFSMs C for variables in F1 and

events with transitions assigning to these variables in F2.

Then all transitions in F1 ‖ F2 are also possible in F1 ‖ C.

Algorithm 2 uses this result to extend Algorithm 1 for

EFSM plants G and specification E. As before, the algorithm

seeks to identify suitable subsets Gi ⊆ G of the plants

and Σi
u ⊆ Σu of the uncontrollable events, starting with-

out uncontrollable events or plants, and trying to use the

specification E as supervisor. Differently from Algorithm 1,

the plants Ḡi = G \Gi not included at each step are replaced

by chaos EFSMs Ci based on Lemma 2. If the supervisor Si

found in the i-th iteration is controllable w.r.t. the abstraction
∥

∥(Gi)‖
∥

∥(Ci) of the plant and all uncontrollable events, then

it is returned as the result.

Otherwise line 3 extends the set Σi
u by including uncon-

trollable events that cause Si to violate controllability as it is

done in Algorithm 1. Then line 4 extends the plant Gi, which



Algorithm 2: Modular EFSM synthesis

Input: normalised state-deterministic plants G = {G1, . . . , Gm}; pure state-deterministic specification E;
uncontrollable events Σu.

1 Σ0
u ← ∅; G

0 ← ∅; Ḡ0 ← G ; V 0 ← vars(E); C0 ← { chaos(σ, v) | v ∈ vars(E) ∩ vars′(G , σ) }; S0 ← E; i← 0;

2 while Si is not Σu-controllable w.r.t.
∥

∥(Gi) ‖
∥

∥(Ci) do

3 Σi+1
u ← Σi

u ∪{µ ∈ Σu | there exist v̂, ŵ ∈ dom(V i), (xG, c, xS , v̂) ∈ Qacc(
∥

∥(Gi) ‖
∥

∥(Ci) ‖Si), and (xG, c, v̂)
µ
→ (yG, c, ŵ)

in
∥

∥(Gi) ‖
∥

∥(Ci), but no location yS of Si such that (xG, c, xS , v̂)
µ
→ (yG, c, yS , ŵ) in

∥

∥(Gi) ‖
∥

∥(Ci) ‖ Si };
4 Gi+1 ← {G′ ∈ G | there exists µ ∈ Σi+1

u such that µ is not always enabled in G′ };
5 Ḡi+1 ← G \ Gi+1;

6 V i+1 ← vars(Gi+1) ∪ vars(E);
7 Ci+1 ← { chaos(σ, v) | v ∈ V i+1 ∩ vars′(Ḡi+1, σ) };
8 Si+1 ← supC

(
∥

∥(Gi+1) ‖
∥

∥(Ci+1), E,Σi+1
u

)

;
9 i← i+ 1;

10 end

11 return Si

like in Algorithm 1 must include all components that may

disable some uncontrollable event, however here variables

must be taken into account.

Definition 8: Let F = 〈Σ, Q,Q◦,→〉 be an EFSM. An

event σ ∈ Σ is always enabled at location x ∈ Q, if the

disjunction
∨n

i=1 pi is valid, where x
σ:pi
−−→ yi for 1 ≤ i ≤ n

are all the σ-transitions originating from x. Event σ is always

enabled in F , if it is always enabled at every location x ∈ Q.

An event is always enabled in an EFSM if it can be

taken at any location, independently of variable updates.

Plants not satisfying this condition for some uncontrollable

event in Σi+1
u are included in the next iteration following

line 4 of Algorithm 2. Having determined the plants and

uncontrollable events, line 8 performs synthesis, which can

be done by a brute-force explicit algorithm or using more

advanced symbolic methods [5].

The algorithm terminates because the set Σi
u increases

with each iteration, and the following Prop. 3 confirms that it

returns a least restrictive supervisor. A proof is given in [13].

Proposition 3: Upon termination of Algorithm 2, Si is a

supremal supervisor for E w.r.t.
∥

∥(G) and Σu.

E. Multiple Specifications

If an FSM system contains more than one specification,

then controllability can be verified for each specification

separately, and it is also known that a least restrictive

supervisor can be obtained by combining the least restrictive

supervisors obtained for the individual specifications [10].

Under the assumption of pure specifications, these results

extend directly to EFSMs.

Proposition 4: Let G be a state-deterministic normalised

EFSM, let E1 and E2 be pure EFSMs, and let Σu be a set

of events. Let S1 and S2 be supremal supervisors for E1

and E2, respectively, w.r.t. G and Σu. Then S1 ‖ S2 is a

supremal supervisor for E1 ‖ E2 w.r.t. G and Σu.

Given sets of plant EFSMs G and specifications EFSMs E ,

by Props. 3 and 4, synthesis can be performed separately

for each specification Ej ∈ E using Algorithm 2, and the

synchronous composition of the resulting supervisors Sj =
supC(

∥

∥(G), Ej ,Σu) gives the least restrictive supervisor for

the combined specification
∥

∥(E) and plant
∥

∥(G).

B1 B2

M1 M2

s s1 f1 s2f

s2r

f

r

Fig. 2. Manufacturing system with material feedback [8].
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Fig. 3. EFSM model of manufacturing system [8].

IV. MANUFACTURING SYSTEM EXAMPLE

Fig. 2 shows a manufacturing system with material feed-

back [8]. The system consists of two machines, M1 and M2,

linked by one-place buffers B1 and B2. Buffer B1 receives

external workpieces by event s. Machine M1 removes work-

pieces from B1 (event s1), manufactures and puts them in B2

(event f1), where a quality test determines the operation to

be performed by M2 (s2f or s2r), which leads to a release

of the workpiece (event f ) or its return to B1 for rework

(event r). Events f1, f , and r are uncontrollable, the others

are controllable. The control objective is to avoid overflow

and underflow of the buffers, and to ensure that workpieces

pass through the system at most five times.

Fig. 3 shows an EFSM model of this system. The variables

b1, m1, b2, and m2 with domain {0, . . . , 5} and initial value 0

record the contents of the machines and buffers. A value of 0

indicates that the machine or buffer is empty, while a value

of k > 0 indicates the presence of a workpiece that has been

placed k times into buffer B1.

Plants M0, M1, and M2 model the behaviour of the

machines and buffers. A first unload to B1 (transition s

in M0) sets the variable b1 to 1, indicating presence of a

workpiece in its first cycle. Loading a workpiece from B1
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Fig. 4. Synthesised supervisors for manufacturing system.

to M1 (transition s1 in M1) transfers the value from b1 to m1

and resets b1 to 0, as B1 is again empty. When a workpiece is

returned to B1 on event r, the condition b′1 = min(m2+1, 5)
in M2 assigns to b1 the value that identifies the next work

cycle. The transition is also defined when m2 = 5, i.e., the

workpiece is already in its last cycle, but this case is ruled

out by specification Max .

Specifications O1, U1, O2, and U2 model the avoidance

of overflow and underflow. For example, O1 specifies that a

workpiece can only be added to buffer B1 on event s or r

when B1 is empty, b1 = 0. Specification Max disallows the

return of workpieces in their fifth cycle to B1 by event r.

To obtain a modular supervisor, Algorithm 2 is invoked for

each specification separately. Specifications U1 and U2 have

only controllable events, so they are naturally controllable

and Algorithm 2 terminates without entering the loop. These

specifications can serve as supervisors directly, e.g., U1

prevents loading of a workpiece from B1 when B1 is empty.

For specification O1, the first iteration of Algorithm 2

without plants, G0 = ∅, uses chaos EFSMs for variable b1,

which appears in O1 and is changed by the plant on

events s, s1, and r, i.e., C0 = {chaos(s, b1), chaos(s1, b1),
chaos(r, b1)}. It turns out that O1 is not Σu-controllable

w.r.t.
∥

∥(C0), because O1 prevents the uncontrollable event r

when b1 6= 0. Therefore, r is considered as uncontrollable

in the next iteration, Σ1
u = {r}, and plant M2 that can

disable r is added, G1 = {M2}. Among the variables

in M2 and O1, V 1 = {b1, b2,m2}, only b1 and b2 are

ever changed by the remaining plants M0 and M1, so that

C1 = {chaos(s, b1), chaos(s1, b1), chaos(f1, b2)}. Synthesis

gives the supervisor SO1 = supC(M2 ‖
∥

∥(C1), O1, {r})
shown in Fig. 4, which is Σu-controllable w.r.t. M2 ‖

∥

∥(C1).
Algorithm 2 stops here.

The figure only shows updates added during synthesis, a

computed supervisor may contain more updates. The update

on s2r in SO1 avoids overflow of B1 by preventing M2 from

loading a workpiece to be reworked unless B1 is empty. The

update on s contradicts plant M0 and thereby disables s, i.e.,

the loading of a new workpiece to B1, while another is being

returned. The update on s1 is redundant due to plant M1, but

appears here as M1 was not included in the partial synthesis.

Synthesis for specifications O2 and Max also termi-

nates after the first iteration, producing the supervisors SO2

and SMax in Fig. 4. Overall, modular synthesis never com-

poses more than two of the EFSMs from Fig. 3 and gives five

supervisor components with 1–3 locations each. The largest

compositions are encountered at the end of synthesis for O1

and Max and have 288 unfolded states each. In contrast, the

standard algorithm to construct a supervisor for all plants and

specifications together explores a state space of 912 states

and produces a single supervisor with six locations.

V. CONCLUSIONS

The paper presents an algorithm that calculates modular

controllable supervisors that control a system in the least

restrictive way. The proposed incremental approach is sim-

pler and produces smaller supervisors than the usual methods

of monolithic synthesis in the literature. It improves on the

authors’ previous work [8] by completely removing some

components and variables from the subsystems subject to

synthesis at each step of the algorithm.

In future work, the authors would like to investigate the use

of variable abstraction [8] to further reduce the subsystems.

It would also be interesting to extend the approach to

consider the synthesis of nonblocking supervisors.
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