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Abstract 

South Africa is experiencing an explosive epidemic of Human Immunodeficiency 

Virus (HIV) and of Sexually Transmitted Infections (STI)s. Furthermore, South 

Africa has extraordinarily high rates of migration. The predominant type of migra­

tion is the circular migration in which young men migrate to work in urban areas 

leaving their sexual partners behind, to whom they return periodically. Conditions 

of migration bring men into sexual contact with prostitutes and other women at high 

risk of HIV /STls. In this way, migrant men form sexual networks, which become a 

critical bridge for transmitting HIV /STis between rural and urban areas. 

The thesis investigates the determinants of HIV and those of STls, taking into 

account the migration status and sexual network clustering effect in the data. The 

data investigated is from cohorts of migrant men from Hlabisa district working in ur­

ban areas, non-migrant partner(s) of migrant men residing in Hlabisa district, non­

migrant men and their non-migrant partner(s) residing in Hlabisa district in north­

ern KwaZulu-Natal, South Africa. Initially, the expectation-maximization (EM) 

algorithm is used to estimate parameters of the logistic-mixed model investigating 

risk factors of STls. The interval-censored time until HIV infection is investigated 

using the Cox proportional hazards model which includes sexual network random 

effects in addition to the fixed effect. The parameters of this model were initially 

estimated using the EM algorithm. The main parameter estimation was carried out 

using the Gibbs sampler, a Bayesian Markov chain Monte Carlo (MCMC) method. 

The results show that migration is a risk factor of HIV /STI. The results further 

show that age, marital status, age at first sexual intercourse, sexual contact part­

ners, lifetime partners and other biomedical factors are important determinants of 

HIV /STis. The study shows that ignoring sexual network random effects in the 

analysis of HIV /STis biases the results. The Gibbs sampler is shown to be a plau­

sible alternative to the EM algorithm in the analysis of correlated interval-censored 

data. It allows full Bayesian inference, which provides a natural framework with 

which to integrate the uncertainty about parameters and incorporate heterogeneity 

between sub-groups, without the need to evaluate high-dimensional integrals. 
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Chapter 1 

Introduction 

1.1 Overview 

In the last decade, South Africa has experienced an unprecedented rise in the preva­

lence of Human Immunodeficiency Virus (HIV) and of Sexually Transmitted Infec­

tions (STI)s (Gouws and Williams, 2000; Department of Health, 2002). The rise 

in the prevalence of HIV and STis presents an extremely serious threat to public 

health in South Africa. In developing countries, HIV and STls are among the lead­

ing causes of substantial morbidity, and collectively rank among the most important 

causes of years of healthy productive life lost (Over and Piot, 1993; Gerbase, et al 

1998). Long before Acquired Immunodeficiency Syndrome (AIDS) was discovered 

as a consequent disease of HIV, STis such as gonorrhoea, chlamydia, syphilis and 

genital ulcers ranked among top diseases for which sexually active individuals from 

developing countries sought health care (Buve, et al 1993). However, epidemiologi­

cal factors determining the geographical spread of HIV /STis are still not completely 

understood. 

The geographical spread of HIV /STis is determined by an interaction of fac­

tors related to demography, socioeconomic and sexual behaviour. The predominant 

socioeconomic factor is the rural-urban labour migration of young sexually active 
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men leaving their sexual partners behind {Pison, et al 1993; Decasas, et al 1995). 

Conditions of migration bring men into heterosexual contact with commercial sex 

workers and other women at high risk of HIV /STis (Jochelson, et al 1991). The con­

sequent sexual networking between urban and rural areas determines the diffusion 

rate of HIV /STis into local societies (Fleming and Wasserheit, 1999). Furthermore, 

the women left behind sometimes have to exchange sex for favours as a survival 

strategy (Evian, 1993). The stark reality of the impact of HIV /STis on the society 

requires deeper understanding of factors determining the spread of HIV /STis and 

further understanding of the relationship between HIV and STis. 

The literature on the epidemiology and relationships between HIV and STis 

is presented in Sections 1.1.1 to 1.1.3. Section 1.2 describes how the spread of 

HIV /STis is influenced by the pattern of migration. Section 1.2.3 describes other 

important determinants of HIV /STis. The clustered data set which is the main 

focus of this thesis is presented in Section 1.3. Models commonly used to analyse 

clustered data are reviewed in Sections 1.4. The model proposed in this thesis is 

formulated in Section 1.5. Section 1.6 presents the thesis objectives. Finally, in 

Section 1. 7, the organization of subsequent chapters of the thesis is presented. 

1.1.1 The epidemic and impact of STis 

Africa and other developing countries bear a heavy burden of STis. Gonorrhoea, 

syphilis and chanchroid are the most common STis (Mann, et al 1992). In 1995, 

Gerbase, et al (1998) estimated over 300 million new cases of syphilis, gonorrhoea, 

chlamydia and trichomoniasis in adults aged between 15 and 49 years worldwide. 

Gonorrhoea alone accounted for 18.8% of these new cases. The highest number of 

new cases of these STis occurred in developing countries with 19. 7% in sub-Saharan 

Africa. 

STis can cause acute symptoms such as genital ulcers and genital discharges. 
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The health repercussions of STis affect women disproportionately. For example, 

STis increase a woman's risk of ectopic pregnancy, which causes 1 to 15% of ma­

ternal deaths in developing countries (Population Reports, 1993). In women, STI 

pathogens can migrate from the lower reproductive tract causing pelvic inflamma­

tory infection, which accounts for up to 40% of admissions to gynaecological wards 

in many African hospitals. Without prompt and appropriate treatment, 55 to 85% 

of women with pelvic inflammatory infection may become infertile (Piot and Tezzo, 

1990). Pelvic inflammatory infection can further increase the risk of ectopic preg­

nancy (Meheus, 1992). In sub-Saharan Africa, 50% of infertility cases are attributed 

to pelvic inflammatory infection, which are usually caused by gonorrhoea or chlamy­

dia (Adler, et al 1998). In men, infertility can follow a venereal infection that spreads 

from the urethra to the epididymis. The most common cause of epididymitis in men 

under 35 years is gonorrhoea or chlamydia infection (Piot and Tezzo, 1990). 

1.1.2 Epidemiology and burden of HIV 

AIDS was first recognized as a new disease in the early 1980s. However, it existed 

at least since the late 1970s. AIDS was first recognized among homosexual and 

bisexual men in the United States, and then in heterosexual men and women in 

Central and East Africa. The HIV virus was identified as the cause of AIDS two 

years after the identification of AIDS as a disease. Today, HIV affects all countries 

of the globe, making it and its disease consequences the most significant emerging 

infection of the late 20th century (Nicoll and Gill, 1999). 

In South Africa, the first two cases of AIDS were reported in 1983 (Ras, et al 

1983). Between 1983 and 1989 the population prevalence of HIV was estimated be­

low 0.5%. HIV infection relentlessly spread out within urban areas and then to the 

rural areas in the early 1990s. The trend in HIV prevalence continued its unprece­

dented rise between 1995 and 2000. For a thorough review of literature on HIV 

epidemiology in South Africa, see for example Gouws and Williams (2000). The 
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national prevalence of HIV amongst women attending, for the first time, ante-natal 

clinics reached 23% in 1998 (Department of Health, 1999). KwaZulu-Natal province 

had the highest prevalence (32%) and Western Cape province had the lowest (5.2%) 

prevalence. Macro-simulation models predicted that the AIDS epidemic could reach 

30% prevalence in sexually active population by 2000 to 2005 (Schall, 1990). The 

estimate is close to the current national antenatal HIV prevalence of 24.5% (De­

partment of Health, 2001). However, there are some indications that the national 

prevalence has reached a plateau. 

1.1.3 Relationship between HIV and STis 

The relationship between HIV and STis is complicated. This is because HIV is also 

sexually transmitted and therefore shares the same behavioural risk factors and 

common human reservoirs as STis. Thus, acquisition of an STI could merely be 

a marker of exposure to a sexual partner at higher risk of HIV infection (Mertens, 

et al 1990) rather than due to causal relationships. However, the epidemiological 

importance of STis has acquired greater significance as it became apparent that 

they promote transmission of HIV and are important co-factors driving the HIV 

epidemic. The first evidence of possible relationships between STis and HIV came 

from epidemiological studies that showed high prevalence of HIV among individ­

uals with history of STis (Wasserheit, 1992; Grosskurth, et al 1995; Fleming and 

Wasserheit, 1999). 

Biological mechanisms facilitating interrelationship between HIV and STis are 

well established (Cohen, et al 1997; Cohen, 1998). The studies show high shedding 

of HIV virus into genital fluids in the presence of genital ulcers and other inflam­

matory infections associated with non-ulcerative STis. The implications are that 

people who are infected with HIV and have an STI are more infectious to their sexual 

partners than those infected with HIV but without an STI. Empirical data indicate 

that women infected with chlamydia or gonorrhoea are more susceptible to HIV 
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infection due to disproportionate increase in CD4 cell count in the endocervix and 

HIV virus targets this cell (Levine, et al 1994). Ulcerative STis disrupt epithelial 

barriers in the genital tract. Disruption of epithelial barriers permits penetration of 

viral infections (Laga, et al 1993). Current evidence points to the conclusion that 

correct management of STis should influence transmission of HIV. The community 

based randomised trial conducted in Tanzania demonstrated that improved treat­

ment of STis reduces the incidence of HIV (Grosskurth, et al 1995). Furthermore, 

immunosuppression associated with HIV can reduce resistance to STis (Wasserheit, 

1992). 

1.2 Circular migration and HIV /STis 

1.2.1 Circular migration 

Southern Africa has extraordinarily high rates of population movement both within 

and between countries. It is difficult to accurately quantify the extent and nature 

of population movements. However, Crush (1995) estimated that approximately 2.5 

million legal migrants have come to South Africa from neighbouring countries along 

with an unknown number of illegal migrants. In addition, millions of men migrate 

within South Africa from rural to urban areas in search of work. In rural Hlabisa 

district of KwaZulu-Natal province (Figure 0.1) where this study was carried out, 

62% of adult men spend most nights away from their homes (Lurie, et al 1997). 

The roots of migration in South Africa can be traced back to the discovery of 

gold in the 1880s and the associated labour demands. Various types of migration 

currently exist in southern Africa. However, the predominant type is the circular 

labour migration in which young men migrate to work in urban areas leaving their 

rural sexual partners behind, to whom they return periodically. Furthermore, the 

system of circular labour migration was a cornerstone for apartheid policy, in which 

movements of South Africa's black population was strictly controlled. However, 
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patterns of migration have changed dramatically in the last decade. The rapid 

development of an informal but efficient transport infrastructure means people can 

now move freely between urban and rural areas. 

1.2.2 Migration and spread of HIV /STis 

HIV, like other infectious diseases that spread from person to person, follows the 

movement of people (Quinn, 1994; Decosas, et al 1995; Decosas and Adrien, 1997; 

Mabey and Mayaud, 1997). Mobile people are at higher risk of HIV /STis than 

those in stable living arrangements (Pison, et al 1993; Legarde, et al 1996). In 

Uganda, people who had changed residence within the last five years were three 

times more likely to be infected with HIV than those who had lived in the same 

place for more than ten years (Nunn, et al 1995). In South Africa, similar results 

were found among people who had recently changed their residence compared to 

those who had not changed their residence over time (Abdool Karim, et al 1992). 

The role of migration in the spread of HIV has been described primarily as a 

result of migrant men becoming infected while away from home and infecting their 

partners when they return. In a study of seasonal migration in Senegal, Pison et 

al (1993) argued that the virus was mainly transmitted in two steps: first to adult 

single or married men through sexual contacts with infected women met during their 

seasonal migration, and second to their female partners when they return. Since 

this study focuses on seasonal migration, where men spend on average six months 

a year away from their rural homes, implications for South Africa may be impor­

tant as migration patterns in the two countries appear to be similar. Kane, et al 

(1993) found higher prevalence of HIV among Senegalese men who had travelled and 

worked in another African country and among their rural sexual partners compared 

to men and women who had never travelled to another African country. 

Decosas et al (1995) argue that it is not so much the movement itself rather 
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the conditions and structure of migration that put people at risk of HIV /STis. So­

cial and cultural data reveal that in many African countries where men migrate to 

cities, they engage in high risk sexual behaviour (Jochelson, et al 1991; Mbizvo, 

et al 1996; Mabey and Mayaud, 1997). In extreme cases, migrant men establish 

parallel families in urban areas and rural homes (Lurie, et al 1997). In this way, 

migrant men form sexual networks, which become a critical bridge for transmitting 

HIV /STis between rural and urban areas. 

Recently, the concept of sexual network core groups has become the integral 

part in understanding the epidemiology of HIV /STis within human populations 

and identification of key populations for intervention programs (Wylie and Jolly, 

2001; Koumans, et al 2001; Johnson, et al 2003). Sexual networks are often derived 

from contact tracing or asking participants to report on their partner's behaviour 

(Johnson, et al 2003). The leading studies in infectious diseases and sexual networks 

have demonstrated higher likelihood of HIV infection within core group sexual net­

works (Friedman, et al 1997). Results based on partner-reporting provide valuable 

information about sexual network sizes but fail, however, to provide sufficient infor­

mation necessary to estimate the degree of heterogeneity between sexual networks. 

1.2.3 Other determinants of HIV /STis 

Various other demographic and behavioural factors are associated with HIV (Ce­

lentano, et al 1996; Brewer, et al 1998; Auvert, et al 2001; Gibney, et al 2003 and 

references therein). A large age difference between sexual partners is an important 

risk factor for women (Gregson, et al 2002). Most women form partnership with men 

5 to 10 years older than themselves. Understanding the effects of number of lifetime 

partners, age at first sexual intercourse, recent sexual contact partners, condom use 

and type of sexual relationship is much more problematic and often confounded by 

several factors including respondent's age and duration of relationship. Alcohol use 

has also been considered as a possible risk factor of HIV /STis. In this discussion, 
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documented effects of these factors, as well as their interrelationships are highlighted. 

Simulation models of sexual network partnerships and HIV /STI transmission 

identify measures of risk behaviour accumulated over the period parallel to HIV 

epidemic, such as age at first sexual intercourse and number of lifetime partners 

as important risk factors (Ghani and Garnett, 2000). An increase in the number 

of lifetime partners is associated with an exponential increase in the risk of HIV 

(Eisenberg, 1989; Auvert, et al 2001). However, the number of lifetime partners is 

related to the respondent's age since young people who recently started having sex­

ual intercourse will most likely have fewer lifetime partners than older respondents. 

The study of sexual networks of pregnant women found that recent sexual con­

tacts accounted for most of HIV infections in women (Johnson, et al 2003). In this 

study, women reported fewer lifetime partners and the conclusion was that their in­

creased risk was due to their male partners who had sexual contacts with commercial 

sex workers. Predominant risky sexual practices include having casual sexual rela­

tionships, increased frequency and type of sexual contacts. Empirical evidence shows 

less coital frequency in casual relationships than in marital relationships (Gregson, 

et al 2002). However, the risk of HIV is much higher in sexual contacts with casual 

partners than with wives or regular partners (Celentano, et al 1996; Auvert, et al 

2001). Unmarried men engage in much more high risk sexual behaviour than mar­

ried men (Gibney, et al 2003) and this increases the risk of infection among these 

men. 

The use of alcohol is not itself a risk factor but sexual behaviour associated 

with drinking alcohol is. Gibney, et al (2003) reported that drinking alcohol was 

a significant factor associated with having sexual contact with a commercial sex 

worker. In most societies, very few women ever acknowledge drinking alcohol and 

thus data becomes less variable for any valid statistical analysis. Consistent condom 
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use during sexual intercourse is an effective measures of preventing heterosexual 

transmission of HIV /STis (Conant, et al 1984). However, the frequency of condom 

use is relatively low and varies with the type of relationship. Occasional use of 

condoms is reported in casual relationships and, an even lower rate, in regular or 

marital relationships. The most disturbing aspect of condom use is that condoms 

are rarely used in casual relationships involving young women and older men because 

men consider young women to be free of HIV (Gregson, et al 2002). This partly 

explains higher rates of HIV infection among young women compared to men of the 

same age group. 

1.3 The data set 

In this thesis, the HIV and STis data from migrant and non-migrant sexual net­

works from Hlabisa rural health district in northern KwaZulu-Natal South Africa, 

Figure 0.1, will be studied. South Africa is the country at the bottom of Africa. The 

Indian and Atlantic oceans form the eastern and western coastlines respectively, and 

they meet in the south at the Cape of Good Hope. To the north, South Africa is 

bordered by Namibia, Botswana, Zimbabwe, Swaziland and Mozambique. Lesotho 

is a country entirely surrounded by South Africa. 

The data investigated is from cohorts of migrant men from Hlabisa district, part­

ner{s) of migrant men residing in Hlabisa district, non-migrant men from Hlabisa 

district and partner(s) of non-migrant men residing in Hlabisa district. The study 

was designed to test the hypothesis that migrant men and their rural partners are 

at increased risk of HIV /STis compared to non-migrant men and their partners. 

The investigation was intended to determine the extent to which the rural epidemic 

of HIV and that of STis is being fuelled by circulation within the rural population 

as opposed to introduction from outside the home community by returning circular 

migrant men. 
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In October 1998, a sample of migrant men from Hlabisa district working in 

Carletonville gold mines near Johannesburg or Richard's bay factories near Durban 

(Figure 0.1) were invited from their workplaces to participate in the study. Migrant 

men were eligible to participate if they had been migrants for at least six months 

and had at least one regular sexual partner in Hlabisa who was not a migrant herself. 

Migrant men in this sample provided details of their sexual partners from Hlabisa, 

who were then located and invited to participate. In the neighbourhood of each 

migrant man's household, a non-migrant man and his partner(s) were selected and 

invited to participate. A non-migrant was defined as someone who spends most of 

the nights at home and has not been a migrant for more than a total of six months 

in the last five years. 

Recruitment and logistical support for migrant men in Carletonville was em­

bedded within a community based study carried out in Carletonville district. This 

community survey collected data from men and women aged between 13 and 60 

years. The main objective of the survey was to investigate the extent of HIV infec­

tion in the community. The subsidiary goals were to determine the extent of female 

migration and investigate the risk factors of HIV among women who self-identified 

themselves as migrants compared to women who self-identified themselves as non­

migrants in the area. 

In the period between October 1998 and October 2001, the study participants 

were visited approximately every four months. During each visit, a detailed sur­

vey questionnaire was administered. The survey questionnaire elicited information 

related to demographic and socioeconomic characteristics, and to sexual behaviour 

and biomedical factors. In particular, the survey questionnaire collected information 

on each individual's accumulated sexual behaviour and partnership characteristics 

such as age and other concurrent partners within the last four months. 
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Two millilitres of venous blood were collected from those who consented to par­

ticipate. The blood was screened for HIV using the Determine Rapid Test (Ab­

bott Diagnostics). Samples that tested positive were re-tested using two additional 

ELISA tests (HIV 1.2.0 - Abbott/Murieux and Vironosticka HIV uniform 2+0, 

Omnimed). A random sample of 10% of the specimens that were negative on the 

Determine Rapid Test was also subjected to the ELISA confirmation to validate the 

specificity of the testing method. These tests remained negative on ELISA test. 

All participants were offered extensive pre- and post-test counselling, condoms at 

each visit, and free treatment for symptomatic and laboratory-diagnosed STis. The 

medical professional physically examined participants for presence of symptomatic 

STis. Symptomatic ulcers and genital discharge were treated on enrolment accord­

ing to the KwaZulu-Natal Province syndromic management guidelines (Department 

of Health, 1995), and laboratory-diagnosed STis were treated ten days later. 

The study group consists of 631 men and women aged between 18 and 69 years 

who were interviewed during the first clinical visit. There are 287(45.4%) women 

and 344(55.6%) men in the group. Of the men, circular migrants from Carletonville 

and Richard's bay accounted for 27.3% and 37.2% respectively and the rest of the 

men were non-migrants (35.5%). About 49.8% of women were partners of migrant 

men whilst 51.0% were partners of non-migrant men. The number of female part­

ners interviewed for each man ranged from O to 4 women. Composition of sexual 

network partnerships consisted of 187 dyads, 40 triads, 4 quadriads and 1 pentad. 

The study planned to get data on each individual for the initial visit and on six 

follow-up visits at four monthly intervals. However, many participants dropped out 

of the study after each visit so the data on most participants covers only a few 

follow-up visits. 
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1.4 Clustered data 

Traditional statistical methods of data analysis assume that an individual response 

is the unit of analysis. The fundamental assumption of these statistical methods 

is that observational units are independent. Often data is collected using designs 

that gather data in dependent sub-groups or clusters. Familiar examples of clusters 

are families, schools or communities. In simple terms, a cluster is a collection of 

subunits on which observations are made. Another, common type of cluster is 

when observations are collected repeatedly on the same unit over time. The feature 

of clustered data is that observations within the same cluster tend to be more 

similar than observations in different clusters. The observations within a cluster 

are correlated. In standard settings, there is only one source of variation between 

observational units. Heterogeneity between clusters introduces an additional source 

of variation, which complicates the analysis. Classical methods that do not explicitly 

correct for clustering are inappropriate. Correlated data often arise in scientific 

disciplines such as health and social sciences, and require sophisticated statistical 

methods. In the next section, current statistical approaches to clustered data are 

described. 

1.4.1 Models for correlated data 

Scientific interest in clustered data is either in the pattern of change over time 

when measurements are taken repeatedly within the same unit, or simply the de­

pendence of the outcome variable on the explanatory variable{s). The methods for 
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an approximately Gaussian outcome variable are well developed (Laird and Ware, 

1982, Verbeke and Molenberghs, 1997; 2000). The linear mixed model has played 

a prominent role in extending the general linear model to handle correlated con­

tinuous data. The model relies on the elegant properties of a multivariate normal 

distribution. If the outcome variable is discrete, complete specification of the joint 

distribution of the response vector becomes problematic and likelihood methods get 

tedious. Three broad classes of models for clustered data have been proposed and 

are briefly described. 

The first class of models often used to model clustered data is the class of condi­

tional models. In conditional models, an outcome is modelled conditional on other 

outcomes rather than integrating them out. Parameter estimates from conditional 

models describe a feature of a set of outcomes conditionally on other outcomes. 

Conditional models are related to the family of transition models such as Markov 

models (Diggle, Liang and Zeger, 1994). Molenberghs and Ryan (1999) gave an 

example of such models in the case of binary response data. The main criticism of 

conditional models is their conditional interpretation of parameters on other out­

comes and on cluster size. The conditional interpretation of the parameters renders 

these models less useful for regression analysis. 

The second approach is marginal models. Marginal models directly model the 

marginal distribution of the response as a function of explanatory variables (Pren­

tice, 1988; Liang, Zeger and Qaqish, 1992). In marginal models, the regression 

model is of scientific interest and correlation between observations within the same 

cluster is considered a nuisance parameter. However, we often do not know the 

precise details of the probabilistic function from which the data is generated. Liang 

and Zeger (1986) proposed a method of generalized estimating equations (GEE) that 

does not require assumptions about the complete joint distribution of the response 

vector. Zeger and Liang (1986) generalized the GEE approach. The GEE approach 
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provides a natural extension of quasi-likelihood (Wedderburn, 1974) to account for 

correlation within clusters. The GEE approach only requires correct specification of 

the univariate marginal probabilities with an adoption of some working assumption 

about the correlation structure. GEE has received much attention for some time, 

perhaps due to their relative computational ease and availability of good software 

(e.g. SAS procedure GENMOD). Prentice (1988) proposed an extension to GEE 

which allows for modelling of pairwise association using correlation or odds ratio 

(OR) as the measure of association. The main criticism of the GEE approach is 

that it does not generally correspond directly to a likelihood which could be used 

to calculate deviances (Hardin and Hilbe, 2003). Some approximations to the like­

lihood ratio statistic have been proposed (Rotnitzky and Jewell, 1990). 

The model that mimics a linear mixed model for continuous data assumes the 

existence of an underlying unobserved continuous (latent) variable that represents 

various features shared by elements of a cluster and hence introduces correlation 

among observations. The latent variable is often called a random effect. Random 

effect models were introduced to account for extra-binomial variation due to larger 

variability among clustered binary responses than what would have been expected 

due to binomial variability alone. The families of linear mixed models and general­

ized linear models (GLM)s (Nelder and Wedderburn, 1972; McCullagh and Nelder, 

1989) are combined and form a class of generalized linear mixed models (GLMM)s 

if random effects are assumed normally distributed. These models have been ex­

tensively studied (see for example Stiratelli, Laird and Ware, 1984; Anderson and 

Aitken, 1985; Im and Gianola, 1988; Zeger, Liang and Albert, 1988; Breslow and 

Clayton, 1993; Wolfinger and O'Connell, 1993). 

There are some critical distinctions between marginal models and random effects 

models. In marginal models, parameters are interpreted with respect to the marginal 

or population-averaged distribution. Such models are referred to as the population-
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averaged models. In the random effects models, on the other hand, parameters have 

cluster-specific effects and are consequently called cluster-specific models. Cluster­

specific models assume that correlation arises because regression parameters vary 

across clusters. This distinction is irrelevant in normal response variables since pa­

rameters have both the population-averaged and the cluster-specific interpretations. 

The distinction is critical in discrete data. Zeger, Liang and Albert (1988) discuss 

these two approaches to modelling of longitudinal data using the GEE. 

1.4.2 Inference for GLMMs 

Inference for GLMMs is a topic that has received much attention recently (Littell, et 

al 1996; Yu and Zelterman, 2002; Mills, et al 2002). Mills et al (2002) proposed an 

approach that allows for both population-averaged and individual-specific inference 

in GLMMs. Yu and and Zelterman (2002) discuss exact methods of inference when 

data are sparse or alternative hypothesis do not have a parametric form. The impor­

tance of each fixed effect in GLMMs is determined by a Student's t-test obtained by 

the ratio of the estimate to its standard error. The estimates of variability for fixed 

effects underestimate the true variability since they do not take into account the 

variability introduced when estimating random components. In practice, the t-test 

is used to account for this downward bias. The degrees of freedom are obtained as 

described in chapters 1 and 2 of Littell, et al (1996). 

The deviance and the scale deviance are interpreted as goodness-of-fit chi-squared 

statistics for conditional models given the random effects (Littell, et al 1996). Self 

and Liang (1987) proposed a method for testing the importance of random effects in 

the model. They suggest fitting models with and without random effects and testing 

the difference in the deviance between the two nested models as a likelihood ratio 

chi-squared test. Modifications are needed to test for zero random effect variance 

since the hypothesized value may lie on the boundary of the parameter space. In 
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such a situation, Self and Liang (1987) proved that the likelihood ratio test is a 

mixture of x~ and x~ distributions. The correct approach is to use an upper tail 

critical region of the normal distribution. Thus, the usual ratio z-test, for a random 

effect variance is compared to a critical value of 1.645 at 0.05 level of significance. 

1.5 Model formulation 

The two primary outcomes of the thesis are time until HIV infection and infec­

tion with any of the curable STis. The curable STis considered are active syphilis, 

chlamydia, gonorrhoea, genital ulcers and genital discharge. Given the high cure 

rate of STis through syndromic management, presence of any curable STI is con­

sidered a new infection. In the cross-sectional baseline descriptive analysis of HIV 

infection, an indicator of HIV status is all that is considered. This is in contrast 

to incidence analysis where time until HIV infection will be the primary outcome. 

One important dynamical feature of infection taking place within the constraints 

of a sexual network is the rapid increase of correlation in the infection status of 

members of a sexual network (Friedman, et al 1997). For example, many infected 

individuals will have their partners also infected since either they infected their 

partners, or vice-versa. In this section, a model which includes sexual network de­

pendency through introducing a sexual network random effects term is formulated. 

Consider an indicator of HIV or STI status of an individual from a particular 

sexual network. The infection status is nested within a sexual network. Sexual net­

works form clusters within which subjects are more alike than those from different 

sexual networks. Let Yii (i = 1, ···,I; j = 1, ···,Ji) denote the infection indicator 

for the jth individual in sexual network i. The infection indicator is 1 if an indi­

vidual is infected and O otherwise. The extension to include series of observations 

from an individual over time follows immediately with the response becoming Yiik 

where (k = 1, · · ·, Kii). Let Xii represent a known fixed design vector of explana-



17 

tory variables and /3 be a p--dimensional vector representing covariate effects. The 

ith sexual network random effect is represented by bi. 

The response variable Yii is premised on the assumption that it represents an 

underlying continuous variable T, known as 'threshold' or tolerance variable (An­

derson and Aitkin, 1985; Im and Gianola, 1988). An individual is diagnosed with 

an infection if the tolerance level exceeds t which is the threshold or tolerance level. 

Thus, if '7rij is the conditional probability that the jth member of sexual network i 

is infected, then 

1rij = Pr('ni > tlbi) = Pr(Yii = llbi). 

It is further assumed that the unobservable tolerance variable follows the mixed 

linear model 

Tii = /3' Xii+ bi+ eii· 

The eii are assumed symmetric and identically distributed random variables with a 

continuous unimodal density function J(). Without loss of generality, we set t = 0. 

In GLMMs the explanatory variables in Xii and shared random effects bi influence 

Yiik through a linear combination T/ii = /3' Xii+bi where T/ii is called a linear predictor. 

The linear predictor T/ii is related to 1rii of Yii through the link function g such that 

T/ij = g( 1rij). 

1.5.1 Parameter estimation for GLMMs 

The fundamental distributional assumptions for the GLMMs are first stated here 

below: 

• The distribution of Yii given bi follows a distribution from the exponential 

family f(Yiilbi; /3), 

• Given bi, the observations {yi1 , · · ·, YiJJ are independent, 

• The bi are independent and identically distributed with density function f(bi; D, E) 

where D and E are the mean and variance respectively. 
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The parameters A = { D, E} known as hyperparameters are also estimated from the 

data. The method of maximum likelihood (ML) estimation amounts to selecting 

estimates of those parameters that make the observed data most likely to have 

occurred. The likelihood function for unknown parameters f3 and A is 

I J; 

L((3, A; y) = II J II f(Yijlbi; f3)f(bi; A)dbi 
i=l j=l 

which is the marginal distribution of the response vector y obtained after inte­

grating out bi. Except in normal linear models with normally distributed random 

effects, the computation of the marginal likelihood presents substantial problems 

because the marginal distribution of the response variable is usually intractable. 

In some instances numerical integrations may have to be used. For more complex 

problems involving high dimensional parameter space, numerical integration can be 

infeasible. Breslow and Clayton (1993) constructed a Laplace approximation for 

the marginal quasi-likelihood which is then maximized via linearization methods 

(Goldstein, 1995). Wolfinger and O'Connell (1993) proposed a pseudo-likelihood 

approach which circumvents the need for numerical integration. The approach of 

Wolfinger and O'Connell (1993) is implemented in SAS macro GLIMMIX. Zeger 

and Karim (1991) avoided the need for numerical integration by casting the GLMM 

in Bayesian framework and estimate parameters via the Gibbs sampler. 

The standard approach in ML estimation is to take the partial derivatives of the 

log-likelihood with respect to each parameter and set them to zero. The resulting 

systems of equations are either solved directly or iteratively. The common strategy 

in mixed models is to use the expectation-maximization (EM) algorithm (Dempster, 

Laird and Rubin, 1977). In Chapter 2, we describe and implement the EM algorithm 

on the logistic mixed model. In the Bayesian paradigm, all unknown quantities are 

treated as random variables and a joint hyperprior probability distribution p((3, A) 

is specified for the unknown parameters f3 and A that define the GLMM. The joint 
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posterior distribution g(b,,B,Aly) is 

f(ylb;,B)f(b;A)p(,B,A) 
g(b, ,B, Aly) = J J J f(ylb; ,B) f(b; A)p(,B, A)d,Bdb dA 

where b = {b1 , ···,bi}. Finding g(b, ,B, Aly) analytically can be very complicated. 

Even computing it numerically is extremely problematic when the dimension of 

the parameter space is high. Instead we generate samples from the joint posterior 

g(b, ,B, Aly) that can be used to estimate any quantity that is of interest to us. In 

Chapter 4, we describe Bayesian techniques that can be used to generate samples 

from g(b,,B,Aly). The marginal posteriors for regression parameters ,Band variance 

component parameters A are computed by marginalization. 

1.6 The thesis objectives 

The primary objective of this thesis is to investigate the effects of urban-rural circu­

lar migration of men on the spread of HIV and other STis in the rural health district 

of KwaZulu-Natal, South Africa. The thesis aims to analyse the determinants of 

STis and those of HIV infection, with the main focus being on migration status. 

These goals will be attained by developing, describing and evaluating statistical 

methods for modelling multivariate binary data and interval-censored time until 

HIV infection data. Therefore, the thesis is both substantive and methodological. 

It is acknowledged that some sexual networks might have higher risk of STis 

than others. Also, some sexual networks might have higher risk of HIV infection 

than other sexual networks (Friedman, et al 1997). The thesis aims to quantify the 

magnitude and the importance of sexual network clustering in the transmission of 

STis and of time until HIV infection separately. The quantification of sexual net­

work clustering effect of STis will be achieved by using random effects models which 

allow for clustering of STI risk within sexual networks. The magnitude of the effect 

of sexual network clustering of time until HIV infection will be accomplished by 

using a random effects model that takes into account the interval-censored nature 
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of time until HIV infection and sexual network dependencies. The main focus on 

interval-censored frailty model will be on the full Bayesian inference which has not 

been previously used for this type of analysis and data. 

The estimation of coefficients of the explanatory variables and variance compo­

nents for sexual network random effects, for both response variables of interest, will 

also be carried out using the EM algorithm. A subsidiary goal for this thesis is to 

compare the resulting estimates of the EM algorithm to the full Bayesian estimates 

for the interval-censored frailty model obtained via the Gibbs sampler. 

1. 7 Structure of the thesis 

The subsequent chapters of this thesis are organized as follows: Chapter 2 describes 

the basic theory behind the EM algorithm. The EM algorithm is then used to 

compute ML estimates of parameters associated with risk factors of STis and the 

ML estimates of the sexual network variance. The analysis correctly accounts for 

possible sexual network random effects through casting the logistic mixed model 

as a missing data problem to facilitate the use of the EM algorithm. The chapter 

compares estimates from the model with and without random effects. 

The multiplicative proportional hazards frailty model of time until HIV infec­

tion, where infection time is interval-censored and is treated as missing data, is 

formulated and analysed in Chapter 3 using the EM algorithm. Unobserved frail­

ties and interval-censored infection times further form the missing data to facilitate 

the EM algorithm. Parameter estimates obtained from the model with and without 

sexual network frailty term are compared. 

The major hindrance to full Bayesian implementation of many models has been 

the difficulty of evaluating the integrals to obtain posterior densities analytically. 
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Instead, methods have recently been developed to generate samples from the pos­

teriors. In Chapter 4, we present the theory behind Markov chain Monte Carlo 

(MCMC) simulation techniques used in Bayesian analysis to generate these sam­

ples. The MCMC methods circumvent the complexities involved in dealing with 

intractable integrals. 

Chapter 5 presents the results of the multiplicative frailty model obtained via 

the Gibbs sampler, a MCMC method. Furthermore, the results from the Gibbs 

sampler are compared to those obtained from the EM algorithm. Finally, Chapter 6 

presents the substantive and methodological conclusions of the thesis. The chapter 

further highlights issues related to future research. 



Chapter 2 

Analysing STis with the EM 

algorithm 

2 .1 Introduction 

The expectation-maximization (EM) algorithm is a broadly applicable iterative tech­

nique for finding maximum likelihood (ML) estimates for parametric models. The 

ideas behind the EM algorithm appeared in various situations even before it was 

presented in a general formulation by Dempster, Laird and Rubin (1977), in which 

they showed its basic properties. The EM algorithm is profitably applied in situa­

tions of incomplete-data problems, where ML estimation is complicated by the data 

being missing. Data can be missing because of spoiled specimens, non-response 

from participants, or censored data (Cox, 1972). For example, in panel studies of 

HIV the exact infection time may occur between two widely spaced clinical exam­

ination times and thus it is interval-censored. The exact infection time is missing. 

In some cases, incompleteness of the data is not trivial. This is the case in random 

effects models, mixture models and latent variable structures where data is actually 

unobservable. 

In this chapter, we will analyse migration data using the EM algorithm. The 
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outcome of interest is the infection with at least one curable STI. Syndromic manage­

ment of diagnosed STis was completed according to standard provincial guidelines 

(Department of Health, 1995). Therefore, a new infection is considered an incident 

case, not a carryover from a previous infection. The model formulated in Section 1.5 

is extended to incorporate an extra index for clinical examination visit times. Sec­

tion 2.2 presents the basic theory behind the EM algorithm. Section 2.3 discusses 

the rate of convergence and possible techniques for improving convergence. Meth­

ods of obtaining the information matrix are presented in Section 2.4. Section 2.5 

describes parameter estimation of the model and derive equations required to im­

plement the E-step and M-step of the algorithm. Finally, analyses of STis data is 

presented in Section 2.6. 

2.2 Theory of the EM algorithm 

The basic idea behind the EM algorithm is to relate a given incomplete-data problem 

with complete-data problem in which the ML estimates are more tractable. In this 

framework, the complete-data x is perceived as an augmented form of the observed 

(incomplete) data y such that the distribution of y can be obtained from that of x 

as a marginal distribution. Let fc(x; 8) and f 0 (y; 8) denote the probability density 

function of the complete-data x and observed data y respectively, and 8 is a vector of 

unknown parameters. The complete-data is related to the incomplete data through 

fo(y; 8) = j fc(x; 8)dx 

where the integral is taken over {x: y = h(x)} for some known function h(.). The 

integral is replaced by the summation in discrete data. 

Instead of directly maximizing the observed data log likelihood function log L0 ( 8) = 

log f 0 (y; 8), the EM algorithm proceeds iteratively by updating the current estimate 

of 8 by alternating between the E-step and M-step as follows. 
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• E-step: Compute the expected value of the complete-data log likelihood func­

tion given the observed data y and the current estimate B. 

where ()(r) is the current estimate of (} after rth iteration. In the exponen­

tial family case this is achieved by using the conditional expectation of the 

complete-data sufficient statistics given y and ()(r). In other cases, the condi­

tional expectations are not available in closed form, and they are computed 

using numerical methods such as Laplace approximation (Steele, 1996, Skaung, 

2002), numerical quadratures (Anderson and Aitkin, 1985; Im and Gianola, 

1988) and adaptive Gaussian quadrature (Monahan and Stefanski, 1992). Mc­

Culloch (1997) used the Metropolis algorithm that does not require specifica­

tion of the observed data likelihood. 

• M-step: Compute ()(r+l) as the(} that maximizes the complete-data log likeli­

hood Q(B; ()(r)) after replacing unobserved data with their conditional expec­

tations obtained from the E-step. In general, this step will be fairly easy to 

compute since in most cases it coincides with complete data ML specifications. 

In most practical problems, estimation will be iterative in nature. 

It is a general result from EM methodology that if ()(r+l) maximized Q(B; ()(r)) 

then log L0 (()(r+l)) ~ log Lo(()(r)). That is, ()(r+l) is better than ()(r) (Dempster, Laird 

and Rubin, 1977). Jorgensen (2002) noted that this EM property is a consequence of 

Kullback-Leibler divergence properties. The E-step and M-step are alternated until 

the difference between consecutive values log L 0 (()(r)) and log L 0 (()(r+I)) becomes 

smaller than the pre-specified value E. The EM algorithm is guaranteed to converge 

to at least a local maximum of log Lo( B). However, convergence to a global maxima 

in the presence of multiple maxima is not guaranteed. This is also the case with other 

algorithms, including Newton-type algorithms. McLachlan and Krishnan (1997) 

devoted the whole monograph to the EM algorithm and discussed extensions to the 

algorithm. 
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2.3 Rate of EM convergence 

The EM algorithm is an attractive tool due to its simplicity. However, it can be 

extremely slow to converge compared to other methods such as Newton-Raphson. 

The rate of convergence of the EM algorithm is linear rather than the quadratic 

rate of convergence achieved in the Newton-Raphson algorithm. The EM algorithm 

implicitly defines a mapping function M such that 

If e(r) converges to some point 8* and M(O(r)) is continuous, then 8* is a fixed point 

of the algorithm and 8* = M(O*). Using the first term of the Taylor series expansion 

of e(r+I) = M ( e(r)) about the point e(r) = 8*, we have that in the neighbourhood of 

8* 

e(r+I) - 8* = J(O*)(e(r) - 8*) 

where J(O*) is a matrix of partial derivatives (Jacobian), J(O) = 8M(0)/88 eval­

uated at 8 = 8* (Laird, et al 1987 ). In the neighbourhood of 8* the algorithm is 

a linear iteration with convergence rate J(O*). They show that for large enough r, 

J* ~ J(oo) where J(oo) = J(0(00l) and e(oo) = limr_,00 8*. Thus, we can write 

e(oo) ~ e(r) + {E [J(e(oo))r} (et+l - et). 

The power series ~f=0{J(0(00))}h converges to (I - J(00)t1 if all eigenvalues of 

J(0(00)) are between O and 1. Therefore, convergence can be improved by trying 

where I is a p x p identity matrix and 8 is a p-dimensional vector of unknown pa­

rameters. The rate matrix J(oo) can be estimated by J*. In ML estimation, explicit 

formulae for J* can be obtained by directly differentiating the mapping function. 

The rate of convergence matrix can also be expressed in terms of information ma­

trices of the pseudo-complete data and unobserved data as detailed in the following 

section. 
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2.4 Observed information matrix 

The common criticism of the EM algorithm is that it does not explicitly provide an 

estimate of the variance-covariance matrix while other methods such as the Newton­

Raphson algorithm do. Methods of obtaining the variance-covariance matrix have 

been suggested by several authors (Louis, 1982; Meng and Rubin, 1991; Jamshid­

ian and Jennrich, 2000). McLachlan and Krishnan (1997, chapter 4) give a survey 

of earlier work on the calculation of information matrix in the context of the EM 

algorithm. Proposed methods have their basis on the decomposition of the ob­

served information matrix. Let Sc((}; x) and S0 ((}; y) be the score vectors of the 

complete-data x and observed data y respectively. Also, let le((}; x) and I0 ((}; y) be 

the negative square matrices of first partial derivatives of Sc((}; x) and S0 ( (}; y) re­

spectively. Let x = (y, z) where z represents the missing part of the complete-data 

x. The conditional density function of z given y is 

( I ) fc(x; (}) 
g z y; (} = L ( (}· )" 

0 ,y 

Since logL0 ((};y) = logLc((};x)-logg(zly;(}) we then have that 

82 log L0 ((}; y) 
[)(}[)(}' 

Io((}; y) 

Io((}; y) 

82 log Le((}; x) 
[)(}[)(}' 

= le((}; x) - fz\y((}; x) 

Ic((}; y) - Iz\y((}; y) 

82 log g(zly; (}) 
8()8(}' 

(2.1) 

(2.2) 

where Ic((}; y) is the conditional expectation of the complete-data information ma­

trix. Although log g(zly; (}) cannot be considered to be a log likelihood it seems 

sensible by analogy to define 

fz\y((}; x) 

Iz\y((}; y) 

02 log g( z I y; e) 
8()8(}' 

E [IzJy((}; x)I(}, Y] 

where Iz\y((}; y) is the expected information matrix of the conditional distribution 

of unobserved data z given the observed data y. In the class of exponential family, 

log fc(x; (}) = t(x) q((}) + log c((}) + log h(x). Therefore, the elements of Ic((}; y) can 
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be expressed in terms of the complete-data sufficient statistics t(x) and second par­

tial derivatives of q(O) and c(O). Consequently, Ic(B; y) can be computed from the 

conditional expectations of the complete-data sufficient statistics. These conditional 

expectations are in fact required for implementation of the EM algorithm. 

The decomposition in (2.2) is the application of the missing information principle 

as a consequence of observing only y and not z, meaning the observed information is 

equal to the complete-data information less missing information. Efron and Hinkley 

(1978) argued in favour of the observed data information ! 0 (8; y) as a more appro­

priate measure of information than its expectation I(O) = E[I0 (8; y)] over y. Louis 

(1982) used the definition of S0 (8; y) to show that Iz1y(B; y) can be expressed as 

Cov{Sc(B; x)ly} 

E [Sc(B; x)S:(e; x)IY] - Sa(B; y)S:(e; y). (2.3) 

where S0 (8; y) = E [Sc(B; x)ly] (Louis, 1982; McLachlan and Krishnan, 1997). There­

fore ! 0 (8; y) becomes 

Io(B; y) - Ic(B; y) - Iz1y(B; y) 

= Ic(B;y)- Cov{Sc(B;x)IY} 

Ic(B; y) - E [sc(B; x)s:(e; x)IY] + S0 (8; y)S:(e; y). (2.4) 

The conditional expectations in (2.4) can be computed in the EM algorithm using 

Sc(B; x) and Ic(B; y) which are the gradient and the curvature of the complete-data 

problem introduced within the EM algorithm. The conditional expectation needs 

only be evaluated at the last step of the EM algorithm where (} = (}* is the ML 

estimate. Thus, 

The last term on the right hand side of (2.4) disappears since S0 (8*; y) = 0. The 

estimates of the variance-covariance matrix obtained by the EM algorithm are based 
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on the second derivative of the log likelihood and thus guaranteed to be valid asymp­

totically. 

The methods of computing the variance-covariance matrix discussed thus far 

have their limitations. For example, the method proposed by Louis (1982) requires, 

in addition to the code for the complete-data variance-covariance matrix and the 

code for E-step and M-step, calculation of the conditional expectation of the square 

of the complete-data score function. Calculating such a conditional expectation 

can be cumbersome. Smith (1977) proposed calculating the asymptotic variance 

using the rate of convergence and the complete-data asymptotic variance. However, 

Smith's (1977) approach is inadequate in multi-parameter problems. The method 

cannot produce the entire rate matrix. Observed component-wise rate of conver­

gence provides only a few eigenvalues. In most cases, it only yields the largest 

eigenvalue of the rate matrix. Meng and Rubin (1991) extended Smith's (1977) 

approach to multi-parameter problems. Theorem 4 of Dempster, Laird and Rubin 

( 1977) proves that the convergence rate matrix J ( ()*) is 

J(O*) = I;1(0*; y)Iz1y(O*; y). 

An intuitive interpretation of this equation is that if more information is missing 

from the complete-data, the slower the convergence. The consequence of this result 

is that we can express J(O*) in terms of information matrix in (2.2) (McLachlan and 

Krishnan, 1997) as follows 

J(O*) I; 1(0*; y)[Ic(O*; y) - I(O*; y)] 

I - I;1 (O*; y )I(()*; y) 

Interchanging terms and inverting matrices yields J-1(0*; y) = I; 1(0*; y)[J-J(O*)J-1 . 

Inverted information matrices are used as estimates of the variance-covariance ma­

trix of 0. Therefore, the observed asymptotic variance can be obtained by inflating 

the ordinary complete-data asymptotic variance with a factor of [J - J(O*)J-1 . The 

factor [J - J(O*)J-1 is readily available from the output of the EM algorithm (Meng 
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and Rubin, 1991) without extra computational code outside the EM context. This 

only requires a supplemented step used to compute [J - J(O*)J-1 and evaluation of 

T; 1(0*; y), hence Meng and Rubin, (1991) gave the name Supplemented EM (SEM). 

Jamshidian and Jennrich (2000) considered methods similar to SEM. However, their 

methods are based on numerical differentiation of the mapping function M ( 0) and 

the observed data score vector. 

2.5 Likelihood for the logit model 

Much attention to random effects models has been given to problems where the 

conditional distribution of the response variable is normal, and the marginal distri­

bution of random effects is normal (Harville, 1977; Laird and Ware, 1982; Verbeke 

and Molenberghs, 1997; 2000). The rationale for normal random effects models 

carries over to a wide range of probability distributions (Stiratelli, Laird and Ware, 

1984; Anderson and Aitkin, 1985). If the distribution of the threshold level Tijk is 

a standard logistic model as we discussed in Section 1.5, then 

( 
I ) exp(,B' xijk + bi) 

1riik = g ,B Xiik + bi = 1 + exp(,B'Xiik + bi) k = 1, · · ·, Kii (2.5) 

where Kii is the total number of clinical examination visits for the jth member 

of sexual network i and bi is the random effect for network i. The model for 1rijk 

gives a logit link defined as log[1rijk/(l - 7rijk)]. The logistic mixed model has been 

considered before. Im and Gianola (1988) used a logistic mixed model to analyse 

lamb mortality with a two-way nested random effects of dam within sire. A similar 

approach was considered earlier by Anderson and Aitkin (1985) in the study of in­

terviewer effect within areas. 

The random effect variable bi rv N(O, a 2 ). For convenience we consider si = 

bda, and thus Si ""N(O, 1), probability density function of a normal distribution, 

denoted by cp(si). The approach often adopted is to estimate the value of sexual 

network random effects (si) corresponding to ith sexual network response vector 
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Yi = {yill, · · ·, YiIK;i, Yi21, · · ·, YiJ;K;J by E[si!Yi; OJ and obtain the ML estimates 

of 0, where O = {,B, a}. The predicted values of si are important in their own 

right. They provide valuable information about sexual network formations that 

are associated with high risk of STis. The elements of Yi are assumed conditionally 

independent given Si. Therefore, under the logit model the complete-data likelihood 

for sexual network i is given by: 

and the marginal log likelihood is given by 

(2.6) 

The central function of the EM algorithm is the complete-data log likelihood given 

by 

This function depends on unobserved data Si through 'Trijk (2.5). To estimate func­

tions of unobserved data, we require their conditional distribution given the observed 

data and current estimate of 0, apart from a term not depending on 0. The following 

section describes the calculation for the required conditional expectations. 

2.5.1 Expectation step 

It is noted from (2.7) that we require E[log(1rijk)lyi; OJ and E[log(l - 'Trijk)lyi; OJ. 

Thus, unobserved quantities will be replaced by their conditional expectations. The 

conditional density g(si!Yi; 0) for sexual network i is given by 

where 

J; K;i 

</J(si) II II 1rfJt(1 - 1rijk) 1-Yiik 

j=lk=l 
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and the Yi component of the observed data likelihood of () is 

Joo J; K;i 
• _ Yiik 1-y; -k Li((), Yi) - ¢(si) IT IT 1rijk (1 - 'lrijk) 3 dsi. 

-oo j=l k=l 
(2.8) 

It is not possible to solve Li((); Yi) analytically. Methods of numerical integra-

tion are required. Since the integration is over normal densities, Gaussian-Hermite 

quadratures can be used. Gaussian-Hermite quadratures replace the integral by 

a summation of the weighted integrand function evaluated at optimal quadrature 

points. Therefore, 
M 

j f(a)¢(a)da ~ L whf(ah), 
h=l 

where {ah : h = 1, · · ·, M} denote M-optimal Gaussian quadrature points and 

{wh : h = 1, · · ·, M} the corresponding weights. The terms wh..fi and ah/./2 

are given in Abramowitz and Stegun (1972). Other methods such as automatic 

differentiation have been used to facilitate ML estimation (Skaung, 2002). Applying 

Gaussian-Hermite quadratures to (2.8) gives us 

L;(O; y;) "' t Wh (ft li 1r~iW - 1r,;kh)1-••1•) 

where 'lrijkh = g((3' Xijkh +aah). The E[log( 1rijk) IYi; OJ and E[log(l - 'lrijk) I Yi; OJ given 

Yi are 

1_: log(1rijk) 9i (silYi; O)dsi 

.._,..M TIJ; TIKij l ( ) Yijk (1 )1-y;·k L.,h=l Wh j=l k=l og 'lrijkh 7rijkh - 'lrijkh 3 

.._,..M w I]Ji TIKij ""Yijk (1 - ""· 'kh)l-Yijk L.,h=l h j=l k=l II ijkh II IJ 

and 

respectively. The E[silYi; OJ is calculated in a similar fashion. 

2.5.2 Maximization step 

The M-step proceeds by replacing functions of unobserved data with their con­

ditional expectations obtained from the E-step into the complete-data log likeli-
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hood (2.7). Let the vector of weights whi be 

nJ; ITKij Yijk (1 )1-y··k 
W . = Wh j=l k=l 7rijkh - 1rijkh '3 

hi M J K· · y· ·k 1 . " fl i IT '1 ' 1 (1 ) -y· ·k L.h=l Wh j=l k=l 7rijkh - 1rijkh '3 

Therefore, the M-step maximizes 

M I J; K;i 

LL whi LL Yiik log(1riikh) + (1 - Yiik) log(l - 1rijkh) (2.9) 
h=li=l j=lk=l 

with respect to e. Functions of the data not involving (} are ignored in (2.9). The 

ML estimators are the solutions to 

~ ~ ~ ~ { exp(,B' Xiikh + aah) } _ 0 L..., L..., whi L..., L..., Xijkhs Yijk - I - ' 
h=l i=l j=l k=l 1 + exp(,B xijkh + aah) 

s = 1, · · · ,P 

(2.10) 

and 

~ ~ ~ ~ { exp(,B' Xijkh + aah) } _ 0 L..., L..., whi L..., L..., ah Yiik - , -
h=l i=l j=l k=l 1 + exp(,B xijkh + aah) 

(2.11) 

where pis the total number of fixed effects. It turns out that these are the equations 

used in weighted logistic regression estimation where the weight of Yi is whi· The 

weights whi depend on current parameter estimate ()(r), which is updated at each 

iteration. The equations are similar to those obtained when differentiating (2.6) with 

the integral approximated by numerical quadratures. This then suggests estimating 

parameters using an iterative technique such as iterative re-weighted least squares 

(IRLS) used for estimation in GLMs. The IRLS will require the second derivatives 

of (2.10) and (2.11). In this estimation approach, a is considered a regression 

coefficient and estimated by concatenating a to ,B and ah into the design matrix. 

If the design matrix is N = L Kii long, then the new design matrix is N x M 

long. Therefore, M should be as small as practical for computational ease (Bock 

and Aitkin, 1981; Brillinger and Preisler, 1983; Im and Gianola, 1988). The effect 

of M is only noticeable when the variance component is large, but the results do 

not change much for large M (Brillinger and Preisler, 1983; Anderson and Aitkin, 
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1985). The advantage of this approach is that any available software that can fit 

IRLS can be used. In the context of GLMMs several other numerical techniques for 

maximizing likelihood functions have been suggested. These include, among others, 

Monte Carlo EM-algorithm (McCulloch, 1994; Booth and Hobert, 1999) and Monte 

Carlo Newton-Raphson (McCulloch, 1997 and Kuk and Cheng, 1997). 

2.6 Application to the data 

In this chapter, the outcome variable is considered to be the presence or absence of 

at least one curable STI in an individual at each of the first five examination visits 

(including baseline). The first five clinical examination visits constitute most of the 

data due to high subject dropout rate. Infection with HIV is irreversible whilst 

other STis are curable and recurrent, so HIV infection is not part of the outcome. 

Genital sores and genital discharge could merely be markers of acute symptoms of 

syphilis and gonorrhoea respectively, therefore confusing the disease effects with its 

symptoms in the derivation of the outcome. However, such manifestations will not 

affect the outcome since the outcome indicates presence of an infection or acute 

symptom due to an infection. The outcome would have been affected had counts of 

multiple correlated events within an individual been used. 

The available data for this analysis is from 628 individuals. Individuals consti­

tuting a sexual network range from 1 to 5 with varying number of visits attended. 

The followup rate was slightly better among migrant men, Table 2.1. Each sexual 

network had one man. The data consisted of 189 couples, 39 triads, 5 quadriads and 

1 pentad. The data exhibit a higher rate of individual dropout than sexual network 

dropout. Major reasons for dropout were that the subject was lost to follow-up or 

refused to continue to cooperate with interviewers. There is no apparent consis­

tent pattern of change in the risk of STis by migration status over time, Table 2.2. 

However, migrant men are seemingly at higher risk of infection than their female 
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Table 2.1: The distribution by migration status at each visit 

Visit Migrants Non-migrants Migrants' partners. Non-migrant's partners Total 

1 223 122 139 144 631 

2 131 68 97 104 408 

3 62 29 66 52 212 

4 32 19 39 25 115 

5 19 13 22 20 75 

partners. Female partners of migrant men are, in 4 out of 5 visits, at higher risk of 

Table 2.2: Prevalence of STis at each clinical examination visit 

Migrant networks (%)a Non-migrant networks(%) TOTAL 

Visit Male Female Male Female N Percent 

1 33.04 23.91 21.31 21.53 628 26.11 

2 20.00 12.00 14.81 11.11 439 15.03 

3 9.41 8.96 10.34 15.09 234 10.68 

4 12.00 16.28 15.79 8.33 136 13.24 

5 18.52 13.64 0.00 5.00 81 11.11 

aDefined depending on whether a man is a migrant or non-migrant 

infection than partners of non-migrant men. However, partners of non-migrant men 

are, in 3 out of 5 visits, at higher risk than their male partners. Twenty-two people 

were diagnosed with the same STI in two consecutive visits, with 4.5% co-infected 

with both active syphilis and gonorrhoea. Out of 5 people diagnosed with the same 

STI at a subsequent visit, 3 were diagnosed with active syphilis and 2 with gonor­

rhoea. None was diagnosed with chlamydia. The results are in agreement with the 

assumption that a new STI is an incident case. 

Preliminary analysis identified migration status, age at recruitment, marital sta­

tus, age at first sexual intercourse, recent sexual contact partners, HIV status and 
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number of visits as important determinants of STis. We first fitted an ordinary 

logistic regression model ignoring sexual network induced correlation in the data. 

The results are presented in Table 2.3. The model estimate of the constant is the log 

odds of being infected with an STI for someone in reference categories of all other 

variables. Exponentiation of -1.984 gives odds ratio (OR)=0.134 of being infected 

with an STI. Applying inverse link yields the probability (0.118) of being infected 

with an STI in that category. Interpretation of other variables is made in relation to 

a reference category and keeping all other variables fixed. Reference categories are 

constrained to unit odds. Migrant men and their partners are consistently at higher 

risk of STis compared to partners of non-migrant men with OR=l.542 [95%CI: 1.001 

- 2.373] and OR=l.196 [95%CI: 0.762 - 1.877] respectively. Non-migrant men were 

at lesser risk of STis than their partners, but this was not significant. The risk of 

infection was significantly higher among migrant sexual networks than non-migrant 

sexual networks (p-value=0.031). However, the risk of STI did not differ between 

males and females (p-value=0.652). 

Being aged younger than 35 years was associated with increased risk of STis. 

But the risk effect of age diminished when migration status was considered. The 

risk factors considered are somehow interrelated. Individuals who have never been 

married were at higher risk of infection with an STI, OR=l.442 compared to those 

who were currently or had been married. 

Earlier commencement (16 years or younger) of sexual activity increased the 

likelihood of infection with an STI, OR=l.426, p-value=0.023. The risk of infec­

tion was higher among those reporting recent sexual contact with one partner but 

not significantly different from those who reported no sexual contact. The risk 

was significantly higher among those reporting recent sexual contact with at least 

two partners, OR=2.342 [95%CI: 1.236 - 4.437], compared to those who reported 

no sexual contact. Larger number of lifetime partners increased the risk of STis. 
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Table 2.3: Results for the standard logistic regression model 

Parameter Estimate Standard Error Z-statistic 

Constant -1.984 0.404 -4.906 

Migration status 

Migrant men 0.433 0.220 1.968 

Partners of migrant men 0.179 0.230 0.776 

Non-migrant men -0.096 0.259 -0.371 

Partners of non-migrant men° 

Age less than 35 years 

(O=no, l=yes) 0.153 0.175 0.875 

Never married 

(O=no, l=yes) 0.366 0.178 2.054 

Age first sexual contact 

16 years or younger 0.355 0.156 2.275 

More than 16 years0 

Recent sexual contact partners 

None0 

One 0.352 0.298 1.178 

Two or more 0.851 0.326 2.608 

HIV status 

(O=negative, l=positive) 0.422 0.168 2.518 

Visit numbers 

Linear -0.293 0.072 -4.083 

aReference category 
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However, its effects were completely diminished when the number of recent sexual 

contact partners was included in the model. 

Presence of HIV was associated with a significantly increased risk of contracting 

an STI (OR=l.525). For every clinical visit attended, the odds of having at least one 

STI were reduced by OR=0.746 [95%CI: 0.646 - 0.859]. The study design makes it 

more sensible to include the time factor in the model which makes interpretation of 

the results time related. The reduction in the risk of STis showed the importance of 

continuous treatment of STis, sexual behavioural education and appropriate health 

seeking behaviour. 

These variables (Table 2.3) were analysed using the EM algorithm to take into 

account the sexual network correlation. The analysis was implemented in S-plus 

2000. However, since S-plus is not optimized for iterative loops, intensive iterative 

statements were carried out in Microsoft Visual C++ version 6.0 and integrated 

into S-plus by creating a Dynamic Link Library. The fixed effects estimates from 

the standard logistic regression model were used as initial estimates in the EM algo­

rithm. The initial estimate of the random effect variance was set to 1. The sampling 

nodes in the estimation of random effects were modified accordingly to ensure that 

sampling of the integrand is in a suitable range of values (Liu and Pierce, 1994). 

Fewer number of quadrature points were considered. In similar models, Ander­

son and Aitkin (1985) reported that five quadrature points suffice. Thus, only six 

quadrature points were used in fitting the sexual network random effects model. 

The results of the EM analysis are presented in Table 2.4. The results indicate 

that unobserved sexual network random effects have sizeable impact on the risk of 

contracting STis. All estimates of fixed effects, except HIV status, were magnified. 

The corresponding standard errors were also inflated as a consequence of includ­

ing random effects in the model. This has important implications for behavioural 
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Table 2.4: The EM parameter estimates of STI data from migrant and non-migrant 

sexual networks 

Parameter Estimate Standard Error Z statistic 

Constant -2.968 0.448 -6.631 

Migration status 

Migrant men 0.554 0.244 2.276 

Partners of migrant men 0.071 0.252 0.281 

Non-migrant men -0.103 0.281 -0.365 

Partners of non-migrant men a 

Age less than 35 years 

(O=no, l=yes) 0.187 0.193 0.971 

Never married 

(O=no, l=yes) 0.498 0.198 2.522 

Age first sexual contact 

16 years or younger 0.483 0.171 2.818 

More than 16 yearsa 

Recent sexual contact partners 

Nonea 

One 0.407 0.322 1.264 

Two or more 1.055 0.357 2.956 

HIV status 

(O=negative, l=positive) 0.397 0.187 2.131 

Visit numbers 

Linear -0.363 0.079 -4.605 

Random effect varianceb 

Sexual network 1.457 0.111 13.090 

aReference category 

bz test is equivalent to a one-sided test with a critical value of 1.645 at 5% significance level 
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epidemiological studies since random effects of sexual networks are rarely taken 

into account in studies of HIV /STis. The increased standard errors indicate extra 

variability taken into account in the model. However, most variables still reached 

statistical significance level (p-value::;0.05) so the main fixed effects inferences re­

mained unchanged. 

The notable change in the risk of other STis is the effect of HIV status. In the 

standard logistic model, the risk of an STI was OR=l.525 times higher among those 

infected with HIV and highly significant (p-value=0.012). The risk estimate of HIV 

in the EM analysis (Table 2.4) was reduced by about six percent. Transmission 

of HIV in a sexual network is high if at least one partner is infected. Therefore, 

inclusion of sexual network effect which accounts for unmeasurable common sexual 

network behaviour is likely to reduce the magnitude of the effect of HIV status. 

However, HIV status remained significant (p-value=0.033). This indicates that the 

reduced immune response due to HIV infection increased the risk of being infected 

by a STI. 

The estimate of sexual network variance is 1.457, which is considerably greater 

than zero at 5% level of significance based on the one-sided Z-test with critical 

value of 1.645. The estimate indicates a high degree of heterogeneity between sexual 

networks, Figure 2.1. The estimated sexual network variance implies a substantial 

degree of association between members of the same sexual network with respect to 

the risk of STis even after adjusting for other individual specific covariates in the 

model. The corresponding estimated correlation is 0.592, which is quite substantial. 

2. 7 Conclusion 

The results show that circular migration contributes significantly towards transmis­

sion dynamics of STis. Contacts between migrant men and highly sexually active 
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women during migration bring the epidemic of HIV /STis into local regions, through 

their less sexually active rural partners (Lurie, et al 1997). However, an ongoing 

local epidemic of HIV /STis in rural areas is also responsible for sustaining the epi­

demic of HIV /STis (Lurie, Williams, Zuma, et al 2003a). Efficient transport system 

between urban and rural areas provide adequate conditions for the formation of lin­

ear sexual network components which are an important reservoir for maintenance 

of STis, particularly gonorrhoea (Wylie and Jolly, 2001). 

The risk factors considered are interdependent, thus making it difficult to iso­

late the effect of each factor. Age and marital status, for example, are interrelated 

in that older people are more likely to be married than younger people. Migrant 

sexual networks are more likely to be younger than non-migrant sexual networks as 

migrant men are often at their working age. Certain variables commonly considered 

in such analysis, for example education and income, were excluded either because 

of collinearity between variables such as income, job status and migration status 

or because there was little variation in the data for any valid statistical analysis. 

For example, all migrant men were recruited at their workplaces, and therefore all 

employed whilst few non-migrant men were employed. 

Sexual mixing between older men and younger women has potentials of intro­

ducing infections among younger women (Gregson, et al 2002). In the model, age 

was not a significant risk factor for STis after adjusting for other factors. How­

ever, it was kept in the model due to its epidemiological importance. The risk of 

STis increases exponentially with an increase in the number of recent sexual contact 

partners. This indicates the intensity of STis in the presence of multiple partners 

as confirmed by stochastic simulation models (Morris and Kretzschmar, 1997). The 

risk associated with the number of recent sexual contact partners increased in the 

analysis that corrects for sexual network correlation in the data. This shows the 

standard logistic model underestimated the effect of multiple partners in the trans-
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Figure 2.1: Distribution of sexual network random effects 

mission dynamics of STis. 

The transmission of HIV in this society is mainly heterosexual (O'Farrell, et 

al 1991). Therefore its presence is a good indicator of history of risky behaviour. 

Inclusion of unobserved random effects variable which accounts for sexual network 

specific behaviour is likely to reduce the magnitude of HIV effects. However, impor­

tance of HIV status was not completely removed. The remaining importance could 

be that the reduced immune system response caused by HIV infection increases the 

likelihood of acquiring an STI during unprotected sexual contact with an infected 

partner. The most unfavourable scenario is that people infected with HIV continue 

to engage in unprotected sexual contact even though efforts are made to educate 

them about the importance of safe sex. 

Heterogeneity across sexual networks has important implications for transmis-
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sion dynamics of HIV /STis (Ghani, et al 1997). The main source of heterogeneity 

in HIV /STis studies arises from patterns of sexual mixing and structural composi­

tion of sexual networks. Migrant men frequent prostitutes or have sexual contacts 

with sexually active women during their migration periods (Hunt, 1989; Jochel­

son, et al 1991; Lurie, 2000). The risky behaviour of migrant men is followed by 

sexual contacts with their less sexually active rural partners. Their rural partners 

may have other short-term relationships while their partners are away (Lurie, et al 

1997). If this mixing pattern occurs, a multiply peaked epidemic of HIV /STis may 

occur and the epidemic will spread rapidly through the small proportion of sexually 

active men and women but more slowly and larger through the less sexually active 

group of men and women (Anderson, et al 1991). The less sexually active networks 

constitute the majority of the population. 

There are two possible scenarios leading to the positive correlation within sex­

ual networks. Firstly, one member of a sexual network could get an infection from 

some other non-regular sexual partner(s) and pass the infection onto the regular 

sexual partners in a sexual network. Secondly, whilst the partners are away from 

each other, each can get infected through different outside sexual contacts. These 

links between networks act as a co-transmitter sexual network. Transmission of an 

infection is much more efficient in the present network structures since men act as 

links to all their partners within a sexual network. Therefore, epidemiological im­

plications are much more severe than in sexual networks that are linear in structure 

(Morris and Kretzschmar, 1997). 

The estimates obtained in both the standard logistic and the logistic with sex­

ual network random effects models are subject to some bias. We obtained each 

man's consent prior to contacting his rural female sexual partner(s), which proba­

bly reduced the response rate and contributed to biased participation of rural female 

partners. In studies involving partner tracing, it is often partners with whom the re-
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lationship is more stable that are divulged to the interviewers (Johnson, et al 2003). 

Furthermore, it is possible that not all women's extra relationships were divulged to 

interviewers. Societal values play an important role in the formation of sexual net­

works and their structure. In this society, extra marital relationships among women 

are not as widely accepted as they are among men. Women may underreport their 

sexual activity whilst men may overstate theirs. The sampling method used started 

from a random sample of people thus sexual behavioural aspects are expected to be 

the same as in the true sexual network. However, the refusal to participate or to 

identify sexual partners might lead to underestimation of sexual mixing. Individu­

als who were infected and sought treatment for STis elsewhere between consecutive 

clinical visits were not counted. Therefore, the risk of STis might even be higher 

than observed. 

In the estimation phase, Gaussian-Hermite quadratures were used to approxi­

mate intractable integrals (Abramowitz and Stegun, 1972). The final results are 

based on six quadrature points. Brillinger and Preisler (1983) reported that results 

do not change much for quadrature points greater than eight. Moreover, even five 

quadrature points have been considered sufficient (Bock and Aitkin, 1981; Anderson 

and Aitkin, 1985). The inherent disadvantage of using large number of quadrature 

points is the need for strong assumption of normally distributed random effects. For 

example, ten quadrature points fit a symmetric distribution thus forcing the tails of 

random effects distribution to be normal. Methods similar to this have been used 

in the analysis of binomial data with two levels of nested random effects (Anderson 

and Aitkin, 1985; Im and Gianola, 1988). 

The estimation approach accounted for sexual network heterogeneity in the data 

by iteratively calculating functions of unobserved data and estimating the fixed ef­

fects through weighted logistic using IRLS. Ignoring unobserved sexual network ran­

dom effects in the analysis leads to spurious associations between the risk of STis 
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and some covariates due to underestimation of the standard errors. In the analysis, 

the standard errors of the model that ignores correlation were underestimated by at 

most 11 % compared to the model that corrected for correlation. Therefore, treating 

each individual as independent gives false impression that there is more informa­

tion in the data than there really is. The advantage of using the EM algorithm is 

the assurance of convergence to (at least a local) ML estimate and the possibility of 

including more than one random effects term in the model. For example, in commu­

nity mass treatment of STis, a random term corresponding to distinct communities, 

and for distinct sexual networks within communities, could easily be incorporated 

into the model. 

The results have important implications for the control of STis. Control mea­

sures of STis should extend further from focussing on high-risk individuals to con­

sidering high-risk sexual networks. This is more imperative for women who are in 

weak positions to negotiate safe sex or prevent their partners from having extra rela­

tionships. Partner notification should be encouraged and facilitated in order to stop 

the continuing transmission cycle of STis and further transmission of HIV within 

sexual networks. Interventions targeted at local communities will attain only short­

term success in the presence of urban-rural migration which creates opportunities 

for re-entry of STis. Therefore, interventions should fully incorporate the effects of 

migration and sexual network structures in their approaches. The results of this 

chapter have been submitted for publication (Zuma, et al 2004). 



Chapter 3 

Analysing time until HIV 

infection using the EM algorithm 

3.1 Introduction 

Epidemiological studies of disease incidence seek to relate the risk of contracting a 

disease to a set of measurable risk factors. In reality, some important risk factors 

are neither collected nor measurable. In many cases, unmeasured risk factors vary 

across sub-groups and thus inducing sub-group correlation. In studies of disease 

incidence, correlation arises because disease occurrence tends to cluster within fam­

ilies. The common statistical approach to familial data is treating the clustering 

variable as random effect. In studies of HIV /STis, the risk of HIV infection within 

sexual networks depends on common sexual behaviour, susceptibility to an infec­

tion and high likelihood of HIV transmission if at least one partner is infected. In 

this study, a similar approach will be taken by introducing membership to a sexual 

network variable as a random effect in the investigation of risk factors associated 

with time until HIV infection. 

The last several years has seen significant research regarding the inclusion of ran­

dom effects in models of failure time data. A model becoming popular in modelling 
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correlated failure times is the frailty model. The frailty model is an extension of the 

Cox proportional hazards model (Cox, 1972). Frailty is the term describing common 

excess risk of infection among members of the same sub-group. The topic of frailty 

models has received considerable attention in demography (Vaupel, et al 1979) and 

statistics (Clayton, 1978; Clayton and Cuzick, 1985). Considerable research in sta­

tistical literature has focused on estimation techniques of frailty models. Estimation 

techniques include derivation of a full likelihood function that depends on both the 

observed data and the unobserved frailties (Klein, 1992; Guo and Rodriguez, 1992; 

Sastry, 1997). 

The models discussed thus far assume that the exact failure time is either pre­

cisely known or it is right-censored. This is basically true when failure time is the 

time of death. For some events other than death, the failure time may not be pre­

cisely known but only the examination times to which the exact failure time lies. 

The resultant data is referred to as interval-censored data (see for example Rucker 

and Messerer, 1988). Interval-censored data assume that the event is irreversible. 

For instance, it is impossible to be cured from HIV infection. In panel studies of 

AIDS, HIV status is determined by performing laboratory analysis of blood samples 

at periodic examination times. As these tests are performed infrequently, diagnosis 

is delayed compared to disease onset (Jewell, et al 1994; Farrington and Gay, 1999). 

Interval-censored data require special statistical methods due to imprecise knowl­

edge of event time. 

Methods of analysing interval-censored data stem from the Cox model ( Cox, 

1972). Finkelstein (1986) generalized the Cox model to correctly account for interval­

censored event time. Pan (2000) proposed an approach based on multiple imputation 

of failure times. Parametric methods for analysing interval-censored data are read­

ily available (Lindsey and Ryan, 1998). A particular drawback of popular methods 

for analysing interval-censored data is their failure to reduce to standard survival 
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settings when data are not interval-censored. Goetghebeur and Ryan (2000) pro­

posed an approximate likelihood function for interval-censored data that reduces to 

standard survival settings when data are right-censored. Huang and Wellner (1997) 

provide a rigorous theoretical account for methods of analysing interval-censored 

data. Methods discussed thus far further assume that failure times are indepen­

dent. The thesis of this chapter is to analyse dependent interval-censored time until 

HIV infection, until the end of the study or until the subject was lost to follow-up. 

This dependency is modelled as frailties. The frailties and interval-censored infec­

tion times form the missing data for the application of the EM algorithm (Dempster, 

Laird and Rubin, 1977). 

The chapter presents an approach for estimating the parameters when the data 

is correlated and interval-censored. Section 3.2 presents data notation and related 

work. The model under consideration is formulated in Section 3.3. Section 3.4 de­

scribes the sexual network frailty distribution. The details of parameter estimation 

are presented in Section 3.5. Computation and inference are presented in Sec­

tion 3.6. Finally, in Section 3. 7 baseline descriptive statistics are presented and HIV 

data from cohorts of migrant and non-migrant sexual networks from a rural health 

district of South Africa are analysed using the model formulated in Section 3.3. 

3.2 Data notation and related work 

The HIV data to be analysed in this chapter is clustered within sexual networks. Sex­

ual networks are considered distinct sub-groups connected by sexual relationships. 

Let Xii denote a vector of covariates associated with the jth member (j = 1, ···,Ji) 

of the ith sexual network ( i = 1, · · · , I) and /3 be a vector of coefficients representing 

covariate effects. Available data for each person consist of ordered clinical visita­

tion (examination) times {O < vii,I < vii,2 < · · · < Vij,n;i < oo} and corresponding 

binary indicators { <5ij,I, <5ij,2, · · · , <5ij,n;i} of HIV status. The exact infection time tii 
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is only known to be before Vij,l or between { Vij,k, Vij,k+i} or after Vij,n;i if the person 

remained uninfected at the last examination time. 

Irreversibility of HIV infection means that HIV test results will be negative at all 

examination times before the first positive test result and will be positive at all sub­

sequent examination times. It is therefore sufficient to record only the examination 

time interval Vij = { Vij,k; Vij,k+l} encompassing the transition time. Examination 

time Vij,k = max{vij,kl8ij,k = O} and Vij,k+l = min{vij,kl8ij,k = l}. The width of Vij 

possibly varies between individuals. Therefore, techniques for multivariate grouped 

survival data (Guo and Lin, 1994) are inappropriate. Let Yij = tij E ( Vij,k; Vij,k+d if 

infection occurred and Yij = Vij,k if right-censored. Note that for interval-censored 

observations Yij is unobserved. Instead, we only know clinical examination end­

points such that Vij contains the observed data. Define a non-censoring indicator 

8ij = 1 if infected with HIV and O otherwise. The ith sexual network specific frailty 

is denoted by bi. 

The attempt to include frailties in the interval-censored data likelihoods of 

Finkelstein (1986) or Huang and Wellner (1997) inevitably results in rather complex 

intractable likelihood functions. The gamma frailty distribution, which is conjugate 

to the standard proportional hazards likelihood, is not conjugate to the interval­

censored data likelihood. Therefore, implementing the EM algorithm becomes la­

borious and prohibitive in terrp.s of computing efforts. The alternative approach 

is to ignore correlation in the data and utilize standard univariate techniques for 

interval-censored data (Finkelstein, 1986; Huang and Wellner, 1997). However, 

naive standard errors obtained through this approach can lead to invalid inference 

(Guo and Lin, 1994; Wei, et al 1989). A nonparametric ML estimator for discrete 

bivariate interval-censored data using techniques for convex optimization has been 

proposed (Betensky and Finkelstein, 1999). But, this technique does not account 

for covariate effects. Kim and Xue (2002) proposed a marginal proportional haz-
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ards model for discrete survival times previously utilised by Finkelstein (1986). The 

model is an extension of the marginal approach used by Wei et al (1989) and Guo and 

Lin (1994) for the analysis of correlated continuous survival times and multivariate 

grouped survival data respectively. Farrington and Gay (1999) proposed a Laplace 

approximate method that combines individual frailty and interval-censored survival 

data using empirical Bayes estimates of individual frailty effect. The method un­

derestimates standard errors and is only recommended as an exploratory tool. 

In the univariate context, the common fix-up approach is to assume that the 

event occurred at the beginning or end of each examination time to facilitate use 

of the Cox proportional hazards model. Estimates calculated from these two ex­

treme assumptions roughly enclose the estimates from interval-censored data meth­

ods (Finkelstein, 1986; Lindsey and Ryan, 1998). However, making assumptions 

about infection time can lead to biased estimates of regression parameters for both 

univariate (Riicker and Messerer, 1988; Odell, et al 1992) and multivariate interval­

censored data (Kim and Xue, 2002). The bias is severe when data are heavily 

censored (Lindsey and Ryan, 1998). In particular, the method tends to underesti­

mate standard errors and result in wrong inference. 

In this work, we consider an approach where both the exact infection time for 

interval-censored observations and frailties form the missing data to facilitate the 

EM algorithm. We then use techniques for correlated survival data which iteratively 

augment common unobserved sexual partnership frailties (Guo and Rodriguez, 1992; 

Klein, 1992; Sastry, 1997) to estimate parameters. For a review of methods for 

analysing correlated standard survival data, see for example Lin (1994) and Kelly 

and Lim ( 2000). 
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3.3 Model formulation 

The Cox proportional hazards model (Cox, 1972) is assumed. The model has ex­

tensively been used to handle right-censored data. The Cox model assumes that 

the hazard function >.(Yii I Xii) is related to the baseline hazard function >.o(Yii) as 

follows: 

and Ao(Yii) = Jtii >.o(Yii)dYii is the corresponding integrated baseline hazard. The 

integrated fixed effects hazard is 

( I ) [Yij ( ) {3' X- . 
A Yii Xii = Jo >.o Yii e '1 dyii. 

Conditional on sexual network frailties, survival times within a sexual network are 

assumed mutually independent and their conditional marginal distributions have a 

hazard function h(Yiilbi, Xii). The hazard function satisfies the multiplicative frailty 

model 

In this formulation, the frailties operate multiplicatively on baseline hazards. If 

baseline hazard for someone with frailty 1 is >.o(Yii), then baseline hazard for some­

one with frailty bi is bi>.o(Yii ). Frailties are interpreted as relative risks (RR)s. The 

quantity exp(,8' Xii) is the RR associated with covariate Xii. Sexual networks with 

only one member included are permitted. In that case, individuals are affected by 

their own frailty. Members of the same sexual network are indistinguishable, ex­

cept for values of Xii, so they have a common baseline hazard rate. The associated 

integrated hazards are 

H(YiiJbi,Xii) - j h(YiiJbi,Xii)dyii 

j bi>.o(Yii )ef3' X;i dyii 

biA(YiiJXii). 
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The conditional survival function (3.1) 

(3.1) 

is the probability of infection time being greater than Yii· The likelihood contribu­

tion for someone infected with HIV is the conditional density (3.2) given by 

(3.2) 

But, someone uninfected with HIV only contributes the conditional survival func­

tion. 

A parametric form for the baseline hazards is assumed. Baseline hazards are 

assumed constant, >.o(Yii) = >.0 • The corresponding cumulative baseline hazards 

are Ao(Yii) = AoYii· Therefore, survival times come from exponential distributions. 

The constant hazards assumption is plausible in the analysis of HIV incidence. The 

risk of HIV infection likely varies substantially between individuals, depending on 

individual behaviour for which covariate information is not available. However, 

modelling behavioural risk factors and unobserved frailties absorb individual vari­

ability. Consequently, the remaining risk of HIV infection will be less variable. 

Furthermore, there are indications that the national HIV prevalence has reached a 

mature stage (Department of Health, 2001). Constant hazards have previously been 

assumed in HIV incidence studies (Farrington and Gay, 1999). Farrington and Gay 

(1999) assumed constant hazards in the model investigating association between 

HIV incidence and frequency of examination among homosexual men. 

3.4 Sexual network frailty 

Sexual network frailties are unobservable. The strategy is to adopt some distri­

butional assumptions about frailties. Either parametric or nonparametric frailty 

distribution can be assumed (Guo and Rodriguez, 1992). Frailties are assumed to 

be mutually independent random variables. The multiplicative frailty model takes 
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only positive frailty values. Therefore, we assume a gamma distribution with shape 

and scale parameters a and a-1 respectively. The density function of bi is 

f(b·) = ~b~-le-ab; 
i r(a) i . 

(3.3) 

Hence, the RR for sexual networks has mean 1 and variance 1/ a. 

The choice of a gamma frailty distribution arises partly because of its mathemat­

ical convenience, flexibility and nonnegativity. The gamma distribution is conjugate 

to the likelihood. This conjugacy property immensely simplifies mathematical com­

putations. Several authors in both the frequentist (Klein 1992; Sastry, 1997) and the 

Bayesian literature (Clayton, 1991; Manda, 1998) have used gamma frailty. Other 

frailty distributions that are of interest and also flexible include log-gamma and 

log-normal distributions (Duchateau, et al 2002; Palmgren and Ripatti, 2002). 

The current debatable issue is the effect of using a particular frailty distribution. 

In the study of factors affecting duration of unemployment, Heckman and Singer 

(1984) conducted a sensitivity analysis comparing the effects of choosing different 

frailty distributions on the estimates of covariate parameters. They found many 

changes in signs and absolute magnitude of parameters. The authors argued in 

favour of nonparametric frailty distributions. Haugaard (1986) pointed out that 

the assumption of positive stable frailty distribution preserves the proportionality 

of hazards to the marginal distributions, which is invalid in the presence of frailties. 

Estimated parameters are biased towards zero when the frailty with finite mean 

is ignored (Schumacher, et al 1987). Therefore, including frailty would effectively 

increase the magnitude of covariate coefficients depending on the proximity of the 

assumed frailty distribution to the true frailty distribution (Pickles and Crouchley, 

1995). Guo and Rodriguez (1992) showed that estimates do not markedly differ 

whether nonparametric or parametric frailty is assumed. Simulation studies also 

suggest that the choice of a particular frailty distribution is not critical in estimating 

regression parameters (Pickles and Crouchley, 1995; Sastry, 1997). Therefore, the 
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fixed effect inferences would not be expected to change by much had we assumed a 

different frailty distribution. 

3.5 Parameter estimation 

The theory of the EM algorithm presented in Chapter 2 is implemented in survival 

data when both the frailties and exact infection time are unobserved. ML estimates 

of()= { a, Ao, ,B} cannot be calculated straight away without an estimate of functions 

of unobserved exact infection times and frailties. The response vector Yi of sexual 

network i consists of (possibly sub-vectors) of known clinic visitation times vi and 

unobserved true infection time k Using conditional independence between the 

elements of Yi given bi the complete-data likelihood function for sexual network i is 

(3.4) 

If tij was known and the frailties bi observed but variable, one would fit model (3.4) 

maximising the complete-data log-likelihood given by 

J; 

+ :~:::>5ij [-bi Ao tij e13' X;i + log(bi Ao)+ ,B' Xi3] 
j=l 

( 1 - 8ij) bi Ao vij,k e13' X;i. (3.5) 

The complete-data log-likelihood (3.5) could be maximized over all sexual networks. 

However, ti and bi are unobserved. Functions of unobserved data need to be esti­

mated from the data. 
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Let fi(bi, vi; 0) be the joint marginal distribution of bi and vi given by 

where bi+ = "£{::_1 bij is the total number of HIV infected members of a particular 

sexual network. In order to facilitate the EM algorithm, conditional expectations of 

functions of unobserved data given observed data and current parameter estimates 

need to be computed. The next sections describe computation of these conditional 

expectations and maximization of parameters. 

3.5.1 Expectation step 

The E-step of the algorithm computes the conditional expectation of (3.5) which 

mainly involves computation of the conditional expectations of functions of unob­

served data. It can be seen from (3.5) that we need only the conditional expectations 

of bi, log bi and bitij· Conditional expectations of bi and log bi require the marginal 

conditional distribution of bi given the observed data. The marginal conditional 

distribution gi(bilvi; 0) can be computed from fi(bi, vi; 0) as 

where 

is the observed data likelihood. 
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Therefore, the conditional expectation of bi is 

E[bilvi; OJ 

= fo0\i Yi(bilvi; O)dbi 

( "'J· ( 
fooo bfe-b; 0 +L....j~l l-«5;j)A(v;i,klX;j)) nJ~i(e-b;A(v;i,klX;j) _ e-b;A(v;i,k+1IX;i)) dbi 

J· . 
fooo bf-le-b;(a+Lj~l(l-«5;j)A(v;j,klX;j)) nJ~1(e-b;A(vij,klX;j) - e-b;A(v;j,k+ilX;j)) dbi 

The integrands expand depending on the total number 8i+ of those infected with 

HIV in a sexual network which is known. Therefore, each integrand mimics a 

gamma density and thus the conditional expectation simplifies. If 8i+ = 0 then 

E[bilvi; OJ is the expected value of a gamma distribution with parameters a and 

a+ Lf!:1(1- 8ii) A(vii,klXii). If 8i+ = 1 then 

"'J· 
fooo bfe-b;[a+L....i~1(l-«5;i)A(v;i,klX;i)l X (e-b;A(v;i,klX;j) _ e-b;A(v;i,k+ilX;i)) dbi 

"'J· roobo-1 -b;[o+L..,-~1 (1-«5;j)A(v;i,klX;j)] X ( -b·A(v··klX··) -b·A(v··k+ilX··))db Jo i e i- e , •i, •i - e • •i, •i i 

= { J r(a + 1) 
[a+"'·' (1- 8-·) A(v··klX··) + 8-·A(v··klX··)J 0 +1 L....3=l tJ tJ, i] tJ i3, i3 

J· r(a + 1) } 
[a+°"·' (1 - 8- ·) A(v· · klX· ·) + 8- ·A(v· · k+1IX· ·)J 0 + 1 L....3=l i3 i3, tJ tJ i3, i3 

{ J· r(a) 

Similarly, the E[bilvi; OJ for 8i+ > 1 can be computed. 
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The conditional expectation of log bi is 

and can be approximated numerically. For the product of bi and particular tii', 

we need to integrate out the remaining sexual network unobserved infection times 

tij, for j =J. j' from Li((); bi, vi) to obtain the joint marginal distribution of bi, tii' 

and vi. From the joint marginal distribution fii'(bi, tii', vi) we compute the con­

ditional distribution lii' ( bi, tii' lvi; 0) = Ji (bi lvi; 0) fii' (tii' lbi, vi; 0). The conditional 

distribution 

The conditional expectation E[bitii' lvii',k < tii' ~ Vij',k+I; OJ is derived as 

The integral over bi expands depending on the number of infected members ( 8i+) of 

a sexual partnership. 

Denote E[bilvi; O], E[log bilvi; OJ and E[bitiilvij,k < tii ~ Vij,k+1; OJ by bi, log bi and 

bitii respectively. The quantities bi, log bi and bitii are evaluated at current estimate 

of 0. 

3.5.2 Maximization step 

The M-step concerns finding ML estimate O = { &, ~0 , ~} after replacing functions 

of unobserved data in (3.5) by their conditional expectations bi, log bi and bitii· The 

consequent complete-data log-likelihood function is denoted by Q(O; ()(r)) where ()(r) 

is the current estimate of 0. Maximisation process of Q( O; ()(r)) separates itself into 

two distinct parts, one involving a one dimensional parameter a, say l1(o:), and the 

other involving a one dimensional parameter Ao and multi-dimensional parameter 
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There is no closed form expression for&. Maximization with respect to a can be 

accomplished by Newton-Raphson algorithm which requires the following first and 

second derivatives: 

8Q(();()(r)) 1 1 [ dlogf(a)l 
Ba = ;(log bi - bi)+; 1 + log a - da 

82Q((); (J(r)) = I [! _ d2 log f(a)l 
8a2 ~ a da2 

i=l 

where the first and second derivatives of log r( a) are computed from the correspond­

ing recursive formulae given in Abramowitz and Stegun (1972). The ML estimates 

for Ao and /3 are obtained in a similar fashion. 

3.6 Computation and inference 

Computation of { ~0 , J} is carried out using the profile likelihood approach. This 

is achieved by maximising Q(O; ()(r)) over Ao for all values of /3 to obtain ~0 (., /3), 

thereafter maximise Q(a, /3, ~0 (., /3)) over /3 to find J. The estimate {J is then used 

to compute bi, log bi and bitii· The following algorithm details the computation of 

{bi, log bi, bitii} and fJ. Let (J(O) = { a(o), A~0l, f](o)} be the initial parameter estimates 

and set r = 1. 

• Step (i) Compute bi, log bi and bitii as described in Section 3.5.1 using (J(r-l). 

• Step (ii) Maximize l1(a) with respect to a to get a(r) 

• Step (iii) Maximize l2 (Ao, f](r- 1)) with respect to Ao to get A~r) 

• Step (iv) Maximize l2 (A~r), /3) with respect to /3 to get f](r) 

• Step (v) Let (J(r) = { a(r), A~r), f](r)}. Set r=r+l and repeat steps (i) to (v) 

until the difference between consecutive values log L 0 ( (}(r)) and log L 0 ( (}(r+l)) 

becomes smaller than the prespecified value E. 
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In principle, the values maximising li(a) and l2 (>..0 ,{3) also maximise Q(O;()(r)). The 

log likelihood l1 (a) is a concave function. Proposition 3.1 in Huang and Wellner 

(1997) states that for fixed /3, l2 (>..0 , {3) is concave in >..0 , and for fixed >..0 , l2 (>..0 , /3) 

is concave in {3. Therefore, maximization steps (ii) to (iv) concern maximising well 

defined concave functions. 

The matrix 82Q(O; ()(r))jf)()f)()' can be used to check if the estimate is a local 

maximum. The point estimate is a local maximum if 82Q(O; ()(r))jf)()f)()' is negative 

definite. Huang (1996) and Murphy (1995) studied asymptotic properties of (>..0 , /3) 

and (a, >..0) respectively. Inference in these models is based on asymptotic normality 

of the parameter estimate around the true value. Murphy (1994) proved consistency 

of a and >..0 in one-sample frailty model. The asymptotic variance is estimated by 

observed information matrix rather than its expectation. The latter requires knowl­

edge of the probability distribution of censoring pattern. However, the observed 

information matrix only requires knowledge of censoring times. In frailty models 

estimated via EM algorithm, the observed information matrix underestimates vari­

ability. This is because the method ignores variability introduced by estimating bi, 

log bi and bitii· The SEM algorithm (Meng and Rubin, 1991) as briefly described in 

Chapter 2 was used to obtain adjusted standard errors. 

3. 7 Application to the data 

3. 7.1 Baseline description 

The baseline HIV prevalence was 20.1 %. The prevalence of HIV did not differ signif­

icantly between men (22.7%) and women (19.1%). Migrant men and their partners 

were (based on a x2 test) significantly at higher risk of HIV infection compared to 

non-migrant men and their partners, 24.0% and 15.0% respectively, p-value=0.02. 

The prevalence of HIV was significantly higher among migrant men (25.9%) than 

non-migrant men (12.7%) in all age-groups. The prevalence was also higher among 
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partners of migrant men (21.1%) compared to partners of non-migrant men (16.5%), 

but this was not statistically significant. The use of condoms was rare in both men 

(20%) and women (10%). Ever use of condoms was higher among women report­

ing many lifetime partners and men reporting many casual partners. The complete 

results of baseline description of the data with socio-demographic and other biomed­

ical risk factors of HIV infection have been published in a paper by (Lurie, Williams, 

Zuma, et al 2003a). Migration is an important risk factor of HIV among migrant 

men and their partners in rural areas. 

The study of self-identified migrant women and non-migrant women in Car­

letonville where some migrant men were recruited was subsidiary to the migration 

project, Section 1.3. Migration was identified as an important risk factors of HIV 

among these women. Self-identified migrant women were almost twice as likely to 

be infected with HIV compared to self identified non-migrant women (OR=l.61, 

95%CI: 1.11 - 2.31). Most self-identified migrant women were from other rural ar­

eas of South Africa. The paper published by Zuma et al (2003) reports the risk 

factors of HIV infection among self-identified migrant and non-migrant women. 

In the 168 couples recruited earlier into the study, 58.3% had a migrant male 

partner and 41. 7% had a non-migrant male partner. The overall prevalence of 

HIV was 19.9% with infection significantly higher among men (24.4%) than women 

(15.5%), p-value=0.04. Neither partner was infected with HIV in 69.6% of the cou­

ples. Migrant couples were as likely as non-migrant couples to have neither partner 

infected with HIV (65.3% versus 75.7%; x2 test p-value=0.148). In 9.5% of the cou­

ples, both partners were infected with HIV, and this did not differ significantly by 

the migration status of the male partner. In 20.8% of the couples, only one partner 

was infected with HIV (HIV discordant). Migrant couples were 2.5 times more likely 

than non-migrant couples to be discordant (26.5% versus 12.8%, p-value=0.031). Of 

the 35 discordant couples, the man was infected in 25 (71%) of the cases and the 
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woman in the remaining 10 {29%) cases. The proportion of infected men in migrant 

discordant couples was essentially the same as in non-migrant discordant couples. 

The full results describing infection patterns in the couples and the associated risk 

factors of the presence of an infection in a couple have been published in a paper 

by (Lurie, Williams, Zuma, et al 2003b). 

3. 7.2 Main data analysis 

The main focus in this chapter is in the analysis of the time since 1990 until HIV 

infection, until the end of the study or until the subject was lost to follow-up. Thus 

the primary outcome variable is the survival time after 1990. It is considered that 

the epidemic of HIV in South Africa became well established in 1990 (Gouws and 

Williams, 2000). Anyone infected prior to that time is likely to have died before the 

study commenced. Since the HIV rate has been high over the whole time since 1990 

and fairly constant over the period of clinical examination, a constant baseline haz­

ard seems reasonable. The most common mode of HIV transmission in this society 

is through heterosexual contacts. An exception to this is the pattern of infection 

found in the white population of South Africa where homosexual contacts accounted 

for 87% of infections between 1982 and 1990 (Zwi and Bachmayer, 1990). In the 

black population, the pattern of HIV infection is similar to the rest of sub-Saharan 

Africa. More than 75% of AIDS cases among black South Africans between 1982 

and 1990 resulted from heterosexual transmission (O'Farrell and Windsor, 1991). 

The current analysis is restricted to 339 identifiable distinct sexual networks from 

604 individuals. The mean sexual network size is 1. 78 individuals. Sexual network 

size ranges from 1 to 5 with only one man in each sexual network. Table 3.1 provides 

the distribution of sexual networks and percentage of persons infected with HIV. A 

considerable number of migrant men gave incorrect information about the location 

of their partners and some of their identified partners refused to participate. This 

led to a large number of sexual networks where only the man was included. Migrant 
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Table 3.1: Distribution of sexual networks and HIV infection 

HIV infection 

Sexual network size Number of sexual networks Percentage N Percentage 

1 122 36.0 48 39.34 

2 175 51.6 88 25.14 

3 37 10.9 38 34.23 

4 4 1.2 2 12.5 

5 1 0.3 0 0.0 

men contributed considerably to high HIV infection in networks where only a man 

was included. Fifty-two percent of sexual networks were couples. HIV infection was 

considerably higher in triads than in the couples. The number of sexual networks 

of size greater than three is too small to make valid comparisons. The maximum 

total number of HIV infected members per sexual partnership size was three, and 

was among triads. The overall mean years since first sexual intercourse is 20.6. The 

distributions of years of sexual activity are shown in Figure 3.1 for males and females 

respectively. The mean sexual activity age does not differ significantly between men 

and women. The mean age at first sexual intercourse was 18 and 17 years for men 

and women respectively. The mean number of lifetime partners was 15.8 and 2.0 

for men and women respectively. 

The analysis of the data using the EM algorithm was implemented in Microsoft 

Visual C++ 6.0 and S-plus 2000. S-plus subroutines were used for numerical approx­

imations (in particular, TRIGAMMA and DIGAMMA). Table 3.2 presents descrip­

tive statistics of variables considered in the analysis. The considerable imbalance 

between migrant men and their partners is due to large number of partners of mi­

grant men who were not part of the study. 

Two models were fitted to the data: a model that does not take into account 
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Figure 3.1: Distribution of sexual activity age by gender 

dependency induced by sexual networks and one that takes into account the depen­

dency through the introduction of a frailty term. The resulting parameter estimates 

are presented in Table 3.3. Estimated constant baseline hazard of the model without 

frailty was minimal. Being a migrant men or a partner of a migrant men is asso­

ciated with increased risk of HIV infection compared to partners of non-migrant 

men, RR=l.170 and RR=l.167 respectively. Non-migrant men were at reduced risk 

of HIV infection compared to their partners (RR=0.812). The estimated survival 

times show that migrant men and their partners were similarly and higher risk of 

HIV than non-migrant men and their partners, Figure 3.2. Being in the age category 

18 to 24 is associated with considerably higher risk of HIV compared to someone 

aged above 34 years (RR=2.804). The RR of HIV is 1.689 times higher for someone 

aged between 25 and 34 years compared to someone aged above 34 years. Someone 

who reported recent sexual contact with more than one sexual partner is almost 

twice as likely to be HIV positive compared to someone who reported recent sexual 
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Table 3.2: Descriptive statistics of variables used in HIV infection 

Variable Percent Variable Percent 

Migration status Recent sexual partnersa 

Migrant men 31.6 More than one 20.2 

Partners of migrant men 24.8 Lifetime partners 

Non-migrant men 18.6 More than one 67.8 

Partners of non-migrant men 25.0 

Age in years Active syphilis 

18 to 24 5.5 Positive 15.7 

25 to 34 29.9 Status of other STis 

35 or above 64.6 Positive 28.3 

0 Partners with sexual contact in the last four months 

contact with one or no partner. Reporting more than one lifetime sexual partner 

was associated with an increased risk of HIV infection, RR=l.418. Infection with 

syphilis significantly increases the RR=l.548 of HIV. Also, an infection with other 

STis is clearly important: their presence is associated with 1.623 times more risk of 

HIV infection. 

The model with frailty term contains the effects of other covariates not specif­

ically included in the model. The Akaike information criteria (AIC) for the mdel 

without sexual network frailty term and the model with sexual network frailty term 

is 1445.11 and 1377.61 respectively. The AIC leads us to conclude that the model 

with sexual network frailty term fits the data better than the model without sexual 

network frailty term. 

The sexual network frailty parameter represents sexual network effect. The 

parameter is interpreted as the variance of the frailty distribution. Large values 

indicate greater heterogeneity between sexual networks and stronger association 
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Table 3.3: Parameter estimates obtained with the EM-algorithm 

Model without frailty Model with frailty 

Parameter Estimate SE Estimate SE 

Baseline hazard 

Constant 0.016 0.002 0.017 0.003 

Migration status 

Migrant men 0.157 0.220 0.343 0.226 

Partners of migrant men 0.156 0.204 0.227 0.208 

Non-migrant men -0.205 0.258 -0.132 0.265 

Partners of non-migrant mena 

Age in years 

18 to 24 1.031 0.292 1.577 0.297 

25 to 34 0.524 0.160 0.623 0.164 

35 and abovea 

Recent sexual contact partners 

Only onea 

More than one 0.611 0.192 0.498 0.199 

Number of lifetime partners 

Only onea 

More than one 0.349 0.171 0.417 0.182 

Syphilis 

O=Negative,l=Positive 0.437 0.157 0.387 0.167 

Status of other ST!s 

O=Negative,l=Positive 0.484 0.180 0.503 0.185 

Frailty varianceb 

Sexual network 0.462 0.054 

aReference category 

bThe Z test for testing frailty variance equal to zero at 5% significance level is equivalent to a 

one-sided test with a critical value of 1.645. 
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within sexual networks. The frailty variance is 0.462 with standard error 0.054 and 

is significantly different from zero. The frailty variance implies moderate degree of 

correlation (0.188) within sexual networks even after controlling for other covariates. 

Standard errors are slightly magnified in the model with frailties. This indicates that 

fixed effect parameters are now estimated with a more realistic, but lower precision. 

The estimates of constant baseline hazards did not change very much between 

the model without frailty and the model with frailty. Results of the model with 

frailty indicate that unobserved sexual network frailty has considerable impact on 

the risk of HIV infection. The coefficient estimates of migration status, age at 

recruitment, number of lifetime partners and other STis were slightly magnified in 

the model with frailty compared to the model without frailty. The RR associated 

with migrant men was considerably inflated. However, the RRs of recent sexual 

contact partners and syphilis infection were deflated. The RR for someone reporting 
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recent sexual contact with more than one partner was reduced by about 23%. But, 

the RR remained statistically significant. Reported number of recent sexual contact 

partners indicates the risk associated with a particular sexual network. Intuitively, 

someone from a large sexual network is frailer. Including sexual network random 

effects corrects for such proneness of particular sexual networks. Therefore, the 

magnitude of RR associated with recent sexual contact partners is reduced in the 

model with frailty compared to the model without frailty. This indicates that recent 

sexual contact partners were acting as a proxy for unobserved sexual network effect 

in the model without frailty. The effect is now partly captured by sexual network 

random effects. Similar effects are observed in the RRs of syphilis. This is critical 

since syphilis is often asymptomatic and left undiagnosed in the general population 

(Wilkinson, et al 1999). 

3.8 Conclusion 

The clustering of socio-demographic and sexual behavioural risk factors within sex­

ual networks provides an opportunity to investigate factors contributing to the 

epidemics of HIV /STis. The results of the model indicate that sexual networks 

contribute significantly in the spread of STis, HIV in particular. Even after control­

ling for some important risk factors, the risk of HIV infection varies considerably 

across sexual networks. The importance of sexual network frailty term indicates 

that some sexual networks are at increased risk of HIV infection compared to oth­

ers. Therefore, interventions should consider sexual networks as social units rather 

than focussing on individuals. Intervention strategies such as counselling, treatment 

of STis and education messages specifically designed to deal with situations where 

sexual partners are discordant are urgently needed to protect uninfected partners 

who are at high risk of HIV infection due to their infected partners. 

The observed patterns of HIV infection were unexpected but revealing in as 
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much as they shed light on the role of migration in the spread of HIV to the rural 

areas (Lurie, Williams, Zuma, et al 2003b). It has long been hypothesized that the 

primary direction of HIV transmission is from returning migrant men, who contract 

HIV while migrating, and return home to infect their rural partners (Pison, et al 

1993; Decasas, et al 1995). If this was the case, one would expect the men to be 

the infected partner in most discordant couples. However, in nearly one-third of 

discordant couples the female was the infected partner. While this confirms the 

importance of migration as a risk factor for HIV infection in both men and women, 

it changes our understanding of the way in which migration enhances this risk. We 

have found that migration is a risk factor not simply because men return home to 

infect their rural partners, but also because their rural females - both those who 

are partners of migrant men and those who are partners of non-migrant men - are 

as likely to become infected from sexual contacts outside of their primary relation­

ship. The fact that the patterns of HIV discordance are similar in non-migrant 

couples, with the woman being the infected partner in one-third of non-migrant dis­

cordant couples, indicates that some partners of non-migrant men become infected 

not through their husbands. 

The data provided by respondents in this study about the age at first sexual 

contact and the number of lifetime partners were consistent with those of other 

South African studies (Department of Health, 1998; Williams, et al 2000; Eaton, et 

al 2003). A community-based survey in Carletonville (Williams, et al 2000) found 

the age at first sexual intercourse to be slightly younger (a year for girls, a year 

and a half for boys) than in the migration study, but this may be due to urban 

composition of the Carletonville study's sample. A review by Eaton et al (2003) on 

sexual behaviour among South African youth concluded that at least 50% of South 

African youth is sexually active by the age of 16 years. The Carletonville study also 

found similar high rates of reported STI symptoms and numbers of lifetime partners 

(Williams, et al 2000). 
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The results indicate modest differences between the models with and without 

frailty. A number of factors can lead to this observation. Firstly, it is possible that 

the assumed distribution of random effects is inappropriate. The results will be 

sensitive to the assumed frailty distribution if the proportion uninfected with HIV 

within the period of analysis is low, and the frailty variance is large (Sastry, 1997). 

These data are from South Africa, which is among countries with the world's high­

est rate of HIV infection. We have also found an estimate of frailty variance much 

smaller than 2. Secondly, high risk sexual networks will get infected earlier than 

low risk sexual networks. In the long run, low risk sexual networks will dominate 

the sample and the risk will decline over time (Guo and Rodriguez, 1992). 

The analysis was restricted to the duration of sexual activity since the epidemic 

of HIV became well established in South Africa. However, it is possible that some 

people were infected before 1990. Although their chances of surviving for more than 

ten years in the absence of antiretroviral drugs are minimal, the results of the anal­

ysis using time since first sexual intercourse led to similar conclusions and these are 

shown in Table 3.4. The minor differences were in the reduced baseline hazards and 

increased fixed effects estimates in the analysis of time since first sexual intercourse. 

The reduction in baseline hazard estimate was expected since sexual activity prior 

to the period when the epidemic was well established posed very little risk compared 

to the period after 1990. 

Inference based on correlated observations can lead to substantial bias in es­

timated parameters, especially when unobserved random effect variance is large 

(Klein, 1992; Guo and Rodriguez, 1992). The effect of including sexual partnership 

frailty on fixed effect parameters and standard errors, though very minor, appears 

to be important because it reveals systematic bias in the same direction. Standard 

errors are underestimated in the model that ignores the within sexual network cor-
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Table 3.4: Estimates for time since first sexual intercourse until HIV infection 

Parameter 

Baseline hazard 

Constant 

Migration status 

Migrant men 

Partners of migrant men 

Non-migrant men 

Partners of non-migrant men° 

Age in years 

18 to 24 

25 to 34 

35 and above0 

Recent sexual contact partners 

Only one0 

More than one 

Number of lifetime partners 

Only one0 

More than one 

Syphilis 

O=Negative, l=Positive 

Status of other ST!s 

O=Negative, l=Positive 

Frailty variance 

Sexual network 

aReference category 

Model with frailty 

Estimate SE 

0.0069 

0.4598 

0.2991 

-0.2186 

2.4547 

1.0720 

0.5575 

0.3284 

0.2836 

0.5031 

0.4588 

0.0011 

0.2161 

0.2104 

0.2590 

0.2963 

0.1628 

0.1893 

0.1719 

0.1580 

0.1807 

0.0691 
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relation in contrast to the model that takes into account that dependency within 

the data. If this dependency is not taken into account in the analysis, confidence 

intervals and credible intervals for fixed effects will be too narrow (Wei, et al 1989; 

Guo and Lin, 1994) even in cases where failure times are modestly correlated (Kim 

and Xue, 2002). This leads to overstated significance levels and coverage probabili­

ties of the corresponding confidence intervals fall below nominal level. 

In this chapter, we have considered an approach of finding ML estimates in cor­

related interval-censored data. Parameters are estimated using the EM algorithm 

with appreciably simple steps. The idea is to treat both the interval-censored infec­

tion times and frailties as unobserved data to facilitate the EM algorithm. Methods 

of correlated standard survival data were used to estimate parameters. Only the 

interval-censored observations were estimated, conditional on clinical examination 

times. There is no practical relevance in augmenting right-censored observations as 

these observations are censored at the end of the study or lost to follow-up. Thus, 

their last clinical examination times are known. The approach grossly simplifies 

the analysis in correlated interval-censored data and yields the tractable marginal 

likelihoods needed to facilitate the EM algorithm. The results of this chapter have 

been submitted for publication (Zuma, Lurie, Jorgensen, 2004). 



Chapter 4 

Bayesian simulation methods 

4.1 Introduction 

The previous two chapters showed how the parameters of the logistic mixed model 

and the proportional hazards frailty model could be estimated using the EM algo­

rithm, which is a frequentist approach. The likelihood function could not be ob­

tained analytically and was approximated using numerical methods such as Gaussian­

Hertmite quadrature which may be imprecise (Crouch and Spiegelman, 1990; Mon­

ahan and Stefanski, 1992). Bayesian methods avoid the need for evaluating complex 

integrals. A Bayesian paradigm treats all unknown parameters as random variables 

and assigns a prior distribution g(O) for the unknown parameter vector 0. Poste­

rior inference about (} is obtained by using the likelihood function f (ylO) to convert 

prior uncertainty g( 0) into posterior probability statement g( Oly). In this way, the 

posterior distribution summarizes our knowledge of(} after observing the data y. In­

stead of obtaining g(Oly) analytically, we use Markov chain Monte Carlo (MCMC) 

methods to generate samples from the joint posterior. In this chapter, we discuss 

various methods of generating samples from the posterior distribution and the re­

lated implementation issues. 
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Bayes' theorem presents the posterior distribution of() as 

J(yl()) g(()) 
g(()ly) = J J(yl()) g(()) 

The posterior density is usually presented in its proportional form as 

g(()ly) ex: J(yl())g(()). (4.1) 

Therefore, the posterior distribution of() is proportional to the product of the likeli­

hood function and the prior distribution. The unscaled posterior (4.1) only provides 

the shape of g(()ly). From the unscaled posterior we can find the modes and rela­

tive frequencies at any two locations. The exact posterior distribution is found by 

re-scaling (4.1) so it forms a density. Re-scaling (4.1) requires division by 

J J(()ly)g(())d(). 

In practise, it may be very difficult to evaluate this integral. A closed form solution 

of the posterior density can be found in few special cases, such as when J(yl()) is a 

member of the exponential family and the prior density is from the conjugate family 

of priors. For other cases, the density has to be approximated numerically using 

complicated asymptotic techniques such as Laplace methods (Tierney and Kadane, 

1986; Carlin and Louis, 1996), which maybe inadequate in high dimensional param­

eter space. 

Sampling based methods were developed which allow us to draw samples from 

the posterior density when we don't know the posterior completely, only its un­

scaled form. Direct sampling methods such as Acceptance-Rejection Sampling, 

Sampling Importance Resampling and Adaptive-Rejection Sampling are discussed 

in Section 4.2. They generate samples directly from the posterior distribution by 

drawing random samples from an easily sampled candidate density and reshaping it 

to accept some of the values into the final sample. The accepted values give us a ran­

dom sample from the posterior. These methods work very well for low-dimensional 

parameter space. However, direct sampling methods lose efficiency very quickly as 
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the dimension of the parameter space increases. The candidate density has heav­

ier tails in each dimension. So, almost all candidate draws will be from the region 

of extremely low posterior probability and will not be accepted into the final sample. 

The MCMC methods (Gilks, et al 1996; Carlin and Louis, 1996) for obtaining 

a random sample from the posterior have been developed and are discussed in Sec­

tion 4.3. They are much more efficient than the direct sampling methods when the 

parameter dimension is high. They set up a Markov chain that has the posterior as 

its long-run distribution. Running the Markov chain for a while moves the chain out 

of the region of the parameter space that has extremely low posterior probability. 

Practical issues involved in implementing MCMC sampling methods are addressed 

in Section 4.3.5. 

4.2 Direct sampling methods 

Direct non-iterative sampling techniques require more than one step for obtaining 

a sample from the posterior g(Oly) which may only be known in its unscaled form 

f(Oly)g(O). Typically, these sampling methods involve two steps. The first step 

samples random variables from a candidate distribution g0(0). The second step 

adjusts the sample to approximate g(Oly). Direct sampling techniques generate 

statistically independent samples unless correlation was introduced as a variance 

reduction tool. In this section, we briefly describe direct sampling methods that are 

often used: Acceptance-Rejection Sampling, Sampling Importance Resampling and 

Adaptive-Rejection Sampling. 

4.2.1 Acceptance-Rejection Sampling 

Acceptance-Rejection Sampling (ARS) utilises a candidate density g0 (0) with heav­

ier tails than the posterior g(Oly). The density g0 (0) is chosen such that it is easy 

to draw samples from. By only accepting some candidates, the sample is reshaped 
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to be a random sample from g(8ly). Suppose that there exists a positive constant 

M < oo where Mis the smallest value such that J(8ly)g(8) ~ Mg0(8), for every 

possible value of 8. The density g0 (8) is referred to as a blanketing density or envelop 

and M is the envelop constant. The ARS algorithm proceeds as follows: 

• Draw 8i from 90(8) 

• Draw U from a uniform (0,1) distribution 

• Return to first step until the required sample is attained. 

An accepted random variable 8i comes from g(8ily). The proof that ARS sam­

ples from g(8ilY) only requires us to show that the conditional density of [8ilU ~ 

f(8ily)g(8i)/Mg0(8i)l is g(8ily). Since 8 and U are independent and U is uniform 

then their joint density is g0(8). In a narrow slice, that is, for a very small ~ 

Dividing this probability by ~ and taking the limit as ~ - 0 we get the derivative 

which is the density of accepted 8 at 8i proportional to J(8ily)g(8i). Therefore the 

density of accepted 8 is proportional to g(8ly) which is the posterior. 

The efficiency of the algorithm depends on similarities between g0(8) and g(8ly). 
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If 1r is the acceptance probability for () i, then 

1r Pr[U::; J(()ilY)g(()i)/Mgo(ei)] 

- j Pr[U ::; f ( ()i IY )g( ()i) / M go( ()i )]go( ()i )d()i 

J [!( ()j IY )g( ()j )/ M]d()j 

= ! J j(()jiy)g(()j)d()j 

C 

M 

where c is the standardizing constant for g(()ly). Therefore, the number of iter-

ations required to accept a single ()i is a geometric random variable with mean 

1r-1 = M / c. The value of M is determined from g0 ( ()). Efficiency of the algorithm 

can be improved by choosing g0 (()) with the same shape as g(()ly) but with heavier 

tails. Heavy tailed distributions such as student's t-distribution with low degrees of 

freedom are recommended (Chib and Greenberg, 1995). Typically, ARS is character­

ized with elaborate exploration of different candidate envelope functions. Gilks and 

Wild (1992) proposed an Adaptive-Rejection Sampling technique that constructs 

and adapts the candidate generating distribution at each non-accepted value until 

an accepted value is achieved. 

4.2.2 Sampling Importance Resampling 

The Sampling Importance Resampling (SIR) first proposed by Rubin (1987) is a 

two stage method of sampling from g(()ly). The SIR stems from an idea of sampling 

from g0 (()) without having to determine the value of M. Suppose we want a sample 

of size n' from g(()iy) which is hard to sample from, whilst a sample {()1 , · · ·, ()N, }, 

n' < N', is available from g0 (()). Then, calculate the sampling importance weight wi 

for each value of the sample where 

- Qj 
Wj - N' 

Lj=l qi 
& 

The ultimate {(Ji,··· , e;,} is obtained by resampling from { ()1 , · · · , ()N,} using weights 

{ w1, · · · , w N'}. The resulting sample is approximately distributed as g( ()iy) with ap­

proximation improving as N' increases. Smith and Gelfand (1992) proved that SIR 
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effectively samples from g(Oly). Typically, SIR is a 'bootstrap' resampling with un­

equal probabilities determined by wj. However in SIR, the parameters rather than 

the data are resampled hence it is often called Bayesian bootstrap. 

4.2.3 Adaptive-Rejection Sampling 

Adaptive-Rejection Sampling (AdRS) is a sampling algorithm applicable to a special 

class of log-concave univariate densities (Gilks and Wild, 1992). The AdRS approxi­

mates log g(Oly) by drawing line segments that blanket log g(Oly). The line segments 

are formed by constructing tangents to logg(Oly). In many applications, full condi­

tionals are log-concave (Dellaportas and Smith, 1993). The blanketing envelope is 

piece-wise exponential and easy to sample from. Gilks and Wild, (1992) proposed 

an alternative squeezing function that does not require evaluation of the derivative 

of log g(Oly). The method is iterative. At each iteration both the envelope and 

squeezing functions are updated thus improving efficiency of the algorithm. How­

ever, the complexities involved in multivariate generalization of the AdRS makes it 

unattractive for cases beyond univariate densities. 

4.3 Markov Chain Monte Carlo methods 

Direct sampling methods discussed thus far reshape the sample drawn from the can­

didate distribution to that drawn from the posterior distribution. These methods 

can be very inefficient in high dimensional parameter space. The MCMC meth­

ods provide an efficient way of sampling from a high dimensional posterior through 

setting up a Markov chain that has the posterior distribution as its stationary dis­

tribution. There are a number of books devoted to the subject of Markov chains. 

These include, among others (Meyn and Tweedie, 1993; Ross, 1996). For a more 

statistical oriented approach, see for example (Guttorp, 1995; Gamerman, 1997). 

We wish to sample from g(Oly) over the parameter space. Suppose g(Oly) is 
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known up to a multiplicative constant. The posterior g(Oly) is a long-run distribu­

tion of an aperiodic ergodic Markov chain with transition kernel P(O, A) if and only 

if it satisfies the steady state equation 

L g(Oly)dO = J g(Oly)P(O, A)dO 

where the probability transition kernel P(O, A) is a mapping from points in the 

parameter space into measurable sets in the parameter space 

Unlike classical Markov chain analysis where we know the transition function and we 

want to find the long-run distribution, in this case we know the long-run distribution 

of the Markov chain and the problem involves finding the appropriate transition ker­

nel P(O, A). There are many possible transition kernels that have the long-run distri­

bution. Surprisingly it is not too difficult to find one. The MCMC sampling methods 

such as Metropolis-Hastings algorithm, substitution sampler and Gibbs sampler are 

all different methods of finding the transition kernel whose long-run distribution 

is g(Oly). These methods are discussed in Section 4.3.1 through to Section 4.3.3. 

Sample values drawn after running the Markov chain for a reasonably long time, 

say c iterations, approximate draws from g(Oly) and thus {O(r) : r = c + 1, · · ·, N} 

are dependent samples from the desired posterior density. We discuss methods of 

determining c in Section 4.3.5. The estimate of the expectation of any function 

E[h(O(r)] can be obtained using the ergordic average 

h = _1 _ t h(o<r)). 
N - C r=c+I 

However, the constructed Markov chain has to satisfy the regularity conditions 

of irreducibility and aperiodicity before this can hold (Smith and Roberts, 1993). 

Suppose that the candidate distribution which generates a candidate value 0' given 

0 is q(O, O'). If q(O, 0') satisfies reversibility condition 

g(Oly)q(O, O') = g(O'ly)q(O', 0) (4.2) 
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for all values of(} and B', then g(Bly) is the long-run distribution for a Markov chain 

whose transition kernel is 

P(B, A) = l q(B, B')dB' + s(B)6A(B) 

where s( B) = 1-J q( (}, ()')dB' is the probability that a chain remains at (} and <5 A ( B) = 

1 if(} E A and O otherwise. To prove this, we need to evaluate J g(Bly)P(B, A)dB 

and show that it is equal to fA g(Bly)d(} as follows 

j g(Bly)P(B, A)dB = j l g(Bly)q(B, B')dB'd(} + j g(Bly)s(B)6A(B)dB. 

Since <5 A ( B) = 1 if (} E A and O otherwise, the corresponding integral needs only be 

evaluated over the region A 

I g(Bly)P(B, A)d(} j l g(Bly)q(B,B')dB'd(} + l g(Bly)s(B)dB 

l j g(Bly)q(B, B')d(}d(}' + l g(Bly)s(B)dB 

l j g(B'ly)q(B', B)d(}d(}' + l g(Bly)s(B)dB 

l g(B'ly)[l - s(B')]dB' + l g(Bly)s(B')dB 

l g(Bly)dB. (4.3) 

Therefore, the chain is positive recurrent and irreducible with stationary distribu­

tion g(Bly). 

On the other hand, suppose the candidate distribution does not satisfy the re­

versibility condition. In Section 4.3.1 we show how the candidate generating distri­

bution can be modified so that we can construct a Markov chain having g(Bly) as 

its long run distribution for that case. 

4.3.1 The Metropolis-Hastings algorithm 

The Metropolis-Hastings (M-H) algorithm is an MCMC sampling method which 

first appeared in mathematical physics dealing with the calculation of properties 

of chemical substances (Metropolis, et al 1953). Hastings (1970) subsequently gen­

eralized the algorithm and hence it is now known as the M-H algorithm. Tierney 
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(1994) gives a comprehensive theoretical exposition of this algorithm, whilst Chib 

and Greenberg (1995) provide an excellent tutorial on the topic of the M-H algo­

rithm. 

Similar to the ARS, suppose we have a candidate generating density q(O, O'). In 

the context of Markov chains, the candidate generating density is allowed to depend 

on the current state of the process. If q( 0, 0') satisfies the reversibility condition ( 4.2) 

then its long-run distribution is g(Oly), see Equation (4.3). In general however, it 

does not always satisfy the reversibility condition such that for some O and 0' 

g(Oly)q(O, O') > g(O'ly)q(O', 0). 

The process moves from O to 0' more often than from O' to O. A convenient way 

to circumvent this is to reduce the number of moves from O to O' while leaving the 

number of moves from O' to O unchanged. This can be achieved by introducing a 

probability of move from a(O, 0') ~ 1. The reversibility condition becomes 

g(Oly)q(O, O')a(O, O') = g(O'ly)q(O', O)a(O', 0) 

In this case a( O', 0) = 1 so that 

g(Oly)q(O, O')a(O, O') = g(O'ly)q(O', 0). 

Clearly, the probability of move from O to O' is given by 

(O O') = g(O'ly)q(O',O) 
a ' g(Oly)q(O, 0'). 

To ensure that q( 0', O)a( 0', 0) satisfies the reversibility condition, the probability of 

a move from O to 0' should be set to 

(0 O') . {g(O'ly)q(O', 0) } h (01 ) (0 O') 
a , = mm g(Oly)q(O, O'), 1 w enever g y q , > O. 

It is important to note that calculation of a(O, O') requires that g(Oly) be known only 

to a multiplicative constant. This means the M-H algorithm can be implemented 
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even when we only know g(Oly) up to a proportionality constant. Consequently, 

g(Oly) is the long-run distribution of a Markov chain with the transition kernel 

P(O, A)= l q(O, O')a(O, O')dO' + s(0)8A(O) 

where s(O) = 1 - J q(O, O')a(O, O')dO' is the probability that the chain remains at 0, 

8A = 1 if OE A and 0, otherwise. 

We now summarize the steps of the M-H algorithm initiated at o(o) 

• Repeat for r = 1, 2, · · · , N 

• Draw O' from q(O(r-1),0) and U from uniform (0, 1) distribution independently 

of each other and previous draws 

• Calculate a(O(r-1),0') 

• If U < a( o(r-1), 0') then set O(r) = O', else set o(r) = o(r-i) 

• Return the values { O(l), 0(2), ••• , O(N)}. 

The chain converges to g(Oly) after it has been run for a sufficiently long burn-in 

period such that the effect of the fixed starting point is negligible. Sample values 

obtained after the burn-in period approximate a dependent sample from g(Oly). 

Successful implementation of M-H algorithm depends on how close q(O, 0') mir­

rors g(Oly). If q(O, 0') is the true posterior density, then a(O, 0') = 1 and 0' would 

always be accepted. Generally, q(O, O') would be from the family of densities that 

require specification of parameters such as the location and spread. The spread of 

the candidate density affects both the acceptance and mixing of the chain (Chib 

and Greenberg, 1995). Metropolis, et al (1953) proposed a random walk chain 

q( 0, 0') = g1 ( O' - 0) where g1 is a multivariate density. The density generates a 

candidate 0' = 0 + E where c is called the increment random variable. The incre­

ment random variable c follows the distribution g1. Since the candidate is equal 
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to the current value plus noise, Chib and Greenberg (1995) call this case a random 

walk chain. The possible forms of g1 are multivariate normal and multivariate-t 

densities. Roberts et al (1997) show that if the target and the proposal densities 

are normal then the scale of the proposal distribution should be tuned such that the 

acceptance rate is approximately 0.45 in one-dimension and decrease towards 0.23 

as the number of dimensions approach infinity. 

Hastings (1970) proposed a candidate density q(8, 8') = g2 (8') which is indepen­

dent of the current value of 8. The independence M-H chain results in 

(8 8') . { w( 8') } 
a , = mm w( 8) , 1 

where w(8) = g(8/y)/g2(8). The function w is the importance weight that would 

be used in the SIR if observations were sampled from g2 . Thus, a candidate 8' 

with low weight would rarely be accepted. Chib and Greenberg (1995) suggest that 

an independent candidate density g2 (8) with heavier tails be used. Tierney (1994) 

presents several classes of possible candidate densities. 

4.3.1.1 M-H Acceptance-Rejection chains 

It was noted in the ARS algorithm that M and g0 (8) should be chosen such that 

M g0 ( 8) dominates g( 8 I y) for all values of 8. This can be difficult especially when 

g(8ly) depends on parameters that are updated at every iteration. Tienery (1994) 

proposed a rejection sampling scheme that drives an independent M-H chain to 

circumvent the problem of finding a suitable value of M. Define C = {8: g(8ly) < 

M g0 ( 8)}. The candidate 8' is assumed to come from an ARS algorithm. Since 8 

and 8' can each be in C or C, there are four possible cases: 8 E C and 8' E C; 

8 (j. C and 8' E C; 8 E C and 8' (j. C; and 8 (j. C and 8' (j. C. Chib and Greenberg 

(1995) provided the M-H acceptance probability such that q(8')a(8, 8') satisfies the 

reversibility condition. Finally, the acceptance probability a(8, 8') can be written 
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as 

1 if OE C 

a(O, O') = if O fJ. C and 0' E C 

min { g(O'!y)go(O) 1} if O d C and 0' d C. 
g(Oly)go(O')' 'F- 'F-

lt is clear that in both cases where O E C the probability of move to O' is 1 irrespective 

of where 0' lies. 

4.3.1.2 Blockwise M-H algorithm 

It is often efficient to work with the components of O instead of the full dimensional 

parameter. Suppose the parameter vector O can be partitioned into sub-blocks 

of {00 , ···,Ob} where Ok is a block of parameters which may contain sub-vectors 

of parameters. Let O_k denote a set comprising all components of O except Ok. 

Hastings (1970) showed how to apply M-H algorithm to subblocks of O rather than 

to all components of O simultaneously. Let Pk(Ok, AklO-k) be the transition kernel 

for the M-H algorithm applied to subblock Ok of the vector O keeping all other 

parameter blocks fixed. Hastings (1970) showed that 

b 

P(O, A)= II Pk(Ok, AklO-k) 
k=l 

has g(Oly) as its long-run distribution. Chib and Greenberg (1995) illustrated the 

idea of product of kernels principle for two blocks of move from O = {01 , 02 } to 

0' = { e;_, e;}. The principle allows us to draw consecutively from each kernel, instead 

of running each of the kernels to convergence for every value of the conditioning 

block. The practical significance of the principle is that it is often much easier to 

find several conditional kernels that converge to their respective posterior densities 

than finding one kernel that converges to the joint posterior density. The Gibbs 

sampler is an example of the component M-H algorithm since it uses fixed sequence 

of Gibbs transition kernels ·which update different components of the state vector, 

Section 4.3.3. 
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4.3.2 Substitution sampling 

Tanner and Wong (1987) proposed a Markov chain algorithm that has g(Oly) as 

its limiting distribution using ideas similar to those of the EM algorithm. The 

algorithm is sometimes referred to as the data augmentation since observed data y 

is augmented with unobserved data z. The variable y is augmented in such a way 

that if both z and y were known, it could be easy to evaluate the complete-data 

posterior g(Olz, y). The incomplete data posterior g(Oly) is given by 

g(Oly) = j g(Olz, y)p(zly)dz 

where the predictive distribution of the unobserved variable p(zly) is given by 

p(zly) = j p(zlO', y)g(O'ly) dO'. 

Substituting the second equation into the first equation and interchanging the order 

of integration results in 

g(Oly) j g(Olz,y) j p(zlO',y)g(O'ly)dO'dz 

j h(O, O')g(O'ly)dO' (4.4) 

where h(O, O') = J g(Olz, y)p(zlO', y)dz. Hence g(Oly) is a fixed point solution of 

the integral (4.4). The uniqueness of g(Oly) is discussed in Gelfand and Smith 

(1990). Given an appropriate approximation 9r(O) to g(Oly), Tanner and Wong 

(1987) showed that the sequence of distributions found by successive solutions of 

the integral equations 

(4.5) 

converge to g(Oly) at a uniform convergence rate. Equation (4.5) requires evaluation 

of the integral that maybe difficult to perform analytically. Therefore, a sampling 

method is used to generate a sequence of random variables from each of the succes­

sive distributions. The algorithm proceeds as follows: 

• Draw O(o) from go(O) 
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• Draw z(o) from p(z1B(0), y) 

• Iteratively for r = 1, · · ·, n 

• Draw 9(r) from g(Blz(r-l), y) 

• Draw z(r) from p(zlB(r), y). 

In general, the algorithm draws 9(r) from g(Blz(r-l), y) then draws z(r) from g(zlB(r), y) 

successively substituting B and z in turn at each iteration, hence the name substi­

tution sampler. At each iteration, the algorithm produces a pair (B(r), z(r)) with 

marginal densities 9r(B) and 9r(z) respectively (Carlin and Lewis, 1996). The final 

form of g(Bly) based on the final sample can be obtained using the kernel density 

estimate (Gelfand and Smith, 1990). An extension of the algorithm to more than 

two components is illustrated in Gelfand and Smith (1990). Implementation of sub­

stitution sampler to d variables requires the availability of all d(d - 1) conditional 

distributions. These conditional distributions are sometimes hard to find. 

4.3.3 Gibbs sampler 

Geman and Geman (1984) proposed an MCMC method which forms the transition 

kernel using fewer full conditional distributions. The method is named the Gibbs 

sampler since it originated in image processing where the posterior was the Gibbs 

distribution. As discussed in Besag and Green (1993), the Gibbs sampler is founded 

on the ideas of Grenander (1983). Gelfand and Smith (1990) noted its potential, 

popularized the method to the wider statistical community and pointed out the 

connections between the Gibbs sampler and Substitution sampler. 

The Gibbs sampler assumes that all full conditional distributions 

are available to sample from in order to approximate g(Bly). Based on Besag (1974), 

the set of conditional posterior distributions are sufficient, after satisfying some 



85 

conditions, to determine the joint posterior distribution. These conditions are con­

ditional independence between y given the model parameters and covariates, and 

independence between the parameters themselves. Let e<0) = { ()~o), · · · , ()bo)} be an 

arbitrary starting value. The Gibbs sampler moves from ()(i) to (){i+l) by successively 

updating each variable as follows: 

()~i+l) sampled from g( e11e~i), ... , ()bi), y) 

{"+1) {"+1) C) C) 
()2t sampled from g(e21ei2 , ()3t , ••• , ()bi , y) 

{i+1) f ( ie<H1) {i+l) {i+l) ) ()b sampled rom g ()b 1 , ()2 , · · · , ()b-l , Y . 

This completes a transition from ()(i) to (){i+l). Iteration of the algorithm produces a 

sequence of ( (){l), e<2), · · · , ()(r), · · ·) which is a realization from a Markov chain with 

transition probability of a move from ()(r-l) to ()(r) given by 

b 
P(e<r-1) e<r)) = II (() 1e<r-l) . . . e<r-1) e<r-1) . . . e<r) ) 

, 9k k 1 , , k-1 , k+l , , b , Y 
k=l 

and the stationary distribution g(()ly). The Gibbs sampler is an example of a 

component-based MCMC method. In fact, the Gibbs sampler is the block-wise M-H 

algorithm using the exact full conditionals as the candidate generating distribution. 

Geman and Geman ( 1984) showed that after running the chain for a sufficiently 

long time, say c, (eic), ···,()be)) converges to g(()ly) at an exponential rate, see also 

Gelfand and Smith (1990). Thus, by taking c large enough any population character­

istic including the density can be obtained with high accuracy. General applications 

of the Gibbs sampler are illustrated in Smith and Roberts (1993). Brooks (1998) 

provides a comprehensive review of MCMC methods and their applications. 

The degree of disaggregation of the parameter into blocks should take the corre­

lation structure of g(()ly) into account. Parameters that are highly correlated should 

be included in the same block, and sampled together in such a way that takes the 
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correlation structure into account. Otherwise, successive draws from the chain will 

move very slowly through the parameter space. The chain will be said to have 

poor mixing properties. This will result in high burn-in time required. Gelfand and 

Smith (1990) suggest a method analogous to the Monte Carlo integration for n' 

independent Gibbs sequences 

n' 
- (o I ) 1 """' (o 1o<c} o<c} o<c} o<c) o<c) ) 9k k Y = , L. 9k k il , i2, · · ·, i(k-1}' j(k+l}' · · ·, ib , Y 

n i=l 

as a density estimator of 9k(Okly). Gilks et al (1993) reviewed applications of Gibbs 

sampler in medicine, longitudinal data, disease mapping and survival models. Il­

lustrations of the Gibbs sampler in multinomial and normal models are presented 

in Gelfand and Smith (1990). Casella and George (1992) gave details of how and 

why the Gibbs sampler works. Brooks (1998) tackles the applications of both Gibbs 

sampler and M-H algorithm. Casting of GLMMs in Bayesian framework using 

Gibbs sampler appeared in Zeger and Karim (1991). Clayton (1991) introduced the 

Bayesian model for analysis of multivariate survival data using the frailty model and 

estimated parameters via the Gibbs sampler. Other successful applications of the 

Gibbs sampler have appeared in the analysis of three-way multilevel survival data 

by Bolstad and Manda (2001). 

4.3.3.1 Hierarchical and graphical modelling 

Many statistical applications involve estimating parameters that are somehow in­

terrelated. The joint probability model should reflect the dependency between the 

parameters. In Bayesian modelling, some parameters can be viewed as samples 

from a common population distribution. Parameters describing the population dis­

tribution are referred to as hyperparameters. Hyperparameters are unknown and 

estimated from the observed data. Priors are specified for hyperparameters and 

referred to as hyperpriors. This setup forms a hierarchical structure of parameters. 

In most practical problems, such as in random effects models, parameters can be 

subsumed within the hierarchical framework. 
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The hierarchical structure of parameters can be represented by a directed acyclic 

graph (DAG) which shows the dependency structure of parameters including priors, 

hyperpriors, hyperparameters and the observed data (Clayton, 1991). Each model 

parameter appears as a node in the graph with edges representing the direction of 

the relationship. Some quantities are fixed constants such as priors, hyperpriors 

and observed data. These are often represented by rectangles around them. Cir­

cles are drawn around stochastic parameters that are subject to estimation. Each 

node is connected, with an arrow, to those nodes that depend on it. Probabilistic 

dependencies are represented by solid lines and dashed lines represent deterministic 

dependencies. Parameters having direct influence on the data appear at the bottom 

of the hierarchy and those with lesser influence placed at the top of the hierarchy. 

Let (h be the component of interest and () be the set of all nodes on the graph. 

Factors that node ()k directly depends on are called its parent nodes. The nodes that 

directly depend on ()k are called its children nodes. The DAG represents the assump­

tion of conditional independence. That is, for any node ()k if we know its parents 

then no other node contains information about ()k except its children. Therefore, 

it is possible to factorize the full joint posterior f(O; y) as a product of conditional 

distributions 

f(O; y) = IT g(vlparents of 11) 
vE{O,y} 

where v is any particular node. The distribution of all other nodes ()_k is found by 

integrating ()k out of the full joint posterior. All terms not containing ()k are constant 

with respect to the integration and can be moved outside of the integral. Therefore, 

in calculating the conditional distribution of OklO-k; y terms not containing ()k cancel 

out and we are left with 

The co-parents nodes are other nodes which are also parents of <Pw· The gk(OklO-k, y) 

has the prior component g(Oklparents of Ok) and the likelihood component given 
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by rrw:<t>wE{Children of Ok} f(<Pwllh and co-parents). Thus, in hierarchical model the 

conditional posterior of any node given all other nodes, only depends on its parents, 

its children and other parents of its children. Conjugacy of the prior component to 

the likelihood component reduces mathematical complexities involved in formulating 

a Gibbs conditionals. However, it is not necessary to use conjugate priors as the 

nodes can be sampled directly using AR or AdR sampling. 

4.3.3.2 Relationship to M-H and Substitution algorithms 

In M-H algorithm, consider a block-wise transition kernel 

This shows that the Gibbs sampler is a special case of M-H algorithm. For each 

block (h we are sampling from a correct full conditional posterior. Therefore, the 

acceptance probability of a move from(} to (}' at each step is a(O, (}') = 1. See, for 

example, Brooks (1998) for a formal proof that a(O, (}') = 1 in the Gibbs sampler. 

In the substitution sampler, suppose(} is partitioned into components. For each 

(}k let the missing data Zk = (}-k· In this case, the substitution sampler is equivalent 

to Gibbs sampler but with different visitation order (Gelfand and Smith, 1990). 

4.3.4 Prior and propriety of posterior distributions 

The posterior distribution discussed thus far has been implicitly assumed to be 

proper. That is, the integral of g(Oly) is finite and g(Oly) can be written as a known 

probability density function. Specification of prior information for both fixed effects 

and variance components partly determines the propriety of the posterior distribu­

tion. It is common in hierarchical linear mixed models to specify an improper prior 

f ((31 , · · · , (3p) = 1 for fixed effects and Gamma( a, (3) or inverse-Gamma( a, (3) priors 

for variance components (Gelfand and Smith, 1990; Hobert and Casella, 1996; Bol­

stad, 1997; Daniels, 1999; Bolstad and Manda, 2001; Gelman, 2004). 
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A comprehensive review of methods of eliciting noninformative priors are given 

by Kass and Wasserman (1996), Gelman (2004) and references therein. Gelman 

(2004) constructed a new folded-noncentral t family of conditionaly conjugate pri­

ors for hierarchical standard deviation parameters. Conjugate priors lead to proper 

posteriors or tractable Gibbs conditionals. Unfortunately, propriety of the Gibbs 

conditionals does not necessarily imply propriety of the complete posterior distribu­

tion (Hobert and Casella, 1996). Improper priors often lead to improper posteriors. 

Sun, et al (2001) investigated conditions leading to the propriety of the posterior 

in hierarchical linear mixed model when an improper prior was specified for fixed 

effects and proper prior for variance components, and improper priors for both fixed 

and variance components. The authors found that the posterior is proper if a vague 

prior is specified for fixed effects and proper prior for variance components. Bolstad 

(1997) specified conjugate priors in the hierarchical normal model reducing Gibbs 

conditionals to simpler forms that can be sampled directly. Hobert and Casella 

(1996) suggest specifying normal prior with large variances for fixed effects and in­

verse gamma prior with small parameter values for the variance components. The 

conditions of the propriety of the posterior distribution discussed thus far are special 

cases of a unified treatment of necessary and sufficient conditions for propriety of 

the posterior distribution discussed by Sun, et al (2001). 

4.3.5 Practical implementation issues 

The theoretical formulation of MCMC methods with a long-run distribution as the 

target posterior distribution is well founded (Tierney, 1994). A series of contentious 

issues arise though in the implementation of the Markov chain. These issues include 

among others determining the sample size, determination of burn-in length, single 

or multiple chains, and determination of starting points. A roundtable discussion 

by experts in the field considered some of these contentious issues (Kass, et al 1998). 
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The standard error of the sample mean h(O) from an independent and identically 

distributed {i.i.d) sample of size N from g(Oly) is a/./N where a is the posterior 

standard deviation of 0. If a reasonable estimate of a is available, then N can easily 

be estimated. The iterates { ()(r)} from an MCMC methods are correlated. Because 

of this correlation one needs larger samples than would be required if samples were 

independent and computing standard deviation is rather complicated. If the series 

can be approximated by a first-order autoregressive process, then the asymptotic 

standard deviation of the sample mean is given by 

Jiv~G~:) 
where pis the autocorrelation estimate of { h(()(r))}. The estimate of the asymptotic 

standard deviation can be used to estimate the required sample size if a reasonable 

estimate of pis available. Autocorrelation can be reduced by subsampling the chain. 

However, this will depend on the cost of sampling from g(Oly) (Geyer, 1992). An 

informal check can be attained by running parallel chains from independent start­

ing points and compare h. If they do not adequately agree, N must be increased. 

Raftery and Lewis {1992) proposed a method of estimating N using cumulative 

normal distribution. 

Determining the burn-in period involves identifying the length of initial sample 

to be discarded on the basis that the chain has not reached its stationary distribu­

tion. That is, identifying the minimum point after which the sample can be claimed 

to come from g(Oly) and from which the effect of the starting points is negligible. 

Visual inspection of the iterates { ()(r) : r = 1, · · ·, N} is the most obvious and com­

monly used method of detecting the burn-in period. Other formal techniques have 

been proposed (Gelman and Rubin, 1992; Raftery and Lewis, 1992). Geyer {1992) 

suggested identification of burn-in using autocovariances. The arguments are that 

discarding initial sample will have minimal effect on inference since when the chain 

has been running long enough the burn-in iterates will constitute a small percentage 

(~ 1%) of the total sample (Geyer, 1992). Formal techniques of determining the 
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burn-in often make use of Monte Carlo output analysis. Raftery and Lewis (1996) 

outlined a way of determining burn-in for a single run which is also a diagnostic 

tool. Gelman (1996) suggests using multiple runs with overdispersed starting dis­

tribution. Gelman's idea is to monitor the chains to a point where they all stabilize 

to one value, thus having forgotten their respective starting points. 

The other contentious issue discussed is whether to run one chain or multiple 

chains to achieve valid inference (Geyer, 1992; Gelman and Rubin, 1992). Both ap­

proaches have their advantages and disadvantages. Theoretically, running one chain 

seems more efficient because only one burn-in phase is involved and less values are 

discarded. Multiple chains have an advantage of transversing a wider parameter 

space. Gelman and Rubin (1992) recommended sampling the starting points from 

an overdispersed distribution which is a close approximation of the target distri­

bution. The resulting sample from parallel chains is closer to being i.i.d than a 

large sample from one chain. However, running multiple chains can pose a heavy 

computational burden. Geyer (1992) provides theoretical background related to the 

use of autocovariance to ascertain convergence in single run. See Cowles and Carlin 

(1996) for an extensive expository of diagnostic tools for MCMC output. 

4.4 Summary 

The advents of MCMC sampling methods make possible the use of flexible Bayesian 

models that would have previously been almost impossible to fit. Applied statis­

ticians can now formulate more realistic models. Flexibility of Bayesian sampling 

techniques enables applied statisticians to tailor the statistical model to the problem 

at hand. Simulation methods result in samples from the posterior distribution of 

parameters. In this way, exploratory data analysis techniques can be used to crit­

ically explore the features of the posterior distribution. However, implementation 

of MCMC sampling methods is computationally involved in terms of coding the 
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method, generating samples, and storing and processing the results. 

The M-H algorithm appeared in the literature (Metropolis, et al 1953; Hast­

ings, 1970) much earlier than the Gibbs sampler (Geman and Geman, 1984). But, 

the Gibbs sampler has gained much popularity in the statistical community due 

to Gelfand and Smith ( 1990) who noted its potentials. Implementing the Gibbs 

sampler is relatively simpler than M-H algorithm, which possibly contributes to its 

popularity. Nevertheless, both methods complement each other. Direct sampling 

methods are easy to implement. However, they require cumbersome exploitation 

of the posterior density. Usually, they are only used to sample single dimensional 

nodes in the larger MCMC sampling scheme when those nodes are non-conjugate. 

The sample based Bayesian procedures (MCMC) are conceptually attractive. 

If there is an abundance of data, likelihood inference based on the EM algorithm 

and the Bayesian inference will give similar results. However, Bayesian inference is 

valid even when data are sparse. The advantage of the Bayesian approach is the 

possibility of including informative priors. This allows external information to be 

added to the model in a coherent way. However, there is still a difficulty in accessing 

convergence in the Bayesian MCMC sampling methods which is not the issue in the 

EM algorithm as the likelihood monotonically increases. However, as discussed in 

Chapter 2 the EM algorithm is also only guaranteed to converge to at least a local 

maximum and convergence to a global maximum in the presence of multiple maxima 

becomes an issue. 



Chapter 5 

A Bayesian analysis of time until 

HIV infection 

5.1 Introduction 

The model framework presented in Chapter 3 is already hierarchical and fully spec­

ified from the frequentist point of view and the model parameters have been esti­

mated using the EM algorithm. From the Bayesian perspective, we also need to 

specify priors for the fixed effects vector (3, the constant baseline hazard Ao and the 

hyperparameter a before the model is fully specified. The directed graph for the 

fully specified Bayesian model is shown in Figure 5.1. 

The prior for the vector of fixed effects (3 is assumed multivariate normal with 

mean vector d0 = 0 and diagonal covariance matrix :E0 = v0I, where v0 is a suitably 

chosen large number. In the assumption of the proportional hazards model, fixed 

effects represent logarithm of the relative risk and thus will not be far away from 

zero. The normal priors with large variances are almost identical to the flat priors 

for all practical purposes in terms of their effect on the marginal posteriors of the 

regression coefficients. The choice of such proper priors ensures valid approxima­

tions to the posterior distribution. 
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The available knowledge about the extent of HIV infection in South Africa has 

been gained through an annual HIV surveillance among women presenting for the 

first time in the antenatal clinics. The province of KwaZulu-Natal, where this 

study is conducted, has the highest antenatal prevalence of HIV compared to other 

provinces. In 2000, the antenatal prevalence of HIV infection was 36% rising from 

32.5% in 1998 (Department of Health, 2001). These estimates provide information 

used to determine parameters of the prior for Ao used in this analysis. The baseline 

hazard is a rate and the interval considered is between 8 to 10 years with time mea­

sured in months. Therefore, the suitable prior should represent this. A proper prior 

is assumed for the baseline hazard. We assume a Gamma(~o, (0 ) prior distribution 

~o = 1 and (0 = 20. This gives 0.05 and 0.05 as the prior mean and standard 

deviation for Ao. 

The sexual network frailties bi act multiplicatively on the baseline hazard and 

take only positive values. The frailties represent relative risks and thus should have 

mean 1. We model them as independent random variates from a Gamma(a, a) dis­

tribution. Therefore, the relative risk for sexual networks has mean 1 and variance 

1/a. The unit mean constraint on the relative risk ensures that the sexual network 

effect represents deviations from the population average risk. To accomplish model 

specification, a prior distribution for the variance component is required. 

The standard noninformative prior for variance component a 2 is the density 

J(a2 ) ex 1/a2 • The equivalent noninformative prior for generic precision component 

Tis the density J(r) ex 1/r. This prior is improper and may lead to an improper 

posterior. To avoid this potential pitfall, we specify a proper prior for the precision 

component. It seems reasonable to specify a prior density that is positive, finite and 

decreases monotonically in T. The prior of this nature favours models with smaller 

magnitude of frailty effect. We used a Gamma (v0 , ~ 0 ) prior for a where v0 = 1 
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and Ko = 1. This is equivalent to variance prior having mode just below 1, which 

leads to a posterior marginal density of frailty variance with mode depending on the 

observed data. 

The modelling framework proposed here is related to the work of Clayton (1991), 

Gustafson (1997) and Bolstad and Manda (2001). All these authors discuss Bayesian 

models for hierarchical multivariate survival data with precisely known failure times. 

However, the context and the modelling approach considered in this thesis differs 

from theirs in several aspects including baseline hazards specification, variance com­

ponents and the extension of estimation in correlated interval-censored data. Clay­

ton (1991) treated the increment of the cumulative baseline hazards as independent 

gamma variates. In this way, conditional on /3, the cumulative baseline hazards pos­

terior follows an independent gamma process (Kalbfleisch, 1978). Gustafson (1997) 

used similar approach in the implementation of Cox partial likelihood by integrat­

ing out the baseline hazards with respect to the gamma process. Furthermore, 

Gustafson (1997) assumed a log-normal frailty distribution. Bolstad and Manda 

(2001) specified piecewise constant baseline hazards in a three-way multilevel model 

of child mortality. The parameters of the piecewise constant baseline hazards were 

absorbed into the fixed effects, and estimated with them. 

Constant baseline hazards are assumed in this analysis. Baseline hazards and 

fixed effects are sampled sequentially. Furthermore, we consider an important aspect 

of sampling interval-censored failure times conditional on clinical examination times, 

frailties and observed data. Sinha and Dey (1997) reviewed a number of Bayesian 

methods of analysing survival data. Their review also covers interval-censored sur­

vival data. However, extensions of semiparametric Bayesian models for analysis of 

multivariate survival data using frailties (Clayton, 1991) to interval-censored data 

are not immediate. Thus, we cast the problem of multivariate interval-censored 

survival data as a missing data problem. We are not aware of any previous im-
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plementation of Bayesian hierarchical model for correlated interval-censored data 

through augmentation of infection times conditional on clinical examination times, 

frailties and observed data. 

5.2 The joint posterior distribution 

The full Bayesian model considered is the proportional hazards frailty model: 

h(Yiil,B, bi)= biA(Yii)e13'X;i 

,B"' MVN(d0 , E0 ) 

Ao rv Ga({o, (o) 

bi"' Ga(a, a) 

a rv Ga(vo, Ko) 

tii "' Exp( bi Ao exp(,B' Xii)) 

where A(Yii) = Ao 

where Yii denotes both the infection time for someone infected with HIV and right­

censoring time for someone uninfected with HIV at the end of the study or lost to 

follow-up, Yii E [vii,k; vii,k+1J. The MVN(d, s) generically denotes a multivariate nor­

mal distribution with mean vector d and covariance matrix s; Ga( d, s) generically 

denotes a gamma distribution with mean d/ s and variance d/ s2 • Exp(d) generically 

denotes an exponential distribution with parameter d. Here, we assume indepen­

dence between {Yii} given all other parameters of the model; between {bi} given 

hyperparameter a and between ,B and a. 

The joint posterior distribution of parameters, hyperparameters and the data is 

given by 

J ( data, ,B, Ao, tii, bi, a) 
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(~o, (o) (110, ~o) 

1 
G-

j = 1, ···,Ji 

i = 1, ···,I 

Figure 5.1: The directed acyclic graphical model representation of migration data 
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After inserting the relevant quantities, the joint posterior density function be-

comes 

(5.1) 

where p is the number of fixed effects parameters. Bayesian statistical inference 

requires the joint posterior density of all parameters and hyperparameters given the 

data. In our model, the posterior density cannot be obtained analytically. The 

Gibbs sampler can be used to obtain samples of parameters from the posterior 

density using the conditional distribution of each node given all the other nodes. 

Most of these conditional distributions are relatively tractable and they can be 

easily sampled. However, some conditional distributions are intractable, and other 

methods for sampling from intractable conditional distributions will be used. 

5.3 Gibbs conditional distributions 

The required Gibbs conditional distributions are for sexual network random ef­

fects /(bildata, /3, Ao, tij, a), infection time f(tiilvijk < tii S Vijk+1,data, /3, Ao, bi, a), 

sexual network random effect inverse variance /(aldata, /3, Ao, tij, bi), baseline haz­

ards f ( Ao I data, /3, tii, bi, a) and fixed effects f (/31 data, Ao, tii, bi, a). In a hierarchical 

model, the conditional distribution of one node given all the other nodes is propor­

tional to the prior distribution of that node times the conditional distribution of all 

its direct child nodes and co-parent nodes. The following sections present the Gibbs 

conditional nodes required in the analysis. 
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5.3.1 Sexual network random effects 

The sexual network random effects conditional distribution is calculated as 

( I ) ~bLf~1 '5;j+a-l -b; [a+ Lf~1 '5;jA(t;jlX;j)+{l-'5;j}A{v;j,klX;j)] 
f bi data, /3, Ao, tij, a ex r(a) 1 e 

ex bFf~l '5;j+a-l e -b; [a+°Lf~l '5;jA(t;jlX;j)+{l-'5;j}A{v;j,klX;j)] 

which we recognize as the kernel of a gamma distribution with shape a+ °Lf;,1 bii 

and inverse scale a+ °Lf;i[bijA(tiilXii) + (1 - bii)A(vij,klXii)]. Hence this can be 

sampled directly. 

5.3.2 Infection time 

The conditional distribution of the HIV infection time is 

Jtii,kk+i J(tldata, /3, Ao, bi, a)dt 
,3, 

e-H(t;ilb;,X;i) X h(tijlbi, Xij) 
= e-H(v;i,klb;,X;i) _ e-H(v;i,k+1 lb;,X;i) 

exp(-biAotiie/3' X;j) x bi Ao exp(/3' Xii) 

S(vii,klbi,Xii) - S(vii,k+1lbi,Xii) 

ex exp( -tijbiAoe13' X;j) 

which we recognize as the kernel of a gamma distribution with shape 1 and inverse 

scale biAoe/3' X;i. Such a gamma distribution is equivalent to an exponential distri­

bution with parameter biAoe/3' X;i. Hence this node can also be sampled directly on 

condition that the sampled value tii E (vij,k, vii,k+d· 

5.3.3 Random effects inverse variance 

The conditional distribution of the sexual network random effects inverse variance 

is 
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The full conditional does not simplify to any standard distribution that can be sam­

pled directly. Thus, we require methods for sampling from an arbitrary conditional 

distribution. It turns out that the full conditional distribution is a simple log­

concave distribution in a and can be sampled efficiently using the adaptive-rejection 

sampling scheme (Gilks and Wild, 1992). 

5.3.4 Baseline hazard 

The baseline hazards conditional distribution is computed as 

f(Aoldata, {3, tij, bi, a) 

'f.o ex _o_ xfo-le-.>.o(o 
r(~o) O 

'i;""l 'i;""J; • , ["'I 'i;""J; • b {3 1 X·· ( • ) {31X··] X A~i=l Lj=l Uij e -AQ Li=l Lj=l Uij ; t;j e •J + 1-u;j b; Vij,k e '] 

which we recognize as the kernel of a gamma density with the shape parame­

ter ~o + 1:[=1 I:f ~1 t5ii and scale parameter (o + I:[=1 I:f ~1 [ t5ii bi tii e13' X;i + ( 1 -

t5ii) bi vii,k ef3' X;j]. Hence this node can also be sampled directly. 

5.3.5 Fixed effects 

The full conditional distribution of the fixed effects is 

J(,Bldata, Ao, tij, bi, a) 

.::.I?. I 1-1 { 1 ( )' 1 } ex (21r) 2 E0 2 exp - 2 ,6 - do E0 ({3 - do) 

I J; , 8· · 1-8· · 
x II II [e-b;Ao(t;ilX;j) biAoe/3X;i] •i X [e-b;Ao(v;i,klX;j)] •i 

i=l j=l 

which does not simplify to any standard distribution. A Taylor series expansion of 

f(,Bldata, Ao, tij, bi, a) centered at the posterior mode J leads to 
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log J(f31data, Ao, tii, bi, a) 

1 !((3-ld , .. b· ) ((3-(3-)'8logf(f31data,A0 ,tii,bi,a)I _ 
og ata, "O, ti3 , i, a + 8(3 /3=/3 

+ ! ((3 - /1)' 82 log J (f31data, Ao' tij' bi' Q) I -((3 - /1) 
2 8(32 /3=/3 

1 !((3-ld \ .. b· ) !((3 - (3-),82 log J(f31data, Ao, tij, bi, a) I -((3 - (3-) og ata, "O, ti3 , i, a + 2 8(32 /3=/3 · 

(5.2) 

The linear term in (5.2) is zero because the log posterior density has zero derivative 

at its mode. The remainder terms of higher order in the Taylor series expansion fade 

in importance relative to the quadratic term when (3 is close to /3 and the sample 

size is large. If we consider (5.2) as a function of (3, the first term is a constant 

whilst the second term is proportional to the logarithm of a normal density. This 

yields the following approximation: 

J(f31data, Ao, tii, bi, a) ~ N(/1, [J(J3)J-1 ) 

where I(/3)] is the observed information 

I(J3) = _ 82 logf(f31data,Ao,tij,bi,a)I -
8(32 /3=/3" 

Asymptotically, J(f31data, Ao, tii, bi, a) can be approximated by a normal distribu­

tion with mean being the posterior mode and covariance matrix equal to minus 

the inverse of the second derivative of the log posterior evaluated at the posterior 

mode /3. If a flat prior is assumed for (3, the posterior mode can be replaced by the 

ML estimate J and log posterior density by log likelihood function. The observed 

information J(/3) becomes I(J), the Fisher information matrix evaluated at the ML 

estimator. Therefore, samples from J(f31data, Ao, tij, bi, a) can be easily generated 

by calculating J and [J(J)J- 1 using the likelihood methods shown in Chapter 3. 

These values are used for the multivariate normal proposal distribution. To ensure 

that the samples obtained come from the specified conditional posterior distribu­

tion, we inserted a Metropolis step where candidates from the multivariate normal 
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proposal distribution are either accepted or rejected. The acceptance rate for can­

didates was about 54%, which was well within 30% and 70%, the recommended 

acceptance rate (Raftery and Lewis, 1996). The high acceptance rate indicates that 

the multivariate normal proposal distribution is a good initial approximation to the 

actual conditional posterior. 

The computer code implementing the MCMC simulations was written and im­

plemented in Microsoft Visual C++ Version 6.0. Microsoft Visual C++ Version 

6.0 does not, however, have subroutines for generating random samples from the 

standard distributions. The software only has a Uniform(0,1) generator. Various 

functions were written to sample from these distributions building from a Uni­

form(0,1) generator. For example, to sample (3 from MVNp(/3, [J(.B)J- 1 ) we wrote a 

function that generates random variables z from a standard normal distribution. We 

performed a Cholesky decomposition of covariance matrix [J(.B)J-1 = LL', where L 

is the lower triangular matrix. Samples from MVNp(/3, [J(.B)J-1 ) were generated as 

.B + Lz (Ripley, 1987). 

5.4 Application to the data 

The Markov chain Monte Carlo (MCMC) analysis described in the previous section 

was implemented for the model with and without sexual network frailties, the same 

as was done in Chapter 3 using the EM algorithm. The frailty model required es­

timation of a total of 526 parameters: 9 fixed effects, 1 baseline hazard, 339 sexual 

network specific random effects, 176 infection times and the inverse scale for sexual 

network frailty distribution. 

Five parallel chains were run from independent starting points. When we iterated 

through the MCMC sampling scheme at an equal rate for all parameters we found 

that successive values for bi, tij, a and >.0 were highly correlated. The successive fixed 
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effects values were much less correlated. However, the fixed effect sampling scheme 

involved an EM estimation of ML estimates and calculation of Fisher information 

for the proposal density for the M-H step. This was computationally intensive. Be­

cause of this we modified the iteration scheme to iterate through bi, tij, a and ,\0 five 

times for each draw of /3, which greatly improved efficiency. 

Monitoring of all parameters was impractical. We monitored all the fixed effects, 

the baseline hazard, the sexual network inverse scale, some of the sexual network 

random effects and some individual infection times from all five chains. We found 

no evidence from the multiple chains suggesting that the monitored nodes were not 

converging to the same node. The median and the 97.5% percentile of Gelman and 

Rubin's (1992) scale reduction factor (GR) for each monitored variable were calcu­

lated. GR compares the between chain variation to the within chain variation and 

should be close to one if the bum-in time has been sufficiently long for the Gibbs 

sampler to be nearly convergent to the target posterior distribution. From the first 

chain, we calculated the Z-test of equality based on the arguments of Geweke ( 1992). 

In this test Geweke proposed a simple method based on time series ideas stating 

that if the chains were in equilibrium, the means of the first 10% and the last 50% of 

the iterates should be nearly equal. Therefore, the diagnostic computes the Z-test 

of the hypothesis of equality between two means. We first ran five parallel chains 

from independent starting points for 2n = 2000. The GR statistics for all other pa­

rameters except baseline hazards were reasonably close to one, Figures 5.2 and 5.3. 

The first-order autocorrelations AR(l) for all parameters were quite substantial. 

The autocorrelation plots showed high degree of autocorrelation even after lag 30 

for some parameters. We increased the number of iterations to 2n = 4000. Output 

analysis of 2n = 4000 simulated observations resulted in GR statistics extremely 

close to 1 for all variables indicating substantial improvement in the convergence 

of the estimates (Kass, et al 1998). Thus, we took 2 000 iterations as satisfactory 

bum-in time. We simulated a further 38 000 values from each chain and took every 
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Table 5.1: Geweke convergence diagnostics 

The Z-scores for each chain and parameter 

Parameter Chain 1 Chain 2 Chain 3 Chain 4 Chain 5 

Baseline hazard -1.280 -0.333 1.490 -0.054 -1.760 

Migrant men 1.020 -0.542 0.659 -0.971 0.317 

Part. of migrant men 1.260 -0.614 0.196 0.472 1.300 

Non-migrant men 1.560 -1.404 1.530 1.250 -0.180 

Age:18 to 24 -0.128 1.130 -1.280 -0.806 1.130 

Age:25 to 34 0.875 0.510 -1.050 -0.924 -1.130 

Current partners -0.978 0.560 -1.170 0.556 2.600 

Lifetime partners 0.914 -0.163 -2.140 0.670 0.217 

Syphilis -0.840 -2.860 -0.877 -1.950 1.950 

Other STis -0.967 -0.192 2.290 2.280 0.853 

Frailty variance 1.140 -0.228 -0.011 0.267 -0.861 

100th value after bum-in time. Therefore, the result was 2 000 nearly independent 

simulated observations from the posterior distribution. The autocorrelation esti­

mates for the final simulated values were near zero. The Z-scores from all chains 

showed reasonable convergence, Table 5.1. Figures 5.2 and 5.3 are the trace plots 

for simulated parameters from the posterior density developed in Section 5.2. The 

trace plots show consistent random fluctuations around the convergent value. 

The histograms for fixed effects parameters with an overlaid normal curve are 

presented in Figure 5.4. The histograms are fairly symmetric as would be expected. 

Figure 5.5(a) shows the marginal posterior distribution for the baseline hazard. 

Table 5.2 presents the results of the baseline hazards, fixed effects and frailty variance 

from the Gibbs sampler. The estimates of the fixed effects and baseline hazards are 

similar for all practical purposes to the respective modes obtained from the EM 

algorithm. However, the estimates from the Gibbs sampler are more variable than 
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Figure 5.2: Convergence monitoring trace plots for selected fixed effects . In each 

panel, all five independent chains are plotted. Included is the mean and 97.5% 

percentile of GR statistic from the first 1000 observations. Also included is the 

first-order autocorrelation AR( 1) estimated from the first chain. 
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Figure 5.3: Convergence monitoring trace plots for some fixed effects, baseline haz­

ards and frailty variance. In each panel, all five independent chains are plotted. 

Included is the mean and 97.5% percentile of GR statistics for the first 1000 obser­

vations. Also included is the first-order autocorrelation AR(l) estimated from the 

first chain. 

those from the EM algorithm. The estimate of sexual network frailty variance from 

the Gibbs sampler is quite large compared to the estimate obtained from the EM 

algorithm. The posterior median and mean is 0. 788 and 0.812 respectively. The 

95% credible interval for sexual network frailty variance is (0.614, 1.120). The 

distribution for the frailty variance is shown in Figure 5.5(b). In the EM algorithm, 

the mode of the sexual network frailty variance was estimated to be 0.462. 
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Figure 5.4: Histograms of the fixed effects parameters. 

5.5 Conclusion 

We have successfully implemented the Gibbs sampler to investigate the risk factors 

associated with HIV infection among people in networks of sexual partnerships in­

volving migrant and non-migrant men and their non-migrant partners from a rural 

health district of South Africa. The approach focussed on reducing the complex pos­

terior likelihood for correlated interval-censored data, whose direct sampling is not 

very straight forward (Sinha and Dey, 1997), to a simpler correlated right-censored 

data problem. Fitting Bayesian frailty models to interval-censored data likelihoods, 

(for example Finkelstein, 1986; Huang and Wellner, 1997) presents analytical chal­

lenges for computing the posterior distribution. The Gibbs sampler implemented 

here provides full Bayesian inference without requiring evaluation of complex inte­

grals as was the case with the EM algorithm. 

The Gibbs sampler yields a sample of parameters and hyperparameter obtained 
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Figure 5.5: The marginal posterior distributions 

from a well-defined Markov process such that the values are thought of as realisa­

tions from the corresponding marginal posterior distribution and can be explored 

over a range of values. The Gibbs conditionals simplify to two iterative steps in­

volving imputation step which draws bir) and ti;> from the conditional predictive 

distribution /(biJdata, ,B, Ao, ti;-1), a) and J(tiilviik < tii ~ viik+1,data, ,B, Ao, bt>, a) 

respectively, and a posterior step which draws e(r) = {,B(r), A~r), a(r)} from con­

ditional posterior distribution f(O(r)Jdata, bt>, ti;\ The two iterative steps can be 

viewed as the stochastic counterparts to the E-step and M-step of the EM algorithm. 

Under broad regularity conditions, the sequence (bt>, ti;>, r = 1, 2, · · ·) converges to 

the joint posterior f(bt>, ti;>Jdata) and the sequences of their components converge 

to their marginal posteriors (Gilks, et al 1996). 

Compared to the traditional ML estimation, Bayesian analysis is capable of not 

only incorporating information about frailties and infection time, but also uncer­

tainties about available information. For example, the uncertainty about the true 

values of variance components is formally incorporated into the analysis through 

the choice of a plausible prior distribution. The fixed effects results from the Gibbs 

sampler are in good agreement with the corresponding posterior modes from the EM 

algorithm. The agreement between the modes of marginal posteriors and ML esti­

mates is generally expected due to the specified proper prior for fixed effects which 
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is nearly flat in the region near zero (Harville, 1974). However, estimated standard 

deviations from the ML approach are severely biased downwards. The bias reflects 

the incapability of ML approach to correct for variability of unobserved frailties and 

infection time. Downward bias in standard deviations is highly undesirable because 

it provides false sense of security for the estimates. The frailty variance estimate 

from the EM algorithm also shows similar downward bias compared to the estimate 

from the Gibbs sampler. However, inference and conclusions from the Gibbs sam­

pler were not markedly different from inference based on the EM algorithm. These 

comparative results have been published elsewhere (Zuma and Lurie, 2005). 
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Table 5.2: Frailty model estimates and credible intervals (CI)s from the Gibbs sam-

pler 

Frailty model 95% CI 

Parameter Mean SD 2.5% 97.5% 

Baseline hazard 

Constant 0.013 0.004 0.007 0.022 

Migration status 

Migrant men 0.391 0.276 -0.156 0.911 

Partners of migrant men 0.354 0.276 -0.204 0.886 

Non-migrant men -0.103 0.276 -0.616 0.440 

Partners of non-migrant mena 

Age in years 

18 to 24 1.590 0.383 0.861 2.360 

25 to 34 0.709 0.201 0.330 1.110 

35 and abovea 

Recent sexual contact partners 

Only onea 

More than one 0.609 0.216 0.174 1.020 

Number of lifetime partners 

Only onea 

More than one 0.521 0.215 0.113 0.944 

Syphilis 

O=Negative, l=Positive 0.501 0.179 0.147 0.849 

Status of other ST!s 

O=Negative, l=Positive 0.588 0.218 0.167 1.020 

Frailty variance 

Sexual network 0.812 0.120 0.614 1.120 

aReference category 



Chapter 6 

Conclusion 

6.1 Thesis theme 

The thesis has introduced the concept of incorporating sub-groups of correlated 

sexual networks as random effects in the investigation of the effects of circular mi­

gration in the spread of HIV and other curable STis in the rural Hlabisa district 

from northern KwaZulu-Natal, South Africa. The sexual network random effects 

formed part of unobserved data as has been done in various other applications in­

volving correlated data. Another development of this thesis is the treatment of 

interval-censored HIV infection time as unobserved data. Then, the complete-data 

likelihood functions were developed which are compatible with estimation via the 

EM algorithm (Dempster, Laird and Rubin, 1977) and the Gibbs sampler (Geman 

and Geman, 1984). Finally, the thesis compares the frailty model results from the 

EM algorithm to those obtained from the Gibbs sampler. 

The introductory chapter reviewed literature on epidemiology and reciprocal 

impact of HIV infection and STis. The introductory chapter discusses migration 

and other factors as risk determinants of HIV /STis. The chapter further outlined 

current statistical methods for analysing correlated data. Chapter 2 presented the 

theory behind the EM algorithm. The EM algorithm was implemented in the anal-
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ysis of curable STis. In Chapter 3 the EM algorithm, outlined in Chapter 2, was 

further used to analyse correlated interval-censored data where both sexual network 

frailties and interval-censored infection time formed the missing data used to facil­

itate the EM algorithm. This is in contrast to Chapter 2 where only the sexual 

network random effects constituted missing data. In both preceding chapters, the 

results of a standard and random effects models were compared. 

In Chapter 4 we outlined the basics of Bayesian parameter estimation and of 

Markov chain Monte Carlo (MCMC) simulation techniques. Full Bayesian analysis 

of the proportional hazards frailty model with interval-censored HIV infection time 

was carried out in Chapter 5. The Gibbs sampler, an MCMC simulation technique, 

was used to attain full Bayesian inference of the model. Some Gibbs condition­

als were intractable and required methods of sampling from a non-standard Gibbs 

conditional distribution. 

6.2 Thesis conclusions 

6.2.1 Substantive 

The logistic mixed model suggests that migration of men is a risk factor of acquir­

ing at least one STI (p-value=0.049). Migrant men and their rural female sexual 

partners are at marginally increased risk of STis compared to non-migrant men 

and their rural female sexual partners. Being never married or having first sexual 

intercourse before the seventeenth birthday are associated with increased risk of be­

ing infected with at least one curable STis, p-values=0.039 and 0.023 respectively. 

Recent sexual contact with more than one sexual partner increases the risk of STis. 

Infection with HIV further increases the risk of contracting STis, p-value=0.012. 

Provision of syndromic management and sexual behavioural education reduces the 

risk of subsequent transmission of curable STls and hence HIV. 
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In the cross-sectional baseline investigation of the effects of migration on the risk 

of HIV among couples only, migration was identified as an important risk factor of 

HIV (Lurie, Williams, Zuma, et al 2003b). Migration is a risk factor not simply 

because returning migrant men infect their partners, but also because their rural 

female partners -including those who are partners of non-migrant men - are likely 

to become infected from outside their primary relationships. However, in the main 

analysis which included all sexual network sizes and corrected for correlation in­

duced by clustering of sexual networks, migration did not appear to be a significant 

risk factor, Table 5.2. At this late stage of the epidemic, migration might be be­

coming less important due to the existing high rates of HIV infection in rural areas 

and ongoing spread of HIV within the rural areas. The risk of HIV is considerably 

high in ages between 18 and 24 years and decreases slightly in ages 25 and 34 years, 

Table 5.2. Recent sexual contact with more than one partner or having more than 

one lifetime sexual partners are associated with increased risk of HIV. Infection with 

syphilis or other curable STis greatly increase the risk of HIV infection. The risk 

of HIV /STis varies considerably across sexual networks. 

The results of this thesis have important policy implications. Interventions aimed 

at combating the spread of HIV /STis should extend further from focussing on in­

dividuals as social units to treating sexual networks as social units. Interventions 

have often been aimed at individual-level behavioural changes promoting condom 

use, fewer concurrent sexual partners and sexual abstinence. However, these ap­

proaches are of less benefit to women who are in weaker positions to negotiate 

safe sex or discourage their partners from having extra marital relationships. The 

urgently required changes in the policy include formulating specialized educational 

programs targeting HIV discordant partnerships. Interventions should enforce coun­

selling, educational messages and treatment of STis within sexual networks rather 

than only the infected individual members. Health care providers should enforce 

contact partner tracing to reduce further transmission of an infection within a sex-



114 

ual network. 

South Africa should reconsider the system of labour migration and conditions of 

migration in this post-apartheid era. The mining sector and other industrial areas 

attracting migrant men should improve social conditions and provide family friendly 

accommodation to curb family separation. Currently, a very small proportion of mi­

grant men live with their families at their workplaces. The majority of migrant men 

still live in single sex hostels. Rates of circular migration can possibly be reduced 

by encouraging industrial decentralization and promotion of regional development. 

6.2.2 Methodological 

The study of migrant and non-migrant sexual networks has shown that ignoring sex­

ual network random effects in the analysis of HIV /STis biases the results. Inclusion 

of sexual network random effects leads to slightly magnified fixed effects estimates 

and standard errors are consistently larger in the random effects models. However, 

the effect of HIV infection was reduced in the logistic mixed model albeit the effects 

of all other factors inflated. Similar results were seen in the frailty model where the 

effects of recent sexual partners and of syphilis infection were slightly reduced. In 

the standard logistic model, HIV infection was acting as a proxy for sexual network 

effects probably due to high likelihood of HIV transmission if at least one partner is 

infected. Furthermore, HIV infection is a potential indicator of high risk behaviour. 

Similar arguments hold for recent sexual partners and syphilis infection in the frailty 

model. However, the importance of these variables was not completely removed from 

their respective models and the substantive inference remained unchanged. 

The EM analysis shows that inclusion of sexual network random effects has simi­

lar effects in both logistic mixed model and frailty model. Fixed effects and baseline 

hazard estimates from a full Bayesian analysis of the frailty model do not markedly 

differ from ML estimates, Table 6.1. Since the priors for fixed effects were nearly 
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flat, the Gibbs sampler should give approximately the EM estimates at the mode 

of the joint posterior distribution (Harville, 1974). However, the standard errors 

and variance component estimates from the EM algorithm are biased downwards. 

This is particularly the feature of ML estimates for variance components as degrees 

of freedom lost due to estimation of fixed effects are not accounted for. The size 

Table 6.1: Frailty model estimates from the EM algorithm and Gibbs sampler 

EM algorithm Gibbs sampler 

Parameter Mean SE Mean SD 

Baseline hazard 

Constant 0.007 0.001 0.013 0.004 

Migration status 

Migrant men 0.460 0.216 0.391 0.276 

Partners of migrant men 0.299 0.210 0.354 0.276 

Non-migrant men -0.219 0.259 -0.103 0.276 

Age in years 

18 to 24 2.455 0.296 1.590 0.383 

25 to 34 1.072 0.163 0.709 0.201 

Recent sexual contact partners 

More than one 0.558 0.189 0.609 0.216 

Number of lifetime partners 

More than one 0.328 0.172 0.521 0.215 

Syphilis 

O=Negative, l=Positive 0.284 0.158 0.501 0.179 

Status of other ST!s 

O=Negative, l=Positive 0.503 0.181 0.588 0.218 

Frailty variance 

Sexual network 0.459 0.069 0.812 0.120 

and sparseness of the data can also have an effect. A considerable number of sexual 
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networks with only one partner included had an infection. The ML estimates from 

such data are biased towards zero. The sparseness of the data is less problematic in 

Bayesian analysis. 

The Bayesian inference provides a natural framework with which to integrate the 

uncertainty about parameters and incorporate heterogeneity between sub-groups. 

The models incorporating this heterogeneity and estimated via ML approach be­

come complex and require numerical integrations. Often the stability of numeri­

cal integration has to be carefully checked, involving additional computations. In 

situations where the sample size is small, the asymptotic normality of parameter 

estimates based on ML estimation is questionable, a problem which does not arise 

when using MCMC methods. The Gibbs sampler provides a useful and advanta­

geous alternative to the EM algorithm when working with incomplete-data through 

'data augmentation' techniques. The idea is to sample the missing data in addition 

to parameters, as was done in the frailty model. Superiority of Bayesian analysis 

has also been shown in GLMMs (Tu, Kowalski and Jia, 1999). 

6.3 Further research 

In this work, we have touched on aspects through which migration influences the 

spread of HIV /STis. The focal point was on migrant men and their female partners 

from rural areas. Future studies and implementation of prevention strategies should 

also include female partners of migrant men at work places. Recently, there has 

been an increase of women who become migrants and are at risk of HIV infection 

(Brewer, et al 1998; Zuma, et al 2003). Sexual contacts between migrant men and 

these women not only connects HIV infection between urban and particular rural 

areas but has a potential of introducing HIV to the other rural areas where these 

women come from. The conditions and circumstances under which women migrate, 

and their role in transmitting HIV to other rural areas require further research. 
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It could be of interest to investigate the efficacy of providing antiretroviral ther­

apies for HIV-positive partner(s) in a sexual network. However, in South Africa this 

kind of treatment is unlikely to be implemented on a large scale in the immediate 

future. Presently, antiretroviral treatment is not even routinely provided to HIV­

positive pregnant women. Further research on understanding the factors which put 

women in weaker positions to negotiate safe sex and how they can be empowered to 

do so is required. Kavinya (2002) investigated factors related to women's empow­

erment in the context of reproductive decision making processes. Similar, research 

can be extended to sexual behavioural related issues. 

Numerous numerical approximations have been used to accomplish estimation in 

the logistic mixed model. This has led to a range of statistical methods being used 

to fit these models. Many of these methods underestimate variance components and 

fixed effects. A number of corrections for this bias have been suggested, but thus far 

none of them has proven completely satisfactory. More work is needed to improve 

estimation in GLMMs. In frailty model estimation we used the gamma frailty dis­

tribution. The gamma distribution was chosen on the basis of its conjugacy status. 

It is worth investigating the performance of other forms of frailty distributions in 

similar context. However, fitting Bayesian models with this complexity does present 

analytical challenges for computing the joint posterior distribution. The main chal­

lenge is the Gibbs conditionals that are intractable. Intractable univariate Gibbs 

conditionals are handled by direct sampling methods. However, their multivariate 

generalizations are often inefficient and difficult to implement. 



Appendix A 

Abstracts of papers from the thesis 

Risk factors for HIV infection among women in Carletonville, South 

Africa: migration, demography and sexually transmitted diseases 

Abstract 

We investigate the prevalence of, and risk factors for, HIV infection among women in 

an urban South African setting. A random sample of 834 women was recruited into 

a community-based cross-sectional study. HIV prevalence was 37.1% with higher 

prevalence among migrant women (46.0%) than non migrant women (34.7%), (odds 

ratio (OR)=l.61, 95%CI:l.ll 2.31). The highest HIV prevalence (50.9%) was be­

tween ages 26 and 35 years. Having two or more lifetime partners increased the risk 

of HIV infection (OR=4.88, 95%CI:3.01-7.89). Migration, age, marital status, alco­

hol use, syphilis and gonorrhoea were independently associated with HIV infection. 

Migration increases the risk of HIV infection. Provision of services to treat sexually 

transmitted diseases (STDs) and educational empowerment programmes that will 

promote safer sex among migrant women are urgently needed. 
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Who Infects Whom? HIV-1 Concordance and Discordance Among 

Migrant and Non-Migrant Couples in South Africa 

Abstract 

Objectives: To measure HIV-1 discordance among migrant and non-migrant men 

and their rural partners, and to estimate the relative risk of infection from inside 

versus outside primary relationships. 

Design: A cross-sectional behavioural and HIV-1 seroprevalence survey among 98 

couples in which the male partner was a migrant and 70 couples in which the male 

was not a migrant. Methods: Following informed consent, a detailed questionnaire 

was administered and blood was collected for laboratory analysis. A mathematical 

model was developed to estimate the relative risk of infection for men and women 

from inside versus from outside the regular relationship. 

Results: 70% (117 /168) of couples were negatively concordant for HIV, 9% (16/168) 

were positively concordant and 21% (35/168) were discordant. Migrant couples 

were more likely than non-migrant couples to have one or both partners infected 

(35% versus 19%; p=0.026; 0R=2.28) and to be HIV-1 discordant (27% versus 15%; 

p=0.066; 0R=2.06). In 71.4% of discordant couples, the male was the infected part­

ner; this did not differ by migration status. In the mathematical model, migrant 

men were 26 times more likely to be infected from outside their regular relation­

ships than from inside (RR=26.3; p=0.000); non-migrant men were 10 times more 

likely to be infected from outside their regular relationships than inside (RR=l0.5; 

pj0.0001). 

Conclusions: Migration continues to play an important role in the spread of HIV-1 

in South Africa. The direction of spread of the epidemic is not only from returning 

migrant men to their rural partners, but also from women to their migrant partners. 

Prevention efforts will need to target both migrant men and women who remain at 

home. 
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The Impact of Migration on HIV-1 Transmission in South Africa A 

Study of Migrant and Nonmigrant Men and Their Partners 

Abstract 

Background: To investigate the association between migration and HIV infection 

among migrant and nonmigrant men and their rural partners. Goal: The goal was 

to determine risk factors for HIV-1 infection in South Africa. 

Study Design: This was a cross-sectional study of 196 migrant men and 130 of 

their rural partners, as well as 64 nonmigrant men and 98 rural women whose part­

ners are nonmigrant. Male migrants were recruited at work in two urban centers, 

100 km and 700 km from their rural homes. Rural partners were traced and in­

vited to participate. Nonmigrant couples were recruited for comparison. The study 

involved administration of a detailed questionnaire and blood collection for HIV 

testing. 

Results: Testing showed that 25.9% of migrant men and 12. 7% of nonmigrant men 

were infected with HIV (P=0.029; odds ratio (OR)=2.4; 95%CI:l.l-5.3). In multi­

variate analysis, main risk factors for male HIV infection were being a migrant, ever 

having used a condom, and having lived in four or more places during a lifetime. 

Being the partner of a migrant was not a significant risk factor for HIV infection 

among women; significant risk factors were reporting more than one current regular 

partner, being younger than 35 years, and having STD symptoms during the previ­

ous 4 months. 

Conclusion: Migration is an independent risk factor for HIV infection among men. 

Workplace interventions are urgently needed to prevent further infections. High 

rates of HIV were found among rural women, and the migration status of the regular 

partner was not a major risk factor for HIV. Rural women lack access to appropriate 

prevention interventions, regardless of their partners' migration status. 
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The risk factors of sexually transmitted infections among migrant and 

non-migrant sexual networks from rural South Africa 

Abstract 

Objectives: To identify important risk factors of sexually transmitted infections 

(STI)s among migrant and non-migrant sexual networks. To estimate the degree of 

variability across sexual networks, and identify the effects of ignoring correlation on 

the risk factors of STis. 

Method: Cohorts of circular migrant men and their non-migrant sexual partners; 

and non-migrant men and their non-migrant sexual partners from rural South Africa 

were recruited between October 1998 and October 2001. Recruited female partners 

ranged from O to 4 per man, forming a sexual network. About 631 individuals aged 

between 18 and 69 years were recruited and followed-up every four months for inter­

views and examination. The main outcome is the presence of at least one curable 

STI in an individual at each visit. 

Results: Prevalence of STI at each follow-up visit was 27.4%, 15.9%, 11.6% and 

13.6%, respectively. Migration status, age, marital status, age at first sexual inter­

course, recent sexual partners, HIV status were found to be important risk factors 

of STI. Syndromic management reduced the risk of STis, odds ratio (OR)=0.75, 

p-value<0.0001. The risk of STI varies (1.46) considerably across sexual networks, 

and implies substantial correlation (0.59) between members of the same sexual net­

work. Ignoring correlation underestimates standard errors by at most 11 %. 

Conclusion: Migration influences the spread of STis. Different sexual networks 

are at different risks of STis. Community interventions of HIV /STis should target 

high-risk and co-transmitter sexual networks rather than high-risk individuals. This 

is more imperative for women who are in weak positions to negotiate safe sex. 
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Analysis of interval-censored data from circular migrant and non­

migrant sexual partnerships using the EM algorithm 

Abstract 

In epidemiological studies where subjects are seen periodically on follow-up visits, 

interval-censored data occur naturally. The exact time the change of state (such as 

HIV seroconversion) occurs is not known exactly, only that it occurred sometime 

within a specific time interval. Methods of estimation for interval-censored data 

are readily available when data are independent. However, methods for correlated 

interval-censored data are not well developed. This paper considers the problem 

of finding maximum likelihood estimates when survival times are interval-censored 

and correlated within sexual partnerships. We consider the exact failure times for 

interval-censored observations as unobserved data, only known to be between two 

time points. Dependency induced by sexual partnerships is modelled as unobserved 

frailties assuming a parametric distribution. In this context, both the unobserved 

failure times and frailties form the missing data for the application of the EM algo­

rithm. Maximization process maximises the standard survival frailty model. Results 

show high degree of heterogeneity between sexual partnerships. Intervention strate­

gies aimed at combating the spread of HIV /STis should treat sexual partnerships 

as social units and fully incorporate the effects of circular migration. 
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Application and comparison of methods for analysing correlated interval­

censored data from sexual partnerships 

Summary 

In epidemiological studies where subjects are seen periodically on follow-up visits, 

interval-censored data occur naturally. The exact time the change of state (such 

as HIV seroconversion) occurs is not known exactly, only that it occurred some­

time within a specific time interval. This paper considers estimation of parameters 

when HIV infection times are interval-censored and correlated. It is assumed that 

each sexual partnership has a specific unobservable random effect that induces as­

sociation between infection times. Parameters are estimated using the expectation­

maximization algorithm and the Gibbs sampler. The results from the two methods 

are compared. Both methods yield fixed effects and baseline hazard estimates that 

are comparable. However, standard errors and frailty variance estimates are un­

derestimated in the expectation-maximization algorithm compared to those from 

the Gibbs sampler. The Gibbs sampler is considered a plausible alternative to the 

expectation-maximization algorithm. 
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