

http://waikato.researchgateway.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the Act

and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right to

be identified as the author of the thesis, and due acknowledgement will be made to

the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://waikato.researchgateway.ac.nz/

Department of Computer Science

Hamilton, New Zealand

General Boolean Expressions in

Publish-Subscribe Systems

A thesis

submitted in partial fulfillment

of the requirements for the degree

of

Doctor of Philosophy

at

The University of Waikato

by

Sven Bittner

May 2008

c© 2008 Sven Bittner

Abstract

T
he increasing amount of electronically available information in soci-

ety today is undeniable. Examples include the numbers of general web

pages, scientific publications, and items in online auctions. From a user’s per-

spective, this trend will lead to information overflow. Moreover, information

publishers are compromised by this situation, as users have greater difficulty

in identifying useful information.

Publish-subscribe systems can be applied to cope with the reality of infor-

mation overflow. In these systems, users specify their information interests as

subscriptions and, subsequently, only matching information (event messages)

is delivered; uninteresting information is filtered out before reaching users. In

this dissertation, we consider content-based publish-subscribe systems, a so-

phisticated example of these systems. They perform the information-filtering

task based on the content of provided information. In order to deal with high

numbers of subscriptions and frequencies of event messages, publish-subscribe

systems are realized as distributed systems. Advertisements—publisher spec-

ifications of potential future event messages—are optionally applied in these

systems to reduce the internal distribution of subscriptions.

Existing work on content-based publish-subscribe concepts mainly focuses

on subscriptions and advertisements as pure conjunctive expressions. There-

fore, subscriptions or advertisements using operators other than conjunction

need to be canonically converted to disjunctive normal form by these systems.

Each conjunctive component is then treated as individual subscription or ad-

vertisement. Unfortunately, the size of converted expressions is exponential in

the worst case.

In this dissertation, we show that the direct support of general Boolean

subscriptions and advertisements improves the time and space efficiency of

general-purpose content-based publish-subscribe systems. For this purpose,

we develop suitable approaches for the filtering and routing of general Boolean

i

expressions in these systems. Our approaches represent solutions to exactly

those components of content-based publish-subscribe systems that currently

restrict subscriptions and advertisements to conjunctive expressions.

On the subscription side, we present an effective generic filtering algorithm,

and a novel approach to optimize event routing tables, which we call subscrip-

tion pruning. To support advertisements, we show how to calculate the overlap

between subscriptions and advertisements, and introduce the first designated

subscription routing optimization, which we refer to as advertisement prun-

ing. We integrate these approaches into our prototype BoP (Boolean publish-

subscribe) which allows for the full support of general Boolean expressions in

its filtering and routing components.

In the evaluation part of this dissertation, we empirically analyze our pro-

totypical implementation BoP and compare its algorithms to existing con-

junctive solutions. We firstly show that our general-purpose Boolean filtering

algorithm is more space- and time-efficient than a general-purpose conjunctive

filtering algorithm. Secondly, we illustrate the effectiveness of the subscrip-

tion pruning routing optimization and compare it to the existing covering

optimization approach. Finally, we demonstrate the optimization effect of ad-

vertisement pruning while maintaining the existing overlapping relationships

in the system.

ii

Acknowledgments

I
would like to show appreciation to several people who helped me with

finishing this dissertation:

I want to thank my supervisors: Annika Hinze, Geoff Holmes, Matt Jones,

and Murray Pearson. Naturally, your involvement in the progression of this

dissertation took place to different degrees and at different times, and I might

have posed different challenges to you. Thanks for your support!

I also would like to thank my fellow PhD students—especially Bryan Genet

and Doris Jung for their help and assistance at all times. I am particularly

grateful that you two have been around more than only in the lab, specifically

you, Doris.

Furthermore, I want to pay thanks to my parents, my brother, and my

friends from parts of the world other than New Zealand for providing remote

support.

Finally, I appreciate the help of all other people who supported and helped

me but who have not been named here, including those of you working behind

the scenes.

Thanks for the funding backing this research goes to the Computer Sci-

ence Department of The University of Waikato for providing a Departmental

Scholarship and a Graduate Assistant position. I am also grateful to the

New Zealand Government and Education New Zealand for their financial sup-

port under the New Zealand International Doctoral Research Scholarships pro-

gramme.

iii

iv

Contents

1 Introduction 1

1.1 Context: Publish-Subscribe Systems 2

1.2 What is the Problem? . 4

1.3 Contributions of this Dissertation 6

1.4 Structure of this Dissertation 9

2 Background and Related Work 11

2.1 Content-Based Pub-Sub Systems 11

2.1.1 Interaction in Content-Based Pub-Sub Systems 12

2.1.2 Architecture of Content-Based Pub-Sub Systems 17

2.1.3 Tasks in Content-Based Pub-Sub Systems 18

2.2 Quality Measures, Parameters, and Attributes 23

2.3 Event Filtering Algorithms . 29

2.3.1 Categorization of Filtering Algorithms 29

2.3.2 Applicability of Algorithms 31

2.3.3 Outline of the Counting Algorithm 40

2.4 Event Routing Algorithms . 42

2.4.1 Event Forwarding . 42

2.4.2 Subscription Forwarding 43

2.4.3 Advertisement Forwarding 44

2.4.4 Rendezvous Brokers . 45

2.4.5 Assumptions for this Dissertation 46

2.5 Current Routing Optimizations 47

2.5.1 Types of Routing Optimizations 48

2.5.2 Covering Optimization 50

2.5.3 Merging Optimization 53

2.5.4 Subscription Summarization 56

2.5.5 Implications in Practice 58

v

2.6 Influences of Canonical Conversion 58

2.7 Summary . 62

3 Application Scenario: Online Auctions 65

3.1 Online Auctions . 66

3.1.1 Existing Querying Functionality 67

3.1.2 Existing Publish-Subscribe Functionality 68

3.1.3 Envisaged Publish-Subscribe Functionality 70

3.2 Event Messages . 72

3.2.1 Distribution of Attribute Values 73

3.2.2 Creation of Book Auction Event Messages 74

3.2.3 Expected Event Frequencies 78

3.3 Example Subscription Classes 79

3.3.1 Definition of Subscription Classes 79

3.3.2 Properties of Subscription Classes 82

3.4 Example Advertisement Classes 84

3.4.1 Definition of Advertisement Classes 84

3.4.2 Properties of Advertisement Classes 89

3.5 Further Application Scenarios 90

3.5.1 Health Care . 90

3.5.2 Workflow Management 91

3.6 Summary . 92

4 Filtering of General Boolean Subscriptions 95

4.1 Event Messages and Subscriptions 96

4.1.1 Event Messages . 96

4.1.2 Subscriptions . 98

4.2 Preprocessing Step . 100

4.2.1 Syntactical Analysis and Rewriting 101

4.2.2 Encoded Subscription Trees 102

4.2.3 Indexing . 104

4.3 Event Filtering Algorithm . 107

4.3.1 Predicate Matching . 107

4.3.2 Candidate Subscription Matching 108

4.3.3 Final Subscription Matching 109

4.4 Deregistrations . 111

4.5 Algorithm Extensions . 111

vi

4.5.1 Pure Conjunctive Subscriptions 112

4.5.2 Short-Circuiting . 112

4.5.3 Order of Children . 113

4.5.4 Filtering Shortcut . 113

4.5.5 Minimal Number of Fulfilled Predicates 113

4.5.6 Exploiting Event Types 114

4.6 Applicability . 115

4.7 Related Work . 116

4.8 Summary . 117

5 Boolean or Conjunctive Filtering: A Comparison 119

5.1 Theoretical Subscription Characterization Framework 120

5.1.1 Subscription Characterization Parameters 121

5.1.2 Canonical Conversion Parameters 122

5.1.3 Algorithm-Specific Parameters 123

5.1.4 Characteristics of Example Subscription Classes 125

5.2 Theoretical Analysis of the Counting Algorithm 126

5.3 Theoretical Analysis of the Cluster Algorithm 128

5.4 Theoretical Analysis of the General Boolean Algorithm 130

5.5 Theoretical Algorithm Comparison 132

5.5.1 Point of Interchanging Memory Requirements 132

5.5.2 Graphic Illustration of the Turning Point 134

5.5.3 Properties of Example Subscription Classes 136

5.6 Practical Algorithm Comparison 137

5.6.1 Experimental Setup . 137

5.6.2 Illustrating the Memory Usage 138

5.6.3 Predicate Commonality 141

5.7 Correlation to Filter Efficiency 141

5.7.1 Experimental Setup . 142

5.7.2 Filtering of Example Subscription Classes 143

5.8 Summary . 147

6 Routing Optimizations for Boolean Subscriptions 149

6.1 Optimization Idea . 150

6.1.1 Generalizing Subscriptions 151

6.2 Predicate Replacement . 152

6.2.1 Optimization Effects . 153

vii

6.2.2 Relation to Design Goals 154

6.3 Subscription Pruning . 155

6.3.1 Post-processing . 156

6.3.2 Optimization Effects . 157

6.3.3 Relation to Design Goals 159

6.3.4 Connection between Pruning and Replacement 160

6.3.5 Pruning and Existing Optimizations 161

6.4 Selecting Pruning Operations 162

6.4.1 Ranking the Pruning Operations 162

6.4.2 Pruning Based on Subscription Accuracy 163

6.4.3 Pruning Based on Filter Efficiency 173

6.4.4 Pruning Based on Memory Usage 177

6.4.5 Pruning Based on Accuracy and Occurrence 180

6.4.6 Pruning Based on Subscription Accuracy and Distance . 185

6.4.7 Pruning Based on Combined Parameters 186

6.4.8 Pruning In Case of Ties 187

6.5 Variants of Subscription Pruning 188

6.5.1 Post-pruning . 188

6.5.2 Pre-pruning . 190

6.5.3 Combined pruning . 191

6.6 Practical Subscription Pruning 191

6.6.1 Pruning Structures . 192

6.6.2 Bulk Pruning . 193

6.6.3 Deregistrations . 196

6.7 Related Work . 197

6.7.1 Event Routing Optimizations 197

6.7.2 Selectivity Estimations 198

6.8 Summary . 198

7 Supporting General Boolean Advertisements 201

7.1 Advertisements: Semantics and Definition 202

7.2 Calculating the Overlapping Relationship 203

7.2.1 General Calculation Approach 204

7.2.2 Disjoint Predicates . 205

7.2.3 Overlap Based on Disjoint Predicates 210

7.2.4 Implementation of the Calculation Approach 212

7.3 Advertisement Pruning . 216

viii

7.3.1 Using Subscription Pruning Rankings? 217

7.3.2 Influences on Overlap . 218

7.3.3 Characterizing a Boolean Advertisement 219

7.3.4 Estimating the Influences of Pruning Operations 226

7.3.5 Practical Advertisement Pruning 228

7.4 Related Work . 230

7.4.1 Advertisement-based Approaches 230

7.4.2 Advertisement-based Optimizations 231

7.5 Summary . 232

8 Experimental Evaluation 233

8.1 General Experimental Setup . 234

8.1.1 System and Network . 234

8.1.2 Measures and Characteristic Parameters 235

8.2 Un-optimized Distributed Filtering 243

8.2.1 Filtering in the Distributed Setting 243

8.2.2 Influence of the Filtering Shortcut 245

8.2.3 Summary . 245

8.3 General Evaluation of Subscription Pruning 246

8.3.1 Subscription Pruning for Boolean Subscriptions 247

8.3.2 Subscription Pruning for Conjunctive Subscriptions . . . 255

8.3.3 Subscription Pruning for Different Topologies 260

8.3.4 Summary . 264

8.4 Subscription Pruning and Covering 265

8.4.1 Subscription Pruning under Varying Degrees of Cover . . 265

8.4.2 Simultaneous Covering and Pruning 269

8.4.3 Summary . 271

8.5 Calculation of the Overlapping Relationships 272

8.5.1 General Boolean Approach 273

8.5.2 Comparison to Conjunctive Solution 275

8.5.3 Summary . 276

8.6 Evaluation of Advertisement Pruning 277

8.6.1 Pure Advertisement Pruning 278

8.6.2 Combining Advertisement and Subscription Pruning . . 281

8.6.3 Findings for Advertisement Pruning 286

8.7 Summary . 287

ix

9 Conclusion 289

9.1 Summary and Contributions . 290

9.2 Observations . 295

9.3 Future Work . 297

A Distributions of Event Messages 301

A.1 Attribute Domains for Enumerations 301

A.2 Distributions of Attribute Values 303

B Attribute Domains & Predicate Ranges 321

B.1 Domains and Data Types . 321

B.2 Predicates in Subscriptions . 322

B.3 Predicates in Advertisements . 323

Bibliography 327

x

List of Figures

2.1 Overview of the interaction in pub-sub systems. 14

2.2 Corresponding concepts in pub-sub systems and database man-

agement systems using the interaction semantics view. 15

2.3 Corresponding concepts in pub-sub systems and database man-

agement systems using the data storage view. 16

2.4 Overview of a distributed pub-sub system. 18

2.5 Illustration of the task of an event filtering algorithm. 19

2.6 Illustration of the task of an event routing algorithm. 20

2.7 Illustration of the task of an advertisement-subscription over-

lapping algorithm. 21

2.8 Illustration of the task of an subscription-advertisement over-

lapping algorithm. 22

2.9 Overview of the cross-influences among quality measures, algo-

rithms, and parameters. 27

2.10 Overview of the conjunctive counting algorithm. 41

2.11 Updated view on event routing using event routing table. 47

2.12 Difference between subscription-based and advertisement-based

optimizations. 49

2.13 Difference between non-interfering and interfering optimizations. 50

2.14 Overview of the influences of canonical conversion. 62

3.1 Illustration of Subscription Class 1. 80

3.2 Illustration of Subscription Class 2. 81

3.3 Illustration of Subscription Class 3. 82

3.4 Illustration of Advertisement Class 1. 84

3.5 Illustration of Advertisement Class 2. 85

3.6 Illustration of Advertisement Class 3. 86

3.7 Illustration of Advertisement Class 4. 86

3.8 Illustration of Advertisement Class 5. 87

xi

3.9 Illustration of Advertisement Class 6. 88

3.10 Illustration of Advertisement Class 7. 88

3.11 Illustration of Advertisement Class 8. 89

4.1 Example of Subscription Class 1 before operator summarization. 102

4.2 Internal encoding of a subscription. 104

4.3 Subscription tree of Subscription Class 1. 107

4.4 Overview of the general Boolean filtering algorithm. 108

5.1 Turning point for conjunctive and Boolean approach. 135

5.2 Memory requirements for counting and Boolean approach. . . . 139

5.3 Turning point for counting and Boolean approach in practice. . 140

5.4 Influence of predicate commonality on general Boolean approach

and counting approach. 141

5.5 Filter efficiency for different distributions. 144

5.6 Filter efficiency for Subscription Class 1. 145

5.7 Filter efficiency for Subscription Class 2. 145

5.8 Filter efficiency for Subscription Class 3. 146

6.1 Schematic overview of an erroneous and a correct optimization. 151

6.2 Example of predicate replacement. 154

6.3 Overview of all possible pruning operations. 156

6.4 Example of the influences of subscription pruning. 158

6.5 Selectivity estimation for a subscription of Subscription Class 3. 170

6.6 Post-pruning in a broker. 189

6.7 Pre-pruning in a broker. 190

6.8 Combined pruning in a broker. 191

6.9 Overview of additional pruning structures. 193

7.1 Advertisement tree of advertisement a3. 206

7.2 Overview of the overlapping calculation algorithm. 214

8.1 Comparison of un-optimized conjunctive and Boolean system. . 244

8.2 Influence of the filtering shortcut. 246

8.3 Pruning using accuracy-based pruning. 248

8.4 Pruning using efficiency-based pruning. 249

8.5 Pruning using memory-based pruning. 250

8.6 Pruning using accuracy and occurrence-based pruning. 251

8.7 Influence of pruning on memory usage. 253

xii

8.8 Influence of pruning on network load. 254

8.9 Influence of pruning on filter efficiency. 255

8.10 Influence of pruning in the Boolean setting. 256

8.11 Influence of pruning in the conjunctive setting. 257

8.12 Memory requirements for Boolean and conjunctive setting. . . . 260

8.13 Network load and filter efficiency for varying network scales (line).261

8.14 Network load and filter efficiency for varying network scales (star).263

8.15 Memory requirements under varying covering proportions. . . . 266

8.16 Filter efficiency under varying covering proportions. 267

8.17 Efficiency and memory for simultaneous covering and pruning. . 270

8.18 Overlapping efficiency in Boolean and conjunctive setting. . . . 274

8.19 Influence of advertisement pruning. 278

8.20 Influence of simultaneous advertisement and subscription prun-

ing on the efficiency of the overlapping decision problem. 282

8.21 Influence of simultaneous advertisement and subscription prun-

ing on the efficiency of the overlapping function problem. 283

8.22 Influence of simultaneous advertisement and subscription prun-

ing on the overlap. 284

8.23 Influence of simultaneous advertisement and subscription prun-

ing on the number of candidates. 285

xiii

xiv

List of Tables

3.1 Overview of the attributes for book auctions on eBay. 71

3.2 Overview of the properties of example subscription classes. . . . 83

3.3 Overview of the properties of example advertisement classes. . . 90

5.1 Overview of the parameters of the characterization framework. . 124

5.2 Overview of selected parameters for Classes 1 to 3. 125

8.1 Overview of measures in experiments. 236

8.2 Overview of characteristic parameters in experiments. 237

A.1 Distributions for used books of the first edition. 304

A.2 Distributions for signed used books. 305

A.3 Distributions for unsigned, used books other than first edition. . 306

A.4 Distributions for new books of the first edition. 307

A.5 Distributions for signed new books. 308

A.6 Distributions for unsigned, new books other than first edition . 309

A.7 Distributions for Buy-It-Now items. 310

A.8 Distributions for items up to three bids. 311

A.9 Distributions for items between four and seven bids. 312

A.10 Distributions for items between eight and 20 bids. 313

A.11 Distributions for items with more than 21 bids. 314

A.12 Distributions for items up to $4.00. 315

A.13 Distributions for items between $4.01 and $8.00. 316

A.14 Distributions for items between $8.01 and $30.00. 317

A.15 Distributions for items over $30.01. 318

A.16 Number of items per category. 319

B.1 Overview of the ranges of operands in subscriptions. 323

B.2 Overview of the ranges of operands in advertisements. 325

xv

xvi

Department of Computer Science

Hamilton, New Zealand

General Boolean Expressions in
Publish-Subscribe Systems

A thesis

submitted in partial fulfillment

of the requirements for the degree

of

Doctor of Philosophy

at

The University of Waikato

by

Sven Bittner

May 2008

c© 2008 Sven Bittner

Abstract

T
he increasing amount of electronically available information in soci-

ety today is undeniable. Examples include the numbers of general web

pages, scientific publications, and items in online auctions. From a user’s per-

spective, this trend will lead to information overflow. Moreover, information

publishers are compromised by this situation, as users have greater difficulty

in identifying useful information.

Publish-subscribe systems can be applied to cope with the reality of infor-

mation overflow. In these systems, users specify their information interests as

subscriptions and, subsequently, only matching information (event messages)

is delivered; uninteresting information is filtered out before reaching users. In

this dissertation, we consider content-based publish-subscribe systems, a so-

phisticated example of these systems. They perform the information-filtering

task based on the content of provided information. In order to deal with high

numbers of subscriptions and frequencies of event messages, publish-subscribe

systems are realized as distributed systems. Advertisements—publisher spec-

ifications of potential future event messages—are optionally applied in these

systems to reduce the internal distribution of subscriptions.

Existing work on content-based publish-subscribe concepts mainly focuses

on subscriptions and advertisements as pure conjunctive expressions. There-

fore, subscriptions or advertisements using operators other than conjunction

need to be canonically converted to disjunctive normal form by these systems.

Each conjunctive component is then treated as individual subscription or ad-

vertisement. Unfortunately, the size of converted expressions is exponential in

the worst case.

In this dissertation, we show that the direct support of general Boolean

subscriptions and advertisements improves the time and space efficiency of

general-purpose content-based publish-subscribe systems. For this purpose,

we develop suitable approaches for the filtering and routing of general Boolean

i

expressions in these systems. Our approaches represent solutions to exactly

those components of content-based publish-subscribe systems that currently

restrict subscriptions and advertisements to conjunctive expressions.

On the subscription side, we present an effective generic filtering algorithm,

and a novel approach to optimize event routing tables, which we call subscrip-

tion pruning. To support advertisements, we show how to calculate the overlap

between subscriptions and advertisements, and introduce the first designated

subscription routing optimization, which we refer to as advertisement prun-

ing. We integrate these approaches into our prototype BoP (Boolean publish-

subscribe) which allows for the full support of general Boolean expressions in

its filtering and routing components.

In the evaluation part of this dissertation, we empirically analyze our pro-

totypical implementation BoP and compare its algorithms to existing con-

junctive solutions. We firstly show that our general-purpose Boolean filtering

algorithm is more space- and time-efficient than a general-purpose conjunctive

filtering algorithm. Secondly, we illustrate the effectiveness of the subscrip-

tion pruning routing optimization and compare it to the existing covering

optimization approach. Finally, we demonstrate the optimization effect of ad-

vertisement pruning while maintaining the existing overlapping relationships

in the system.

ii

Acknowledgments

I
would like to show appreciation to several people who helped me with

finishing this dissertation:

I want to thank my supervisors: Annika Hinze, Geoff Holmes, Matt Jones,

and Murray Pearson. Naturally, your involvement in the progression of this

dissertation took place to different degrees and at different times, and I might

have posed different challenges to you. Thanks for your support!

I also would like to thank my fellow PhD students—especially Bryan Genet

and Doris Jung for their help and assistance at all times. I am particularly

grateful that you two have been around more than only in the lab, specifically

you, Doris.

Furthermore, I want to pay thanks to my parents, my brother, and my

friends from parts of the world other than New Zealand for providing remote

support.

Finally, I appreciate the help of all other people who supported and helped

me but who have not been named here, including those of you working behind

the scenes.

Thanks for the funding backing this research goes to the Computer Sci-

ence Department of The University of Waikato for providing a Departmental

Scholarship and a Graduate Assistant position. I am also grateful to the

New Zealand Government and Education New Zealand for their financial sup-

port under the New Zealand International Doctoral Research Scholarships pro-

gramme.

iii

iv

Contents

1 Introduction 1

1.1 Context: Publish-Subscribe Systems 2

1.2 What is the Problem? . 4

1.3 Contributions of this Dissertation 6

1.4 Structure of this Dissertation 9

2 Background and Related Work 11

2.1 Content-Based Pub-Sub Systems 11

2.1.1 Interaction in Content-Based Pub-Sub Systems 12

2.1.2 Architecture of Content-Based Pub-Sub Systems 17

2.1.3 Tasks in Content-Based Pub-Sub Systems 18

2.2 Quality Measures, Parameters, and Attributes 23

2.3 Event Filtering Algorithms . 29

2.3.1 Categorization of Filtering Algorithms 29

2.3.2 Applicability of Algorithms 31

2.3.3 Outline of the Counting Algorithm 40

2.4 Event Routing Algorithms . 42

2.4.1 Event Forwarding . 42

2.4.2 Subscription Forwarding 43

2.4.3 Advertisement Forwarding 44

2.4.4 Rendezvous Brokers . 45

2.4.5 Assumptions for this Dissertation 46

2.5 Current Routing Optimizations 47

2.5.1 Types of Routing Optimizations 48

2.5.2 Covering Optimization 50

2.5.3 Merging Optimization 53

2.5.4 Subscription Summarization 56

2.5.5 Implications in Practice 58

v

2.6 Influences of Canonical Conversion 58

2.7 Summary . 62

3 Application Scenario: Online Auctions 65

3.1 Online Auctions . 66

3.1.1 Existing Querying Functionality 67

3.1.2 Existing Publish-Subscribe Functionality 68

3.1.3 Envisaged Publish-Subscribe Functionality 70

3.2 Event Messages . 72

3.2.1 Distribution of Attribute Values 73

3.2.2 Creation of Book Auction Event Messages 74

3.2.3 Expected Event Frequencies 78

3.3 Example Subscription Classes 79

3.3.1 Definition of Subscription Classes 79

3.3.2 Properties of Subscription Classes 82

3.4 Example Advertisement Classes 84

3.4.1 Definition of Advertisement Classes 84

3.4.2 Properties of Advertisement Classes 89

3.5 Further Application Scenarios 90

3.5.1 Health Care . 90

3.5.2 Workflow Management 91

3.6 Summary . 92

4 Filtering of General Boolean Subscriptions 95

4.1 Event Messages and Subscriptions 96

4.1.1 Event Messages . 96

4.1.2 Subscriptions . 98

4.2 Preprocessing Step . 100

4.2.1 Syntactical Analysis and Rewriting 101

4.2.2 Encoded Subscription Trees 102

4.2.3 Indexing . 104

4.3 Event Filtering Algorithm . 107

4.3.1 Predicate Matching . 107

4.3.2 Candidate Subscription Matching 108

4.3.3 Final Subscription Matching 109

4.4 Deregistrations . 111

4.5 Algorithm Extensions . 111

vi

4.5.1 Pure Conjunctive Subscriptions 112

4.5.2 Short-Circuiting . 112

4.5.3 Order of Children . 113

4.5.4 Filtering Shortcut . 113

4.5.5 Minimal Number of Fulfilled Predicates 113

4.5.6 Exploiting Event Types 114

4.6 Applicability . 115

4.7 Related Work . 116

4.8 Summary . 117

5 Boolean or Conjunctive Filtering: A Comparison 119

5.1 Theoretical Subscription Characterization Framework 120

5.1.1 Subscription Characterization Parameters 121

5.1.2 Canonical Conversion Parameters 122

5.1.3 Algorithm-Specific Parameters 123

5.1.4 Characteristics of Example Subscription Classes 125

5.2 Theoretical Analysis of the Counting Algorithm 126

5.3 Theoretical Analysis of the Cluster Algorithm 128

5.4 Theoretical Analysis of the General Boolean Algorithm 130

5.5 Theoretical Algorithm Comparison 132

5.5.1 Point of Interchanging Memory Requirements 132

5.5.2 Graphic Illustration of the Turning Point 134

5.5.3 Properties of Example Subscription Classes 136

5.6 Practical Algorithm Comparison 137

5.6.1 Experimental Setup . 137

5.6.2 Illustrating the Memory Usage 138

5.6.3 Predicate Commonality 141

5.7 Correlation to Filter Efficiency 141

5.7.1 Experimental Setup . 142

5.7.2 Filtering of Example Subscription Classes 143

5.8 Summary . 147

6 Routing Optimizations for Boolean Subscriptions 149

6.1 Optimization Idea . 150

6.1.1 Generalizing Subscriptions 151

6.2 Predicate Replacement . 152

6.2.1 Optimization Effects . 153

vii

6.2.2 Relation to Design Goals 154

6.3 Subscription Pruning . 155

6.3.1 Post-processing . 156

6.3.2 Optimization Effects . 157

6.3.3 Relation to Design Goals 159

6.3.4 Connection between Pruning and Replacement 160

6.3.5 Pruning and Existing Optimizations 161

6.4 Selecting Pruning Operations 162

6.4.1 Ranking the Pruning Operations 162

6.4.2 Pruning Based on Subscription Accuracy 163

6.4.3 Pruning Based on Filter Efficiency 173

6.4.4 Pruning Based on Memory Usage 177

6.4.5 Pruning Based on Accuracy and Occurrence 180

6.4.6 Pruning Based on Subscription Accuracy and Distance . 185

6.4.7 Pruning Based on Combined Parameters 186

6.4.8 Pruning In Case of Ties 187

6.5 Variants of Subscription Pruning 188

6.5.1 Post-pruning . 188

6.5.2 Pre-pruning . 190

6.5.3 Combined pruning . 191

6.6 Practical Subscription Pruning 191

6.6.1 Pruning Structures . 192

6.6.2 Bulk Pruning . 193

6.6.3 Deregistrations . 196

6.7 Related Work . 197

6.7.1 Event Routing Optimizations 197

6.7.2 Selectivity Estimations 198

6.8 Summary . 198

7 Supporting General Boolean Advertisements 201

7.1 Advertisements: Semantics and Definition 202

7.2 Calculating the Overlapping Relationship 203

7.2.1 General Calculation Approach 204

7.2.2 Disjoint Predicates . 205

7.2.3 Overlap Based on Disjoint Predicates 210

7.2.4 Implementation of the Calculation Approach 212

7.3 Advertisement Pruning . 216

viii

7.3.1 Using Subscription Pruning Rankings? 217

7.3.2 Influences on Overlap . 218

7.3.3 Characterizing a Boolean Advertisement 219

7.3.4 Estimating the Influences of Pruning Operations 226

7.3.5 Practical Advertisement Pruning 228

7.4 Related Work . 230

7.4.1 Advertisement-based Approaches 230

7.4.2 Advertisement-based Optimizations 231

7.5 Summary . 232

8 Experimental Evaluation 233

8.1 General Experimental Setup . 234

8.1.1 System and Network . 234

8.1.2 Measures and Characteristic Parameters 235

8.2 Un-optimized Distributed Filtering 243

8.2.1 Filtering in the Distributed Setting 243

8.2.2 Influence of the Filtering Shortcut 245

8.2.3 Summary . 245

8.3 General Evaluation of Subscription Pruning 246

8.3.1 Subscription Pruning for Boolean Subscriptions 247

8.3.2 Subscription Pruning for Conjunctive Subscriptions . . . 255

8.3.3 Subscription Pruning for Different Topologies 260

8.3.4 Summary . 264

8.4 Subscription Pruning and Covering 265

8.4.1 Subscription Pruning under Varying Degrees of Cover . . 265

8.4.2 Simultaneous Covering and Pruning 269

8.4.3 Summary . 271

8.5 Calculation of the Overlapping Relationships 272

8.5.1 General Boolean Approach 273

8.5.2 Comparison to Conjunctive Solution 275

8.5.3 Summary . 276

8.6 Evaluation of Advertisement Pruning 277

8.6.1 Pure Advertisement Pruning 278

8.6.2 Combining Advertisement and Subscription Pruning . . 281

8.6.3 Findings for Advertisement Pruning 286

8.7 Summary . 287

ix

9 Conclusion 289

9.1 Summary and Contributions . 290

9.2 Observations . 295

9.3 Future Work . 297

A Distributions of Event Messages 301

A.1 Attribute Domains for Enumerations 301

A.2 Distributions of Attribute Values 303

B Attribute Domains & Predicate Ranges 321

B.1 Domains and Data Types . 321

B.2 Predicates in Subscriptions . 322

B.3 Predicates in Advertisements . 323

Bibliography 327

x

List of Figures

2.1 Overview of the interaction in pub-sub systems. 14

2.2 Corresponding concepts in pub-sub systems and database man-

agement systems using the interaction semantics view. 15

2.3 Corresponding concepts in pub-sub systems and database man-

agement systems using the data storage view. 16

2.4 Overview of a distributed pub-sub system. 18

2.5 Illustration of the task of an event filtering algorithm. 19

2.6 Illustration of the task of an event routing algorithm. 20

2.7 Illustration of the task of an advertisement-subscription over-

lapping algorithm. 21

2.8 Illustration of the task of an subscription-advertisement over-

lapping algorithm. 22

2.9 Overview of the cross-influences among quality measures, algo-

rithms, and parameters. 27

2.10 Overview of the conjunctive counting algorithm. 41

2.11 Updated view on event routing using event routing table. 47

2.12 Difference between subscription-based and advertisement-based

optimizations. 49

2.13 Difference between non-interfering and interfering optimizations. 50

2.14 Overview of the influences of canonical conversion. 62

3.1 Illustration of Subscription Class 1. 80

3.2 Illustration of Subscription Class 2. 81

3.3 Illustration of Subscription Class 3. 82

3.4 Illustration of Advertisement Class 1. 84

3.5 Illustration of Advertisement Class 2. 85

3.6 Illustration of Advertisement Class 3. 86

3.7 Illustration of Advertisement Class 4. 86

3.8 Illustration of Advertisement Class 5. 87

xi

3.9 Illustration of Advertisement Class 6. 88

3.10 Illustration of Advertisement Class 7. 88

3.11 Illustration of Advertisement Class 8. 89

4.1 Example of Subscription Class 1 before operator summarization. 102

4.2 Internal encoding of a subscription. 104

4.3 Subscription tree of Subscription Class 1. 107

4.4 Overview of the general Boolean filtering algorithm. 108

5.1 Turning point for conjunctive and Boolean approach. 135

5.2 Memory requirements for counting and Boolean approach. . . . 139

5.3 Turning point for counting and Boolean approach in practice. . 140

5.4 Influence of predicate commonality on general Boolean approach

and counting approach. 141

5.5 Filter efficiency for different distributions. 144

5.6 Filter efficiency for Subscription Class 1. 145

5.7 Filter efficiency for Subscription Class 2. 145

5.8 Filter efficiency for Subscription Class 3. 146

6.1 Schematic overview of an erroneous and a correct optimization. 151

6.2 Example of predicate replacement. 154

6.3 Overview of all possible pruning operations. 156

6.4 Example of the influences of subscription pruning. 158

6.5 Selectivity estimation for a subscription of Subscription Class 3. 170

6.6 Post-pruning in a broker. 189

6.7 Pre-pruning in a broker. 190

6.8 Combined pruning in a broker. 191

6.9 Overview of additional pruning structures. 193

7.1 Advertisement tree of advertisement a3. 206

7.2 Overview of the overlapping calculation algorithm. 214

8.1 Comparison of un-optimized conjunctive and Boolean system. . 244

8.2 Influence of the filtering shortcut. 246

8.3 Pruning using accuracy-based pruning. 248

8.4 Pruning using efficiency-based pruning. 249

8.5 Pruning using memory-based pruning. 250

8.6 Pruning using accuracy and occurrence-based pruning. 251

8.7 Influence of pruning on memory usage. 253

xii

8.8 Influence of pruning on network load. 254

8.9 Influence of pruning on filter efficiency. 255

8.10 Influence of pruning in the Boolean setting. 256

8.11 Influence of pruning in the conjunctive setting. 257

8.12 Memory requirements for Boolean and conjunctive setting. . . . 260

8.13 Network load and filter efficiency for varying network scales (line).261

8.14 Network load and filter efficiency for varying network scales (star).263

8.15 Memory requirements under varying covering proportions. . . . 266

8.16 Filter efficiency under varying covering proportions. 267

8.17 Efficiency and memory for simultaneous covering and pruning. . 270

8.18 Overlapping efficiency in Boolean and conjunctive setting. . . . 274

8.19 Influence of advertisement pruning. 278

8.20 Influence of simultaneous advertisement and subscription prun-

ing on the efficiency of the overlapping decision problem. 282

8.21 Influence of simultaneous advertisement and subscription prun-

ing on the efficiency of the overlapping function problem. 283

8.22 Influence of simultaneous advertisement and subscription prun-

ing on the overlap. 284

8.23 Influence of simultaneous advertisement and subscription prun-

ing on the number of candidates. 285

xiii

xiv

List of Tables

3.1 Overview of the attributes for book auctions on eBay. 71

3.2 Overview of the properties of example subscription classes. . . . 83

3.3 Overview of the properties of example advertisement classes. . . 90

5.1 Overview of the parameters of the characterization framework. . 124

5.2 Overview of selected parameters for Classes 1 to 3. 125

8.1 Overview of measures in experiments. 236

8.2 Overview of characteristic parameters in experiments. 237

A.1 Distributions for used books of the first edition. 304

A.2 Distributions for signed used books. 305

A.3 Distributions for unsigned, used books other than first edition. . 306

A.4 Distributions for new books of the first edition. 307

A.5 Distributions for signed new books. 308

A.6 Distributions for unsigned, new books other than first edition . 309

A.7 Distributions for Buy-It-Now items. 310

A.8 Distributions for items up to three bids. 311

A.9 Distributions for items between four and seven bids. 312

A.10 Distributions for items between eight and 20 bids. 313

A.11 Distributions for items with more than 21 bids. 314

A.12 Distributions for items up to $4.00. 315

A.13 Distributions for items between $4.01 and $8.00. 316

A.14 Distributions for items between $8.01 and $30.00. 317

A.15 Distributions for items over $30.01. 318

A.16 Number of items per category. 319

B.1 Overview of the ranges of operands in subscriptions. 323

B.2 Overview of the ranges of operands in advertisements. 325

xv

xvi

Chapter 1

Introduction

T
he amount of electronically available information and content has

been increasing significantly over the last few years. To give an exam-

ple of this trend, Lyman and Varian [LV03] have estimated that new stored

information grew about 30 percent a year between 1999 and 2002. When only

considering the Internet, examples of information explosion include scientific

publications, general web pages, online shopping sites, and online auctions.

From a user’s perspective, this trend will lead to information overflow. Clearly,

both information providers and consumers are compromised by this situation,

making it difficult to identify useful information.

Within this dissertation, we consider one kind of system that can be ap-

plied by users to cope with the reality of information overflow: publish-subscribe

(pub-sub) systems . The potential of pub-sub systems to filter information in

a personalized manner has made them a popular research topic. They ful-

fill the wish of information providers to selectively disseminate information to

interested parties, but they also meet the demands of these parties to filter

out uninteresting information. Content-based pub-sub systems represent a so-

phisticated example of such systems, performing the information-filtering task

based on the content of provided information. Users can directly state what

content they are interested in. Subsequently, only matching information is

delivered.

We have found an illustrative example for both the increase in electroni-

cally available information and the current popularity of pub-sub research in

scientific publications.

We analyzed five major digital libraries (ACM Digital Library1, Digital

1Available at http://portal.acm.org/dl.cfm. We considered abstracts in the analysis.

1

http://portal.acm.org/dl.cfm

2 Chapter 1. Introduction

Bibliography & Library Project (DBLP)2, Google Scholar3, IEEE Digital Li-

brary4, and SpringerLink5) with respect to their content. The overall number

of publications per year6 approximately doubled in the five years from 2001 to

2005, showing the growth in electronically available research output ([Haw01]

even identified an exponential growth in scientific articles between 1900 and

2000). In the same time span, the number of publications on pub-sub7 at least

quadrupled, illustrating the increasing proportion of research on this subject.

A likely reason for this trend is the potential of pub-sub systems to cope with

large amounts of new information and disseminate it to interested parties.

In the following section, we give introductory information about the general

pub-sub paradigm to set the context of this dissertation. Having realized that

we will not solve all existing problems in the pub-sub area, we have picked

one specific issue that needs attention in these systems: canonical conver-

sion of general Boolean user specifications (i.e., subscriptions and advertise-

ments) [Bit06]. We outline this problem in Section 1.2. Then, in Section 1.3

we give an overview of the contributions of this work. We conclude this intro-

ductory chapter in Section 1.4 by outlining the structure of the remainder of

this document.

1.1 Context: Publish-Subscribe Systems

Pub-sub systems actively deliver incoming information (event messages) to

their users. Decisions about the delivery of information, that is, what mes-

sages are delivered to what users, are based on the descriptions of users.

These descriptions of information are referred to as subscriptions. Information

providers, on the other hand, describe what kind of event messages they will

send in the future; these statements are referred to as advertisements.

Pub-sub systems can be classified according to the applied information-

selection mechanism. This classification into topic-based and content-based

systems is based on the level of detail that is available to users to specify

2Available at http://www.informatik.uni-trier.de/~ley/db/. We considered the
title in our analysis.

3Available at http://scholar.google.com/. We considered the full text in our analysis.
4Available at http://www.computer.org/portal/site/csdl/. We considered the full

text in our analysis.
5Available at http://springerlink.metapress.com/home/main.mpx. We considered

the summary in our analysis.
6We derived the total publication number from ACM Digital Library and SpringerLink.
7We analyzed all five digital libraries for this content.

http://www.informatik.uni-trier.de/~ley/db/
http://scholar.google.com/
http://www.computer.org/portal/site/csdl/
http://springerlink.metapress.com/home/main.mpx

1.1 Context: Publish-Subscribe Systems 3

subscriptions and to providers to specify advertisements (either using an in-

dividual topic or a combination of multiple attributes per specification). In

this dissertation, we focus on content-based pub-sub systems, representing the

more flexible type of system. In content-based pub-sub systems, the selec-

tion of incoming messages is based on their content description; subscriptions

thus describe the content users are interested in. Advertisements, conversely,

describe what content is potentially sent in the future. The content representa-

tion of event messages within this dissertation is assumed to be attribute-value

pairs [MFP06], being a popular current representation approach for this type

of system. The following example illustrates the concepts in content-based

pub-sub systems:

Example 1.1 (Concepts in content-based pub-sub systems) We use

an application area of online auctions within this example and throughout this

dissertation.

Event messages in this application area are information about items on

offer. Each event message is represented by the various attributes of a particu-

lar item, for example, item description, item condition, current price, current

number of bids, and ending time of the auction.

Subscriptions describe the interests of bidders in the auctioning system.

For example, buyers would like to be informed about auctions for books of the

“Harry Potter” series if the price for a new book copy is below NZ$15.00 one

hour before the end of the auction.

Advertisements describe items that will be offered by sellers, acting as in-

formation providers in the system. A commercial seller, for example, could

state to offer books of the “Harry Potter” series from NZ$15.00 for new book

copies and from NZ$10.00 for used book copies.

Content-based pub-sub systems need to be realized as distributed systems

in order to scale to large numbers of users, subscriptions, and advertisements,

and to support highly frequent event messages. In these systems, subscriptions,

advertisements, and event messages are routed according to the applied routing

algorithm. Routing optimizations aim at improving the routing process with

respect to efficiency and memory requirements, for example, by exploiting

the covering among subscriptions, or the overlap between subscriptions and

advertisements. Within this dissertation, we contribute to different areas of

pub-sub research, covering both the central components of these systems and

distribution aspects.

4 Chapter 1. Introduction

There is various research in the pub-sub area, making differing assump-

tions for typical parameters of these systems. A main assumption of most

current approaches is that certain patterns exist among subscriptions. Later,

we provide further details about these assumptions on a more technical basis.

In this dissertation, we consider general-purpose pub-sub systems. With the

term “general-purpose”, we refer to systems that appropriately fulfill their de-

sign goals in range of application settings but are not restricted to exclusively

work in “niche” settings.

We restrict our description of pub-sub systems and refrain from introducing

further specifics. Chapter 2 provides this information in detail. The descrip-

tions we have given so far, however, allow us to outline a problem in current

content-based pub-sub systems in the following section. This problem consti-

tutes the starting point for our research.

1.2 What is the Problem?

The majority of existing work on content-based pub-sub systems focuses on

subscriptions and advertisements in conjunctive form. Therefore, subscriptions

and advertisements using operators other than conjunction are not directly

supported by these systems. However, various applications, in particular more

high-level areas such as electronic commerce settings, require subscriptions and

advertisements in a general Boolean form (see Chapter 3).

To approach the support of general Boolean subscriptions and advertise-

ments, it is typically argued that systems only need to support conjunctions

because any general Boolean expression can be converted to disjunctive nor-

mal form. Then, each conjunctive element of such a form can be treated as an

individual subscription or advertisement by the system (provided it supports

more than one subscription or advertisement per client). At first glance, this

argument appears to be sound and was provided, for example, by Mühl and

Fiege [MF01], and by Pietzuch [Pie04].

However, on examining the influence of conversion in content-based pub-

sub systems more closely, it is questionable whether the conversion approach

is a suitable means for these systems. Already one of the fundamental works

in the pub-sub area by Yan and Garćıa-Molina [YGM94], targeting the se-

lective dissemination of information (SDI, as introduced by Salton [Sal68]),

addresses the implications of the required conversion when only conjunctions

1.2 What is the Problem? 5

are supported. Yan and Garćıa-Molina argue that the handling of general sub-

scriptions as disjunctive normal forms may not be the most efficient processing

strategy for subscriptions containing disjunctions [YGM94]8. However, within

their SIFT system [YGM99] they apply the conversion approach and leave the

required investigation of the influence of conversion to future work. Research

analyzing the effects of conversion has not been undertaken so far, either by

Yan and Garćıa-Molina or by other researchers.

Instead of investigating the suitability of conversion, the majority of sub-

sequent work in the pub-sub area (i.e., after the seminal work of Yan and

Garćıa-Molina [YGM94]) has built on their approach without scrutinizing the

suitability of converting general Boolean subscriptions and advertisements. As

identified previously, various application areas intuitively require disjunctions.

For these systems, an investigation of the advantages and disadvantages of

supporting general Boolean expressions is even more pressing than for systems

targeting the original, pure text-based SDI approach, which allows for the han-

dling of the majority of the existing disjunctions in a specialized way [YGM94].

General content-based pub-sub systems do not offer such an opportunity for

handling disjunctions.

The consequences of the conversion approach on pub-sub systems are two-

fold:

1. Disjunctive normal forms require more memory for storage. They are,

in fact, exponential in size in the worst case compared to the original

general Boolean form. These memory requirements directly influence

the scalability of pub-sub systems (see Section 2.2).

2. The advantageous effect of optimizing algorithms with respect to con-

junctions (as done by Yan and Garćıa-Molina, and most subsequent work

on content-based pub-sub systems) is counterbalanced by the overall in-

crease in the number of subscriptions, and thus the overall increase in

the size of the problem to process, after conversion. Even though al-

gorithms might need to compute the result of a common subexpression

only once, this result has to be incorporated into all subscriptions and

advertisements containing the subexpression.

8SDI is one of the historically “original” terms for what evolved into pub-sub sys-
tems [Hin03]. Solutions to the filtering problem in the SDI area have been applied to
the filtering problem in the content-based pub-sub area [CW03]. The implications and
drawbacks of these solutions thus remain in content-based pub-sub systems.

6 Chapter 1. Introduction

These two effects may not disadvantage systems that perform only a small

number of conversions at a given time. For example, database management

systems effectively apply the conversion of queries to normal forms [JK84].

The conversion approach is reasonable in these systems because of their pat-

tern of evaluating only few queries simultaneously—queries are transient in

these systems. Additionally, database management systems apply query op-

timization algorithms based on the converted form. Content-based pub-sub

systems, however, show the typical pattern of large numbers of subscriptions

and advertisements, inherently creating a high system load. These subscrip-

tions and advertisements are stored by the system at all times. Additionally,

existing pub-sub approaches for general application settings cannot optimize

based on the converted forms as database management systems do.

Hence, the suitability of a conversion approach in these systems is ques-

tionable because of the explosion of the already-existing large problem size

without the application of an advantageous optimization later on (this being

the motivation for conversion in database management systems). We elabo-

rate on the advantages and disadvantages conversion has on the algorithms in

content-based pub-sub systems in Section 2.6.

The general topic of conversion to disjunctive normal form and how this

influences content-based pub-sub systems recurs throughout this dissertation.

Within this work, we will answer the question as to the usefulness of conversion

in a step-by-step manner. We outline the contributions of this dissertation in

the following section.

1.3 Contributions of this Dissertation

Within this dissertation, we show the advantages of applying content-based

pub-sub systems that support general Boolean subscription and advertisement

languages. For this purpose, we design solutions that support general Bool-

ean expressions in the required components of pub-sub systems. The main

hypothesis of this dissertation consists of two parts and is as follows:

1. In general-purpose pub-sub systems, a general Boolean filtering approach

requires less memory and achieves higher filter efficiency than a conjunc-

tive filtering approach.

2. The pruning of filter expressions is an effective routing optimization ap-

proach for both general Boolean subscriptions and advertisements.

1.3 Contributions of this Dissertation 7

(a) Subscription pruning increases system efficiency and decreases rout-

ing table size, independently of the existing covering relationships.

(b) Advertisement pruning increases system efficiency and decreases

routing table size, while only marginally affecting the existing over-

lap.

For this hypothesis, we assume an application scenario requiring more general

than pure conjunctive subscriptions and advertisements. We empirically verify

the hypothesis throughout this dissertation. Our first step in this process is to

provide general-purpose algorithms that support general Boolean subscriptions

and advertisements in content-based pub-sub systems. As a second step, we

evaluate our general Boolean approaches and compare them to existing con-

junctive solutions using an example application scenario that requires general

Boolean subscriptions and advertisements.

In detail, the main contributions of this dissertation are:

Application-Scenario Analysis. We investigate the typical requirements

of the example application scenario of online auctions. Our contributions in-

clude the analysis of event message distributions in online auctions, and the

identification of exemplary subscriptions and advertisements in this area. The

provision of these details allows for the undertaking of realistic experiments

based on a semi-realistic data set9. This approach is highly advantageous in

comparison to the pure artificial evaluation methods currently employed. It is

a first step in the direction of meaningful system analyses based on real-world

requirements. Publicizing the results of our application-scenario analysis al-

lows for the repeatability of our experiments as well as for conclusions about

their validity.

Support of General Boolean Subscriptions and Advertisements in

Local Brokers. We introduce a generic filtering algorithm for general Bool-

ean subscriptions, and symmetrically support advertisements involving general

Boolean expressions. The proposed filtering algorithm is a general-purpose

solution to the filtering problem but also targets efficient and memory-aware

filtering. The algorithm to support advertisements calculates the required over-

lapping relationships among general Boolean subscriptions and advertisements.

9The test data follows the identified specifics of the auctioning area, but is created arti-
ficially.

8 Chapter 1. Introduction

Both solutions are naturally applicable to restricted conjunctive subscriptions

and advertisements as well, in that the proposed algorithms inherently sup-

port filtering on conjunctive expressions in the same way as general-purpose

conjunctive solutions.

Classification Framework and Filtering Algorithm Comparison. We

introduce a classification framework for subscriptions. This framework allows

for the comparison of the memory requirements of general-purpose filtering

algorithms. Using this framework, one can derive which filtering algorithm

should be used for a given application scenario (considering the memory re-

quirements), based on the typical attributes of subscriptions. We use this

framework to compare the memory usage of our general Boolean filtering al-

gorithm to those of a general-purpose conjunctive solution, and additionally

validate these results practically. The framework is analogously applicable to

advertisements.

Routing Optimizations. We introduce the first routing optimizations that

are practically applicable to general Boolean subscriptions and advertisements.

The first optimization is based on subscriptions; the second optimization is

based on advertisements. The proposed optimizations naturally work on re-

stricted conjunctive subscriptions and advertisements. Our distinct optimiza-

tion approach is applicable even if the existing covering optimization shows

little potential. Moreover, our subscription-based optimization can be com-

bined with the existing covering approach and can be utilized for the merging

of general Boolean subscriptions. The generality of our optimization approach

allows us to tailor it to optimize with respect to various target parameters.

Experimental Evaluation. We analyze and evaluate the proposed algo-

rithms for (i) filtering, (ii) calculation of overlap, and (iii) optimizing of the

routing process. These analyses include comparisons to general-purpose con-

junctive solutions for these three problems in content-based pub-sub systems.

The evaluation also involves the analysis of inherent properties of our ap-

proaches. Memory requirements and overall time efficiency are evaluated for

both routing optimizations. The subscription-based variant additionally in-

cludes an analysis of the created network load for event routing; the amount

of overlap is analyzed for the advertisement-based variant. The filtering algo-

rithm and the algorithm to calculate the overlap are analyzed with respect to

1.4 Structure of this Dissertation 9

their efficiency properties.

The contributions of this dissertation are broadly reflected within its struc-

ture, outlined in the following section.

1.4 Structure of this Dissertation

The structure of this dissertation provides the means to verify our main hy-

pothesis (see Section 1.3, page 6) in a step-by-step manner.

In Chapter 2, we give background information on content-based pub-sub

systems, which is required to understand this dissertation. We also analyze

existing, related solutions, and identify their assumptions and the implica-

tions arising from them. Chapter 3 introduces our application scenario of

online auctions that is used as a running example throughout. We analyze

the distributions of event messages in this scenario, and identify some typical

subscription and advertisement classes.

After these introductory chapters, as a first step to verify our hypothe-

sis, we focus on filtering in the central components of content-based pub-sub

systems. A generic filtering algorithm for general Boolean subscriptions is

proposed in Chapter 4, alongside general algorithm extensions and improve-

ments. Chapter 5 introduces a characterization framework for general Boolean

subscriptions, allowing for the analysis of the memory requirements of filter-

ing algorithms. By applying this framework, we derive conclusions about the

behavior of our novel Boolean approach in comparison to a general-purpose

conjunctive filtering approach. This chapter concludes with an evaluation of

the efficiency properties of the analyzed algorithms.

The next step is to support general Boolean subscriptions in the routing

protocols of distributed content-based pub-sub systems. In Chapter 6, we pro-

pose subscription pruning, a routing optimization fulfilling this requirement.

Subscription pruning approaches the optimization problem from a different

perspective than other routing optimizations and allows for optimization based

on different target parameters. The different variants of subscription pruning

are successively introduced within this chapter. Chapter 7 provides the final

milestone on our way to support the general Boolean pub-sub model. We intro-

duce an algorithm to calculate the overlapping relationships between both gen-

eral Boolean subscriptions and advertisements, and propose an advertisement-

based routing optimization, advertisement pruning.

10 Chapter 1. Introduction

Our last step involves the evaluation of the proposed algorithms. Chap-

ter 8 includes an extensive analysis of empirical experiments. These experi-

ments include (i) the evaluation of the influences of subscription pruning on

network load, filter efficiency, and memory requirements, (ii) the comparison

of subscription pruning to the existing covering routing optimization, (iii) the

evaluation of the efficiency properties of our method to calculate the overlap,

(iv) the comparison of this general Boolean method to a conjunctive solution,

and (v) the evaluation of the influence of advertisement pruning on memory

requirements, efficiency of the overlap calculation, and amount of overlap. We

conclude in Chapter 9 by summarizing our results and stating what still needs

to be done in the future.

Chapter 2

Background and Related Work

T
his chapter describes the background and foundations of content-

based pub-sub systems that are required to understand this disserta-

tion. Firstly, we describe related work and approaches, presenting the state-

of-the-art in the area of content-based pub-sub systems. Providing these facts

allows for the classification of our own proposals that are presented later. Sec-

ondly, we start to analyze these recent approaches to identify their inherent

assumptions and the implications arising out of them. This evaluation sub-

stantiates the hypothesis we have proposed in Chapter 1 and intensifies the

need to solve the associated research questions.

These two contributions are reflected within the structure of this chapter.

We start by introducing generally the notions and concepts of content-based

pub-sub systems in Section 2.1. Section 2.2 then elaborates on the accepted

quality measures for these systems and identifies the parameters influencing

these measures. Current solutions to one of the main tasks in pub-sub systems,

the filtering task, are subsequently discussed in Section 2.3. We focus on

examining and reviewing the other main task, the routing task, in Section 2.4.

Routing optimizations are one way to optimize pub-sub systems with re-

spect to the identified quality measures; they are the focus of Section 2.5. We

conclude this chapter by more thoroughly discussing the influence of canonical

conversion of both subscriptions and advertisements in Section 2.6.

2.1 Content-Based Pub-Sub Systems

This section gives a general introduction to content-based pub-sub systems. In

the subsequent sections, we refine those concepts that build the main focus of

11

12 Chapter 2. Background and Related Work

this dissertation. In the following, we introduce content-based pub-sub systems

from the familiar viewpoint of database management systems and relate these

systems to each other. As we will discover in this section, the correspondences

in these systems are not as unambiguous as they might appear, influencing

their internal handling of data.

2.1.1 Interaction in Content-Based Pub-Sub Systems

One might look at the concept of content-based pub-sub systems as being

similar to database management systems. Although one can argue for this

perspective, another viewpoint could contrarily describe content-based pub-

sub systems as the opposite of database management systems. We do not

want to take sides here because both positions contain legitimate facts, as

presented in the following analysis.

Interaction Patterns in Content-Based Pub-Sub Systems

In content-based pub-sub systems, one can find four different interaction pat-

terns. We introduce them in the following paragraphs. Afterwards, we link

these concepts to database management systems.

Registering and Deregistering Subscriptions. Similarly to database

management systems, content-based pub-sub systems allow their users to de-

fine queries. These queries are referred to as subscriptions and need to be

registered with the pub-sub system before their evaluation. Subscriptions are

defined with the help of a subscription definition language (also referred to as

subscription language).

The set of all subscriptions is denoted by S, a particular subscription set

by Si (Si ⊆ S), and an individual subscription of this set by s ∈ Si. Users, reg-

istering such subscriptions, are referred to as subscribers, individually denoted

by S. The subscriber of a subscription s is abbreviated by S(s).

Subscriptions are valid until they are deregistered . In the most general

definition, a subscription describes a Boolean filter expression (or simply filter

expression) on event messages. Variables of this expression are called predi-

cates , representing simple attribute filters. The concept of event messages is

introduced in the following paragraph.

2.1 Content-Based Pub-Sub Systems 13

Publishing Event Messages. The incoming information in a pub-sub sys-

tem is provided by publishers in the form of event messages (or simply messages

or events within this dissertation). An individual publisher is denoted by P;

an event message is abbreviated by e. The publisher of a particular event

message e is referred to as P (e).

Generally, event messages are represented by attribute-value pairs in con-

tent-based pub-sub systems.

Registering and Deregistering Advertisements. Publishers in pub-sub

systems have to specify their future event messages and register these speci-

fications with the system before sending messages. The term advertisements

is widely used for the specifications of publishers. They are defined using an

advertisement definition language (or just advertisement language).

The set of all advertisements is denoted by A, a particular set of adver-

tisements by Ai, and an individual advertisement of this set by a ∈ Ai. Once

registered, advertisements need to be deregistered to become invalid.

In the most general definition, an advertisement (similarly to a subscrip-

tion) describes a Boolean filter expression on event messages. An event mes-

sage e conforms to an advertisement a if the filter expression of a evaluates

to true on e. All event messages sent by a publisher need to conform to one

of its registered advertisements. The set of event messages conforming to an

advertisement a is denoted by E(a).

Sending Notifications. The answers to registered subscriptions are pro-

vided by the content-based pub-sub system based on the content of the in-

coming event messages. These answers are called notifications and are sent by

the system to the respective subscribers. We abbreviate a particular notifica-

tion by n.

The process of identifying all relevant subscriptions for an incoming mes-

sage (i.e., those subscriptions whose filter expressions evaluates to true for this

message) is generally referred to as filtering or event filtering . For a particular

subscription s, the set of all relevant event messages is denoted by E(s).

When considering a pub-sub system as a black box, this filtering, in combi-

nation with the delivery of notifications, is the main task of a pub-sub system:

subscribers use the system in order to receive notifications according to their

subscriptions. Publishers use the system in order to have their messages de-

livered to all interested subscribers.

14 Chapter 2. Background and Related Work

Publishers Subscribers

SubscriptionsAdvertisements

Event messages Notifications Operational

Configurational

interaction

interactionContent−based
publish/subscribe
system

Figure 2.1: Overview of the interaction in pub-sub systems.

These interaction patterns build the means for users to communicate with

the help of a pub-sub system. Clearly, the same user might simultaneously act

as both subscriber and publisher. That is, the same user might be involved

in all interaction patterns, and thus register and deregister subscriptions and

advertisements, send event messages, and receive notifications.

We give an overview of the two kinds of users of a content-based pub-

sub system and their potential interaction with this system in Figure 2.1.

We split the different interaction patterns into two types: the configurational

interaction, containing the registration of subscriptions and advertisements,

and the operational interaction, including the publication of messages and the

notification about messages.

The content-based pub-sub system is situated between publishers and sub-

scribers and decouples [EFGK03] the communication between these two par-

ties. In the literature, pub-sub systems as decoupling components have thus

found variable descriptions, for example, mediator [BBC+04, EFGK03, LJ03]

and broker [BBC+04, HGM01, Leh05].

Correspondence in Database Management Systems

Having introduced the concepts of pub-sub systems, we now relate them to the

widely known notions of database management systems. We do so based on

two different viewpoints, the interaction semantics view and the data storage

view [BH07].

Interaction Semantics View. Relating the concepts to an interaction se-

mantics view, subscriptions represent database queries and event messages

conform to data stored within the database. These correspondences stem

from the fact that (i) subscriptions and queries denote user requests that are

answered by the respective system, and (ii) event messages and stored data are

the basis to provide these answers. This concept of answers, in turn, clearly

corresponds to notifications in pub-sub systems and the results to queries in

2.1 Content-Based Pub-Sub Systems 15

System

Publish/subscribe system Database management system

Advertise−
ments

ResultsNotifications

privileges
access
Schema/

Input to the system

messages
Event Subscrip−

tions deletions
insertions/
Updates/

Queries

Output to users

System

Figure 2.2: Corresponding concepts between pub-sub systems and database
management systems when taking an interaction semantics view (correspond-
ing concepts are illustrated at the same position for both kinds of systems).

database management systems.

For advertisements, however, one cannot clearly identify a counterpart in

database management systems. Although we cannot find this exact equiva-

lence, the database schema in combination with access privileges to particular

tables or table columns can be seen as partially corresponding to advertise-

ments. The advertisements in content-based pub-sub systems, though, are a

more general concept. They not only describe the manipulation of a partic-

ular type of data (published event messages) but also how the data will be

manipulated (the content that will be sent in the future).

We give an overview of these corresponding concepts in content-based pub-

sub and database management systems in Figure 2.2. The related notions are

arranged in the same positions for both systems to allow for a better overview.

However, there are deep differences between content-based pub-sub systems

and database management systems that result from their opposite problem

definitions and the implied need to handle data differently. As a consequence,

the following observations hold when considering data storage in these systems.

Data Storage View. Subscriptions are long-standing queries that are stored

and continuously evaluated by a pub-sub system, until they are finally dereg-

istered and removed from the system. These subscriptions therefore comprise

what we call the subscription base. Because this subscription base needs to

16 Chapter 2. Background and Related Work

Transient data

Notifications

Data base

ResultsQueries

Schema/
access
privileges

messages
Event

deletions
insertions/
Updates/

ments
Advertise−Subscrip−

tions

Publish/subscribe system

Subscription/

Stored data

Database management system

base
Advertisement

Figure 2.3: Corresponding concepts between pub-sub systems and database
management systems when considering the data storage (corresponding con-
cepts are illustrated at the same position for both kinds of systems).

be stored within the system, it is the counterpart to the data that is stored

in database management systems, the data base. Hence, these two concepts

build a component that is known to the respective system.

Database queries, however, are not known in advance. They are sent to

the database management system once, are subsequently executed, and finally

the system returns the results to the issuer of the query. Similarly, this at-

tribute holds for the individual event messages from publishers. At the (highly

frequent) occurrence of event messages, the pub-sub system needs to find all

relevant subscriptions in its subscription base. Thus, database queries and

event messages are corresponding concepts in these systems.

The correspondence of the remaining concepts aligns with the findings when

taking the interaction semantics view. Notifications conform to query results,

and advertisements partially match with database schema and access privi-

leges. The latter needs to be stored by the system. We refer to stored adver-

tisements as the advertisement base in the following.

We illustrate these corresponding concepts in Figure 2.3. Again, the related

notions are arranged in the same positions for both systems. Out of this figure,

one can clearly identify the opposite problem definition of content-based pub-

sub and database management systems. One system (database management

system) answers queries based on stored data; for the other system (pub-sub

system) incoming data (event messages) leads to answers (notifications) to

stored queries (subscriptions).

This opposite problem definition in content-based pub-sub and database

2.1 Content-Based Pub-Sub Systems 17

management systems strongly influences the internal handling of stored data,

that is, subscriptions and advertisements. We further elaborate on these ef-

fects and their implications for the design of content-based pub-sub systems

in Section 2.6.

2.1.2 Architecture of Content-Based Pub-Sub Systems

Having presented the interaction patterns in content-based pub-sub systems,

we now explain their basic architecture.

One of the main quality measures in pub-sub systems is scalability. Large-

scale content-based pub-sub systems thus require a distributed implementa-

tion [Müh02] to handle large numbers of clients, as well as subscriptions, ad-

vertisements, and event messages. These distributed pub-sub systems consist

of a network of so-called brokers, individually referred to as B. Subscribers S

and publishers P connect to and interact with one of these brokers which is

then referred to as their local broker B(S) and B(P), respectively. The sets

of subscribers and publishers connected to broker B are denoted by local sub-

scribers S(B) and local publishers P (B), respectively. We use the term client

to refer to either subscribers or publishers.

Each broker of the system is assigned to a particular set of publishers and

subscribers, and offers the pub-sub functionality and interaction patterns (see

Section 2.1.1) to these clients. In doing so, the broker hides the distributed

nature of the pub-sub system and transparently performs the required actions

within the distributed system.

The internal functioning of a distributed content-based pub-sub system

strongly depends on the network topology which is used. Most current re-

search prototypes targeting efficiency aspects (another important quality mea-

sure) assume the brokers to be connected by a fixed acyclic (overlay) graph

structure (or a fixed spanning tree structure), for example, A-mediAS [Hin03],

Gryphon [BCM+99], Jedi [CNF01], Kyra [CS04], Padres [LHJ05], Re-

beca [Müh02], Siena [CRW01], and XRoute [CF03]. The CBCB scheme

[CRW04] supports several spanning trees.

In this dissertation, we build on the foundations laid by these systems and

assume an acyclic overlay network as the topology of the broker network. We

also assume stable brokers and clients, and error-free connections, both broker-

broker and broker-client connections. We give an overview of our system view

in Figure 2.4. It contains a set of seven brokers, B1 to B7, that are connected

18 Chapter 2. Background and Related Work

Broker−broker connection
Client−broker connectionClient

Broker

B5

B3

B7

Bi

B6

B4

B1

B2

Figure 2.4: Overview of a distributed pub-sub system with seven brokers and
several clients.

acyclically. Each of these brokers is connected to several clients: their local

clients.

In the literature, one can find extensions to this basic scheme, for example,

to allow for dynamic reconfiguration of the network, including broker compo-

nents as well as broker-broker connections [CFMP04]. We do not specifically

target such aspects in this dissertation; they clearly go beyond the scope of

our work. Rather we concentrate on the core functionality of content-based

pub-sub systems and the tasks created thereby, as described in the following

subsection. Nevertheless, the work in this dissertation is not restricted to an

assumed architectural scheme.

2.1.3 Tasks in Content-Based Pub-Sub Systems

In content-based pub-sub systems, one needs to solve a large range of tasks.

Within this dissertation, we mainly focus on three fundamental tasks, namely

the event filtering, the event routing, and the overlapping task, that provide

the means to support the interaction patterns we introduced in Section 2.1.1.

We define these tasks in the following three subsections. For completeness, we

additionally sketch other extended tasks, which are outside the focus of this

dissertation.

Event Filtering Task

As already introduced in the last section, the event filtering task is one of the

main tasks in content-based pub-sub systems. We formulate it as follows:

2.1 Content-Based Pub-Sub Systems 19

subscriptions

Subscription
base

uses

algorithm
Event filtering

Event
message

Set of fulfilled

Figure 2.5: Illustration of the task of an event filtering algorithm: based on
the subscription base, an incoming event message leads to a set of fulfilled
subscriptions.

Definition 2.1 (Event Filtering Task) A broker of the system has been

given a set of subscriptions Si. For each incoming event message e, it needs to

find every subscription s ∈ Si whose filter expression evaluates to true on e.

Within this dissertation, we use the following naming conventions. If the filter

expression of s evaluates to true on e, we say subscription s is fulfilled by event

e, which means that event message e matches subscription s. An algorithm

that solves the filtering task is denoted by the event filtering algorithm or just

filtering algorithm. We illustrate the task of an event filtering algorithm in

Figure 2.5.

Within this dissertation, we develop a novel filtering algorithm (Chapter 4).

We give an introduction to current filtering algorithms in Section 2.3.

Event Routing Task

Distributed pub-sub systems need to solve an additional crucial task in ad-

dition to event filtering: the event routing task (or simply routing task). We

define it as follows:

Definition 2.2 (Event Routing Task) The system has been given an in-

coming event message e and a set of brokers B. It needs to determine all

brokers B ∈ B that have connected local subscribers with registered subscrip-

tions that are fulfilled by e.

We refer to an algorithm solving the event routing task as the event routing

algorithm, or simply routing algorithm. Note that this algorithm can be re-

alized either distributed or centralized. Within this dissertation, we do not

20 Chapter 2. Background and Related Work

uses

Event
message

with fulfilled
subscriptions

local subscribers
Brokers having

Subscription
base

Topology
information

algorithm
Event routing

Figure 2.6: Illustration of the task of an event routing algorithm: Based on
subscription base and topology information, an incoming event message leads
to a set of brokers.

develop new routing algorithms for content-based pub-sub systems but utilize

existing approaches. We sketch these approaches and present a justification for

our choices in Section 2.4. We illustrate the general task of an event routing

algorithm in Figure 2.6.

Let us assume one has been given a particular event routing algorithm.

In the literature one can find so-called event routing optimizations (or just

routing optimizations), aimed at improving the un-optimized algorithm with

respect to certain parameters or quality measures (e.g., memory usage or sys-

tem efficiency). Event routing optimizations can be based on subscriptions

or on advertisements. Current solutions aim either at reducing the number

of routing entries by exploiting redundancies among them, or at subsuming

existing routing entries. We describe and evaluate these existing approaches

in Section 2.5.

Within this dissertation, we develop novel routing optimizations. Chapter 6

presents our work on subscription-based optimizations; Chapter 7 introduces

a novel advertisement-based optimization solution.

Overlapping Task

Content-based pub-sub systems supporting advertisements should exploit the

information that is provided by these advertisements. This information, for ex-

ample, can be used in event routing algorithms. By analyzing the relationships

among subscriptions and advertisements, one can decide whether publishers

2.1 Content-Based Pub-Sub Systems 21

Advertisement

Subscription
base

uses

overlapping algorithm
subscription
Advertisement−

subscriptions
Set of overlapping

Figure 2.7: Illustration of the task of an advertisement-subscription overlap-
ping algorithm: Based on the subscription base, an advertisement leads to a
set of overlapping subscriptions.

send event messages that overlap the subscriptions of particular subscribers.

This relationship is referred to as the overlapping relationship. The tasks to

solve are the subscription-advertisement overlapping and the advertisement-

subscription overlapping task , depending on the point of view. They are de-

fined as follows:

Definition 2.3 (Advertisement-Subscription Overlapping Task) The

system has been given an advertisement a and a set of subscriptions Si. It needs

to determine all subscriptions s ∈ Si that are fulfilled by any event message

conforming to a, that is, E(s) ∩ E(a) 6= ∅. We refer to these subscriptions as

overlapping subscriptions.

Definition 2.4 (Subscription-Advertisement Overlapping Task) The

system has been given a subscription s and a set of advertisements Ai. It needs

to determine all advertisements a ∈ Ai having at least one conforming event

message that matches s, that is, E(s) ∩ E(a) 6= ∅. We refer to these adver-

tisements as overlapping advertisements.

As already mentioned, the solutions to these tasks can be exploited by event

routing algorithms, as detailed later. The algorithms to solve these tasks are

referred to as advertisement-subscription overlapping algorithms and subscrip-

tion-advertisement overlapping algorithms. We illustrate them and their tasks

in Figure 2.7 and Figure 2.8. Next to the described formulations of both

tasks as function problems, the respective decision problems are required to

be solved in pub-sub systems. We go into detail about this distinction for the

overlapping task in Chapter 7.

22 Chapter 2. Background and Related Work

base

overlapping algorithm
advertisement
Subscription−

advertisements
Set of overlapping

Subscription

uses

Advertisement

Figure 2.8: Illustration of the task of a subscription-advertisement overlap-
ping algorithm: Based on the advertisement base, a subscription leads to a set
of overlapping advertisements.

Extended Tasks

In this dissertation, we focus on those tasks in content-based pub-sub systems

we have presented in the three previous subsections. This is due to the insuffi-

ciency of existing solutions to these tasks for general application scenarios with

respect to general Boolean subscriptions and advertisements, as we reason in

detail later. However, we now briefly sketch extended tasks one needs to face

in content-based pub-sub systems.

Next to the general event routing task (see page 19) only considering the

internal network of a pub-sub system, the system needs to deliver incoming

event messages to all subscribers having registered fulfilled subscriptions. This

delivery becomes a particularly complex task in cases of large numbers of

subscribers, as might be found in ubiquitous computing or sensor networks.

Pub-sub systems for such scenarios are addressed, for example, in [HCRW04].

Within this dissertation, we do not consider security aspects in content-

based pub-sub systems. They might, however, become highly important when

using pub-sub systems commercially. The tasks to be addressed, for example,

include not only the filtering of event messages from trusted publishers but

also the delivery of these event messages to exclusively trusted subscribers.

Furthermore, general confidentiality aspects with respect to event messages

and subscriptions need to be considered. Early research on such aspects can

be found, for example, in [RR06, WCEW02]. The detection of spam in con-

tent-based pub-sub systems, for example, [Tar06], can also be seen as a security

issue.

Content-based pub-sub systems should allow for the dynamic reconfigu-

2.2 Quality Measures, Parameters, and Attributes 23

ration of the broker network, including the broker components themselves as

well as the links among them. Solutions to these tasks have been presented,

for example, in [CMPC03, PCM03]. One can also classify content-based pub-

sub systems for general (i.e., constantly changing) peer-to-peer settings in this

branch of research, for example, Hermes [Pie04].

We already elaborated on the similarities but also on the differences be-

tween content-based pub-sub and database management systems. An idea

that emerges immediately when reflecting on this relationship is the support

of transactional patterns in content-based pub-sub systems. Preliminary work

on this topic can be found, for example, in [MF05].

The final extended research area we want to name here regards the com-

position of event messages. A composite (or complex) event describes the

occurrence of a certain pattern of individual event messages. These messages

could, for example, occur one after the other or within a certain time frame.

The composition of event messages is addressed, for example, in [PSB04]. An

immediate requirement for composite events is the determination of an order

of event messages, as described in [LCB99, LSB06].

2.2 Quality Measures, Parameters, and Attri-

butes Influencing Filtering and Routing

Having introduced the general concepts of content-based pub-sub systems and

the tasks arising, we now elaborate on the commonly accepted quality measures

for pub-sub systems, and the parameters and attributes influencing them.

Quality Measures For Filtering and Routing

We can identify two main quality measures, system efficiency and system scal-

ability, that influence the suitability of content-based pub-sub systems in prac-

tice. These general measures largely comply with current assumptions given,

for example, in [CCC+01, CRW00, FJL+01]:

By system efficiency , we refer to the average time to process an event mes-

sage by the overall system for a given problem size. We define the processing

of an event message e in this context as the task of determining all subscrip-

tions within the distributed system that are fulfilled by e. The problem size in

this context refers to the number of registered subscriptions or advertisements.

24 Chapter 2. Background and Related Work

This measure thus includes both the event filtering and the event routing task,

but it excludes the event delivery task. Pub-sub systems aim at high system

efficiency, that is, a small processing time per message.

By system scalability1, we refer to the behavior of system efficiency with

an increasing problem size. By “problem size” we again refer to the number of

subscriptions or advertisements. Thus, this definition focuses on event filtering

and routing, but not on event delivery. Our definition of scalability refers to

the notions of space-time scalability, as described in [Bon00]. Pub-sub systems

aim for sound scalability properties.

Parameters Influencing the Quality Measures

Using these definitions, the two named quality measures have an effect on, and

are themselves influenced by, the solutions that are applied to the filtering and

routing task in content-based pub-sub systems (see Section 2.1.3):

• Filtering algorithm

• Routing algorithm and routing optimization

These solutions influence two important parameters of pub-sub systems that,

in turn, also affect the two quality measures:

• Memory usage

• Network load

We give an overview of the direct dependencies among these quality measures,

algorithms, and parameters in Figure 2.9. We describe these dependencies in

detail later on.

Internal-Subscription-Model Attribute

An important attribute that, on the one hand, affects the algorithms in pub-

sub systems is the internal model of subscription. On the other hand, the

internal model of subscriptions influences what algorithms can applied in these

systems. We illustrate this twofold effect in Figure 2.9 and elaborate on its

occurrence later on (page 27).

1By providing our own definition of scalability in this dissertation, we hope to avoid
confusion about this term arising from the lack of consensus as to its meaning [DRW06] and
the absence of a generally accepted definition [Hil90].

2.2 Quality Measures, Parameters, and Attributes 25

To describe what we mean by the term “internal subscription model”, we

have to start by analyzing the use of the notion of expressiveness in the cur-

rent literature: the term “expressiveness” in the context of pub-sub systems,

to our knowledge, has never been properly defined. There are some general

explanations, but these fail to provide an acknowledged definition:

Carzaniga and colleagues [CRW00] define expressiveness as the ability of a

pub-sub system to express subscriptions2. Eugster and colleagues [EFGH02]

state that the expressiveness of subscriptions defines how accurately subscrip-

tions can represent the interests of subscribers3. Various other work, for exam-

ple, [AAGC04, BBC+04, CS04, CMPC03, EFGK03, LJ03, PCM03], identify

different levels of expressiveness in the distinction between topic-based and

content-based pub-sub systems. However, content-based systems (even sup-

porting range queries) can be mapped to topic-based ones, as shown in [TAJ03].

Hence, the term “expressiveness” in the context of pub-sub systems does not

model the general notion of expressiveness describing what facts can be repre-

sented by a language [MG85].

Li and colleagues [LHJ05] explicitly include the opportunities to combine

predicates in subscriptions into their expressiveness definition. They state that

in contrast to conjunctive approaches, by providing for arbitrarily complicated

Boolean functions in subscriptions, an expressive subscription language can

be naturally supported4. Mühl [Müh02] also takes this approach and states

that the restriction to conjunctions in current pub-sub systems reduces the

expressiveness of these systems5. These descriptions again show the different

use of the term “expressiveness” in the pub-sub context.

To avoid this mismatch between the notion of expressiveness in the general

literature and the various notions of expressiveness in the pub-sub area, we

refer to the concept of the “expressiveness of a subscription language” (in terms

of pub-sub) as internal subscription model in the following (we similarly use

2“Expressiveness refers to the power of the data model that is offered to publishers and
subscribers of notifications.” [CRW00]

3“The expressiveness of subscriptions defines how accurately subscriptions can represent
the interests of the subscribers. With different kinds of subscription languages, it is possible
to achieve different ‘levels’ of expressiveness.” [EFGH02]

4“Siena and Jedi exploit covering-based routing. Unfortunately, they restrict the ex-
pressiveness of content-based routing, and do not consider merging techniques. . . . Since
BDDs can be used to represent arbitrarily complicated Boolean functions, an expressive
subscription language can be naturally supported.” [LHJ05]

5“Siena and Rebeca restrict filters to be conjunctions of attribute filters. On one hand,
this restriction reduces the expressiveness of the filter model, but on the other hand it enables
routing optimizations like covering to be applied efficiently.” [Müh02]

26 Chapter 2. Background and Related Work

the term internal advertisement model for advertisements). For content-based

pub-sub systems, we can distinguish between subscriptions and advertisements

as purely conjunctive filter expressions, and subscriptions and advertisements

as general Boolean filter expressions.

Applicability Attribute

As we already outlined previously, the focus in this dissertation is on general-

purpose pub-sub systems, as opposed to system solutions for a particular ap-

plication setting. The filtering and routing solutions applied in such a sys-

tem, therefore, need to constitute generic approaches to filtering and routing.

Clearly, the suitability as a general-purpose solution is not contradicted if a

filtering or routing approach effectively exploits certain application-specific at-

tributes. As long as such attributes are only exploited by an algorithm, but

their absence does not impair the functioning of the algorithm, that is, these

attributes are no mandatory requirement, this algorithm classifies as a general-

purpose solution.

However, if, for example, a filtering algorithm is entirely restricted to a cer-

tain specific application, we do not consider this algorithm a general-purpose

solution. A suitability as a general-purpose approach is also not given if, for

example, in general settings6 the space or time efficiency properties of a filter-

ing algorithm degrade to those of a basic approach and contradict its original

design goals. Furthermore, we do not consider solutions to be generally appli-

cable if they merely represent a static system solution, for example, filtering

algorithms that, due to their inherent structure, cannot efficiently register or

deregister subscriptions.

We also refer to the attribute of the suitability of a solution as a general-

purpose approach by the term applicability . In accordance with the current

practice, we consider subscriptions as highly selective filter expressions. That

is, usually only a small proportion of messages fulfills a registered subscription.

Thus, the consideration of such an application scenario does not oppose the

applicability attribute.

We included this applicability attribute into our overview of the dependen-

cies among quality measures, algorithms, and parameters in Figure 2.9. The

illustrated cross-influences are caused by the following observations.

6These general settings should obviously have reasonable assumptions.

2.2 Quality Measures, Parameters, and Attributes 27

Applicability

(1)

(2)

(3)

(6)

(5)

Routing algorithm/optimization

Filtering algorithm

Quality measure Influencing parameter

Algorithm

(11)(8)

(9) (10)

(4)

(7)

Internal Subscription Model

Efficiency

Scalability Memory usage

Network load

Figure 2.9: Overview of the cross-influences among quality measures, algo-
rithms, and parameters. We named these influences to be able to reference
them.

Dependencies Among Quality Measures, Algorithms, and Parame-

ters

All recent content-based pub-sub systems apply main memory filtering algo-

rithms to achieve a high system efficiency. This development has become fea-

sible due to the employment of cheap, large main memories in computers. The

result is an efficient event filtering in individual broker components. Evidently,

the applied main memory filtering algorithm still plays an extremely relevant

part regarding filter efficiency (Influence 4 in Figure 2.9). The efficiency of

the overall distributed system, however, depends on the applied event routing

algorithm and optimization as well, due to their influence on the network load

(Influence 5 in conjunction with Influence 3 in Figure 2.9).

Although large main memories are a standard today, filtering algorithms

should require as few memory resources as possible. It is the one influence

on space scalability [Bon00] and a crucial influence on space-time scalability

in individual broker components (Influence 1 in Figure 2.9). The less mem-

ory the filtering algorithm demands per subscription and advertisement, the

more subscriptions and advertisements are supported. Thus a filtering algo-

rithm requiring less memory than another one achieving the same efficiency

28 Chapter 2. Background and Related Work

is the preferred choice. Requiring too much memory resource, on the other

hand, leads to frequent page swaps, degrading the achieved system efficiency

by several orders of magnitude.

The overall scalability of a content-based pub-sub system additionally de-

pends on the utilized event routing algorithm, partially determining the sizes

of routing tables, the complexity of routing table entries (Influence 6 in Fig-

ure 2.9 for both of them), and the number of routed messages (Influence 5 in

Figure 2.9). These properties influence each other. For example, an increase

in internally routed (and processed) event messages with a simultaneous de-

crease in the complexity of routing entries might improve the overall system

efficiency. The number of routed event messages, however, is the strongest in-

fluence on system scalability if assuming limited network resources (Influence 2

in Figure 2.9). Next to the applied routing algorithm, the utilized routing op-

timization strongly affects overall scalability (Influences 6 and 5 in conjunction

with Influences 1 and 2, respectively, in Figure 2.9).

The internal subscription model affects the choice of a filtering algorithm

and thus implies memory usage and filter efficiency. That is, the internal

subscription model has an indirect effect on both scalability (Influences 10, 7,

and 1 in Figure 2.9) and efficiency (Influences 10 and 4 in Figure 2.9), the

two quality measures. For the other direction, the internal subscription model

of a system, obviously, has to be supported by the applied routing algorithm

and optimization (Influence 11 in Figure 2.9), and the filtering algorithm used

(Influence 10 in Figure 2.9).

With respect to applicability, filtering algorithm, routing algorithm, and

routing optimization have to fulfill this attribute (Influences 8 and 9 in Fig-

ure 2.9). These algorithms directly influence the quality measures of the sys-

tem, as illustrated in Figure 2.9 and stated in our definition of applicabil-

ity. Considering the other direction, the applied algorithms either constitute

general-purpose approaches or specialized solutions, that is, based on their

internal functioning a general applicability is given or not given.

In the following section, we present the state of the art for solutions to one

of the introduced tasks, the filtering algorithm. As can be seen in the figure,

the applied filtering algorithm influences the two identified quality measures

(system efficiency and scalability). Furthermore, the filtering algorithm needs

to fulfill the general-purpose attribute and supports a particular internal sub-

scription model.

2.3 Event Filtering Algorithms 29

In Section 2.4, we then present current event routing algorithms, followed

by an analysis of existing routing optimizations in Section 2.5 (solutions to

the other task). Routing algorithm and optimization indirectly influence both

quality measures, as illustrated in Figure 2.9. Later on, we develop novel

solutions (for the filtering and routing task) and show their effects on the

identified parameters and quality measures.

2.3 Event Filtering Algorithms

Having introduced the general foundations of pub-sub systems and the widely

applied quality measures, we now elaborate on the solution to one task that

affects these measures: the utilized event filtering algorithm. In this section,

we subsequently present a categorization of existing filtering solutions based

on the applied predicate and subscription indexing approach (Section 2.3.1).

We then analyze the main representatives of filtering algorithms with re-

spect to the identified quality measures and the applicability attribute in Sec-

tion 2.3.2. As we will discover in the analysis, only the conjunctive counting

algorithm classifies as a general-purpose filtering approach that targets both

quality measures as its design goals. We sketch this algorithm in detail in

Section 2.3.3.

2.3.1 Categorization of Filtering Algorithms

Pub-sub systems usually apply a kind of subscription indexing and predicate

indexing to allow for an efficient event filtering process. We can use these

two kinds of indexing as two dimensions for a classification of current filtering

algorithms. With respect to predicate indexing, we can differentiate between:

• no predicate indexing approaches (NP), and

• one-dimensional predicate indexing approaches (OP).

With respect to subscription indexing, we can identify:

• individual subscription indexing approaches (IS), and

• shared subscription indexing approaches (SS).

30 Chapter 2. Background and Related Work

Description of Algorithm Categories

No predicate indexing approaches (NP) do not apply designated data struc-

tures to efficiently determine whether predicates of subscriptions are fulfilled

by the attribute-value pairs of an incoming message. One-dimensional predi-

cate indexing approaches (OP), on the other hand, apply predicate indexes on

a per-attribute basis. That is, all predicates that specify a certain attribute

are included in this index. Predicate indexes might additionally be specialized

according to the filter function that is used by predicates, leading to several

predicate indexes per attribute.

Individual subscription indexing approaches (IS) store subscriptions in a

way that allows for the efficient determination of fulfilled subscriptions, for

example, based on information about their predicates. Each subscription is in-

dexed individually without considering already indexed subscriptions. Shared

subscription indexing approaches (SS), on the other hand, aim at compacting

several subscriptions. Variations range from the usage of exactly one sub-

scription index structure to represent all registered subscriptions, to the use of

various subscription index structures to represent all registered subscriptions.

By combining these two dimensions for classifying filtering algorithms, we

derive four categories of algorithms: NP-IS, NP-SS, OP-IS, and OP-SS. We

give the main representatives of these categories in the following paragraphs.

Representatives of Algorithm Categories

An example of NP-IS is Elvin [SA97, SAB+00]: there are no predicate indexes

and individual subscriptions are evaluated against incoming messages. This

idea constitutes a basic solution to the filtering task. However, Elvin supports

a general Boolean subscription language and the filter functions in predicates

are more sophisticated than in other systems.

The approaches from Aguilera and colleagues [ASS+99], Gough and

Smith [GS95], and Campailla and colleagues [CCC+01] classify as NP-SS. The

former two approaches use tree structures to represent the registered conjunc-

tive subscriptions. The latter approach uses a shared binary decision diagram

with several output nodes, a graph structure, as its subscription index.

The counting algorithm [AJL02, YGM94] as well as the cluster algorithm

[HCH+99, FJL+01] fall into category OP-IS. These approaches index both

predicates and subscriptions and are restricted to subscriptions in conjunctive

form. The counting algorithm gets its name from counting the number of

2.3 Event Filtering Algorithms 31

fulfilled predicates per subscription when filtering. The cluster algorithm gets

its name from clustering subscriptions according to their number of predicates

and their use of common equality predicates.

Finally, the approach in [LHJ05] belongs to category OP-SS. It indexes

predicates according to the applied operators and attributes, and uses mod-

ified binary decision diagrams as subscription index structures for restricted

conjunctive subscriptions.

In the following subsection, we analyze the suitability of these algorithms

for general-purpose application scenarios.

2.3.2 Applicability of Algorithms

All of the previously mentioned algorithms provide sound solutions to the

filtering task, provided their assumptions about application specifics are met.

Their individual design goals in their target application setting are to realize a

particular space-efficient filtering process, to realize a particular time-efficient

filtering process, or to offer a flexible subscription language to their users.

The ranges of settings that these algorithms have been developed for vary in

their width. Generally the algorithms gain their benefits with respect to filter

efficiency or memory usage by exploiting the specifics of those scenarios they

have been designed for.

Considering our requirement of a general-purpose algorithm, most ap-

proaches become unsuitable with respect to either their memory requirements

or their filter efficiency if the application specifics that are exploited in the

filtering process do not hold. In the following paragraphs, we analyze these

algorithms according to the four identified algorithm categories.

No Predicate Indexing, Individual Subscription Indexing Approaches

As we introduced previously, the Elvin system [SA97, SAB+00] falls into

category NP-IS. The following analysis shows that this filtering approach does

not constitute a general-purpose solution.

Elvin [SA97, SAB+00]. The filtering approach of Elvin is usually de-

scribed as a “näıve” (e.g., [LHJ05, PFLS00]) or “brute-force” (e.g., [MFP06,

TKD04, YGM99]) solution to the filtering task in the literature. This descrip-

tion stems from the fact that all subscriptions, including their predicates, are

individually considered by this approach. Evidently, this method does not

32 Chapter 2. Background and Related Work

lead to high filter efficiency. In particular, the approach does not scale to

a growing number of registered subscriptions, and thus does not constitute

a generic filtering solution. This limitation of [SA97, SAB+00] with respect

to scaling to a large subscription base is also identified in the literature, for

example, [CRW01]. However, Elvin internally supports a more general sub-

scription language (with respect to both the supported predicates and their

combination) than other systems.

Generally the approach of individually analyzing all registered subscrip-

tions is relatively well-suited for scenarios where most subscriptions match

most incoming messages. Here nearly all subscriptions need to be fully an-

alyzed by any current filtering approach in order to determine whether they

are fulfilled by the incoming message. There is no criterion that would al-

low a recent algorithm to stop the evaluation of a subscription after its partial

analysis. Evidently this narrow application scenario does not fulfill the general-

purpose requirement and contradicts typical assumptions about the selectivity

of subscriptions (see Section 2.2).

No Predicate Indexing, Shared Subscription Indexing Approaches

We identified three main algorithm representatives in category NP-SS. All of

them do not classify as general-purpose filtering solutions, because the sup-

ported application fields are too narrow and a widening results in a degenera-

tion to a basic filtering approach.

Gough and Smith [GS95]. This tree-based conjunctive filtering algorithm

generally leads to high filter efficiency due to the approach of traversing ex-

actly one path in the created subscription index tree for an incoming mes-

sage. However, this advantage is firstly counteracted by the limited range

of operators that is supported by this approach: [GS95] effectively supports

equality predicates only. Range tests and set membership tests can be sup-

ported by the approach. However, this extension comes at the cost of strongly

growing memory requirements. These high memory requirements are also

noted as a major restriction of the algorithm in the literature, for exam-

ple, [ASS+99, FJL+01, RDJ02, WK05].

Additionally, the created subscription index tree cannot effectively handle

subscriptions that do not specify all attributes in their predicates. Although

such subscriptions can be extended by “don’t-care” predicates (fulfilled by all

2.3 Event Filtering Algorithms 33

possible attribute values) and inserted into the index structure, each “don’t-

care branch” in a node of the index tree needs to contain a combination of all

subtrees that can be reached by the other branches (no “don’t-care” predicates)

of that node. This behavior, evidently, leads to a potentially exponential

explosion in the size of the index tree [ASS+99].

Another restricting attribute is that the index tree requires costly prepro-

cessing to handle registrations and deregistrations of subscriptions. [GS95]

thus presents a static solution to the filtering task, which has been iden-

tified as another shortcoming of the approach in the literature, for exam-

ple, [FJL+01, MFP06, RDJ02, WK05]. On this basis, we conclude that the

algorithm does not classify as a generic solution to the filtering task.

Aguilera and colleagues [ASS+99]. Aguilera and colleagues [ASS+99]

present another tree-based filtering approach for conjunctive subscriptions.

It aims at solving some of the problems of [GS95] with respect to memory

requirements. However, this attempt comes at the cost of time efficiency be-

cause it cannot filter messages by following one path in the subscription index

tree anymore. Nevertheless, the approach [ASS+99] is still characterized as

too memory consuming, for example, [FJL+01, RDJ02, WK05].

Aguilera and colleagues focus on supporting equality predicates [MFP06]

in subscriptions; they present some optimizations for this restricted setting to

reduce the size of the tree. The overall approach in [ASS+99] might generally

be applicable to operators other than equality as well. However, in this case,

the subscription index tree increases in both height and width, sharing the

problems of [GS95].

Predicates are not indexed in this approach. Subscriptions can only be

shared in a branch of the index tree if all predicates of these subscriptions are

the same from a particular point onwards. Furthermore, the order of attributes

and operators needs to be predefined, which is too strong an assumption for a

general-purpose solution. Because various branches of the created index tree

need to be evaluated in the filtering process and predicates are not indexed,

the approach in general degrades in efficiency for general settings.

Moreover, the insertion process for newly registered subscriptions is highly

inefficient if the optimizations that are required to avoid an explosion in tree

size are applied: nearly the whole tree might have to be analyzed for insertion,

making it a static filtering solution in practice. This limitation is identified in

the literature, for example, [FJL+01, RDJ02, WK05].

34 Chapter 2. Background and Related Work

We therefore conclude that [ASS+99] is not a suitable approach for general

applications.

Campailla and colleagues [CCC+01]. Next to Elvin [SA97, SAB+00],

this approach is the only filtering algorithm that supports general Boolean

subscriptions. Its main idea is to represent subscriptions by an ordered binary

decision diagram (BDD) [Bry86].

In the filtering algorithm, under all circumstances, all registered subscrip-

tions need to be fully evaluated for each incoming message. This is because the

subscription index is evaluated backwards, from the terminal nodes (no chil-

dren) to the output nodes (no parents) of the BDD. This attribute only makes

it a feasible solution if the created BDDs for subscriptions represent graphs

with highly equivalent subgraphs in their lower parts. Otherwise, the algo-

rithm degrades to the basic filtering approach, not fulfilling our (and its own)

requirements. Additionally, predicates are not indexed, leading to a costly

predicate evaluation process in general.

It is hence not only an assumption that subscriptions are highly similar

with respect to both their predicates and the combination of these predicates.

Moreover, it is a requirement that these redundancies can be exploited in the

created subscription index. As we will demonstrate later, the experiments in

[CCC+01] show that the presented approach does not fulfill this goal even if

its strong redundancy assumption is met.

With respect to memory requirements, the size of a BDD, and thus the size

of the subscription index, may become exponential [CCC+01, MFP06] (general

Boolean subscriptions are supported). The size in practice strongly depends

on the ordering of variables (predicates of subscription). The determination of

an optimal order is an NP-hard problem [BW96]. [CCC+01] does not consider

the ordering of variables. Instead, the approach requires a given, fixed order

of variables. If this order needs to change (e.g., because new subscriptions

have been registered), all subscriptions have to be re-indexed by the approach,

making it impractical to adapt to the current subscription set. The approach

outlined in [CCC+01] thus also constitutes a restricted filtering solution in

this respect. Furthermore, [CCC+01] leaves open the question of how a newly

registered subscription is inserted into a BDD, this being one of the key points

for the construction and the size of the subscription index.

Nevertheless, let us assume the restricted application setting that suits this

approach. The experiments in [CCC+01] assume a total of only 208 distinct

2.3 Event Filtering Algorithms 35

predicates within all registered subscriptions. The experimental evaluation re-

veals that even such highly similar subscriptions already lead to linearly grow-

ing sizes of the subscription index with an increasing subscription number,

and thus to linearly increasing filtering times. If these specialized experiments

show a linear increase in the size of the index structure, more general appli-

cation settings are expected to lead to index sizes, and thus filtering times,

that grow exponentially with the number of registered subscriptions (general

Boolean subscriptions are supported).

Moreover, in the dynamic version of the system that does not require an

iterative (and thus costly) index minimization on a per-subscription basis, the

number of nodes in the created subscription index is only marginally less than

the average number of predicates per subscription (7.09 nodes compared to

7.6 predicates per subscription on average). Thus, even in experiments with

highly redundant subscriptions, [CCC+01] cannot exploit existing redundan-

cies among subscriptions.

We conclude that [CCC+01] leaves open too many fundamental questions,

does not address our general-purpose requirement, and cannot even exploit the

redundancy among highly common subscriptions.

One-Dimensional Predicate Indexing, Shared Subscription Indexing

Approaches

Only one main algorithm falls into category OP-SS, [LHJ05]. As we demon-

strate, this approach is also too restricted in its applicability to be considered

a general-purpose filtering algorithm.

Li and colleagues [LHJ05]. This filtering algorithm, sketched in [LHJ05],

was proposed concurrently to our work (Chapter 4); it uses modified binary

decision diagrams (MBDs) [JT92] as subscription index structure. In contrast

to the original BDD approach presented in [CCC+01], [LHJ05] is restricted

to conjunctive subscriptions. Another difference is that the registered sub-

scriptions are represented by a set of MBDs, that is, several indexes represent

registered subscriptions. As an extension of [CCC+01], [LHJ05] applies one-

dimensional predicate index structures, resulting in its classification as OP.

Despite these differences, [LHJ05] shares the problems and limitations of

[CCC+01] that have been described in the previous subsection: For each in-

coming event message, all registered subscriptions need to be fully analyzed.

36 Chapter 2. Background and Related Work

Even though it can be decided whether predicates are fulfilled by incoming

messages by consulting the predicate index structures, all MBDs still have to

be completely evaluated to determine fulfilled subscriptions. This requirement

of the full evaluation of all MBDs for each message is a substantial drawback

of [LHJ05] (as well as [CCC+01]): the complexity of filtering any message in

[LHJ05] directly corresponds to the size of the subscription index structure.

As the original BDD solution, [LHJ05] thus degrades to the basic filtering ap-

proach, if the presumed high redundancy among subscriptions is not given or

the created subscription index cannot exploit the existing redundancies.

One of the open points of the original BDD approach [CCC+01] is how

newly registered subscriptions are inserted into the existing subscription index

structure. [LHJ05] tries to exploit its restriction to conjunctive forms to decide

whether a newly registered subscription is integrated into an existing MBD or

is inserted as a new MBD in the subscription index. The presented insertion

approach, however, depends on a given fixed order of variables. Thus, the

algorithm still (as the original approach) requires the impractical re-indexing

of all subscriptions if the globally chosen order becomes suboptimal. Therefore,

the suitability of [LHJ05] for non-static environments with potentially changing

characteristics of subscriptions is not given.

Generally the method of ordering variables that is proposed in [LHJ05] is

not applicable to general settings with non-extreme predicate redundancy. It

is even inapplicable if only a marginal proportion of predicates is not shared

among most subscriptions. The reason for this property is that MBDs in

[LHJ05] can only be shared by those subscriptions that specify the same sec-

ond predicate according to the given attribute order. However, the ordering

required by [LHJ05] starts with the least common predicates because redun-

dancies among subscriptions can only be exploited at the bottom of MBDs.

The sharing of MBDs thus breaks down as soon as subscriptions do not contain

highly common predicates only. It is noteworthy that even in the best possible

case only those parts of subscriptions that contain exactly the same predicates

from a particular point onwards (in the assumed, fixed predicate order) can

be shared.

Thus, as with the original BDD approach, the solution in [LHJ05] does not

constitute a general-purpose filtering algorithm. Additionally only excerpts

of the algorithm are briefly sketched in [LHJ05]—the work mainly focuses on

event routing optimizations. [LHJ05] does not even investigate the size of the

2.3 Event Filtering Algorithms 37

created MBDs. There is no reason why the arbitrary selection of the second

predicate (in a fixed order) for sharing MBDs should lead to better results

than [CCC+01]. The settings analyzed in [LHJ05] are restricted and contain

highly redundant predicates: One data set contains 2,000 distinct predicates;

another data set contains 5,000 distinct predicates.

One-Dimensional Predicate Indexing, Individual Subscription In-

dexing Approaches

For category OP-IS, we named two filtering algorithms in Section 2.3.1. Only

one of them, the counting approach, constitutes a general-purpose solution to

the filtering task, as described in the following paragraphs.

Cluster algorithm [HCH+99, FJL+01]. This conjunctive filtering algo-

rithm applies one-dimensional predicate indexes for efficiency reasons. The ap-

proach is presented in detail by Fabret and colleagues [FJL+01] and is based on

a proposal by Hanson and colleagues [HCH+99]. Its general idea is to cluster

sets of subscriptions. However, as we describe later on, the criterion required

for an effective clustering disqualifies [FJL+01] as a general-purpose solution.

With respect to efficient filtering, [FJL+01] proposes to cluster subscrip-

tions in such a way that for each incoming event message only a minimal

number of clusters (preferably one cluster) can contain fulfilled subscriptions.

Hence, the clusters that are determined for an incoming message usually in-

clude both fulfilled and unfulfilled subscriptions. In order to derive the set

of fulfilled subscriptions from each cluster, all subscriptions in this cluster are

evaluated by the filtering algorithm. In combination with the applied predicate

indexes, it is sufficient to analyze whether all predicates of each subscription

are fulfilled.

[FJL+01] uses the notion of access predicate to refer to a predicate (or a

set of predicates) that is used for clustering. The approach considers equality

predicates as access predicates [MFP06]7. This assumption on its own already

disqualifies [FJL+01] as a general-purpose solution because it is not applicable

in other scenarios at all. Furthermore, “intricate schemes” are required by

the cluster algorithm to determine access predicates, as admitted by one of its

authors [AJL02].

7[FJL+01] states that a further property of access predicates is that they are required to
be fulfilled in a fulfilled subscription. Evidently, this is the case for all predicates because
[FJL+01] is restricted to conjunctive subscriptions.

38 Chapter 2. Background and Related Work

But even if assuming that there is at least one equality predicate per sub-

scription, [FJL+01] only achieves an appropriate filter efficiency if the majority

of predicates in subscriptions are equality predicates. Only if this strong as-

sumption holds, does the clustering envisaged by [FJL+01] become possible.

Furthermore, the algorithm requires subscriptions to contain the same overall

number of predicates to be able to cluster them together.

These problems let us conclude that [FJL+01] only constitutes an appro-

priate filtering solution in highly limited application settings.

Counting algorithm [AJL02, YGM94]. The counting algorithm is a fil-

tering approach for conjunctive subscriptions that balances memory usage and

filter efficiency, and fulfills the requirement of its applicability in a wide range

of settings. We give a technical description of the counting approach in Sec-

tion 2.3.3. In the following paragraphs, we demonstrate its broad idea and the

resulting suitability for various scenarios.

The overall idea of the counting algorithm is to count the number of fulfilled

predicates per subscription in the filtering process. The counting of predicates

is based on one-dimensional predicate indexes, allowing for the determination

of all predicates that are fulfilled by an incoming message. Having counted the

number of fulfilled predicates per subscription, all those subscriptions whose

counter equals their overall number of predicates constitute a fulfilled subscrip-

tion.

Analyzing this approach to filtering, we firstly realize that the counting

algorithm is independent of the redundancy among predicates. Secondly,

it is applicable regardless of the similarity among subscriptions. Thirdly,

[AJL02, YGM94] does not depend on the use of particular attribute filters

in predicates (considering their effect on subscription indexing). Conversely,

the approach shows comparable filter efficiency and memory requirements for

a wide range of settings independently of the previous mentioned parameters.

Fourthly, the created subscription index is highly flexible with respect to both

registrations and deregistrations, and changing subscription characteristics.

Altogether these characteristics make the counting approach a general-purpose

filtering solution.

Evidently, [AJL02, YGM94] does not represent the most time-efficient and

the most space-efficient filtering solution in those specialized settings that are

(either exclusively or primarily) targeted by the previously analyzed filtering

solutions. However, as identified, the counting approach represents a general-

2.3 Event Filtering Algorithms 39

purpose solution that, firstly, can be applied to the full range of settings.

Secondly, its time efficiency properties do not degrade to a basic filtering ap-

proach if the exploited parameter setting does not hold. Thirdly, its memory

requirements remain stable over all settings and do not grow excessively for

general scenarios.

Summary

Our analysis in this section led to two main findings:

1. There exist only basic filtering algorithms for general Boolean subscrip-

tions.

2. All conjunctive filtering algorithms except one have too strong require-

ments on the supported application scenario to classify as a general-

purpose solution.

With respect to Finding 1, there are two existing approaches for the filtering

of general Boolean subscriptions. Both do not apply predicate index struc-

tures, requiring the individual consideration of each predicate. Elvin [SA97,

SAB+00] constitutes the basic filtering algorithm, additionally requiring the

consideration of each individual subscription in the filtering process. Cam-

pailla and colleagues [CCC+01], on the other hand, cannot adapt to changes

in the subscription base. Although the approach indexes subscriptions, all

subscriptions need to be fully evaluated in the filtering process. Already for

scenarios with highly similar subscriptions, [CCC+01] cannot exploit existing

redundancies, de facto leading to the same problem size as in the basic filtering

approach.

With respect to Finding 2, most existing conjunctive filtering algorithms

are designed to exploit particular patterns of “niche” application scenarios.

Some of these algorithms cannot be applied to more general settings at all.

Other algorithms are generally applicable to a broader range of scenarios.

However, either their internal filtering process becomes the basic approach in

this case, or the memory requirements of the algorithm explode exponentially.

As we outlined before, in this dissertation we focus on solutions that are

applicable to a wide range of application scenarios. In our previous analysis,

it became evident that only the counting algorithm [AJL02, YGM94], an in-

dividual subscription indexing approach, constitutes a filtering algorithm that

40 Chapter 2. Background and Related Work

is well-suited for general application settings. Existing shared subscription in-

dexing approaches, on the other hand, are too restrictive in their assumptions

and not applicable to general application scenarios.

Taking into account these findings, we implicitly refer to individual sub-

scription indexing approaches in general and to the counting algorithm in

particular when talking about filtering algorithms in the following.

Based on our requirement of a general-purpose filtering solution for gen-

eral Boolean subscriptions, we ultimately extend the conjunctive counting al-

gorithm to a general Boolean solution in Chapter 4. In the following section,

we give a technical outline of the original counting approach to give the reader

a better understanding of this algorithm.

2.3.3 Outline of the Counting Algorithm

As previously identified, the counting algorithm [AJL02, YGM94] is a general-

purpose conjunctive algorithm. It was originally proposed by Yan and Garcia-

Molina in [YGM94]. According to our categorization, the counting algorithm

classifies as a one-dimensional predicate indexing approach. Internally, the

algorithm assigns artificial identifiers to all predicates p and conjunctive sub-

scriptions s: id(p) and id(s), respectively.

The event filtering process in the counting algorithm comprises two steps as

follows: In the first filtering step, predicate matching , the algorithm determines

all fulfilled predicates for the incoming event message e. These predicates are

obtained by using the one-dimensional predicate indexes for every attribute-

value pair of e; this information is recorded in a fulfilled predicate vector .

The second filtering step, subscription matching , calculates all fulfilled sub-

scriptions based on the information obtained previously and stored in the ful-

filled predicate vector. We illustrate the subscription matching step in Fig-

ure 2.10. Its description in written form is as follows:

In the first phase, the algorithm accumulates a counter in a hit vector ,

containing one entry per registered subscription. Information about the use

of predicates in subscriptions is found in a predicate-subscription association

table, built up when registering subscriptions. This table associates every

predicate identifier id(p) that is known to the system to a set of subscription

identifiers {id(si), . . . , id(sj)}. The semantics is that the respective predicate

is contained in every subscription it is associated with in this table.

After all fulfilled predicates have been calculated and their counters have

2.3 Event Filtering Algorithms 41

subscription

predicate
Fullfilled 0 0 0 0 0 1 1

 10 15 12..

 10 11 12..

id(p)

{id(s)}

1

2,3

79

70

.. ..

....

Subscription
predicate
count
vector

vector
Hit

subscription

table
association

Predicate−

the predicate

Fulfilled predicateUnfulfilled predicate

List of fulfilled
predicates

Subscriptions containing

Accumulation per
subscription

Number of
predicates per
subscription

Fulfilled subscriptions

Equality test

Actual number of
fulfilled predicates
per

vector

Figure 2.10: Overview of the subscription matching step and the required
matching structures in the conjunctive counting algorithm. We use integers as
example predicate and subscription identifiers.

been increased, the hit vector contains the number of fulfilled predicates per

conjunctive subscription. To determine the fulfilled subscriptions, the algo-

rithm now exploits the restriction of subscriptions to conjunctive forms: only

if exactly all predicates of a subscription s are fulfilled, s is fulfilled as well.

In the last phase, the algorithm compares the counter accumulated in the hit

vector to the overall number of predicates for each subscription. This infor-

mation about the number of predicates is stored in a subscription predicate

count vector , which is populated when subscriptions are registered. If both

counters show the same value, the respective conjunctive subscription is ful-

filled. A graphic overview of this subscription matching step is pictured in

Figure 2.10. Here we illustrate the fulfilled predicate vector using a bit vector

implementation.

The counting algorithm additionally requires a means to determine all pred-

icates that are contained in a conjunctive subscription. This information is

needed to efficiently support deregistrations. One approach to provide this in-

formation is the use of a subscription-predicate association table, as proposed

by Ashayer and colleagues in [AJL02]. The basic solution to search through all

entries in the predicate-subscription association table is not suitable in practice

due to efficiency aspects.

42 Chapter 2. Background and Related Work

Part 1 of our central hypothesis (page 6) regards the unsuitability of general-

purpose conjunctive filtering algorithms for general Boolean subscriptions. We

give details about the effects of the required conversion of general Boolean

subscriptions to conjunctive subscriptions in Section 2.6. Before proceeding

to these descriptions, we provide information about routing algorithms and

routing optimizations for pub-sub systems in the following two sections.

2.4 Event Routing Algorithms

Having elaborated on current solutions to the event filtering task in the last

section, we now present the state-of-the-art for the second task in content-

based pub-sub systems, the event routing task (see Section 2.1.3). Within

this dissertation, we do not work on event routing algorithms. Instead, we

apply existing solutions but propose novel event routing optimizations (see

Section 2.5 for an overview of existing optimizations), subscription pruning

(Chapter 6) and advertisement pruning (Chapter 7).

In the following descriptions, we build on our assumptions about the struc-

ture of distributed content-based pub-sub systems, as we stated in Section 2.1.2

(page 17). The algorithms described in the following introduce the general

ideas of existing routing approaches. We neither present all details of particu-

lar implementations nor analyze the differences between the systems applying

them. Within this section, we just present those particulars that are required

to understand the contributions of this dissertation. A detailed classification

and analysis of event routing algorithms can be found elsewhere, for example,

in [BH04, MFP06].

2.4.1 Event Forwarding

Considering our definition of the event routing task (see Definition 2.2 on

page 19), the event forwarding algorithm [MFP06] (referred to as flooding in

that work) solves this task, but it does so in a very network-consuming way.

It merely distributes all event messages within the whole network of brokers.

That is, it also routes a message e to those brokers that have not registered

local subscriptions fulfilled by e. Hence, the event forwarding approach does

not even require the construction of routing tables and, therefore, is one of the

simplest routing algorithms for content-based pub-sub systems.

2.4 Event Routing Algorithms 43

Following the common assumption of an acyclic overlay network as connec-

tion among brokers (see Section 2.1.2), the event forwarding routing algorithm

works as follows. We here consider the general case and do not distinguish

between event messages published by local publishers and messages routed by

brokers. We refer to the originator of a message as sender :

• Forward an incoming event message e to all neighbor brokers in the

network except the sender of e.

As one can realize, the event forwarding approach is straightforward concep-

tually and also in its implementation, and it solves the event routing task.

However, the drawback of event forwarding is the created network load: all

messages are basically flooded within the whole network of brokers [BH04].

2.4.2 Subscription Forwarding

Using subscription forwarding as the routing algorithm offers a means to avoid

the flooding of event messages within the network of brokers. This approach,

however, involves a specialized handling of subscriptions: whenever a sub-

scription s is registered by subscriber S, the designated local broker B(S)

distributes s to its neighbor brokers. These brokers, in turn, send s to all of

their neighbors except the sending broker. Proceeding in that way, subscrip-

tions construct what we refer to as event routing tables, required in the event

routing process.

This routing of event messages when applying subscription forwarding is

based purely on the created event routing tables, and it works as follows (we

again consider the general case as in Section 2.4.1):

• Forward an incoming event message e to all neighbor brokers that pre-

viously sent subscriptions fulfilled by e.

The subscription forwarding approach also requires a specialized handling of

deregistrations of subscriptions: the deregistration information needs to be

distributed to other brokers. We neither elaborate on this aspect nor pro-

vide further details here, because routing algorithms are out of the main focus

of this dissertation and not required for the understanding of our contribu-

tions. Instead, we refer interested readers to the original work on subscrip-

tion forwarding, for example, by Carzaniga and colleagues [CRW01] and by

Mühl [Müh02].

44 Chapter 2. Background and Related Work

2.4.3 Advertisement Forwarding

Advertisement forwarding also prevents the flooding of event messages within

a content-based pub-sub system. Additionally, it avoids the forwarding of all

subscriptions in the network. Instead, advertisement forwarding distributes

advertisements and only selectively forwards subscriptions based on the dis-

tributed advertisement information.

An advertisement a is forwarded to all neighbors by the designated lo-

cal broker and to all neighbors except the sender by non-local brokers. This

procedure is analogous to the distribution of subscriptions in the subscription

forwarding algorithm (see Section 2.4.2). These forwarded advertisements rep-

resent entries in subscription routing tables.

The distribution of subscriptions in the advertisement forwarding approach

is purely based on the created subscription routing tables: The algorithm only

distributes subscriptions to those neighbor brokers that previously forwarded

at least one overlapping advertisement. These subscriptions again create event

routing tables, used in the event routing process. Compared to subscription

forwarding, the advertisement forwarding algorithm therefore decreases the

sizes of the event routing tables, but it additionally requires the creation of

subscription routing tables. Considering both algorithms, one could conclude

that advertisement forwarding is an extension of the subscription forwarding

approach if incorporating advertisements.

The routing of event messages is again based purely on the created event

routing tables and works as follows (again, we consider the general case as in

Section 2.4.1):

• Forward every incoming event message e to all neighbor brokers that

previously sent subscriptions fulfilled by e.

The advertisement forwarding approach requires a specialized handling of

deregistrations of advertisements and subscriptions, for example, the distribu-

tion of the deregistration of a subscription and the distribution of the dereg-

istration of an advertisement (which additionally leads to the removal of en-

tries in event routing tables). Furthermore, the registration of advertisements,

under these circumstances, requires a distribution of its overlapping subscrip-

tions. We do not elaborate on these details here. Interested readers are referred

to the original work on advertisement forwarding, for example, described by

Carzaniga and colleagues [CRW01] or, in more detail, by Mühl [Müh02].

2.4 Event Routing Algorithms 45

2.4.4 Rendezvous Brokers

The routing by the application of rendezvous brokers also avoids the flooding of

event messages within the broker network. Rendezvous brokers are a meeting

point for subscriptions and advertisements [PB02] of a particular type8. Every

rendezvous broker is responsible for one or several event types. There is one

active rendezvous broker for each supported type9.

To allow brokers to act as rendezvous points, all subscriptions and ad-

vertisements of a particular type are sent towards the designated rendezvous

broker. In this way, forwarding broker components and the rendezvous bro-

ker itself integrate information about advertisements into their subscription

routing tables10. The same holds for subscriptions: Brokers on the path to

the rendezvous point, and the rendezvous broker, integrate information about

the processed subscriptions into their event routing tables11. Additionally, a

subscription on its way to the rendezvous broker is routed to all neighbors

that previously sent at least one overlapping advertisement (this information

is found in the subscription routing table).

The routing of an event message is based on the created event routing ta-

bles. It works analogously to the process of using subscription or advertisement

forwarding:

• Forward an incoming event message e to all neighbors that previously

sent subscriptions fulfilled by e.

The rendezvous broker approach also requires a specialized handling for dereg-

istrations of advertisements and subscriptions. Presenting details about the

management of these cases is outside the scope of this dissertation; we again re-

fer interested readers to the original work, for example, the content-based pub-

8Event types , or just types , are an additional concept in content-based pub-sub systems
we have not yet introduced. In the type-based approach, event types need to be specified
in subscriptions, advertisements, and event messages. The definition of overlap, conforming
messages, and matching messages then additionally requires the same type specifications.
We refer to Section 4.1 and 7.1 for details.

9Several brokers might alternatively be responsible for a particular type, for example,
for load balancing purposes, or to allow for the required redundancies in case of broker or
network failures.

10Note that we refer to a routing table including advertisements as a subscription routing
table because this table determines the routing of subscriptions. Conversely, Pietzuch [Pie04]
uses the notion of advertisement routing table.

11We refer to a routing table including subscriptions as an event routing table because it
determines the routing of event messages. Pietzuch [Pie04], however, denotes this concept
as a subscription routing table.

46 Chapter 2. Background and Related Work

sub system Hermes [Pie04], and the topic-based pub-sub systems Bayeux

[ZZJ+01] and Scribe [RKCD01].

2.4.5 Assumptions for this Dissertation

As stated previously, our focus does not lie on the development of event routing

algorithms. We thus assume the application of existing approaches, and design

appropriate routing optimizations as our own contributions.

Event forwarding (Section 2.4.1) is the simplest event routing approach and

applicable to applications with constantly changing subscriptions [Müh02] (i.e.,

registrations and deregistrations). Most scenarios, however, show the pattern

of highly-frequent event messages; changes in subscriptions occur regularly but

the frequency of changes is marginal compared to the frequency of incoming

messages (see Chapter 3). Here the creation of routing tables becomes a bene-

ficial solution that should be exploited to improve the overall system efficiency.

We thus do not focus on event forwarding in this dissertation.

When loosening the view of the differences between the remaining rout-

ing approaches and only considering their actual event routing processes, all

three algorithms merely use the created event routing tables (containing sub-

scriptions as routing entries) to decide on the routing of event messages. An

updated, more technical view (compare with Figure 2.6 on page 20) of the

routing algorithm using this event routing table is given in Figure 2.11. The

subscription-based routing optimization we propose later on (see Chapter 6)

manipulates the entries in this table and is thus applicable to all three algo-

rithms. Our advertisement-based optimization (see Chapter 7) requires the

registration of advertisements. It can thus be used in conjunction with ei-

ther the advertisement forwarding (see Section 2.4.3) or the rendezvous broker

approach (see Section 2.4.4).

The difference between these two routing solutions incorporating advertise-

ments is the varying number of advertisements and subscriptions distributed

among brokers. Advertisement forwarding distributes all advertisements and

bases its decisions on distributing subscriptions merely on these advertise-

ments. Rendezvous brokers, on the other hand, forward both advertisements

and subscriptions up to the respective rendezvous broker. Subscriptions are

distributed even further (but only on their way to the rendezvous broker),

based on these advertisements. We do not want to judge which is the prefer-

able solution here, because this decision depends on both the numbers and the

2.5 Current Routing Optimizations 47

Broker

uses

algorithm
Event routing

Event
message

fulfilled
subscriptions

having forwarded
Neighbor brokers

....

Event
routing
table

Subscription

B1s1

s2 B3

s3 B2

Figure 2.11: Updated view of an event routing algorithm in a broker using
the event routing table.

properties of advertisements and subscriptions, which are in turn influenced

by the application scenario.

The important point for this dissertation is that our optimization ap-

proaches (as well as our filtering algorithm) can be used in combination with all

three event routing algorithms. Within this dissertation, we use subscription

and advertisement forwarding to exemplify, describe, and analyze our propos-

als. This choice is primarily based on the independence of these approaches of

one crucial parameter existing in the rendezvous broker approach: the place-

ment of rendezvous brokers within the overlay network, strongly affecting the

system scalability and efficiency of this approach. Due to our choice, our results

show the general effects of our optimizations and lead to universal conclusions

without the existence of the additional but essential parameter found in the

rendezvous broker approach. A secondary reason for our choice is that the se-

lected routing solutions are easier to implement and do not require specialized

rendezvous broker implementations.

Having described our basis for event routing algorithms, we elaborate on

existing routing optimizations, their general applicability, and their suitability

for Boolean pub-sub systems within the following section.

2.5 Current Routing Optimizations

In this section, we take a closer look at existing routing optimizations for

content-based pub-sub systems. As stated in the last section, these routing

optimizations are largely applicable to the three main routing approaches:

48 Chapter 2. Background and Related Work

subscription forwarding, advertisement forwarding, and rendezvous brokers.

Within the following subsections, we introduce the general ideas and con-

cepts of these optimizations, and start an initial analysis of their assumptions

and their implications in practice. In Section 2.5.1, we generally elaborate

on the concepts and goals of optimizations, and identify several classes of

optimizations. The covering optimization is widely applied in content-based

pub-sub systems for both advertisements and subscriptions. We present its

optimization idea in Section 2.5.2. The next section (Section 2.5.3) then intro-

duces the merging optimization, another approach applicable to both adver-

tisements and subscriptions. Finally, Section 2.5.4 elaborates on subscription

summarization, a more recent optimization approach that is based on sub-

scriptions.

2.5.1 Types of Routing Optimizations

The general goal of routing optimizations for content-based pub-sub systems

is the improvement of the event routing process with respect to certain quality

measures of the system (see Section 2.2). These measures might also implicitly

be altered when changing particular system parameters or algorithms (see

Figure 2.9, page 27).

Both quality measures we have given in Figure 2.9 (scalability and effi-

ciency) offer the opportunity for optimization. The internal subscription model

(as well as the internal advertisement model), on the other hand, has to be

supported by the applied optimization approach. (This is the main draw-

back of current optimizations, being impractical to apply for general Boolean

languages, as argued in Sections 2.5.2 to 2.5.4.)

Generally, we can distinguish between subscription-based optimizations and

advertisement-based optimizations. Subscription-based optimizations aim at

the manipulation of subscriptions, that is, they alter entries in event routing

tables. Advertisement-based optimizations, conversely, attempt to manipulate

advertisements, that is, they alter those parts of the system that determine

the distribution of subscriptions and are stored in subscription routing tables.

We give a graphic view of these two kinds of optimizations in Figure 2.12.

The effect of both kinds of optimizations is a decrease in the memory

requirements (to store either subscription base, i.e., event routing tables, or

advertisement base, i.e., subscription routing tables). In turn, these memory

requirements influence system scalability (see Figure 2.9).

2.5 Current Routing Optimizations 49

Subscription routing table

....

Subscription Broker

..

Advertisement

..

Broker

Subscription−based optimization Advertisement−based optimization

Manipulation process

Event routing table

B1s1

s2 B3

s3 B2

a1

a2

a3 B2

B3

B1

Figure 2.12: Difference between the manipulation in subscription-based and
advertisement-based optimizations.

Another way to distinguish optimizations is by their adverse effects. Op-

timizations are either non-interfering or interfering optimizations. Represen-

tatives of non-interfering optimizations are the covering (see Section 2.5.2)

optimization and the perfect merging optimization (a variant of merging, see

Section 2.5.3). They aim at influencing one system parameter, the memory

requirements, without affecting other system parameters, for example, the net-

work load.

Interfering optimizations, however, influence several parameters at the same

time. These optimizations, in general, have certain target parameters to be al-

tered and try to minimally affect other parameters as well. Representatives are

the imperfect merging approach (merging variant, see Section 2.5.3), subscrip-

tion summarization (see Section 2.5.4), and the optimizations we introduce in

Chapter 6. They primarily try to decrease the memory requirements, but they

secondarily increase the network load as well.

The second routing optimization we propose (see Chapter 7) classifies as

advertisement-based interfering optimization. It reduces the memory require-

ments for subscription routing tables (advertisement base), but it additionally

increases the overlapping relationships within the system (accuracy of sub-

scription routing tables). This attribute, in turn, affects the network load for

distributing subscriptions and the memory requirements for their storage, that

is, the size of event routing tables. We graphically illustrate this way of distin-

guishing routing optimizations based on their adverse effects in Figure 2.13.

We introduce and analyze existing optimizations within the following sub-

sections.

50 Chapter 2. Background and Related Work

...

Secondary parameter

Primary manipulation Secondary manipulation

Non−interfering optimization

... ...

Secondary parameter

Target parameter

... ...

Target parameter

...

Interfering optimization

...

Figure 2.13: Difference between the manipulation in non-interfering and in-
terfering optimizations.

2.5.2 Covering Optimization

Covering aims at removing redundancies among either subscriptions or adver-

tisements, that is, in event routing or subscription routing tables. Its compu-

tation is based on event messages potentially fulfilling a subscription and on

event messages conforming to an advertisement, respectively.

Let us assume, we have given two subscriptions si and sj . Subscription si

covers subscription sj if, and only if, E(si) ⊇ E(sj). The same definition applies

to advertisements: An advertisement ai covers an advertisement aj if, and only

if, E(ai) ⊇ E(aj). The covering relationship thus describes the inclusion of the

set of matching event messages of one subscription sj (or the set of event

messages conforming to an advertisement aj) in those of another subscription

si (or in those conforming to another advertisement ai). Similar definitions

of covering have been given in the literature, for example, by Carzaniga and

colleagues [CRW01], and by Mühl and Fiege [MF01].

Analyzing the covering relationships among the non-local subscriptions of

a broker leads to an optimization potential in combination with the applied

routing algorithm: Brokers forward an event message e to neighbors that pre-

viously registered at least one subscription fulfilled by e (found in event routing

tables). These neighbor brokers, indeed, do not need to know what subscrip-

tion is fulfilled, because this knowledge is computed by applying the filtering

algorithm within this broker. Hence, an intuitive optimization idea to apply to

a routing algorithm is to ignore a subscription sj , forwarded from a neighbor

2.5 Current Routing Optimizations 51

broker B, in routing decisions if B forwarded another subscription si that leads

to the routing of the same or more messages.

Applying this idea does not affect the routing accuracy and thus the cor-

rectness of the system (a more theoretical definition of covering including a

formal proof can be found in [Müh02]). Due to this behavior, covering clas-

sifies as non-interfering optimization: it only reduces the number of entries

in event or subscription routing tables, and thus the memory requirements

(for advertisements, one can apply the same ideas based on the overlapping

relationships rather than on the matching of event messages).

There is a variant of covering, called subscription subsumption [OJPA06].

Its idea is to exploit the covering relationships among various subscriptions,

that is, a subscription might be redundant and does not need to be forwarded

because it is covered by a set of other subscriptions. This approach provides

an interfering solution for conjunctive subscriptions. Due to the complexity of

the subsumption task (being co-NP complete, as shown by Srivastava [Sri93]),

[OJPA06] proposes and describes a probabilistic computation algorithm, lead-

ing to false negatives (subscribers are not notified about matching event mes-

sages).

As derived from the previous definitions, one can apply covering as both

a subscription-based and an advertisement-based routing optimization. This

dual approach is supported by the routing protocols of Siena [CRW01]. How-

ever, this work does not analyze the influence of advertisement covering on

any system parameter. The same holds for Hermes [Pie04], which only sup-

ports type-based advertisements. Subscription covering is applied more widely

in content-based pub-sub systems, for example, in the research prototypes

Padres [LHJ05], Rebeca [MF01, Müh02], and XRoute [CF03].

The covering optimization, however, shows a number of shortcomings when

applied in practice:

General Applicability. The applicability of covering strongly depends on

the registered subscriptions and advertisements. If there are no or only a few

covering relationships among them, there is no or only a small optimization

potential by applying the covering optimization.

The amount of cover that exists generally depends on the application area,

including the attribute domains, the typical interests of subscribers, and the

typical publication patterns. By and large, covering relationships in practice

are based on very restrictive requirements: Even if a subscription si describes

52 Chapter 2. Background and Related Work

only one potential event message that is not described by another subscrip-

tion sj and vice versa, there is no covering relationship between these two

subscriptions (this analogously holds for advertisements when considering the

conforming messages).

Overhead for Deregistrations. The efficient support of deregistrations in

practice when applying covering is questionable and, to our knowledge, has

not been evaluated empirically to date.

Generally, the more optimization potential a particular application scenario

leads to, the less efficient the deregistration process becomes. Or, to look at

this statement from another viewpoint: the more advantageous the application

of covering with respect to efficient and scalable event routing, the more disad-

vantageous the application of covering with respect to changes in subscription

or advertisement base.

The reason for this behavior is the need to recover the removed redundan-

cies (by applying covering) when deregistering. Let us consider the deregistra-

tion of a subscription s that covers various subscriptions from the same broker

B. To ensure correct event routing, all subscriptions covered by s need to be

forwarded by B. Scaling this overhead to the overall network, the deregistra-

tion of only one subscription potentially leads to the additional registrations

of various subscriptions, affecting both network load and computational load.

Furthermore, the covering relationships among these newly registered sub-

scriptions might lead to an even higher overhead. A similar situation occurs

when deregistering advertisements. The created load might get even higher in

this scenario, because the alteration of the existing overlapping relationships

might additionally have effects on subscriptions and even affect their covering

relationships.

Internal Subscription or Advertisement Model. The covering opti-

mization has only been applied in combination with conjunctive subscrip-

tions and advertisements so far. Some systems restrict their specifications

even further, for example, Rebeca [Müh02] additionally restricts subscrip-

tions and advertisements to contain at most one predicate per attribute, and

Hermes [Pie04] only supports type-based advertisements.

Algorithms to efficiently compute the covering relationships among general

Boolean subscriptions or advertisements, to our knowledge, do not exist in

the pub-sub literature. This is due to the computational complexity of the

2.5 Current Routing Optimizations 53

covering task for this class of expressions. We conclude therefore that covering

is impractical to apply for languages more general than conjunctive languages.

Another optimization approach close to covering, called merging, is preva-

lent for conjunctive subscription and advertisement languages. We elaborate

on this proposal in the following subsection.

2.5.3 Merging Optimization

Merging also tries to reduce the number of registered subscriptions and adver-

tisements, and thus the memory requirements for event and subscription rout-

ing tables. It does exist in a subscription-based and in an advertisement-based

variant. The definition of merging is again founded on the event messages that

either match subscriptions or conform to advertisements.

Let us assume we have given a subscription s and a set of subscriptions

Si. Subscription s is called a merger of subscription set Si if, and only if,

E(s) ⊇
⋃

si∈Si
E(si). According to the type of set inclusion, one refers to s as a

perfect merger (for set equality) or as imperfect merger (for a proper superset

relationship). These two definitions can similarly be applied to advertisements

by exchanging s with an advertisement a and Si with an advertisement set Ai.

Based on these definitions, one can identify two variants of merging: perfect

merging and imperfect merging . Comparable definitions of merging can be

found in the literature, for example, by Mühl and Fiege [MF01], and by Li and

colleagues [LHJ05].

The general idea of applying merging in practice is as follows: broker com-

ponents aim at the merging of subscriptions or advertisements that were for-

warded by the same neighbor. That is, they decrease the number of routing

table entries. When assuming that the created merger requires fewer memory

resources, this process reduces the memory requirements of the system.

The creation of a perfect merger only affects the memory requirements but

not, for example, the accuracy of event and subscription routing tables. It is

thus a non-interfering optimization. When merging subscriptions imperfectly,

more event messages (referred to as false positives) are forwarded within the

broker network, leading to an increased internal network load. This is due

to the inaccuracy of event routing tables. The imperfect merging of adver-

tisements leads to an increasing amount of overlap (due to the inaccuracy of

subscription routing tables). Hence imperfect merging classifies as interfering

54 Chapter 2. Background and Related Work

optimization.

Due to the merging of only non-local subscriptions and advertisements, the

application of any of the two merging approaches does not affect the correctness

of the filtering task in content-based pub-sub systems. Local brokers still

determine exactly those subscriptions that are fulfilled by an incoming message.

Thus, the content-based pub-sub system performs the same notifications as in

the un-optimized case.

Subscription-based merging is applied in a range of systems, for example, in

the work of Crespo and colleagues [CBGM03], Li and colleagues [LHJ05], and

Mühl and Fiege [MF01]. Advertisement-based merging is formally defined, for

example, in conjunction with the Rebeca system [Müh02]. However, we are

not aware of any evaluation of advertisement-based merging.

The application of imperfect merging poses several unsolved questions, as

consistently identified by Mühl [Müh02] and Li and colleagues [LHJ05]: when,

what, and how to merge? Li and colleagues [LHJ05] propose an imperfect

degree, describing the influence of a merger of subscriptions on the number of

event messages described by this merger (leading to false positives). They also

extend this measure to incorporate registered advertisements.

However, the merging optimization still shows a number of shortcomings

in practical application, described as follows:

General Applicability. Although the application of merging does not rely

solely on the registered subscriptions and advertisements [Müh02], they still

play a significant role in the practical applicability of this optimization. In

particular in combination with today’s restricted conjunctive subscription and

advertisement languages, the potential to represent a perfect merger for a given

set of subscriptions or advertisements is very limited.

Hence, the applicability of merging in such systems in practice is question-

able if assuming the registration of general subscriptions and advertisements.

One can easily imagine the registration of, for example, conjunctive subscrip-

tions that do not allow for the creation of any conjunctive perfect merger.

These subscriptions thus cannot be optimized at all by this approach. Gener-

ally, the larger the attribute domains, the larger the number of attributes, or

the more diverse the registered subscriptions or advertisements, the harder to

find perfect conjunctive mergers.

Imperfect merging, on the other hand, is applicable more often. However,

its suitability also depends on the registered subscriptions and advertisements,

2.5 Current Routing Optimizations 55

and their definition languages. Generally, the less general a definition language,

the more inaccurate the potential mergers. For today’s conjunctive languages,

the practical suitability of imperfect merging is thus questionable.

Overhead for Deregistrations. Similarly to the covering optimization (see

Section 2.5.2), the merging approach leads to a large overhead if subscriptions

or advertisements are deregistered.

Let us assume the deregistration of one subscription si of a set of subscrip-

tions Si (i.e., si ∈ Si) that is merged into a merger sj. If si is not covered

by the other subscriptions in Si, the merger sj (and thus event routing ta-

ble) becomes more inaccurate (or just inaccurate if sj was a perfect merger).

At a certain point of inaccuracy, sj needs to be replaced by its constituents

sk ∈ Si \ {si} (or one or several new mergers). The deregistration of merger

sj and the registration of its constituents then need to be distributed around

the (potentially whole) network.

Merger sj might, indeed, have been merged in other brokers as well, lead-

ing to large inaccuracies and deregistrations of these other mergers. Thus, the

deregistration of only one subscription (i.e., si) might easily lead to cascad-

ing deregistrations within the whole network of brokers. But even if this is

not the case, one deregistration can cause the additional need to distribute

various other registrations and deregistrations, as explained previously. The

same effects occur when considering deregistrations of advertisements. The

inaccuracy in this case refers to the additional amount of overlap (and the

subscription routing table) rather than the additional network load for event

routing.

Internal Subscription or Advertisement Model. All current content-

based pub-sub systems that support merging are restricted to conjunctive sub-

scriptions and advertisements. The underlying reason for this limitation is the

complexity of the general merging task, shown to be NP-hard [CBGM03].

This leads to our conclusion that the support of subscription and advertise-

ment merging in combination with more general languages than conjunctive

languages is impractical.

Memory Usage. The optimization goal of merging is to reduce the mem-

ory requirements for routing tables and thus to increase system scalability (see

Section 2.2). A perfect merger might, however, easily require the same memory

56 Chapter 2. Background and Related Work

resources as its merged constituents. This is particularly the case for diverse

subscriptions and advertisements, as argued previously (applicability of merg-

ing, see page 54). For imperfect merging, there exists a trade-off between the

memory resources for routing tables and their inaccuracy.

Next to merging, targeting dynamic optimization of content-based pub-sub

systems, other approaches target the summarization of subscriptions and the

distribution of these summaries within the network. We sketch them in the

following subsection.

2.5.4 Subscription Summarization

An idea similar to merging is to summarize subscriptions, thus classifying as

subscription-based optimization. It was proposed and analyzed by Triantafil-

lou and Economides [TE02, TE04], and by Wang and colleagues [WQV+04].

The overall idea of subscription summarization is to analyze the registered

subscriptions and to distribute a summary of these subscriptions to the other

brokers in the network. This summary, ideally, requires less memory and allows

for a more efficient routing process.

Triantafillou and Economides [TE04] deal with summaries that do not in-

clude all subscriptions of all brokers, with the help of additional information

carried by each event message. A message includes information about what

brokers (i.e., the local subscriptions of these brokers) were already evaluated

against the message. Event messages are then forwarded to brokers as long as

the subscription summaries of all existing brokers have not been processed.

Wang and colleagues [WQV+04] weaken the concept of local brokers and

let the system decide on a broker handling a subscription. This decision is

based on the similarity of a new subscription with those subscriptions that are

already managed by a broker. Brokers then send summaries of all registered

subscriptions to the other brokers in the network. In the event routing process,

all brokers with matching subscriptions can thus be calculated.

Both of the described approaches [TE02, WQV+04] use Bloom filters [Blo70]

within their subscription summaries. This approach was adopted by Yoneki

and Bacon [YB05], supporting events in an XML format and the XPath sub-

scription language.

The created subscription summaries might become imprecise. Hence these

proposals categorize as subscription-based interfering optimizations. Although

2.5 Current Routing Optimizations 57

not mentioned in the respective work, there is a potential to apply these ideas

to advertisements as well.

The summarization approaches also show a range of shortcomings, similar

to the two previously described optimization proposals (covering and merging).

They are founded on the same problem areas, and we thus sketch them here:

General Applicability. The applicability of the concept of subscription

summaries also depends on the registered subscriptions. For diverse subscrip-

tions, showing little similarity, the benefits of using these approaches are less

than when applied for largely similar subscriptions. However, the approach of

Triantafillou and Economides [TE04] outperforms the covering optimization

when using their experimental setup. Wang and colleagues [WQV+04] con-

clude by stating that their interfering optimization strongly outperforms the

non-interfering variant.

Overhead for Deregistrations. Depending on the frequency of deregistra-

tions, the benefit of a summary that describes all subscriptions of a broker (or

several brokers) varies. This is due to the need to update the whole summary

in order to propagate changes. Distributing the summaries infrequently results

in strong inaccuracies, whereas frequent distribution results in a high network

load. One should also keep in mind that updating a summary causes a high

computational load due to the need to analyze the relationships among a large

number of subscriptions.

Internal Subscription or Advertisement Model. Both summary-based

approaches have been proposed for restricted conjunctive subscriptions. The

approach of Triantafillou and Economides [TE04] is intertwined with a con-

junctive filtering algorithm; it thus cannot be generalized to general Bool-

ean subscriptions. Wang and colleagues [WQV+04] also base their decisions

about local brokers for subscriptions on typical properties of mere conjunctive

subscriptions, circumventing the utilization of this proposal, for example, for

general Boolean subscriptions.

Memory Usage. Experiments by Triantafillou and Economides found that

their summarization optimization requires less memory than the covering ap-

proach [TE04]. This behavior is due to the exploitation of covering relation-

ships among individual attributes and not only among complete conjunctive

58 Chapter 2. Background and Related Work

subscriptions. However, the reduction in memory requirements still depends

on the relationships among the registered subscriptions.

2.5.5 Implications in Practice

Having analyzed existing routing optimizations within the previous subsec-

tions, we identify three common problems in recent approaches:

1. Current optimizations are only applicable to restricted conjunctive sub-

scription and advertisement languages. That is, the requirement to sup-

port more general subscriptions and advertisements is not fulfilled.

2. The optimization potential of current optimizations depends on the ex-

isting relationships among the registered subscriptions or advertisements.

That is, current optimizations are only practically applicable in restricted

application scenarios.

3. The benefit of current optimizations needs to be paid back when dereg-

istering subscriptions or advertisements. That is, current optimizations

assume relatively static subscription patterns.

The development of a routing optimization that targets only one of these

problems already constitutes a valuable contribution to current practice. We

make such a contribution in this dissertation by presenting two optimization

approaches in Chapter 6 and Chapter 7. These approaches not only target one

of the identified problems, but tackle all three of these current shortcomings.

Based on our novel approaches and their evaluation, we can verify the second

part of our central hypothesis (page 6).

Part 1 of this hypothesis regards the unsuitability of canonical conversion

for filtering algorithms in general-purpose pub-sub systems. We already hinted,

both in this chapter and in Chapter 1, at the problems that occur when cur-

rent conjunctive solutions are applied to general Boolean expressions. In the

following section, we look into these problems in more detail.

2.6 Influences of Canonical Conversion

It is common knowledge that a general Boolean expression, such as included

in a subscription or an advertisement, can be rewritten to a canonical form.

We refer to this rewriting process as canonical conversion. A candidate for

2.6 Influences of Canonical Conversion 59

a canonical form is the disjunctive normal form [Men97]. For content-based

pub-sub systems, it is questionable whether a canonical conversion approach

should be taken for subscriptions and advertisements.

Database Management Systems. In database management systems, the

restricting clause in database queries is typically internally converted into a

canonical form before its execution. Queries are rewritten by database man-

agement systems to allow for a common starting point to perform query op-

timization [JK84]. This optimization is then applied to the conjunctive com-

ponents of a disjunctive normal form [KMPS94] by employing a selection of

predefined conversion rules. Finally, the database management system cre-

ates access plans for different ways of processing the query and executes the

cheapest plan [JK84].

Pub-Sub Systems. The conversion is already implicitly applied in con-

tent-based pub-sub systems if taking the data storage view (see Section 2.1.1,

page 15): the transient counterparts to database queries, event messages, are

restricted to a canonical property—they are defined as attribute-value pairs

with default conjunctive semantics.

Content-based pub-sub systems thus build on the foundation of database

management systems with respect to the canonical property of transient data.

The conversion of subscriptions and advertisements (stored data), however,

does not have an equivalent in database management systems; in these systems,

it would correspond to the conversion of all data to a predefined canonical form,

such as a flat-file format.

Main Problem: Explosion in Complexity. Our main argument against

the practice of converting general Boolean subscriptions or advertisements into

disjunctive normal forms is its influence on the memory requirements for their

storage (and indexing): a disjunctive normal form, in the worst case, is expo-

nential in size compared to the equivalent general Boolean expression. This im-

plication is consistently acknowledged in the pub-sub area [CCC+01, MFB02].

An exponential increase in size might not occur that often in practice.

However, even relatively little increases in complexity already favor the use of

general Boolean subscriptions and advertisements over the equivalent canonical

form. We show this property throughout this dissertation.

60 Chapter 2. Background and Related Work

The underlying reason for the inappropriateness of conversion in pub-sub

systems is found in (i) the opposite problem definitions in content-based pub-

sub and database management systems, and (ii) the opposing application of

canonical conversion in these systems. A database management system deals

with a small number of transient and canonically converted queries at one

point in time. Instead, in a content-based pub-sub system, a large number of

stored and canonically converted subscriptions is registered, and they need to

be continuously matched against incoming messages (transient and canonical

by definition).

The increase in resources (both memory and computational) required in

pub-sub systems when performing conversion is thus, in absolute terms, much

higher than in the case of simultaneously executing, for example, a 2-digit

number of database queries at one point in time. Additionally, pub-sub systems

lack sufficient solutions to optimize subscriptions in general application settings

(see Section 2.3), this optimization being the reason for conversion in database

management systems.

The increased complexity when converting subscriptions and advertisement

affects the main algorithms for pub-sub systems, including the filtering algo-

rithm, the routing algorithm, and the overlapping calculation algorithm.

Consequences: Scalability. The filtering algorithm in pub-sub systems is

applied in each individual broker component; its scalability is mainly deter-

mined by the memory requirements (space-scalability, see Section 2.2). Canon-

ical conversion increases the size of subscriptions, and thus their memory re-

quirements for storage and indexing. Hence the scalability of individual brokers

decreases. Even though there exists some redundancy among converted sub-

scriptions, current filtering algorithms cannot exploit this property (see Sec-

tion 2.3). A Boolean filtering approach, on the other hand, does not convert

in the first place.

The specifications of publishers (advertisements) need to be handled simi-

larly to subscriptions in pub-sub systems [Müh02]. Hence comparable problems

and implications regarding scalability arise when converting advertisements.

The applied routing algorithm distributes subscriptions and advertisements

as routing entries within the broker network. Thus, if subscriptions and ad-

vertisements increase in their overall size, the respective routing tables be-

come larger. Thus, the effects of canonical conversion on central brokers are

multiplied in the overall network due to the distribution of subscriptions and

2.6 Influences of Canonical Conversion 61

advertisements. Besides these effects of canonical conversion on memory re-

quirements, the network load for distributing subscriptions and advertisements

increases, also affecting overall system scalability (see Figure 2.9, page 27).

Consequences: Efficiency. The influence of canonical conversion on sys-

tem efficiency is twofold. On the one hand, filtering algorithms specialized for

conjunctive subscriptions exploit the property of only handling conjunctions,

and thus do not need to consider the Boolean combination of predicates in

subscriptions (see Section 2.3). The same advantageous property holds for the

algorithms to calculate the overlap between subscriptions and advertisements.

On the other hand, as an argument against canonical conversion, the size

of the problem that needs to be solved by the filtering algorithm or the over-

lapping calculation algorithm increases. Firstly, conjunctive algorithms need

to work on more subscriptions and advertisements (due to their conversion).

Secondly, the overall number of predicates within the converted subscriptions

or advertisements is much higher.

For the overlapping algorithm, these influences are more severe than for

the filtering algorithm. Both subscriptions and advertisements are converted

canonically. Hence, both inputs to the algorithm, potentially, are exponential

in size, resulting in a multiple explosion of the problem size.

The same overall argument can be applied to the routing task. Routing

table entries, on an individual basis, are less complex after conversion than

before conversion, that is, routing entries contain fewer predicates that are

conjunctively combined per definition. However, the number of routing entries

increases exponentially in the worst case, due to canonical conversion.

Conclusions. We give an overview of the identified, twofold influences of

canonical conversion on event filtering, event routing, and overlapping task

in Figure 2.14. Advantages of conversion are presented on the left-hand side

whereas disadvantages are shown on the right-hand side of the figure.

Contemplating the depicted dual effects of canonical conversion instantly

raises the question of the benefit of solely conjunctive content-based pub-sub

systems. They are clearly advantageous if an application area only requires

conjunctive subscriptions and advertisements. However, for scenarios necessi-

tating general Boolean subscriptions and advertisements, this benefit evidently

degrades and even transforms into a drawback. Within this dissertation, we

62 Chapter 2. Background and Related Work

Advantages

advertisements to distribute
More routing entries

Canonical conversion

Individual subscription
more efficient to filter

Less complex individual
routing entries

Less complex individual
subscriptions and
advertisements

Relation of more sub−
scriptions and adver−
tisements required

More subscriptions to filterFiltering task

Routing task

Overlapping task

Disadvantages
−+

More subscriptions and

Figure 2.14: Overview of the influences of canonical conversion on event
filtering task, routing task, and overlapping task.

show this behavior, and the general advantages of supporting general Boolean

subscriptions and advertisements.

2.7 Summary

Within this chapter, we introduced the general concepts and algorithms for

content-based pub-sub systems. Furthermore, we started to analyze recent

approaches and to identify their implications.

Content-based pub-sub systems show a range of similarities to database

management systems, but there are also fundamental differences between these

two kinds of systems. Their most severe dissimilarity is in the vast num-

ber of simultaneously registered subscriptions in pub-sub compared to only a

moderate number of concurrently processed queries in database management

systems. Current content-based pub-sub systems further increase not only the

number of registered subscriptions but also the number of registered advertise-

ments due to their sole support of conjunctive expressions. General Boolean

subscriptions and advertisements thus need to be converted into disjunctive

normal forms to become processable.

This canonical conversion has major influences on the scalability character-

istics of content-based pub-sub systems and also on their efficiency properties.

Conversion affects the filtering and overlapping calculation tasks in central

broker components, as well as the routing tasks within the distributed sys-

tem. Solutions to these tasks thus experience an explosion in their memory

2.7 Summary 63

requirements due to the conversion approach taken. The effect of this increased

memory use is a degrading of overall system scalability. Regarding efficiency,

the influences of conversion are twofold. They decrease the complexity of in-

dividual subproblems that need to be solved, but they strongly increase the

overall problem size.

The immediate question emerging out of these observations is whether

canonical conversion is a suitable operation in content-based pub-sub systems.

Within this dissertation, we make a case for the application of content-based

pub-sub systems that internally work on general Boolean subscriptions and

advertisements. We do so by providing the required filtering, overlapping cal-

culation, and routing solutions supporting these expressions. With the help of

our proposals, we show that systems for application scenarios involving general

Boolean subscriptions and advertisements can benefit from these more com-

pact expressions: their support leads to an extended system scalability and

system efficiency. We introduce one potential application scenario, serving as

a running example throughout, in the following chapter.

64 Chapter 2. Background and Related Work

Chapter 3

Application Scenario: Online

Auctions

I
n this chapter, we introduce an example application scenario for content-

based pub-sub systems: online auctions. We gave an initial illustration of

some pub-sub functionalities in this scenario in Example 1.1 (page 3). Gener-

ally, active notification mechanisms, as offered by pub-sub systems, are highly

desirable in online auctions to allow for an efficient dissemination of process-

related information [CB02]. We further elaborate on online auctions in general

and the benefits of integrating pub-sub mechanisms in Section 3.1.

Subsequently, we analyze the patterns of typical event messages for on-

line auctions (Section 3.2). This is followed by the definition of exemplary

subscriptions (Section 3.3) and advertisements (Section 3.4) for this scenario.

We use these instances throughout this dissertation to better describe and

exemplify our approaches, to apply the developed models, and finally to prac-

tically analyze and evaluate our proposals. To further enhance this chapter, we

sketch other valuable application scenarios for content-based pub-sub systems

in Section 3.5.

The event distributions, and the subscription and advertisement examples

we present in the following sections are based on our analysis1 of auction items

on eBay2. We restricted this analysis to book auctions, in particular to fiction

books offered in the United States. Our results allow for the derivation of a

typical event load in online auction settings (as we show in Section 3.2.3).

Combining these typical event distributions with our example subscriptions

1The analysis was undertaken on July 8, 2005.
2http://www.ebay.com/

65

http://www.ebay.com/

66 Chapter 3. Application Scenario: Online Auctions

and advertisements allows for the experimental evaluation of our approaches

using this semi-realistic scenario (see Chapter 5 and Chapter 8). This is a

valuable advantage over recent evaluations, mostly using purely artificial test

settings. The assumptions made to create these artificial workloads are rather

strong and hardly ever described in detail. This circumstance does not allow

for the repeatability of experiments or comparative evaluations of different

approaches by different researchers. This chapter is intended to close this gap,

and to describe and provide the foundations of a more realistic test setting.

3.1 Online Auctions

Generally, auctions provide a means to compete for scarce resources or goods.

There are several kinds of auctions, but online auctions mostly use a variant of

the English open-outcry auction [WWW01]: buyers may place bids on items

they are interested in; sellers sell their items to those buyers that submit the

highest bids. An auction ends after a fixed amount of time.

On the one hand, online auctions offer advantages for both sellers and

buyers, such as the following:

1. Sellers reach a large group of potentially interested customers.

2. Buyers get the opportunity to choose among a great variety of offerings.

3. Items are sold according to the current market price.

On the other hand, several problems arise out of the design of current auction-

ing platforms, including:

1. Sellers need to present their items appropriately to cope with similar

offerings.

2. Buyers have to search through all offered items in order to identify items

of interest, leading to an overload in information.

3. Items need to be discovered by manual searching due to the lack of

sophisticated notification mechanisms.

These problems do not occur if applying appropriate pub-sub functionalities

in online auctions. So let us assume that items would be found automatically

if matching a user’s subscriptions: the three advantages stated before do still

3.1 Online Auctions 67

hold. The effect of Advantage 1 gets enhanced even further because it is rather

unlikely that buyers miss an item because it is presented inappropriately (which

might concern users that usually buy such items cheaply). Additionally, the

three problems disappear: Problem 1 is counteracted and solved for the same

reason as just described—the content becomes much more important than

its presentation. Furthermore, Problems 2 and 3 are automatically tackled

by the pub-sub approach, relieving users from the continuous search process.

Thus the integration of pub-sub mechanisms into online auctions is a valuable

approach, potentially leading to more user satisfaction.

In Section 3.1.3, we describe some of the envisaged pub-sub mechanisms

for online auctions and analyze their implications. Beforehand, we describe

today’s querying functionalities of online auctioning platforms (Section 3.1.1)

and currently existing pub-sub support in online auctions (Section 3.1.2).

3.1.1 Existing Querying Functionality

In traditional auctioning platforms, users have to search through all available

offerings in order to discover items of interest. These auction sites mostly

classify items into categories, allowing for a more effective search process for

buyers (due to the automatic suppression of items out of interest).

Commercial auctions offer extended search functionalities, for example, by

keyword, end date, price, quantity, or location of the seller. However, users

can only combine different criteria using conjunctive semantics. This implies

the specification of several queries in order to find items of interest involving

non-trivial (i.e., non-conjunctive) specifications (or very broad queries lead-

ing to various false positives). Keyword searches in titles and descriptions of

auction items, however, allow for more sophisticated functionality, supporting

phrase search, and disjunctive and conjunctive semantics as used in informa-

tion retrieval [WMB99].

In the literature, one can find several efforts to integrate artificial agents

into the negotiation process between buyers and sellers, for example, [RWG01].

Such services are particularly worthwhile for commercial users due to their

stable interests and their interest in automating the bidding process. Thus

the configuration of artificial agents does not change often and might become

profitable. Occasional private users, however, rather favor the more traditional

approach of visiting auctions and manually bidding for their items. A config-

uration of artificial agents is not that profitable because each item of interest

68 Chapter 3. Application Scenario: Online Auctions

requires a new specification including the bidding logic.

Furthermore, private users might not be willing to release all of their control

to artificial bidding agents. They would rather be involved in the bidding

process and, before bidding, analyze the discovered items themselves. If an

item has been personally chosen to be worthwhile for bidding (and a maximal

price has been determined), artificial agents might be configured, utilizing

certain bidding strategies [GFGRAGC98]. Therefore, the exclusive reliance on

artificial agents is unrealistic due to the requirement to manually select items

and to determine their prices individually. The automatic bidding process,

which is the focus of agent approaches, cannot be used to discover items of

interest in the first place. We, on the other hand, envisage support for and

focus on this discovery process, as described in Section 3.1.3.

Both the artificial and the human approach to buying items can take advan-

tage when using pub-sub functionalities that are provided by auctioning site

providers. We describe the currently supported, restricted active mechanisms

in the following subsection. Subsequently in Section 3.1.3, we outline those

pub-sub functionalities that are required to allow for more effective trading

and to eliminate the drawbacks described previously.

3.1.2 Existing Publish-Subscribe Functionality

We can find limited pub-sub functionalities in both commercial auctioning

platforms and academic research projects. We describe some of these different

systems in the following.

Commercial Auctioning Solutions

Currently, eBay only offers restricted notification functionalities in cases of

outbid users and ending auctions. Furthermore, users can ask to be notified

about changes in the status of items they are bidding, watching, or selling.

Thus, notifications in eBay are purely based on items whose article number is

known, that is, items that have been discovered by users using the traditional

querying functionality. Consequently, the set of pub-sub mechanisms eBay

offers to its users is rather limited.

Yahoo! Auctions3 supports similar functionalities as eBay but also includes

selected, more sophisticated mechanisms: Users get the opportunity to sub-

3http://auctions.yahoo.com/

http://auctions.yahoo.com/

3.1 Online Auctions 69

scribe to new auctions based on category, seller, or keyword. Hence Yahoo!

Auctions supports the discovery of new items by using its pub-sub functions.

However, such extended functionalities (compared to eBay) are only supported

for new items; for existing auctions, users cannot personalize their subscrip-

tions except by asking to be notified about any changes. Therefore, the active

mechanisms provided by Yahoo! Auctions cannot express various user interests

properly due to the lack of flexibility to define subscriptions, for example, to

receive notifications about items that have a specified price one hour before

the end of their auction.

Trade Me4, the New Zealand auctioning platform, offers notification func-

tionalities similar to Yahoo! Auctions. Items that have been saved to a Watch-

list can trigger e-mail notifications either 1, 12, or 24 hours before the end of

the auction. Also text messages can be sent to the bidder’s mobile phone.

Similar to Yahoo! Auctions, new items can be discovered by specifying tra-

ditional text queries that are executed on a regular basis, for example, daily.

Thus Trade Me does not offer flexible notification mechanisms and items that

trigger notifications need to be discovered using traditional querying function-

ality.

Auctioning Research Projects

IntelliBid, which describes itself as an event-trigger-rule-based auction sys-

tem [JTS04], allows subscribers to filter on product specifications and cate-

gories of items. This functionality improves the mechanisms of commercial

solutions; though the generality is still rather limited. Lochner and Well-

man [LW04] present a rule-based specification language for online auctions.

One might integrate content-based pub-sub mechanisms into online auctions

by using this proposal. However, the approach is restricted to conjunctive

rules and concentrates on the development of a general and configurable auc-

tion service.

In the pub-sub area, the integration of pub-sub functionality into online

auctions has been mentioned in the literature, for example, [CW03, LJ04,

Müh02]. However, they have failed to analyze the requirements, and the typical

workloads and distributions in this application area, which is the focus and goal

of this chapter.

4http://www.trademe.co.nz/

http://www.trademe.co.nz/

70 Chapter 3. Application Scenario: Online Auctions

3.1.3 Envisaged Publish-Subscribe Functionality

Having described the state of current solutions, we now illustrate what pub-sub

functionalities we envisage in auctioning platforms. Afterwards, we outline the

implications of these extensions for users and elaborate on their acceptance.

Enhanced Publish-Subscribe Functionality

As previously mentioned, our goal when integrating pub-sub functionalities

into online auctions is to supportively enrich the process of discovering items

for potential buyers. We believe that this functionality is highly desirable for

private users of online auctions as identified in Section 3.1.1, and it solves the

problems discovered in Section 3.1.

We analyzed the existing schema for online book auctions on eBay, in

particular for fiction book auctions. This schema allows for the specification

of various attributes for book items. We give an overview of these attributes

and their domains in Table 3.1. Column 1 shows the name of the attribute; its

description and some example values are given in Column 2. The last column

specifies the domain for possible attribute values. eBay allows users to specify

some of these attributes when querying for items. However, they can only

combine their specifications in a conjunctive way, not leaving room for non-

trivial queries (see Section 3.1.1) and leading to the drawbacks identified in

Section 2.6 (page 58).

When integrating pub-sub mechanisms into auctions, users should be able

to restrict all of these attributes in a more flexible way. That is, they should be

able to constrain them and to combine these constraints by Boolean operators.

This approach allows, for example, the specification of different prices for new

and used book copies. We give several examples of simple but non-conjunctive

subscriptions in Section 3.3.

Evidently, this support for more complex subscriptions leads to questions

regarding user acceptance and user satisfaction. We elaborate on these aspects

in the next subsection. However, studying such implications in detail is beyond

the scope of this dissertation. This work is left to researchers in the human-

computer interaction area.

Acceptance of Enhanced Functionalities

If just searching for items using existing query functionalities, the available

conjunctive semantics in current auctioning platforms might be sufficient. Al-

3.1 Online Auctions 71

Table 3.1: Overview of attributes for book auctions on eBay.

Attribute Description or example Domain or values

Category Category of the book, e.g., Enumeration,
humor, poetry, fantasy 22 values

Format Format of the book, e.g., Enumeration,
hardcover, softcover 4 values

Special Attribute Special attribute of the book, Enumeration,
e.g., first edition, signed 3 values

Condition Condition of the book, e.g., Enumeration,
New, used 2 values

PayPal Specifies whether seller accepts Boolean
PayPal5(yes/no)

Buy It Now Specifies whether the book is Boolean
sold for a fixed price (yes/no)

Price Price of the book Number,
2 fractional digits

Auction Title Title of the auction Free text

Title Title of the book Free text

Description Description of the book Free text

Ending Within Ending time of the auction, Time,
e.g., 1 hour, 9 days up to 10 days

Language Language of the book, Enumeration,
e.g., English, French 14 values

Publication Year Year of publication Natural number,
up to current year

Quantity Number of books available Natural number,
greater than 1

Bids Number of bids Natural number,
greater than 0

5http://www.paypal.com/

http://www.paypal.com/

72 Chapter 3. Application Scenario: Online Auctions

though, these mechanisms are neither flexible nor general enough for pub-sub

functionalities. The conjunctive operator might be the easiest operator to

use [YS93], but in pub-sub systems users need to formulate more restrictive

subscriptions. This is due to the need to achieve a higher precision6 in order to

avoid annoying, unnecessary notifications. The traditional ranking approach

(see, e.g., Maron and Kuhns [MK60]) is not applicable to pub-sub systems.

The reason is that the relevance of an auction has to be determined without

the knowledge of future items on offer (also previous, already-finished auctions

do not necessarily help in determining a rank).

The appreciation of the requirement to formulate more restrictive and pre-

cise subscriptions is directly fostered by the benefits for users: the need to

fully exploit an existing subscription language will be realized at least in case

of large numbers of false positives. Such experiences will lead to more skilled

users with an awareness of accurately defined subscriptions. This includes the

understanding of various Boolean operators in order to minimize the number

of queries as well as the redundancies among queries. Users should thus be

willing to invest more time for this definition of long standing subscriptions

than for queries in the traditional search process. And these more experienced

users are likely to formulate relatively compact Boolean queries [Ros04], that

is, queries without strong redundancies.

Additionally, auctioning sites could apply graphical editors, for example,

as proposed by Jones and colleagues [JMS99] or Jung [Jun07], to help users

in the process of specifying Boolean queries. As already stated, an analysis of

such means is out of the focus of this dissertation.

Having described the general application area of online auctions, we proceed

with identifying typical event messages and the distributions for this scenario

in the next section.

3.2 Event Messages

Let us return to the attributes of online book auctions that are given in Ta-

ble 3.1. Out of these 15 attributes, we selected and analyzed the distributions

of eight main attributes on eBay: Category, Format, Special Attribute7,

6By precision, we refer to the quality measure in information retrieval, as defined
in [BYRN99].

7Abbreviated by “Attribute” in some figures in the following.

3.2 Event Messages 73

Condition, Buy It Now, Price8, Ending Within9, and Bids.

This approach leads to eight attributes to describe an online book auction.

We additionally include the two attributes Title and Author in our event

messages, finally leading to 10 attributes for the event type of book auctions.

That is, every event message of this type contains 10 attribute-value pairs (see

Section 2.1.1, page 13).

We decided to include these 10 attributes in our analysis due to the require-

ments of typical subscriptions for online book auctions (see Section 3.3), our

personal knowledge and experience with online auctions, and the opportunities

to query existing auctions on eBay.

Four of these attributes (Category, Format, Special Attribute, and

Condition) have enumerations as their attribute domains. We give all pos-

sible values for these attributes in Appendix A.1 (page 301). The domains

of the remaining attributes are already sufficiently given in Table 3.1. In the

following subsections, we analyze the distributions of the values of attributes

using nonparametric density estimation [Sil86], and describe how to create

event messages based on our findings. We refer to Appendix A.2 (page 303)

for details about the distributions of attribute values.

3.2.1 Distribution of Attribute Values

By analyzing eBay10, we were able to determine the probabilities of all possible

combinations of the attributes Category, Format, Special Attribute, and

Condition. There exist 22× 4× 3× 2 = 528 combinations of attribute values.

The probabilities of book items falling into each of these combinations are given

in Appendix A.2. For example, 11.4 percent of all items are characterized as

used “Romance” books without special attributes and bound as softcover.

No other combination of these four attributes occurs more often than the

combination given as example.

For the attribute Buy It Now, we analyzed the probability that an item is

sold for a fixed price for each category. For example, the highest proportion

of fixed-price auctions exists for category “Ancient Literature” and the lowest

for category “Poetry” (always compared to the total number of items in these

categories).

8We use NZ$ as currency in the following, but omit the currency completely in some
figures and examples.

9Abbreviated by “Ending” in some figures in the following.
10The analysis was undertaken on July 8, 2005.

74 Chapter 3. Application Scenario: Online Auctions

We also evaluated the number of bids depending on the category of items.

The largest number of zero-bid items, for example, exists for category “Action,

Adventure”; the highest proportional number of items with 10 or more bids is

found for category “Pulps” (again, compared to the total number of items per

category).

For the attribute Price, we evaluated the probability of different price

ranges for all categories. For example, 22.2 percent of all “Fantasy” books are

sold for more than $10.00; for “Romance” books, this is the case for only 5.9

percent of all items in this category. “Romance” books is also the category

having listed the most items for $1.00 or less (38.6 percent).

We additionally analyzed the total number of items per category. For

example, “Romance” books constitute the largest proportion overall of auction

items (19.2 percent); the smallest proportional number of items is found in

category “Ancient Literature”.

The results described in this section were obtained by analyzing all ac-

tive eBay fiction book auctions on the given date. We also evaluated the

distribution of finished auctions on eBay. The probabilities of the different

combinations of attributes were approximately the same as in active auctions.

Hence the derived results hold for both active and finished book auction items.

That is, these distributions generally hold at any given time in the auctioning

system.

With the help of these derived distributions, we are able to create event

messages that conform to these characteristics of book auction items. We

describe how to do this in the next subsection.

3.2.2 Creation of Book Auction Event Messages

We now describe how we use our evaluation results to create event messages

that are typical for online book auctions. These messages represent a semi-

realistic dataset because we were unable to determine the exact distributions

of all possible combinations of the values of all attributes.

That is, our messages contain the real distributions for certain attributes

(e.g., Category, Format, Special Attribute, and Condition) but are also

based on the assumption of simplified dependencies among some attributes

(e.g., attribute Price only depends on attribute Category).

In our analysis, we were unable to derive information about authors (at-

tribute Author) and titles (attribute Title). This includes, for example,

3.2 Event Messages 75

knowledge of the number of unique books per category, the total number of

authors, the probability of the same title for different books, and the proba-

bility of authors publishing in several categories. Thus for the creation of a

workload we have to make certain assumptions, as shown later on.

Creation of Directly Analyzed Attributes

For the determination of the values for the four attributes Category, Format,

Special Attribute, and Condition, we can directly use the results of our

evaluation in Section 3.2.1. That is, we can obtain the values for these four at-

tributes of event messages by choosing a uniformly distributed random number

and selecting the respective combination according to the derived probability

distribution.

For attribute Buy It Now, the probabilities derived in our analysis allow

for the calculation of the attribute value based on the already known category.

Hence, we can determine whether items should be sold to users with the highest

bid (Buy It Now = No) or for a fixed price (Buy It Now = Yes).

The calculation of the number of bids (attribute Bids) works as follows:

based on our findings (see Appendix A.2), we can directly determine the num-

ber of bids based on the known category. For 0 to 10 bids, we directly know the

probability from our analysis. For more than 10 bids, we derived the probabil-

ity for intervals of 10, that is, for bids between 11 and 20 up to bids between 51

and 60 (we assume a maximum of 60 bids). Within these intervals, we presume

a uniform distribution, that is, all 10 values have the same probability of 0.1.

Our calculation for prices (attribute Price) works similarly to the calcu-

lation of bids: our analysis led to probabilities of prices based on the known

category. Up to $10.00, we know the distribution of prices in $1.00 inter-

vals. Within these intervals, we again presume a uniform distribution of the

100 possible values. For higher prices (being relatively rare), we derived the

probabilities for intervals of $10.00 up to the price of $50.00, for the interval

between $50.01 and $100.00, and for the interval between $100.01 and $1000.00

(we assume $1000.00 as the maximal price). Our assumption is again a uniform

distribution within these intervals.

The remaining three out of our 10 attributes for auction event messages

could not be directly evaluated in our analysis of eBay (see Section 3.2.1). We

describe their assignment in event messages in the next subsection.

76 Chapter 3. Application Scenario: Online Auctions

Creation of Other Attributes

We assume a uniform distribution of the termination times of auctions. Hence,

the values of attribute Ending Within are uniformly distributed up to a max-

imum of 10 days.

The attributes Author and Title require more attention than the oth-

ers because we were unable to derive their distributions on eBay. What we

do know, however, is the total number of items for each category (see Sec-

tion 3.2.1). Furthermore, let us assume the following four parameters: Bprop

describes the average number of auctions for each unique book title, Aprop spec-

ifies the average number of books each author has written, pA
mult determines

the probability that an author publishes books listed in several categories, and

pT
mult states the probability that different books have the same title.

These definitions allow for the following calculations: With the help of

parameter Bprop , we can determine the number of unique books for each cate-

gory (dividing the overall number of items per category by Bprop). Parameter

Aprop lets us derive the total number of authors (dividing the number of unique

books by Aprop).

For each author, we then randomly choose a category (assuming a uniform

distribution). With the probability of pA
mult , each author gets associated with

a second category. Generally, the probability that an author publishes in n

categories is (pA
mult)

n−1
.

Finally, for each unique book of a category we choose a random author that

is assigned to this category of books. A unique book gets assigned an already

used title with probability pT
mult .

To ultimately derive a Title of an already determined category, we choose

one book that is associated with this category. Because we previously assigned

an author to each book, we also successfully determined the value of attribute

Author.

Using these methods, described in this and the previous subsection, allows

us to determine the values for all 10 attributes of event messages of online book

auctions. In the next subsection, we describe the meaning of these messages

and elaborate on their validity.

Meaning of Created Messages

Using the presented approach to create event messages leads to a semi-realistic

dataset. Even though we were not able to determine all properties of the 10

3.2 Event Messages 77

attributes of real-world online book auctions, our dataset is far more accurate

than the sole assumption of random distributions within and among these

attributes.

We obtained the event distributions by analyzing a snapshot of the items

offered at eBay. For attribute Ending Within, we assumed a uniform distri-

bution of auction termination times. This assumption might not necessarily

be realistic if considering a local eBay site, as the one for the United States,

which was chosen for our analysis. However, when assuming an international

site, our assumption is realistic and sufficient for our purpose of creating a

typical event workload.

An analysis of the bidding times in online auctions, for example, conducted

by Hahn [Hah01], reveals the existence of a large proportion of late bidding

and, depending on the length of auctions, also early bidding. This typical

behavior in bid timing is not explicitly modeled in the event messages that are

created by our approach. Although, due to our snapshot analysis, these bidding

properties are incorporated into our results: we did not exactly determine

the dependency between Ending Within and Bids. However, the different

numbers of bids per category are known and integrated into the generated

event messages. The same holds for the prices of items. We do not consider

that items that received more bids accumulated a higher price. Instead, the

created event messages rather represent the typical values for these attributes

for the given categories.

Our snapshot analysis advantageously provides the opportunity to general-

ize our results, that is, the created event messages: Because messages represent

the attributes of all items at a certain point in time, that is, they are ranging

from newly inserted to just finished auctions, we can use these event messages

to model real events in online auctions. We do not model the history of par-

ticular items, but our event messages follow typical distributions of items at

any point in time. That is, they also represent events other than the insertion

of auction items and the ending of particular auctions.

This fact allows us to model the typical workload in auctions, including the

occurrence of real events. These real events, next to the creation and ending

of auctions, are bids, that is, users want to pay a higher price for an item than

the current highest bidder. Our messages do not exactly model the bidding

history for items; nevertheless, they incorporate the numbers of bids and the

associated prices at any time, as derived from the analyzed snapshot. We also

78 Chapter 3. Application Scenario: Online Auctions

do not consider the exact times of bids. But, if assuming an international site,

the bidding of users is evenly distributed, as modeled in the messages that are

created when using our approach.

Having classified the messages generated by our approach, we elaborate on

the expected event frequencies in online auction systems in the next section.

3.2.3 Expected Event Frequencies

Event messages in online auctions at least include the insertion of new auction

items, the termination of existing auctions, and the bids of users.

In our analysis, 141,602 fiction book items were listed on eBay in the United

States. For these items, a total of 38,339 bids existed. Incorporating this

number of bids (creating one message each), and the two events of inserting

an item and the termination of the respective auction (two messages per item)

leads to 321,543 messages in total. Because our analysis included items ending

within the next 10 days, this analysis leads to a frequency of approximately

0.37 messages per second.

This result represents a relatively small system throughput. The reasons

are obvious: firstly, our analysis only included fiction books. Secondly, it

was restricted to items in the United States. Let us thus scale the expected

number of event messages to all book auctions hosted at the eBay.com site:

on February 14, 2006, there was a total of 9,363,317 book auctions on this

site. Therefore, the average event throughput to be processed increases to

approximately 24.62 events per second.

And now, let us scale the frequency to the total number of items hosted on

eBay.com: on February 14, 2006, there was a total of 55,771,229 auctions. So

the expected event frequency increases to 146.58 events per second if assuming

the statistics gained from fiction book auctions. When considering the num-

ber of auctions internationally, the system throughput increases even more.

Obviously events created by other items than books have a slightly different

structure than described in the previous sections.

Let us now assume the pub-sub functionality as an external extension to the

auctioning system. To meet our expectations (see Section 3.1.3), for example,

to allow users to be notified not earlier than one hour before the end of an

auction, the auctioning system needs to create status events at certain time

intervals (or the pub-sub extension creates these messages). Assuming these

messages to be created in intervals of one hour and considering only fiction

eBay.com
eBay.com

3.3 Example Subscription Classes 79

books (141,6023 items for 10 days), the additional event throughput to process

is 39.33 events per second.

Next to creating the typical event messages in online auctions, we also need

to register representative subscriptions in order to produce a characteristic

system workload. We proceed with this step in the next section.

3.3 Example Subscription Classes

The definition of characteristic subscriptions for an application scenario is more

challenging than the analysis of typical event patterns. The general problem is

that an envisaged application does not exist yet and real-world subscriptions

cannot be obtained. The random creation of subscriptions is an approach

that has mostly been taken to date. We, on the other hand, take a different

approach by using predefined classes of subscriptions that are still flexible

enough to create a range of settings, for example, involving differing degrees

of cover.

We identified three typical classes of subscriptions that would be used in on-

line auctioning systems. We present these classes in this section. Subscription

classes define the general structure of subscriptions. This structure is repre-

sented by the Boolean combination of predicates (see Section 2.1.1, page 12).

Predicates are either defined as fixed predicates, that is, all subscriptions con-

forming to a particular class contain these predicates; or they are variable

predicates, that is, subscriptions of a class get assigned a random predicate

value. To represent real world subscriptions, we restrict this randomness of

variable predicates to always result in reasonable subscriptions. (We further

describe the assumptions we make later on if this is required.)

3.3.1 Definition of Subscription Classes

We depict the structure of Subscription Class 1 in Figure 3.1. All subscription

classes that are presented in the following are represented by what we call a

subscription tree. We properly define subscription trees in Section 4.1.2. In

this chapter, we need to notice that the Boolean operators of subscriptions are

represented by the inner nodes of these trees. Leaf nodes contain the predicates

p of subscriptions; we named these predicates in the figures. Above the root

node, we also show the type of the subscription that is represented by the

80 Chapter 3. Application Scenario: Online Auctions

Price < B

OR Ending < 1 day

AND
(book)

Title ~ A

Condition = new Condition = usedPrice < C

AND AND

p2p1

p4p3 p5 p6

Figure 3.1: Subscription Class 1 including three variable predicates (p1, p4,
and p5).

respective subscription tree. This type, though, does not belong to the tree

structure.

Definition of Subscription Class 1

Subscription Class 1 (see Figure 3.1), representing an exemplary, typical in-

terest of subscribers, is described as follows:

Subscription Class 1 Users are interested in certain book titles. Accord-

ing to the condition of the copy of the book (either a new or a used

copy), they want to pay a different maximal price. To avoid unnecessary

notifications, users want to be notified one day before the end of the

auction.

In Figure 3.1 the variable predicates of Subscription Class 1 are p1, p4, and p5.

Instances of Subscription Class 1 (i.e., actual subscriptions) define particular

values for these predicates, for example, Title ∼ “Harry Potter” for p1,

Price < NZ$15.00 for p4, and Price < NZ$12.00 for p5 (example subscription

s1). The subscriber would thus like to get notified if a book is on offer whose

title contains the phrase “Harry Potter”, and which costs less than NZ$15.00

for a new copy and less than NZ$12.00 for a used one. The other predicates

shown in Figure 3.1 are fixed predicates of this subscription class.

Definition of Subscription Class 2

We illustrate our second class of subscriptions, Subscription Class 2, in Fig-

ure 3.2. It is an extension of Subscription Class 1 and its description is as

follows:

Subscription Class 2 Again, users are interested in certain book titles and

want to be notified one day before an auction ends. The difference to

3.3 Example Subscription Classes 81

ORFormat = softcover

AND

Price < E Condition = usedPrice < DCondition = new

OR

AND

Format = hardcover

Price < CCondition = new Condition = used

OR Ending < 1 day

AND
(book)

Title ~ A

AND

Price < B

AND AND AND

p12

p4p3

p2p1

p6p5 p7 p8 p10p9 p11

Figure 3.2: Subscription Class 2 including five variable predicates (p1, p6, p7,
p10, and p11).

Subscription Class 1 is that users further distinguish between different

formats, that is, between hardcover and softcover books.

Subscription Class 2 contains five variable predicates: p1, p6, p7, p10, and p11.

An exemplary assignment of values to these predicates is: Title ∼ “Harry

Potter” for p1, Price < 25.00 for p6, Price < 20.00 for p7, Price < 15.00

for p10, and Price < 10.00 for p11 (example subscription s2). Using these

predicates again describes an interest in books whose title contains the phrase

“Harry Potter”. Additionally, the price specifications now further depend on

the book format. For hardcover books, the subscriber wants to pay at most

NZ$25.00 for a new copy and NZ$15.00 for a used book copy. If the book is

a softcover, she only wants to pay less than NZ$20.00 for a new and less than

NZ$10.00 for a used copy. Subscriptions of this class are thus more restrictive

than subscriptions of Subscription Class 1 (assuming the subscription of Sub-

scription Class 2 specifies lower prices for softcovers than for hardcovers, and

the subscription of Subscription Class 1 states the same title and the same

prices as for hardcovers in the subscription of Class 2).

Definition of Subscription Class 3

The structure of our last class of subscriptions is shown in Figure 3.3. Sub-

scribers specifying a subscription of this class can be characterized as follows:

Subscription Class 3 A collector is interested in books of a certain category

but also in books of a particular author. He wants to be notified one hour

82 Chapter 3. Application Scenario: Online Auctions

Ending < 1 hour

OROR

AND

Category = A

(book)

Author ~ B AND

OR

Attribute = signedBids = 0

Buy It Now = yes

AND

Attribute = signed

p1 p2

p3

p6

p5p4

p7

Figure 3.3: Subscription Class 3 including two variable predicates (p1 and
p2).

before the end of an auction offering a signed book copy without any bids.

Furthermore, he wants notifications about signed books conforming to

his interests if the copies can be bought for a fixed price.

This class of subscriptions contains only two variable predicates, p1 and p2.

These predicates specify the category and the author that are of interest to

the collector. An example is Category = Ancient Literature for p1 and

Author ∼ “JK Rowling” for p2 (example subscription s3). These assignments

of predicates restrict the author’s interests to the two stated values11.

3.3.2 Properties of Subscription Classes

We give an overview of the properties of our three subscription classes in Ta-

ble 3.2. This table contains different properties for the three subscription

classes in its rows. We show two kinds of properties. The first three rows

describe properties of the subscriptions classes in their Boolean form, as de-

picted in Figures 3.1 to 3.3. We illustrate the number of Boolean operators, the

overall number of predicates (fixed plus variable predicates), and the number

of variable predicates. The last two rows, however, consider the conversion of

these subscription classes to disjunctive normal form (see Section 2.6, page 58).

The two properties shown are the number of conjunctive subscriptions that are

created out of one Boolean subscription by the conversion and the overall num-

ber of predicates in these converted conjunctive subscriptions. The overview

11Note that this subscription class is an example showing that a conjunction in natural
language (interest in “Ancient Literature” and “JK Rowling”) cannot be directly translated
into a conjunction in the subscription language. This is a common problem when formulating
queries in query languages [YS93].

3.3 Example Subscription Classes 83

Table 3.2: Overview of selected properties of our three example subscription
classes.

Property Class 1 Class 2 Class 3

Boolean operators 4 10 6

Overall original predicates 6 12 7

Variable predicates 3 5 2

Converted conjunctions 2 4 6

Overall converted predicates 8 20 18

in this table should give an idea of the increasing complexity of our example

subscriptions due to canonical conversion. The following example illustrates

this conversion:

Example 3.1 (Conversion of example subscription) Let us consider ex-

ample subscription s1, which was given in Section 3.3.1.

The conversion to disjunctive normal form results in two conjunctive sub-

scriptions (Row 4 in Table 3.2): Subscription s1a contains predicates p1, p2,

p3, and p4; subscription s1b contains predicates p1, p2, p5, and p6. Summed

up, both conjunctive subscriptions thus contain eight predicates (Row 5 in Ta-

ble 3.2).

Our subscription classes only describe a selection of the typical interests of

subscribers (when populating the variable predicates). However, these classes

are sufficient for our purposes of evaluation and are considered as representative

within this dissertation.

Even though subscriptions created from these classes inherently contain

commonalities, our focus on general-purpose filtering solutions is not impacted

upon by this effect: The analyzed filtering algorithms work independently of

the commonality pattern. As we describe later on, our subscriptions classes

are still flexible enough to create workloads involving, for example, differ-

ent degrees of cover. We use instances of the presented subscription classes

throughout to illustrate our algorithms and approaches, but also within our

practical evaluation.

Next to exemplary subscriptions, we define representative advertisement

classes. We introduce and describe them in the next section.

84 Chapter 3. Application Scenario: Online Auctions

BuyItNow = yes

OR Category = A

AND
(book)

Attribute = signedPrice > C

ANDAND

Price > B

p1

p3p2 p4 p5

Figure 3.4: Advertisement Class 1 including three variable predicates (p1, p3,
and p4).

3.4 Example Advertisement Classes

Analogously to subscription classes, advertisements classes define the struc-

ture of advertisements, that is, they define the contained predicates and their

combination by Boolean operators. There are again two classes of predicates—

fixed predicates and variable predicates. We present advertisement classes by

advertisement trees in the following. These trees have the same definition as

subscription trees (see Section 3.3), but they encode advertisements instead of

subscriptions.

3.4.1 Definition of Advertisement Classes

Altogether, we identified eight classes of advertisements. We describe and

depict these classes in the following. Our goals when developing these adver-

tisement classes were to cover a wide range of possible offerings from publishers

and to be consistent with the subscription classes identified before. That is,

there should exist some overlap (see Section 2.1, page 11) between instances

of these advertisement classes and instances of subscription classes.

Definition of Advertisement Class 1

We depict Advertisement Class 1 in Figure 3.4. Publishers conforming to this

class are described as follows:

Advertisement Class 1 A publisher offers books of a particular category.

These books are sold for a fixed price (Buy-It-Now item) that is greater

than a certain minimal value. The publisher additionally offers signed

book copies, also stating a minimal price.

3.4 Example Advertisement Classes 85

BuyItNow = yes

OR

AND
(book)

Author = A

AND

Price > B

AND

Price > C Attribute = signed

p1

p3p2 p4 p5

Figure 3.5: Advertisement Class 2 including three variable predicates (p1, p3,
and p4).

Instances of this class contain three variable predicates, p1, p3, and p4. An

example assignment for these predicates is Category = Poetry for p1, Price

> 15.00 for p3, and Price > 50.00 for p4 (example advertisement a1). A pub-

lisher specifying these predicates would thus sell books classified as “Poetry”

for either a fixed price of more than NZ$15.00 or for more than NZ$50.00 for

a signed copy.

Definition of Advertisement Class 2

Advertisement Class 2 is similar to Class 1 and illustrated in Figure 3.5. This

class describes the following offering from a publishers:

Advertisement Class 2 A publisher is specialized in books of a particular

author. She has a range of signed book copies and offers them in online

auctions starting with a predefined minimal price. She also wants to sell

books for a fixed price (Buy-It-Now items) above a certain threshold.

Similar to Advertisement Class 1, there exist three variable predicates in Ad-

vertisement Class 2: p1, p3, and p4. An exemplary instance could define these

predicates as follows: Author = “JK Rowling” for p1, Price > 20.00 for p3,

and Price > 100.00 for p4 (example advertisement a2). This instance of Ad-

vertisement Class 2 describes a publisher who specializes in books from “JK

Rowling”. The books can be bought for a fixed price of more than NZ$20.00

(depending on the book). Signed books are sold to the highest bidder and

have a starting price of NZ$100.00.

Definition of Advertisement Class 3

Advertisement Class 3 is visualized in Figure 3.6. Publishers specifying in-

stances of this class could be characterized as follows:

86 Chapter 3. Application Scenario: Online Auctions

Condition = new

OR

AND
(book)

Title = A

AND AND

Price > CPrice > BCondition = used

p1

p2 p3 p4 p5

Figure 3.6: Advertisement Class 3 including three variable predicates (p1, p3,
and p4).

Format = hardcover

OR

AND
(book)

Title = A

AND

Price > B

AND

Price > C Format = softcover

p1

p3p2 p4 p5

Figure 3.7: Advertisement Class 4 including three variable predicates (p1, p3,
and p4).

Advertisement Class 3 A wholesaler has got a stock of books of the same

title. Some of these books are slightly damaged and are thus sold as

used items. These books are offered for a lower minimum price than the

undamaged (i.e., new) items.

Advertisement Class 3 also contains three variable predicates: p1, p3, and p4. A

particular publisher could specify these predicates as follows: Title = “Harry

Potter and the Goblet of Fire” for p1, Price > 11.00 for p3, and Price

> 14.00 for p4 (example advertisement a3). This publisher would have on offer

the fourth part of the “Harry Potter” book series for more than NZ$11.00 for

a used book copy and more than NZ$14.00 for a new book.

Definition of Advertisement Class 4

Advertisement Class 4 is similar to Class 3, but states varying prices according

to the book format instead of the condition of the book copy. It is shown in

Figure 3.7 and could be defined as follows:

Advertisement Class 4 A book shop is selling the remainder of its stock of

a certain book title via an online auction. The shop owner wants to earn

3.4 Example Advertisement Classes 87

Title = A

Format = hardcover

Price > BCondition = new Price > C Condition = used

AND

Format = softcover OR

Condition = usedPrice > EPrice > DCondition = new

AND ANDAND

OR

AND

AND

OR

AND
(book)

p10 p11p8 p9

p3p2

p6 p7p4 p5

p1

Figure 3.8: Advertisement Class 5 including five variable predicates (p1, p5,
p6, p9, and p10).

at least a particular minimum price according to the format of the book

copy. There are hardcover and softcover versions of the book.

There again exist three variable predicates in instances of Advertisement Class

4. They are p1, p3, and p4, and specify book title and minimal prices. An ex-

ample instance could specify Title = “Harry Potter and the Half-Blood

Prince” for p1, Price > 30.00 for p3, and Price > 20.00 for p4 (example

advertisement a4). This publisher thus offers the sixth part of the “Harry Pot-

ter” series for more than NZ$20.00 for a softcover version and for more than

NZ$30.00 for a hardcover version.

Definition of Advertisement Class 5

Advertisement Class 5 combines the two previous classes of advertisements.

We graphically illustrate this class in Figure 3.8. Its textual description is as

follows:

Advertisement Class 5 A new edition of an academic book has been pub-

lished. The campus book shop (which is also selling used copies) decides

to have a sellout of its large stock of this book. The shop owner wants

to use an online auction for the sellout and specifies different minimal

prices for softcover and hardcover versions of the book. Additionally,

these minimal prices differ for new and used book copies.

Due to the extended specification of this advertisement class, its instances

contain five variable predicates: p1, p5, p6, p9, and p10. We here refrain from

88 Chapter 3. Application Scenario: Online Auctions

(book)
OR

AND

Condition = used Price > A

AND

Condition = newPrice > B
p1 p3 p4p2

Figure 3.9: Advertisement Class 6 including two variable predicates p2 and
p3.

OR
(book)

AND

Format = hardcover Price > A

AND

Format = softcoverPrice > B
p2 p3 p4p1

Figure 3.10: Advertisement Class 7 including two variable predicates (p2 and
p3).

giving an example of an instance of this class. Predicate p6 should specify a

lower price than p5 and predicate p10 a lower price than p9.

Definition of Advertisement Classes 6 to 8

Our three remaining advertisement classes, Advertisement Classes 6 to 8, are

more general versions of Advertisement Classes 3 to 5. We depict Classes 6 to

8 in Figures 3.9 to 3.11. Their descriptions are as follows:

Advertisement Class 6 A publisher offers a broad range of books. She only

wants to sell these books if buyers want to pay more than a certain

minimal price. This minimal price varies for new and used book copies.

Advertisement Class 7 A book shop has an occasional sellout of various

books. The shop owner wants to earn a different minimum amount of

money, which only depends on the format of the book.

Advertisement Class 8 To sell a variety of books, a book shop is using

an online auctioning system. The minimum prices of the offered books

always depend on both the format (hardcover and softcover) and the

condition (new and used) of a book.

Advertisement Class 6 (Figure 3.9) and Advertisement Class 7 (Figure 3.10)

contain two variable predicates, p2 and p3. There are four variable predicates

3.4 Example Advertisement Classes 89

OR
(book)

Format = hardcover

Price > ACondition = new Price > B Condition = used Condition = usedPrice > DPrice > CCondition = new

Format = softcoverOR

AND

AND AND

AND

OR

AND AND

p2

p6

p1

p5p4p3 p9 p10p8p7

Figure 3.11: Advertisement Class 8 including four variable predicates (p4,
p5, p8, and p9).

for instances of Advertisement Class 8 (Figure 3.11): p4, p5, p8, and p9. For

examples of these classes, we refer to those given for Advertisement Classes 3

to 5 (obviously without the respective predicate on Title).

3.4.2 Properties of Advertisement Classes

To give a better overview of the identified classes and the influences of con-

version to disjunctive normal form (see Section 2.6), we summarize important

properties of our eight advertisement classes in Table 3.3. These properties

are shown in the rows of the table for the eight different classes.

Similarly to the identified subscriptions classes, we include three rows that

state properties of the Boolean form of the advertisement classes (as shown

in Figures 3.4 to 3.11): the number of Boolean operators, the overall number

of predicates, and the number of variable predicates. The last two rows of

the table describe the effects of conversion of advertisements of these classes

to disjunctive normal form: the number of conjunctive advertisements created

out of one original advertisement and the overall number of predicates in these

converted advertisements.

This description of a wide range of possible advertisements in this section

concludes our deliberations on the example application area of online auctions.

Similar to the subscription classes, we use instances of the identified advertise-

ment classes to exemplify our approaches and algorithms in due course. Our

later experimental evaluation is also based on the findings of this section, that

is, on the derived event distributions, and the identified subscription and ad-

vertisement classes.

The fact that we identified more advertisement classes than subscription

90 Chapter 3. Application Scenario: Online Auctions

Table 3.3: Overview of selected properties of our eight example advertisement
classes (abbreviated by A1 to A8).

Property A1 A2 A3 A4 A5 A6 A7 A8

Boolean operators 4 4 4 4 10 3 3 9

Overall original predicates 5 5 5 5 11 4 4 10

Variable predicates 3 3 3 3 5 2 2 4

Converted conjunctions 2 2 2 2 4 2 2 4

Overall converted predicates 6 6 6 6 16 4 4 12

classes is founded in the observation that subscribers typically specify highly

selective subscriptions. Otherwise, they would be continuously notified about

a variety of items, contradicting the overall pub-sub idea. Applying the identi-

fied publisher patterns to subscribers would, in our opinion, lead to unrealistic

subscriptions. Subscribers do not want to receive notifications about books in

general (Advertisement Classes 6 to 8), about all books of a particular author

(Advertisement Class 2), or about all books of a certain category (Advertise-

ment Class 1). We believe subscribers do specify their interest in particular

book titles (Subscription Classes 1 to 2), and in more general categories or

authors in combination with other, more restrictive predicates (Subscription

Class 3).

In the next section, we present other, valuable application areas for content-

based pub-sub systems that can benefit from general Boolean subscriptions and

advertisements.

3.5 Further Application Scenarios

Besides the online auction application area, various other high-level application

scenarios for content-based pub-sub require general Boolean subscriptions and

advertisements. We briefly outline two further applications in this section.

3.5.1 Health Care

In the complex application area of health care, pub-sub systems constitute

a promising technology, for example, to support patients with chronic condi-

3.5 Further Application Scenarios 91

tions [JH05a]. Taking this example deployment situation, the system can be

applied to remind patients to take their medication, to manage measurements

of various parameters, to inform doctors about critical measurements, and

to generally interact with the existing clinical information system including

electronic health records.

In the general medical area, the applied management systems and the in-

volved processes are highly complex. It is thus an apparent conclusion that

a pure conjunctive pub-sub system might not meet the requirements of this

area. For example, taking the task of informing doctors about critical mea-

surements, it mostly does not suffice to solely consider one parameter for such

decisions. It is usually a combination of various parameters that leads to criti-

cal situations. This naturally introduces different options, that is, disjunctions,

into the definition of subscriptions that represent these circumstances. Hence,

general Boolean subscriptions are required in such settings.

Clearly, in the health care area, users should not be expected to directly

specify subscriptions with a pub-sub system in a given subscription language.

Advanced user interfaces need to be employed for this task, as already ar-

gued in Section 3.1.3. Furthermore, the support of general Boolean subscrip-

tions is only one requirement of this advanced application area. The detection

of complex events (see Section 2.1.3, page 22) and the support of collabora-

tion [JH05b] are further challenging aspects to be addressed. Nevertheless,

general Boolean subscriptions are a foundation for these enhancements.

3.5.2 Workflow Management

Workflow management systems, among others, are applied to coordinate and

execute processes and activities in distributed environments. Various research

in the pub-sub area, for example, by Cugola and colleagues [CNF01], Gep-

pert and Tembros [GT98], and Li and Jacobsen [LJ05], determined workflow

management as an application area that naturally relies on event-based mech-

anisms. Most of the existing work argues for complex event detection to be

required in workflow management systems. However, we believe that even at

the lowest level of (primitive) event detection more than a mere conjunctive

semantics is required by these systems.

Early work on event-based distributed workflow execution [GT98] (event

engine Eve) identified 10 attributes for each event in these systems12. These

12This number of attributes for (primitive) event messages is similar to our finding of 10

92 Chapter 3. Application Scenario: Online Auctions

attributes describe the occurrence of a particular event and allow for the clas-

sification of this occurrence. Event messages in the workflow scenario typically

trigger the execution of processes and activities. Subscriptions s (as rules) are

associated with, for example, activities (acting as subscribers), and describe

those situations that trigger the execution of this activity (i.e., the activity is

started if s is fulfilled).

Consider a simple component of a payroll workflow13: travel expenses over

NZ$1000.00 have to be approved by a manager before they are forwarded to the

accounting department, provided the employee is not classified as a consultant.

The same approval is required for all business trips of non-consultants that take

longer than five days.

The formulation of the rule for this forwarding process to a manager con-

tains at least four predicates: Predicate p1 describes the type of payment, trav-

eling expenses in this example (e.g., PaymentType = Traveling). Predicate p2

restricts the amount to more than NZ$1000.00 (e.g., Amount > NZ$1000.00).

Predicate p3 defines a duration of more than five days (e.g., Duration > 5

days). Predicate p4 describes a payment for non-consultants (e.g., Position

6= Consultant).

Disjunctively combining p2 and p3 results in one subexpression for the fi-

nal rule. Conjunctively combining this subexpression with p1 and p4 finally

leads to the overall rule, that is, subscription, for this situation. This general

Boolean subscription is then registered with the workflow management system.

Using a Boolean expression results in a more space-efficient system than the

registration of the two equivalent conjunctive subscriptions in this scenario, as

we show in Chapter 5.

3.6 Summary

This chapter gave an impression of the requirement and usefulness of active

notification functionalities in the application area of online auctions. Addition-

ally, this chapter provided an analysis of the typical parameters, characteris-

tics, and distributions of event messages, subscriptions, and advertisements in

online book auctions.

We based our analyses in this chapter on the existing schema for book auc-

attributes for messages in the auctioning setting (see Section 3.2).
13We adopt the general payroll workflow example from Padres [LJ05].

3.6 Summary 93

tions on eBay and on the typical requirements of subscribers and publishers in

this area. Our examination led to three important results. The first important

finding is the determination of the typical distributions of event messages in

the auctioning application scenario. The other two products of our investi-

gations are the formulation of various subscription and advertisement classes.

These classes are considered as characteristic throughout this dissertation and

are partially used as running examples within the remaining chapters.

These three findings build the foundation of our extensive practical evalu-

ation and, later on, enable us to create typical workloads of pub-sub systems

in online auction settings. We use such workloads in our experimental analysis

in Chapter 8.

The determination of the typical characteristics of a particular application

area is a strong improvement in comparison to existing work. Recent proposals

mostly used pure artificial test settings, which, additionally, are not described

in detail. Our analysis, however, identifies the attributes of the auctioning

application scenario and, in combination with later definitions, allows for the

repeatability of our experiments. This, moreover, allows for comparative eval-

uations with other approaches by different researchers.

To avoid the constriction to online auctions and to keep a general focus on

diverse application areas, we also analyzed other implementation scenarios for

pub-sub systems. Although the exact determination of typical properties and

requirements in these further areas remains future work, we could reason for

the need of supporting general Boolean subscriptions in different scenarios.

94 Chapter 3. Application Scenario: Online Auctions

Chapter 4

Filtering of General Boolean

Subscriptions

T
his chapter proposes a filtering algorithm for general Boolean sub-

scriptions. It is the first filtering approach for this class of subscriptions

that applies predicate index structures and thus aims at efficiency aspects. The

proposed algorithm categorizes as one-dimensional predicate indexing and in-

dividual subscription indexing approach (OP-IS) according to our algorithm

classification scheme in Section 2.3.1 (page 29).

In line with our general-purpose requirement, our algorithm represents a

generic filtering solution that focuses on the support of general Boolean sub-

scriptions. It extends the conjunctive counting approach (see Section 2.3.3,

page 40) to a general Boolean solution. In this dissertation, we do not at-

tempt to optimize our proposal in every possible respect, or to tailor it to

certain application scenario specifics1. Our focus lies in presenting a general-

purpose filtering solution and on additionally introducing a selection of univer-

sally applicable optimizations. We integrated this algorithm into our pub-sub

prototype, BoP (Boolean publish-subscribe) [BH07].

The structure of this chapter is as follows: In Section 4.1, we start by defin-

ing the exact semantics of event messages and general Boolean subscriptions.

We need to accurately define these concepts and their exact semantics because

a filtering algorithm strongly depends on these definitions. Our algorithm

consists of a preprocessing part, performed when subscriptions are registered,

and the filtering part itself. We present these constituents of the algorithm in

1As an exception, one could state the support of general Boolean subscriptions. This
property, however, is not an application scenario specific but required in a broad range of
applications, as argued in Chapter 3.

95

96 Chapter 4. Filtering of General Boolean Subscriptions

Section 4.2 and Section 4.3, respectively. After outlining some extensions and

optimizations to the generic algorithm in Section 4.5, we relate our approach

to recent solutions in Section 4.7.

4.1 Event Messages and Subscriptions: Defi-

nitions and Semantics

We already introduced the interaction patterns in content-based pub-sub sys-

tems and the general directives for using these patterns in Chapter 2. This

introduction, however, has been at a high level of abstraction, and the exact

definitions of these directives and their meanings are still missing.

Within this section, we thus extend our previous descriptions, and present

precise definitions of the notions of event messages (Section 4.1.1) and sub-

scriptions (Section 4.1.2) in BoP. In Chapter 7, we additionally provide a

precise definition of general Boolean advertisements.

4.1.1 Event Messages

For our definition of event messages, we assume the existence of event types

(simply referred to as types), as used, for example, in the Cambridge Event

Architecture [BBHM95], Hermes [Pie04], and TPS [Eug01]. We define event

types as follows:

Definition 4.1 (Event type) An event type T is a set of event attribute

specifications, T = {as
1, . . . , a

s
k} in combination with a unique event type name,

T n. An event attribute specification, as, is associated with an attribute name

an (unique within all attribute specifications of an event type, that is, ∀as
i ∈ T :

∄as
j ∈ T \ {as

i} : an
i = an

j), an attribute domain ad, and a set of Boolean filter

functions af = {f1 . . . fk} of two variables (the first variable of a function f

is an element in ad; the set of valid second variables is denoted by fop): as =

(an, ad, af). These Boolean filter functions f might be used in subscriptions

and advertisements.

Based on this definition of event types, we define an event message as follows:

Definition 4.2 (Event message) An event message e is a tuple specifying

an event type name and a set of attribute-value pairs: e = (T n,A), with

A = {(an
1 , a

v
1), . . . , (a

n
k , av

k)}.

4.1 Event Messages and Subscriptions 97

Each attribute-value pair of an event message e has to specify one of the

attribute names that belong to the event type of e (i.e., T) and a value of the

respective attribute domain. Every attribute name that is specified by the event

type of message e has to be used in exactly one attribute-value pair of e. That

is, given an event message e = (T n,A), it holds that:

∀as
i ∈ T : ∃(an

j , av
j) ∈ A : an

i = an
j ∧ av

j ∈ ad
i ∧

∄(an
k , av

k) ∈ A \ {(an
j , a

v
j)} : an

i = an
k .

This definition of event messages is similar to what is referred to as total

messages by Campailla and colleagues [CCC+01], that is, a message defines

all attributes of its type. To clarify our previous definitions, in the following

we define the example event type T1 for our online book auction scenario that

was introduced in Chapter 3:

Example 4.1 (Event type “book”) The event type T1 describes informa-

tion about items of online book auctions. It contains 10 attribute specifications

and is associated with the name “book”, that is, T n
1 = book:

T1 = {Category, Format, Special Attribute, Condition,

Buy It Now, Price, Ending Within, Bids, Title, Author}.

The respective domains of these attributes are given in Table 3.1 (page 71). The

supported filter functions are introduced in our example subscription classes

(see Section 3.3, page 79) and advertisement classes (see Section 3.4, page 84).

Using this event type specification, we demonstrate an event message e1 that

uses type T1:

Example 4.2 (Event message of type “book”) Let us assume that a pub-

lisher offers a used book entitled “Harry Potter and the Goblet of Fire” as a

softcover edition in an auction lasting six hours. The publisher wants to get

at least NZ$11.00 for this item. The following event message e1 describes this

new auction:

e1 = (book, {(Category, Fantasy), (Format, softcover),

(Special Attribute, none), (Condition, used),

(Buy It Now, no), (Price, 11.00), (Ending Within, 6 hours),

98 Chapter 4. Filtering of General Boolean Subscriptions

(Bids, 0), (Title, “Harry Potter and the Goblet of Fire”),

(Author, “JK Rowling”)}).

4.1.2 Subscriptions

Subscriptions are also based on event types, as defined in Section 4.1.1. Sub-

scriptions generally describe a filter expression on event messages (see Sec-

tion 2.1.1, page 12). More precisely, we define a subscription as follows:

Definition 4.3 (Subscription) A subscription s is a tuple that specifies an

event type name (see Definition 4.1, page 96) and a Boolean filter expression,

s = (T n,F), with F being a Boolean combination of predicates using the

operators conjunction, disjunction, and negation. The set of predicates used

in F is denoted by P(F). Each predicate p ∈ P(F) is an attribute-function-

operand triple (or, more precisely, a triple containing an attribute name, a

filter function, and an operand): p = (an, f, op).

Each predicate pi of the Boolean filter expression F of subscription s has

to specify one of the attribute names (e.g., an
j) that belong to the event type

of s (i.e., an
j ∈ T), a filter function (e.g., fi) that is included in the set of

functions (e.g., a
f
j) specified by this attribute as

j (i.e., fi ∈ a
f
j), and an operand

being valid as second variable for this filter function (i.e., fi). That is, given

a subscription s = (T n,F), it holds that:

∀(an
i , fi, opi) ∈ P(F) : ∃as

j ∈ T : an
j = an

i ∧ fi ∈ a
f
j ∧ opi ∈ f

op
i .

Our definition of subscriptions is similar to the subscription language classes

in [CCC+01] (Simple Subscription Language, Strict Subscription Language,

and Default Subscription Language). This similarity to all three subscription

languages is due to their property of equal expressivity if applied to total

messages, which is our assumption for events (see Section 4.1.1).

Based on our type-based definitions of event messages and subscriptions,

we now refine our notion of fulfilled subscriptions and matching event messages

to reflect these particular definitions (see Section 2.1.3, page 18 for our original

definition):

Definition 4.4 (Fulfilled subscription and matching event message)

A subscription si = (T n
i ,Fi) is fulfilled by an event message ej = (T n

j ,Aj)

(equivalent to ej matches si) if, and only if:

4.1 Event Messages and Subscriptions 99

1. Subscription si and event ej specify the same event type, that is, T n
i = T n

j .

2. The Boolean filter expression Fi evaluates to true on event ej. For this

evaluation, each predicate pi = (an
i , fi, opi) with pi ∈ P(Fi) gets assigned

the result of the function fi(av
l , opi) with (an

l , a
v
l) ∈ Aj∧an

l = an
i . Then,

the Boolean combination of these results, stated by Fi, is evaluated.

For subscriptions s, the set of all matching event messages is denoted by E(s).

For predicates pi = (an
i , fi, opi), the set of matching messages is denoted by

E(pi). E(pi) includes all those messages that result in fi(a
v
l , opi) = true with

(an
l , a

v
l) ∈ Aj ∧ an

l = an
i .

Using these definitions, subscriptions do not need to contain predicates refer-

ring to all attribute specifications defined by their event type. Furthermore,

subscriptions might contain several predicates referring to the same attribute

specification. The semantics in this scenario are given by the Boolean combina-

tion of predicates in the Boolean filter expression. For attribute specifications

not referred to by predicates, subscribers do not restrict the attribute value in

event messages, that is, they accept all possible values. Whether the incoming

event message is matching, solely depends on the stated predicates.

We have already given some example subscriptions in Section 3.3 (page 79).

Figures 3.1 to 3.3 depict three example subscription classes we use throughout

this dissertation. These classes are represented by subscription trees. In the

following subsection, we give details on these tree structures representing the

Boolean filter expressions of subscriptions, following this example:

Example 4.3 (Fulfilled subscriptions and matching event messages)

Let us consider message e1 (see Example 4.2, page 97), and subscriptions s1,

s2, and s3 (see Section 3.3, page 79).

Subscription s1 is fulfilled by e1 because both specify event type “book” and

the Boolean expression F1 evaluates to true: predicates p1, p2, p5, and p6 (and

p4) get assigned true, and hence F1 results in true.

Subscription s2 is not fulfilled by e1. Both specify event type “book” but the

Boolean expression F2 evaluates to false: predicates p1, p2, p4, p6, p7, p8, p10,

and p12 get assigned true. However, all other predicates get assigned false,

leading to an overall result of false for F2.

Subscription s3 is also not fulfilled by e1. Although both specify event type

“book”, the Boolean expression F3 evaluates to false: only p2 and p6 are ful-

filled, resulting in F3 evaluating to false.

100 Chapter 4. Filtering of General Boolean Subscriptions

Subscription Trees

Our approach to graphically illustrate the Boolean filter expression of a sub-

scription is to represent the described Boolean combination of predicates by

its tree structure. Inner nodes ni of a subscription tree contain the Boolean

operators that are used by the respective subscription; leaf nodes nl contain

the predicates that are used in the filter expression. Note that the event type

used in a subscription is not part of its subscription tree (although we stated

the type in Figures 3.1 to 3.3 for initial illustration purposes). A subscription

tree is comparable with the syntax tree of the Boolean filter expression of a

subscription. We denote the set of children of a node n of a subscription tree

by n.children. (We do not use indices when generally referring to nodes.)

Next to graphically illustrating these filter expressions by their correspond-

ing tree structures, one can use this representation within filtering algorithms

for content-based pub-sub systems. We take this approach in BoP. Our inter-

nal representation of subscription trees does not store predicates themselves

within leaf nodes, but their identifiers. We describe this internal encoding

scheme in detail in Section 4.2.2.

Subscription trees are not the only method for representing the Boolean

filter structure of subscriptions. Campailla and colleagues [CCC+01] and Li

and colleagues [LHJ05] apply Binary Decision Diagrams [JT92]. However, Li

and colleagues restrict subscriptions to conjunctions within their proposal. We

refer to Section 4.7 for an analysis of the advantages and disadvantages of these

alternative representation schemes over the chosen subscription tree approach.

In the following sections, we introduce our filtering approach for general

Boolean subscriptions, which is realized in our prototype BoP.

4.2 Preprocessing Step

In this section, we describe the preprocessing step of our Boolean filtering

algorithm. This initial step is performed if a subscription s is registered with

the system. The goal of preprocessing is to index subscription s to allow for an

efficient filtering process. Preprocessing includes the syntactical analysis and

rewriting of subscriptions (Section 4.2.1), as well as the indexing of predicates

and subscriptions themselves (Section 4.2.3). One part of subscription indexing

is the internal encoding of subscription trees; we describe this procedure in

Section 4.2.2.

4.2 Preprocessing Step 101

Note that preprocessing is merely based on the one subscription that is

being registered. It does not create the overhead of shared subscription index-

ing approaches, requiring a relation of the newly registered subscription and

already registered subscriptions (see Section 2.3).

4.2.1 Syntactical Analysis and Rewriting

The first part of the preprocessing step involves two basic rewriting proce-

dures for subscriptions: (i) negation removal, and (ii) operator summarization.

These procedures are performed before a subscription is indexed.

Negation Removal

The first rewriting procedure, negation removal , is applied to inner nodes of

subscription trees. It moves all negation operators in the direction of the leaf

nodes by applying De Morgan’s laws, that is, negations are pushed down in

the subscription tree and integrated into predicates.

This procedure requires the filtering algorithm to always support the nega-

tive of a given filter function, for example, equality and inequality, or less than

and greater than or equal. In practice, this requirement is straightforward to

implement by using the original function for predicate indexing purposes and

negating its results. For example, if predicate p1 of s3, Category = Ancient

Literature, (see Section 3.3.1, page 81) would be negated due to the shifting

down of negations (resulting in Category 6= Ancient Literature), the filter-

ing algorithm can apply the same index structure as for the original predicate

but negate the output for all predicates indexed by this structure. Thus, a

system does not need to explicitly consider negations of filter functions other

than those already provided.

Operator Summarization

Operator summarization, the second rewriting procedure, analyzes the Boolean

operators that are used in subscription trees (representing the filter expression

of a subscription) and summarizes consecutive operators of the same kind (i.e.,

conjunctions and disjunctions, respectively). Proceeding in that way reduces

the memory requirements for the encoding of subscription trees, applied later

on in the preprocessing step.

102 Chapter 4. Filtering of General Boolean Subscriptions

(book)

OR Ending < 1 day

Condition = new Condition = usedPrice < C

AND AND

Price < B

ANDTitle ~ A

AND

p2

p4p3 p5 p6

p1

Figure 4.1: Example of Subscription Class 1 before operator summarization.

In our example subscription classes (see Section 3.3, page 79), consecutive

operators have already been summarized in their representations as subscrip-

tion trees in Figures 3.1 to 3.3. The formulation of subscriptions by ordinary

system users, however, is likely to result in expanded tree structures. For ex-

ample, in Figure 4.1 we show a potential formulation of Subscription Class 1

before applying the rewriting procedure. The binary root node and its second

child in Figure 4.1 are summarized to a ternary node in Figure 3.1.

Additional Rewriting

Next to these two basic rewriting procedures, one can apply other syntactic

rules, for example, to minimize or simplify a given filter expression. Such addi-

tional rules can be easily integrated into the algorithm. The semantic rewriting

of filter expressions, for example, a worthwhile operation for relational data-

base management systems [GD98], is also a possible extension of BoP. Such

extended rewriting steps are beyond the scope of this dissertation.

4.2.2 Encoded Subscription Trees

Having rewritten the original subscription trees, the system performs the in-

dexing of predicates and subscriptions. We describe this second part of the

preprocessing step in Section 4.2.3. Before proceeding to these explanations,

we discuss the internal encoding of subscription trees.

As stated in Section 4.1.2, there are various ways to internally represent the

Boolean filter expression of subscriptions. For the filtering algorithm imple-

mented in BoP, we decided to directly use the introduced subscription trees.

Using this straightforward representation approach allows for the general eval-

4.2 Preprocessing Step 103

uation of our filtering solution and their comparison to conjunctive algorithms

independently of low-level realization specifics.

The internal representation of subscription trees uses predicate identifiers

id(p) (see Section 4.2.3) in leaf nodes rather than the predicates p themselves.

This encoding allows for sharing the occurrence of the same predicates in

different subscriptions. In BoP, we use 4-byte unsigned integers as predicate

identifiers. A leaf node nl of a subscription tree is thus represented by 5 bytes:

1 byte denotes nl as a leaf node; the remaining 4 bytes contain the predicate

identifier. (This representation could be optimized to further decrease the

memory usage.)

The encoding of inner nodes ni of subscription trees consists of two parts.

The first part (structural component) uses 2 bytes to represent the node struc-

ture: Byte 1 stores the Boolean operator of the inner node (disjunction or

conjunction, negations have been removed, see Section 4.2.1); the number of

children is encoded by Byte 22. The second part of the encoding of inner nodes

(functional component) recursively contains the representation of the children

of this node. We exemplify this encoding scheme in the following:

Example 4.4 (Encoding of a subscription tree) We illustrate an exam-

ple of the application of our encoding scheme in Figure 4.2. It represents a

subscription of Subscription Class 1 (e.g., s1), given in Figure 3.1 (page 80).

Within this example, we use the index of a predicate as its internal predicate

identifier (ID in Figure 4.2), that is, for each predicate pi, it holds id(pi) = i.

This example subscription requires 38 bytes in total for its encoding. For

example, the first 2 bytes describe the structural component of the root node, a

conjunction (encoded by a value of 1 in this example) and three children; the

remaining 36 bytes describe these three children as the functional component

of the root (the first child, a leaf node, requires 5 bytes for its storage.).

We also experimented with a different encoding scheme that stores the width

of the internal representation of each child node before the actual node it-

self [BH05b]. This alternative scheme allows the algorithm to access a child

node nj without having to process all preceding children of the parent of nj .

The approach described here, however, requires the evaluation of all preceding

child nodes of nj in order to be able to access and process nj (otherwise, the

2We thus assume a maximum of 255 child nodes for any node. This assumption aligns
with the conjunctive algorithms (see Section 2.3.2, page 31) we use for our later comparison
(Chapter 5).

104 Chapter 4. Filtering of General Boolean Subscriptions

5 bytes

143 2 2 1 2 4 3 4 4 1 2 4 5 4 6 4 21

Child. Leaf ID Disj Child. Conj Child. Leaf ID Leaf ID Conj Child. Leaf ID Leaf ID
Leaf IDConj

2 bytes 5 bytes 2 bytes 2 bytes 5 bytes 5 bytes 2 bytes 5 bytes 5 bytes

Figure 4.2: Internal encoding of a subscription of Class 1 (cf. Figure 3.1,
page 80). The index of a predicate is used as its identifier (ID in this figure),
that is, id(pi) = i. We encode a conjunctive node by a value of 1, a disjunctive
node by a value of 2, and a leaf node by a value of 4. We also give the memory
requirements for the individual parts of the subscription tree.

algorithm cannot determine the memory position of the encoding of nj).

In BoP, we have chosen the encoding scheme described in this section (cf.

Figure 4.2), because it is more space-efficient than the proposal in [BH05b]

and shows similar time efficiency properties.

4.2.3 Indexing

Having outlined the encoding scheme for subscription trees, we now proceed

with describing the second part of preprocessing: the indexing of subscriptions,

including their predicates. After performing this step for a subscription s, this

subscription is registered with the system, that is, s is included in the event

filtering process, described in Section 4.3.

The overall indexing step consists of two parts, predicate indexing and

subscription indexing.

Predicate Indexing

Predicate indexing utilizes one-dimensional index structures. They are spe-

cialized with respect to a certain attribute domain and, if necessary, target

the efficient implementation of one particular filter function for this domain.

For example, equality predicates on integer or float domains could utilize hash

tables as index structures; Patricia trees can be used for string domains. Do-

mains of a fixed enumerable size allow for the development of specialized,

highly efficient data structures, for example, those described in [AJL02]. The

goal of predicate indexing is to provide the filtering algorithm with the means

to efficiently determine all predicates that are fulfilled by an incoming event

message.

4.2 Preprocessing Step 105

Before indexing, each predicate p is assigned a unique identifier id(p). If

subscriptions contain common predicates, that is, predicates p specifying the

same attribute name an, filter function f, and operand op , these predicates in

different subscriptions get assigned the same predicate identifier.

The identification of common predicates is accomplished by a lookup in the

respective predicate index. If p is not indexed yet, it is inserted in the index

structure and associated with a new predicate identifier id(p). Otherwise, if a

predicate is found in the index, the already assigned identifier is used.

Predicate indexing also includes the integration of knowledge about the

use of predicates in a predicate-subscription association table. This table stores

information about the occurrence of each predicate p in subscriptions. For this

task, each subscription s gets assigned a unique subscription identifier id(s).

The predicate-subscription association table thus maps predicate identifiers to

sets of subscription identifiers, that is, it stores (id(pi), {id(sj), . . . , id(sl)})
tuples (see Figure 4.4 on page 108 for a graphic illustration). If a subscription

s contains the same predicate p several times (e.g., as Subscription Class 2

in Figure 3.2, page 81), p is associated with s more than once in this table.

Thus, the subscription set is in fact a multiset. This table is similarly used in

the conjunctive counting algorithm (see Section 2.3.3, page 40).

Subscription Indexing

The second part of the indexing step is subscription indexing . Using the sub-

scription index structures that are created during this process allows the fil-

tering algorithm to efficiently determine all subscriptions that are fulfilled by

an incoming event message (see Section 4.3 for a description of the filter algo-

rithm).

Firstly, the subscription indexing process encodes the filter expression of a

subscription s, as described in Section 4.2.2. The memory address loc(s) of

the encoded subscription tree of s is then stored in the subscription location

table, mapping subscription identifiers to memory addresses. This table thus

stores (id(s), loc(s)) tuples for all indexed subscriptions s (see bottom part of

Figure 4.4 for a graphic illustration of this table).

Secondly, subscription indexing calculates a subscription-specific property,

pmin(s), the minimal number of fulfilled predicates that is required for a fulfilled

subscription s (shortly referred to as minimal number of fulfilled predicates).

The value of this property is inserted into the minimum predicate count vector ,

106 Chapter 4. Filtering of General Boolean Subscriptions

storing (s, pmin(s)) tuples.

For each subscription s, we can recursively calculate pmin(s) by analyzing

the structure of its filter expression, encoded in the subscription tree. We show

the pseudo code for the calculation of this property for nodes n of subscription

trees in Algorithm 1. It works as follows:

• For a leaf node nl, pmin(nl) is equal to 1 (Line 3 of Algorithm 1).

• For a disjunctive node nd, pmin(nd) equals the minimum value of pmin(nj)

for all children nj of nd (Lines 5 to 9).

• For a conjunctive node nc, pmin(nc) is the sum of the values pmin(nj) of

all children nj of nc (Lines 11 to 12).

Algorithm 1: Calculation of the minimal number of fulfilled
predicates
Input: A node n of a subscription tree
Output: The minimal number of fulfilled predicates pmin(n)
GetMinPredicates(n)
(1) result ← 0
(2) if n is a leaf node
(3) result ← 1
(4) else if n is a disjunctive node
(5) foreach c in n.children
(6) if result = 0
(7) result ← GetMinPredicates(c)
(8) else
(9) result ← min(result, GetMinPredicates(c))
(10) else if n is a conjunctive node
(11) foreach c in n.children
(12) result ← result + GetMinPredicates(c)
(13) return result

The minimal number of fulfilled predicates of a subscription s, pmin(s), is

equal to the value of this property for the root node n of the filter expression

of s, that is, pmin(s) = pmin(n). We illustrate this calculation in the following

example:

Example 4.5 (Calculation of pmin(s) for subscription s) In Figure 4.3,

we illustrate the structure of subscriptions of Subscription Class 1 and name all

10 nodes of the subscription tree. The calculation of pmin(s) for a subscription

s of this class (e.g., s1) works as follows:

4.3 Event Filtering Algorithm 107

OR Ending < 1 day

AND

Title ~ A

AND AND

Price < CPrice < BCondition = new Condition = used

n2n1

n7

n8

n10n9

n6n5n4n3

Figure 4.3: Subscription tree of Subscription Class 1 with named nodes.

• For the leaf nodes, it holds pmin(n1) = pmin(n2) = pmin(n3) = pmin(n4) =

pmin(n5) = pmin(n6) = 1.

• For the conjunctive nodes above the leaf level (n9 and n10), it holds

pmin(n9) = pmin(n3)+pmin(n4) = 2 and pmin(n10) = pmin(n5)+pmin(n6) =

2.

• For disjunctive node n8, it holds pmin(n8) = min(pmin(n9), pmin(n10)) =

min(2, 2) = 2.

• For the conjunctive root node n7, it holds pmin(n7) = pmin(n1)+pmin(n8)+

pmin(n2) = 1 + 2 + 1 = 4.

• Finally, for subscription s it holds pmin(s) = pmin(n7) = 4.

After having performed the subscription indexing process for a subscription s

(and the previously described predicate indexing process), BoP considers s in

its event filtering algorithm, described in the following section.

4.3 Event Filtering Algorithm

As an extension to the conjunctive counting approach (see Section 2.3.3 on

page 40), our general Boolean filtering approach applies a three-step filtering

process (predicate matching, candidate subscription matching, and final sub-

scription matching). We illustrate an overview of this process in Figure 4.4.

4.3.1 Predicate Matching

In the predicate matching step, the filtering algorithm determines all predicates

that are fulfilled by an incoming message. This task is performed by consulting

108 Chapter 4. Filtering of General Boolean Subscriptions

 0 0 0 0 0 1 1

id(p)

{id(s)}

1

2,3

79

70

.. ..

....

id(p) id(p)

..

..

.. id(p) id(p)..
indexes
predicate
One−dimensional

vector
Hit

Minimum
predicate
count
vector

location
table

Subscription

Subscription
trees

subscription
Candidate

matching

subscription
Final

matching

Predicate
matching

Fulfilled
predicates

Candidate
subscriptions

vector
predicate
Fulfilled

subscription

table
association

Predicate−

the predicate
List of fulfilled
predicates

Subscriptions containing

Accumulation per
subscription

of fulfilled
predicates per
subscription

Actual number of
fulfilled predicates
per
subscription

Greater or equal test

Access subscriptionsMemory address
of subscription

id(s)

loc(s)

1 70..

..

5

subscriptions
Evaluate

 10 11 12..

 10 15 12..

Unfulfilled
predicate predicate

Fulfilled

Minimal number

Event
message

subscriptions
Fulfilled

Figure 4.4: Overview of predicate matching, candidate subscription match-
ing, and final subscription matching in the Boolean filtering algorithm.

the one-dimensional predicate indexes created in the pre-processing step (see

Section 4.2.3): the filtering algorithm evaluates the one-dimensional indexes

for all filter functions that are applicable to the attributes of the incoming

message. The state of fulfillment of predicates is then recorded in a fulfilled

predicate vector . Predicate matching is illustrated in the top part of Figure 4.4.

4.3.2 Candidate Subscription Matching

The next step, candidate subscription matching , restricts the set of registered

subscriptions to a set of candidate subscriptions that are potentially fulfilled

4.3 Event Filtering Algorithm 109

by the incoming message. The determination of candidate subscriptions is

based on the approach taken in the conjunctive counting algorithm (see Sec-

tion 2.3.3).

The algorithm has provided a set of predicates that is fulfilled by an in-

coming message. Whether a predicate is fulfilled has been recorded in the

fulfilled predicate vector (see Section 4.3.1). Based on this information and

the populated predicate-subscription association table (see Figure 4.4 for an

illustration and Section 4.2.3 for a description), BoP determines the number

of fulfilled predicates per subscription. This task is performed by incremen-

tally increasing a counter in a hit vector , containing one 1-byte integer value

per subscription. Having processed all fulfilled predicates and evaluated their

entries in the predicate-subscription association table, the hit vector states the

total number of fulfilled predicates per subscription.

Based on this information, BoP then determines all candidate subscrip-

tions: it compares the value in the hit vector to the value in the minimum

predicate count vector (see Figure 4.4 for an illustration and Section 4.2.3 for

a description). If the entry in the hit vector shows a value greater than or equal

to the entry in the minimum predicate count vector, a candidate subscription

is found. The middle part of Figure 4.4 illustrates this candidate subscription

matching process.

4.3.3 Final Subscription Matching

Having found the set of candidate subscriptions, the final part of the matching

process evaluates this set against the incoming message. Using the subscrip-

tion location table (see Figure 4.4 for an illustration and Section 4.2.3 for a

description), BoP accesses the encoded subscription tree of a candidate. Then,

the Boolean structure of the tree is evaluated against the message.

If the filter expression evaluates to true, the candidate is a matching sub-

scription. For this evaluation, the filtering algorithm only needs to process the

Boolean tree structure of a subscription but not its predicates—the value of

the leaf nodes (i.e., the state of fulfillment of predicates) is already known and

stored in the fulfilled predicate vector.

We illustrate final subscription matching in the bottom part of Figure 4.4.

The following example illustrates the overall filtering process:

Example 4.6 (Filtering of an event message) Let us consider event mes-

sage e1, defined in Example 4.2 (page 97), and the registration of the three

110 Chapter 4. Filtering of General Boolean Subscriptions

subscriptions s1 to s3 we have given Section 3.3 (page 79). In the following,

we refer to the predicates of these subscriptions by pi
j, stating predicate pj of

subscription si.

The predicate matching step uses the one-dimensional predicate indexes to

determine all fulfilled predicates. For the attribute-value pairs of message e1,

these predicates are as follows:

• ∅ for (Category, Fantasy)

• {p2
4} for (Format, softcover)

• ∅ for (Special Attribute, none)

• {p1
6, p

2
8, p

2
12} for (Condition, used)

• ∅ for (Buy It Now, no)

• {p1
4, p

1
5, p

2
6, p

2
7, p

2
10} for (Price, 11.00)

• {p1
2, p

2
2} for (Ending Within, 6 hours)

• {p3
6} for (Bids, 0)

• {p1
1, p

2
1} for (Title, “Harry Potter and the Goblet of Fire”)

• {p3
2} for (Author, “JK Rowling”)

We now proceed to the candidate subscription matching step: summing up the

number of fulfilled predicates for the three subscriptions results in five hits for

s1, eight hits for s2, and one hit for s3. The hit vector (using a set notation)

is thus {5, 8, 2}.
In our example, every predicate occurs in only one subscription. This is

because we did not identify common predicates when introducing these classes.

The filtering algorithm easily retrieves the information about the occurrence of

predicates from the predicate-subscription association table. For example, p1
3

and p2
5 do internally get assigned the same identifier.

For our three subscriptions, the minimal number of fulfilled predicates is

as follows: pmin(s1) = 4, pmin(s2) = 5, and pmin(s3) = 3 (see Example 4.5 on

page 106 for a calculation example). The minimum predicate count vector is

thus (again using a set notation) {4, 5, 3}.
The last step of candidate subscription matching identifies candidate sub-

scriptions by comparing the hit and minimum predicate count vector. These

4.4 Deregistrations 111

candidates are s1 (5 ≥ 4) and s2 (8 ≥ 5), but s3 is not a candidate subscription

(2 � 3).

Final subscription matching finally evaluates the subscription trees of all

candidate subscriptions (s1 and s2):

Subscription s1 evaluates to true and thus is both a candidate subscription

and a fulfilled subscription. This is because p1
1 and p1

2, as well as p1
5 and p1

6 are

fulfilled, leading to a subscription tree that evaluates to true.

However, the other candidate, subscription s2, evaluates to false. It is thus

a candidate subscription but not a fulfilled subscription. Although p2
1, p2

2, and

p2
4 are fulfilled, neither p2

9 and p2
10, nor p2

11 and p2
12 are fulfilled. Hence, the

subscriptions tree of s2 evaluates to false.

4.4 Deregistrations

Our filtering algorithm supports a similar deregistration process as the con-

junctive counting algorithm. It involves the non-costly removal of subscription

information from both predicate and subscription indexes. The algorithm thus

does not impose any restrictions with respect to changes in the subscription

base.

For the deregistration of a subscription s, the algorithm merely requires its

subscription identifier id(s): the entry in the subscription location table can

be removed with the help of id(s); the same holds for the minimum predicate

count vector. The encoded subscription tree contains all predicate identi-

fiers used by s. This information allows for the removal of the entries in the

predicate-subscription association table, but also in the one-dimensional in-

dexes: the predicate-subscription association table states whether a predicate

is shared among subscriptions. If the last instance of a predicate is deregis-

tered, it can be removed from predicate indexes. Predicate and subscription

identifiers that are not being used anymore should be stored in order to allow

for their reuse.

4.5 Algorithm Extensions

One of the design goals of our filtering approach is to provide a solution for

general-purpose content-based pub-sub systems. There are also specific exten-

sions and optimizations to the previously presented generic filtering algorithm

112 Chapter 4. Filtering of General Boolean Subscriptions

that significantly improve its performance.

4.5.1 Pure Conjunctive Subscriptions

If subscribers register pure conjunctive subscriptions, BoP handles them with

only a little overhead compared to the specialized counting algorithm. In the

registration process, BoP analyzes and encodes (see Section 4.2.2) the filter

expression of each subscription s. If s is a pure conjunctive subscription,

the structural component of the encoded root node of the subscription tree

contains an operator identifier that is different from the operator identifier

of an ordinary conjunction. The root node is the only inner node in case

of conjunctive subscriptions. The filtering algorithm subsequently avoids the

evaluation of s in final subscription matching, that is, the evaluation method

for the subscription tree just returns true without accessing the leaf nodes.

BoP can apply this method, because in a conjunctive subscription s,

pmin(s) is always equal to the total number of predicates of s. Hence ev-

ery conjunctive candidate constitutes a fulfilled subscription. The minimal

overhead of our filtering approach, in comparison to the counting approach, is

to retrieve the memory address of the subscription tree, consulting the sub-

scription location table once. Our experiments confirmed that there is only a

marginal overhead of a fraction of a millisecond per filtered event message for

processing up to 300,000 subscriptions.

4.5.2 Short-Circuiting

For general Boolean subscriptions, BoP applies a short-circuiting optimiza-

tion. However, due to the memory-aware encoding scheme of subscription

trees (see Section 4.2.2), full short-circuiting can only be applied to root nodes

of subscription trees. Inner nodes use partial short-circuiting, that is, nodes

are not fully bypassed but only accessed to determine their width in bytes.

BoP thus avoids the evaluation of Boolean expressions and the access of the

fulfilled predicate vector. For root nodes, on the other hand, BoP applies the

full bypass method.

As presented in Section 4.2.2, we also experimented with an alternative

encoding scheme that stores the widths of the children of a node and thus allows

for full bypassing of any nodes [BH05b]. This alternative scheme requires more

memory resources, but led to the same efficiency properties as the applied

4.5 Algorithm Extensions 113

scheme in empirical experiments.

4.5.3 Order of Children

BoP applies a routing optimization (see Chapter 6) that estimates the se-

lectivity of the nodes of subscription trees. The filtering algorithm uses this

information and re-orders the children of a node according to the selectivity

estimate. For conjunctions, BoP orders children with increasing selectivity.

It is thus more likely to determine a non-fulfilled candidate early in the eval-

uation process (in final subscription matching). For disjunctions, children are

arranged with decreasing values of selectivity estimation. Hence, BoP deter-

mines fulfilled candidates early and avoids their further evaluation.

4.5.4 Filtering Shortcut

All approaches in this dissertation work with the subscription or advertisement-

forwarding scheme as routing algorithm (see Section 2.4.5, page 46), depending

on the application of advertisements. This allows for the implementation of

a shortcut optimization to avoid the evaluation of most candidates in final

subscription matching. The same shortcut can be applied if subscribers, having

various registered subscriptions, only need to be notified about matching events

but not about what subscriptions are fulfilled by the message.

BoP uses a hash table (mapping a neighbor broker to a Boolean value)

to record whether any non-local subscription that was forwarded by a par-

ticular neighbor broker is fulfilled by the incoming event message e. Because

e needs to be routed to a neighbor regardless of how many of the forwarded

subscriptions are fulfilled, BoP only requires to evaluate the respective candi-

dates until one fulfilled subscription is found. Proceeding in that way avoids

the evaluation of the majority of candidate subscriptions in the distributed

pub-sub system. The same approach can also be used for subscribers, having

properties as described before. An inspiring shortcut optimization was pro-

posed in [CW03] in combination with subscriptions restricted to disjunctive

normal form (treating a set of conjunctive subscriptions as one subscription).

4.5.5 Minimal Number of Fulfilled Predicates

The calculation algorithm for the minimal number of fulfilled predicates pmin(s)

for a subscription s (see Section 4.2.3) only incorporates the syntax of sub-

114 Chapter 4. Filtering of General Boolean Subscriptions

scription trees. Considering the semantics of subscriptions, however, can lead

to a larger value for pmin(s). Generally, the higher pmin(s) for subscription s,

the less frequent s occurs as a candidate subscription in the filtering process.

Hence the overall filtering performance is improved for larger values of pmin(s).

To exemplify the potential increase of pmin(s), let us consider a subscrip-

tion s of Subscription Class 2, for example, s2 (see Section 3.3.1, page 80).

According to Section 4.2.3, it holds that pmin(s) = 5. However, one can derive

that pmin(s) = 6 when considering the semantics of s2 (Figure 3.2, page 81):

every fulfilled subscription has to specify either a used or a new book copy.

For a new copy, predicates p5 and p9 are always fulfilled, whereas predicates p8

and p12 are always fulfilled for used book copies. Either one of these two con-

ditions always holds in practice, leading to two fulfilled predicates. Hence the

system still works correctly if increasing pmin(s) by one, leading to pmin(s) = 6.

The general goal of this optimization is to incorporate semantic dependencies

among predicates into subscriptions.

So far, we have not included this extended semantic analysis of subscrip-

tions into BoP. We plan to do so in the future.

4.5.6 Exploiting Event Types

Event types, on the one hand, define the semantics of subscriptions. On the

other hand, one can exploit these types to improve the filtering process: mes-

sages can only match subscriptions if they specify the same type (see Defi-

nition 4.4, page 98). A filtering algorithm can thus neglect subscriptions of

any type other than the one stated by the event message. This restriction is

automatically exploited in predicate matching (only predicate indexes of at-

tributes of the respective type are evaluated, confer Section 4.3.1). However,

candidate subscription matching (see Section 4.3.2), in the generic way we

described previously, offers some optimization potential.

The general idea for this optimization is to compact the hit vector, pop-

ulated in candidate subscription matching, in order to reduce the number of

comparisons that is required to identify candidates. A way of compacting this

structure, but still using an efficient array implementation, is to use an ad-

vanced handling of subscription identifiers. Firstly, these identifiers contain

two parts, one stating the event type and one stating a unique identifier for

this type. This allows a specialized hit vector (as an array) to only contain

entries for one event type. Secondly, subscription identifiers should not contain

4.6 Applicability 115

holes, that is, the identifier space should be densely populated. This can be

achieved by reissuing these identifiers to subscribers, or by adding another level

of indirection, that is, internal identifiers differ from those used by subscribers.

We plan to fully integrate this extension into BoP in the future.

4.6 Applicability

The presented filtering algorithm constitutes a general Boolean extension of

the conjunctive counting algorithm. It inherently shares the advantages of the

counting approach with respect to its suitability for general settings.

Firstly, our general Boolean approach does not depend on any patterns

concerning the redundancy among predicates. Secondly, the similarity among

subscriptions does not have an effect on the internal functioning of the al-

gorithm. This is due to its approach of individually indexing subscriptions,

not requiring a particular pattern in this respect. Thirdly, attribute filters

only need to be supported by the applied one-dimensional predicate indexes,

making subscription indexes independent of this parameter.

Additionally, our general Boolean approach does not show any structural

differences in the registration and deregistration process for subscriptions com-

pared to the original counting algorithm. It is thus also suited for applications

where changes in the subscription base might occur frequently and not as a

rare exception.

One could construct subscriptions s that lead to particularly low values of

pmin(s). Or, more generally, one could construct subscriptions s whose inher-

ent property pmin(s) (stored in the minimum predicate count vector) is greater

than or equal to the number of fulfilled predicates for s (stored in the hit vec-

tor) for average event messages. Subscription Class 2 is an example of this

extreme category of subscriptions. As we will show in the following chapter,

even in this case our Boolean filtering algorithm keeps its efficiency proper-

ties in comparison to a conjunctive solution. This is due to avoiding the full

evaluation of candidate subscriptions of Subscription Class 2 by applying the

optimizations presented in Section 4.5.2 (and Section 4.5.3). Our algorithm

thus keeps its suitability as a general-purpose solution even in extreme scenar-

ios. The semantic optimization in Section 4.5.5 further improves the algorithm

behavior in such extreme settings.

116 Chapter 4. Filtering of General Boolean Subscriptions

4.7 Related Work

There is no current filtering approach that simultaneously (i) applies predicate

indexes to achieve an efficient and scalable filtering process, (ii) supports gen-

eral Boolean subscriptions, and (iii) is suitable for general application areas.

Indexing approaches, for example, [ASS+99, AJL02, FJL+01, GS95, LHJ05,

YGM94], are restricted to conjunctive subscriptions, whereas non-indexing so-

lutions, for example, [CCC+01, SA97], support general Boolean subscriptions.

We refer to Section 2.3.2 (page 31) for a detailed analysis and description of

these algorithms.

The counting algorithm was identified as general-purpose solution (see Sec-

tion 2.3.2) that offers potential for an extension to support more general than

conjunctive subscriptions. We have undertaken this step in this chapter, and

proposed a one-dimensional predicate indexing, individual subscription index-

ing filtering algorithm (OP-IS) for general Boolean subscriptions.

The semantics of subscriptions in BoP is different from conjunctive ap-

proaches, for example, Rebeca [Müh02], where all attribute specifications of

the event type of a subscription have to be referred to by, at most, one pred-

icate of its conjunctive filter expression. Such restrictions on a subscription

language are typically exploited in the algorithms applied in such systems.

BoP, however, targets general applications, allows any number of predicates

per subscription, and supports a Boolean combination of predicates. This se-

mantics and the generality of the subscription language in BoP are similar to

the general Boolean approach in [CCC+01]3.

Another way of storing the filter expression of general Boolean subscriptions

(instead of subscription trees) is Binary Decision Diagrams (BDD) [JT92].

Storing individual subscriptions in a form other than subscription trees, such as

BDDs, might result in a more space-efficient storage and a more time-efficient

evaluation of candidate subscriptions. However, the size of BDDs might get

exponential in the number of predicates [Bry86, CCC+01] compared to the

linear size of the subscription trees applied in BoP. Generally, using BDDs to

represent filter expressions merely means to apply another subscription encod-

ing scheme to BoP. Finding the most promising encoding for general Boolean

subscriptions is outside the focus of this dissertation, which is to show the

advantages of general Boolean filtering algorithms over conjunctive solutions

3[CCC+01] restricts the supported filter functions but additionally considers non-total
messages.

4.8 Summary 117

in general-purpose pub-sub systems.

Approaches that apply shared BDDs for several subscriptions [CCC+01,

LHJ05], on the other hand, require the full evaluation of all subscriptions for

each incoming message (see Section 2.3.2). Additionally, these approaches are

not flexible enough to qualify as general-purpose algorithm solutions. Firstly,

the created filtering structures cannot adapt to changes in the characteristics of

subscriptions. Secondly, such approaches are designed for scenarios with highly

similar subscriptions and can only share subexpressions of subscriptions in this

case. They thus degrade to a basic filtering solution if this restrictive pattern

does not hold. We refer to Section 2.3.2 for our detailed discussion of these

approaches.

4.8 Summary

This chapter described a novel filtering algorithm for general Boolean subscrip-

tions. It is the first algorithm that both supports this class of subscriptions and

applies predicate index structures to allow for an efficient filtering process. It

is developed as an extension to the generic counting algorithm for conjunctive

subscriptions. We integrated the presented filtering approach into BoP, our

pub-sub prototype.

The presented filtering algorithm is a general-purpose approach, and we

additionally presented a set of optimization methods that are universally ap-

plicable. Most of these optimizations are already integrated into BoP. One

of them, the filtering shortcut, seamlessly integrates with the routing algo-

rithms that are applied within BoP and thus specifically targets the effective

utilization of the proposed filtering approach in distributed settings.

Having presented this filtering algorithm, it remains to investigate whether

the algorithm fulfills our design properties: a more space-efficient filtering

process than the general-purpose conjunctive solution, achieving at least equal

time efficiency properties. We undertake this analysis in the next chapter.

118 Chapter 4. Filtering of General Boolean Subscriptions

Chapter 5

Boolean or Conjunctive

Filtering: A Comparison

I
n this chapter, we undertake a comparative evaluation between our fil-

tering approach for general Boolean subscriptions, which was introduced

in the previous chapter, and the general-purpose conjunctive counting algo-

rithm. Our analysis covers the quality measures system efficiency and system

scalability that were introduced in Section 2.2 (page 23). Note that we only

evaluate the centralized filtering algorithm in this chapter; our distributed

pub-sub prototype is analyzed in Chapter 8.

Our work in this chapter allows us to verify Part 1 of our central hypothesis

(page 6):

In general-purpose pub-sub systems, a general Boolean filtering ap-

proach requires less memory and achieves higher filter efficiency

than a conjunctive filtering approach.

Whereas the time efficiency of filtering algorithms is influenced by the uti-

lized predicates and their combination, the memory requirements of algorithms

(and thus the scalability of the central filtering component, see Section 2.2)

are largely independent of such scenario specifics. For this purpose, we start

this chapter by introducing a characterization framework for subscriptions in

Section 5.1. This framework allows us to capture most subscription proper-

ties that influence the memory requirements of filtering algorithms applying

individual subscription indexing.

Based on this characterization framework, we then describe the memory

requirements of the general-purpose counting algorithm and our general Bool-

ean algorithm in Section 5.2 and Section 5.4, respectively. Additionally, we

119

120 Chapter 5. Boolean or Conjunctive Filtering: A Comparison

apply the framework to the conjunctive cluster algorithm in Section 5.3. Hav-

ing modeled the memory use of algorithms in a uniform way, we proceed with

comparing them in Section 5.5. After this theoretical part of our analysis, we

verify our results for the two general-purpose algorithms in practical experi-

ments, presented in Section 5.6. Finally, we also analyze the filter efficiency of

these algorithms in Section 5.7, using our online auction application scenario

(Chapter 3).

5.1 Theoretical Subscription Characterization

Framework

We now present a theoretical framework [BH05a] that allows for the description

of the typical patterns of subscriptions. This framework aims at the evaluation

of the memory requirements of filtering algorithms that individually index

subscriptions and allows their comparison. Thus our methodology is based

on those attributes that affect the memory usage for storing and indexing

subscriptions.

In our framework we do not need to model the exact relationships among

predicates because all of the filtering algorithms to be analyzed utilize one-

dimensional predicate indexes. The memory requirements for these predicate

indexes are thus the same. Because our framework ultimately aims at the

comparison of the typical memory requirements, the constant memory usage

for predicate indexes does not need to be taken into account for this purpose.

Our characterization framework comprises three different classes of param-

eters:

1. Subscription characterization parameters (Class S)

2. Canonical conversion parameters (Class C)

3. Algorithm-specific parameters (Class A)

Parameter Class S describes the typical structure of (general Boolean) sub-

scriptions, including, for example, the average number of operators and predi-

cates (Section 5.1.1). Parameter Class C characterizes the influence of canoni-

cal conversion that is required by conjunctive filtering algorithms. It includes,

for example, the number of conjunctive subscriptions that is created by the

5.1 Theoretical Subscription Characterization Framework 121

conversion (Section 5.1.2). Parameter Class A models algorithm-specific im-

plementation details that affect the memory requirements of the analyzed ap-

proaches, for example, the size of predicate identifiers (Section 5.1.3).

5.1.1 Subscription Characterization Parameters

Our framework contains six subscription characterization parameters. Two of

them can be derived from the combination of some of the other four parame-

ters. One can determine these parameters by analyzing the original Boolean

subscription. The parameters are as follows:

Number of Predicates per Subscription |p|. This parameter describes

the average number of predicates used in a subscription. Considering our

representation as subscription trees, |p| states the average number of leaf nodes

per subscription.

Number of Boolean Operators per Subscription |op|. Subscriptions

are defined as general Boolean filter expressions (see Section 4.1.2, page 98).

The average number of operators (conjunctions and disjunctions) used in one

subscription is denoted by |op|.

Proportional Number of Boolean Operators per Subscription opprop .

To reduce the number of characterizing parameters, we introduce the pro-

portional parameter opprop . It describes the average number of operators per

subscription |op| proportional to the average number of predicates per sub-

scription |p|, that is, opprop = |op|
|p|

.

Number of Subscriptions |s|. The number of subscriptions registered with

the pub-sub system is referred to as |s|.

Number of Unique Predicates |pu|. In order to model predicate common-

ality, we require the specification of the number of unique predicates that is

registered with a pub-sub system. Each unique predicate utilizes a unique pred-

icate identifier and is stored in predicate indexes only once (see Section 4.2.3,

page 104). The parameter |pu| describes the total number of unique predicates

registered with the system. It is obviously restricted to the upper bound of

|p| × |s|, that is, |pu| ≤ |p| × |s|.

122 Chapter 5. Boolean or Conjunctive Filtering: A Comparison

Predicate Commonality pc. Predicate commonality pc describes the de-

gree of commonality of predicates, that is, pc determines whether there are

subscriptions that specify the same predicates. We define predicate common-

ality pc as the number of shared predicates (occurrences of non-unique pred-

icates) proportional to the overall number of registered predicates, that is,

pc = 1.0 − |pu|
|p|×|s|

. Generally, high predicate commonality occurs in cases of

small domain sizes and users with similar interests.

In combination with some algorithm-specific parameters (see Section 5.1.3),

these conceptual subscription characterization parameters are sufficient to spec-

ify the memory requirements of the previously developed general Boolean fil-

tering algorithm. Conjunctive approaches, however, need to perform canonical

conversion to be applicable to general Boolean subscriptions. We require addi-

tional parameters, described in the following section, to model this conversion.

5.1.2 Canonical Conversion Parameters

Our subscription characterization framework contains three parameters that

describe the influences of canonical conversion. Thus these parameters are only

required to model the memory requirements of restricted conjunctive filtering

solutions. The third of these parameters can be derived from the former two,

as shown in the following descriptions.

Number of Conjunctive Elements After Conversion |ss|. Parameter

|ss| describes the average number of conjunctive subscriptions created by the

canonical conversion of one original (i.e., general Boolean) subscription. That

is, it describes how many conjunctive elements (individual subscriptions) are

combined by the disjunction in the created disjunctive normal form.

Number of Conjunctive Elements per Predicate After Conversion

|sp|. A conversion to disjunctive normal form implies that predicates of a

general Boolean subscription participate in several conjunctive elements. Pa-

rameter |sp| describes in how many conjunctive elements a predicate from the

original subscription occurs on average. (In case of predicate commonality,

each occurrence of the predicate is treated separately.)

Proportional Number of Conjunctive Elements per Predicate After

Conversion sprop . To reduce the number of parameters in the later com-

5.1 Theoretical Subscription Characterization Framework 123

parison of memory requirements, we introduce the proportional notion sprop .

It denotes the average number of conjunctive subscriptions per original pred-

icate (i.e., |sp|) proportional to the total number of conjunctive subscriptions

created by the canonical conversion (i.e., |ss|), that is, sprop = |sp|

|ss|
.

These three parameters are sufficient to model the effects of canonical con-

version of subscriptions. In combination with the algorithm-specific parame-

ters we introduce in the next section, one can model the memory requirements

of conjunctive algorithms (see Sections 5.2 to 5.3). Obviously, our general

Boolean solution does not depend on these conversion-related parameters, but

only on the parameters defined in the previous and the next section.

5.1.3 Algorithm-Specific Parameters

The parameters introduced in the two previous sections describe the general

subscription structure and the influence of canonical conversion independently

of the actually applied filtering approach. The implementation of particular

algorithms, however, requires the incorporation of algorithm-specific param-

eters into our subscription characterization framework. The former two of

the following parameters are required by a wide range of algorithms, whereas

the latter two are particularly required by the approaches we use in our later

analysis.

Width of Subscription Identifiers w(s). Parameter w(s) describes the

width of subscription identifiers in bytes. These identifiers are used within all

three of the analyzed algorithms later on. If using 32-bit unsigned integers as

identifiers, it holds w(s) = 4.

Width of Predicate Identifiers w(p). Predicates also have to be uniquely

identifiable by the algorithms we analyze. Parameter w(p) specifies the width

of predicate identifiers in bytes. Again, using 32-bit unsigned integers as iden-

tifiers leads to w(p) = 4.

Width of Subscription Locations w(l). In our Boolean filtering approach,

we store subscriptions as subscription trees (see Section 4.2.2, page 102). The

memory positions of these trees are referenced by a subscription location table.

The width of such a location reference in bytes is denoted by w(l). If utilizing

standard memory pointers on 32-bit machines, it holds w(l) = 4.

124 Chapter 5. Boolean or Conjunctive Filtering: A Comparison

Table 5.1: Overview of the parameters of our subscription characteriza-
tion framework (Class S–subscription characterization parameters, Class C–
canonical conversion parameters, and Class A–algorithm-specific parameters).

Symbol Parameter Name (Calculation) Class

|p| Number of predicates per subscription S

|op| Number of Boolean operators per subscription S

opprop Proportional number of Boolean operators S

per subscription (opprop = |op|
|p|

)

|s| Number of subscriptions S

|pu| Number of unique predicates S

pc Predicate commonality (pc = 1.0− |pu|
|p||s|

) S

|ss| Number of conjunctive elements after conversion C

|sp| Number of conjunctive elements per predicate C
after conversion

sprop Proportional number of conjunctive elements per C

predicate after conversion (sprop = |sp|
|ss|

)

w(s) Width of subscription identifiers A

w(p) Width of predicate identifiers A

w(l) Width of subscription locations A

w(c) Width of cluster references A

Width of Cluster References w(c). The cluster algorithm clusters sub-

scriptions according to common access predicates (see Section 2.3.2, page 37).

The width of a reference to such a cluster in bytes is stated by w(c). Using

standard memory pointers on 32-bit machines leads to w(c) = 4.

Although one cannot model all details of certain algorithm implementations

with these parameters, they allow for the derivation of the main memory re-

quirements of the three algorithms we analyze, as shown in Sections 5.2 to 5.4.

Before proceeding to these algorithm analyses, we characterize subscriptions

of our three subscription classes with the help of our framework. To allow

for a better overview of all 13 parameters, we present a compact summary in

Table 5.1.

5.1 Theoretical Subscription Characterization Framework 125

Table 5.2: Overview of a selection of parameters of our subscription charac-
terization framework for Subscription Classes 1 to 3 (see Figures 3.1 to 3.3,
page 80).

Parameter Class 1 Class 2 Class 3

|p| 6 12 7

|op| 4 10 6

opprop 4
6
≈ 0.667 10

12
≈ 0.833 6

7
≈ 0.857

|ss| 2 4 6

|sp| 2×2+4×1
6

≈ 1.333 2×4+2×2+8×1
12

≈ 1.667 2×3+4+4×2
7

≈ 2.571

sprop 1.333
2
≈ 0.667 1.667

4
≈ 0.417 2.571

6
≈ 0.429

5.1.4 Characteristics of Example Subscription Classes

We now characterize our three example subscription classes (see Section 3.3,

page 79) with the help of the introduced subscription characterization frame-

work. We only state those parameters that directly influence the development

of the memory requirements of the analyzed algorithms (Sections 5.2 to 5.4).

Table 5.2 gives a detailed overview of these parameters of our framework. In

the rows of the table, we present the parameters of our framework; columns

contain the different subscription classes. In Section 5.5.3, we use the same

parameters to determine whether a conjunctive or a general Boolean filter-

ing algorithm requires less memory for the indexing of subscriptions of these

classes.

The following example illustrates the calculation of these parameters for

Subscription Class 2 (see Column 3 of Table 5.2):

Example 5.1 (Characterization of Subscription Class 2) Class 2 (Fig-

ure 3.2, page 81) contains 12 predicates, p1 to p12, leading to |p| = 12. In

Section 3.3.1 (page 79), we have given an example subscription of this class,

subscription s2. The 12 predicates are combined by 10 Boolean operators, seven

conjunctions and three disjunctions. Hence, it holds |op| = 10 for this subscrip-

tion class. Combining these two subscription characterization parameters leads

to opprop = |op|
|p|

= 10
12
≈ 0.833.

Performing a canonical conversion leads to four conjunctive subscriptions

for this class, s2a = (book,F2a) to s2d = (book,F2d); it hence holds |ss| = 4.

126 Chapter 5. Boolean or Conjunctive Filtering: A Comparison

These subscriptions contain the following predicates:

P(F2a) = {p1, p2, p3, p5, p6},
P(F2b) = {p1, p2, p3, p7, p8},
P(F2c) = {p1, p2, p4, p9, p10},
P(F2d) = {p1, p2, p4, p11, p12}.

So let us count the number of conjunctive subscriptions per predicate. The

number of conjunctions for predicates p1 to p12 (in this order) is as follows: 4,

4, 2, 2, 1, 1, 1, 1, 1, 1, 1, and 1. Building the average of these occurrences leads

to 2×4+2×2+8×1
12

≈ 1.667 and hence |sp| ≈ 1.667. Combining the former two

canonical conversion parameters finally results in sprop = |sp|
|ss|

= 1.667
4
≈ 0.417.

Using our characterization framework, one should keep in mind that in practice

conjunctive filtering algorithms might need to extend the created canonical

form, which leads to higher values of |sp| (and thus sprop). For example, the

cluster algorithm can only cluster subscriptions that have the same numbers

of predicates. Thus, it might need to insert “don’t-care” predicates to allow

for this property. We do not consider these increased memory requirements of

conjunctive approaches in our framework but assume a more general setting

(potentially leading to optimistic results for conjunctive algorithms).

5.2 Theoretical Analysis of the Counting Al-

gorithm

Having presented our subscription characterization framework, we now model

the memory requirements of the counting algorithm (see Section 2.3.3, page 40)

with the help of this framework. In the two subsequent sections, we then

analyze the cluster and the general Boolean approach.

In the following paragraphs, we analyze the memory requirements of both

indexing and filtering structures. We start our individual observations with

cases without predicate commonality (pc = 0). Subsequently, we extend our

analyses to more general settings involving common predicates.

Fulfilled Predicate Vector. The fulfilled predicate vector is required to

store fulfilled predicates in the predicate matching step. In an implementation,

5.2 Theoretical Analysis of the Counting Algorithm 127

one might apply an ordinary vector or a bit vector for this data structure.

This decision should depend on the proportion of matching predicates. Let us

consider a bit vector implementation in the following, requiring at least |p|×|s|
8

bytes for no predicate commonality and |p|×|s|×(1−pc)
8

bytes in general.

In cases of large numbers of fulfilled predicates per event, a bit vector

implementation requires less memory than an ordinary vector implementa-

tion. However, if the proportion of fulfilled predicates per event and totally

registered predicates is relatively small, utilizing an ordinary vector becomes

advantageous.

Hit Vector. The hit vector accumulates the number of fulfilled predicates

per subscription. For simplicity, let us assume a maximum number of 255

predicates per subscription1. Thus each entry in the hit vector requires 1 byte

to represent the hit counter. Altogether, for |s| registered subscriptions, which

create |ss| conjunctions due to the canonical conversion, the space requirements

are |s| × |ss| bytes for the hit vector.

Because this vector consists of one entry per subscription, its memory usage

is independent of predicate commonality pc.

Subscription Predicate Count Vector. The counting algorithm stores

the total number of predicates per subscription. According to our assumption

for the hit vector, one can represent each subscription by a 1-byte entry in the

subscription predicate count vector. Thus one needs |s| × |ss| bytes in total

due to the required canonical conversion.

Similarly to the hit vector, the subscription predicate count vector does not

depend on predicate commonality (it consists of one entry per subscription).

Predicate-Subscription Association Table. An implementation of this

table has to map each predicate to a list of subscriptions due to the required

canonical conversion. This mapping to a list of subscriptions also holds in

cases of no predicate commonality (pc = 0). Least memory is demanded if

predicate identifiers are used as indices in the predicate-subscription associa-

tion table (this requires consecutive predicate identifiers). For maintaining the

list of subscriptions, one has to store the corresponding number of subscription

identifiers at a minimum, but we do not consider such implementation specifics

1This assumption can be easily relaxed.

128 Chapter 5. Boolean or Conjunctive Filtering: A Comparison

here. Thus from an abstract viewpoint one only has to record the list of sub-

scription identifiers (requiring w(s)×|sp| bytes per predicate) for all registered

predicates (|p| × |s| predicates in total), which demands w(s)× |sp| × |p| × |s|
bytes in total.

If considering predicate commonality pc, for unique predicates (including

one occurrence of each common predicate) the following amount of memory

is required in bytes: (1.0 − pc) × w(s) × |sp| × |p| × |s|. Common predicates

use pc × w(s) × |sp| × |p| × |s| bytes. Thus predicate commonality does not

influence the size of the predicate-subscription association table.

Subscription-Predicate Association Table. Least memory for subscrip-

tion-predicate associations is required when using subscription identifiers as

indices in the subscription-predicate association table. Each entry maps a

subscription identifier to a list of predicate identifiers (there is also some im-

plementation overhead as described for the predicate-subscription association

table). Thus, one has to store a list of predicates for each subscription (there

are |s| × |ss| subscriptions in total due to conversion). Each list has to hold

|p| × |sp|

|ss|
predicate identifiers, which leads to w(p) × |s| × |ss| × |p| × |sp|

|ss|
=

w(p)× |s| × |p| × |sp| bytes in total for this table.

Predicate commonality pc does not influence this data structure because it

contains entries for each subscription. Thus common predicates do not allow

for the storage of fewer associations between subscriptions and predicates.

Accumulating the previously determined memory usage leads to the fol-

lowing overall memory requirements:

memcounting = |s| × (2|ss|+ w(s)× |sp| × |p|+ w(p)× |sp| × |p|+
|p| × (1− pc)

8
). (5.1)

5.3 Theoretical Analysis of the Cluster Algo-

rithm

We now analyze a second conjunctive filtering algorithm with the help of our

subscription characterization framework: the cluster algorithm [FJL+01]. As

argued in Section 2.3.2 (page 37), this algorithm is a specialized filtering solu-

tion for applications that mainly involve highly common equality predicates.

5.3 Theoretical Analysis of the Cluster Algorithm 129

Due to these strong application-dependent requirements, we cannot model the

memory usage of all data structures of this algorithm with our framework, but

instead focus on the most memory-consuming ones.

In our analysis, we again start by deriving the memory usage for cases

without common predicates (pc = 0). Subsequently, we extend our findings to

the more general case, involving predicate commonality.

Predicate Bit Vector. This vector is similar to the fulfilled predicate vec-

tor applied in the counting algorithm. However, one always requires a bit

vector implementation in this algorithm due to the need to access the state

of predicates (whether they are fulfilled or not fulfilled) directly. Thus, one

demands |p|×|s|×(1−pc)
8

bytes for the predicate bit vector.

Cluster Vector. This vector contains references to subscription cluster lists.

The number of entries depends highly on the actual number of access predi-

cates. In turn, this number is dependent on the registered subscriptions and

application semantics. Due to the unpredictability of such patterns, we ne-

glect the memory requirements for this data structure in our following analy-

sis. Furthermore, its memory usage is only a marginal proportion of the overall

memory requirements.

Generally predicate commonality pc results in a smaller cluster vector due

to fewer access predicates (in fact, pc = 0 contradicts the assumption of access

predicates used in this algorithm).

Clusters. Subscriptions themselves are stored in clusters according to both

their access predicates and their total number of predicates. Clusters consist

of a subscription line storing an identifier for each subscription (w(s) bytes re-

quired per subscription). Furthermore, they contain a predicate array holding

the predicates each subscription consists of (on average requiring |sp|
|ss|
×|p|×w(p)

bytes per subscription if only storing predicate identifiers). Clusters storing

subscriptions with the same number of predicates and the same access pred-

icates are linked together in a list structure. Here we neglect the memory

requirements for this implementation-specific list.

Altogether clusters thus require |s| × |ss| × (w(s) + |sp|

|ss|
× |p| ×w(p)) bytes

to store |s| × |ss| subscriptions. Predicate commonality does not influence the

size of clusters. This results from the observation that clusters store predicates

130 Chapter 5. Boolean or Conjunctive Filtering: A Comparison

for all subscriptions. This storage happens in all cases of pc and does not vary

according to the commonality among predicates.

Subscription Cluster Table. This table is required to support efficient

deregistrations. It allows for the determination of the cluster each subscrip-

tion is stored in. When utilizing subscription identifiers as indices for the

subscription cluster table, one requires |s| × |ss| ×w(c) bytes for its storage of

|s| × |ss| cluster references.

This table is also focused on mappings from subscriptions. Thus its size is

independent of predicate commonality pc.

Predicate-Subscription Association Table. An association between pred-

icates and subscriptions is required to allow for an efficient support of dereg-

istrations. If using predicate identifiers as indices in the table (or storing

associations inside indexes), one requires w(s)× |sp| × |p| × |s| bytes for these

associations of |p|×|s| predicates, each being contained in w(s)×|sp| subscrip-

tions on average.

Similar to our observation for the counting algorithm, for unique predicates

one requires (1.0− pc)×w(s)× |sp| × |p| × |s| bytes to store their associations

with subscriptions. Common predicates consume pc × w(s) × |sp| × |p| × |s|
bytes. Therefore predicate redundancy does not influence the size of predi-

cate-subscription associations in this table.

Accumulating the previously determined memory usages leads to the fol-

lowing overall memory requirements:

memcluster = |s| × (|ss| × (w(c) + w(s)) + |sp| × |p| × (w(s) + w(p)) +

|p| × (1− pc)

8
). (5.2)

5.4 Theoretical Analysis of the General Bool-

ean Algorithm

The final algorithm we analyze is our general Boolean filtering approach (see

Chapter 4), obviously not requiring canonical conversion. Following our previ-

ous procedure, we start by analyzing the memory requirements without com-

mon predicates and then extend our findings to the general case, involving

5.4 Theoretical Analysis of the General Boolean Algorithm 131

shared predicates (pc > 0). Because the general Boolean approach extends

the counting algorithm, some of the required data structures are identical to

the counting approach. However, their memory requirements differ because no

canonical conversion needs to be applied.

Fulfilled Predicate Vector. This vector serves the same purpose as its

counterpart in the counting algorithm. It can be realized as an ordinary vector

or as a bit vector. A bit vector implementation requires |p|×|s|×(1−pc)
8

bytes of

memory.

Subscription Trees. The encoding scheme of subscription trees was pre-

sented in Section 4.2.2 (page 102). For predicates, stored in leaf nodes, one

requires |p| × (w(p) + 1) bytes per subscription. Inner nodes, containing the

Boolean operators and the numbers of children, demand 2|op| bytes of memory

for each subscription. Thus, for all registered subscriptions |s| × ((w(p)+ 1)×
|p|+ 2|op|) bytes are required.

Subscription trees have to store operators and predicate identifiers in all

cases. Thus, they do not depend on the commonality among predicates pc.

Subscription Location Table. This table is applied to associate subscrip-

tion identifiers and subscription trees. If utilizing subscription identifiers as

indices in this table, ones requires w(l)×|s| bytes for storing these associations.

Because the subscription location table contains entries per subscription,

its memory usage is not influenced by predicate commonality pc.

Predicate-Subscription Association Table. The predicate-subscription

association table requires less memory than its counterparts in the two previ-

ously analyzed algorithms. This is implied by the fact that subscriptions do

not need to be converted to canonical forms by the Boolean approach. Thus

predicates are involved in fewer subscriptions (e.g., always only one subscrip-

tion in case of pc=0). Altogether, |s| × |p| × w(s) bytes are required for the

predicate-subscription association table.

In cases of predicate commonality, one requires pc×|s|×|p|×w(s) bytes for

unique predicates. Moreover, redundant predicates consume (1.0− pc)× |s| ×
|p| ×w(s) bytes. In summary, the memory usage of the predicate-subscription

association table does not depend on the commonality among predicates.

132 Chapter 5. Boolean or Conjunctive Filtering: A Comparison

Hit Vector. According to the hit vector in the counting approach, this data

structure is used to accumulate the number of fulfilled predicates per sub-

scription. Because no conversion to canonical expressions is required by the

Boolean algorithm and according to the common assumption of a maximum

of 255 predicates per subscription, the hit vector requires |s| bytes of memory.

The memory requirements do not depend on predicate commonality be-

cause the hit vector contains entries per subscription.

Minimum Predicate Count Vector. According to our assumption of a

maximum of 255 predicates per subscription, the minimum predicate count

vector requires |s| bytes of memory.

Equivalently to the hit vector, this data structure does not depend on the

commonality among predicates.

Summing up the identified memory requirements for the individual data

structures, we derive the following overall memory usage:

memBoolean = |s| × (|p| × (1 + w(p) + w(s)) + 2|op|+ w(l) + 2 +

|p| × (1− pc)

8
). (5.3)

5.5 Theoretical Algorithm Comparison

Having described the memory requirements of two conjunctive filtering algo-

rithms and our general Boolean representative, we now compare the memory

usage of the conjunctive solutions to the general Boolean one. When only con-

sidering the filtering component, these memory requirements directly affect

the scalability of a solution (see Section 2.2 and Section 2.6 on page 23 and

page 58, respectively). From our following analysis, we can thus also deduce

under what circumstances a Boolean filtering algorithm should be preferred

with respect to scalability and the settings that favor a conjunctive solution.

5.5.1 Point of Interchanging Memory Requirements

In the subsequent comparison, we directly use the accumulated memory re-

quirements of the three algorithms, given in Equations 5.1 to 5.3 (page 128,

130, and 132). The memory usage in all three cases grows linearly with the

number of subscriptions |s| (and is zero if no subscriptions are registered).

5.5 Theoretical Algorithm Comparison 133

Hence, we only need to analyze the first derivatives of the functions in Equa-

tions 5.1 to 5.3 at |s| for a comparison of the memory requirements. For the

counting algorithm (Equation 5.1), it thus holds:

mem ′
counting(|s|) = 2|ss|+ w(s)× |sp| × |p|+ w(p)× |sp| × |p|+

|p| × (1− pc)

8
. (5.4)

Similarly for the cluster algorithm (Equation 5.2) we derive:

mem ′
cluster(|s|) = |ss| × (w(c) + w(s)) + |sp| × |p| × (w(s) + w(p)) +

|p| × (1− pc)

8
. (5.5)

Finally, the general Boolean approach (Equation 5.3) leads to the following

first derivation:

mem ′
Boolean(|s|) = |p| × (1 + w(p) + w(s)) + 2|op|+ w(l) + 2 +

|p| × (1− pc)

8
. (5.6)

To reduce the number of variables in these equations, let us now assume typ-

ical values for the algorithm-specific parameters, as stated in Section 5.1.3:

w(s) = 4, w(p) = 4, w(l) = 4, and w(c) = 4. That is, the widths of sub-

scription identifiers, predicate identifiers, subscription locations, and cluster

references are 4 bytes each2. Finally, let us further reduce the number of vari-

ables by utilizing the proportional notions of opprop (proportional number of

operators) and sprop (proportional number of conjunctive elements per predi-

cate), as defined in Section 5.1.

With these specifications, we now compare the memory usage of the con-

junctive algorithms (Equation 5.4 and Equation 5.5) to that of the general

Boolean approach (Equation 5.6). The following inequalities denote the points

where the general Boolean approach requires less memory for its event filter-

ing data structures than the respective conjunctive solution. These points are

described in terms of the characterizing parameter |ss|. That is, the general

Boolean approach requires less memory if a canonical conversion to disjunctive

normal form creates more than the stated number of conjunctive subscriptions.

2These values hold on 32-bit machines when using standard (unsigned) integers as iden-
tifiers and standard memory pointers.

134 Chapter 5. Boolean or Conjunctive Filtering: A Comparison

We refer to these points as turning points because they describe in what

cases of |ss| a general Boolean filtering algorithm becomes worthwhile. To

allow for a better overview, we use the notation |ss|(algorithm

Boolean
) to denote the

conjunctive algorithm “algorithm” compared to the general Boolean approach:

|ss|(
counting

Boolean
) >

|p| × (2opprop + 9) + 6

2 + 8sprop × |p| , (5.7)

|ss|(
cluster

Boolean
) >

|p| × (2opprop + 9) + 6

8 + 8sprop × |p| . (5.8)

Having found these turning points, we illustrate them graphically in the fol-

lowing subsection.

5.5.2 Graphic Illustration of the Turning Point

Figure 5.1 shows the turning point for different parameter combinations. The

turning point when comparing the counting and the general Boolean approach

is illustrated in Figure 5.1(a); Figure 5.1(b) depicts the cluster in comparison

to the general Boolean algorithm. On the abscissae of the figures, we show the

number of predicates per subscription |p|. The ordinates show the number of

conjunctions |ss| that need to be created by canonical conversion to lead to a

more space-efficient general Boolean filtering approach.

In the figures, we vary sprop (proportional number of conjunctions per predi-

cate) between 0.3 and 0.7 to show the influence of this parameter on the turning

point. Our example subscription classes show values of sprop between approx-

imately 0.4 and 0.7 (see Section 5.1.4). For parameter opprop (proportional

number of operators), we choose opprop = 0.8 in these figures, being approxi-

mately the average of opprop in our example classes (in between approximately

0.7 and 0.9).

To interpret Figure 5.1, one chooses one conjunctive algorithm (i.e., either

Figure 5.1(a) or Figure 5.1(b)), one of the curves (specifying opprop and sprop),

and the number of predicates |p| on the abscissa. One then gets the mapping

for this scenario on the ordinate, specifying the turning point. We demonstrate

this process in the following example:

Example 5.2 (Finding the turning point) To determine the turning point

for the counting algorithm in comparison to the general Boolean approach, we

5.5 Theoretical Algorithm Comparison 135

 1

 2

 3

 4

 5

 6

 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 c

on
ju

nc
tio

ns
 |s s
|

Number of predicates per subscription |p|

opprop=0.8, sprop=0.3
opprop=0.8, sprop=0.5
opprop=0.8, sprop=0.7

(a) Counting and Boolean

 1

 2

 3

 4

 5

 6

 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 c

on
ju

nc
tio

ns
 |s s
|

Number of predicates per subscription |p|

opprop=0.8, sprop=0.3
opprop=0.8, sprop=0.5
opprop=0.8, sprop=0.7

(b) Cluster and Boolean

Figure 5.1: Turning point (point of interchanging memory requirements) for
counting and Boolean approach, and cluster and Boolean approach.

need to consider Figure 5.1(a). Let us assume that subscriptions, on average,

specify 10 predicates (|p| = 10). We thus fix the value “10” on the abscissa.

Let us further assume that the number of operators proportional to the number

of predicates is approximately 0.8 (opprop = 0.8), and that after the conver-

sion a predicate occurs in approximately 70 percent of the created conjunctions

(sprop = 0.7).

Thus we find the turning point as the value of the lowermost curve in Fig-

ure 5.1(a) for argument |p| = 10: the number of conjunctions that is created

by the conversion has to be less than two (|ss| < 2). Hence whenever a sub-

scription is not purely conjunctive, the general Boolean algorithm requires less

memory than the counting approach (and is thus more scalable) for this sce-

nario.

From the viewpoint of the general Boolean approach, the lower a curve is

situated in Figure 5.1, the more advantageous this algorithm performs in com-

parison to a conjunctive solution. The reason for this property is that already

an only slightly increased complexity after a canonical conversion leads to less

memory use for the Boolean approach. From the viewpoint of conjunctive

algorithms, conversely, the higher a curve is located in comparison to other

conjunctive approaches, the more space-efficient is the respective solution.

For both conjunctive algorithms, an increase in the number of operators

(increasing opprop) when holding the other parameters fixed leads to more space

efficiency compared to the Boolean approach. This is because the Boolean

algorithm needs to encode and store these operators, but not the conjunctive

136 Chapter 5. Boolean or Conjunctive Filtering: A Comparison

solutions. When observing the other parameter, the number of conjunctions

per predicate after conversion sprop , an increase in this parameter leads to a

more space-efficient Boolean approach. Obviously this is founded in the fact

that the complexity of the converted conjunctive subscriptions increases if the

other parameters stay fixed.

Comparing the counting and cluster approach, the counting algorithm is

more space-efficient than the cluster algorithm (curves for the same parameter

setting are located higher in Figure 5.1(a) than in Figure 5.1(b)). In particu-

lar, for small predicates numbers (left on the abscissa), the counting approach

outperforms the cluster algorithm. The reason for this behavior is the require-

ment to store subscription cluster table and subscription identifiers in clusters

regardless of the number of predicates, which leads to a larger proportional

memory use for an overall small number of predicates |p|. For higher predicate

numbers, both conjunctive algorithms lead to comparable turning points. The

counting algorithm, though, always stays slightly more space-efficient than the

cluster algorithm.

5.5.3 Properties of Example Subscription Classes

In this dissertation, we focus on general-purpose filtering algorithms for pub-

sub systems. After our conceptual analysis of the turning point, we now com-

pare the memory requirements of our example subscription classes using the

counting and our general Boolean approach.

To determine the preferable general-purpose filtering algorithm for sub-

scriptions of these classes, we use the findings from Section 5.1.4, describing

these classes with the help of our subscription characterization framework.

Having determined the turning point with the help of Equation 5.7, we can

compare this point to the real number of conjunctions |ss| that is created by

the canonical conversion of these classes. If |ss| is greater than or equal to

the derived turning point, the general Boolean filtering solution is favorable

with respect to memory requirements. For Subscription Class 1, we derive the

following turning point:

|ss|(
counting

Boolean
) >

6× (2× 0.667 + 9) + 6

2 + 8× 0.667× 6
=

68

34
= 2.

5.6 Practical Algorithm Comparison 137

The turning point for Subscription Class 2 is as follows:

|ss|(
counting

Boolean
) >

12× (2× 0.833 + 9) + 6

2 + 8× 0.417× 12
=

134

42
≈ 3.19.

Finally, for Subscription Class 3 the turning point is:

|ss|(
counting

Boolean
) >

7× (2× 0.857 + 9) + 6

2 + 8× 0.429× 7
=

81

26
≈ 3.12.

The actual created number of conjunctive subscriptions for these classes is

given in Table 5.2 (page 125): |ss| = 2 for Class 1, |ss| = 4 for Class 2, and

|ss| = 6 for Class 3. Hence for all subscription classes the general Boolean

algorithm requires less (Class 2 and 3) or equal (Class 1) memory than the

conjunctive solution. Consequently, for our online auction scenario one should

apply a Boolean filtering approach with respect to memory use.

5.6 Practical Algorithm Comparison

Having the theoretical means to determine whether a conjunctive or a Boolean

filtering algorithm is preferable for a given setting, we now verify our findings

by experiment. In this empirical evaluation, we compare the counting algo-

rithm and our general Boolean approach, in accordance with the focus of this

dissertation.

5.6.1 Experimental Setup

A practical implementation of filtering algorithms requires memory resources

additional to those described by our theoretical framework. For example, one

needs suitable data structures that efficiently support the required operations

and these structures need extra memory for their effective management. Thus,

in a practical implementation, one has to face a higher memory cost than

described in the theoretical model.

Also, the data structures have to be implemented reasonably. For example,

indexing structures (e.g., predicate-subscription association table) require a

dynamic implementation to allow for both registrations and deregistrations.

For sole filtering structures (e.g., fulfilled predicate vector), on the other hand,

it is sufficient to provide static implementations.

The experimental testbed we use to confirm our theoretical findings only

138 Chapter 5. Boolean or Conjunctive Filtering: A Comparison

contains implementations of the subscription indexing parts of both counting

and general Boolean algorithm (both candidate and final subscription match-

ing for the Boolean approach). We exclude predicate indexes because both

approaches can apply the same indexes for this purpose and thus require the

same memory in practice.

For the dynamic data structures of the algorithms, we used dynamic ar-

ray implementations that consumed less memory than their Stl3 variants in

empirical studies. These dynamic structures include the required tables (e.g.,

predicate-subscription association table), whose implementation is also based

on our dynamic array.

Because the general Boolean approach extends the counting algorithm and

because of our choice to use comparable implementations for both of these

approaches, our experiments reveal whether the practical memory overhead

is comparable for these two classes of filtering algorithms. That is, we can

verify the findings of our theoretical framework with the provided practical

implementation.

Our experiments required us to use an artificial test setup to derive data

points for a wide range of parameter assignments. We analyzed predicate

numbers in the interval from |p| = 5 to |p| = 50. The number of conjunctive

subscriptions due to conversion was varied between |ss| = 1 and |ss| = 5. We

also used different numbers of operators |op| and conjunctions per predicate |sp|
in our experiments. Here we present the results for the setting |op| = 0.5, and

the three assignments |sp| = 0.3, |sp| = 0.5, and |sp| = 0.7. The turning point

is generally independent of the number of subscriptions; in our experiments

we used 1,000,000 subscriptions (|s| = 1, 000, 000).

In the following, we report the total memory requirements of the filtering

process using information provided by the process status application program-

ming interface (PSAPI).

5.6.2 Illustrating the Memory Usage

Figure 5.2(a) illustrates the memory requirements (z-axis) for the counting al-

gorithm (light surface) and the general Boolean algorithm (dark surface). The

surface that represents the counting algorithm is derived (i.e., interpolated)

from 50 points (10 values for |p| on the x-axis and five values for |ss| on the

y-axis). The surface that illustrates the general Boolean approach is derived

3Standard Template Library [SL95].

5.6 Practical Algorithm Comparison 139

Predicates per subscription |p|
Number of conjunctions |ss| 5 10 15 20 25 30 35 40 45 50 1

 2
 3

 4
 5

1,000

800

600

400

200

0

Memory in MB

(a) Perspective view

N
um

be
r

of
 c

on
ju

nc
tio

ns
 |s s
|

 5 10 15 20 25 30 35 40 45 50
Predicates per subscription |p|

 1

 2

 3

 4

 5

(b) Top view

Figure 5.2: Memory requirements for counting algorithm (light surface) and
Boolean algorithm (dark surface) for the setting |s| = 1, 000, 000, opprop = 0.5,
and |sp| = 0.3. In the right figure, we show the same setting and a top view to
the left figure. The light surface is illustrated transparently in the right figure
and our theoretical result is indicated by the additional curve.

from the 10 different values for |p| (x-axis). The memory requirements of this

algorithm are independent of conversion and thus have the same values for all

assignments of |ss| (y-axis).

As illustrated in Figure 5.2(a), the specialized counting algorithm requires

less memory than the Boolean approach for small values of |ss|. However, the

more conjunctions are created due to conversion (higher values on y-axis), the

higher the memory usage of the counting approach (z-axis). One can directly

observe that both surfaces cut at some point: the turning point, theoretically

described in Equation 5.7.

To get a better overview of the turning point, we illustrate a top view of

the behavior of the algorithms in the described setting in Figure 5.2(b). We

remove the surface that represents the counting algorithm and just show the

surface for the Boolean approach in this figure. This surface is shown until

it is cut by the surface of the counting algorithm and thus covered in the

illustrated top view. In Figure 5.2(b), we additionally illustrate a curve that

represents the theoretically derived turning point in the same setting. For

our two other settings, we show a similar top view to the empirical results

in Figure 5.3(a) (|sp| = 0.5) and Figure 5.3(b) (|sp| = 0.7). There we also

included the theoretically determined turning point.

140 Chapter 5. Boolean or Conjunctive Filtering: A Comparison

N
um

be
r

of
 c

on
ju

nc
tio

ns
 |s s
|

 5 10 15 20 25 30 35 40 45 50
Predicates per subscription |p|

 1

 2

 3

 4

 5

(a) Top view, |sp| = 0.5

N
um

be
r

of
 c

on
ju

nc
tio

ns
 |s s
|

 5 10 15 20 25 30 35 40 45 50
Predicates per subscription |p|

 1

 2

 3

 4

 5

(b) Top view, |sp| = 0.7

Figure 5.3: Turning point for the setting |s| = 1, 000, 000, opprop = 0.5, and
varying values of |sp|. The theoretical result is indicated by the additional
curve.

The theoretically predicted turning point broadly aligns with the behavior

in practice in all three of these figures. However, for small predicate numbers

(left on the abscissae) the turning point in practice can be found below the

theoretically determined one. This is particularly the case for small values of

|sp| (cf. Figure 5.2(b)). This behavior, in fact, means that for small predicate

numbers the general Boolean approach leads to even better results in practice

than in theory: even disjunctive normal forms less complex than predicted by

the theoretical characterization framework do already favor a general Boolean

filtering solution.

The reason for this behavior is found in the data structures for these al-

gorithms: the subscription-predicate association table that is required in the

counting algorithm has a relatively high management overhead for small pred-

icate numbers and small values of |sp| because the created conjunctive sub-

scriptions involve an even smaller number of predicates in this case. Hence the

memory use for management purposes proportional to the data in this table is

relatively high. However, this is not the case for the subscription trees in the

Boolean approach. For larger predicate numbers in the created conjunctions,

the proportion of memory for management and stored data gets smaller, and

becomes comparable in both approaches.

5.7 Correlation to Filter Efficiency 141

1,000

800

600

400

200

0
 5 10 15 20 25 30 35 40 45 50

M
em

or
y

in
 M

B

Predicates per subscription |p|

ss varies, pc=0
ss varies, pc=0.25
ss varies, pc=0.5

(a) General Boolean algorithm

1,000

800

600

400

200

0
 5 10 15 20 25 30 35 40 45 50

M
em

or
y

in
 M

B

Predicates per subscription |p|

ss=2, pc=0
ss=2, pc=0.25
ss=2, pc=0.5
ss=5, pc=0
ss=5, pc=0.25
ss=5, pc=0.5

(b) Counting algorithm

Figure 5.4: Influence of predicate commonality on the general Boolean
algorithm and the counting algorithm, using the setting |s| = 1, 000, 000,
opprop = 0.5, and sprop = 0.3.

5.6.3 Predicate Commonality

Although our theoretical analysis shows that the memory requirements do only

marginally depend on predicate commonality pc (only the fulfilled predicate

vector is influenced by pc), the behavior in practice is different. The reason for

this development is again found in the varying overhead for the management

of data structures in an implementation, in this case for the predicate-sub-

scription association table that is required in both algorithms. The result is a

decreasing memory usage for increasing predicate commonality pc.

Figure 5.4(a) shows this behavior for the Boolean algorithm; the counting

approach is illustrated in Figure 5.4(b). The abscissae of these figures state

the number of predicates |p|. The memory usage is displayed at the ordinates.

In this set of experiments, we use the following parameters: |s| = 1, 000, 000,

opprop = 0.5, and sprop = 0.3. The curves in the figures state different predicate

commonalities: pc = 0, pc = 0.25, and pc = 0.5. For the counting algorithm

(Figure 5.4(b)), we illustrate two settings, |ss| = 2 and |ss| = 5.

Although predicate commonality pc changes the memory use for both al-

gorithms in practice, this effect does not influence the turning point of the

memory requirements (see Section 5.5.2): predicate commonality has the same

effect on the Boolean and the conjunctive algorithm, as shown in Figure 5.4.

5.7 Correlation to Filter Efficiency

We now investigate the time efficiency properties of both filtering solutions.

Combining our findings regarding time and memory efficiency allows for a full

142 Chapter 5. Boolean or Conjunctive Filtering: A Comparison

overview of the advantages and disadvantages of these categories of algorithms.

5.7.1 Experimental Setup

The efficiency properties of filtering algorithms depend on the settings that

are chosen for empirical studies. For this set of experiments, we decided to

comparatively analyze the counting and the general Boolean algorithm in con-

junction with subscriptions of the three subscription classes that were identi-

fied in Section 3.3 (page 79). Additionally, event messages follow our findings

from Chapter 3. Hence, we apply the derived semi-realistic dataset for our

experiments.

Regarding the variable parameters for the creation of event messages (see

Section 3.2.2, page 76), we evaluated various assignments for these variables.

Here, we present the results using Bprop = 100, Aprop = 5, pA
mult = 0.1, and

pT
mult = 0.01. The results presented here were derived by publishing 100, 000

event messages, leading to stable averages. Event messages were created at

the beginning of each experiment and published after the previous message

was processed.

For the distributions of the operands of variable predicates of subscriptions,

we assume five different settings: uniform distribution, normal distribution

(minimum value has the highest probability), Zipf distribution (minimum value

has the highest probability), reversed normal distribution (maximum value

has the highest probability), and reversed Zipf distribution (maximum value

has the highest probability). For the exact ranges of the operands of these

predicates and details about predicate distributions, we refer to Appendix B.2;

Appendix B.1 describes the mapping of attribute domains to data types in our

experiments.

We used our pub-sub prototype, BoP, in this set of experiments. The

central broker is run on a machine equipped with 512 MB of RAM and a 2

GHz processor. The BoP prototype is implemented in C/C++. Predicate

indexes are realized using the Stl map class. Minimum predicate count vector

and subscription location table are based on the Stl class vector. For pred-

icate-subscription association table, and fulfilled predicate and hit vector, we

used dynamic array implementations (see Section 5.6.1). In this centralized

version of BoP, one cannot apply most of the algorithm optimizations that

were presented in Section 4.5. For this set of experiments, BoP only uses the

short-circuiting method (see Section 4.5.2, page 112). For the evaluation of

5.7 Correlation to Filter Efficiency 143

the other optimizations, we refer to our experiments in the distributed setting

in Chapter 8.

As argued before (Section 4.3, page 107), the filtering algorithm in BoP

supports conjunctive subscriptions in nearly the same way as the counting

approach. We compiled a conjunctive version of BoP for our comparative

evaluation, removing the overhead of accessing subscription location table and

subscription trees. Proceeding in this way ensures that both algorithms utilize

the same data structures and thus removes implementation-specific influences.

The conjunctive version of BoP performs the canonical conversion before reg-

istering subscriptions and then applies the original counting approach.

5.7.2 Filtering of Example Subscription Classes

Figure 5.5 shows the filter efficiency (ordinate) of both algorithms (“Bool” and

“Conj” in the figure) with an increasing number of registered subscriptions |s|
on the abscissa. For each algorithm, we evaluated five distributions in the

operands of subscriptions. As can be seen in the figure, the time efficiency of

both algorithms is only slightly influenced by the actual predicate distributions.

Theoretically, both algorithms should show linearly increasing filter times

(ordinate) with increasing subscription numbers (abscissa). In practice, how-

ever, both approaches appear to lead to super-linearly developing filter times,

as illustrated in Figure 5.5. The reason for this property of both algorithms is

found in their general approach of incrementing counters per subscription and

the influence of a limited processor cache. The behavior of the filter efficiency,

in fact, is linear but advantageously influenced by the processor cache for small

subscription numbers, leading to a smaller initial gradient.

The point of changing gradients occurs at a much smaller number of sub-

scriptions for the counting algorithm than for the general Boolean algorithm

because the conjunctive algorithm needs to internally convert the original sub-

scriptions. Thus, for the counting algorithm, more counters in more subscrip-

tions need to be increased after the conversion (i.e., the hit vector contains

more entries). Hence the hit vector does not fit into the processor cache from

approximately 50,000 original subscriptions onwards (leading to 200,000 con-

verted ones). After having registered approximately 100,000 original subscrip-

tions (400,000 converted ones), the influence of the processor cache is negligible

and thus the maximal gradients of the curves are reached.

Although the general Boolean algorithm is subjected to the same influence,

144 Chapter 5. Boolean or Conjunctive Filtering: A Comparison

0

50

100

150

200

250

300

500,000400,000300,000200,000100,000

A
ve

ra
ge

 ti
m

e
pe

r
ev

en
t i

n
m

s

Number of original subscriptions |s|

Bool (u)
Bool (z)
Bool (n)
Bool (rz)
Bool (rn)
Conj (u)
Conj (z)
Conj (n)
Conj (rz)
Conj (rn)

Figure 5.5: Filter efficiency of the Boolean algorithm (“Bool”) and the con-
junctive counting algorithm (“Conj”) in the combined setting using various
distributions in predicates (u–uniform, n–normal, z–Zipf, rn–reversed normal,
rz–reversed Zipf distribution).

the effect on this algorithm is much less:

Firstly, the point of changing gradients occurs at a much larger number

of registered subscriptions: |s| ≈ 200, 000 on the abscissa. Interestingly, this

number of subscriptions is four times the number of subscriptions in the con-

junctive setting. The reason for this behavior is clearly that conversion leads

to four times the number of original subscriptions. Hence the processor cache

can store four times more unconverted subscriptions in the hit vector.

Secondly, the main proportion of filter time is not spent on increasing coun-

ters but on evaluating candidate subscriptions (there are far fewer predicates

because no canonical conversion needs to be performed). Hence the processor

cache only has a minor influence on overall filter efficiency, that is, the change

in the gradient is less than in the conjunctive algorithm.

Interpreting the curves in Figure 5.5, both algorithms initially show similar

filter times. The more subscriptions get registered, the larger the difference

between general Boolean approach and conjunctive approach. Having regis-

tered more than 400,000 subscriptions, the difference between the algorithms

stabilizes: per event message, the Boolean solution requires approximately 75,

64, 68, 72, and 76 milliseconds less than the conjunctive approach for the

five tested distributions. For 500,000 subscriptions, this is an improvement of

approximately 27 percent for the analyzed predicate distributions.

Although the presented results depend on the processor cache, they can

be generalized to universal settings: Changes in the cache size only shift the

5.7 Correlation to Filter Efficiency 145

0
20
40
60
80

100
120
140
160
180

500,000400,000300,000200,000100,000

A
ve

ra
ge

 ti
m

e
pe

r
ev

en
t i

n
m

s

Number of original subscriptions |s|

Bool (u)
Conj (u)

Figure 5.6: Filter efficiency for Subscription Class 1 using uniform distribu-
tions in predicates.

0
50

100
150
200
250
300
350
400
450
500

500,000400,000300,000200,000100,000

A
ve

ra
ge

 ti
m

e
pe

r
ev

en
t i

n
m

s

Number of original subscriptions |s|

Bool (u)
Conj (u)

Figure 5.7: Filter efficiency for Subscription Class 2 using uniform distribu-
tions in predicates.

point of changing gradients (on the abscissa) for both filtering approaches.

The occurrence of this point for the conjunctive algorithm always happens

at a far smaller number of subscriptions due to the need to perform canonical

conversion for such an approach. For large subscription numbers, the influence

of the processor cache on filter time is negligible, as can be seen in the increased

but stable gradients of the curves. Here the general Boolean filtering approach

is more time-efficient than the conjunctive approach, as shown in Figure 5.5.

Separate Settings: Individual Subscription Classes

The time efficiency of both counting algorithm and general Boolean algorithm

depends on the registered subscriptions. Having evaluated the combined set-

ting in the previous paragraph, we now investigate the filter efficiency for the

146 Chapter 5. Boolean or Conjunctive Filtering: A Comparison

0

10

20

30

40

50

60

500,000400,000300,000200,000100,000

A
ve

ra
ge

 ti
m

e
pe

r
ev

en
t i

n
m

s

Number of original subscriptions |s|

Bool (u)
Conj (u)

Figure 5.8: Filter efficiency for Subscription Class 3 using uniform distribu-
tions in predicates.

individual subscription classes.

Figures 5.6 to 5.8 give an overview of the time efficiency properties of both

algorithms. For all subscription classes, one can identify the points of changing

gradients. The difference in these points broadly aligns with the influence of

canonical conversion that is required for the counting approach: two, four,

and six conjunctive subscriptions are created due to conversion. Hence, in

the Boolean setting, the point of changing gradients occurs at a number of

registered subscriptions that is approximately two, four, and six times higher

than in the conjunctive setting.

Subscription Class 1 (Figure 5.6) and Class 3 (Figure 5.8) always show sim-

ilar or advantageous efficiency properties in the general Boolean approach. In

particular for Subscription Class 3, the difference between the two algorithm

classes (Boolean and conjunctive) constantly increases for a growing subscrip-

tion base: for 500,000 registered subscriptions, the general Boolean approach

is approximately 61 percent more time-efficient than the conjunctive approach.

For Subscription Class 1, the time difference between the approaches re-

mains nearly constant from approximately 300,000 subscriptions onwards (the

Boolean solution shows a slightly smaller gradient). For subscriptions of this

class, the general Boolean approach is approximately 27 percent more efficient

than the conjunctive approach for 500,000 registered subscriptions.

For Subscription Class 2 (Figure 5.7) up to approximately 80,000 subscrip-

tions, the counting approach is slightly more efficient than its general Boolean

extension. However, this behavior changes for higher subscription numbers,

where the Boolean algorithm becomes the more efficient solution. The final

5.8 Summary 147

gradients of both algorithm are nearly on par with each other (the conjunctive

solution shows a slightly smaller final gradient4). For 500,000 registered sub-

scriptions, the general Boolean filtering solution is approximately 20 percent

more efficient than the conjunctive approach.

Theoretically, the difference between conjunctive and Boolean algorithm

should increase with an increasing number of subscriptions created due to

conversion (i.e., with Subscription Class 1, 2, and 3). Subscription Class 2,

however, does not follow this trend. The reason is that for this class of sub-

scriptions the general Boolean filtering algorithm leads to a large number of

candidate subscriptions to evaluate. Despite this effect, the Boolean algorithm

still leads to a higher filter efficiency than its conjunctive counterpart.

The differing behavior of filter efficiency for subscriptions of the individ-

ual classes leads to the results in the combined setting. Here, the Boolean

algorithm is approximately 27 percent more efficient than the conjunctive al-

gorithms, as presented in the previous paragraph.

5.8 Summary

In this chapter, we presented a comparative evaluation of the general-purpose

conjunctive counting algorithm and our general-purpose Boolean filtering al-

gorithm. This analysis focused on the two quality measures system efficiency

and scalability that were identified in Section 2.2. We introduced a charac-

terization framework to describe the typical patterns of subscriptions. Based

on this framework, we then described the memory use of two conjunctive al-

gorithms and our general Boolean algorithm. We found that for our example

subscription classes a general Boolean algorithm requires less memory than

conjunctive approaches. Our solution is thus the favorable choice with respect

to scalability for an online auction scenario.

Generally we could show that there are various settings in which the oc-

currence of only one disjunction in subscriptions favors a Boolean filtering so-

lution. Thus, general Boolean filtering algorithms are the more memory-aware

and therefore the more scalable choice for the central filtering components

if subscriptions are not purely conjunctive. Our characterization framework

allows us to choose the preferable algorithm class for any subscriptions.

4However, the conjunctive solution does not scale to the number of subscriptions that
the Boolean solution does (see Section 5.5.3).

148 Chapter 5. Boolean or Conjunctive Filtering: A Comparison

Regarding the comparison of time efficiency, we analyzed the behavior in

the online book auction example scenario. We evaluated several predicate

distributions in subscriptions and found that the general Boolean filtering al-

gorithm is also favorable over a general-purpose conjunctive algorithm with

respect to filter efficiency for large subscription numbers. We can thus state

that a general Boolean solution fulfills our design goals to be the preferable

algorithm class for subscriptions that are more general than conjunctive sub-

scriptions in universal settings: it is firstly more space-efficient, and secondly

equally or more time-efficient. We therefore proved the first part of our central

hypothesis (page 6):

In general-purpose pub-sub systems, a general Boolean filtering ap-

proach requires less memory and achieves higher filter efficiency

than a conjunctive filtering approach.

Having the means to support the central filtering of general Boolean sub-

scriptions, we also need to support this class of subscriptions in the routing

algorithms of content-based pub-sub systems. We proceed with this step in

the next chapter.

Chapter 6

Routing Optimizations for

General Boolean Subscriptions

T
he support of general Boolean subscriptions in a filtering algorithm,

as proposed in Chapter 4 and evaluated in Chapter 5, is only the first

step towards the provision of a content-based pub-sub system for a general

Boolean pub-sub model. The second step concerns the routing in the dis-

tributed system, in particular the subscription-based routing optimizations

that currently only support conjunctive subscriptions and thus are not appli-

cable (see Section 2.5, page 47).

We take this step within this chapter and propose the first subscription-

based routing optimizations for general Boolean subscriptions, including re-

stricted conjunctive forms. The proposed optimizations follow a different opti-

mization principle than current solutions, allowing for the combination of our

novel and recent optimizations. For the following descriptions, we assume sub-

scription forwarding or rendezvous nodes (see Section 2.4, page 42) as routing

algorithms.

The structure of this chapter is as follows: in Section 6.1 we introduce the

general idea and principle of our optimization proposals. The first optimiza-

tion, predicate replacement, is presented in Section 6.2. Subscription pruning,

our second and more advanced optimization, is proposed in Section 6.3. Our

subscription pruning approach allows for the optimization of content-based

pub-sub systems with respect to various target parameters. In Section 6.4 we

describe how to tailor the general subscription pruning optimization to these

parameters. Subscription pruning can be applied in three different ways; they

are investigated in Section 6.5. The practical implementation of the optimiza-

149

150 Chapter 6. Routing Optimizations for Boolean Subscriptions

tion is the focus of Section 6.6. Finally, we present related work in Section 6.7.

6.1 Optimization Idea

Current subscription-based routing optimizations, that is, subscription cover-

ing, merging, and summarization, aim at reducing the number of event routing

table entries, as described in Section 2.5. However, there are several disadvan-

tages of these approaches. Firstly, the potential of such a reduction depends on

the existence of certain relationships (e.g., subset relationships or similarities)

among the registered subscriptions. Secondly, the discovery of these relation-

ships mostly requires the relation of all subscriptions with each other, leading

to complex computation problems for general Boolean expressions. Thirdly,

having applied these recent optimizations, the deregistration of subscriptions

might require a network- and time-consuming processing. We refer to Sec-

tion 2.5 for a detailed overview of these optimizations and an analysis of their

properties.

In this chapter we follow a different optimization idea than current ap-

proaches. Our design goals are to solve the common problems of existing

routing optimizations, as summarized before and identified in Section 2.5.5

(page 58). We want to provide an optimization that:

1. is applicable to all kinds of Boolean subscriptions, including restricted

conjunctive ones.

2. does not depend on the covering relationships among subscriptions.

3. does not increase the complexity of deregistrations compared to un-

optimized routing.

4. increases the overall routing efficiency of the system.

5. decreases the memory requirements for event routing tables.

Fulfilling these goals, we can ultimately prove Part 2a of our central hypothesis

(page 6):

Subscription pruning increases system efficiency and decreases rout-

ing table size, independently of the existing covering relationships.

To achieve our design goals, our optimizations manipulate the entries in event

routing tables on an individual basis instead of relating them to each other, as

current optimizations do.

6.1 Optimization Idea 151

Forwarded messages

Broker

Un−optimized situation

Broker

Incoming messages Forwarded messages
Correct optimizationErroneous optimization

Broker

Forwarded messagesIncoming messages

Incoming messages
e1

e2

e3

e2

e3

e1

e2

e3

e2

e3

e1e1

e2

e3

e2

Figure 6.1: Schematic overview of an erroneous (bottom left) and a correct
optimization (bottom right) of the un-optimized situation given at the top: the
un-optimized situation forwards events e2 and e3 to a certain neighbor broker,
whereas an erroneous optimization only forwards e2 and a correct optimization
e1, e2, and e3.

6.1.1 Generalizing Subscriptions

Entries in event routing tables state what event messages will be forwarded to

what subscribers and neighbors in the network. A manipulation of these entries

thus changes this forwarding of event messages. In order to allow for correct

event filtering, an optimization should only manipulate routing entries of non-

local subscribers, that is, entries that determine the forwarding of messages to

neighbor brokers. The notification of subscribers in this case is always based

on the original, unaltered entries and thus remains accurate.

The arbitrary alteration of routing entries might lead to an erroneous rout-

ing process. This situation, for example, occurs if messages are not forwarded

to neighbor brokers after applying the optimization (false negatives). The ad-

ditional forwarding of messages (false positives), on the other hand, does not

erroneously influence the routing process, provided local subscriptions remain

unaltered (as is our assumption). We give a schematic example of these two

situations in Figure 6.1. We illustrate the forwarding of three example mes-

sages (e1 to e3) to a particular neighbor of the broker that is given in the figure.

This alteration property leads to our general optimization idea: one can

achieve an optimization of the overall pub-sub system with respect to our

design properties by generalizing non-local routing entries in event routing

152 Chapter 6. Routing Optimizations for Boolean Subscriptions

tables. The term “generalization” refers to the selectivity of subscriptions. We

use a general definition of selectivity:

Definition 6.1 (Selectivity) The selectivity sel(s) of a subscription s is the

ratio of filtered event messages that match subscription s and the overall num-

ber of filtered messages when assuming a large overall number of filtered mes-

sages.

The generalization of subscriptions might be achieved in various ways. We

consider two approaches: predicate replacement, which is merely based on the

predicates of subscriptions (Section 6.2), and subscription pruning, altering the

syntactical structure of subscriptions (Section 6.3). Looking at this generaliza-

tion concept in terms of existing pub-sub terms means that the more general

subscription (i.e., the optimized subscription) covers the more restricted sub-

scription (i.e., the un-optimized subscription). The generalization can thus be

seen by the means of the event messages E(s) that match subscriptions s.

In the following two sections, we introduce two ways of generalizing sub-

scriptions.

6.2 Predicate Replacement

Our first approach, predicate replacement , considers only the predicates that

are utilized by a subscription. The overall idea is as follows:

Consider a general Boolean subscription si = (T n
i ,Fi) after the syntac-

tical rewriting (i.e., all negations are shifted down into leaf nodes, see

Section 4.2.1, page 101). To get a more general (or equally selective)

subscription sj, one can replace any predicate pk ∈ P(Fi) by a more

general predicate pl.

Proceeding in this way results in a more general subscription sj : for the two

predicates, it holds E(pk) ⊆ E(pl). For the sake of simplicity, we firstly consider

a conjunctive subscription si. When replacing pk by pl, it holds that:

E(si) =
⋂

pm∈Fi

E(pm) ⊆ E(sj) =
⋂

pn∈(Fi\{pk})∪{pl}

E(pn).

Thus, sj is more general after the replacement performed on si. Secondly, let

us consider a disjunctive subscription si. When replacing pk by pl, it holds

6.2 Predicate Replacement 153

that:

E(si) =
⋃

pm∈Fi

E(pm) ⊆ E(sj) =
⋃

pn∈(Fi\{pk})∪{pl}

E(pn).

Hence, after performing a replacement on a disjunctive subscription si, the

resulting subscription sj is more general, that is, less or equally selective.

Based on these two basic cases, the predicate replacement approach leads to

more general (general) Boolean subscriptions. That is, predicate replacement

is applicable for general Boolean subscriptions in the way we defined them

(after the syntactical rewriting).

The determination of more general predicates can be based on the covering

properties among predicates. These properties, in turn, can be derived from

the operators that are used in predicates. Examples for covering properties

based on operators in predicates are given in [Müh01].

6.2.1 Optimization Effects

Predicate replacement alters the predicate indexes that are used by a filtering

algorithm. In order to achieve an optimization, one should replace all occur-

rences of a certain predicate p by a more general predicate. Proceeding in this

way allows for the removal of this predicate p from predicate index structures

(provided p is not shared by local subscriptions).

The removal of predicates from index structures, firstly reduces the memory

requirements for these predicate indexes. Secondly, these indexes can be eval-

uated more efficiently. However, the size and general structure of subscription

indexes remains unchanged by the application of predicate replacement. This

is the reason for the development of a more advanced generalization method

in Section 6.3.

We give an example of predicate replacement in Figure 6.2. Here we apply

the optimization to node n4 and node n5 of subscription s1 (see Section 3.3.1

on page 80). Assuming the replacement of all instances of the original predi-

cates Price < NZ$15.00 and Price < NZ$12.00, they can be removed from

predicate indexes.

In the following subsection, we relate the predicate replacement approach

to our design goals for an optimization.

154 Chapter 6. Routing Optimizations for Boolean Subscriptions

AND AND

OR Ending < 1 day

AND

Condition = usedPrice < 12.0Condition = new Price < 15.0

Title ~ "Harry Potter"

Predicate replacement
AND AND

OR Ending < 1 day

AND

Condition = usedPrice < 14.0Condition = new Price < 20.0

Title ~ "Harry Potter"
n2n1

n3 n4 n6

n7

n8

n9 n10

n5

n2n1

n3 n4 n6

n7

n8

n9 n10

n5

Figure 6.2: Example of predicate replacement on subscription s1 when re-
placing Price < NZ$15.00 by Price < NZ$20.00 (Node n4), and Price <

NZ$12.00 by Price < NZ$14.00 (Node n5).

6.2.2 Relation to Design Goals

Returning to the types of routing optimizations we identified, predicate re-

placement classifies as interfering routing optimization. Its target (primary)

parameters are memory requirements and system efficiency. Additionally, the

generalization of routing entries increases the internal network load (secondary

parameter) because more event messages might match a more general subscrip-

tion.

Regarding Design Goal 1, predicate replacement is applicable to general

Boolean subscriptions, involving both conjunctions and disjunctions.

Furthermore, predicate replacement does not depend on the covering rela-

tionships among subscriptions (Design Goal 2). However, it assumes covering

relationships among predicates. Otherwise one cannot replace predicates by

more general ones in order to decrease the memory requirements for event rout-

ing tables. The assumption of these relationships is much weaker for predicates

than for subscriptions, largely complying with Design Goal 2.

In the case of deregistrations, predicate replacement improves this process

because predicate indexes contain fewer entries, resulting in a more efficient

predicate removal (Design Goal 3). In the distributed system, the deregistra-

tion remains unaltered compared to the un-optimized situation.

The potential of predicate replacement to improve the time efficiency of

event filtering (Design Goal 4) does exist, but only on an inferior basis. The

reason for this is that only predicate indexes are altered by the replacement

optimization. The proportion of filter time spent on their evaluation, however,

is much less than the time for subscription matching, although the support

of complicated filter functions in predicates increases the proportion of filter

time spent for predicate matching. However, more general subscriptions lead to

6.3 Subscription Pruning 155

more forwarded messages. These messages also need to be routed by interme-

diate brokers (on the path to the subscriber), counteracting the improvement

in efficiency.

Finally, Design Goal 5 is only suboptimally targeted by predicate replace-

ment. Once more the reason for this effect is the alteration of predicate indexes,

whereas subscription indexes remain unchanged. This particularly happens if

the requirement that removed predicates are only used in non-local subscrip-

tions (and not in local ones) does not hold.

Setting these properties of predicate replacement into perspective, we de-

sign a more suitable event routing optimization in the next section, that is, an

optimization that better fulfills our design goals.

6.3 Subscription Pruning

Our second optimization proposal is subscription pruning , which considers the

structure of subscriptions when generalizing Boolean filter expressions. We

integrated this optimization into BoP. The general optimization idea is as

follows:

Let us consider a general Boolean subscription si after the syntactical

rewriting (i.e., all negations are shifted down into leaf nodes, see Sec-

tion 4.2.1). To get a more general (or equally selective) subscription sj ,

one can remove, that is, prune, selected branches of the subscription tree

of si.

Inner nodes of subscription trees after the syntactical rewriting contain disjunc-

tions and conjunctions, whereas leaf nodes contain predicates. Candidates for

pruning operations are thus the removal of a child of a disjunctive node and

of a conjunctive node. However, only the latter option leads to a more general

subscription, our requirement for an optimization:

Similarly to predicate replacement, let us firstly consider a pure conjunctive

subscription si: when removing a predicate pk (or, more generally, a child

node), leading to subscription sj , it holds that:

E(si) =
⋂

pm∈Fi

E(pm) ⊆ E(sj) =
⋂

pm∈Fi\{pk}

E(pm).

Thus sj becomes more general after the performed pruning operation. Sec-

ondly, let us consider a disjunctive subscription si and the removal of a predi-

156 Chapter 6. Routing Optimizations for Boolean Subscriptions

Buy It Now = yes

(1)

(2)

(4)(3)

Bids = 0

OR

AND

Ending < 1 hour

OROR

AND

Category = A Author ~ B

Attribute = signed

(6)(5)

Attribute = signed

AND

Figure 6.3: Overview of the six possible pruning operations for Subscription
Class 3. The operations are named by (1) to (6).

cate pk (or, more generally, a child node), leading to sj . It now holds that:

E(si) =
⋃

pm∈Fi

E(pm) ⊇ E(sj) =
⋃

pm∈Fi\{pk}

E(pm).

Hence the removal of a child of a disjunctive node might lead to an equally

or more selective subscription. This pruning operation does not fulfill our

requirement of creating a more general filter expression.

We can again derive the properties of pruning of general Boolean subscrip-

tions from these two basic cases. That is, given a general Boolean subscription

according to our definition (after the syntactical rewriting), any removal of a

child of a conjunctive node leads to a more general subscription and is thus a

valid pruning operation. Note that valid pruning operations can remove leaf

nodes and disjunctive nodes (conjunctive nodes would be integrated into the

parent node while preprocessing, see Section 4.2.1, page 101).

6.3.1 Post-processing

In Figure 6.3, we give an overview of all six possible pruning operations for

subscriptions of Subscription Class 3. Having performed any of these oper-

ations in practice, BoP post-processes pruned subscriptions for compacting

purposes.

Unary Operator Removal

Firstly, BoP applies the unary operator removal method to eliminate those

inner nodes of subscription trees that have only one remaining child. In our

6.3 Subscription Pruning 157

example in Figure 6.3, after performing Pruning Option 6 the rightmost con-

junctive node is removed by this method, leading to predicate Buy It Now

= yes being the child of the rightmost disjunction. Pruning Option 6 thus

eliminates a leaf (immediately) and an inner node (in post-processing).

Operator Summarization

In a second post-processing step, BoP again employs the operator summa-

rization method that is already used in the preprocessing step before indexing

subscriptions (see Section 4.2.1). For example, when performing Pruning Op-

tion 4 (in our example in Figure 6.3), BoP would initially remove the unary

conjunction (parent of removed predicate) and afterwards summarize the two,

now consecutive, disjunctions. The removal of predicate Ending Within < 1

hour thus removes one leaf node (immediately) and two inner nodes (one due

to unary operator removal and one due to operator summarization), reducing

the encoding size of the subscription tree (see Section 4.2.2, page 102) from 47

to 40 bytes.

6.3.2 Optimization Effects

Subscription pruning alters the subscription indexes in pub-sub systems and

thus the entries in event routing tables. The pruning approach might also affect

the applied predicate indexes, provided all instances of a certain predicate are

pruned.

Whereas existing optimizations aim at reducing the problem size of the

event routing task, subscription pruning reduces the complexity of the event

routing task by altering routing entries themselves. This property allows for

the combination of pruning and recent optimizations, as we discuss in Sec-

tion 6.3.5 and empirically show in Chapter 8.

There are two main effects on the pub-sub system if applying subscription

pruning:

1. Subscriptions (i.e., routing entries) become less complex after performing

pruning. Hence, in individual broker components, the routing load per

event message decreases.

2. Subscriptions get more general due to pruning. This property increases

the internal network load (due to false positives) among broker compo-

nents. A consequence is the routing of more events to neighbor brokers

158 Chapter 6. Routing Optimizations for Boolean Subscriptions

Subscription

Broker

... Subscription

Broker

...

... ...

Un−optimized event routing table Optimized event routing table

B2B1 B2 B2B1 B2

e1 e2 e3 e4 e5 e6 e7 e1 e2 e3 e4 e5 e6 e7

e2 e4 e5 e6 e5e4 e6e2

Figure 6.4: Example of the influences of subscription pruning. The dashed
parts of subscription trees were pruned. The un-optimized setting (left) for-
wards two messages to broker B2, whereas the optimized setting (right) for-
wards three messages to B2. Message e5 matches both pruned routing entries
for B2 in this example.

in the network. This growing internal network load triggers an increase

in the number of event messages that brokers have to route compared to

the un-optimized situation.

Regarding system efficiency, the second effect, that is, the routing of more

event messages to brokers, counteracts the advantage of creating less complex

routing entries (first effect). If the created, more general subscriptions lead

to an introduction of various false positives, this negative effect of subscrip-

tion pruning might outweigh the advantage of routing based on less complex

subscriptions. However, if the number of false positives remains reasonable,

the positive effect of less complex routing entries outbalances the drawback of

routing more messages.

In practice, we expect an increasing routing efficiency up to a certain num-

ber of pruning operations. However, if performing a large amount of pruning,

one might introduce too many false positives, leading to an overall decrease in

system efficiency. The exact number of pruning operations one can perform

to lead to improved filter efficiency depends on the structure of subscriptions,

the application domain, and the pruning strategy (see Section 6.4).

Next to affecting system efficiency, subscription pruning always leads to

a reduction in the memory requirements for subscription indexes and, po-

tentially, for predicate indexes as well. Thus, at all times, one can apply

subscription pruning to minimize the sizes of event routing tables.

We illustrate the effects of subscription pruning in Figure 6.4. From the

seven event messages (e1 to e7) that are processed in the un-optimized set-

6.3 Subscription Pruning 159

ting (left part of the figure), one is forwarded to broker B1 (e2) and two are

forwarded to B2 (e4 and e6). After applying pruning (right part of the fig-

ure), firstly, routing entries get less complex (dashed parts were pruned), and

secondly, three event message are now forwarded to B2 (the false positive e5

matches both pruned subscriptions in this example). Broker B2 thus needs

to filter more messages than in the un-optimized case. However, its routing

entries become more efficient to evaluate (and store).

6.3.3 Relation to Design Goals

Similarly to predicate replacement, subscription pruning classifies as interfer-

ing subscription-based routing optimization. Target parameters are again the

memory requirements for routing tables and the system efficiency. The inter-

nal network load is also affected by the application of pruning (as secondary

parameter), leading to the classification of this approach.

Subscription pruning is applicable to general Boolean subscriptions (in the

way we defined them). It thus fulfills Design Goal 1 (see Section 6.1). Although

pure disjunctive subscriptions cannot be optimized by our pruning approach,

its applicability in practice is not undermined by this fact: we are not aware

of any applications that require mere disjunctive subscriptions1.

Subscription pruning is independent of the covering relationships among

the registered subscriptions (Design Goal 2). We empirically show this prop-

erty in Chapter 8. By applying pruning, the existing covering relationships in

the system might be altered. If pruning does not change the covering relation-

ships among subscriptions from the same neighbor broker, the optimization

does not increase the network load in the system.

Design Goal 3, the non-negative influence on deregistrations, is also fully

fulfilled by subscription pruning. Deregistrations are more positively influenced

by subscription pruning than by predicate replacement because subscription

index structures are strongly reduced in their complexity when applying prun-

ing. Hence the removal of subscriptions is supported more efficiently than in

the un-optimized setting (due to the smaller size of these indexes). We refer

to Section 6.6.3 for details on the handling of deregistrations in BoP.

We already discussed the twofold influence of subscription pruning on sys-

tem efficiency (Design Goal 4) in Section 6.3.2. We show that its advantages

1If such applications do exist, one should rather apply predicate replacement.

160 Chapter 6. Routing Optimizations for Boolean Subscriptions

outweigh its disadvantages in Chapter 8, and can hence state that pruning

increases filter efficiency.

Finally, Design Goal 5 is fulfilled by subscription pruning because each

performed pruning operation reduces the size of event routing tables. Hence

the pub-sub system can integrate more routing entries for a given amount of

main-memory resource when applying subscription pruning.

6.3.4 Connection between Subscription Pruning and

Predicate Replacement

Although, at a first glance, subscription pruning and predicate replacement

appear as different generalization approaches for subscriptions, one could look

at them as the same overall approach. Alternatively, there is potential to

combine both ideas.

Treating Subscription Pruning as Specialized Predicate Replacement

An abstract view on the introduced predicate replacement and subscription

pruning methods reveals their interconnection: subscription pruning could be

looked at as a specialized form of predicate replacement, followed by a post-

processing:

Pruning is equivalent to the replacement of predicates or whole branches of

subscription trees by the most general predicate p∗, which is fulfilled by each

event message (similar to “don’t-care” predicates, see Section 4.7, page 116).

Certain branches might then be removed from the tree structure because they

do not restrict fulfilling event messages. This replacement and removal does

lead to a more general filter expression for the children of conjunctive nodes,

as described by our pruning rule.

Removing a “don’t-care” predicate p∗ as a child of a disjunction, however,

does not lead to a more general subscription. For example, the replacement of

Author ∼ B by p∗ in Figure 6.3 (page 156) means that the leftmost disjunction

of this subscription is always fulfilled. A subsequent removal of p∗ then restricts

the subscription again.

However, one could remove this whole disjunctive branch, which is de-

scribed by Pruning Option 1. Our single pruning rule hence describes the

replacement of any predicate and the correct post-processing when consider-

ing pruning as a specialized predicate replacement variant.

6.3 Subscription Pruning 161

Combining Subscription Pruning and Predicate Replacement

As argued in the previous subsection, subscription pruning might be seen as

a specialized predicate replacement variant in combination with a (simple)

semantic post-processing. However, according to Section 6.2, the original, that

is, non-postprocessing, predicate replacement strategy has less optimization

potential than subscription pruning. When combining both generalization

strategies, though, this joint optimization might have a higher optimization

effect than their individual application.

Despite this option, we only consider the pure subscription pruning opti-

mization in the following. Our decision to proceed in this way is based on

the overall larger optimization potential of subscription pruning compared to

predicate replacement. Additionally, predicate replacement only reduces the

memory requirements if all occurrences of a predicate are removed, which is

difficult to realize in practice. Finally, predicate replacement involves a higher

computational effort than subscription pruning [BH06d].

6.3.5 Pruning and Existing Optimizations

In contrast to the covering, merging, and summarization optimization ap-

proaches, aiming at decreasing the number of routing table entries, subscrip-

tion pruning targets the reduction of the complexity of routing entries. This

allows for the combination of pruning and current approaches due to these

opposing dimensions of optimization:

Brokers should, for example, exploit the cover among subscriptions to re-

move redundant routing entries. Additionally, they can apply subscription

pruning to reduce the complexity of the remaining entries. Thus, next to its

own positive effects on the routing process, subscription pruning can exploit

the benefits of other optimizations due to the opportunity to combine it with

these approaches. We show this behavior for the auctioning example dataset

in Chapter 8.

Utilizing Pruning for Imperfect Merging

One can also utilize subscription pruning to create an imperfect merger for

general Boolean subscriptions. This overcomes the restrictions of all current

merging approaches, which only work on conjunctions.

In order to find an imperfect merger, one firstly creates a perfect merger

162 Chapter 6. Routing Optimizations for Boolean Subscriptions

by building the disjunction of all subscriptions to be merged. This results

in a subscription that summarizes all merged filter expressions. Secondly, one

prunes the created merger. With each pruning step, this merger becomes more

inaccurate, that is, imperfect. The number of performed pruning operations

determines the degree of imperfectness of the merger.

This approach automatically overcomes the problem of deciding how to

merge subscriptions [LHJ05], provided one has determined a pruning strategy.

In the following section, we present several strategies to select the preferable

pruning option to perform. When using an approach that is based on the

selectivity of subscriptions, the imperfect merger is expected to be relatively

accurate for its size but less complex than the original perfect merger. That

is, one can evaluate the imperfect merger more efficiently than its merged

constituents, this being one goal of the merging optimization.

6.4 Selecting Pruning Operations

An important open question remains for the application of subscription prun-

ing: if the pub-sub system has registered hundreds of thousands of subscrip-

tions, how does it decide what pruning operations should be performed?

6.4.1 Ranking the Pruning Operations

Generally whenever a subscription s is registered with the pub-sub system,

the system analyzes s. The result of this analysis leads to local optimiza-

tion decisions: each subscription is ranked with a numeric value, stating the

optimization potential for its preferred pruning operation. The local optimiza-

tion thus determines the preferred pruning among all possible options for one

subscription.

Having obtained this knowledge, the pub-sub system can easily reach global

optimization decisions whenever an optimization is required. These decisions

are based on the local rankings of subscriptions. They do not involve the

complex relation of all subscriptions with each other, as required by current

approaches, but only a comparison of local rankings.

In the following subsections, we propose several measures ∆(si, sj) to rank

the pruning operations of a subscription si that is pruned to sj [BH06b]. These

measures aim at optimizing the pub-sub system with respect to various target

parameters and have been integrated into BoP.

6.4 Selecting Pruning Operations 163

6.4.2 Pruning Based on Subscription Accuracy

The accuracy measure ranks pruning operations based on their influence on

the accuracy, that is, the selectivity (see Definition 6.1, page 152), of subscrip-

tions. To a certain extent, the change (decrease) in selectivity when pruning

subscriptions determines the number of false positives, and thus the increase in

internal network load and routed messages. This direct influence only occurs

if subscriptions do not overlap (we here refer to the overlap among subscrip-

tions, i.e., subscription-subscription overlapping, and not among subscription

and advertisements, as defined in Section 2.1.3). If subscriptions from the

same neighbor broker overlap, the change in accuracy cannot be directly re-

lated to the increase in network load. We discuss this behavior later in this

section. Prior to this, we introduce our means of determining the selectivity

of subscriptions and of calculating the change in selectivity when pruning.

Estimating the Selectivity

Our proposal to express the selectivity of a subscription s uses an estimation

sel≈(s) for the actual selectivity sel(s) of s. Taking this approach allows for

the time- and space-efficient approximation of the subscription selectivity for

general Boolean expressions. We refer to Section 6.7.2 for an overview of re-

lated selectivity calculation approaches that require the conversion to canonical

forms, being exponential in size in the worst case.

Our selectivity estimation is based on three components, describing the

minimal possible selectivity, the average selectivity, and the maximal possi-

ble selectivity of a subscription s: sel≈(s) = (selmin(s), selavg(s), selmax (s)).

The minimal possible selectivity describes the worst case, that is, the smallest

value of selectivity that holds for all possible distributions of event messages;

the average case assumes a uniform distribution of all possible event messages

and independent predicates in subscriptions; the best case is described by the

maximal possible selectivity, that is, the largest selectivity value for any distri-

bution of event messages. One can base the calculation of these components

solely on the selectivity of predicates for any Boolean filter expression. In

turn, this predicate selectivity can be derived from historic information and

interpolation.

Determining Predicate Selectivity. Based on our selectivity definition,

the selectivity of a predicate p, sel(p), is the ratio of filtered event messages

164 Chapter 6. Routing Optimizations for Boolean Subscriptions

that fulfill p, |msgf(p)|, and the total number of filtered messages, |msgt|:
sel(p) =

|msgf (p)|

|msgt|
with 0 ≤ sel(p) ≤ 1. This selectivity value holds for all three

estimation components, that is, our estimation for predicates is the actual

predicate selectivity.

BoP derives this selectivity based on historic information by keeping a

counter per registered (unique) predicate p. This counter is increased whenever

p is fulfilled by an incoming message. BoP also knows about the total number

of filtered messages |msg t| and can thus calculate sel(p) for any registered

predicate p. Periodically recalculating |msgf (p)| allows a system to adapt to

changes in event messages.

Taking this approach for newly registered predicates requires a start-up

period to allow for a relatively stable selectivity value (some messages need to

be filtered). This start-up period is not problematic because an optimization

for newly registered subscriptions is not instantly required.

However, one can initially approximate the selectivity of newly registered

predicates based on existing information about already registered predicates.

A similar approach is presented in [GR03], using the selectivity of covering or

covered subscriptions to estimate the selectivity for newly registered subscrip-

tions.

For our problem, an approximation only needs to be undertaken for pred-

icates. One can base this approximation on the filter functions used in pred-

icates, as shown in the following example. However, sophisticated filter func-

tions can lead to a more complex computation process, and the mere registra-

tion of unrelated predicates does not allow for relatively accurate approxima-

tions.

Example 6.1 (Selectivity approximation) Let us consider the three filter

functions for the comparison operators =, >, and <.

• To approximate the selectivity for a predicate p=, one firstly needs to find

the predicate p>g with the greatest operand that uses function “>” and

covers p=. Secondly, one determines the predicate p>s with the smallest

operand that uses function “>” and does not cover p=. The difference

between the selectivity of these two predicates states the selectivity of

all domain values between the operands of p>s and p>g. One can thus

approximate the selectivity of the value used in p=, which can be further

narrowed down if the selectivity of some of the values in this interval is

6.4 Selecting Pruning Operations 165

known. Similarly, one can base this calculation solely on filter function

“<”, or on a combination of functions “<” and “>”.

• To approximate the selectivity for a predicate p>, one needs to find two

predicates that use the same function: p>g specifies the greatest operand

and covers p>, and p>s specifies the smallest operand that does not cover

p> anymore. Considering the selectivity of p>s, and the respective pro-

portion of the difference between the selectivity of p>s and p>g leads to

a selectivity approximation for p>. A known selectivity of equality pred-

icates with operands between those of p>s and p>g further confines the

approximation. This procedure works similarly for predicates only involv-

ing “<”, or a combination of “<” and “>”.

• The selectivity approximation for predicates involving function “<” works

analogously to the previous case.

Such an approximation process is not necessarily required in practice: an op-

timization is only needed if a large number of subscriptions is registered with

the system or the frequency of event messages is high. In this case, the sys-

tem has already processed a large number of messages and can thus optimize

based on accurate information about the selectivity of registered predicates.

Subscriptions that are registered after the optimization process can then be

considered in the next optimization step, having left enough time to collect

accurate selectivity information. Thus accurate selectivity values are always

known at the time of optimization.

We give the pseudo code for this selectivity calculation approach in Al-

gorithm 2. The algorithm expects a leaf node n as input parameter, and

calculates the selectivity as a ratio of messages matching the predicate in

n (function MatchingMessages()) and total number of filtered messages

(function TotalMessages()).

Algorithm 2: Selectivity estimation for leaf nodes
Input: A leaf node n

Output: Estimation sel≈(n) = (selmin(n), selavg(n), selmax (n))
EstimateSelectivity(n)
(1) est ← MatchingMessages(n) ÷ TotalMessages()
(2) return (est, est, est)

166 Chapter 6. Routing Optimizations for Boolean Subscriptions

Deriving Subscription Selectivity. Based on the selectivity information

of predicates, the system can recursively estimate the selectivity of any general

Boolean subscription, that is, a filter expression that contains conjunctions and

disjunctions as inner nodes.

For conjunctive nodes nc of subscription trees, we present the pseudo code

in Algorithm 3: the algorithm walks through all children of the input node

(Line 4) and recursively estimates their selectivity (Line 5). The minimal

selectivity value occurs if the sets of event messages that match the different

children overlap (i.e., intersect) minimally (Line 6). Finally, the calculation

result needs to be adjusted to be not less than zero (Line 9). The average

selectivity value, according to our independence assumption, presumes that

the derived selectivity of one child equally holds for the messages that match

the other children (Line 7) of node nc. For the maximal value, it is assumed

that the matching messages of all children are included in the set of event

messages that match the least selective child of node nc (Line 8).

Algorithm 3: Selectivity estimation for conjunctive nodes
Input: A conjunctive node n

Output: Estimation sel≈(n) = (selmin(n), selavg(n), selmax (n))
EstimateSelectivity(n)
(1) min ← 1.0
(2) avg ← 1.0
(3) max ← 1.0
(4) foreach c in n.children
(5) e ← EstimateSelectivity(c)
(6) min ← min + e.min − 1.0
(7) avg ← avg × e.avg
(8) max ← Min(max, e.max)
(9) if min < 0.0
(10) min ← 0.0
(11) return (min, avg, max)

Algorithm 4 illustrates the calculation for disjunctive nodes nd of subscrip-

tion trees. Once more, the estimation algorithm walks through all children of

input node nd (Line 4) and recursively estimates their selectivity (Line 5).

For the minimal selectivity value, the algorithm needs to assume that the

sets of matching event messages of all children are included in the largest of

these sets (Line 6). Meeting our assumptions for the average selectivity, this

case presumes uniformly distributed event messages and independence between

branches of subscription trees (Line 7).

6.4 Selecting Pruning Operations 167

The maximal selectivity value occurs if the sets of matching event messages

of all children of disjunctive node nd are maximally disjoint (Line 8). Finally,

the calculation result is corrected to its maximum value of 1.0 (Line 9).

Algorithm 4: Selectivity estimation for disjunctive nodes
Input: A disjunctive node n

Output: Estimation sel≈(n) = (selmin(n), selavg(n), selmax (n))
EstimateSelectivity(n)
(1) min ← 0.0
(2) avg ← 0.0
(3) max ← 0.0
(4) foreach c in n.children
(5) e ← EstimateSelectivity(c)
(6) min ← Max(min, e.min)
(7) avg ← avg + e.avg − (avg × e.avg)
(8) max ← max + e.max
(9) if max > 1.0
(10) max ← 1.0
(11) return (min, avg, max)

Having these means to estimate the selectivity for any nodes of subscription

trees, the selectivity estimation for a subscription s equals the estimation for

its root node n, that is, sel≈(s) = sel≈(n).

Selectivity Degradation Measure

We started this section with the fundamental question of how to select pruning

operations. Being able to estimate the selectivity of any subscription allows

us to quantify the effect of pruning operations and to rank them according to

their influence on selectivity. This ranking can be obtained in two ways, either

from the absolute change in selectivity or the proportional change.

We favor an absolute measure because it more accurately relates the de-

crease in selectivity due to pruning to the expected increase in network load.

A proportional measure, on the other hand, weights the selectivity decrease

according to the original selectivity of the unpruned subscription. That is, if a

relatively general subscription is pruned, the proportional change in selectivity

is smaller than the change for a quite restrictive one. However, the induced

increase in network load might be much larger for the general subscription.

We define our absolute pruning measure, the estimated selectivity degrada-

tion ∆≈
sel(si, sj), as the maximal difference between the selectivity estimation

168 Chapter 6. Routing Optimizations for Boolean Subscriptions

components of a subscription si before pruning and after pruning to sj :

∆≈
sel(si, sj) = max(selmin(sj)− selmin(si),

selavg(sj)− selavg(si),

selmax (sj)− selmax (si)).

Having defined this degradation measure, a pub-sub system can reach local

optimization decisions by determining the pruning operation (leading to sj)

for subscription si that leads to the smallest estimated selectivity degradation

∆≈
sel(si, sj). Out of these local decisions and their ordering by the degradation

measure, the system then comes to global optimization decisions.

When performing several pruning operations on one subscription in a row,

si always refers to the original subscription. Proceeding in that way allows for

the incorporation of the overall change in selectivity of a subscription in our

degradation measure ∆≈
sel (si, sj). When using an already-pruned subscription

for this measure, several small degradation values as the result of continuously

pruning si might appear as a reasonable choice. However, adding up these

individual values reveals the total degradation after pruning. Our approach

of choosing the unpruned subscription si for calculations avoids this problem

and always represents the overall effect of the optimization rather than the

additional effect compared to the pruning operation performed before.

Validity of the Degradation Measure

The overall goal of our selectivity degradation measure is to order pruning

operations according to their influence on the network load. However, there

are differences between the selectivity degradation and the increase in network

load:

1. A decrease in selectivity does not necessarily result in an increased net-

work load, that is, false positives.

2. Our selectivity estimation, as the name suggests, is only an approxima-

tion of the real selectivity of subscriptions.

3. The selectivity degradation measure, firstly, is based on an estimation

and, secondly, does not model the worst case degradation.

Difference 1 results from the fact that subscribers usually do not specify an ex-

clusive interest in particular event messages. One can expect that subscriptions

6.4 Selecting Pruning Operations 169

overlap partially (or completely, which is described by the covering relation-

ship): if a performed pruning operation on a subscription si leads to false

positives, these additional messages might already be described by at least

one other subscription sj that was forwarded by the same neighbor broker as

si. These additional messages are thus not false positives from a global, or

broker-wise, viewpoint.

Whether pruning operations lead to the number of false positives that is

predicted by the degradation measure depends on the overlapping properties

among subscriptions. The amount of cover among subscriptions contributes

to these properties. In Chapter 8 we show the performance of the selectivity

degradation measure for various covering proportions. As we will see, sub-

scription pruning is applicable regardless of the cover among subscriptions.

To incorporate the overlap among subscriptions into an optimization, one

needs to relate (all) subscriptions to each other. Such an approach is too

time-consuming in the context of pub-sub systems involving general Boolean

expressions, and has clearly been identified as one of the drawbacks of current

optimization approaches (see Section 2.5, page 47). We thus do not take such

a step within this dissertation, although we do develop a refined degradation

measure that partially incorporates the relationships among subscriptions into

our pruning optimization. Nevertheless, the selectivity degradation measure

presented here fulfills its goal of considering the increase in network load, as

we empirically show in Chapter 8.

Difference 2 describes the property of determining the selectivity of a sub-

scription s. It does not calculate its real selectivity sel(s) but only estimates

it by sel≈(s). This estimation provides us with an interval in which the selec-

tivity can be found. It always holds that: selmin(s) ≤ sel(s) ≤ selmax (s). The

third estimation component, selavg(s), describes an expected selectivity value,

provided certain assumptions hold. It thus states which of the two extremes

is more likely, for example, when assuming independent predicates. Obviously

such an approximation does not accurately model the real selectivity sel(s)

under all circumstances. It introduces a certain fuzziness into the selectivity

values of subscriptions.

This fuzziness directly leads to Difference 3: if the base concept, the selec-

tivity of a subscription, is an estimation, the derived concept, the difference

in selectivity, cannot become an exact notion. Additionally, our selectivity

degradation measure does not represent the worst case change in selectivity

170 Chapter 6. Routing Optimizations for Boolean Subscriptions

Attribute = signed

OR
(0.03, 0.142, 0.171)

(0.15) (0.011)
Buy It Now = yes

AND
(0.0, 0.002, 0.011)

(0.011)(0.87)
Bids = 0 Attribute = signed

OR (0.16)
Ending < 1 hour

AND
(0.03, 0.14, 0.16)

(0.87, 0.871, 0.881)

Category = Western
(0.015) (0.002)

OR
(0.015, 0.01697, 0.017)

AND
(0.0, 0.00241, 0.017)

Author ~ "Tolkien"

Figure 6.5: Selectivity estimation for a subscription of Subscription Class 3.

when performing pruning. This worst case when pruning subscriptions si to

sj is: ∆max
sel (si, sj) = selmax (sj)− selmin(si).

Despite this fuzziness of our general selectivity notion and its degradation,

in practice the presented concepts lead to an effective optimization, as shown

in Chapter 8.

Properties of Example Subscription Class

Having theoretically introduced our selectivity estimation, we now present a

calculation example using Subscription Class 3:

Example 6.2 (Selectivity estimation) In Figure 6.5, we illustrate a sub-

scription of Subscription Class 3. At the leaf level of the subscription tree, we

give the selectivity of the predicates that are stored in leaf nodes. We show the

selectivity value only once because all three estimation components are the same

for leaf nodes: the selectivity of the stored predicate, either merely determined

with the help of historic information or in combination with the approximation

method.

The recursive estimation of the selectivity of this subscription works up-

wards to the root node. For example, for the rightmost conjunctive node nc

(two levels down from the root), it holds in the first iteration of Algorithm 3:

selmin(nc) = 1.0 + 0.15− 1.0 = 0.15 (Line 6),

selavg(nc) = 1.0× 0.15 = 0.15 (Line 7),

selmax (nc) = min(1.0, 0.15) = 0.15 (Line 8).

6.4 Selecting Pruning Operations 171

The second and final iteration of Algorithm 3 leads to the selectivity estimation

of nc, as shown in the figure:

selmin(nc) = 0.15 + 0.011− 1.0 = −0.839 (Line 6) = 0 (Line 9),

selavg(nc) = 0.15× 0.011 ≈ 0.002 (Line 7),

selmax (nc) = min(0.15, 0.011) = 0.011 (Line 8).

Subsequently, for the rightmost disjunction nd (right child of the root), the first

iteration of Algorithm 4 leads to:

selmin(nd) = max(0.0, 0.03) = 0.03 (Line 6),

selavg(nd) = 0.0 + 0.14− (0.0× 0.14) = 0.14 (Line 7),

selmax (nd) = 0.0 + 0.16 = 0.16 (Line 8).

The second and final iteration of Algorithm 4 then results in the estimation

that is stated in Figure 6.5:

selmin(nd) = max(0.03, 0.0) = 0.03 (Line 6),

selavg(nd) = 0.14 + 0.002− (0.14× 0.002) ≈ 0.142 (Line 7),

selmax (nd) = 0.16 + 0.011 = 0.171 (Line 8).

Finally, the calculation for the second iteration of Algorithm 3 for the root

node n is as follows (we omit the first iteration due to its simplicity):

selmin(n) = 0.015 + 0.03− 1.0 = −0.955 (Line 6) = 0 (Line 9),

selavg(n) = 0.01697× 0.142 ≈ 0.00241 (Line 7),

selmax (n) = min(0.017, 0.171) = 0.017 (Line 8).

Having estimated the selectivity of the subscription in Figure 6.5, we now

demonstrate how to find the preferred pruning option (of the six possible op-

tions that are shown in Figure 6.3), using our selectivity degradation measure:

Example 6.3 (Selectivity degradation) The unpruned selectivity estima-

tion of subscription si in Figure 6.5 is sel≈(si) = (0.0, 0.00241, 0.017) (see

Example 6.2). After performing a pruning that leads to sj, these estimations

172 Chapter 6. Routing Optimizations for Boolean Subscriptions

change to:

sel≈(sj) = (0.03, 0.142, 0.171) for Pruning Option 1 ,

sel≈(sj) = (0.015, 0.01697, 0.017) for Pruning Option 2 ,

sel≈(sj) = (0, 0.00275, 0.017) for Pruning Option 3 ,

sel≈(sj) = (0, 0.0148, 0.017) for Pruning Option 4 ,

sel≈(sj) = (0, 0.0026, 0.017) for Pruning Option 5 ,

sel≈(sj) = (0, 0.0029, 0.017) for Pruning Option 6 .

When applying the selectivity degradation measure, the rankings of the pruning

options are (ordered by the option number):

∆≈
sel (si, sj) = max(0.03− 0.0, 0.142− 0.00241, 0.171− 0.017) = 0.154,

∆≈
sel (si, sj) = max(0.015− 0.0, 0.01697− 0.00241, 0.017− 0.017) = 0.015,

∆≈
sel (si, sj) = max(0.0− 0.0, 0.00275− 0.00241, 0.017− 0.017) = 0.00034,

∆≈
sel (si, sj) = max(0.0− 0.0, 0.0148− 0.00241, 0.017− 0.017) = 0.01239,

∆≈
sel (si, sj) = max(0.0− 0.0, 0.0026− 0.00241, 0.017− 0.017) = 0.00019,

∆≈
sel (si, sj) = max(0.0− 0.0, 0.0029− 0.00241, 0.017− 0.017) = 0.00049.

The preferred pruning option, that is, the pruning option leading to the least

degradation, is Pruning Option 5 followed by Pruning Options 3, 6, 4, 2, and

1.

An informal reason for this decision is that Option 5 only broadens the

subscription to include all signed copies of the books of a particular category

or author. This pruning does not significantly change the selectivity because

signed copies only constitute approximately 1 percent of all items. Even if no

Buy-It-Now items would be signed book copies, the selectivity does maximally

increase by this 1 percent.

The branch that is removed by Pruning Option 3 is fulfilled by approximately

87 percent of all messages. Because its sibling is fulfilled by 16 percent, the

selectivity of the (then unary) conjunction can increase by 13 percent at most.

For Pruning Option 6, the selectivity of the (then also unary) conjunction

could increase by 15 percent. Applying Option 4, the average selectivity change

of the conjunction (again, then unary) would be quite significant. Obviously,

Pruning Option 2 generalizes more than any partial pruning (even though, the

6.4 Selecting Pruning Operations 173

degradation measure might lead to a different result). Finally, Pruning Option

1 would remove quite restrictive attributes on category and author, strongly

broadening the overall subscription.

6.4.3 Pruning Based on Filter Efficiency

Having proposed a measure that is based on the accuracy of subscriptions and

aims at describing the increase in internal network load, we now introduce

additional pruning variants that optimize with respect to other target param-

eters. In this section, we propose a ranking measure that aims at increasing

filter efficiency as much as possible when pruning subscriptions—the efficiency

measure.

An effective efficiency-based ranking measure should be intertwined with

the applied filtering algorithm. Thus we use the approach that was presented

in Chapter 4 as our target algorithm for the optimization.

Estimating the Effect on Filter Efficiency

The overall largest proportion of filter time in the general Boolean filtering

algorithm is spent on final subscription matching. This third step of the al-

gorithm evaluates the subscription trees of candidate subscriptions. Our ap-

proach to optimizing the filtering process is thus to minimize the additional

number of candidate subscriptions that is created due to the performed pruning

operations.

A main parameter that determines whether a registered subscription s,

constitutes a candidate is the minimal number of fulfilled predicates pmin(s).

The pruning measure therefore aims at beneficially altering this subscription-

specific property.

Due to the definition of pmin(s) (see Section 4.2.3) and the options for

valid pruning operations, the value of pmin(s) cannot increase when pruning

subscription s. Hence, pmin(s) either increases or remains the same by the

application of subscription pruning.

Although the filter efficiency is influenced by various parameters (as argued

later on, page 175), for our ranking measure we consider the value of pmin(s)

as an estimation of the efficiency properties of subscriptions.

174 Chapter 6. Routing Optimizations for Boolean Subscriptions

Efficiency Improvement Measure

If two subscriptions si and sj share the same predicates and structure, the

property pmin(si) > pmin(sj) generally means that subscription sj is a can-

didate more often than si
2. To advantageously affect the filter efficiency of

a subscription s, which is estimated by pmin(s), the system should thus try

to increase the value of pmin(s) when pruning. However, an increase of this

property is impossible when applying pruning. Thus, the system should rank

pruning operations based on their decreasing effect on pmin(s).

We define the efficiency-based ranking measure, the efficiency improve-

ment , as the difference in pmin(s) of a subscription s before and after pruning.

More specifically, given a subscription si that is pruned to sj , the efficiency

improvement is defined as follows:

∆≈
eff (si, sj) = pmin(si)− pmin(sj).

The less the efficiency improvement of a pruning operation, the more advanta-

geously this operation influences filter efficiency. To reach local optimization

decisions, pub-sub systems thus determine the pruning option that leads to the

least ranking value for a given subscription. For global decisions, the system

executes local decisions in an ascending order of this rank.

Subscription si in ∆≈
eff (si, sj) again refers to the original, unpruned sub-

scription. This procedure allows for the incorporation of all pruning operations

that are performed on si into the ranking measure. If a pruning causes a strong

decrease in the minimal number of fulfilled predicates, this property is inte-

grated into the ranking of all subsequently performed pruning operations. On

the other hand, if each pruning is regarded individually, a repeated decrease

of the ranking, for example, by value v, is weighted more beneficially than a

one-time high decrease, for example, by 2× v. However, the overall decrease

in the ranking of a subscription is much smaller for the pruning option that

involves the higher decrease (of 2 × v). It is thus important to incorporate

the influence of all pruning operations of a subscription into its ranking, as

implemented by our efficiency improvement measure.

2There are potential cases in which this statement is too strong because both subscrip-
tions always constitute a candidate for the same messages. It should thus read “. . . sj is a
candidate not less often than si.”

6.4 Selecting Pruning Operations 175

Validity of the Measure

The efficiency improvement measure ∆≈
eff (si, sj) does not incorporate all influ-

ences of pruning operations on the efficiency of filtering algorithms. It only

considers one of these effects, the minimal number of fulfilled predicates. How-

ever, there are some other influences on filter efficiency in general, and on the

decision of being a candidate subscription in particular.

Firstly, the predicates of subscriptions determine the actual number of

fulfilled predicates for an incoming event message, which is stored in the hit

vector. The comparison of the entry in the hit vector to the minimally required

number of fulfilled predicates (in the minimum predicate count vector) then

states whether a subscription constitutes a candidate. The actual number of

fulfilled predicates is thus a further influence on filter efficiency. The selectivity

of the pruned branch of a subscription tree determines how often the predicate

counter is increased due to the predicates of this branch.

If only considering the node n whose child is pruned (n is a conjunction),

the removal of a highly selective child reduces pmin(n) by at least one, although

the entry in the hit vector is increased only rarely by the predicates in the

pruned branch. Conversely, the removal of a relatively general child node

prunes a branch that leads to more increases in the hit vector. It is hence more

advantageous to prune a general child than a selective one because the implied

decrease of pmin(n) is counterbalanced by the relatively frequent increase in

the hit vector before pruning. Thus the effect of pruning is less than in the

case of removing highly selective branches. This influence of the selectivity of

pruned branches is partially included in BoP due to its strategy of breaking

ties in the efficiency improvement measure. We elaborate on this strategy in

Section 6.4.8.

Secondly, another influence on filter efficiency regards the semantics of

predicates in subscriptions. The influence of these semantics on the minimal

number of fulfilled predicates is described in Section 4.5.5 (page 113). If apply-

ing the optimization described there, one should consider the effects of pruning

on the potential of this approach. Additionally, pruning operations could aim

at increasing pmin(s) of the subscription s to be pruned by introducing those

situations that offer an optimization potential.

Our estimation of the influence of pruning on filter efficiency results in a

good approximation of these effects (see our results in Chapter 8). The measure

thus fulfills its design goals and shows the feasibility to prune subscriptions,

176 Chapter 6. Routing Optimizations for Boolean Subscriptions

and thus to optimize content-based pub-sub systems, based on the efficiency

parameter.

Decisions for Example Subscription Class

We now give an example of calculating the efficiency improvement measure

∆≈
eff (si, sj) for our example subscription of Class 3:

Example 6.4 (Efficiency improvement) For our original subscription si,

it holds pmin(si) = 3 for the minimal number of fulfilled predicates (see Exam-

ple 4.6, page 109). Performing the six possible pruning operations (shown in

Figure 6.3) that result in sj leads to the following values:

pmin(sj) = 2 for Pruning Option 1 ,

pmin(sj) = 1 for Pruning Option 2 ,

pmin(sj) = 2 for Pruning Option 3 ,

pmin(sj) = 2 for Pruning Option 4 ,

pmin(sj) = 2 for Pruning Option 5 ,

pmin(sj) = 2 for Pruning Option 6 .

Using the efficiency improvement measure, the rankings of these pruning op-

tions are:

∆≈
eff (si, sj) = 3− 2 = 1 for Pruning Option 1 ,

∆≈
eff (si, sj) = 3− 1 = 2 for Pruning Option 2 ,

∆≈
eff (si, sj) = 3− 2 = 1 for Pruning Option 3 ,

∆≈
eff (si, sj) = 3− 2 = 1 for Pruning Option 4 ,

∆≈
eff (si, sj) = 3− 2 = 1 for Pruning Option 5 ,

∆≈
eff (si, sj) = 3− 2 = 1 for Pruning Option 6 .

The preferred pruning options, that is, the ones that are expected to improve

filter efficiency the most, are Pruning Options 1, 3, 4, 5, and 6. Pruning

Option 2, however, has a stronger (negative) influence on filter efficiency.

As mentioned in Section 6.4.3, BoP applies an extended strategy to select

the preferred pruning operation if various options result in the same efficiency

improvement ∆≈
eff (si, sj). This strategy then leads to a definite decision for the

tie among Pruning Options 1, 3, 4, 5, and 6.

The reason for Pruning Option 2 to be rated as the worst pruning is that

6.4 Selecting Pruning Operations 177

only one predicate of the remaining subscription sj has to be fulfilled to desig-

nate sj as a candidate subscription.

6.4.4 Pruning Based on Memory Usage

Having proposed measures for the parameter network load and the quality

measure system efficiency, we now introduce the memory measure that pri-

marily aims at decreasing the memory requirements for event routing tables.

We have already elaborated on the influence of subscription pruning on

both predicate and subscription indexes. Its effect on subscription indexes

was identified as more significant with respect to memory usage than its ef-

fect on predicate indexes. In the following, we thus approximate the memory

requirements of an event routing entry (i.e., a subscription) by its size in sub-

scription indexes.

Estimating the Memory Usage

The subscription indexes of the general Boolean algorithm comprise the min-

imum predicate count vector, the subscription location table, and the sub-

scription trees. The two former structures contain one entry per registered

subscription. Their memory requirements are thus not influenced by the ap-

plication of pruning. The latter structure, on the other hand, represents the

encoding of a subscription si itself. This encoding changes if subscription si is

pruned to sj.

We can use the size mem(si) of the encoded subscription tree of subscription

si as a measure for its memory requirements. In Section 5.4 (page 130), we

described the memory requirements for subscription trees by |p|× (w(p)+1)+

2|op|, with |p| stating the number of predicates, and |op| the number of Boolean

operators, that is, inner nodes. Hence every pruning of si to sj reduces the

memory requirements for the encoding of the tree structure, as is our design

goal.

Although the overall memory requirements of a pub-sub system when prun-

ing are also influenced by predicate indexes, we chose to integrate the pre-

sented measure into BoP. The reason for this choice is the greater effect of

subscription indexes on the change in memory requirements and the highly

implementation-dependent influence of predicate indexes on this memory re-

quirement.

178 Chapter 6. Routing Optimizations for Boolean Subscriptions

Memory Improvement Measure

Based on our description of the memory requirements mem(si) of a subscrip-

tion si, we now define a memory-based ranking measure—the memory im-

provement . When pruning subscription si to sj , the memory improvement

is:

∆≈
mem(si, sj) = mem(si)−mem(sj).

This memory improvement ∆≈
mem(si, sj) directly describes the difference (i.e.,

the reduction) in the encoding size of a subscription before and after prun-

ing. Hence the larger the rank ∆≈
mem(si, sj), the more reduction in memory

requirements and thus the more beneficial the effect of pruning. Therefore, the

best local optimization is the pruning operation that leads to the highest rank

∆≈
mem(si, sj). For global decisions, pub-sub systems execute the determined

local decisions in a descending order of the rank.

In contrast to the previous two measures (accuracy and efficiency), si in

∆≈
mem(si, sj) directly refers to subscription si before being pruned to sj. That

is, si potentially describes an already pruned subscription. Using this policy

allows the system to always incorporate the direct effect of pruning on the size

of event routing tables. Conversely, using the unpruned subscription when

performing several pruning operations for one subscription would consider a

subsequent pruning as worthwhile if, for example, only the first operation

results in a strong reduction in memory use. Our approach of treating each

optimization decision individually, however, avoids this effect. A system thus

optimizes based on the direct effect of each particular pruning operation.

The strongest reduction in memory use occurs when removing the largest

possible branch of a subscription tree. For the memory-based variant, we

thus additionally restrict the set of valid pruning operations as follows: the

removal of a node n only constitutes a valid pruning operation if there exists

no valid pruning option in the subtree that is rooted in n. Hence, systems

only consider those pruning operations as valid that prune as near to the leaf

nodes as possible.

For this ranking measure (as for the efficiency-based measure), it is also

likely that various pruning options result in the same ranking value ∆≈
mem(si, sj).

Our implementation in BoP thus applies an extended policy to decide on the

preferable pruning operation in such cases. We refer to Section 6.4.8 for details

on this policy.

6.4 Selecting Pruning Operations 179

Validity of the Measure

Subscription indexes are not the only data structures that are subjected to a

reduction in memory requirements when applying pruning. Predicate indexes,

that is, predicate-subscription association table and one-dimensional indexes,

also consume less memory due to optimization. The predicate-subscription

association table always contains fewer associations whenever leaf nodes are

removed from subscription trees. The effect on one-dimensional indexes de-

pends on the commonality of the removed predicates. These structures are

only reduced in size if all occurrences of a predicate are removed (which is

rather unlikely, see Section 6.2.1).

Although we did not incorporate the alteration of the predicate-subscrip-

tion association table into our ranking measure, ∆≈
mem(si, sj) already includes

the beneficial effect of removing predicates. Because the encoding of leaf nodes

requires more memory than the encoding of inner nodes, the removal of pred-

icates is weighted higher than the removal of Boolean operators. Our measure

thus incorporates the stronger effects of pruning leaf nodes.

The additional restriction of valid pruning operations counteracts the aim

of achieving the strongest possible reduction in memory requirements when

pruning. In practice, however, this policy is not a real limitation: it just takes

more pruning operations to remove the largest possible subtree of a subscrip-

tion. In empirical experiments (see Chapter 8), this ranking measure still

results in the largest reduction in memory whilst executing the least number

of pruning operations.

Decisions for Example Subscription Class

Having presented the theory of the memory measure ∆≈
mem(si, sj), we now give

an example using a subscription of Class 3:

Example 6.5 (Memory improvement) The memory requirements of the

encoding of the original subscription si is mem(si) = 7× 5 + 2× 6 = 47 bytes.

Different from Figure 6.3, the further restriction of valid pruning options

for the memory-based measure excludes Pruning Option 2 (other valid opera-

tions exist in the pruned subtree) and thus leads to only five valid pruning op-

erations. Performing these options, the memory requirements of the remaining

subscriptions sj are as follows (in bytes):

mem(sj) = 5× 5 + 2× 4 = 33 for Pruning Option 1 ,

180 Chapter 6. Routing Optimizations for Boolean Subscriptions

mem(sj) = 5× 5 + 2× 4 = 33 for Pruning Option 3 ,

mem(sj) = 6× 5 + 2× 4 = 38 for Pruning Option 4 ,

mem(sj) = 6× 5 + 2× 5 = 40 for Pruning Option 5 ,

mem(sj) = 6× 5 + 2× 5 = 40 for Pruning Option 6 .

Applying the memory improvement measure, the ranking ∆≈
mem(si, sj) of these

pruning operations are:

∆≈
mem(si, sj) = 47− 33 = 14 for Pruning Option 1 ,

∆≈
mem(si, sj) = 47− 33 = 14 for Pruning Option 3 ,

∆≈
mem(si, sj) = 47− 38 = 9 for Pruning Option 4 ,

∆≈
mem(si, sj) = 47− 40 = 7 for Pruning Option 5 ,

∆≈
mem(si, sj) = 47− 40 = 7 for Pruning Option 6 .

Based on these rankings, the system identifies Pruning Options 1 and 3 as

preferable operations. As mentioned in Section 6.4.4, the extended policy of

breaking such ties is then used to select between Options 1 and 3 as the best

local pruning.

6.4.5 Pruning Based on Subscription Accuracy and

Predicate Occurrence

In Section 6.4.2, we introduced an accuracy-based ranking measure for pruning

operations. On the one hand, we argued that the incorporation of the over-

lapping relationships among subscriptions into this measure could improve its

precision. On the other hand, the analysis of these relationships results in

complex computation tasks, as in current routing approaches (see Section 2.5,

page 47). Thus, within this section we take an indirect relation approach

that incorporates the overlap among subscriptions based purely on information

about the occurrence of their predicates, leading to an accuracy and occurrence

measure.

The overall goal of the final degradation measure is to rank the removal

of uncommon predicates higher than the removal of common predicates. The

rank is additionally dependent on the increase in selectivity that is induced

by a particular pruning operation. The motivation for this approach is that

the preferred removal of uncommon predicates reduces the existing diversity

6.4 Selecting Pruning Operations 181

among unpruned subscriptions. Hence it increases the similarity among pruned

subscriptions. Increasing this similarity leads to a higher probability that

subscriptions specify an interest in the same event messages. Hence the number

of false positives due to pruning, and thus the increase in network load and

additionally routed messages, is reduced.

This property of pruning decisions, in turn, is directly exploited by the

filtering algorithm applied in BoP: the filtering shortcut, presented earlier, re-

moves the need to apply the final subscription matching step for a large number

of subscriptions. In particular when performing various pruning operations,

and thus reducing subscriptions to very compact filter expressions, the ben-

efit of this ranking measure increases. Additionally, the preferred removal of

uncommon predicates reduces the memory requirements for predicate indexes

and increases the efficiency of their evaluation. These effects are stronger than

when removing arbitrary predicates.

Note, however, that this pruning measure is still applicable regardless of

subscription commonality. The measure bases its pruning decisions on the

occurrence of individual predicates only, and not on the commonality among

whole subscriptions.

Estimating Predicate Occurrence

What is required by the pruning optimization is an efficient means of deter-

mining whether a pruned branch of a subscription removes highly common or

rather uncommon predicates. To decide on this question, we apply a propor-

tional measure to rank the degradation in predicate occurrence. This measure

relates the predicate occurrence occ(si) of a subscription si before pruning to

its predicate occurrence occ(sj) after being pruned to sj.

We define the predicate occurrence of subscriptions as follows:

Definition 6.2 (Predicate occurrence) The predicate occurrence of a sub-

scription s ∈ S describes the occurrences of its predicates by the numeric value

occ(s). This value is based on the set of registered subscriptions S and the

predicates P(F) of the Boolean filter expression F of s. The calculation of

occ(s) works as follows:

• For a predicate p, occ(p) equals the number of predicate-subscription as-

sociations (to be found in the predicate-subscription association table) for

p.

182 Chapter 6. Routing Optimizations for Boolean Subscriptions

• For a subscription s, it holds that:

occ(s) =
∑

pi∈P(F)

occ(pi).

This notion of predicate occurrence fulfills our design goals of describing the

usage of the predicates that are included within a (branch of a) subscription

tree.

For leaf nodes, this information can be directly derived from the encoded

predicate and predicate index structures, that is, the predicate occurrence

equals the real usage of the predicate in the registered subscriptions. For inner

nodes, both conjunctive and disjunctive branches, the predicate occurrence

summarizes the individually derived predicate occurrences of child nodes.

Removing any branches of subscription trees results in a decrease of pred-

icate occurrence according to the predicates in the pruned branch.

Selectivity and Occurrence Degradation Measure

Our ranking measure, the estimated selectivity and occurrence degradation

∆≈
occ(si, sj), describes the proportional change in predicate occurrence com-

bined with the absolute change in selectivity when performing pruning opera-

tions. It can thus be used to quantify the effect of pruning operations for both

local and global optimization decisions.

We argued for the utilization of an absolute selectivity degradation measure

in Section 6.4.2. However, for the predicate occurrence part of our combined

degradation notion, we apply a proportional notion for the following reason:

When considering the absolute change in predicate occurrence, pruning op-

erations would be performed regardless of the predicate occurrence of the re-

maining (not pruned) parts of subscriptions. However, the remaining branches

or, more generally, the subscriptions before pruning, influence the effect of a

fixed reduction in predicate occurrence. For example, a reduction in predi-

cate occurrence by value v should be regarded as more valuable if the overall,

unpruned subscription has a predicate occurrence of occ(si) = 100 × v than

of occ(sj) = 5 × v. The reason for this preference is that subscriptions that

involve both common and uncommon predicates (e.g., si) should be pruned

before those subscriptions that only include uncommon predicates (e.g., sj). If

there are no common predicates, a pruning can never lead to the desired effect

of keeping the common ones.

6.4 Selecting Pruning Operations 183

We define the estimated selectivity and occurrence degradation of a sub-

scription si that is pruned to sj as follows (it extends the estimated selectivity

degradation, see Section 6.4.2):

∆≈
occ(si, sj) =

occ(si)

occ(sj)
×∆≈

sel(sk, sj).

For the selectivity part of ∆≈
occ(si, sj), sk refers to the original, unpruned sub-

scription. However, for the occurrence part, BoP uses the value occ(si) of

subscription si before the current pruning operation in its calculations. This

handling is required to express the change in predicate occurrence of the cur-

rently performed pruning operation, that is, of the currently removed branch.

The occurrence part of the degradation, occ(si)
occ(sj)

, would otherwise state the total

change for all pruning that is performed. It would, in fact, increase as more

pruning operations are executed and thus not adhere to its objective of benefit-

ing the removal of uncommon predicates (the removal would be counteracted

when repeatedly pruning subscriptions).

Validity of the Measure

Our accuracy and predicate occurrence ranking measure estimates the influ-

ence of pruning operations based on the introduced predicate occurrence mea-

sure. Hence, the derived ranking ∆≈
occ(si, sj) can only incorporate those effects

that are captured by the underlying predicate occurrence concept occ(s). The

overall goal of the occurrence-based pruning variant is to reduce the number

of false positives. These false positives depend on more than the usage of

individual predicates, as captured by occ(s):

Even if the removal of uncommon predicates is preferred when pruning, the

remaining subscriptions might not describe similar interests. This is because

the combination of these predicates might still lead to diverse specifications in

subscriptions. On the other hand, an uncommon predicate p might be covered

by very common ones. The removal of p thus does not decrease the diversity

of subscriptions because a part of the pruned subscription was already covered

before optimizing.

Obviously, the introduced measure ∆≈
occ(si, sj) shares the same validity is-

sues as ∆≈
sel (si, sj), as analyzed in Section 6.4.2. Additionally, the straightfor-

ward multiplicative combination of the selectivity and occurrence components

in ∆≈
occ(si, sj) is only one alternative to merging these two constituents of the

184 Chapter 6. Routing Optimizations for Boolean Subscriptions

ranking measure.

Despite this, the introduced ranking measure led to beneficial results in

empirical experiments (see Chapter 8).

Decisions for Example Subscription Class

To exemplify the calculation of the estimated selectivity and occurrence degra-

dation measure, we have to make assumptions about the usage of predicates.

We do so in the following examples, again using a subscription of Subscription

Class 3. We start with determining the predicate occurrence of subscriptions:

Example 6.6 (Predicate occurrence) Subscriptions of Class 3 (see Fig-

ure 3.3) contain seven predicates, p1 to p7. Let us assume the following pred-

icate occurrences occ(p1) to occ(p7) in the following (the orders of magnitude

are insignificant because these predicate occurrences are incorporated propor-

tionally later on):

occ(p1) = 100, occ(p2) = 30, occ(p3) = 500, occ(p4) = 70,

occ(p5) = occ(p7) = 60, occ(p6) = 400.

Based on these assumptions, for the predicate occurrence of the original sub-

scription si it holds that:

occ(si) =
∑

k=1...7

occ(pk) = 100 + 30 + 500 + 70 + 60 + 400 + 60 = 1, 220.

For the pruned subscriptions sj (see Figure 6.3 for these pruning operations),

it holds that (ordered by option number):

occ(sj) =
∑

k=3...7

occ(pk) = 500 + 70 + 60 + 400 + 60 = 1, 090,

occ(sj) =
∑

k=1...2

occ(pk) = 100 + 30 = 130,

occ(sj) =
∑

k=1...5

occ(pk) = 100 + 30 + 500 + 70 + 60 = 760,

occ(sj) =
∑

k=1,2,4...7

occ(pk) = 100 + 30 + 70 + 60 + 400 + 60 = 720,

occ(sj) =
∑

k=1...3,5...7

occ(pk) = 100 + 30 + 500 + 60 + 400 + 60 = 1, 150,

6.4 Selecting Pruning Operations 185

occ(sj) =
∑

k=1...4,6,7

occ(pk) = 100 + 30 + 500 + 70 + 400 + 60 = 1, 160.

Based on these predicate occurrences, we now provide an example of the cal-

culation of the degradation measure ∆≈
occ(si, sj):

Example 6.7 (Selectivity and predicate occurrence degradation) The

selectivity and occurrence degradation ∆≈
occ(si, sj) consists of a selectivity and

a predicate occurrence part. We already calculated the selectivity part of this

measure in Example 6.3 (page 171). For the occurrence part, we can use the

calculations from the previous example. Based on this information, it holds

that (ordered by the pruning option number):

∆≈
occ(si, sj) =

1, 220

1, 090
× 0.154 ≈ 0.172,

∆≈
occ(si, sj) =

1, 220

130
× 0.015 ≈ 0.141,

∆≈
occ(si, sj) =

1, 220

760
× 0.00034 ≈ 0.00055,

∆≈
occ(si, sj) =

1, 220

720
× 0.01239 ≈ 0.021,

∆≈
occ(si, sj) =

1, 220

1, 150
× 0.00019 ≈ 0.000202,

∆≈
occ(si, sj) =

1, 220

1, 160
× 0.00049 ≈ 0.000515.

Hence the order of pruning operations is Option 5, 6, 3, 4, 2, and 1. Comparing

this result with the pure selectivity degradation measure (see Example 6.3), one

realizes a change in the ranking of Pruning Options 6 and 3. Whereas the pure

selectivity-based measure favors Option 3 over Option 6, the new combined

degradation chooses Option 6 before Option 3. The reason for this change

is that predicates p6 and p7 have a higher predicate occurrence than p5. The

occurrence part of the combined measure thus favors Option 6 over Option 3

(smaller occurrence part), which leads to a smaller, that is, preferred, ranking

for Option 6.

6.4.6 Pruning Based on Subscription Accuracy and Dis-

tance

In the previous section, we introduced one valuable extension to our accuracy-

based ranking measure. Additionally, we identified another attribute, the dis-

186 Chapter 6. Routing Optimizations for Boolean Subscriptions

tance from the subscriber, that could advantageously extend this measure,

leading to a novel ranking measure: the accuracy and distance measure.

When utilizing this measure, the applied event routing algorithm requires a

minor extension: Brokers need to know about the distance to the subscriber of

a subscription si, referred to as subscriber distance, dist(si), in the following.

The simplest representation of this subscriber distance is the number of hops

from a broker to the local broker B(si) of si. This distance can be straightfor-

wardly distributed to brokers when subscriptions are registered (increasing a

hop count per forwarding); it is thus known to all brokers in the network.

Knowing the subscriber distance allows the pub-sub system to exploit this

attribute when optimizing, that is, when pruning subscriptions. The objective

of the accuracy and distance measure is to additionally (next to the accuracy

degradation, see Section 6.4.2) weight pruning options according to the sub-

scriber distance. The pruning of a subscription si is preferred if it shows a

large subscriber distance dist(si).

The reason for this ranking is found in the distribution of false positives in

the network: Preferring the pruning of far distant subscriptions decreases the

probability of false positives reaching the local broker. In fact, false positives

are likely to be filtered out on their way to the local broker of a subscription.

This is the case because a low selectivity degradation of a subscription (only

estimated and thus potentially incorrect) is weighted high if the optimization

is performed near to the subscriber. Hence, if a well-ranked pruning option

(or, in fact, any pruning) leads to various false positives, these false positives

are not distributed along the whole path to the subscriber. Instead the rank-

ing measure prevents this distribution in the network due to its property of

considering the locality of pruning decisions.

So far we have not integrated the accuracy and distance measure into BoP.

The main reason for this is the required extension of the applied routing algo-

rithm, which opposes our goal of utilizing existing protocols. However, we plan

to integrate the measure into BoP in the future, and to evaluate and compare

its usefulness. This future work also includes the consideration of broader def-

initions of distance, such as the available bandwidth on the path to the local

broker, or other parameters of the involved machines and connections.

6.4.7 Pruning Based on Combined Parameters

In the previous sections, we presented five measures that rank pruning opera-

tions according to different target parameters. The latter two of these measures

6.4 Selecting Pruning Operations 187

were extensions to the accuracy-based measure. They combine the accuracy

parameter (estimating the increase in network load) with two subscription

properties—the predicate occurrence of subscriptions and the subscriber dis-

tance. Obviously, there are several ways of weighting the influence of these

different factors in the resulting ranking measure.

Most of the introduced target parameters are independent of each other;

they also cannot be transformed into each other; and they might even be

conflicting. Therefore, the simultaneous consideration of all parameters leads

to a multi-criteria optimization problem [Ste86]. Tackling pruning decisions in

this way allows tailoring of the optimization to the current application scenario

and, potentially, leads to an advanced overall optimization effect. Within this

dissertation, we do not go into detail on such a multi-criteria optimization

approach but leave the research to future work. However, within BoP we

do consider several target parameters simultaneously if there exists a set of

optimal solutions for the currently chosen parameter. We elaborate on this

advanced handling of pruning operations in the following subsection.

6.4.8 Pruning In Case of Ties

For the four ranking measures presented in Sections 6.4.2 to 6.4.5, different

pruning options (for the actual target parameter) might show the same ranking

value ∆(si, sj). The likelihood of these ties varies for the different measures.

Ties can either occur for pruning options of one subscription (local decisions) or

for pruning options of several registered subscriptions (global decisions among

preferred local decisions). In both cases, a pub-sub system can refer to the

ranking value of a parameter other than the currently applied one to reach its

final optimization decision.

The employed order of parameters depends on the requirements of the ac-

tual application scenario, and the registered subscriptions and published event

messages. Within BoP, and thus in our empirical experiments (Chapter 8),

we apply the following orders of parameters when pruning subscriptions si to

sj:

• ∆≈
sel(si, sj), ∆≈

eff (si, sj), ∆≈
mem(si, sj) for accuracy-based pruning

• ∆≈
eff (si, sj), ∆≈

sel(si, sj), ∆≈
mem(si, sj) for efficiency-based pruning

• ∆≈
mem(si, sj), ∆≈

sel(si, sj), ∆≈
eff (si, sj) for memory-based pruning

188 Chapter 6. Routing Optimizations for Boolean Subscriptions

• ∆≈
occ(si, sj), ∆≈

sel(si, sj), ∆≈
eff (si, sj) for accuracy and occurrence-based

pruning

If all three of these chosen ranking measures show the same value, the preferred

pruning option is arbitrary. We illustrate this extended strategy to select the

preferred pruning option in the following example:

Example 6.8 (Breaking a Tie) In Example 6.4 (page 176), we presented

the ranking of pruning operations when using the efficiency improvement mea-

sure. Using only this parameter for pruning decisions results in a tie among

five pruning options. However, applying the extended strategy, which is pre-

sented in this section, leads to a definite order of these pruning operations.

This decision can be found after referring to the ranking of two of the three

parameters (∆≈
eff (si, sj) and ∆≈

sel(si, sj)). We already calculated the rankings

for these measures in Example 6.3 (page 171) and Example 6.4 (page 176) and

use our results in the following:

∆≈
eff (si, sj) (Example 6.4) equally ranks Pruning Options 1, 3, 4, 5, and

6. However, ∆≈
sel (si, sj) (Example 6.3) leads to different rankings for these

five options, resulting in the final order: the preferred pruning is Option 5

followed by Options 3, 6, 4, and 1. Option 2, having a greater ranking value

for ∆≈
eff (si, sj), is the least preferred pruning option.

6.5 Variants of Subscription Pruning

Having introduced the general idea of subscription pruning and a wide range of

ranking measures to determine an order among all possible pruning operations,

we now elaborate on different variants of this optimization. We identified two

main variants of the application of pruning—post-pruning (Section 6.5.1) and

pre-pruning (Section 6.5.2). As well as individually applying these variants,

they can be used collectively, as presented in Section 6.5.3.

6.5.1 Post-pruning

In the post-pruning variant, brokers individually perform subscription pruning

to achieve an optimization of the system. In combination with the applied

routing algorithm, broker components forward each incoming subscription s

in its original, that is, unpruned, form. This incoming subscription s is either

integrated as is (if s is a local subscription), or potentially pruned (if s is a

6.5 Variants of Subscription Pruning 189

Routing table 2. Forwarding of
original subscription

1. Forwarded subscription

original subscription
2. Forwarding of

3. Pruning and
integration into
routing table

Figure 6.6: Post-pruning in one broker (center of the figure): the incoming
subscription is forwarded to neighbors and a (potentially) pruned version of
this subscription is inserted into the local event routing table.

non-local subscription), as described in Section 6.6. This policy of handling

subscriptions provides the name to this pruning variant: subscriptions are only

pruned post being forwarded.

Proceeding in that way allows brokers to independently perform pruning

based on their current situation. Global pruning decisions in brokers are thus

reached from the viewpoint of individual system components. The pub-sub

system should apply a global pruning policy, for example, to co-ordinate the

number of pruning operations each broker performs. Without such a policy,

every component only considers its individual routing load when optimizing.

Potentially, this could lead to an overload in neighbor brokers, for example,

if routing entries become highly inaccurate and thus large numbers of false

positives are forwarded to neighbors.

We give an overview of the post-pruning variant in Figure 6.6: unpruned

subscriptions are forwarded to the two neighbor brokers whereas (indepen-

dently) pruned subscriptions are integrated into event routing tables. These

neighbors, in turn, independently perform pruning decisions but forward the

original, unpruned subscriptions.

When applying post-pruning, pruning operations can be performed before

subscriptions are inserted into routing tables, for example, up to a certain

threshold of the (global) value of the employed ranking measure. Alternatively,

subscriptions, that is, routing entries, can be pruned whenever a broker decides

to optimize the system, also up to a specific threshold of the utilized ranking

measure.

190 Chapter 6. Routing Optimizations for Boolean Subscriptions

Routing table
2. Pruning and for−
warding of subscription

3. Integration into
routing table

1. Forwarded subscription

warding of subscription
2. Pruning and for−

Figure 6.7: Pre-pruning in one broker (center of the figure): (potentially)
pruned subscriptions are forwarded to neighbors and this version of the in-
coming subscription is inserted into the local event routing table.

6.5.2 Pre-pruning

In the other pruning option, pre-pruning , broker components prune subscrip-

tions before they are forwarded to neighbors in the network. Subscriptions

might thus reach neighbor brokers in an already altered, that is, pruned, form.

Using this pure pre-pruning variant, brokers always integrate a subscription s

in their routing tables in the way s was forwarded by a neighbor.

Applying pre-pruning provides pub-sub systems with the possibility to op-

timize the routing in the network as a whole. Next to selecting the preferred

pruning options based on the previously presented ranking measures, brokers

can apply different policies for different neighbors in the pub-sub system. These

policies can be based on heuristics or statistical information from neighbors,

for example, their memory usage or the available bandwidth of the respective

network connections. In particular, in heterogeneous networks involving vari-

ably equipped machines, this option is preferable with respect to optimizing

the overall efficiency of the distributed pub-sub system.

An implication of pre-pruning is that pruning decisions are potentially

based on non-local information. That is, subscriptions that are integrated

in the event routing tables of broker B are pruned in a component other than

B. Taking the accuracy-based ranking measure as an example, the selectivity

estimation could become inaccurate if the distribution of event messages that

is sent by publishers is not relatively evenly distributed among brokers.

In Figure 6.7, we illustrate an example of pre-pruning: a forwarded sub-

scription s is integrated into the local routing table. For the two neighbors,

however, s is pruned in different ways and forwarded in this altered form.

6.6 Practical Subscription Pruning 191

2. Pruning and for−

3. Pruning and
integration into
routing table

Routing table 2. Pruning and for−
warding of subscription

1. Forwarded subscription

warding of subscription

Figure 6.8: Combined pruning in one broker (center of the figure): (poten-
tially) pruned subscriptions are forwarded to neighbors and a (potentially)
pruned version of the incoming subscription is inserted into the local event
routing table.

These neighbors then integrate the pruned variant into their routing tables

and further decide on the (potential) pruning before forwarding. Pruning op-

erations in the pre-pruning variant always need to be performed before the

actual forwarding process. Pruning can either be executed up to a global

threshold or, as mentioned previously, on a per-broker basis. Obviously, these

thresholds might adapt to the current system status.

6.5.3 Combined pruning

Finally, there exists a hybrid of the two previously introduced subscription

pruning variants, combined pruning . In this case, subscriptions might reach

broker components in an already pruned form. Brokers then decide on both

the pruning of their own event routing entries, and the pruning for neighbors,

before further forwarding an incoming subscription.

We illustrate an (extreme) example of this approach in Figure 6.8: the

incoming subscription is firstly pruned for the own event routing table, and

secondly pruned in different ways for the two neighbors in the network.

Having presented these three pruning variants, we give details about the

practical implementation of subscription pruning in the following section.

6.6 Practical Subscription Pruning

Applying the subscription pruning optimization in pub-sub systems easily in-

tegrates into the existing filtering and routing structures, without requiring

192 Chapter 6. Routing Optimizations for Boolean Subscriptions

internal modifications. What is needed to practically support subscription

pruning is simply an extension of the existing system, as presented in the

following subsections.

6.6.1 Pruning Structures

Regardless of the applied pruning variant, the pub-sub system requires the

means to calculate the applied ranking measure to reach its optimization de-

cisions. BoP currently supports the four measures that were presented in

Sections 6.4.2 to 6.4.5. According to the employed measure, the required cal-

culation information can either be derived from existing filtering structures or

needs to be obtained additionally.

Accuracy-based Ranking Measure

The accuracy-based ranking measure utilizes the selectivity of predicates to

reach optimization decisions. Because neither the original filtering algorithm

nor the original routing algorithm requires this information, BoP includes

a selectivity table (see Figure 6.9, left) that administers the selectivities of

predicates. This table maps predicate identifiers p to a counter |msgf(p)| that

is increased for each fulfilled predicate of incoming event messages.

Based on this information (as well as the total number of filtered messages

|msgt|), BoP can firstly estimate the selectivity sel≈(si) of any subscription si

and secondly derive the selectivity degradation ∆≈
sel(si, sj) for any pruning of

si to sj. Thirdly, having obtained these selectivities allows for the application

of the efficiency-enhancing ordering extension of the filtering algorithm (see

Section 4.5.3, page 113).

Efficiency-based Ranking Measure

The efficiency-based ranking measure is built on the minimal number of fulfilled

predicates. The applied filtering algorithm already utilizes this information,

which is stored in the minimum predicate count vector for each registered

subscription si. For pruned subscriptions sj, BoP calculates pmin(sj), and

thus does not need additional data structures for this pruning variant which

is based on the efficiency improvement ∆≈
eff (si, sj).

6.6 Practical Subscription Pruning 193

Ordered by degradation

Selectivity table
PID Matches

1

2

...

1,000

...

...

1,500

15,000

10,000

...

...

...

Total messages:
400,000

Selectivity queue

0.0001

...

0.95

...

...

SID

5,000

2,000

...

1,000

...

...

0.00001

Degradation

Figure 6.9: Overview of additional pruning structures: selectivity table (left)
and selectivity queue (right).

Memory-based Ranking Measure

The application of the memory-based ranking measure also does not necessitate

novel data structures. The size mem(si) of the subscription trees of registered

subscriptions si is directly given by their encoding that is used by the filtering

algorithm. The sizes of pruned subscriptions sj can also be straightforwardly

determined by BoP by applying the utilized encoding scheme. Hence the

memory improvement ∆≈
mem(si, sj) is known to the system.

Accuracy and Occurrence-based Ranking Measure

The accuracy and occurrence-based ranking measure consists of two compo-

nents: for the accuracy component, BoP requires the same addition as for

the pure accuracy-based ranking measure, a selectivity table. The predicate

occurrence component, however, is completely derived from the occurrences of

predicates. This information is already required in the filtering algorithm and

is stored in the predicate-subscription association table.

Therefore, BoP can determine the selectivity and predicate occurrence

degradation ∆≈
occ(si, sj) for any registered subscription si that is pruned to sj .

It can thus appropriately rank pruning operations.

6.6.2 Bulk Pruning

Post-pruning offers the opportunity to perform bulk pruning , that is, at any

point in time the pub-sub system might decide to optimize its routing tables

and apply subscription pruning (see Section 6.5.1). For this purpose, BoP

utilizes a degradation queue (see Figure 6.9, right) for accuracy, and accuracy

194 Chapter 6. Routing Optimizations for Boolean Subscriptions

and occurrence-based pruning; an improvement queue is applied for efficiency

and memory-based pruning. In the following, we elaborate on the degradation

queue in combination with accuracy-based pruning. The improvement queue

works analogously (except for the order of its entries).

A degradation queue implements a priority queue (see, e.g., [CLRS01]),

storing tuples that consist of a degradation value ∆(si, sj) and a subscription

identifier si. These elements are sorted by the queue in an ascending order of

their degradation value components (∆(si, sj)). Hence the tuple that specifies

the least degradation value (i.e., that involves the best ranking) is stored on

top of the queue and can be accessed efficiently.

To allow for the application of bulk pruning, BoP calculates the preferred

pruning option for each subscription si (leading to sj) at its point of regis-

tration. The system then creates a tuple (∆(si, sj), si) and inserts it into the

degradation queue. When using Fibonacci heaps [FT87], this insertion works

in amortized constant time and thus only creates an insignificant overhead.

Most importantly, when proceeding in that way, at any point in time the

degradation queue allows for the efficient access of the pruning option that

leads to the least degradation, that is, that involves the best ranking value.

Bulk pruning involves the following steps:

1. Remove the top element (∆(si, sj), si) from the degradation queue.

2. Perform3 the preferred pruning of subscription si, which is leading to sj .

3. Remove subscription si from index structures and index subscription sj .

4. Insert tuple (∆(sj, sk), sj) into the degradation queue, whereas sk states

the preferable pruning of subscription sj.

Bulk pruning is executed until the desired amount of optimization is reached.

Incorporating Changes in Rankings

For both accuracy-based pruning variants BoP might experience changes in

the calculated ranking measures once they are inserted into the degradation

queue. Such changes, for example, occur if the distributions of incoming event

messages vary significantly over time. In the following, we present three strate-

gies to cope with such potential changes. In the efficiency and memory-based

3We refer to the following paragraph for a refinement of this step.

6.6 Practical Subscription Pruning 195

pruning variants, on the other hand, the calculated rankings can never be

altered once they are inserted (both pmin(si) and mem(si) merely depend on

subscription si, and neither on other subscriptions nor filtered event messages).

Strict Execution. This strategy ignores any changes in previously calcu-

lated degradation values. It thus always performs the pruning option that

is described by the top element in the degradation queue. An obvious con-

sequence of this strategy is the execution of pruning operations that show a

non-minimal ranking value at the time of optimizing. Hence the system does

not always perform pruning in order of the applied measure.

Statically Restricted Execution. The second strategy allows changes up

to a certain threshold in the calculated ranking between the time of insertion

into the degradation queue and the actual execution of a pruning. These per-

mitted changes are based only on the stored and the newly calculated ranking,

not on the rankings of any other registered subscriptions. Two straightforward

options for thresholds are to allow fixed differences between stored and new

rankings, or to allow a proportional difference between these two values, for

example, up to a certain percentage.

Whenever the change in the ranking value exceeds the permitted range,

the system neglects this pruning option. It then re-inserts an element with the

newly calculated ranking into the degradation queue and again removes the

(now new) top element from the queue (cf. Step 1 of bulk pruning).

Dynamically Restricted Execution. The final execution strategy relates

the new ranking value of the top element (provided it changed) to the ranking

value of the element below the top. The pruning is either only executed if

the new ranking is still less than the ranking of the element below the top,

or if it differs up to a permitted threshold (fixed or proportional). If the

pruning is rejected due to its difference, a new element is inserted into the queue

(stating the updated situation) and the (now new) top element is considered,

as presented before.

Further Considerations. In practice, one should restrict the number of re-

insertions into the queue in case of rejected pruning operations. In particular,

in case of only slightly differing ranking values, the number of re-insertion

cycles might otherwise become high, leading to inefficient pruning decisions.

196 Chapter 6. Routing Optimizations for Boolean Subscriptions

Another important point to note is that not only the ranking of the top

element of the queue might change over time. In fact, all subscriptions are

subject to change in distributions of event messages. Thus executing pruning

operations in their exact ranking order does require creation of the degradation

queue at the time of optimizing and not at the time of subscription registration.

If the event load in the system allows for this, the optimization results comply

more with the utilized ranking measure.

However, it might become superfluous to consider changes in rankings be-

cause of the property of bulk pruning to execute various pruning operations in

batch. This is due to the fact that the actual order of pruning does not alter

the overall optimization result. For example, if all registered subscriptions are

pruned once according to their original rankings, a change in the pruning order

of these subscriptions still leads to the same overall optimization result. We

integrated this strict execution measure into BoP.

6.6.3 Deregistrations

Routing optimizations other than subscription pruning (covering, merging, and

summarization) show the drawback of a strong network and processing over-

head when deregistering subscriptions. We elaborated on this disadvantageous

behavior in detail in Section 2.5.

For all of the introduced pruning options, on the other hand, the dereg-

istration process works as in the case of un-optimized routing. That is, the

deregistration is forwarded to neighbor brokers in the network. These bro-

kers then remove the respective subscription from their index structures. If

the non-local subscription to be deregistered was pruned, its pruned version

is removed. The only requirement for the support of deregistrations is the

existence of unique subscription identifiers, as is our assumption.

This advantageous behavior of subscription pruning compared to other

optimizations weakens a potential argument against subscription pruning of

distributing all subscriptions that are registered. Firstly, all other optimiza-

tions except covering also need to distribute all subscriptions. Covering might

only avoid this effect if its strong assumptions are met. Secondly, the system

load for deregistrations when applying any recent optimization is higher than

in the un-optimized system. Summing up, the overall cost when using existing

optimizations is even higher than in the case of subscription pruning.

Due to the reduction of the complexity of routing entries when pruning,

6.7 Related Work 197

subscription pruning supports deregistrations more efficiently than the un-

optimized system. This is because the applied index structures are reduced in

their sizes and numbers of entries.

6.7 Related Work

Having introduced the details of our routing optimization for general Boolean

subscriptions, we relate this novel approach to current works in Section 6.7.1.

Section 6.7.2 then gives details about existing approaches to estimate the se-

lectivity of Boolean queries.

6.7.1 Event Routing Optimizations

We gave an overview of existing event routing optimizations in Section 2.5:

subscription covering [CRW01, CF03, LHJ05, MF01, OJPA06], subscription

merging [CBGM03, LHJ05, MF01], and subscription summarization [TE02,

TE04, WQV+04]. We here refer to the respective section for a complete eval-

uation of these approaches and only repeat our main findings for the sake of

completeness:

Our evaluation included an analysis of these three optimizations with re-

spect to the parameters optimization applicability, support of deregistrations,

internal subscription model, and memory usage. All recent routing optimiza-

tions show a range of shortcomings with respect to these evaluated parameters

(only applicable if assumptions are met, large overhead in case of deregistra-

tions, only conjunctive subscriptions are efficiently supported, and a reduction

in memory usage only exists if optimization assumptions are met).

These limitations of recent approaches led to our five design goals for rout-

ing optimizations that were presented in Section 6.1. Our theoretical analyses

of both predicate replacement and subscription pruning (see Section 6.2.2 and

Section 6.3.3) showed that both proposals largely comply with these goals.

Subscription pruning has a higher optimization potential than predicate re-

placement. We show the results of an empirical evaluation of the promising

pruning approach in Chapter 8.

Both subscription pruning and predicate replacement follow different opti-

mization principles than recent approaches. We elaborated on these differences

in detail in Section 6.1. The crucial point in this respect is the active manipu-

lation of event routing entries (i.e., subscriptions) by our novel optimizations.

198 Chapter 6. Routing Optimizations for Boolean Subscriptions

Recent approaches, on the other hand, try to exploit existing relationships

among subscriptions to achieve their optimization. Looking at subscription

pruning and predicate replacement in terms of current work, one realizes that

our novel approaches actively create covering subscriptions in non-local brokers

instead of passively depending on existing covering relationships. Additionally,

subscription pruning can be used to solve the imperfect merging task. It can

also be jointly applied in conjunction with recent optimizations due to their

opposing strategies.

In [EFGH02], Eugster and colleagues briefly sketch the broad approach

of filter weakening. Filter weakening could be seen as a predecessor of our

approach of generalizing subscriptions. However, also the weakening approach

in [EFGH02] is restricted to conjunctive subscriptions (as all other current

solutions). There is no work on how to broaden subscriptions in practice,

except the vague idea of basing it on their generality [EFGH02].

6.7.2 Selectivity Estimations

Estimating the selectivity of queries is researched in the context of database

management systems, for example, in [CKKM00, PI97]. However, such ap-

proaches either require conjunctive queries, or the conversion of queries into

disjunctive or conjunctive normal forms.

Apart from the time complexity that is required for these selectivity estima-

tions and the memory consumption of the involved data structures, canonical

conversion leads to an exponential space complexity (see Section 2.6, page 58).

The memory consumption, however, is crucial in context of content-based pub-

sub systems, due to their sole application of main memory filtering and routing

algorithms (see Section 2.2, page 23). Current selectivity estimation solutions

[CKKM00, PI97], however, are applicable to database management systems,

which can convert queries to canonical forms (see Section 2.1.1, page 15) and

whose problem definition is opposite to the problem definition of pub-sub sys-

tems.

6.8 Summary

In this chapter, we introduced the first event routing optimizations that are

practically applicable to general Boolean subscriptions. Subscription pruning

6.8 Summary 199

was identified as the more promising of the two presented approaches because

it strongly optimizes pub-sub systems with respect to their quality measures.

The proposed subscription pruning optimization seamlessly integrates with

the applied filtering and routing algorithms, and can be easily tailored to

a range of optimization parameters. Altogether we introduced optimization

strategies for six different target dimensions. Our pub-sub prototype BoP

currently supports four of these strategies, customizing subscription pruning

to optimize the system either according to the increase in network load or

efficiency, or according to an effective decrease in memory usage. Subscription

pruning is thus flexible enough to be applied to the improvement of different

quality measures for pub-sub systems.

By introducing subscription pruning, we provided the second and final

step in the support of general Boolean subscriptions in content-based pub-

sub systems. To fully integrate the general Boolean pub-sub model (including

advertisements) into these systems, we still need to provide for the handling of

general Boolean advertisements. We take this concluding step in the following

chapter.

200 Chapter 6. Routing Optimizations for Boolean Subscriptions

Chapter 7

Supporting General Boolean

Advertisements

I
n this chapter, we provide the final milestone to support the general

Boolean pub-sub model: we allow for general Boolean advertisements in

content-based pub-sub systems. The advantages of more general (than con-

junctive) advertisements with respect to efficiency and scalability are similar

to those of general Boolean subscriptions. Additionally, general Boolean ad-

vertisements allow publishers to more precisely describe their future event

messages (see Chapter 3 for examples). This higher precision inherently leads

to the forwarding of fewer subscriptions in the network and thus to smaller

subscription routing tables.

To support general Boolean advertisements, BoP needs to solve two tasks

in content-based pub-sub systems. We firstly propose a method to calculate

the overlapping relationships between general Boolean subscriptions and adver-

tisements. Secondly, we introduce advertisement pruning, the first designated

advertisement-based routing optimization for pub-sub systems. Advertisement

pruning is specifically tailored to optimize the applied subscription routing ta-

bles and will eventually allow us to prove Part 2b of our central hypothesis

(page 6).

We structure this chapter as follows: In Section 7.1, we introduce the

semantics and definition of general Boolean advertisements in BoP. These

definitions are fundamental for the algorithm to calculate the overlap between

subscriptions and advertisements, which is presented in Section 7.2. Adver-

tisement pruning, our advertisement-based optimization, is then described in

Section 7.3. Finally, we investigate related work in Section 7.4.

201

202 Chapter 7. Supporting General Boolean Advertisements

7.1 Advertisements: Semantics and Definition

In Section 4.1 (page 96), we provided precise definitions of event messages and

general Boolean subscriptions in BoP. In this section, we expand these descrip-

tions to the remaining concept of advertisements, extending their preliminary

introduction in Section 2.1.1 (page 13).

Advertisements (as subscriptions and event messages) also utilize the no-

tion of event types, as introduced in Section 4.1.1 (page 96). We define general

Boolean advertisements as follows. This definition is similar to that of sub-

scriptions; however, the semantics of advertisements is greatly dissimilar (cf.

Section 4.1.2).

Definition 7.1 (Advertisement) An advertisement a is a tuple specifying

an event type name T n and a Boolean filter expression F, a = (T n,F), with

F being a Boolean combination of predicates using the operators conjunc-

tion, disjunction, and negation. The set of predicates used in F is denoted

by P(F). Each predicate p ∈ P(F) is an attribute-function-operand triple

(i.e., a triple containing an attribute name, a filter function, and an operand):

p = (an, f, op).

Each predicate pi of the Boolean filter expression F of advertisement a has

to specify one of the attribute names (e.g., an
j) that belong to the event type of a

(i.e., an
j ∈ T), a filter function (e.g., fi) that is included in the set of functions

(e.g., a
f
j) specified by this attribute as

j, and an operand being valid as second

variable for this filter function (i.e., fi). That is, given an advertisement

a = (T n,F), it holds:

∀(an
i , fi, opi) ∈ P(F) : ∃as

j ∈ T : an
j = an

i ∧ fi ∈ a
f
j ∧ opi ∈ f

op
i .

This symmetrical definition of subscriptions and advertisements leads to the

advantageous property of the calculation equivalence of the advertisement-

subscription and the subscription-advertisement overlapping relationship (see

Section 2.1.3, page 20). That is, one can apply the same algorithm for both

directions of computation (see Section 7.2). Having defined advertisements in

this way, we refine our notion of conforming event messages as follows (from

Section 2.1.1):

Definition 7.2 (Conforming event message) A message ej = (T n
j ,Aj)

conforms to an advertisement ai = (T n
i ,Fi) if, and only if:

7.2 Calculating the Overlapping Relationship 203

1. Advertisement ai and event ej specify the same event type,that is, T n
i =

T n
j .

2. The Boolean filter expression Fi evaluates to true on event ej. For this

evaluation, each predicate pi = (an
i , fi, opi) with pi ∈ P(Fi) gets assigned

the result of the function fi(a
v
l , opi) with as

l ∈ Aj ∧ an
l = an

i . Then, the

Boolean combination of these results, stated by Fi, is evaluated.

Symmetrically to subscriptions, our Boolean model does not require advertise-

ments to specify predicates for all attribute specifications of its event type. The

semantics in this case is that the publisher of such an advertisement, poten-

tially, sends messages that involve all values for this attribute. This property

also holds if the structure of the filter expression of an advertisement com-

bines predicates in a way that all predicates referring to a particular attribute

specification might evaluate to false in order to lead to a true filter expression.

If several predicates in the filter expression of an advertisement refer to the

same attribute specification, the semantics depends on the Boolean operator

that is used for their combination, for example, the disjunction of two predi-

cates pi and pj describes that for every conforming message ek either pi or pj

(or both) evaluate to true1.

In Section 3.4, we defined a set of example advertisement classes (as well as

particular advertisements) in our online auction application scenario. They are

graphically illustrated in Figures 3.4 to 3.11 by what was introduced as adver-

tisement trees. These tree structures are used for both graphical and internal

representation purposes. They follow the same definition as subscription trees.

We thus refrain from the detailed definition of advertisement trees here but

refer to the respective section (Section 4.1.2, page 100) on subscription trees.

7.2 Calculating the Overlapping Relationship

The first step in supporting general Boolean advertisements regards the cal-

culation of the overlapping relationship. We developed an algorithm for this

purpose, which is presented within this section. Without loss of generality,

we consider the determination of all overlapping subscriptions for a given ad-

vertisement in the following descriptions. The calculation of all overlapping

1Provided there is no other disjunctive part in the filter expression of the advertisement.

204 Chapter 7. Supporting General Boolean Advertisements

advertisements for a subscription works analogously due to their symmetric

definition and internal representation.

In the following subsection (Section 7.2.1), we elaborate on the general

overlap calculation approach. Afterwards, we outline the central concept of

disjoint predicates in Section 7.2.2. This section gradually introduces the de-

termination of disjoint predicates for conjunctive, for disjunctive, and finally

for general Boolean advertisements. In Section 7.2.3, we then describe how to

calculate the overlapping relationships from the computed disjoint predicates.

We conclude in Section 7.2.4 by considering implementation aspects of our

approach.

The computation approach we describe in the following subsections is a

generic solution to the overlapping task, working for both conjunctive and

general Boolean specifications.

7.2.1 General Calculation Approach

Approaches to calculate the overlapping relationships between conjunctive sub-

scriptions and advertisements, for example, sketched in [Müh02], require these

specifications to contain at most one predicate per attribute specification. This

property of subscriptions and advertisements is then exploited in the compu-

tation algorithm: a subscription s overlaps a given advertisement a if, and

only if, there exists no non-overlapping, that is, disjoint, predicate in s with

respect to a [Müh02]. The conjunctive overlapping calculation algorithm thus

counts the number of disjoint predicates per subscription, similar to a conjunc-

tive event filtering approach. We here refer to Section 7.2.2 for details on the

notion of disjoint predicates, in particular in conjunction with general Boolean

subscriptions and advertisements.

Looking at the semantics of general Boolean subscriptions and advertise-

ments, however, reveals the inapplicability of such a calculation approach:

subscriptions and advertisements might contain any number of predicates for

a given attribute specification (see Definition 4.3 on page 98 and Definition 7.1

on page 202). Thus the analogous application of the conjunctive calculation

approach does not work: Subscriptions and advertisements might overlap even

if there exist disjoint predicates between them. That is, the application of con-

junctive overlapping calculation approaches in the general Boolean pub-sub

model leads to incorrect results.

Evidently, instead of basing the calculation of the overlapping relation-

7.2 Calculating the Overlapping Relationship 205

ships between general Boolean subscriptions and advertisements on conjunc-

tive event filtering approaches, a computation algorithm should be similar

to event filtering solutions for general Boolean subscriptions, as proposed in

Chapter 4. We take this approach in this chapter and apply a three-step calcu-

lation algorithm, firstly determining disjoint predicates, secondly calculating

candidate overlapping subscriptions, and thirdly restricting these candidates to

overlapping subscriptions. Before proceeding with describing this approach, we

introduce the notion of disjoint predicates in combination with general Boolean

subscriptions and advertisements.

7.2.2 Disjoint Predicates

We now define our notion of disjoint predicates for a given predicate, that is,

a leaf node of an advertisement tree. This definition is extended to general

advertisements (and subscriptions) later on.

Definition 7.3 (Disjoint predicates of a leaf node) One has been given

a leaf node nl of an advertisement tree of advertisement ai = (T n
i ,Fi) that

contains predicate pi = (an
i , fi, opi). A predicate pj = (an

j , fj , opj) used in a

subscription sj = (T n
j ,Fj) is a disjoint predicate to nl, that is, pj ∈ P l

dis(nl),

if, and only if:

1. predicate pi refers to the same attribute of the same event type as pj, that

is, T n
i = T n

j and an
i = an

j .

2. there exists no attribute value av that leads to a true result if applied to

the filter functions fi and fj of pi and pj, respectively.

That is, it holds that (ad
i specifies the domain of attribute as

i , see Definition 4.1

on page 96):

T n
i = T n

j ∧ an
i = an

j ∧ ∄av ∈ ad
i (fi(a

v, opi) = fj(a
v, opj) = true).

We can compute the set of disjoint predicates for a given predicate based

on the applied one-dimensional predicate indexes. This calculation approach

is applicable to both directions of computation, subscription-advertisement

overlapping and advertisement-subscription overlapping relationships: adver-

tisements need to be indexed in the same way as subscriptions in conjunctive

content-based pub-sub systems [Müh02]. In our Boolean pub-sub approach,

we adopt this method.

206 Chapter 7. Supporting General Boolean Advertisements

AND

Condition = used

OR

AND

Condition = newPrice > 14.0Price > 11.0

Title = ’Harry Potter and the Goblet of Fire’

AND

n3

n6 n7

n9

n8 n1

n4 n5n2

Figure 7.1: Advertisement tree of advertisement a3 with named inner nodes
and leaf nodes.

The calculation of disjoint predicates is based on the filter functions that

are used within the predicates of both subscriptions and advertisements. We

here refer to our work in [BH06a] for examples on this filter function-based

computation approach.

We illustrate our notion of general disjoint predicates in the following ex-

ample:

Example 7.1 (Disjoint predicates of a leaf node) For our example ad-

vertisement a3 (see Figure 7.1), the disjoint predicates of its leaf nodes n1 to

n5 are as follows. To give a simple example, we firstly assume the registration

of subscription s1, that is, S = {s1}:

P l
dis(n1) = ∅ (phrase “Harry Potter and the Goblet of Fire”

contains phrase “Harry Potter”),

P l
dis(n2) = {p3} (“used” condition does not fulfill “new” condition),

P l
dis(n3) = ∅ (prices of more than NZ $11 .00 fulfill prices of less

than NZ $15 .00 and NZ $12 .00),

P l
dis(n4) = {p5} (prices of more than NZ $11 .00 do not fulfill a price

less than NZ $12 .00),

P l
dis(n5) = {p6} (“new” condition does not fulfill “used” condition).

Let us now extend this scenario to the registration of several subscriptions, that

is, S = {s1, s3, s4}2. Subscription s4 has the same specification as subscription

s2 except that predicate p4
1 is defined as Title ∼ “The Chronicles of Narnia”

(instead of Title ∼ “Harry Potter”). The disjoint predicates of advertise-

2We again use the notation pi
j to distinguish predicates in the following, stating predicate

pj of subscription si.

7.2 Calculating the Overlapping Relationship 207

ment a3 are as follows:

P l
dis(n1) = {p4

1}, P l
dis(n2) = {p1

3, p
4
5, p

4
9}, P l

dis(n3) = {p4
11},

P l
dis(n4) = {p1

5, p
4
11}, P l

dis(n5) = {p1
6, p

4
8, p

4
12}.

Based on this notion of disjoint predicates for a given leaf node, we ultimately

extend this concept to general Boolean advertisements. For simplicity we

initially focus on restricted conjunctive and disjunctive advertisements.

Pure Conjunctive Advertisements

Let us consider a pure conjunctive advertisement ac with root node nc. The

set of disjoint predicates of nc, P c
dis(nc), is the union of the sets of disjoint

predicates of each of the child nodes of nc (i.e., predicates of the tree rooted

in nc).

The reason for this definition is that for all event messages conforming to

a conjunctive advertisement ac, the functions that are given in the predicates

of all leaf nodes evaluate to true. Hence each predicate that is disjoint to any

of these predicates evaluates to false on a conforming message. One can thus

combine the disjoint predicates for all k children (n1 to nk) of nc (i.e., for all

predicates of ac in this case) to derive these predicates that evaluate to false:

P c
dis(nc) =

⋃

i=1...k

P l
dis(ni).

Pure Disjunctive Advertisements

Let us now consider a pure disjunctive advertisement ad with root node nd. To

derive the predicates that are disjoint to nd, one could build the intersection

of all disjoint predicates of the children of nd. This approach results in a set of

those predicates that are disjoint to all predicates of the disjunction. However,

predicates that are only disjoint to one or several predicates are neglected in

this calculation.

Instead the disjoint predicates of ad should be expressed by several pred-

icate sets because each disjunctive advertisement ad contains several descrip-

tions of event messages (involving one predicate each). At least one of these

descriptions, that is, predicates, has to evaluate to true for each conforming

message.

208 Chapter 7. Supporting General Boolean Advertisements

This characteristic of disjunctive advertisements contradicts our previous

notion of disjoint predicates as a predicate set. For disjunctions, disjoint pred-

icates should instead be defined as a set of predicate sets. Each of these

predicate sets describes one of the options that are expressed by the disjunc-

tive advertisement. That is, for a disjunctive advertisement ad with root node

nd and k children (n1 to nk), it holds that:

P d
dis(nd) = {P l

dis(ni)|i = 1 . . . k}.

General Boolean Advertisements

A general Boolean advertisement a might contain both disjunctive and con-

junctive operators3, that is, nodes in the advertisement tree. Thus the disjoint

predicates of such an advertisement must also be defined as sets that contain

sets of predicates as elements.

The calculation of these disjoint predicates can be based on the operators

that are represented by the inner nodes n of advertisement trees. In the

following description, we refer to this universal notion of disjoint predicates in

combination with any node n of advertisement trees as Pdis(n). All elements

in set Pdis(n) describe one set of disjoint predicates that is induced by n, that

is, by that subtree of advertisement a that is rooted in n.

For leaf nodes nl of general Boolean advertisements a, the calculation al-

gorithm looks up the utilized predicate indexes as introduced in Section 7.2.2.

It then embeds the computed disjoint predicates in a set to obtain the refined,

universal notion:

Pdis(nl) = {P l
dis(nl)}.

For a conjunctive node nc with k children, n1 to nk, one unites each set of

disjoint predicates of each child of nc with each disjoint predicate set of all

other children:

Pdis(nc) = {
⋃

i=1...k

s|s ∈ Pdis(ni)}.

For a disjunctive node nd with k children, n1 to nk, one unites the computed

3As for subscriptions, negations are pushed down in the direction of leaf nodes.

7.2 Calculating the Overlapping Relationship 209

sets of disjoint predicates of all children of nd:

Pdis(nd) =
⋃

i=1...k

Pdis(ni).

Finally, we define the disjoint predicates of a general Boolean advertisement

a as equivalent to the disjoint predicates of its root node n, that is, Pdis(a) =

Pdis(n). Recursively calculating the disjoint predicates of a, ultimately allows

for the determination of the overlapping subscriptions for a. We describe this

method in the following subsection, following this example:

Example 7.2 (Disjoint predicates of general Boolean advertisements)

Let us again assume the registration of subscription s1 (see Section 3.3, page 79).

The disjoint predicates for the leaf nodes of advertisement a3 (see Figure 7.1)

are straightforwardly derived from our calculations in Example 7.1, page 206:

Pdis(n1) = {P l
dis(n1)} = {∅},

Pdis(n2) = {P l
dis(n2)} = {{p3}},

Pdis(n3) = {P l
dis(n3)} = {∅},

Pdis(n4) = {P l
dis(n4)} = {{p5}},

Pdis(n5) = {P l
dis(n5)} = {{p6}}.

For the conjunctive nodes n6 and n7 of a3, the disjoint predicates are as follows:

Pdis(n6) = {{p3}}, Pdis(n7) = {{p5, p6}}.

And for the disjunctive node n8, we derive the following disjoint predicates:

Pdis(n8) = {{p3}, {p5, p6}}.

Finally, for the conjunctive root node n9, and a3 itself, the disjoint predicates

are the same as for n8 in this example (because it holds Pdis(n1) = {∅}):

Pdis(a3) = Pdis(n9) = Pdis(n8) = {{p3}, {p5, p6}}.

For our extended example scenario with S = {s1, s3, s4}, it holds:

Pdis(n1) = {{p4
1}}, Pdis(n2) = {{p1

3, p
4
5, p

4
9}}, Pdis(n3) = {{p4

11}},
Pdis(n4) = {{p1

5, p
4
11}}, Pdis(n5) = {{p1

6, p
4
8, p

4
12}},

210 Chapter 7. Supporting General Boolean Advertisements

Pdis(n6) = {{p1
3, p

4
5, p

4
9, p

4
11}}, Pdis(n7) = {{p1

5, p
1
6, p

4
8, p

4
11, p

4
12}},

Pdis(n8) = {{p1
3, p

4
5, p

4
9, p

4
11}, {p1

5, p
1
6, p

4
8, p

4
11, p

4
12}},

Pdis(a3) = Pdis(n9) = {{p1
3, p

4
1, p

4
5, p

4
9, p

4
11}, {p1

5, p
1
6, p

4
1, p

4
8, p

4
11, p

4
12}}.

7.2.3 Overlap Based on Disjoint Predicates

Having introduced the notion of disjoint predicates for any general Boolean

advertisement a, we now describe how to determine the overlapping subscrip-

tions based on the calculated disjoint predicates. The approach comprises

three steps. The first of these steps, disjoint predicate matching , involves the

computation of the disjoint predicates Pdis(a) of a.

Candidate Overlapping Subscription Matching

The second step, candidate overlapping subscription matching , determines a

set of candidate subscriptions that potentially overlap the given advertisement

a. This set excludes all those subscriptions that definitely do not overlap a.

We can base the determination of these candidates on the number of disjoint

predicates per subscription s with respect to a, |Pdis(s, a)|, as described in the

following:

For all indexed subscriptions s, the Boolean filtering algorithm determines

the minimal number of fulfilled predicates that is required for a fulfilled sub-

scription, pmin(s). For candidate overlapping subscription matching, this sub-

scription-specific property is related to the number of disjoint predicates of s

with respect to a, |Pdis(s, a)|, and the overall number of predicates of s, |P (s)|.
For each candidate subscription s, it has to hold that:

|P (s)| ≥ |Pdis(s, a)|+ pmin(s). (7.1)

This inequality shows that the subscription tree of s, potentially, evaluates to

true for the given disjoint predicates of a. That is, even if assuming that all

disjoint predicates evaluate to false (which is the case for an event message

conforming to a), subscription s might still match a message that conforms to

the given advertisement.

Previously we defined the disjoint predicates of advertisement a, Pdis(a),

as a set that contains predicate sets: Pdis(a) = {{pi, . . . , pj}, . . . , {pk, . . . , pl}}.

7.2 Calculating the Overlapping Relationship 211

Specifically, value |Pdis(s, a)| is defined as the maximal cardinality of these sets

when only considering predicates p that are included in s = (T n,F), that is,

p ∈ P(F).

Final Overlapping Subscription Matching

Having determined a set of candidate overlapping subscriptions as the sec-

ond step of the algorithm, in the third step— final overlapping subscription

matching—it remains to identify whether these candidates constitute an over-

lapping subscription. Similarly to the event filtering approach, the algorithm

can obtain this information by evaluating the subscription trees of candidates.

For the evaluation of these trees, the system is not required to evaluate

the filter functions of the predicates in leaf nodes. Their assignment is already

known from the previous steps: For a disjoint predicate, the respective leaf

node is assumed to evaluate to false. For all non-disjoint, that is, overlapping,

predicates, the algorithm assumes a value of true. These assumptions are

implied by the facts that (i) disjoint predicates never evaluate to true on event

messages that conform to advertisement a, and (ii) non-disjoint predicates are

potentially fulfilled by messages that conform to a. A candidate subscription

constitutes an overlapping subscription if its subscription tree evaluates to true

for the described assignment of predicates.

Again this general calculation approach has to be customized to our uni-

versal definition of disjoint predicates of advertisements a, Pdis(a), as being

a set of predicate sets. That is, the evaluation of subscription trees needs to

be performed for all elements of the disjoint predicate set Pdis(a) (being sets

of predicates) that distinguish a subscription as a candidate. Hence the sub-

scription tree of subscription s is evaluated for all those elements in Pdis(a)

that lead to a sum of number of disjoint predicates and minimal number of

fulfilled predicates less than or equal to the total number of predicates of s

(see Equation 7.1, page 210).

We illustrate these two latter computation steps of the overlapping calcu-

lation in the following example:

Example 7.3 (Overlap based on disjoint predicates)For advertisement

a3 (see Figure 7.1), we determined the set of disjoint predicates as:

Pdis(a3) = {{p3}, {p5, p6}}.

212 Chapter 7. Supporting General Boolean Advertisements

For subscription s1, it holds that:

|P (s1)| = 6, pmin(s1) = 4.

Thus subscription s1 is a candidate subscription for both elements in Pdis(a3)

because 6 ≥ 1+4 (for set {p3}) and 6 ≥ 2+4 (for set {p5, p6}). Subscription s1,

in fact, is an overlapping subscription because its subscription tree can result

in true if p3, or p5 and p6 evaluate to false (it is sufficient if this is the case

for either one of these predicate sets).

For our extended scenario, we determined the set of disjoint predicates as:

Pdis(a3) = {{p1
3, p

4
1, p

4
5, p

4
9, p

4
11}, {p1

5, p
1
6, p

4
1, p

4
8, p

4
11, p

4
12}}.

With respect to s1, these predicates are the same as the result of our previ-

ous calculation; thus subscription s1 is an overlapping subscription. For the

remaining two subscriptions, it holds:

|P (s3)| = 7, pmin(s3) = 3,

|P (s4)| = 12, pmin(s4) = 5.

Both s3 and s4 are thus candidate subscriptions. It holds 7 ≥ 0 + 3 (none

of the sets in Pdis(a3) contains any predicates of s3), 12 ≥ 4 + 5 (for set

{p1
3, p

4
1, p

4
5, p

4
9, p

4
11}), and 12 ≥ 4 + 5 (for set {p1

5, p
1
6, p

4
1, p

4
8, p

4
11, p

4
12}).

Furthermore, subscription s3 is an overlapping subscription because its sub-

scription tree can result in true, for example, if all of its predicates evaluate

to true. Subscription s4, however, is no overlapping subscription because its

subscription tree results in false if either p4
1, p4

5, p4
9, and p4

11 evaluate to false,

or p4
1, p4

8, p4
11, and p4

12 evaluate to false.

In the following section, we describe the practical implementation of the pre-

sented overlapping calculation approach within our prototype BoP.

7.2.4 Implementation of the Calculation Approach

To support the calculation of overlapping relationships for both directions,

that is, subscription-advertisement and advertisement-subscription overlap,

BoP indexes advertisements in the same way as subscriptions. This approach

aligns with current (conjunctive) calculation proposals, using the same in-

7.2 Calculating the Overlapping Relationship 213

dex structures for conjunctive advertisements as for conjunctive subscriptions

(see [Müh02]). Although in the following descriptions we illustrate the practical

realization in BoP from the subscription-advertisement overlapping perspec-

tive, BoP supports both directions. In Figure 7.2, we illustrate an outline of

the overall algorithm and the involved data structures to allow for a better

overview of the approach.

Disjoined Predicates

To designate predicates as disjoint predicates in BoP, we apply the existing

implementation of a predicate bit vector, which is already used as fulfilled

predicate vector in the filtering process. For all leaf nodes of advertisement

trees, BoP directly utilizes the one-dimensional predicate index structures to

determine the identifiers of disjoint predicates and stores them in individual

predicate bit vectors (one vector per predicate, that is, leaf node, of the adver-

tisement).

The disjoint predicate set of the advertisement itself is represented by an

array of bit vectors (disjoint predicate array of disjoint predicate vectors):

for disjunctive nodes of advertisement trees, BoP unites the arrays of their

children, for example, the disjoint predicate arrays of two leaf nodes (one entry

each) get combined to a disjoint predicate array of size two.

For conjunctive nodes, initially BoP recursively calculates the disjoint

predicate array for the first child (intermediate result). Subsequently, it cal-

culates these arrays for the remaining children and, in each case, performs the

required union operation with the previously determined intermediate result.

This union operation combines each element (i.e., a predicate bit vector) in

the array of the intermediate result with each element in the array of the cur-

rently processed child. Finally, this process leads to the overall result, that is,

the disjoint predicate array, for the conjunctive node. The disjoint predicate

matching step is illustrated in the top part of Figure 7.2.

For pure conjunctive advertisements, we integrated an optimization to this

approach into BoP that only uses one predicate bit vector for the whole cal-

culation. This optimization thus performs the same operations as specialized

conjunctive computation approaches if subscribers and publishers only use re-

stricted conjunctive forms.

214 Chapter 7. Supporting General Boolean Advertisements

id(p) id(p)

..

..

.. id(p) id(p)..

 0 0 0 0 0 1 1

 0 0 0 0 0 1 1

indexes
predicate
One−dimensional

array
predicate
Disjoint

id(p)

{id(s)}

1

2,3

79

70

.. ..

....

 10 11 12..subscription

of disjoint
Number

predicates per

 10 15 12..subscription
predicates per
of fulfilled
Minimal number

 10 15 12..subscription
predicates per
Number of

id(s)

loc(s)

1 70..

..

5

of subscription
Memory address Access subscriptions

Subscription
trees

location
table

Subscription

Total
predicate
count
vector

Minimum
predicate
count
vector

vector
Hit

Final

matching
subscription
overlapping

Candidate

matching
subscription
overlapping

matching
predicate
Disjoint

Candidate

subscriptions
overlapping

Disjoint
predicates

subscription

table
association

Predicate−

Disjoint
predicate

Overlapping
predicate

List of fulfilled
predicates

Accumulation per
subscription

Adding up

Less or equal test

Advertisement

Subscriptions containing
the predicate

subscriptions
Overlapping

Figure 7.2: Overview of disjoint predicate matching, candidate overlapping
subscription matching, and final overlapping subscription matching in the over-
lapping calculation algorithm.

7.2 Calculating the Overlapping Relationship 215

Candidate Overlapping Subscriptions

Having calculated the disjoint predicate array, BoP uses the existing hit vector

implementation to determine the candidate overlapping subscriptions for an

advertisement a: for each bit that is set in one of the disjoint predicate vectors

(each vector represents one element in Pdis(a)), BoP uses the predicate-sub-

scription association table to determine those subscriptions that contain the

respective predicate. For each of these subscriptions, the corresponding entry

in the hit vector is increased. Having performed this counting for all entries in a

disjoint predicate vector, the hit vector states the number of disjoint predicates

per subscription for the processed disjoint predicate vector.

If the sum of minimal number of fulfilled predicates for a subscription s,

stored in the minimum predicate count vector, and the current entry in the

hit vector for s is less than or equal to the total predicate number of s, s is a

candidate overlapping (see Equation 7.1). To allow for an efficient determina-

tion of candidates, BoP stores the total predicate numbers per subscription

in a total predicate count vector . We illustrate this candidate overlapping sub-

scription matching process and the involved data structures in the middle part

of Figure 7.2.

Overlapping Subscriptions

For the determined candidates, it remains to analyze whether they constitute

a real overlap. For this purpose, BoP assigns those values to the leaf nodes of

subscription trees that are described in Section 7.2.3: if a bit in the currently

processed predicate bit vector is set for the predicate in the leaf node, BoP

assigns false to this leaf node. For all other predicates, it assigns a value of

true.

To prevent the multiple evaluation of subscription trees, BoP applies an-

other bit vector, having entries per subscription s, that states whether s was

already identified as a real overlap. If this is the case, further evaluations of

the subscription tree of s are avoided even if s constitutes a candidate for

another disjoint predicate vector in the disjoint predicate array. Additionally,

BoP applies a short-circuiting optimization, similar to the one for the general

Boolean event filtering algorithm. The lower part of Figure 7.2 illustrates this

final overlapping subscription matching process.

216 Chapter 7. Supporting General Boolean Advertisements

Function and Decision Problem

Advertisement-based pub-sub systems can significantly benefit when distin-

guishing the overlapping calculation as either function or decision problem

(see Section 2.1.3, page 20). To solve the function problem, the system needs

to determine all overlapping subscriptions for the given advertisement. For the

decision problem, however, it is sufficient to determine whether at least one

overlapping subscription exists.

BoP includes solutions to both of these problems while the decision prob-

lem is solved as a shortcut to the function problem: as soon as an overlapping

subscription is determined, BoP discontinues the computation process and

returns “yes”. It thus avoids the evaluation of various candidate overlapping

subscriptions in the final overlapping subscription matching process. Con-

junctive algorithms, however, do not benefit to a large extent when solving the

decision problem. They still have to process all disjoint predicates in order to

find out whether a subscription does not contain any one of them. We refer to

Chapter 8 for results of practical experiments showing this behavior.

In practice, content-based pub-sub systems require solutions to both prob-

lems under different circumstances. For example, for the decision whether a

subscription needs to be forwarded to a particular neighbor, it is sufficient

to know whether this neighbor previously forwarded an overlapping adver-

tisement (decision problem). However, if an advertisement is deregistered, the

system needs to determine all overlapping subscriptions to decide whether they

can be removed from event routing tables (function problem).

Thus it is crucial to solve the decision problem efficiently because it is re-

quired when subscriptions are registered. Deregistrations (requiring the func-

tion problem to be solved), on the other hand, might be delayed and fully dis-

tributed in the overall system once the system load is below a certain threshold.

Clients do not recognize these delayed deregistrations because they are merely

postponed internally (potentially leading to internal false positives).

7.3 Advertisement-Based Routing Optimiza-

tion: Advertisement Pruning

Having presented an approach of calculating the overlapping relationships be-

tween general Boolean subscriptions and advertisements, we now propose an

7.3 Advertisement Pruning 217

advertisement-based optimization for pub-sub systems, advertisement prun-

ing [BH06c].

The overall idea of this optimization approach is similar to our subscription-

based optimization. By applying the optimization, that is, by pruning ad-

vertisement trees, the system primarily aims at decreasing the complexity of

advertisements (subscription routing entries), with respect to both the space

complexity for their storage and the time complexity for their processing in the

overlapping calculation. This reduction in memory requirements and increase

in efficiency are the target parameters of advertisement pruning.

However, advertisement pruning classifies as interfering optimization be-

cause of its alteration of subscription routing entries. Due to the pruning of

advertisements, the existing overlapping relationships increase, being the sec-

ondary influence of the optimization. Thus advertisement pruning aims at

only marginally increasing these overlapping properties.

We formulated the optimization goal of advertisement pruning in Part 2b

of our central hypothesis (page 6):

Advertisement pruning increases system efficiency and decreases

routing table size, while only marginally affecting the existing over-

lap.

System efficiency in this hypothesis refers to the efficiency for calculating the

overlap, as described before.

We structure the remainder of this section as follows: In Section 7.3.1,

we relate the goals of advertisement pruning to subscription pruning and ar-

gue why the previously developed ranking measures are inapplicable to the

advertisement-based optimization. Then, in Section 7.3.2 we discover what

parameters influence the existing overlapping relationships in a pub-sub sys-

tem. The incorporation of these parameters into a characteristic measure for

general Boolean advertisements is then the focus of Section 7.3.3. Finally,

Section 7.3.4 develops an applicable ranking measure that is based on the

introduced parameters, and Section 7.3.5 elaborates on practical realization

issues of advertisement pruning.

7.3.1 Using Subscription Pruning Rankings?

One could expect the ranking measures to select the preferable subscription

pruning operation could, at least to a certain extent, be mapped onto the

218 Chapter 7. Supporting General Boolean Advertisements

advertisement pruning problem. However, subscription and advertisement

pruning, in fact, follow different optimization goals; the previously proposed

subscription-based ranking measures are thus not applicable to advertisement

pruning:

In practice, the subscription pruning rankings that lead to the best overall

optimization are based on the accuracy of subscriptions (see Chapter 8). That

is, subscription pruning operations should generalize subscriptions (i.e., event

routing entries) as little as possible to only marginally increase the secondary

optimization parameter, the network load. The accuracy of subscriptions is

modeled by their selectivity, which is estimated on incoming event messages

and existing subscription index structures.

When applying advertisement pruning, the pub-sub system aims at increas-

ing the amount of overlap between subscriptions and advertisements as little

as possible. This property, at a first glance, is independent of incoming event

messages. Nevertheless, the algorithm can partially utilize the existing selec-

tivity information, as shown later on. What is required to effectively prune

advertisements is rather a correlation between registered subscriptions and ad-

vertisements because advertisement pruning operations, ideally, only slightly

alter the existing overlapping relationships, that is, a property between sub-

scriptions and advertisements.

Hence advertisement pruning requires a different ranking approach than

the already developed measures (also the memory and the efficiency-based

measure do not take advertisements into account).

7.3.2 Influences on Overlap

In this section, we identify the factors that affect the overlapping relationships

between subscriptions and advertisements. We then incorporate these factors

into an advertisement-specific characterization property in Section 7.3.3 and

into a ranking measure that estimates the influences of advertisement pruning

in Section 7.3.4.

The proposed algorithm to determine overlapping subscriptions or adver-

tisements utilizes the concept of disjoint predicates for its calculations. The

number of disjoint predicates per subscription4 is then used to compute a set

of candidate overlapping subscriptions. Generally the fewer candidates exist,

4We again consider the subscription-advertisement overlapping direction for our descrip-
tions, as we did in Section 7.2.

7.3 Advertisement Pruning 219

the more efficient the calculation of the overlapping relationships (due to the

need to evaluate the subscription trees of these candidates).

Taking this property into account, an advertisement pruning operation

should increase the number of disjoint predicates. Such an increase, however,

is impossible because each pruning operation removes some predicates of an

advertisement and thus the corresponding disjoint predicates. Pruning opera-

tions need to aim at removing as few disjoint predicates as possible to, in turn,

enlarge the number of candidates as little as possible (Influence 1).

However, if merely considering the number of overlapping candidates, prun-

ing might still strongly increase the existing overlapping relationships. In the

worst case, before an advertisement pruning operation, none of the identified

candidates constitutes an overlap, but afterwards all candidates do overlap.

Therefore, a ranking measure also needs to consider what predicates, and thus

what disjoint predicates, are removed due to pruning (Influence 2).

Ideally the removed disjoint predicates do not influence whether a subscrip-

tion and an advertisement overlap, that is, the remaining disjoint predicates

should still disqualify subscriptions and advertisements from overlap. Thus

advertisement pruning operations must not remove those predicates from ad-

vertisements that lead to disjoint predicates which prevent a non-overlapping

subscription from becoming an overlapping one. Making rational assumptions

about the usage of predicates, pub-sub systems can partially base pruning de-

cisions on the selectivity of predicates. We elaborate on this proposal in the

next subsection and present an advertisement-specific characterization prop-

erty that, as described later on, helps the system to reach pruning decisions.

7.3.3 Characterizing a Boolean Advertisement

As a preliminary step to developing a ranking measure, we quantify an over-

lapping characteristic for advertisements. Eventually, with the help of this

characteristic we can estimate the effects of pruning operations in a ranking

measure. This measure allows for the determination of the preferable among

all possible advertisement pruning options.

The overlapping characteristic combines the number of disjoint predicates

of an advertisement—referred to as quantitative overlapping characteristic in

the following—with the influence of these predicates on the number of over-

lapping relationships—the qualitative overlapping characteristic. That is, the

proposed characteristic incorporates both of the previously identified influ-

220 Chapter 7. Supporting General Boolean Advertisements

ences of pruning. The overlapping characteristic for an advertisement a is

successively calculated by the system based on the advertisement tree of a.

Leaf Nodes

For leaf nodes nl of advertisement trees, the quantitative overlapping charac-

teristic includes (i) the number of predicates that are disjoint to the predicate

that is stored in nl, and (ii) the number of subscriptions that specify these

disjoint predicates.

To allow for an efficiently computable qualitative overlapping character-

istic, let us make the following assumptions about the usage of predicates

in subscriptions: generally, predicates of subscriptions have highly dissimilar

selectivities. For example, predicates on attribute Title or Author show a

high selectivity value, that is, they are quite restrictive, whereas predicates

on attribute Condition or a low price have a low selectivity, that is, they are

relatively general. In practice, there is the tendency that highly selective pred-

icates strongly determine whether a subscription tree might be fulfilled (with

respect to both matching messages and overlapping advertisements), compared

to general predicates. Thus the more selective a predicate in subscriptions, the

more important its state of fulfillment.

Putting together these observations with the importance of disjoint pred-

icates when evaluating overlapping candidates, pub-sub systems should aim

to remove general disjoint predicates rather than highly selective ones. The

qualitative overlapping characteristic should thus incorporate the selectivity

of disjoint predicates: the higher the selectivity of a disjoint predicate p, the

higher the corresponding qualitative overlapping characteristic for p. The obvi-

ous reason is that highly selective predicates (in subscriptions) are potentially

disjoint to a large number of predicates (in advertisements), whereas general

predicates (in subscriptions) are potentially disjoint to a small number of pred-

icates (in advertisements). Thus it is advantageous if pruning operations result

in the removal of general disjoint predicates (in subscriptions) because they are

likely to only marginally increase the existing overlapping relationships.

We define the overlapping characteristic ovl(nl) of a leaf node nl of an

advertisement as follows. It always holds 0 ≤ ovl(nl) ≤ 1:

ovl(nl) =
1

|predSubAssoc|
∑

pi∈P l
dis

(nl)

predSubAssoc(pi)
√

|msgf (pi)|+ 1
.

7.3 Advertisement Pruning 221

We also give the pseudo code for an algorithmic realization of this calculation

approach in Algorithm 55.

Algorithm 5: Overlapping characteristic estimation ovl≈(n)
for leaf nodes
Input: A leaf node n

Output: The estimation (ovlmin(n), ovlavg(n), ovlmax (n))
EstimateOverlapping(n)
(1) arrDisj ← DisjointPredicates(n)
(2) est ← 0.0
(3) foreach p in arrDisj
(4) add ← PredSubAssoc(p)
(5) add ← add ÷ Sqrt(MatchingMessages(p) + 1)
(6) est ← est + add
(7) est ← est ÷ TotalPredSubAssoc()
(8) return (est, est, est)

The expression in the right multiplication factor of ovl(nl) sums up the

overlapping characteristics of all disjoint predicates p of leaf node nl (deter-

mined in Line 1 of the algorithm using the function DisjointPredicates()).

The elements in the sum contain a quantitative part predSubAssoc(p) (function

PredSubAssoc(p), Line 4), describing the number of predicate-subscription

associations of a disjoint predicate p, that is, how many subscriptions contain

predicate p.

The qualitative part is given by the denominator, representing the selec-

tivity of p. The number of messages that fulfill the predicate (referred to as

|msgf(p)| in the equation and function MatchingMessages(p) in Line 5 of

Algorithm 5) is known from the selectivity estimation for subscriptions. The

influence of the qualitative part is lessened by using the square root of the

number of matching messages. Taking this approach of weighting quantitative

and qualitative overlapping characteristic has led to good results in empirical

studies.

The left coefficient of ovl(nl) ensures that the overlapping characteristic

is always between 0 and 1. Value |predSubAssoc| describes the total num-

ber of predicate-subscription associations (function TotalPredSubAssoc(),

Line 7). The case ovl(nl) = 1 occurs if a leaf node nl has all registered predi-

cates (from subscriptions) as disjoint predicates with a selectivity of zero each.

5We provide this pseudo code for reasons of completeness. We also give the pseudo code
for other, non-leaf nodes of advertisement trees.

222 Chapter 7. Supporting General Boolean Advertisements

This definition of an overlapping characteristic assigns high values to leaf

nodes (including predicates) that show a large number of disjoint predicates.

These disjoint predicates are weighted according to their selectivity, that is,

their importance in disqualifying a candidate subscription from being an over-

lapping subscription.

For the Boolean operators in advertisement trees, the algorithm estimates

the overlapping characteristic. This estimation ovl≈(n) for nodes n contains

three values, the minimal possible overlapping characteristic, the average over-

lapping characteristic, and the maximal possible overlapping characteristic:

ovl≈(n) = (ovlmin(n), ovlavg(n), ovlmax (n)).

For a leaf node nl, these three estimations have the same value, the overlapping

characteristic ovl(nl) as defined previously:

ovlmin(nl) = ovlavg(nl) = ovlmax (nl) = ovl(nl).

Before considering nodes of advertisements other than leaves, we describe the

calculation of the overlapping characteristic for these leaves in the following:

Example 7.4 (Overlapping characteristic for leaf nodes)Let us consid-

er the only registration of example advertisement a3 (see Figure 7.1) and ex-

ample subscription s1 (see Section 3.3). It holds |predSubAssoc| = 6, as well

as predSubAssoc(pi) = 1 for i = 1 . . . 6. Additionally, we assume the following

values for the number of matchings for some predicates of s1:

|msgf(p3)| = 500, |msgf (p5)| = 1, 500, |msgf(p6)| = 2, 000.

For the five leaf nodes n1 to n5 of a3 then:

ovl(n1) =
1

6
× 0 = 0,

ovl(n2) =
1

6
× (

1√
500 + 1

) ≈ 0.00745,

ovl(n3) =
1

6
× 0 = 0,

ovl(n4) =
1

6
× (

1√
1, 500 + 1

) ≈ 0.00430,

ovl(n5) =
1

6
× (

1√
2, 000 + 1

) ≈ 0.00373.

These results show that nodes n1 and n3 have the least significance in deter-

7.3 Advertisement Pruning 223

mining candidate subscriptions and their state of overlap, that is, n1 and n3 do

not have any disjoint predicates in this example. This is followed by node n5

and n4. The most significant indicator for candidate subscriptions and their

overlapping properties is node n2. These results align with our assumptions

about predicates: The higher the selectivities of disjoint predicates, the more

important they are for restricting the overlapping relationships. In this case,

the disjoint predicate of node n2 (predicate p3) is the most selective one.

Conjunctive Nodes

For conjunctive nodes nc, the algorithm takes an estimation approach for the

overlapping characteristic calculation. We decided to proceed in this way due

to the lack of efficiently-computable information about the relationships among

disjoint predicates. The estimation approach, more importantly, allows for a

time- and space-efficient calculation of the required overlapping characteristic.

For conjunctive nodes, both concepts of the overlapping characteristic, the

qualitative and the quantitative part, are included in the computation process.

We give the pseudo code for the computation in Algorithm 6. The al-

gorithm walks through all children of a conjunctive input node (Line 4 in

Algorithm 6), recursively estimates the overlapping characteristics for these

children (Line 5), and finally combines these results with the previously known,

intermediate estimation (Lines 6 to 8).

The minimal possible overlapping characteristic ovlmin(nc) occurs if all dis-

joint predicates are shared among the children of the conjunctive node nc.

It is thus the maximal value of the overlapping characteristic of all children

(Line 6).

The average overlapping characteristic ovlavg(nc) approximates a mean

value for the characteristic estimations of the children. It describes the ex-

pected mean if assuming independent child nodes and an equiprobable distri-

bution of disjoint predicates among these children (Line 7).

Finally, the maximal possible overlapping characteristic ovlmax (nc) occurs

if the disjoint predicates of child nodes exclude each other. It is thus, at most,

the sum of the characteristic estimations of all children (Line 8) but further

restricted to not increase over 1 (Line 9).

We illustrate the calculation of the overlapping rank for conjunctive nodes

in the following example:

224 Chapter 7. Supporting General Boolean Advertisements

Algorithm 6: Overlapping characteristic estimation ovl≈(n)
for conjunctive nodes
Input: A conjunctive node n

Output: The estimation (ovlmin(n), ovlavg(n), ovlmax (n))
EstimateOverlapping(n)
(1) min ← 0.0
(2) avg ← 0.0
(3) max ← 0.0
(4) foreach c in n.children
(5) e ← EstimateOverlapping(c)
(6) min ← Max(min, e.min)
(7) avg ← avg + e.avg − (avg × e.avg)
(8) max ← max + e.max
(9) if max > 1.0
(10) max ← 1.0
(11) return (min, avg, max)

Example 7.5 (Overlapping characteristic for conjunctive nodes) Let

us assume the setting that is given in Example 7.4 (page 222). The calculation

of the overlapping characteristic for the two conjunctive nodes n6 and n7 of

advertisement a3 is as follows:

ovlmin(n6) = max(0.00745, 0) = 0.00745,

ovlavg(n6) = 0.00745 + 0− (0.00745× 0) = 0.00745,

ovlmax (n6) = min(1.0, 0.00745 + 0) = 0.00745,

ovlmin(n7) = max(0.00430, 0.00373) = 0.00430,

ovlavg(n7) = 0.00430 + 0.00373− (0.00430× 0.00373) ≈ 0.00801,

ovlmax (n7) = min(1.0, 0.00430 + 0.00373) = 0.00803.

Disjunctive Nodes

For the second kind of inner node of advertisement trees, disjunctions nd, our

algorithm also applies an estimation approach to determine the overlapping

characteristic. This characteristic again contains a qualitative and a quantita-

tive part, and is based on a combination of the overlapping characteristics of

the children of nd. The pseudo code of the algorithm to derive the overlapping

characteristic ovl≈(nd) is given in Algorithm 7.

The minimal possible characteristic ovlmin(nd) is described by the charac-

teristic estimation of that child node of disjunction nd that has the smallest

7.3 Advertisement Pruning 225

overlapping characteristic (Line 6 in Algorithm 7). This definition is grounded

in the fact that, under all circumstances, this value of the overlapping char-

acteristic does hold, independently of what part (that is, child node) of the

disjunctive node leads to the overlap.

Similar to conjunctive nodes, the average overlapping characteristic of dis-

junction nd, ovlavg(nd), considers child nodes independently of each other and

assumes an equiprobable distribution of disjoint predicates among its children

(Line 7).

The maximal overlapping characteristic ovlmax (nd) describes the situation

that all child nodes of the disjunction are fulfilled for conforming messages and

that their disjoint predicates exclude each other (Line 8).

Algorithm 7: Overlapping characteristic estimation ovl≈(n)
for disjunctive nodes
Input: A disjunctive node n

Output: The estimation (ovlmin(n), ovlavg(n), ovlmax (n))
EstimateOverlapping(n)
(1) min ← 1.0
(2) avg ← 0.0
(3) max ← 0.0
(4) foreach c in n.children
(5) e ← EstimateOverlapping(c)
(6) min ← Min(min, e.min)
(7) avg ← avg + e.avg − (avg × e.avg)
(8) max ← max + e.max
(9) if max > 1.0
(10) max ← 1.0
(11) return (min, avg, max)

We show the calculation of the overlapping characteristic for disjunctive

nodes in the following:

Example 7.6 (Overlapping characteristic for disjunctive nodes) Let

us again assume the setting that is given in Example 7.4 and 7.5. The calcula-

tion of the overlapping characteristic for the disjunctive node n8 of advertise-

ment a3 is as follows:

ovlmin(n8) = min(0.00745, 0.00430) = 0.00430,

ovlavg(n8) = 0.00745 + 0.00801− (0.00745× 0.00801) ≈ 0.0154,

ovlmax (n8) = min(1.0, 0.00745 + 0.00803) = 0.01548.

226 Chapter 7. Supporting General Boolean Advertisements

This result finally leads to the overlapping characteristic for the root node n9

of a3:

ovlmin(n9) = max(0.00430, 0) = 0.00430,

ovlavg(n9) = 0.0154 + 0− (0.0154× 0) = 0.0154,

ovlmax (n9) = min(1.0, 0.01548 + 0) = 0.01548.

Using the previous definitions, we finally define the overlapping characteristic

of an advertisement a based on the root node n of its advertisement tree, that

is, ovl≈(a) = ovl≈(n).

Having this means to quantify a characteristic measure for advertisements,

which represents their state of overlap, a pub-sub system can determine the

effect of advertisement pruning operations, as shown in the following subsec-

tion.

7.3.4 Estimating the Influences of Pruning Operations

As with subscription pruning, an important question is: Given a set of regis-

tered advertisements, what is the order of advertisement pruning operations

to perform? That is, the system firstly needs to determine the preferred prun-

ing operation for each advertisement. Secondly, it needs a means to compare

pruning operations of different advertisements to each other.

As identified in Section 7.3.1, advertisement pruning should minimally af-

fect the number of overlapping subscriptions for the pruned advertisement.

Because the presented overlapping characteristic estimates a measure for this

relationship, a pruning operation should minimally change, that is, decrease,

the value of the overlapping characteristic for the respective advertisement.

To describe the influence of pruning, we should apply a proportional mea-

sure. This approach helps to weight an absolute change in the overlapping

characteristic higher for a small existing characteristic value than for a large

one. That is, if there is only a small number of disjoint predicates for a given

advertisement, the influence of removing some of them on the existing overlap-

ping relationships is higher than for removing the same number of predicates

from an overall large number of disjoint predicates6.

6For simplicity, we ignored the qualitative part of the characteristic in this statement.

7.3 Advertisement Pruning 227

We refer to our measure of the influence of a pruning of an advertisement

ai to aj (based on the overlapping characteristic) as overlapping characteristic

degradation, ∆≈
ovl (ai, aj). This degradation is defined as follows:

∆≈
ovl (ai, aj) = max(

ovlmin(ai)− ovlmin(aj)

ovlmin(ai)
,

ovlavg(ai)− ovlavg(aj)

ovlavg(ai)
,

ovlmax (ai)− ovlmax (aj)

ovlmax (ai)
).

This definition weights the change in the overlapping characteristic propor-

tionally to the existing characteristic value before performing any pruning,

that is, advertisement ai refers to the originally registered advertisement. Pro-

ceeding in this way allows for the incorporation of the overall effects of adver-

tisement pruning even if several pruning operations on the same advertisement

are performed in a row.

The final step for the algorithm is to relate all possible pruning operations

to each other in order to determine an order of pruning. We elaborate on

this issue as well as further implementation-related pruning questions in the

following subsection. Firstly, however, we give an example of calculating the

overlapping characteristic degradation:

Example 7.7 (Calculation of overlapping characteristic degradation)

We again assume the setting that is given in Examples 7.4 to 7.6. In the fol-

lowing descriptions, we use two indices for the nodes n
j
i of advertisement trees,

describing node ni of advertisement aj.

The original advertisement a3 with root node n3
9 leads to the following es-

timated overlapping characteristic (see Example 7.6):

ovl≈(a3) = (0.0043, 0.0154, 0.01548).

Let us assume the removal of node n3
1 of a3, leading to a3a. The root node of a3a

is n3a
8 , describing the same subtree as in a3. It thus holds ovl≈(a3a) = ovl≈(n3a

8)

but also ovl≈(n3a
8) = ovl≈(n3

9) (see Example 7.6). This leads to:

∆≈
ovl (a3, a3a) = max(0, 0, 0) = 0.

228 Chapter 7. Supporting General Boolean Advertisements

Removing node n3
4, which results in a3b, leads to the following:

ovl≈(a3b) = ovl≈(n3b
8) = ovl≈(n3b

9) = (0.00373, 0.0112, 0.0112).

This results in an overlapping characteristic degradation ∆≈
ovl (a3, a3b) of:

∆≈
ovl (a3, a3b) = max(0.133, 0.273, 0.276) = 0.276.

Another pruning option, the removal of n3
2 that is resulting in a3c, leads to this

estimation:

ovl≈(a3c) = ovl≈(n3c
8) = ovl≈(n3c

9) = (0.0043, 0.00801, 0.00803).

The overlapping characteristic degradation ∆≈
ovl (a3, a3c) is then:

∆≈
ovl (a3, a3c) = max(0, 0.48, 0.481) = 0.481.

Hence, if only assuming these three pruning options, the pruning of n3
1 does

not have any influence on the overlapping relationships. This is followed by

the pruning of n3
4 and n3

2.

7.3.5 Practical Advertisement Pruning

Due to the connection between subscription and advertisement pruning, most

implementation considerations of the subscription-based optimization can be

simultaneously applied to the advertisement-based option. However, the ap-

plication of advertisement pruning might lead to different consequences than

subscription pruning.

Advertisement Pruning Variants

In Chapter 6 we identified three realization variants of pruning optimizations:

post-pruning, pre-pruning, and combined pruning (see Section 6.5, page 188).

All of these options are applicable to advertisement pruning as well, leading

to similar practical implications. These consequences are amended by the

purpose of advertisements, acting as subscription routing entries. However, the

general idea of the three realization variants remains: for post-pruning, brokers

individually optimize advertisements whenever a neighbor broker forwards an

advertisement. Pre-pruning, on the other hand, prunes advertisements before

7.3 Advertisement Pruning 229

forwarding them to neighbor brokers. Finally, the hybrid, combined pruning,

potentially prunes advertisements before and after forwarding them.

An effect of advertisement pruning is to alter, that is, to increase, the

existing overlapping relationships between subscriptions and advertisements.

Because advertisements determine the forwarding of subscriptions, this alter-

ation, potentially, increases the number of forwarded subscriptions, and thus

the number of event routing tables entries and the event routing table size.

These additionally forwarded subscriptions are thus false positives with re-

spect to subscription routing.

When using pre-pruning, advertisements are always forwarded in a pruned

way. Hence all subscription routing decisions of non-local brokers are based

on broadened advertisements, potentially creating false positives. For post-

pruning, however, only those subscription routing decisions that are based on

pruned advertisements show this property. Subscriptions that are routed based

on unpruned advertisements, on the other hand, do not create false positives.

Combined pruning, again, unites the implications of both variants.

Advertisement Pruning Structures

Advertisement pruning uses the selectivity information about predicates in its

overlapping characteristic measure. This information can be found in the se-

lectivity table, required for subscription pruning. When applying bulk pruning

to advertisements, our prototype BoP applies a degradation queue to allow

for the efficient determination of the preferred order among possible pruning

operations. Changes in the overlapping characteristic measure can be resolved

by using the three strategies that were presented in Section 6.6.2.

Deregistrations

Deregistrations of advertisements when applying pruning are supported in the

same way as in the un-optimized setting. Due to the reduction of the complex-

ity of advertisements when pruning and the resulting release of index struc-

tures (see Section 6.6.3), the removal process from the applied advertisement

and predicate indexes works even more efficiently compared to un-optimized

routing.

The deregistration of an advertisement, potentially, results in the removal

of non-local subscriptions. The application of advertisement pruning does not

influence this process. If pruning led to the introduction of false positives,

230 Chapter 7. Supporting General Boolean Advertisements

these false positives are removed if the pruned advertisement is deregistered

(provided the respective subscription does not overlap another advertisement

from the same neighbor as well). False negatives, on the other hand, are never

introduced when pruning advertisements.

7.4 Related Work

After having presented how we support general Boolean advertisements in

BoP, we now relate our algorithms to existing work. In Section 7.4.1, we

investigate general advertisement-based approaches of other pub-sub systems.

Section 7.4.2 then specifically covers related advertisement-based optimiza-

tions.

7.4.1 Advertisement-based Approaches

The application of advertisements is proposed in conjunction with some con-

tent-based pub-sub systems. All of these systems only support conjunctive

subscriptions. Advertisements are also defined as conjunctions, or they only

specify the message type that is sent by the publisher later on. An exam-

ple of this type-based approach is Hermes [Pie04]. Content-based pub-sub

systems supporting conjunctive advertisements include A-mediAS [Hin03],

Padres [LHJ05], Rebeca [Müh02], Siena [CRW99, CRW01], and the pro-

posal in [Hei05].

The algorithms to compute the overlapping relationship, if given at all, are

dedicated to the restricted conjunctive forms of advertisements and subscrip-

tions, for example, as described in [Müh02]. These given algorithms cannot

be applied to more general subscriptions and advertisements than conjunctive

ones, as we argued in detail in Section 7.2.1.

To only base advertisements upon the published event type is clearly less

expressive than allowing publishers to further restrict their potentially sent

messages by either general Boolean or conjunctive combinations of predicates.

Therefore, the mechanisms offered by Hermes [Pie04] do not minimize the

number of forwarded subscriptions (and thus the load in brokers) to the same

extent as more expressive types of advertisements. However, the overlapping

relationship is more efficiently calculated in this case.

The differences between supporting conjunctive and general Boolean ex-

pressions, that is, the influences of the required canonical conversion, were

7.4 Related Work 231

outlined in detail in Section 2.6 (page 58). With respect to memory require-

ments, we can directly apply our characterization framework from Chapter 5

because advertisements need to be indexed in the same way as subscriptions

do [Müh02]. With respect to the time efficiency properties of the calculation

of overlapping relationships, we present results of an empirical evaluation in

Chapter 8.

7.4.2 Advertisement-based Optimizations

We are not aware of any advertisement-tailored optimizations in the existing

literature on content-based pub-sub systems. Instead, subscription-based op-

timizations are applied to advertisements as well. We here refer to Section 2.5

(page 47) for details about these approaches. These solutions share the same

drawbacks and have the same assumptions as their subscription-based origi-

nals.

Imperfect merging does not make such strong assumptions (see our de-

scription in Section 2.5.3) and may have a higher optimization potential than

perfect merging [WQV+04]. The work in [LHJ05] presents an approach to

improve imperfect merging for subscriptions by incorporating knowledge from

advertisements. However, there are no existing approaches that are tailored

to optimize advertisements.

As a continuation of our discussion in Section 2.5, these facts describe

the general problem of existing optimizations for advertisements: they are

either employed independently of their area of use, that is, optimizations do

not exploit whether they are applied to subscriptions or advertisements; or

the optimizations were specifically developed for subscriptions and cannot be

successfully applied to advertisements.

As a result, meaningful evaluations of advertisement optimizations can

hardly be found in the existing literature. Siena [CRW01] supports subscrip-

tion and advertisement covering in its routing protocols. However, this work

does not answer the question of the influence of advertisement covering on any

system parameter. The same holds for Hermes [Pie04] where the approach

only supports little expressive type-based advertisements.

Some other analyses of pub-sub systems consider the existence of advertise-

ments and evaluate the influence of optimizations based on subscriptions on the

routing load: Rebeca [Müh02] only analyzes the application of subscription

covering and subscription merging in combination with advertisement forward-

232 Chapter 7. Supporting General Boolean Advertisements

ing. The Padres project [LHJ05], presenting a novel computation approach

for covering and merging, also does not consider the optimization of adver-

tisements in its evaluation. We close this gap within this dissertation with an

evaluation in the following chapter that directly investigates the influence of

advertisement pruning.

7.5 Summary

This chapter provided the final milestone to fully support the general Boolean

pub-sub model. We presented how to integrate general Boolean advertisements

into BoP and how to solve the problems that arise.

We firstly described our approach to calculate the overlapping relationships

between general Boolean subscriptions and advertisements. Similarly to the

filtering algorithm, this overlapping calculation takes a three-step computa-

tion approach. The proposed algorithm is also applicable to pure conjunctive

systems and solves the overlapping task in this case without any overhead

compared to specialized conjunctive solutions.

The second part of this chapter focused on advertisement-based routing

optimizations. Our proposal, advertisement pruning, is the first advertisement-

based optimization that is specifically tailored to optimize these specifications

of publishers. It extends our subscription-based optimization and directly aims

at maintaining the existing overlapping relationships in the system. Taking this

approach keeps the accuracy of subscription routing tables, if this is possible.

Having presented solutions to various tasks in content-based pub-sub sys-

tems, we present the results of an extensive empirical evaluation of the imple-

mentation of our algorithms within BoP in the following chapter.

Chapter 8

Experimental Evaluation

A
fter having introduced several algorithms to support the general

Boolean pub-sub model, we present the results of an empirical evalu-

ation of BoP in this chapter. The overall goal of this analysis is to show the

usefulness and applicability of our proposals for scenarios that involve general

Boolean subscriptions or advertisements.

In this chapter we focus on the evaluation of BoP as a distributed system;

an analysis of filtering in its central broker components was already undertaken

in Chapter 5. We briefly summarize the results as follows: our Boolean filtering

approach (Chapter 4) allows for a more efficient filtering of general Boolean

subscriptions than a general-purpose conjunctive solution in combination with

the required canonical conversion. Additionally, our filtering solution is more

space-efficient than the conjunctive algorithm, even if subscriptions contain

only one disjunction.

Relating these results to our central hypothesis (Section 1.3, page 6), in

Chapter 5 we proved Part 1 of this hypothesis. We now take the remaining

steps to validate the second part of our hypothesis by successively evaluating

our solutions for distributed pub-sub systems.

The structure of this chapter is as follows: In Section 8.1, we specify the

general testbed for the subsequently presented analyses and describe the mea-

sured parameters. Section 8.2 starts the evaluation of our experimental study

by comparing an un-optimized Boolean version of BoP to a conjunctive ap-

proach. Our subscription-based optimization, subscription pruning, is initially

analyzed in Section 8.3. In Section 8.4 we then investigate the behavior of

subscription pruning under varying degrees of cover, and correlate pruning to

the covering optimization. Section 8.5 shifts the viewpoint to advertisements,

233

234 Chapter 8. Experimental Evaluation

and analyzes and compares our approach to calculate the overlapping rela-

tionships between subscriptions and advertisements. Finally, in Section 8.6,

we investigate our advertisement-based optimization, advertisement pruning.

8.1 General Experimental Setup

We again use the online auction scenario, as introduced in Chapter 3, within

the experimental analysis in this chapter. The setup for this scenario extends

the setup for our evaluation of central broker components in Section 5.7.1

(page 142). The results are obtained by using the following parameters:

Aprop = 5, pA
mult = 0.1, and pT

mult = 0.01 (see Section 3.2.2, page 76). We

variably assign parameter Bprop in the following experiments within a range

from Bprop = 0.01 to Bprop = 100; the default assignment is Bprop = 100 if not

stated otherwise. These different parameter settings result in varying degrees

of cover among subscriptions.

Detailed specifications of the realization of attribute domains in our experi-

mental prototype BoP are given in Appendix B.1 (page 321). The exact ranges

of operands in subscriptions and advertisements are given in Appendix B.2

(page 322) and Appendix B.3 (page 323), respectively.

For all experiments in this chapter, we use a combined test setting that

involves subscriptions of all three subscription classes (see Section 3.3, page 79)

and advertisements of all eight advertisement classes (see Section 3.4, page 84).

This scenario represents an average workload that combines the characteristics

of our example subscription and advertisement classes.

8.1.1 System and Network

Within most of our experiments we analyze a true system setting instead of a

simulated one. This limits the scale of the network we can evaluate but, more

importantly, has various advantages (see below). In most of the experiments

we restrict the network size to five broker components, using the machine

configuration described in Section 5.7.1 (see page 142, e.g., 512 MB of RAM

and 2 GHz processor). In the experiments for this network scale, we run

exactly one broker on each of the physical test machines, connected by a 10

Mbps network. We then undertake selected experiments where we scale the

size of the broker network. For this case, we host up to 100 brokers on one

physical machine.

8.1 General Experimental Setup 235

The main advantage of analyzing a true system setting is that we can

evaluate the real costs of the pub-sub system, for example, its overall efficiency

properties, while taking into account various real-world influences, for example,

the actual memory requirements of algorithms and their cache behavior. A

simulated setting, on the other hand, does not allow for the measurement of

these real costs; we thus do not consider such costs in our simulation. In the

simulation, we evaluate general parameters, for example, the sizes of routing

tables and the created network load.

In a true system analysis there exist restrictions on the size of the evaluated

distributed system. To analyze the influence of the network scale on our algo-

rithms, we run experiments on larger networks in Section 8.3. Furthermore, to

validate the generality of the results, we show the behavior of our algorithms

for the two most extreme network topologies (line topology and star topology)

with a growing network scale.

According to the identified quality measures (see Section 2.2, page 23),

the event delivery task is not included into the efficiency analysis. Thus the

workload in our experiments is independent from the actual subscribers, but

rather dependent on the number and characteristics of registered subscriptions.

The local brokers of registered subscriptions are uniformly distributed among

the overall pub-sub system within our experiments.

8.1.2 Measures and Characteristic Parameters

We analyze the parameters network load, efficiency, and memory requirements

using different measures. In this section, we define the applied measures and

describe our methodology to derive them. Table 8.1 contains a compact sum-

mary of all of these measures.

As well, we introduce characteristic parameters that are used to quantify

important attributes of evaluated scenarios in this section. Table 8.2 presents

them in a compact form.

Network Load Measure

The proportional network load , N , is given by the number of non-local broker

components that filter one event message on average, proportional to the over-

all number of non-local brokers in the network1. We explicitly only consider

1We only use acyclic topologies, see Section 2.1.2 (page 17).

236 Chapter 8. Experimental Evaluation

Table 8.1: Overview of our measures for network load, efficiency, and memory
requirements in experiments.

Symbol Measure name Range

N Proportional network load 0 ≤ N ≤ 1

E Absolute Filter efficiency (in milliseconds) E > 0

Eprop Proportional filter efficiency Eprop > 0

Efct Efficiency of solving the overlapping Efct > 0
function problem (in milliseconds)

Edec Efficiency of solving the overlapping Edec > 0
decision problem (in milliseconds)

M Proportional reduction in 0 ≤M < 1
memory requirements (subscriptions)

Mabs Absolute memory requirements per Mabs > 0
non-local routing entry (in byte)

Madv Proportional reduction in 0 ≤Madv < 1
memory requirements (advertisements)

non-local brokers in this measure, because event messages are filtered by their

local broker under all circumstances.

Measure N always lies between 0 and 1. The value N = 0 means that event

messages are not forwarded by their local brokers, that is, local brokers filter

out all messages. N = 1 means that each message is filtered by all brokers,

that is, event messages are flooded within the whole system.

Using the number of non-local brokers as a basis for the network load

measure directly describes the created network load and its potential increase

due to pruning: in the analyzed acyclic networks, every forwarding of message

e delivers e to a new broker. For example, if N increases from N = 0.1 to

N = 0.2, that is, a factor of two, the number of non-local brokers that filter a

message has doubled. Therefore, the internal network load has doubled.

Ideally the network load N does not increase in the course of pruning. The

value of N in an un-optimized system scenario depends on the setting, includ-

ing network topology and size, and registered subscriptions. Our measure N

does not consider the distribution of the actual network load. This distribu-

tion depends on the patterns of subscribers and publishers, and the utilized

network topology. In our evaluation we assume a uniform distribution of pub-

8.1 General Experimental Setup 237

Table 8.2: Overview of the characteristic parameters in experiments.

Symbol Characteristic parameter Range

pruprop Proportional pruning 0 ≤M < 1

covprop Covering proportion 0 ≤ covprop < 1

ovlprop Overlapping proportion 0 ≤ ovlprop ≤ 1

candprop Candidate proportion candprop ≥ 0

|B| Number of brokers 5 ≤ |B| ≤ 100

|s| Registered subscriptions 100, 000 ≤ |s| ≤ 500, 000

lishers and subscribers (see Section 8.1.1), and analyze the overall network

load N for two extreme topologies.

Efficiency Measures

For filter efficiency in the distributed system2 we define two measures, an

absolute measure and a proportional measure. For overlapping efficiency we

define two absolute measures, one for the overlapping function problem and

one for the overlapping efficiency problem.

Absolute Filter Efficiency. We give the absolute filter efficiency of the

distributed system, E, as the average time that is required to process one

event message. This processing includes event filtering and event routing.

Small values of E are preferable, that is, the smaller E the more efficient the

system. E is derived by publishing large numbers of event messages (always

more than 100,000 messages), leading to stable averages; the local brokers of

these messages are uniformly distributed over the pub-sub network.

Our experimental methodology is as follows: at the starting point of the

measurements, event messages are published (one after the other) at their

respective local brokers. The exact starting point is when the first message

is filtered by a broker. As argued before, we do not model publishers in our

experiments. Messages are put into an incoming message queue by a separate

process on each machine that hosts a broker (one could consider this process as

2Note that we consider the overall distributed system now and not only its central broker
components, as we did in Chapter 5.

238 Chapter 8. Experimental Evaluation

the publisher)3. Brokers extract messages from this queue, filter them, possibly

forward them, and execute notifications. These notifications do not notify

subscribers. The event delivery task is explicitly excluded from the analysis

(see Section 8.1.1); each notification merely updates statistical information on

the broker side.

The end point of a measurement is reached if all brokers have processed all

messages in their incoming message queues (including the messages forwarded

by neighbor brokers). Dividing the difference in system time between this end

point and the start point by the overall number of processed messages (i.e.,

the number of messages originally put into the queues) leads to E, describing

the average amount of time units per message.

Proportional Filter Efficiency. When scaling the network and hosting

several brokers on a physical machine, we apply the proportional filter efficiency

measure, Eprop . This measure gives an approximation of the filter efficiency

for larger networks. We use Eprop when analyzing event routing optimizations;

Eprop is given proportional to the un-optimized filter efficiency.

For example, Eprop = 0.5 describes that messages are filtered in half of the

original time (advantageous system behavior). A value of Eprop = 2.0 describes

that the filtering process takes double the original time (disadvantageous sys-

tem behavior). Our methodology to derive the actual filtering times is the

same as we described for the absolute filter efficiency measure E.

Using a proportional measure allows us to abstract from the fact that sev-

eral brokers are hosted on one machine and the implied degrading effect on

total filtering time. However, one should keep in mind that individual physical

brokers might lead to different results than the sharing of physical machines

by several brokers (highly loaded brokers might get scheduled more process-

ing time). Measure Eprop , however, gives an indication of the expected filter

efficiency.

Overlapping Efficiency Measures. Our measures for the efficiency of an

overlapping calculation algorithm are given by the average time to solve the

overlapping function problem, the overlapping function problem efficiency Efct ,

and the average time to solve the overlapping decision problem, the overlapping

decision problem efficiency Edec . These averages are determined by consider-

3As long as this process is active, both this process and the broker process share a physical
machine.

8.1 General Experimental Setup 239

ing large numbers of registered subscriptions (always more than 100,000) and

advertisements (always more than 15,000), leading to stable results.

Our methodology to determine Efct and Edec is to register all subscriptions

with the system, measure the system time, solve the overlapping function

or decision problem for all given advertisements by applying the respective

algorithm, and measure the system time again. The required time span is

divided by the total number of advertisements to derive the average value.

Memory Requirements Measures

In the distributed system setting we are interested in deriving statements about

the sizes of routing tables. To quantify these sizes for event routing tables, we

apply a proportional and an absolute measure. For subscription routing tables,

we only require a proportional measure.

Reduction in Event Routing Table Size. When evaluating subscrip-

tion pruning, the memory requirements measure, M (proportional reduction

in event routing table size), describes the reduction in event routing table

size4.

The main influence on the event routing table size when pruning is the

number of predicates5 that are indexed by the system, that is, the num-

ber of predicate-subscription associations. They determine the size of both

predicate-subscription association table and subscription trees. Both of these

structures are altered when pruning subscriptions. The sizes of the applied

one-dimensional predicate indexes also depend on the predicate numbers but

are additionally determined by predicate commonality.

Our measure M expresses the change in these predicate-subscription asso-

ciations. Subscription pruning merely alters non-local routing table entries; M

only includes predicates from non-local routing entries, that is, M describes

the proportion of non-local predicate-subscription associations that is removed

from the system. M = 0 holds in an un-optimized system. Generally, the

higher M , the more memory is freed. For example, a value of M = 0.4 means

that 40 percent of the original non-local predicate-subscription associations

are removed (due to pruning). A value of M = 1 can never be reached in

4We specifically decided to apply this high-level measure in our experiments: the analysis
of central brokers components in Section 5.5 (page 132) already investigated the real memory
requirements for indexing subscriptions in a Boolean (and a conjunctive) approach.

5We do not refer to unique predicates here.

240 Chapter 8. Experimental Evaluation

practice because each subscription has to retain at least one of its predicates

(i.e., M < 1).

Size of One Event Routing Table Entry. Measure M does not lead to

comparable statements about the event routing table sizes when comparing

Boolean and conjunctive systems. The reason for this mismatch is that both

system approaches show different initial routing table sizes, that is, the basis

of measure M is different.

To derive comparable results, we can easily apply our characterization

framework from Chapter 5 to identify the real routing table size for both

Boolean and conjunctive algorithms. This approach leads to a refined mea-

sure, Mabs , stating the average absolute size of one non-local routing entry

(i.e., one original subscription that is registered at another broker). This size

is calculated by combining practically measured parameters (the reduction in

predicates) and findings of our subscription characterization framework (see

Section 5.1, page 120), which were shown to hold in practice.

We also apply this absolute measure Mabs in combination with subscription

covering in conjunctive systems. In this case, those subscriptions that are

removed from event routing tables due to covering are included in the average

notion of Mabs with their actual size of zero. For example, if half of the non-

local routing entries are removed from the system by subscription covering

(assuming they represent average entries), Mabs is reduced to half of its original

value.

Reduction in Subscription Routing Table Size. To evaluate the effect of

advertisement pruning, we apply a similar high-level measure for subscription

routing tables as defined for event routing tables. The memory requirements

measure, Madv (proportional reduction in subscription routing table size), ex-

presses the proportional change in predicate-advertisement associations. The

difference to measure M is that Madv considers the registered advertisements

(which can be pruned) instead of the registered subscriptions.

As for subscriptions, our characterization framework from Chapter 5 can be

used to describe the absolute memory requirements for advertisements. This

framework thus allows us to determine whether a conjunctive or a Boolean

solution is generally more space-efficient for given advertisements.

8.1 General Experimental Setup 241

Characteristic Parameters

We require the definition of some characteristic parameters (see Table 8.2 for

an overview) to quantify intrinsic attributes of an analyzed test setting, for

example, the cover among subscriptions, or the overlap between subscriptions

and advertisements.

Proportional Pruning. In some of the experiments, we investigate the be-

havior of the previously described measures when performing varying num-

bers of pruning operations. We use the proportional characteristic parameter

pruprop (proportional pruning) for the number of executed pruning operations.

It is always true that 0.0 ≤ pruprop ≤ 1.0. For example, pruprop = 0.0 describes

the un-optimized situation without any pruning, pruprop = 0.4 means that 40

percent of all possible pruning operations are performed, and pruprop = 1.0

indicates that all possible pruning is executed.

We say that further pruning is impossible if each remaining pruning option

removes a complete subscription. These potential pruning operations (i.e.,

the pruning of the root nodes of subscriptions) were identified as invalid (see

Section 6.3, page 155).

Covering Proportion. When comparing subscription pruning to covering,

one requires a characteristic parameter that quantifies the amount of cover

among subscriptions. For this purpose, we define the covering proportion,

covprop , as the number of removed subscriptions due to applying covering di-

vided by the original number of non-local subscriptions within the pub-sub

system. Covering is applied for conjunctive subscriptions—the covering pro-

portion thus takes into account converted (i.e., conjunctive) subscriptions.

Generally the larger covprop , the more covering relationships exist in the

system; it always holds that 0.0 ≤ covprop < 1.0. For example, let us assume

that there are 100,000 non-local event routing entries (i.e., subscriptions) in the

system without applying covering. When optimizing by subscription covering,

the number of non-local routing entries is reduced by 40,000 entries to 60,000

subscriptions. The covering proportion cov prop = 40,000
100,000

= 0.4.

Large values of cov prop generally occur for highly similar subscriptions,

small attribute domain sizes, or few predicates per subscription. Our applica-

tion-scenario analysis in Chapter 3 did not lead to a typical value for covprop in

the auctioning scenario (we directly derived typical event loads and indirectly

242 Chapter 8. Experimental Evaluation

applied our results to subscriptions and advertisements).

In our experiments, we create subscriptions with different covering propor-

tions by varying parameter Bprop . This changes, for example, the domain sizes

of the attributes Author and Title.

Overlapping Proportion. To quantify the overlap between subscriptions

and advertisements, we define the overlapping proportion, ovlprop , as a char-

acteristic parameter for the number of subscriptions (proportional to all reg-

istered ones) that overlap an advertisement on average. The overlapping pro-

portion is calculated as the average for a large number of advertisements in

our experiments (at least 15,000 advertisements).

For example, if 100,000 subscriptions are registered, a value of ovlprop = 0.2

means that, on average, 20,000 subscriptions overlap every given advertise-

ment. It always holds that 0.0 ≤ ovlprop ≤ 1.0.

The overlapping proportion in a given setting is generally determined by

the structure of the registered advertisements and subscriptions. The pruning

of subscriptions or advertisements might thus change ovlprop .

Candidate Proportion. To better understand the behavior of the two over-

lapping efficiency measures (Efct and Edec) when pruning, we need to consider

the number of candidates that is evaluated by the system. For this purpose,

we define the candidate proportion, candprop , as a characteristic parameter for

the number of candidates in the Boolean overlapping calculation algorithm.

The candidate proportion is defined as the number of candidates that is

evaluated to solve the overlapping function problem after some pruning oper-

ations, in proportion to the number of candidates in the un-optimized (i.e.,

unpruned) setting. Parameter candprop is always derived by considering at

least 50,000 advertisements in the experiments.

For example, if the unpruned setting evaluates 10,000 candidate subscrip-

tions per advertisement on average and after some pruning 15,000 candidate

subscriptions need to be evaluated, it holds that candprop = 15,000
10,000

= 1.5.

As a rule of thumb, an increased number of candidate evaluations, that is,

candprop > 1.0, leads to a decreasing overlapping efficiency for the function

problem. Note that candprop ≥ 0.0.

Number of Brokers. The overall number of brokers in the pub-sub network

is given by |B|. We vary the number of brokers between |B| = 5 and |B| = 100.

8.2 Un-optimized Distributed Filtering 243

Note that the network load measure N is given proportional to |B|. Thus N

does not directly depend on the number of brokers |B|.

Number of Registered Subscriptions. In accordance with our subscrip-

tion characterization framework in Chapter 5, we refer to the number of sub-

scriptions that is registered with a pub-sub system by |s|.

8.2 Un-optimized Distributed Filtering

In this section we comparatively analyze the filtering processes in un-optimized

system settings (un-optimized with respect to routing, i.e., we do not apply any

routing optimizations). These experiments extend the comparative evaluation

of our general Boolean algorithm and the counting algorithm. For the counting

approach, we compiled a conjunctive version of BoP, which removes the slight

overhead of the Boolean filtering approach for conjunctive subscriptions and

applies comparable data structures for both solutions. The conjunctive version

thus utilizes the plain counting algorithm. As an extension to the setting in

Section 5.7.2, the general Boolean algorithm can apply the filtering shortcut

optimization in the distributed system.

8.2.1 Filtering in the Distributed Setting

This subsection presents the results of a comparison of the general Boolean

filtering algorithm and the counting algorithm in a distributed setting. We

expect that the evaluation results for the filtering in individual broker compo-

nents (as presented in Section 5.7) similarly hold in a distributed setting.

We restrain the pub-sub network to contain five brokers in this set of ex-

periments, that is, |B| = 5. We evaluate a line network topology and our

results are depicted in Figure 8.1. On the abscissae, we show the number of

registered subscriptions |s| up to |s| = 500, 000. We intentionally chose this

maximal number of registered subscriptions to result in index structures that

still fit into main memory for the conjunctive counting algorithm. We refer

to our work in [BH05b] for results that show the breakdown of the counting

approach for larger subscription numbers.

The ordinate shows E, the average filtering time per incoming event mes-

sage in milliseconds. The results are derived from the combined setting, con-

taining subscriptions of all three subscription classes. We evaluate five predi-

244 Chapter 8. Experimental Evaluation

0

10

20

30

40

50

60

70

80

500,000400,000300,000200,000100,000

A
bs

ol
ut

e
fil

te
r

ef
fic

ie
nc

y E

Number of original subscriptions |s|

Bool (u)
Conj (u)
Bool (z)
Conj (z)
Bool (n)
Conj (n)
Bool (rz)
Conj (rz)
Bool (rn)
Conj (rn)

Figure 8.1: Comparison of the filter efficiency E of an un-optimized con-
junctive system and an un-optimized Boolean system using a line topology.
Predicate distributions are given in brackets.

cate distributions: uniform distribution (u), normal distribution (n), Zipf dis-

tribution (z), reversed normal distribution (rn), and reversed Zipf distribution

(rz).

The trend for filter efficiency in the distributed setting is similar to their

development in central broker components (see Figure 5.5). However, the

change in the gradient of the curves is not as significant as in the centralized

setting: the effect of distributing event messages within the system accounts

for a significant proportion of overall filtering time. The processing required

for this task is relatively high compared to the difference of calculating in main

memory or in processor cache. Hence the effect of the processor cache in the

distributed setting is not as influential as in the centralized setting.

For 500,000 registered subscriptions, the un-optimized Boolean system is

between 14 and 17 percent more efficient than the un-optimized conjunctive

system for the five tested distributions (compared to approximately 27 percent

improvement in the centralized system).

The reason for this difference is that in the distributed system various

messages are filtered out in their local broker. These messages do not match

any subscriptions within the overall system. Other messages, however, are

forwarded and thus evaluated in different brokers. These forwarded messages

are relatively “expensive” to evaluate in the general Boolean approach, that

is, they lead to a large number of candidate subscriptions. Hence, in the

un-optimized distributed system, forwarded event messages do not represent

average messages but messages that are “expensive” to evaluate. This property

8.2 Un-optimized Distributed Filtering 245

increases the overall filtering time in the general Boolean system compared to

the conjunctive version.

Nevertheless, the advantages of a general Boolean system approach are still

apparent, as can be seen in Figure 8.1.

8.2.2 Influence of the Filtering Shortcut

We generally expect that the reduction in candidate subscriptions due to the

shortcut optimization improves overall filter efficiency. In particular, the more

subscriptions are registered, the higher the expected performance increase com-

pared to the un-optimized Boolean approach.

We here show the results for the combined setting, involving all three sub-

scription classes and using the line topology of five brokers. We again analyze

five predicate distributions. The results are depicted in Figure 8.2 with an

increasing number of registered subscriptions |s| on the abscissa and filter ef-

ficiency E on the ordinate.

The results show the changing gradient for both the un-optimized (“Bool”)

and the optimized (“Short”) version of BoP. As expected, the influence of

applying the filtering shortcut increases with the number of registered sub-

scriptions, for example, for a uniform predicate distribution, the filtering time

per event message E decreases by approximately 10 milliseconds with 500,000

registered subscriptions. Having registered half this number of subscriptions,

the difference is approximately 5 milliseconds only.

The reason for this property is clearly the number of candidate subscrip-

tions that do not need to be evaluated when applying the filtering shortcut:

the more registered subscriptions, the more candidates exist for a matching

message on average. The filtering time decreases significantly if various candi-

date evaluations are avoided. Therefore, a growing subscription base leads to

a greater performance increase when applying the filtering shortcut.

8.2.3 Summary

In this section we comparatively analyzed the un-optimized Boolean filter-

ing algorithm and the un-optimized conjunctive counting algorithm in a dis-

tributed setting. The results show that, compared to each other, both algo-

rithms lead to similar results as in the centralized setting (see Section 5.7).

Although in a distributed setting the advantage of a general Boolean filtering

246 Chapter 8. Experimental Evaluation

0

10

20

30

40

50

60

70

80

500,000400,000300,000200,000100,000

A
bs

ol
ut

e
fil

te
r

ef
fic

ie
nc

y E

Number of original subscriptions |s|

Bool (u)
Short (u)
Bool (z)
Short (z)
Bool (n)
Short (n)
Bool (rz)
Short (rz)
Bool (rn)
Short (rn)

Figure 8.2: Influence of the filtering shortcut on filter efficiency E in a Bool-
ean system using the line topology. Predicate distributions are given in brack-
ets.

algorithm with respect to filter efficiency is less than in a centralized setting,

the benefit of a general Boolean approach could still clearly be seen.

Relating these findings to the central hypothesis of this dissertation (Sec-

tion 1.3, page 6), in this section we have been able to show that an un-optimized

distributed Boolean pub-sub approach leads to higher filter efficiency than

an un-optimized distributed conjunctive pub-sub approach. Furthermore, the

memory requirements of a Boolean approach are less than the memory require-

ments of a conjunctive approach (according to our findings in Chapter 5). The

first part of our hypothesis can thus be transferred to distributed systems.

The second part of this section showed the advantageous influence of the

proposed filtering shortcut optimization on the Boolean filtering algorithm.

The potential of this optimization increases with a growing number of regis-

tered subscriptions.

8.3 General Evaluation of Subscription Prun-

ing

In this section, we analyze the general influence of the subscription pruning

routing optimization (see Chapter 6) on a distributed pub-sub system. In par-

ticular, we investigate the effect of subscription pruning on filter efficiency E,

event routing table size M , and (internal) network load N . In Section 8.3.1 we

evaluate subscription pruning for general Boolean subscriptions. Section 8.3.2

considers a conjunctive setting, that is, subscriptions are converted canonically.

8.3 General Evaluation of Subscription Pruning 247

Finally, we show the system behavior in the course of subscription pruning

when scaling the network size for two extreme topologies in Section 8.3.3. In

Section 8.4 we then show the applicability of subscription pruning for different

degrees of cover among subscriptions.

8.3.1 Subscription Pruning for Boolean Subscriptions

For this evaluation we use the combined setting that contains subscriptions of

all three subscription classes. We show results for a line topology with five

broker components, that is, |B| = 5. The effect of subscription pruning is

largely independent of the chosen network topology and size, as we show in

Section 8.3.3. For the experiments in this section, we register 200,000 subscrip-

tions (|s| = 200, 000) with BoP; other subscription numbers lead to similar

results (as described in Section 8.3.2).

Brokers are set up to perform post-pruning in these experiments. Our

methodology is to analyze the system, perform some pruning operations in

each broker, and analyze the system again. This cycle ends when all possible

pruning operations are performed in all brokers. That is, any possible pruning

operation in any broker would remove a complete subscription. Adopting this

methodology allows us to analyze the system for varying numbers of pruning

operations.

Sections 6.4.2 to 6.4.5 introduced four variants to rank pruning operations.

We evaluate them subsequently; then we compare these variants to investigate

whether they fulfill their individual design goals.

Accuracy-based Pruning

We expect accuracy-based pruning to reduce the memory requirements for

event routing tables while only marginally affecting the network load in the

system. The pruning of subscriptions generally reduces their complexity. Due

to the expected marginal effect of accuracy-based pruning on the network load,

the system efficiency should increase in the course of pruning.

In Figure 8.3 we show the influence of accuracy-based pruning on system

efficiency, network load, and memory requirements. We show all three of these

measures in the figure by directly mapping the reduction in routing table size

M (abscissa) onto filter efficiency E (left ordinate) and internal network load

N (right ordinate).

248 Chapter 8. Experimental Evaluation

0

5

10

15

20

25

30

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0

0.2

0.4

0.6

0.8

1.0

A
bs

ol
ut

e
fil

te
r

ef
fic

ie
nc

y E

P
ro

po
rt

io
na

l n
et

w
or

k
lo

ad

N

Reduction in memory requirements M

Network (u)
Efficiency (u)
Network (z)
Efficiency (z)
Network (n)
Efficiency (n)
Network (rz)
Efficiency (rz)
Network (rn)
Efficiency (rn)

Figure 8.3: Influence of pruning on filter efficiency E (left ordinate) and
network load N (right ordinate) using the accuracy-based pruning variant.
Predicate distributions are given in brackets.

Accuracy-based pruning shows a relatively stable behavior over the five

tested predicate distribution. The resulting graphs are similar for all distri-

butions. Overall, the filter efficiency E is improved from approximately 15

milliseconds per message to 7 milliseconds. That is, the system throughput

approximately doubles due to pruning. This result clearly meets our expecta-

tion of accuracy-based pruning to improve system efficiency by reducing the

complexity of routing entries.

An analysis of the curves in Figure 8.3 shows that filter efficiency E in-

creases up to a certain point on the abscissa, that is, until a certain reduction

in routing table size M is reached. After that E starts to degrade (increasing

filtering times). We refer to this point of changing system behavior as the

cut-off point .

One can directly relate this cut-off point to the (increasing) network load

N in the system (right ordinate): at the cut-off point, there is a sharp bend

in the curves representing the network load N , that is, the number of false

positives increases significantly. These false positives are caused by the pruning

operations, considerably decreasing the accuracy of pruned subscriptions.

For the accuracy-based variant, the cut-off point occurs after having per-

formed a relatively large number of pruning operations. The routing table size

is reduced by approximately 66 percent (M ≈ 0.66). At the same time, the

system throughput more than doubled. This behavior aligns with our expec-

tation that the accuracy-based optimization variant selects pruning operations

based on their influence on subscription accuracy.

8.3 General Evaluation of Subscription Pruning 249

0

5

10

15

20

25

30

35

40

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0

0.2

0.4

0.6

0.8

1.0
A

bs
ol

ut
e

fil
te

r
ef

fic
ie

nc
y E

P
ro

po
rt

io
na

l n
et

w
or

k
lo

ad

N

Reduction in memory requirements M

Network (u)
Efficiency (u)
Network (z)
Efficiency (z)
Network (n)
Efficiency (n)
Network (rz)
Efficiency (rz)
Network (rn)
Efficiency (rn)

Figure 8.4: Influence of pruning on filter efficiency E (left ordinate) and
network load N (right ordinate) using the efficiency-based pruning variant.
Predicate distributions are given in brackets.

After the cut-off point, the network load finally reaches its maximal value

of N ≈ 1, that is, each message is forwarded to each broker. At the same

time, the system efficiency degrades strongly because of the filtering overhead

for false positives. Hence the effect of filtering more messages outweighs the

effect of filtering based on less complex routing entries. Before the cut-off

point, however, the influence of these effects is reversed (as we expected for

accuracy-based pruning).

Efficiency-based Pruning

Efficiency-based pruning was designed with the goal of increasing the system

performance. The developed measure for efficiency improvement is based on

the minimal number of fulfilled predicates pmin(s), and approximates the effect

of pruning on system efficiency.

We expect efficiency-based pruning to increase system efficiency E. How-

ever, the network load is not considered by efficiency-based pruning. If the

pruning operations increase the number of false positives significantly, the

overall system efficiency might degrade due to the overhead of filtering these

false positives.

The results for efficiency-based pruning are illustrated in Figure 8.4. We

use the same mapping of parameters in this figure as before. Up to the cut-

off point, there is a steady increase in filter efficiency E: the filtering times

decrease from approximately 15 milliseconds per event message (in the un-

optimized setting) to 10 milliseconds (at the cut-off point). This result meets

250 Chapter 8. Experimental Evaluation

0

10

20

30

40

50

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0

0.2

0.4

0.6

0.8

1.0

A
bs

ol
ut

e
fil

te
r

ef
fic

ie
nc

y E

P
ro

po
rt

io
na

l n
et

w
or

k
lo

ad

N

Reduction in memory requirements M

Network (u)
Efficiency (u)
Network (z)
Efficiency (z)
Network (n)
Efficiency (n)
Network (rz)
Efficiency (rz)
Network (rn)
Efficiency (rn)

Figure 8.5: Influence of pruning on filter efficiency E (left ordinate) and net-
work load N (right ordinate) using the memory-based pruning variant. Pred-
icate distributions are given in brackets.

our general expectation for efficiency-based pruning.

However, a further decrease in filtering times is counteracted by the strong

increase in false positives at the cut-off point. This point already occurs

when performing a relatively small number of pruning operations (compared to

accuracy-based pruning): approximately 34 percent of the original predicate-

subscription associations are removed from the system at this point (M ≈ 0.34

on the abscissa). Although this early cut-off point does not fully meet our ex-

pectations for efficiency-based pruning, the increase in system efficiency for

this pruning variant occurs faster than in any other pruning variant.

As in accuracy-based pruning, the increase in false positives at the cut-

off point causes degrading filter efficiency. Although the overall performance

increases again when pruning beyond this point, BoP does not reach its orig-

inal event throughput again. The behavior at the cut-off point for different

distributions varies slightly, but after all pruning operations the results for all

distributions are on a par with each other.

Memory-based Pruning

The target parameter for memory-based subscription pruning is the memory

requirements for event routing tables. We thus expect this pruning variant to

lead to a stronger reduction in memory requirements than the other pruning

variants (see page 252). With respect to network load and system efficiency,

memory-based subscription pruning does not consider the effect of pruning

operations on false positives. The network load thus might sharply increase at

8.3 General Evaluation of Subscription Pruning 251

0

2

4

6

8

10

12

14

16

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0

0.2

0.4

0.6

0.8

1.0
A

bs
ol

ut
e

fil
te

r
ef

fic
ie

nc
y E

P
ro

po
rt

io
na

l n
et

w
or

k
lo

ad

N

Reduction in memory requirements M

Network (u)
Efficiency (u)
Network (z)
Efficiency (z)
Network (n)
Efficiency (n)
Network (rz)
Efficiency (rz)
Network (rn)
Efficiency (rn)

Figure 8.6: Influence of pruning on filter efficiency E (left ordinate) and net-
work load N (right ordinate) using the accuracy and occurrence-based pruning
variant. Predicate distributions are given in brackets.

some point during pruning, in turn degrading system efficiency.

Figure 8.5 shows the behavior of memory-based subscription pruning. The

cut-off point appears after having reduced the routing table size by only 7

percent (M ≈ 0.07 on the abscissa). This effect was expected and is due to

not taking into account the accuracy of pruned subscriptions. At a reduction

of memory requirements by 20 percent (M ≈ 0.2), nearly all messages are

forwarded to all brokers in the network (N ≈ 1, right ordinate). This alter-

ation of the internal network load N strongly affects system efficiency E (left

ordinate), degrading sharply at the cut-off point (M ≈ 0.07).

However, the system performance again improves when further pruning

operations are executed because the maximal possible number of false posi-

tives is reached shortly after the cut-off point. Nevertheless, the un-optimized

throughput is not reached again. The order of pruning operations does not

have a strong influence anymore once the system is nearly flooded with mes-

sages: each pruning operation reduces the complexity of routing table entries

and thus simplifies the evaluation process for event routing tables, leading to

an improving filter efficiency E from M ≈ 0.15 onwards.

The effects of memory-based pruning are also largely independent of the

predicate distributions of subscriptions, as shown in Figure 8.5.

Accuracy and Occurrence-based Pruning

The three previously analyzed pruning variants show a similar overall effect on

the system: up to an individual cut-off point, the filter efficiency E increases.

252 Chapter 8. Experimental Evaluation

At the cut-off point, the network load N increases sharply, which leads to a

degradation in efficiency E. After the cut-off point, the filter performance

improves again but never recovers completely.

For accuracy and occurrence-based pruning, however, we expect a differ-

ent behavior. The cut-off point should only be minor compared to the other

measures because of the approach of this pruning variant of increasing the

similarity among subscription trees. Hence, the network load N , when per-

forming various pruning operations, should not increase as strongly as in the

other variants, in turn reducing its effect on filter efficiency E.

Figure 8.6 shows the system behavior when using accuracy and occurrence-

based pruning. There is no major cut-off point in Figure 8.6. We see only a

slight increase in network load N for non-uniform predicate distributions at a

point where the routing table size is decreased by approximately 75 percent

(M ≈ 0.75 on the abscissa). However, the average proportion of non-local

brokers per message N only increases from N ≈ 0.08 to N ≈ 0.17, which, as

expected, is marginal in comparison to the previous pruning variants. (For

the analyzed network size, this is an increase from approximately 0.4 non-local

brokers per message to approximately 0.85 non-local brokers per message.)

Due to this minor cut-off point for accuracy and predicate occurrence prun-

ing, the system performance does not degrade as significantly as in the other

pruning variants after performing all possible pruning operations. The average

time per event message improves from E ≈ 15 milliseconds in the un-optimized

setting through E ≈ 7 milliseconds as the optimum to E ≈ 9 milliseconds

after executing all pruning operations (averages for different predicate distri-

butions).

The accuracy and occurrence variant thus fulfills its design goal of reducing

the number of false positives in comparison to pure accuracy-based pruning.

This reduction directly affects the system performance. It does not degrade

too much when performing all possible pruning operations.

Again, the results are independent of the predicate distribution in subscrip-

tions.

Routing Table Size

Figure 8.7 compares the influence of the four pruning variants on the routing

table size M . We directly plotted the measure for the number of performed

pruning operations, pruprop , on the abscissa in this figure. Averages of our re-

8.3 General Evaluation of Subscription Pruning 253

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R
ed

uc
tio

n
in

 m
em

or
y M

Proportional pruning pruprop

Accuracy
Memory
Efficiency
Occurrence

Figure 8.7: Influence of pruning on memory usage M using different pruning
variants.

sults for all five of the analyzed predicate distributions are used (the individual

results are relatively similar).

We expect the memory-based pruning variant to lead to the fastest reduc-

tion in memory requirements. That is, by performing a particular number

of pruning operations, memory-based pruning should relinquish more memory

resources than the other pruning variants. The maximal reduction in memory

requirements, however, might be similar for all variants because comparable

parts of subscription trees remain after pruning.

Figure 8.7 reveals that our expectations are fulfilled: Memory-based prun-

ing reduces the routing table size faster than the other pruning variants. Up

to approximately 70 percent of all pruning (pruprop ≈ 0.7 on the abscissa), a

comparable number of pruning operations leads to the highest value of M on

the ordinate for memory-based pruning. However, after executing all pruning

operations the overall reduction of all four pruning variants is comparable: the

routing table size is reduced to approximately 16 percent of its original size

(i.e., M ≈ 0.84 on the ordinate).

Network Load

Our expectation with respect to network load N is that accuracy-based, and

accuracy and occurrence-based pruning increase the load less than the other

two variants. By this statement, we mean that the cut-off points of the two

accuracy variants occur after having performed more pruning operations than

in the other pruning variants.

254 Chapter 8. Experimental Evaluation

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P
ro

po
rt

io
na

l n
et

w
or

k
lo

ad

N

Proportional pruning pruprop

Accuracy
Memory
Efficiency
Occurrence

Figure 8.8: Influence of pruning on network load N using different pruning
variants.

Figure 8.8 shows a direct comparison of the influence of all four pruning

variants on the network load N . The proportional number of pruning opera-

tions pruprop is plotted on the abscissa and the proportional network load N is

plotted on the ordinate. Again, the averages of all five predicate distributions

are used as the basis for the figure.

Figure 8.8 illustrates the different cut-off points for the different pruning

variants. Memory-based pruning does not consider false positives at all: the

cut-off point (here in terms of proportional pruning) occurs after approximately

5 percent of all pruning operations (pruprop ≈ 0.05 on the abscissa). The

memory-based pruning variant is followed by the efficiency-based variant; its

cut-off point is situated at approximately 50 percent of all pruning operations

(pruprop ≈ 0.5). For purely accuracy-based pruning, the cut-off point occurs at

pruprop ≈ 0.75 (abscissa). Accuracy and occurrence-based pruning only shows

an insignificant cut-off point at pruprop ≈ 0.85 because the applied pruning

selection variant creates subscriptions that describe similar interests, which

prevents a strong increase in false positives.

Hence, our expectations with respect to the increase in network load hold

for the two accuracy-based pruning variants.

Filter Efficiency

With respect to filter efficiency, we expect efficiency-based pruning to lead to

the fastest improvement in filter efficiency E. However, both accuracy-based

variants might result in the best absolute efficiency optimization effect because

of the negligence of the increase in network load in efficiency-based pruning.

8.3 General Evaluation of Subscription Pruning 255

0

5

10

15

20

25

30

35

40

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
bs

ol
ut

e
fil

te
r

ef
fic

ie
nc

y E

Proportional pruning pruprop

Accuracy
Memory
Efficiency
Occurrence

Figure 8.9: Influence of pruning on filter efficiency E using different pruning
variants.

Figure 8.9 shows the influence of the four pruning variants on filter effi-

ciency E. The graph is again based on the proportional number of pruning

operations pruprop on the abscissa, which is mapped onto the average filter-

ing time per event message E on the ordinate. Average results for the five

analyzed predicate distributions are used to obtain the curves.

Fulfilling our expectations, the overall best improvement in filtering time

is achieved by the two accuracy-based pruning variants: the system requires

approximately 47 percent of the original filtering time per message; the event

throughout increases from approximately 67 messages per second to 143 mes-

sages per second (improvement from E ≈ 15 ms to E ≈ 7 ms).

Although the efficiency-based pruning variant does not result in the best

overall filtering performance, it leads to the fastest efficiency improvement by

executing the least number of pruning operations (abscissa). This behavior

meets our expectations and holds for up to approximately 30 percent of all

pruning operations (pruprop ≈ 0.3). When pruning further, the two accuracy-

based variants become more efficient because of the influence of false positives

on overall efficiency. Accuracy and occurrence-based pruning can perform all

pruning operations without strongly degrading system performance.

8.3.2 Subscription Pruning for Conjunctive Subscrip-

tions

Subscription pruning was developed to optimize general Boolean subscriptions.

Due to the focus of subscription pruning on this general subscription class, we

256 Chapter 8. Experimental Evaluation

0

2

4

6

8

10

12

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

A
bs

ol
ut

e
fil

te
r

ef
fic

ie
nc

y E

P
ro

po
rt

io
na

l n
et

w
or

k
lo

ad

N

Reduction in memory requirements M

Network (u)
Efficiency (u)
Network (z)
Efficiency (z)
Network (n)
Efficiency (n)
Network (rz)
Efficiency (rz)
Network (rn)
Efficiency (rn)

Figure 8.10: Influence of the accuracy and occurrence-based pruning variant
on filter efficiency E (left ordinate) and network load N (right ordinate) for
Boolean subscriptions. Predicate distributions are given in brackets.

expect that its applicability to restricted conjunctive subscriptions is similar.

In the following experiments, we register 100,000 Boolean subscriptions

(which result in 400,000 conjunctive subscriptions after conversion) of all three

subscription classes and apply a line topology of five brokers. Results are

presented for accuracy and occurrence-based pruning (as they show the best

overall results).

In Figure 8.10, we show the influence of pruning in combination with the

Boolean filtering algorithm. Figure 8.11 illustrates the results in the conjunc-

tive setting, that is, the counting algorithm and converted subscriptions. In

both figures, we map the reduction in routing table size M (abscissae) onto

filter efficiency E (left ordinates) and network load N (right ordinates).

Note that the reduction in routing table size M on the abscissa is given

proportional to the respective non-local routing entries in both cases: In Fig-

ure 8.10, M is based on Boolean subscriptions and in Figure 8.11 on (converted)

conjunctive subscriptions. Hence a given reduction in memory requirements,

for example, of M = 0.5, describes different numbers of removed predicate-

subscription associations in both scenarios. We compare the absolute sizes of

event routing tables in the course of subscription pruning in Figure 8.12, using

the absolute memory requirements measure Mabs .

Pruning for Different Subscription Numbers

Before proceeding to the comparison of pruning for Boolean and conjunctive

settings, the results of this experiment allow us to relate the effects of subscrip-

8.3 General Evaluation of Subscription Pruning 257

0

2

4

6

8

10

12

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

A
bs

ol
ut

e
fil

te
r

ef
fic

ie
nc

y E

P
ro

po
rt

io
na

l n
et

w
or

k
lo

ad

N

Reduction in memory requirements M

Network (u)
Efficiency (u)
Network (z)
Efficiency (z)
Network (n)
Efficiency (n)
Network (rz)
Efficiency (rz)
Network (rn)
Efficiency (rn)

Figure 8.11: Influence of the accuracy and occurrence-based pruning vari-
ant on filter efficiency E (left ordinate) and network load N (right ordinate)
for converted conjunctive subscriptions. Predicate distributions are given in
brackets.

tion pruning for different subscription numbers. We expect that the influence

of pruning on network load N , filter efficiency E, and memory requirements

M is largely independent of the number of registered subscriptions.

The results in Figure 8.10 represent the system behavior in the same sce-

nario as in Figure 8.3 except for the number of subscriptions (|s| = 100, 000

in Figure 8.10 and |s| = 200, 000 in Figure 8.6). The influence of pruning

on the network load N (right ordinate) is similar in both settings. For ex-

ample, for uniform predicate distributions, the load increases from N ≈ 0.09

to N ≈ 0.12 in the course of pruning (9 percent of all non-local brokers per

message increases to 12 percent of all non-local brokers per message).

The filter efficiency E develops similarly regardless of the number of reg-

istered subscriptions. In absolute terms, E depends on the subscription num-

bers. However, the proportional improvement when performing pruning is

comparable: for 200,000 subscriptions, the filter efficiency improves by ap-

proximately 52 percent as the maximum and by approximately 40 percent

after all pruning. For 100,000 subscriptions, the maximal efficiency improve-

ment is approximately 46 percent; after all pruning operations, E is improved

by approximately 36 percent. This general trend was confirmed by further

experiments: the proportional efficiency Eprop when pruning increases slightly

for growing subscription bases. We believe that the reason for this effect is the

growing overlap among subscriptions for increasing numbers of registrations.

Finally, the influence of pruning on the routing table size is independent of

the number of subscriptions: After all pruning, the size of non-local routing

258 Chapter 8. Experimental Evaluation

entries is reduced by approximately 85 percent (M ≈ 0.85). Similarly, the

small increase in network load for non-uniform predicate distributions occurs

at M ≈ 0.75 for both sizes of the subscription base. Thus, the optimization

potential of subscription pruning is relatively independent of the number of

registered subscriptions.

Pruning Conjunctive versus Boolean Subscriptions

We now return to the analysis of subscription pruning for conjunctive settings.

Figure 8.10 shows the same original setting as Figure 8.11 except that the

former figure is derived from the Boolean version of BoP and the latter figure

from the conjunctive version.

We expect that subscription pruning is similarly applicable to both sce-

narios. The overall possible (proportional) reduction in routing table size M

should be higher for the Boolean setting, because at least one predicate re-

mains for each subscription—in the conjunctive case, the number of subscrip-

tions and thus the number of remaining predicates increases (approximately

four conjunctive subscriptions are created per original Boolean subscription

due to conversion). The filter efficiency E should show similar improvements

for the Boolean and the conjunctive version. We also expect a similar behavior

with respect to the network load N .

Routing Table Size. When comparing Figures 8.10 and 8.11, one realizes

that the maximal reduction in routing table size M is larger for the Boolean

setting (M ≈ 0.85) than it is for the conjunctive setting (M ≈ 0.75). This

behavior meets our expectations and is due to the conversion of subscriptions.

As argued previously, one cannot directly compare the routing table sizes

for the conjunctive and the Boolean scenario using the proportional measure

M . We thus apply the absolute memory requirements measure Mabs for this

comparison.

Figure 8.12 plots the proportional number of pruning operations, pruprop ,

on the abscissa. This measure is mapped onto the average size of one non-local

routing entry Mabs on the ordinate6. We show two curves, one for the Boolean

scenario and one for the conjunctive scenario.

6The consideration of non-local entries allows us to only incorporate the effect of sub-
scription pruning. Obviously, local entries are much more space-efficient in the Boolean
version, see Chapter 5.

8.3 General Evaluation of Subscription Pruning 259

The results in Figure 8.12 show that regardless of the number of pruning

operations, a Boolean approach to pub-sub implements more space-efficient

routing tables. Although the difference between conjunctive and Boolean sys-

tems becomes smaller in the course of pruning (the amount of pruning is rep-

resented by the values on the abscissa), the Boolean filtering algorithm always

requires less memory. Note that the memory requirements Mabs , given on the

ordinate, are derived from practically measured parameters in combination

with our characterization framework from Chapter 5.

Filter Efficiency. Without optimizing by subscription pruning, the Bool-

ean filtering algorithm shows a higher filter efficiency E than the conjunctive

approach: the filtering time per event message E is E ≈ 7.0 milliseconds in

the Boolean system in comparison to E ≈ 9.0 milliseconds in the conjunctive

system (taking the averages of the individual results). When performing sub-

scription pruning, the performance of both approaches converges and finally

results in a similar amount of time per filtered message of E ≈ 3.8 ms. This

result describes that in the analyzed setting, the proportional efficiency im-

provement is higher for the conjunctive version of BoP than for the Boolean

version.

The reason for this behavior is that the performance of the conjunctive

counting approach is independent of actually filtered messages and registered

subscriptions. This property leads to linearly decreasing filtering times per

message E for the conjunctive system up to the point of increasing network

load (the marginal cut-off point at M ≈ 0.55 on the abscissa). The Boolean

algorithm, however, is additionally influenced by the number of candidates that

are evaluated but do not match a filtered message. Its efficiency improvement

is thus not as steady as in the conjunctive version of BoP. The optimal filtering

times of both versions of BoP are comparable (for this pruning variant).

Network Load. Regarding the network load N , subscription pruning in the

conjunctive filtering algorithm and the Boolean filtering algorithm leads to

similar effects: the network load increases only marginally up to M ≈ 0.75

for the Boolean setting and up to M ≈ 0.60 for the conjunctive setting. For

uniform predicate distributions, the network load stays at roughly the same

level until all pruning operations are executed.

For the Boolean algorithm in combination with other predicate distribu-

tions, N increases slightly afterwards. The conjunctive version shows similar

260 Chapter 8. Experimental Evaluation

20

40

60

80

100

120

140

0.0 0.2 0.4 0.6 0.8 1.0

A
bs

ol
ut

e
m

em
or

y M
a

b
s

Proportional pruning pruprop

Bool
Conj

Figure 8.12: Memory requirements for non-local entries in event routing
tables Mabs when pruning subscriptions in the Boolean and the conjunctive
scenario.

increases; however, it leads to a slightly stronger growth in N (but still only

marginal in comparison to other pruning variants) for both normal distribu-

tions (“n” and “rn” in Figure 8.11). We believe that the reason for this behav-

ior is the effect of conversion on the occurrence of predicates in subscriptions.

Because the increase in network load in the conjunctive version is still only

marginal, we do not investigate it further at this point.

Altogether, our results show that subscription pruning is effectively appli-

cable to conjunctive subscriptions as well as general Boolean subscriptions.

8.3.3 Subscription Pruning for Different Topologies

In this section we investigate the behavior of subscription pruning for different

network sizes and topologies. The accuracy and occurrence pruning variant is

chosen for this experiment (as it leads to the best overall results). We expect

that the broad optimization effect of subscription pruning occurs regardless

of the chosen network topology and scale. The results for different network

topologies should only vary slightly. When scaling the network, the increase

in network load due to pruning becomes larger in absolute terms; in propor-

tional terms, however, the effect of subscription pruning on the network load

is expected to be largely independent of the network size.

We analyze representatives of the two most extreme network topologies in

this section. These topologies are the line topology and the star topology. We

8.3 General Evaluation of Subscription Pruning 261

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0

0.2

0.4

0.6

0.8

1.0
P

ro
po

rt
io

na
l f

ilt
er

 e
ffi

ci
en

cy
 E
p

ro
p

P
ro

po
rt

io
na

l n
et

w
or

k
lo

ad

N

Reduction in memory requirements M

Network, |B|=5
Efficiency, |B|=5
Network, |B|=10
Efficiency, |B|=10
Network, |B|=20
Efficiency, |B|=20
Network, |B|=30
Efficiency, |B|=30
Network, |B|=40
Efficiency, |B|=40
Network, |B|=50
Efficiency, |B|=50
Network, |B|=100
Efficiency, |B|=100

Figure 8.13: Filter efficiency Eprop (left ordinate) and network load N (right
ordinate) when pruning subscriptions using a line topology for different net-
work scales.

scale the overall network size, that is, the number of brokers, from |B| = 5 to

|B| = 100. Thus, in the line topology the distance from one outmost broker

to the other outmost broker is between 4 and 99 hops. In the star topology,

between 4 and 99 brokers are connected to the broker in the center of the

network7. Investigating subscription pruning for these two extreme topologies

allows for conclusions about its suitability for general networks, constituting a

combination of the properties of the extreme settings.

In these experiments we register 12,500 subscriptions with the overall pub-

sub system for all network scales. That is, the number of subscriptions per

broker is between 125 (scenario |B| = 100) and 2,500 (scenario |B| = 5).

These subscriptions are uniformly distributed within the network. We run

a simulation in this set of experiments, and can thus only evaluate the direct

effect of pruning on network load and routing table size. For the filter efficiency,

the proportional measure Eprop is used for estimation.

Network Load and Routing Table Size

Figure 8.13 illustrates the influence of subscription pruning for seven network

scales using the extreme line topology; Figure 8.14 shows the results using

a star topology. The abscissae of the figures represent the measure for the

7To set the network size in perspective, [Müh02] uses 67 brokers in an experimental
evaluation with eight hops as the maximum distance between brokers. [Pie04] uses 10
autonomous systems in a simulation with 100 brokers each.

262 Chapter 8. Experimental Evaluation

reduction in routing table size, M . On the left ordinates of both figures, we

map the network load N . The figures show the increase in network load within

the internal pub-sub system for the different network scales by their individual

curves.

Comparing both extreme topologies, the line topology leads to stable re-

sults for all analyzed network scales. That is, the proportional number of non-

local brokers filtering a message on average, N , remains approximately the

same, regardless of the overall broker number and the amount of performed

pruning operations (represented by their effect on memory requirements on

the abscissa). The reason for this behavior is that the expected value for the

number of hops to the local broker of a subscription that is fulfilled by an

incoming message remains the same in the line topology, in proportion to the

overall network size. Obviously, the absolute number of hops increases with

an increasing network scale: for |B| = 5, N ≈ 0.06 (i.e., the un-optimized

situation) means that each message is routed via approximately 0.3 non-local

brokers; for |B| = 100, N ≈ 0.06 means that each message is routed via

approximately 6 non-local brokers.

For a star topology (Figure 8.14) the number of non-local brokers that filter

a message on average decreases for an increasing network size. The reason for

this effect can be found in the fact that the central broker in a star topology

distributes event messages directly to the responsible local broker. Thus the

larger the network size, the fewer brokers, on a proportional basis, are involved

in the filtering of a message—the number of subscriptions remains the same in

our experiments.

The effect of subscription pruning on the network load N is largely indepen-

dent of the actual network size for both extreme topologies. The magnitude of

the cut-off point is similar for both topologies and each of the seven network

scales. It occurs at M ≈ 0.65 and increases the network load by N ≈ 0.1.

Altogether, our results show that the optimization effect of subscription

pruning on network load and routing table size exists regardless of the chosen

network topology and scale.

Filter Efficiency

In Figure 8.13, we also show the influence of subscription pruning on filter

efficiency for seven network scales using a line topology; Figure 8.14, again,

contains the results for the star topology. We directly plotted the measure for

8.3 General Evaluation of Subscription Pruning 263

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0

0.2

0.4

0.6

0.8

1.0
P

ro
po

rt
io

na
l f

ilt
er

 e
ffi

ci
en

cy
 E
p

ro
p

P
ro

po
rt

io
na

l n
et

w
or

k
lo

ad

N

Reduction in memory requirements M

Network, |B|=5
Efficiency, |B|=5
Network, |B|=10
Efficiency, |B|=10
Network, |B|=20
Efficiency, |B|=20
Network, |B|=30
Efficiency, |B|=30
Network, |B|=40
Efficiency, |B|=40
Network, |B|=50
Efficiency, |B|=50
Network, |B|=100
Efficiency, |B|=100

Figure 8.14: Filter efficiency Eprop (left ordinate) and network load N (right
ordinate) when pruning subscriptions using a star topology for different net-
work scales.

the reduction in routing table size M on the abscissae of the two figures. This

measure is mapped onto the proportional filter efficiency Eprop on the right

ordinates (brokers share physical machines now).

Both figures show that the proportional filter efficiency Eprop develops simi-

larly for different network scales. There are also only minor differences between

the two analyzed extreme topologies. Generally, the development of filter effi-

ciency is a direct effect of the increase in network load. The best optimization

with respect to filter efficiency is between Eprop ≈ 0.6 and Eprop ≈ 0.45. That

is, subscription pruning reduces the filtering time per event message between

40 and 55 percent for the analyzed network topologies and scales.

For all seven network scales, the highest filter efficiency is achieved at the

previously identified cut-off point (M ≈ 0.65 on the abscissa), that is, when

performing fewer than the maximal possible number of pruning operations.

After the cut-off point, the filter efficiency Eprop degrades. In particular, in

the star topology, Eprop degrades more the larger the network becomes. This

is due to the load in the central broker in this topology, which experiences the

main increase in false positives.

Overall, our experiments show that subscription pruning improves the sys-

tem efficiency for different network topologies and scales. The optimization

effect of subscription pruning with respect to filter efficiency is comparable in

the analyzed settings. Although the proportional filter efficiency Eprop is an

estimation due to the used simulation setting, it gives a good Eprop for the

264 Chapter 8. Experimental Evaluation

system behavior at a larger network scale.

8.3.4 Summary

In this section, we analyzed the influence of subscription pruning on distributed

pub-sub systems. One of our main findings is that the four identified pruning

variants (accuracy-based, efficiency-based, memory-based, and accuracy and

occurrence-based pruning) fulfill their individual design goals. That is, each

pruning variant successfully optimizes the system with respect to its target

optimization parameter.

Considering the typically applied quality measures in content-based pub-

sub systems, both of the accuracy-based pruning variants lead to the overall

best system behavior. This result is due to their consideration of the num-

ber of false positives that is created in the network as a secondary effect of

subscription pruning.

There exist cut-off points for the pruning variants, which indicate up to

what point the subscription pruning optimization should be applied in practice.

These cut-off points describe what numbers of pruning operations should be

executed. When performing more pruning operations than stated by the cut-

off point, the network load starts to increase and thus filter efficiency starts to

decrease.

We also evaluated the optimization potential of subscription pruning for

conjunctive subscriptions. We found that in these settings the pruning opti-

mization leads to similar results as in general Boolean scenarios. Thus sub-

scription pruning can be applied regardless of the subscription structure.

The final part of this section analyzed the influence of the applied broker

topology and network size on the effects of subscription pruning. We evaluated

the two most extreme topologies. Our findings are that the broad optimiza-

tion behavior of subscription pruning occurs regardless of the chosen network

topology and network scale.

In all of our experiments subscription pruning increased the system effi-

ciency by at least 40 percent and simultaneously reduced the memory require-

ments for event routing tables by at least 65 percent. The network load was at

most 10 percent higher than in the un-optimized setting at this point. These

results state the worst case behavior of subscription pruning; most experiments

led to far better results.

8.4 Subscription Pruning and Covering 265

8.4 Evaluation of Subscription Pruning Under

Varying Degrees of Cover

In the previous section we analyzed the intrinsic effects of the subscription

pruning routing optimization. What remains to be shown is the applicability

of subscription pruning for different covering proportions among subscriptions.

We close this gap in Section 8.4.1, allowing us to verify Part 2a of our central

hypothesis (page 7).

As an extension to this experiment, Section 8.4.2 shows the system behavior

when applying subscription pruning additional to subscription covering. In

this experiment, we use the conjunctive version of BoP, which can apply the

covering routing optimization.

8.4.1 Subscription Pruning under Varying Degrees of

Cover

To verify the suitability of subscription pruning for different degrees of cover,

we again use the combined setting with a mixture of subscriptions of all three

subscription classes and apply the line network topology using five brokers

(|B| = 5). We register 100,000 Boolean subscriptions (|s| = 100, 000), using

uniform predicate distributions; the system is then optimized using subscrip-

tion pruning. The memory requirements are considered using the measure

Mabs and filter efficiency E. The results we show in the following represent

the system behavior at the respective cut-off point.

To correlate the effects of the subscription covering optimization, we also

analyze the system behavior under the application of subscription covering.

Note that subscription covering is applied in the conjunctive system, whereas

subscription pruning is applied in the general Boolean system. Comparing

these two settings thus leads to additional conclusions about the behavior of

optimized conjunctive and optimized general Boolean systems. According to

the properties of the registered subscriptions, 400,000 conjunctive subscriptions

are created due to canonical conversion.

We expect that the optimization effect of subscription covering strongly

depends on the covering relationships among the registered subscriptions: The

more registered subscriptions cover each other, the more optimization potential

the covering optimization has. Subscription pruning, on the other hand, is

266 Chapter 8. Experimental Evaluation

0

20

40

60

80

100

120

140

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
bs

ol
ut

e
m

em
or

y M
a

b
s

Covering proportion covprop

Un-opt (Bool)
Pruning (Bool)
Un-opt (Conj)
Covering (Conj)

Figure 8.15: Routing table size Mabs for different covering proportions (ab-
scissa) using the un-optimized general Boolean algorithm, the general Boolean
algorithm with subscription pruning, the un-optimized conjunctive algorithm,
and the conjunctive algorithm with subscription covering.

expected to optimize the system regardless of existing covering relationships.

For settings with very high covering proportions covprop , we expect sub-

scription covering to lead to a stronger reduction in routing table size and a

higher filter efficiency than subscription pruning. We argued that these high

covering proportions are unrealistic in practice in Section 2.5.2. However, for

more realistic scenarios (i.e., with low to moderate covering proportions), sub-

scription pruning should lead to fewer memory requirements and a higher filter

efficiency than subscription covering.

In Figure 8.15 and Figure 8.16, we illustrate the experimental results. On

the abscissae, we show the covering proportion covprop , ranging from approx-

imately covprop = 0.25 to covprop = 0.95. Differing covering proportions are

derived by varying parameter Bprop between Bprop = 0.001 and Bprop = 100.

On the ordinate in Figure 8.15, we show the memory requirements measure

Mabs ; in Figure 8.16, the efficiency measure E is mapped on the ordinate.

We show four curves in each of the two figures, describing the behavior of

the un-optimized general Boolean system (“Un-opt (Bool)”), the behavior of

the un-optimized conjunctive system (“Un-opt (Conj)”), the behavior of the

general Boolean system under the application of subscription pruning (“Prun-

ing (Bool)”), and the behavior of the conjunctive system under the application

of subscription covering (“Covering (Conj)”). Accuracy and occurrence-based

pruning is used in this set of experiments. We plotted the individual results

for the Boolean system variant according to the covering proportion cov prop of

8.4 Subscription Pruning and Covering 267

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
bs

ol
ut

e
fi

lte
r

ef
fi

ci
en

cy
 E

Covering proportion covprop

Un-opt (Bool)
Pruning (Bool)
Un-opt (Conj)
Covering (Conj)

Figure 8.16: Filter efficiency E for different covering proportions (abscissa)
using the un-optimized general Boolean algorithm, the general Boolean algo-
rithm with subscription pruning, the un-optimized conjunctive algorithm, and
the conjunctive algorithm with subscription covering.

the equivalent conjunctive system setting.

Routing Table Size

Figure 8.15 clearly shows that the optimization effect of subscription pruning

(“Pruning (Bool)”) does not directly depend on the amount of cover among

subscriptions. The memory requirements after the optimization are relatively

stable; they generally depend on both the accuracy of the applied pruning

variant, and the registered subscriptions that determine the overall potential

of pruning. Compared to the un-optimized system (“Un-opt (Bool)”), the

memory requirements per non-local routing table entry are reduced from ap-

proximately 95 bytes to values between 39 and 54 bytes, that is, a reduction

in memory requirements between 44 and 59 percent.

The optimization potential (with respect to memory requirements) of sub-

scription covering (“Covering (Conj)”), on the other hand, depends on the

covering proportion covprop . The fewer subscriptions cover each other (left on

the abscissa with small values of covprop), the higher the memory requirements

for event routing tables (higher values of Mabs on the ordinate). Thus, if there

is almost no cover among subscriptions, hardly any routing table entries are

removed by the application of subscription covering. Hence there is a high

memory consumption per routing entry in these settings (i.e., large values of

Mabs on the right ordinate). Evidently, if nearly all subscriptions cover each

other, there is a large reduction in memory requirements when applying this

268 Chapter 8. Experimental Evaluation

optimization (right on the abscissa).

Comparing subscription pruning and subscription covering, pruning leads

to more space-efficient routing tables than covering for covering proportions

of cov prop < 0.65. For higher covering proportions, subscription covering is

preferable over subscription pruning. This system behavior meets our expec-

tations. Our application-scenario analysis in Chapter 3 did not allow for a

real-world estimation of covprop for the online auction scenario.

The results show that the memory requirements in un-optimized system

settings do not depend on the covering proportion cov prop . Figure 8.15 also

depicts the advantage of using an un-optimized Boolean filtering algorithm

(“Un-opt (Bool)”) over an un-optimized conjunctive filtering algorithm (“Un-

opt (Conj)”) with respect to memory requirements.

Filter Efficiency

Figure 8.16 shows that filter efficiency E is also not directly influenced by the

amount of cover among subscriptions when optimizing by subscription pruning

(“Pruning (Bool)”). Near the covering proportion covprop where the preferable

routing optimization changes with respect to memory requirements (cov prop ≈
0.65 on the abscissa), the preferable routing optimization with respect to filter

efficiency changes as well. Therefore, if there is only a non-extreme amount of

cover among subscriptions, subscription pruning leads to higher filter efficiency

than subscription covering. Compared to the un-optimized general Boolean

system, subscription pruning improves the filter efficiency between 39 percent

and 55 percent for the analyzed covering proportions.

When applying subscription covering (“Covering (Conj)”), however, the fil-

ter efficiency E directly depends on the amount of cover among subscriptions.

Similarly to the effect on the memory requirements, for high covering propor-

tions covprop (right on the abscissa) subscription covering leads to higher filter

efficiency than subscription pruning due to removed routing entries. However,

the fewer subscriptions cover each other (i.e., the more left on the abscissa),

the less efficient a system becomes applying the subscription covering opti-

mization.

Interestingly, filter efficiency when applying subscription pruning (as well

as filter efficiency in the un-optimized system) improves if fewer cover exists

among subscriptions. The reason for this behavior is that in case of small

covering proportions, only a few published event messages match the regis-

8.4 Subscription Pruning and Covering 269

tered subscriptions. Thus fewer messages than in the case of high covering

proportions are forwarded in the pub-sub network and need to be filtered.

The effect of increasing filter efficiency E with decreasing covering propor-

tions covprop can also be seen in the un-optimized general Boolean (“Un-opt

(Bool)”) and the un-optimized conjunctive system (“Un-opt (Conj)”). The

subscription covering optimization, on the other hand, cannot effectively re-

move routing table entries for low covering proportions. This leads to degrad-

ing overall filter efficiency with degrading covering proportions.

Comparing filter efficiency E of the un-optimized systems in Figure 8.16

shows the advantage of a general Boolean pub-sub system over a conjunctive

pub-sub system without the application of any routing optimizations.

In summary, our experiments show that subscription pruning shows a rel-

atively stable optimization behavior regardless of the amount of cover among

subscriptions. As expected, the potential of subscription covering, on the other

hand, depends on these relationships. This dependency of subscription cov-

ering occurs because this optimization merely exploits the existing covering

relationships.

When comparing subscription covering and subscription pruning, covering

leads to a better optimization for extreme covering proportions. Subscription

pruning optimizes the system for all covering proportions and outperforms

covering with respect to space and time efficiency for low to moderate covering

proportions.

8.4.2 Simultaneous Covering and Pruning

In Chapter 6, we claimed that subscription pruning can be applied to further

optimize pub-sub systems after the full optimization potential of subscription

covering is reached. We demonstrate the effect of this dual optimization ap-

proach in this section. We expect that the additional optimization effect of

subscription pruning depends on the covering proportion: the lower the cover-

ing proportion, the higher the additional optimization of subscription pruning

with respect to filter efficiency and memory requirements for routing tables.

In this experiment, we apply the same setup as in the comparison of sub-

scription covering and subscription pruning. We use the conjunctive version

of BoP, which initially applies the subscription covering optimization.

Figure 8.17 gives an overview of the results. The abscissa contains the cov-

270 Chapter 8. Experimental Evaluation

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.40

0.50

0.60

0.70

0.80

0.90

A
bs

ol
ut

e
fi

lte
r

ef
fi

ci
en

cy
 E

R
ed

uc
tio

n
in

 m
em

or
y

re
qu

ir
em

en
ts

 M

Covering proportion covprop

Efficiency (cov)
Efficiency (cov+pru)
Memory (cov+pru)

Figure 8.17: Filter efficiency E (left ordinate) and memory requirements
M (right ordinate) for different covering proportions covprop (abscissa) using
subscription pruning after subscription covering.

ering proportion covprop in different scenarios. On the left ordinate, we mapped

the filter efficiency E. Two of the curves in the figure use this ordinate—one

curve illustrates E after applying subscription covering, another curve illus-

trates E when additionally applying subscription pruning after subscription

covering. The right ordinate in Figure 8.17 contains the reduction in memory

requirements M that is achieved by subscription pruning. As a basis for the

proportional measure M , the memory requirements after subscription covering

are taken.

Filter Efficiency

The fewer covering relationships exist among subscriptions, the more filter

efficiency E degrades when only applying subscription covering (“cov” in Fig-

ure 8.17). However, subscription pruning is independent of the amount of

cover among subscriptions. As can be seen in Figure 8.17 and meeting our

expectations, even if the system is fully optimized by subscription covering,

there exists a large potential to subsequently optimize by subscription pruning

(“cov+pru”).

The additional effect of subscription pruning on filter efficiency E is given

by the difference between the two curves for E in Figure 8.17 (“cov” and

“cov+pru”). For all covering proportions covprop (values on the abscissa), the

filter efficiency E (on the left ordinate) is further improved by subscription

pruning. In proportional terms, the efficiency improvement is between 4 and

68 percent, depending on the covering proportion. Generally, the lower the

8.4 Subscription Pruning and Covering 271

covering proportion covprop , the higher the additional optimization potential

of subscription pruning (values further left on the abscissa). This property

is caused by the insufficiency of subscription covering for situations with non-

extreme covering proportions. This problem of subscription covering was iden-

tified as one of its major shortcomings in practice in Section 2.5.2 (page 50).

The overall development of filter efficiency E in Figure 8.17 is similar to the

results when only optimizing by subscription pruning. The best optimization

results are achieved for small covering proportions. In the joint optimization

high covering proportions lead to a filter efficiency that is higher than in the

case of only optimizing by subscription pruning. This result is due to the ad-

vantageous property of subscription covering to remove entries in event routing

tables, which generally improves system efficiency.

Routing Table Size

The third curve in Figure 8.17 shows the reduction in routing table size M

when optimizing by subscription pruning (after optimizing by subscription cov-

ering). The results show that the additional optimization potential of subscrip-

tion pruning (with respect to memory requirements) increases with decreasing

covering proportions cov prop (left on the abscissa).

The reason for this property is the inapplicability of subscription covering

for settings with low covering proportions cov prop . For the joint optimization,

the results show that subscription pruning counterbalances the insufficiency

of subscription covering in settings with non-extreme covering proportions (on

the left to the middle of the abscissa).

However, even for extreme covering proportions (right on the abscissa),

subscription pruning reduces the memory requirements of the system signif-

icantly. This advantageous behavior is due to the orthogonal optimization

dimensions of subscription covering and subscription pruning—subscription

pruning is specifically designed to work independently of the amount of cover

among subscriptions. Hence subscription pruning fully fulfills our expecta-

tions.

8.4.3 Summary

This section analyzed the applicability of subscription pruning under varying

covering proportions. We also evaluated the optimization effect of simultane-

ously utilizing subscription pruning and subscription covering.

272 Chapter 8. Experimental Evaluation

The results validate that the optimization potential of subscription cover-

ing strongly depends on the amount of cover among subscriptions, as argued in

Section 2.5.2 (page 50). The fewer covering relationships exist among subscrip-

tions, the less is the optimization effect of this event routing optimization. We

designed subscription pruning, on the other hand, to be applicable regardless

of the cover among subscriptions. Our experiments confirmed this general ap-

plicability of subscription pruning and revealed that pruning shows relatively

stable results for different covering proportions.

Relating our experimental findings of this section and Section 8.3 to the

central hypothesis of this dissertation, our results prove Part 2a of this hy-

pothesis:

Subscription pruning increases system efficiency and decreases rout-

ing table size, independently of the existing covering relationships.

Furthermore, our experiments show that for non-extreme covering proportions

the filter efficiency of a general Boolean system in combination with subscrip-

tion pruning is higher than the filter efficiency of a conjunctive system in com-

bination with subscription covering. We derived similar results with respect

to the memory requirements for event routing tables: for non-extreme cover-

ing proportions, subscription pruning reduces the sizes of these routing tables

more than subscription covering does. For settings with extreme covering pro-

portions, however, subscription covering is the preferable routing optimization.

We hardly expect such high covering proportions in practice.

In a second experiment we demonstrated that subscription pruning can

be successfully applied in addition to subscription covering. The results show

that even if the covering optimization reaches its full potential, subscription

pruning further improves the system behavior with respect to filter efficiency

and routing table size.

8.5 Calculation of the Overlapping Relation-

ships

Having previously evaluated settings without the use of advertisements, we

now shift our viewpoint to advertisement-based pub-sub systems. As a first

step, we analyze our algorithm to calculate the overlapping relationships be-

tween general Boolean subscriptions and advertisements. We then compare

8.5 Calculation of the Overlapping Relationships 273

this calculation approach to a conjunctive solution for the overlapping calcu-

lation. As a second step in the analysis involving advertisements, we evaluate

our advertisement-based optimization, advertisement pruning.

In the experiments in this section we register an increasing number of ad-

vertisements with the pub-sub system, ranging from 20,000 to 500,000, and

evaluate the efficiency of the overlapping calculation. When analyzing the

conjunctive overlapping calculation method, the registered advertisements are

converted to conjunctive forms. This process leads to 2.5 conjunctive adver-

tisements per original Boolean advertisement on average.

We evaluate uniform predicate distributions for both subscriptions and ad-

vertisements. The results we analyze are derived from the combined setting

containing advertisements of all eight advertisement classes and subscriptions

of all three subscription classes. The presented results are averages for 15,000

original general Boolean subscriptions. For the conjunctive calculation algo-

rithm, these subscriptions are converted canonically (leading to 60,000 con-

junctive subscriptions).

8.5.1 General Boolean Approach

We identified earlier that pub-sub systems benefit when distinguishing between

the overlapping decision problem and the overlapping function problem: the

function problem determines all overlapping advertisements for a subscription,

whereas the decision problem determines whether at least one overlapping

advertisement exists.

In this section we analyze the efficiency of our Boolean algorithm to cal-

culate the decision problem, Edec , and the function problem, Efct , for an in-

creasing number of registered advertisements. We expect linearly increasing

calculation times for both overlapping function problem and overlapping deci-

sion problem. The decision problem is expected to be much more efficient to

calculate than the function problem (see Section 7.2.4).

In Figure 8.18, we illustrate the number of registered advertisements on

the abscissa; on the ordinate we map the overlapping calculation efficiency.

We show individual curves for both overlapping problems, one curve for the

efficiency of the overlapping function problem Efct and one for the efficiency of

the overlapping decision problem Edec . We also show the behavior of the con-

junctive calculation algorithm, and compare both approaches in Section 8.5.2.

274 Chapter 8. Experimental Evaluation

 0

 100

 200

 300

 400

 500

 600

 700

 800

500,000400,000300,000200,000100,000

E
ff

ic
ie

nc
y

E
fc

t a
nd

 E
d

e
c

Number of advertisements

Efct (Bool)
Edec (Bool)
Efct (Conj)
Edec (Conj)

Figure 8.18: Overlapping calculation efficiency in the Boolean and the con-
junctive setting. We show the calculation efficiency for the function problem
Efct and the decision problem Edec for the Boolean and the conjunctive calcu-
lation approach, respectively.

Similar to the behavior of the Boolean filtering algorithm, the curves rep-

resenting the efficiency of the Boolean overlapping calculation algorithm in

Figure 8.18 show a changing gradient with a growing number of registered

advertisements (abscissa). As for the filtering algorithm, the reason for this

behavior is the incrementing of counters per subscription in the hit vector. In

the overlapping calculation algorithm, these counters represent the number of

disjoint predicates per subscription (in the filtering algorithm, it is the number

of fulfilled predicates).

The point of changing gradients occurs at approximately 200,000 registered

advertisements (on the abscissa). This number of registered advertisements is

similar to the number of registered subscriptions in the experiments for the

filtering algorithm. Because the processor cache advantageously influences the

incrementing of predicate counters in both algorithms, the point of changing

gradient occurs at a similar number of subscriptions or advertisements. As for

the filtering algorithm, the calculation efficiency for the overlapping algorithm

is in fact linear. The initial small gradient is due to the influence of the

processor cache.

The overlapping decision problem is solved as a shortcut to the function

problem in the Boolean algorithm. Thus the decision problem is more efficient

to calculate than the function problem, meeting our expectations. A compar-

ison of the calculation efficiency measures for the decision problem Edec and

8.5 Calculation of the Overlapping Relationships 275

the function problem Efct in Figure 8.18 reveals that the overlapping deci-

sion problem is solved in approximately one fifth of the time of the function

problem. This proportional difference between both problems is stable for all

numbers of registered advertisements.

8.5.2 Comparison to Conjunctive Solution

In Figure 8.18, we plotted the calculation efficiency for the overlapping decision

problem Edec and the overlapping function problem Efct for the conjunctive

calculation approach. We expect that the difference in calculation time be-

tween function and decision problem is marginal in the conjunctive algorithm.

This is because the main computational load in the conjunctive approach is to

increment the counters for the numbers of disjoint predicates per subscription.

This load occurs for both decision and function problem. With respect to the

comparison of conjunctive and general Boolean approach, we expect the over-

lapping decision problem to be much more efficient to calculate in the Boolean

algorithm. For the function problem, both solutions should be on a par with

each other.

Figure 8.18 shows that there is only a minor difference in computation

time between the overlapping decision and the overlapping function problem

in a conjunctive system. The time to solve the decision problem is between

approximately 80 and 92 percent of the computation time for the function

problem. For the Boolean algorithm, the decision problem could be solved in

20 percent of the time of the function problem.

The behavior of a conjunctive calculation algorithm is, as expected, due to

its small potential to avoid computations in the decision problem: the conjunc-

tive algorithm always needs to increment all counters for disjoint predicates in

the hit vector. If a subscription s leads to zero disjoint predicates, s constitutes

an overlap. The counting of disjoint predicates in the conjunctive algorithm,

however, is more costly than in the Boolean algorithm because advertisements

need to be converted, that is, the overall number of predicate-advertisement

associations and thus the number of increment operations increases.

Furthermore, Boolean subscriptions need to be converted by a conjunctive

system. For each of the equivalent conjunctive subscriptions, the algorithm

then needs to solve the overlapping decision problem8. Thus a conjunctive

8Conjunctive algorithms cannot optimize the calculation process because the information
that several conjunctive subscriptions are created from the same Boolean subscription is lost.

276 Chapter 8. Experimental Evaluation

algorithm needs to perform most of its computations for both overlapping

decision and overlapping function problem.

Considering the development of the curves for the conjunctive algorithm,

there again exists a point of changing gradients. For the conjunctive solu-

tion, the change in gradient occurs at approximately 80,000 advertisements

(abscissa). As in the filtering algorithm, this difference results from the effect

of canonical conversion. This conversion increases the number of registered

advertisements by approximately 2.5. Hence, the changing gradient is shifted

left on the abscissa by a factor of 2.5.

Comparing Boolean and conjunctive overlapping calculation, the Boolean

algorithm solves the decision problem more efficiently than the conjunctive al-

gorithm. For 500,000 registered advertisements, the Boolean solution requires

approximately 28 percent of the computation time of the conjunctive solution

in the same setting. The overlapping decision problem needs to be solved when

subscriptions are registered with a pub-sub system. It is crucial to be solved

efficiently. Our Boolean algorithm is the preferable choice in this respect.

The overlapping function problem, on the other hand, is computed more ef-

ficiently by the conjunctive algorithm. The reason for this is the large number

of candidate subscriptions that need to be evaluated in the Boolean algorithm.

For 500,000 registered subscriptions, the conjunctive approach requires 12 per-

cent less time than our Boolean approach (i.e., 88 percent of its computation

time).

Considering the final gradients in Figure 8.18, one might even expect this

difference between the algorithms to increase for growing advertisement bases.

However, by applying the results from our characterization framework in Chap-

ter 5, we derived that conjunctive overlapping calculation approaches require

more memory than Boolean overlapping calculation approaches. Thus a con-

junctive algorithm cannot be applied for large advertisement bases. In this

case, our Boolean solution also becomes the preferable choice for the function

problem.

8.5.3 Summary

In this section we compared the efficiency of our Boolean overlapping calcula-

tion approach to a conjunctive solution.

We found that a conjunctive calculation algorithm solves the overlapping

function problem slightly more efficiently than our Boolean algorithm (for ex-

8.6 Evaluation of Advertisement Pruning 277

ample, 13 percent less time in the conjunctive algorithm for 500,000 registered

advertisements). However, the Boolean solution requires less memory than

the conjunctive solution. Our Boolean approach is thus applicable in scenarios

with high advertisement numbers that cannot be processed by a conjunctive

approach.

The overlapping decision problem, on the other hand, shows much better

time efficiency properties when using our Boolean algorithm (e.g., 72 percent

less time in the Boolean algorithm for 500,000 registered advertisements). This

result is particularly promising because the overlapping decision problem needs

to be solved when subscriptions get registered; it thus requires an efficient

solution, as provided by our general Boolean approach.

8.6 Evaluation of Advertisement Pruning

Having analyzed the overlapping calculation in advertisement-based pub-sub

systems, we evaluate our advertisement-based routing optimization, advertise-

ment pruning. We analyze the general influence of advertisement pruning on

a pub-sub system, and investigate the effects of applying subscription pruning

and advertisement pruning simultaneously in a system.

We only analyze the system behavior in individual broker components. The

measurements we present are derived from a scenario with 100,000 subscrip-

tions of all three subscription classes and 50,000 advertisements of all eight

advertisement classes.

The experimental methodology is similar to the methodology we applied for

subscription pruning: initially, we solve both overlapping problems (function

and decision) for all given advertisements based on the registered subscriptions

(and take the measurements). Then we perform some advertisement pruning

operations, and again solve the overlapping problems. This cycle runs until

all possible advertisement pruning operations are performed. In the second

experiment in Section 8.6.2, we prune the registered subscriptions before the

described cycle starts. The number of performed subscription pruning opera-

tions is varied in this second experiment.

Within the following evaluation, we analyze the efficiency to solve the over-

lapping function problem Efct , the efficiency to solve the overlapping decision

problem Edec , the subscription routing table size Madv , the event routing ta-

ble size M , the overlapping proportion ovlprop , and the candidate proportion

278 Chapter 8. Experimental Evaluation

 0

 20

 40

 60

 80

 100

 120

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
ff

ic
ie

nc
y

E
fc

t a
nd

 E
d

e
c

C
an

di
da

te
 p

ro
po

rt
io

n
ca

n
dp

ro
p

an
d

ov
er

la
pp

in
g

pr
op

or
tio

n
o

vl
p

ro
p

Reduction in memory requirements Madv

Efct

Edec

ovlprop

candprop

Figure 8.19: Influence of advertisement pruning on routing table size
Madv (abscissa), time efficiency for the overlapping calculation Efct and Edec

(left ordinate), and overlapping proportion ovlprop and candidate proportion
candprop (right ordinate).

candprop . Ultimately the experiment in the following subsection proves the

final part (Part 2b) of our central hypothesis (page 7).

8.6.1 Pure Advertisement Pruning

On the abscissa of Figure 8.19, we plotted the measure for the reduction in the

size of subscription routing tables, Madv . This reduction is the primary effect

when performing advertisement pruning. On the left ordinate of Figure 8.19,

we map the measure for the time efficiency to solve the overlapping function

problem Efct and the overlapping decision problem Edec . The right ordinate

of the figure contains the overlapping proportion ovlprop and the candidate

proportion candprop .

In Figure 8.19, we show four curves, each representing one of the described

parameters. Average results are plotted for all five predicate distributions.

The results for the individual distributions are similar and do not lead to

new insights into the effect of advertisement pruning on pub-sub systems. In

each of the individual settings that is incorporated into the average, both sub-

scriptions and advertisements are created using one of the five used predicate

distributions.

We expect that advertisement pruning reduces the memory requirements

for subscription routing tables. At the same time, the overlap between sub-

scriptions and advertisements should increase slightly as a secondary effect of

8.6 Evaluation of Advertisement Pruning 279

advertisement pruning. Moreover, we expect that the efficiency for the calcu-

lation of the overlapping task increases in the course of advertisement pruning.

Routing Table Size

After all possible advertisement pruning operations are performed, approx-

imately 72 percent of the existing predicate-advertisement associations are

removed from the system (Madv ≈ 0.72 on the abscissa in Figure 8.19). This

effect of advertisement pruning constitutes a strong reduction in subscription

routing table size and fully meets our expectations.

The maximal reduction in the size of subscription routing tables is less than

the maximal reduction in the size of event routing tables when applying sub-

scription pruning. The reason for this effect is the structure of advertisements.

For example, for Advertisement Classes 6 to 8 valid advertisement pruning op-

erations always result in more than one remaining predicate per advertisement.

Thus the maximal possible reduction in memory requirements for advertise-

ment pruning is less than for subscription pruning, which can always result in

only one remaining predicate for Subscription Classes 1 to 3.

Efficiency

In the course of advertisement pruning, the efficiency for calculating both the

overlapping function and overlapping decision problem improves. Without any

advertisement pruning (Madv = 0 on the abscissa in Figure 8.19), the function

problem can be solved in Efct ≈ 105 milliseconds and the decision problem

in Edec ≈ 9 milliseconds. After all possible pruning operations, the efficiency

of calculating the function problem is improved to Efct ≈ 85 milliseconds

and the efficiency of calculating the decision problem is improved to Edec ≈
5 milliseconds. In the course of advertisement pruning these problems can be

solved in approximately 80 and 44 percent of their original time, respectively.

The algorithm to calculate the overlapping relationships is influenced by

various factors, for example, the number of predicates in the system. When

applying advertisement pruning, this number of predicates decreases, generally

improving the computation efficiency. For the overlapping function problem,

another important influence on the efficiency of its calculation is the number

of candidate subscriptions, represented by candprop on the right ordinate in

Figure 8.19.

280 Chapter 8. Experimental Evaluation

The behavior of candprop and Madv (abscissa) directly relates to the ef-

ficiency of solving the function problem, Efct (on the left ordinate in Fig-

ure 8.19). The more predicates are removed from the system, the more effi-

cient the algorithm for the function problem becomes (there are fewer disjoint

predicates). However, the increase in candidate subscriptions, as a secondary

effect of advertisement pruning, counteracts this advantageous effect.

Therefore, Efct approximately stays the same up to Madv ≈ 0.4 (fewer

predicates but more candidates). Between Madv ≈ 0.4 and Madv ≈ 0.6, the

candidate proportion candprop does not increase anymore. So the advantageous

effect of reducing the number of predicates is directly reflected in the improve-

ment of Efct . For Madv > 0.6, the number of candidates decreases9 (even

under its original value). Hence both the reduced number of predicates and

the reduced number of candidates advantageously affect the efficiency Efct .

For the decision problem, the main influence on efficiency Edec is the re-

duction in predicate numbers, always occurring in the course of advertisement

pruning. Overlapping candidates affect the computation in the decision prob-

lem in the following way: the earlier a candidate constitutes an overlap, the

more efficient the calculation algorithm becomes. Thus, increasing candidate

numbers might improve Edec . The extreme is that all subscriptions overlap

a given advertisement, which requires only one candidate evaluation for the

whole computation regardless of the order in which candidates are evaluated.

Amount of Overlap

We expected advertisement pruning to increase the overlap between subscrip-

tions and advertisements as little as possible. The results in Figure 8.19 indi-

cate that this expectation holds in practice.

Without advertisement pruning, it holds ovlprop ≈ 0.46. After all possi-

ble pruning operations, this value increases to ovlprop ≈ 0.63, a proportional

increase of 37 percent. At the same time, the memory requirements for sub-

scription routing tables are reduced by 72 percent (abscissa in Figure 8.19).

As we show in Section 8.6.2, this is a much smaller increase in overlap than

by applying an optimization that is not tailored to advertisements, such as

9Note that this decrease is due to the counting of the number of candidate evaluations
in our experiments. If a subscription s is a candidate for several options that are described
by an advertisement, candprop incorporates how many times s is evaluated. Hence, if the
first evaluation reveals s as an overlap, further evaluations do not take place and are thus
not counted in candprop .

8.6 Evaluation of Advertisement Pruning 281

subscription pruning.

Using our cut-off point notion from subscription pruning, one could identify

a minor cut-off point at Madv ≈ 0.37 (increasing the overlap from ovlprop ≈ 0.46

to ovlprop ≈ 0.5 in Figure 8.19) or Madv ≈ 0.55 (increasing the overlap from

ovlprop ≈ 0.46 to ovlprop ≈ 0.56). Thus, drawing similar conclusions as for

subscription pruning, advertisement pruning might only be performed up to

this cut-off point.

However, the decision of when to stop advertisement pruning is more com-

plex than merely considering the development of ovlprop . This is because an

increase in overlap due to advertisement pruning, on the one hand, means an

advantageous decrease in the size of subscription routing tables, but, on the

other hand, it means a disadvantageous increase in the size of event routing

tables. Finding an optimal balance between these two effects of advertisement

pruning is beyond the scope of these experiments.

8.6.2 Combining Advertisement Pruning and Subscrip-

tion Pruning

So far, our evaluation has considered the application of subscription pruning

and advertisement pruning as two independent routing optimizations. In this

section we analyze the system behavior when applying subscription pruning

and advertisement pruning at the same time.

Similarly to the analysis of advertisement pruning, this experiment con-

siders the efficiency of calculating the overlapping function problem Efct , the

efficiency of calculating the overlapping decision problem Edec , the memory

requirements for subscription routing tables Madv , the overlapping proportion

ovlprop , and the candidate proportion candprop (here proportional to the un-

optimized setting with respect to both subscription pruning and advertisement

pruning). We then analyze the effect of subscription pruning on the size of

event routing tables, M .

We initially register all subscriptions, perform some subscription pruning

operations, and finally optimize the system by advertisement pruning. We

expect that subscription pruning leads to a much stronger increase in over-

lap than advertisement pruning when reducing the memory requirements for

routing tables by a similar proportion.

We plotted the results in Figures 8.20 to 8.23. In all four figures, we il-

lustrate the memory requirements for subscription routing tables, Madv , on

282 Chapter 8. Experimental Evaluation

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

E
ff

ic
ie

nc
y

E
d

e
c

Reduction in memory requirements Madv

M=0
M=0.11
M=0.19
M=0.28
M=0.35
M=0.43
M=0.51
M=0.59
M=0.67
M=0.74
M=0.83

Figure 8.20: Influence of simultaneous subscription and advertisement prun-
ing on the efficiency of the overlapping calculation decision problem Edec .

the abscissa. This reduction is an effect of advertisement pruning. On the

ordinate, we show the efficiency of calculating the overlapping decision prob-

lem Edec in Figure 8.20, the efficiency of calculating the overlapping function

problem Efct in Figure 8.21, the overlapping proportion ovlprop in Figure 8.22,

and the candidate proportion candprop in Figure 8.23.

Each of the figures contains different curves. Every curve is characterized by

a certain reduction in event routing table size M . These curves thus represent

the system behavior after executing a varying number of subscription pruning

operations (accuracy-based pruning). The minimal value of M = 0 represents

the situation without any subscription pruning; the maximal value of M =

0.83 describes the fact that all possible subscription pruning operations are

performed.

Routing Table Size

As can be observed in Figures 8.20 to 8.23, the number of performed subscrip-

tion pruning operations (i.e., the different curves in the individual figures)

affects the potential of advertisement pruning to reduce the memory usage of

subscription routing tables Madv (abscissa). Without executing any subscrip-

tion pruning (curves with M = 0), advertisement pruning reaches a maximal

reduction in memory requirements of Madv ≈ 0.72. In the course of subscrip-

tion pruning (other curves), this maximal reduction in subscription routing ta-

ble size slightly increases to Madv ≈ 0.74; finally, it decreases to Madv ≈ 0.53

when all possible subscription pruning operations are performed (curves for

M = 0.83).

8.6 Evaluation of Advertisement Pruning 283

 0

 20

 40

 60

 80

 100

 120

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

E
ff

ic
ie

nc
y

E
fc

t

Reduction in memory requirements Madv

M=0
M=0.11
M=0.19
M=0.28
M=0.35
M=0.43
M=0.51
M=0.59
M=0.67
M=0.74
M=0.83

Figure 8.21: Influence of simultaneous subscription and advertisement prun-
ing on the efficiency of the overlapping calculation function problem Efct .

The reason for this influence of subscription pruning on the maximal re-

duction in the memory requirements for subscription routing tables Madv is

that the selection of advertisement pruning operations always considers the

registered subscriptions. Because subscription pruning alters these registered

subscriptions, advertisement pruning selects different pruning operations for

different numbers of executed subscription pruning operations. For exam-

ple, after executing all possible subscription pruning operations, advertisement

pruning tends to leave over several predicates per advertisement (i.e., disjunc-

tive nodes remain as root nodes because conjunctions could be pruned further).

The underlying reason for this effect of subscription pruning on advertisement

pruning is the structure of subscriptions and advertisements.

Efficiency

The behavior of the efficiency to solve the overlapping decision problem Edec

is illustrated in Figure 8.20. The development of the individual curves is on

a par with our findings in Section 8.6.1: performing advertisement pruning

improves the calculation efficiency. Considering the different stages of sub-

scription pruning (represented by the different curves), the more subscription

pruning operations are performed, the more efficient the calculation of overlap

becomes. Without any advertisement pruning (Madv = 0 on the abscissa),

the overlapping decision problem is computed in Edec ≈ 8.7 milliseconds with-

out subscription pruning (curve for M = 0). After all possible subscription

pruning operations (curve for M = 0.83), the computation time improves to

Edec ≈ 1.8 milliseconds.

284 Chapter 8. Experimental Evaluation

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

O
ve

rl
ap

pi
ng

 p
ro

po
rt

io
n

o
vl

p
ro

p

Reduction in memory requirements Madv

M=0
M=0.11
M=0.19
M=0.28
M=0.35
M=0.43
M=0.51
M=0.59
M=0.67
M=0.74
M=0.83

Figure 8.22: Influence of simultaneous subscription and advertisement prun-
ing on the amount of overlap ovlprop .

Analyzing the different curves individually, the advantageous effect of ad-

vertisement pruning on the calculation efficiency of the decision problem is

highest if subscriptions are unpruned: With no subscription pruning, adver-

tisement pruning improves the time to calculate the overlapping decision prob-

lem by 45 percent. After all subscription pruning (curve for M = 0.83), the

improvement is reduced to 11 percent.

The reason for this behavior is the development of the overlapping relation-

ships when pruning subscriptions: the more subscription pruning operations

are executed, the higher the overlapping proportion ovlprop becomes. The over-

lap does not increase further when additionally pruning advertisements. Hence

the potential to avoid the evaluation of candidate subscriptions in the deci-

sion problem degrades with an increasing number of performed subscription

pruning operations. The only effect of executing advertisement pruning then

becomes the existence of fewer disjoint predicates.

Figure 8.21 shows the influence of subscription pruning and advertisement

pruning on the efficiency of solving the overlapping function problem, Efct .

Generally, the more subscription pruning operations are performed, the more

efficient the algorithm of solving the function problem. The average time

per advertisement is situated between Efct ≈ 108 and Efct ≈ 86 millisec-

onds for no subscription pruning (curve for M = 0) and between Efct ≈ 38

and Efct ≈ 34 milliseconds after executing all subscription pruning operations

(curve for M = 0.83). Hence the proportional efficiency improvement of the

function problem calculation degrades when pruning subscriptions additionally

to advertisements (as for the decision problem). The reason for this behav-

8.6 Evaluation of Advertisement Pruning 285

0.60

0.70

0.80

0.90

1.00

1.10

1.20

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
an

di
da

te
 p

ro
po

rt
io

n
ca

n
dp

ro
p

Reduction in memory requirements Madv

M=0
M=0.11
M=0.19
M=0.28
M=0.35
M=0.43
M=0.51
M=0.59
M=0.67
M=0.74
M=0.83

Figure 8.23: Influence of simultaneous subscription and advertisement prun-
ing on the number of candidates proportional to the un-optimized setting
candprop .

ior is the decrease in the number of disjoint predicates and the decrease in the

number of candidate overlapping subscriptions when pruning subscriptions (cf.

Figure 8.23).

Amount of Overlap

In this subsection, we explain the development of overlap between subscrip-

tions and advertisements to emphasize the suitability of advertisement pruning

for retaining the existing overlapping relationships within a pub-sub system.

Subscription pruning, on the other hand, is expected to be unsuitable for this

purpose due to its different target parameters.

Figure 8.22 shows the development of ovlprop when pruning advertisements

in its individual curves. Each curve represents a different stage of subscription

pruning. Correlating these curves with each other thus shows the influence of

subscription pruning on the overlap.

Figure 8.22 clearly reveals that advertisement pruning increases the over-

lapping proportion ovlprop much less than subscription pruning: after sub-

scription pruning reduces the event routing table size by approximately 28

percent (M = 0.28, fourth curve), the overlapping proportion increases to

ovlprop ≈ 0.75 from its original (un-optimized) value of ovlprop ≈ 0.46. The

overlapping proportion does not increase further when performing more sub-

scription pruning (i.e., ovlprop ≈ 0.75 is the maximum for the registered sub-

scriptions and advertisements).

286 Chapter 8. Experimental Evaluation

Advertisement pruning, on the other hand, only marginally affects the

overlap: when reducing the subscription routing table size by approximately

28 percent, the overlapping proportion only increases from ovlprop ≈ 0.46 to

ovlprop ≈ 0.48 (compared to ovlprop ≈ 0.75 for subscription pruning).

Comparing the influences of subscription pruning and advertisement prun-

ing the other way round, that is, considering the reduction in routing table

size, a similar increase in overlap, for example, to ovlprop ≈ 0.65, is achieved

by reducing the subscription routing table size by approximately 72 percent

(Madv ≈ 0.72) when using advertisement pruning. However, for the same in-

crease in overlap, the event routing table size is only reduced by approximately

19 percent (M ≈ 0.19) when using subscription pruning.

Advertisement pruning therefore retains the existing overlapping relation-

ships much more effectively than subscription pruning. This behavior fully

meets our expectations and the design goals of advertisement pruning.

8.6.3 Findings for Advertisement Pruning

We evaluated the effects of advertisement pruning, the first designated ad-

vertisement-based routing optimization. We showed that the application of

this optimization improves the efficiency of the calculation algorithm for both

overlapping function and overlapping decision problem. Simultaneously, ad-

vertisement pruning decreases the sizes of subscription routing tables. These

beneficial effects on the system are achieved with only slightly increasing the

amount of overlap between subscriptions and advertisement.

This property of advertisement pruning directly corresponds to our design

goal for this optimization, reflected in Part 2b of our central hypothesis. We

proved this hypothesis in this section:

Advertisement pruning increases system efficiency and decreases

routing table size, while only marginally affecting the existing over-

lap.

In a second experiment we analyzed the system behavior if subscription prun-

ing and advertisement pruning are applied at the same time. We found that

also subscription pruning improves the efficiency properties of the overlapping

calculation algorithms. However, subscription pruning strongly increases the

existing overlapping relationships. This identified increase in overlap leads to

8.7 Summary 287

a strongly growing number of forwarded subscriptions in the distributed sys-

tem. These forwarded subscriptions, in turn, increase the size of event routing

tables to a large extent.

We thus conclude that advertisement-based pub-sub systems should apply

advertisement pruning rather than subscription pruning.

8.7 Summary

This chapter presented the results of an extensive empirical evaluation of our

content-based pub-sub prototype BoP. The goals of the experiments were to

analyze the behavior of our general Boolean approaches and to validate the

claims of our central hypothesis.

We started by describing the experimental setup and methodology, and ar-

gued for the requirement of undertaking a real system analysis to obtain realis-

tic test results. The experiments led to new insights for both pure subscription-

based pub-sub systems, and subscription and advertisement-based systems:

our event routing optimization, subscription pruning, results in an effective

system optimization in combination with both general Boolean and restricted

conjunctive subscriptions. All of the introduced pruning variants optimize the

system with respect to their target parameters in comparison to the other

variants.

Relating subscription pruning to subscription covering showed that sub-

scription pruning fulfills our design goals and leads to an effective optimiza-

tion regardless of the degree of cover. For common situations of cover among

subscriptions, subscription pruning even realizes a distributed filtering process

that is more space- and time-efficient than is achieved by subscription cover-

ing. Only in situations of extremely high cover, as expected, is subscription

covering more suitable than subscription pruning. We believe that these sit-

uations of extreme covering proportions rarely occur in practice. Altogether,

the results prove Part 2a of our central hypothesis.

Advertisement-based pub-sub systems solve the overlapping decision prob-

lem more efficiently in our Boolean computation approach than in a conjunc-

tive computation approach. The Boolean approach is also more space-efficient

for non-conjunctive subscriptions and advertisements. The calculation of the

overlapping function problem shows a higher time efficiency in a conjunctive

system. However, a conjunctive system requires more memory and thus does

288 Chapter 8. Experimental Evaluation

not scale to the same numbers of subscriptions and advertisements as the

Boolean system.

Regarding optimizations for advertisement-based systems, we conclude that

advertisement pruning effectively decreases the sizes of subscription routing ta-

bles. Advertisement pruning is the first designated interfering optimization for

advertisement-based pub-sub systems. While performing its optimization, ad-

vertisement pruning only marginally increases the overlapping relationships

in the system, as it is required for advertisement-based optimizations. With

the help of our empirical experiments, we also prove Part 2b of our central

hypothesis.

Chapter 9

Conclusion

I
n this dissertation, we have made the case for the general Boolean

pub-sub model. In doing so, we developed and evaluated algorithms to

support general Boolean subscriptions and advertisements in content-based

pub-sub systems. Our focus was on general-purpose algorithms, that is, on

system solutions that are applicable to a wide range of applications scenarios.

The main hypothesis was split into two parts:

1. In general-purpose pub-sub systems, a general Boolean filtering approach

requires less memory and achieves higher filter efficiency than a conjunc-

tive filtering approach.

2. The pruning of filter expressions is an effective routing optimization ap-

proach for both general Boolean subscriptions and advertisements.

(a) Subscription pruning increases system efficiency and decreases rout-

ing table size, independently of the existing covering relationships.

(b) Advertisement pruning increases system efficiency and decreases

routing table size, while only marginally affecting the existing over-

lap.

In the following section we summarize the steps we undertook for the proof of

this hypothesis and outline our contributions to the research community. The

summary is supplemented by Section 9.2 where we relate our findings to the

broader pub-sub area and report observations from carrying out our research.

Finally, we outline topics for future work that are raised by our research in

Section 9.3.

289

290 Chapter 9. Conclusion

9.1 Summary and Contributions

The overall structure of this dissertation reflects the different research areas

that needed to be pursued to prove the hypothesis. Touching on various as-

pects of pub-sub systems, the different elements focus on state-of-the-art and

related work (Chapter 2), application scenarios (Chapter 3), filtering in cen-

tral broker components (Chapter 4 and Chapter 5), subscription-based event

routing optimizations (Chapter 6), supporting advertisements (Chapter 7),

advertisement-based routing optimizations (Chapter 7), and evaluating em-

pirical studies (Chapter 8).

In detail, the chapters of this dissertation and their contributions can be

summarized as follows:

Chapter 2: Background and Related Work. Chapter 2, as the founda-

tion chapter, presents a study of related work in the pub-sub area. This chap-

ter substantiates the rationale behind our hypothesis, and shows the common

assumptions of current approaches and their implications.

We specifically decided to introduce content-based pub-sub systems from

the viewpoint of database management systems to show both the similarity

between these two kinds of systems and their differences. Based on this per-

spective, we argued that the conversion of Boolean to conjunctive subscriptions

and advertisements that needs to be typically applied in pub-sub systems does

not, in fact, have an equivalent counterpart in database management systems.

Furthermore, the number of conversions in pub-sub systems is much higher

than in database management systems due to the large number of registered

subscriptions compared to the relatively small number of simultaneous queries.

We thus concluded that the suitability of conversion in these systems is highly

questionable, in particular for general-purpose system approaches.

Chapter 3: Application Scenario. The analysis of a real-world applica-

tion scenario for content-based pub-sub mechanisms, online auctions, is devel-

oped in Chapter 3. Overall, the results of this chapter provide the community

with a semi-realistic dataset for empirical experiments: for event messages, we

analyzed the distributions of online book auctions on eBay. We also identified

various subscription and advertisement classes that would typically be regis-

tered by auction site users. Our findings provide the basis for empirical studies

in Chapter 8.

9.1 Summary and Contributions 291

The constructed semi-realistic dataset for the evaluation of content-based

pub-sub systems is the main contribution of Chapter 3. Using this dataset,

evaluations of pub-sub systems reflect the system behavior in practical con-

ditions. The results derived in experiments are realistic, in contrast to the

synthetic findings of pure artificial settings which are used mostly today. The

analysis reported in Chapter 3 constitutes an initial step towards pub-sub sys-

tem evaluations in real-world settings, which is one of the major issues today.

Chapter 4: Filtering of General Boolean Subscriptions. Our proposal

of a general-purpose event filtering algorithm for general Boolean subscriptions

is the contribution of Chapter 4. In contrast to existing filtering approaches

for this class of expressions, our algorithm applies predicate index structures

that allow for an efficient filtering process. The algorithm extends the general-

purpose conjunctive counting algorithm to a general Boolean filtering solution:

candidate subscription matching, in an initial filtering step, identifies a set of

potentially matching subscriptions; in the final filtering step, final subscription

matching evaluates these candidates to identify matching subscriptions.

Chapter 4 also proposes various optimizations to the filtering algorithm.

For example, the filtering shortcut optimization intertwines the matching al-

gorithm and the routing algorithm; it eliminates the evaluation of most can-

didate subscriptions based on the current routing state of a filtering broker

component.

Another important property of the filtering algorithm is the filtering of

conjunctive subscriptions with only marginal overhead compared to the orig-

inal conjunctive counting approach. Altogether, our algorithm allows for the

direct internal support of general Boolean subscriptions in the central filtering

components of content-based pub-sub systems.

Chapter 5: Comparison of Boolean and Conjunctive Filtering. Chap-

ter 5 provides a comparative evaluation of our Boolean filtering algorithm (see

Chapter 4) and a traditional general-purpose conjunctive approach. In the

theoretical part of the chapter, we introduce a characterization framework

for subscriptions, both general Boolean and conjunctive subscriptions. This

framework permits the description of the memory requirements of filtering

algorithms based on 13 parameters.

We described the memory use of the counting algorithm, our Boolean al-

gorithm, and the cluster algorithm. Subsequently, we compared the memory

292 Chapter 9. Conclusion

requirements of these algorithms. We showed that the occurrence of only

one disjunction in subscriptions already favors our Boolean filtering solution.

We thus proved Part 1 of our central hypothesis with respect to memory re-

quirements. Our characterization framework permits the determination of the

filtering algorithm with the smallest memory requirements for any given sub-

scriptions.

The practical part of Chapter 5 verified our theoretical findings by ana-

lyzing the memory requirements of the counting algorithm and the Boolean

filtering algorithm under a real implementation. We compared these require-

ments for a large number of system settings to validate the predictions of our

characterization framework. Finally, we compared the filter efficiency of the

counting and Boolean algorithms for typical subscriptions of the auctioning

scenario. We showed that the Boolean algorithm filters these classes more ef-

ficiently than its conjunctive counterpart. We therefore also proved Part 1 of

our central hypothesis with respect to filter efficiency.

Chapter 6: Routing Optimizations for General Boolean Subscrip-

tions. The direct support of general Boolean subscriptions in distributed

pub-sub systems is the content of Chapter 6. We focus on event routing opti-

mizations—current approaches are not applicable to Boolean subscriptions—

and present two optimizations: predicate replacement and subscription prun-

ing. Both approaches follow optimization objectives that are orthogonal to

recent approaches. Whereas current optimizations depend on similarities and

covering relationships among subscriptions, our proposals actively alter indi-

vidual routing entries regardless of such relationships.

We identified subscription pruning as having a high optimization potential.

Moreover subscription pruning offers the opportunity to optimize pub-sub sys-

tems with respect to different target parameters. We consequently tailored

this optimization with respect to three target parameters: network load, filter

efficiency, and memory use. For the network load, we developed two measures,

one based on subscription accuracy alone, and another based on subscription

accuracy and predicate occurrence. We additionally presented the theoretical

foundations for two extended measures.

In concluding Chapter 6 we described how to practically implement sub-

scription pruning within pub-sub systems. We identified three variants of its

realization: post-pruning, pre-pruning, and combined pruning.

9.1 Summary and Contributions 293

Chapter 7: Supporting General Boolean Advertisements. The final

milestone to provide for the general Boolean pub-sub model is presented in

Chapter 7: the support of general Boolean advertisements. The chapter is

split into two parts. The first part focuses on the calculation of the overlap-

ping relationships between general Boolean subscriptions and advertisements;

the second part introduces the first designated advertisement-based routing

optimization for content-based pub-sub systems, advertisement pruning.

Our approach to calculating the overlapping relationships extends the con-

junctive computation algorithm for the overlapping task. Similar to the Bool-

ean filtering approach (see Chapter 4), our algorithm firstly determines a set of

overlapping candidates, that is, subscriptions or advertisements that overlap

potentially. Secondly, these candidates are analyzed to detect whether they

constitute an overlap. The algorithm handles restricted conjunctive expres-

sions in the same way as a specialized conjunctive solution.

Advertisement pruning is tailored to optimize advertisements, that is, en-

tries in subscription routing tables. When optimizing, it attempts to alter

the existing overlapping relationships in the system as little as possible. This

avoids a blow-up of subscription routing tables. Advertisement pruning is the

first optimization approach that specifically targets the optimization of sub-

scription routing tables and thus constitutes pioneering work in this area.

Chapter 8: Experimental Evaluation. Chapter 8 includes the results of

our extensive practical analysis of our distributed pub-sub prototype, of our

routing optimizations (Chapter 6 and Chapter 7) for general Boolean sub-

scriptions and advertisements, and of our overlapping calculation algorithm

(Chapter 7). We compare a distributed and optimized general Boolean system

against a distributed and optimized conjunctive system, extending our work

from Chapter 5.

We evaluated a true system setting for the dataset derived in Chapter 3.

Analyzing a real system configuration allowed us to consider both system-

specific parameters (e.g., incorporating the influence of the processor cache

and the existing network) but also general parameters (e.g., sizes of routing

tables and network load) in our experiments. This real system analysis was

extended by a simulation to investigate the behavior for large network scales.

The main findings of our experiments are as follows:

1. The four introduced measures to select subscription pruning operations

294 Chapter 9. Conclusion

fulfill their individual design goals of optimizing with respect to memory

requirements, filter efficiency, and network load.

2. Subscription pruning optimizes the system with respect to space and time

efficiency regardless of the degree of cover among subscriptions (proving

Part 2a of our central hypothesis). It even optimizes the system when

the full potential of subscription covering has been reached.

3. Subscription pruning in combination with the Boolean filtering approach

leads to a more time-efficient and space-efficient filtering and routing

process than subscription covering in combination with the conjunctive

counting approach for non-extreme covering proportions.

4. The general Boolean algorithm to calculate the overlapping decision

problem is more time-efficient than the conjunctive calculation algorithm.

5. Advertisement pruning only marginally increases the overlapping rela-

tionships between subscriptions and advertisements (compared to sub-

scription pruning), while reducing memory requirements and increasing

system efficiency (proving Part 2b of our central hypothesis).

Summary of Contributions. In summary, the main contributions of this

dissertation are:

• The provision of a dataset for experimental evaluations of content-based

pub-sub systems that is derived from the typical characteristics of online

auctions.

• The development of the first filtering algorithm for general Boolean sub-

scriptions that applies one-dimensional predicate indexes for efficiency

reasons.

• The introduction of a classification framework for subscriptions that al-

lows for the decision whether to apply a general-purpose conjunctive or a

general-purpose general Boolean filtering algorithm with respect to their

memory requirements.

• The proposal of the first event routing optimization, subscription prun-

ing, that is practically applicable to general Boolean subscriptions but

can also be used in addition to recent optimization approaches.

9.2 Observations 295

• The development of an algorithm to calculate the overlap between gen-

eral Boolean subscriptions and advertisements.

• The introduction of the first advertisement-based routing optimization,

advertisement pruning, that is tailored to optimize (general Boolean)

advertisements.

• The derivation from our classification framework that the occurrence of

only one disjunction in subscriptions already favors a Boolean filtering

approach with respect to memory usage.

• The provision of empirical evidence that

– the predictions of the classification framework with respect to mem-

ory requirements hold in practice.

– the proposed filtering algorithm (without routing optimizations) fil-

ters more efficiently than its conjunctive counterpart.

– our event routing optimization, subscription pruning, optimizes the

system regardless of the existing degree of cover.

– our Boolean filtering approach in combination with subscription

pruning leads to a more efficient filtering process than the conjunc-

tive counting approach in combination with subscription covering

(except in case of high covering proportions).

– our overlapping calculation approach solves the overlapping decision

problem more efficiently than a conjunctive solution.

– our advertisement-based routing optimization, advertisement prun-

ing, maintains the existing overlapping relationships in contrast to

other optimizations.

9.2 Observations

In two previous research projects [BH04, HB02], we noticed the focus of most

of the work in the pub-sub area on conjunctive expressions. We also observed

that realistic, widely used high-level applications for content-based pub-sub

systems were still missing. We believe that this situation led to the artificial

experimental settings often used today.

296 Chapter 9. Conclusion

The issue of missing applications and practical implementations was also

identified and criticized by Rosenblum at DOA1 2005 [Ros05], and by the pub-

sub community at DEBS2 2006 [DEB06] and Event Processing [Dag07]. We

believe that this lack of real-world applications has contributed to the focus of

pub-sub research on conjunctive expressions. For example, a popular setting in

the literature is the stock broker application, which simplifies the content-based

pub-sub paradigm to the selection of stocks of certain companies. Potentially,

subscriptions further restrict the prices of the stocks of interest, leading to

conjunctive subscriptions of two predicates.

However, an analysis of more sophisticated settings reveals the need to

support more complex subscriptions. In this dissertation, we made a first step

for the consideration of such scenarios with our choice of an online auction

example application. The chosen application, evidently, influences the test

settings that are applied in conducted studies. We believe that our analysis of

typical event distributions and the identification of various subscription and

advertisement classes is a step in the direction of more realistic experiments

and evaluations. This focus on existing advanced problems should lead to a

wider adoption of the pub-sub paradigm in everyday systems.

In the dissertation we demonstrated that the reconsideration of initial as-

sumptions can result in important novel findings. Our algorithms for filtering,

routing, and overlapping calculation are applicable to all kinds of Boolean

subscriptions. Thus this dissertation contributes valuable findings for both

conjunctive and general Boolean application scenarios.

One may argue that the application of low-level optimizations in conjunc-

tive approaches might change the outcome of our experimental evaluation.

However, these optimizations are similarly applicable to our Boolean solu-

tions; such low-level considerations are not the focus of this work. In this

dissertation, we specifically aimed at deriving general conclusions about the

applicability and behavior of general-purpose general Boolean and conjunctive

solutions for high-level application scenarios.

One might take the position that existing conjunctive approaches do not

target the general Boolean case, although some authors particularly state that

the canonical conversion allows for the focus on conjunctions, as shown in

Section 1.2 (page 4). We do not question that some work on conjunctive

expressions explicitly and solely targets this restricted setting. The research

1International Symposium on Distributed Objects and Applications.
2The leading international forum for research into event-based computing.

9.3 Future Work 297

in this dissertation, however, focuses on the general Boolean scenario and thus

complements this work on conjunctions.

It is to be seen whether the issue of the validity of assumptions for both

applications and experiments will be resolved once content-based pub-sub sys-

tems are applied in practice in large scale. However, if this implementation is

undertaken by commercial companies, the research community might still lack

the required realistic real-world datasets for different applications. It would

thus be preferable if the whole community stands together to build and main-

tain a large-scale content-based pub-sub system. If this system is adopted for

real-world applications, valuable datasets and insights into applications would

become publicly available.

9.3 Future Work

Content-based pub-sub systems is an active research area. Various projects

focus on the extension of the core pub-sub functionality (see Section 2.1.3,

page 22). Although these extensions might ultimately enhance the application

fields for pub-sub by providing extended employment mechanisms, we do not

aim at naming such extensions in this section. Instead we focus on those topics

that are directly raised by the research presented in this dissertation.

Combination of Routing Optimizations. In Section 8.4.2 (page 269),

we showed that subscription pruning can be applied additionally to subscrip-

tion covering. This advantageous property results from the orthogonal opti-

mization principles of these two approaches (see Section 6.1, page 150). The

presented, step-wise application of firstly covering and secondly pruning (see

Section 8.4.2) is only one option to combine routing optimizations. We believe

that there is further potential if utilizing multiple optimizations simultane-

ously: the application of subscription pruning might lead to more overlap

among subscriptions and, potentially, to more covering relationships among

them. Hence, after having applied subscription pruning, covering might be-

come a more appropriate optimization than before performing pruning. In

particular, there is further room to design extended pruning measures that

aim at increasing the covering relationships.

Furthermore, pruning can be applied to solve the imperfect merging task

(see Section 6.3.5, page 161). In this case, either the presented (see Sec-

298 Chapter 9. Conclusion

tion 6.4, page 162) or extended pruning measures can be applied to merge

several subscriptions. Due to the generality of subscription pruning there is a

large potential to tailor the optimization to this application of merging.

In Section 6.2 (page 152), we also introduced predicate replacement as a

novel optimization approach. We mainly focused on pruning due to its high

optimization potential. Future work could try to combine both proposals, as

indicated in Section 6.3.4 (page 160). With respect to covering, predicate re-

placement can naturally be applied to effectively create covering subscriptions.

Implementation of Pruning. Within this dissertation our focus was the

evaluation of the optimization potential of subscription pruning. The practical

application of this optimization requires the ordering of pruning options. This

ordering can be efficiently realized by a priority queue, in particular if perform-

ing bulk pruning (see Section 6.6.2, page 193). Our prototype BoP currently

recalculates the ranking value for each subscription after it is pruned.

Future work could try to optimize this recalculation process and only re-

compute the partial ranking of those parts of subscriptions or advertisements

that are affected by pruning. Further optimization potential might exist if spe-

cializing the applied priority queue, for example, in the accuracy-based pruning

variant the ranking measure never decreases due to pruning.

Another branch of future research that is raised by our work regards the

dynamic determination of the cut-off point for subscription and advertisement

pruning. This dissertation investigated the general potential of subscription

and advertisement pruning as routing optimizations. In the current version of

BoP, the cut-off point for pruning operations needs to be set statically by a

system administrator. Even though accuracy and commonality-based pruning

(see Section 6.4.5, page 180) leads to a minor cut-off point only, a dynamic

determination of this point remains a worthwhile question for future research.

Characterization Framework for Filter Efficiency. We introduced a

characterization framework for subscriptions. This framework considers those

properties of subscriptions that influence the memory requirements of general-

purpose filtering algorithms in Chapter 5 (page 119). Based on the proposed

framework one can determine whether a conjunctive or a Boolean filtering

solution should be applied for a given set of subscriptions.

An exciting topic for future work is to develop an orthogonal characteri-

zation framework to describe those attributes of subscriptions that influence

9.3 Future Work 299

the filter efficiency properties of different algorithms. Having identified these

attributes and described various algorithms based on the framework, a com-

parison of these descriptions allows for the determination of the preferable

algorithm for a given subscription set (similar to our method in Section 5.5,

page 132). The efficiency-based framework might then have to consider at-

tributes of event messages, which apparently influence filter efficiency as well.

Setting the potential of this framework into perspective allows the creation

of a pub-sub system that automatically adapts to the current subscription and

event load. The system could alter the applied filtering algorithm based on

its current configuration. That is, it could aim at the most space-efficient, the

most time-efficient, or the optimally balanced filtering solution.

Test Suites and Application Specifics. Taking up the issue about the

validity of assumptions and evaluations from our observations (Section 9.2,

page 295), the pub-sub community requires realistic test suites for different

application areas. These test suites need to contain the specifics of typical event

loads, subscriptions, and advertisements. In this dissertation, we undertook a

first step in this direction, using the online auction scenario. The information

retrieval community with its Cross-Language Evaluation Forum (CLEF3) and

Text REtrieval Conference (TREC4) could serve as a role model for such test

infrastructures for the pub-sub area.

It is evident that the whole community and industry should stand together

in this effort to creating realistic test settings for different applications. Oth-

erwise, it remains questionable whether the developed test suites will become

widely accepted. Moreover, the effort of developing test settings should stretch

across all sub-communities of pub-sub. Taking such a comprehensive approach

allows for the incorporation of high-level requirements—for example, user in-

terface and user experience aspects—into low-level requirements, for example,

internal subscription definition language and data model. Furthermore, it

might reveal the independence of the overall pub-sub system from realization

specifics, for example, whether to apply an attribute-value pair or an XML

event model.

3http://www.clef-campaign.org/
4http://trec.nist.gov/

http://www.clef-campaign.org/
http://trec.nist.gov/

300 Chapter 9. Conclusion

Appendix A

Distributions of Event Messages

I
n this appendix, we give details about the distributions of attribute

values in event messages. The findings we present in the following sections

are derived from our analysis of eBay (see Chapter 3). In Appendix A.1,

we name the domains of those attributes that are defined as enumerations.

Appendix A.2 specifies the distributions of the possible values of the eight

attributes of event messages in the online auction application scenario (see

Section 3.2, page 72).

A.1 Attribute Domains for Enumerations

In this section, we state the domains of the attributes Category, Format,

Special Attribute, and Condition. These four attributes specify enumera-

tions as their domains.

The twenty-two possible values for the categories of fiction books (i.e.,

attribute Category) are as follows:

1. Action, Adventure

2. Classics

3. Fantasy

4. Folklore, Mythology

5. Historical

6. Horror

7. Humor

301

302 Appendix A. Distributions of Event Messages

8. Literary Collections

9. Literary Criticism

10. Literature, Ancient

11. Literature, Classic

12. Literature, Modern

13. Military

14. Mystery, Thriller

15. Plays, Screenplays

16. Poetry

17. Pulps

18. Religious, Inspirational

19. Romance

20. Science Fiction

21. Westerns

22. Other

Sellers can specify four different formats (i.e., attribute Format) for books:

1. Hardcover

2. Softcover

3. Mixed Lot

4. Other

Special attributes (i.e., attribute Special Attribute) might increase the value

of books. Sellers can choose among the following options:

1. 1st Edition

2. Signed

A.2 Distributions of Attribute Values 303

3. Unspecified

The condition (i.e., attribute Condition) of a book is one of the following:

1. New

2. Used

A.2 Distributions of Attribute Values

We give an overview of the exact probabilities of all possible combinations

of the values of the attributes Category, Format, Special Attribute, and

Condition in Tables A.1 to A.6. Each row of these tables specifies a cate-

gory; the four right columns state a combination of the values of the attributes

Condition, Special Attribute, and Format: Table A.1 contains the prob-

abilities for used books of the first edition, Table A.2 for signed used books,

Table A.3 for all other used books, Table A.4 for new books of the first edition,

Table A.5 for signed new books, and Table A.6 for all other new books.

For attribute Buy It Now, we analyzed the probability that an item of any

category is sold as Buy-It-Now item. In all other cases, the book is not a

Buy-It-Now item. We give an overview of the results in Table A.7.

We also analyzed the number of bids depending on the category of items.

An overview of our results is given in Tables A.8 to A.11: Table A.8 contains

the results for 0 to 3 bids, Table A.9 for 4 to 7 bids, Table A.10 for 8 to 20

bids, and Table A.11 for 21 or more bids.

The probability of auction items of all 22 categories depending on attribute

Price is shown in Tables A.12 to A.15: Table A.12 gives an overview for prices

up to $4.00, Table A.13 for prices ranging from $4.01 to $8.00, Table A.14 for

prices in between $8.01 and $30.00, and Table A.15 covers prices over $30.01.

Table A.16 gives an overview of the total number of items for all categories.

304 Appendix A. Distributions of Event Messages

Table A.1: Overview of the probabilities of used books of the first edition
for all categories (given in the rows) and formats (given in the columns). The
first column contains the category, abbreviated by “C”.

C Other format Mixed lot Softcover Hardcover

1 6.469393× 10−6 6.469393× 10−6 3.234697× 10−5 3.752248× 10−4

2 0.000000 0.000000 0.000000 4.528575× 10−5

3 0.000000 6.469393× 10−6 1.293879× 10−4 2.911227× 10−4

4 0.000000 0.000000 1.293879× 10−5 6.469393× 10−6

5 6.469393× 10−6 0.000000 7.763272× 10−5 1.487960× 10−4

6 1.293879× 10−5 0.000000 5.175515× 10−5 3.816942× 10−4

7 1.940818× 10−5 0.000000 1.552654× 10−4 1.940818× 10−4

8 6.469393× 10−6 0.000000 0.000000 6.469393× 10−5

9 0.000000 0.000000 0.000000 6.469393× 10−6

10 0.000000 0.000000 0.000000 0.000000
11 0.000000 0.000000 0.000000 1.940818× 10−5

12 2.587757× 10−5 0.000000 1.682042× 10−4 7.633884× 10−4

13 0.000000 0.000000 1.293879× 10−5 1.811430× 10−4

14 4.528575× 10−5 0.000000 1.423267× 10−4 1.390920× 10−3

15 0.000000 0.000000 3.234697× 10−5 6.469393× 10−6

16 2.587757× 10−5 6.469393× 10−6 1.293879× 10−4 2.587757× 10−4

17 0.000000 0.000000 6.469393× 10−6 6.469393× 10−6

18 0.000000 0.000000 6.469393× 10−5 9.057151× 10−5

19 0.000000 0.000000 2.070206× 10−4 1.811430× 10−4

20 1.293879× 10−5 0.000000 2.846533× 10−4 3.105309× 10−4

21 6.469393× 10−6 0.000000 3.881636× 10−5 6.469393× 10−5

22 1.035103× 10−4 6.469393× 10−6 1.940818× 10−4 6.210618× 10−4

A.2 Distributions of Attribute Values 305

Table A.2: Overview of the probabilities of signed used books for all cate-
gories (given in the rows) and formats (given in the columns). The first column
contains the category, abbreviated by “C”.

C Other format Mixed lot Softcover Hardcover

1 1.811430× 10−4 1.293879× 10−5 1.759675× 10−3 8.584885× 10−3

2 2.587757× 10−5 6.469393× 10−6 2.781839× 10−4 1.261532× 10−3

3 7.116333× 10−5 4.528575× 10−5 3.836350× 10−3 5.304903× 10−3

4 1.293879× 10−5 6.469393× 10−6 1.552654× 10−4 6.340005× 10−4

5 1.293879× 10−4 0.000000 5.757760× 10−4 3.111778× 10−3

6 1.164491× 10−4 2.587757× 10−5 1.953757× 10−3 5.272556× 10−3

7 9.057151× 10−5 0.000000 1.468552× 10−3 2.613635× 10−3

8 1.293879× 10−5 0.000000 1.487960× 10−4 5.951842× 10−4

9 1.293879× 10−5 0.000000 4.528575× 10−5 1.552654× 10−4

10 0.000000 0.000000 6.469393× 10−6 4.528575× 10−5

11 2.587757× 10−5 0.000000 1.293879× 10−5 4.140412× 10−4

12 4.075718× 10−4 6.469393× 10−6 1.222715× 10−3 6.922251× 10−3

13 1.293879× 10−5 1.293879× 10−5 8.022048× 10−4 1.766144× 10−3

14 2.717145× 10−4 9.057151× 10−5 2.464839× 10−3 1.676220× 10−2

15 3.234697× 10−5 0.000000 2.587757× 10−4 4.011024× 10−4

16 7.763272× 10−5 6.469393× 10−6 5.563678× 10−4 1.255062× 10−3

17 6.469393× 10−6 0.000000 3.364085× 10−4 7.116333× 10−5

18 4.528575× 10−5 1.293879× 10−5 2.652451× 10−4 8.798375× 10−4

19 1.293879× 10−4 5.822454× 10−5 6.165332× 10−3 4.535045× 10−3

20 1.811430× 10−4 3.234697× 10−5 6.197679× 10−3 5.686597× 10−3

21 4.528575× 10−5 1.293879× 10−5 1.300348× 10−3 1.352103× 10−3

22 7.181027× 10−4 4.528575× 10−5 3.791064× 10−3 7.925007× 10−3

306 Appendix A. Distributions of Event Messages

Table A.3: Overview of the probabilities of used books not specified as signed
and first edition for all categories (given in the rows) and formats (given in the
columns). The first column contains the category, abbreviated by “C”.

C Other format Mixed lot Softcover Hardcover

1 7.569190× 10−4 3.881636× 10−4 2.761784× 10−2 2.664743× 10−2

2 2.587757× 10−4 9.704090× 10−5 6.275312× 10−3 7.879721× 10−3

3 3.881636× 10−4 4.593269× 10−4 2.851709× 10−2 1.143789× 10−2

4 9.704090× 10−5 1.293879× 10−5 1.889063× 10−3 2.160777× 10−3

5 3.493472× 10−4 9.704090× 10−5 8.759559× 10−3 8.112619× 10−3

6 4.140412× 10−4 4.269800× 10−4 2.172422× 10−2 1.339811× 10−2

7 3.687554× 10−4 1.617348× 10−4 1.653577× 10−2 7.892660× 10−3

8 9.704090× 10−5 2.587757× 10−5 1.345634× 10−3 2.775370× 10−3

9 2.587757× 10−5 6.469393× 10−6 2.975921× 10−4 4.011024× 10−4

10 3.881636× 10−5 0.000000 1.099797× 10−4 2.070206× 10−4

11 1.293879× 10−4 5.175515× 10−5 1.811430× 10−3 2.801247× 10−3

12 7.827966× 10−4 2.781839× 10−4 1.564299× 10−2 1.404505× 10−2

13 8.410211× 10−5 1.164491× 10−4 6.294720× 10−3 4.011024× 10−3

14 1.552654× 10−3 1.973165× 10−3 5.815985× 10−2 4.951674× 10−2

15 4.528575× 10−5 3.881636× 10−5 1.973165× 10−3 1.119205× 10−3

16 2.070206× 10−4 3.234697× 10−5 2.607166× 10−3 4.030432× 10−3

17 6.469393× 10−6 0.000000 1.377981× 10−3 2.393676× 10−4

18 3.752248× 10−4 5.175515× 10−4 1.106266× 10−2 6.236495× 10−3

19 8.151436× 10−4 1.462083× 10−3 1.139907× 10−1 2.366504× 10−2

20 6.534087× 10−4 6.275312× 10−4 3.753542× 10−2 1.460142× 10−2

21 1.552654× 10−4 8.410211× 10−5 7.743864× 10−3 5.136698× 10−3

22 1.669103× 10−3 6.728169× 10−4 5.508041× 10−2 2.617517× 10−2

A.2 Distributions of Attribute Values 307

Table A.4: Overview of the probabilities of new books of the first edition for
all categories (given in the rows) and formats (given in the columns). The first
column contains the category, abbreviated by “C”.

C Other format Mixed lot Softcover Hardcover

1 1.293879× 10−5 0.000000 1.682042× 10−4 5.240209× 10−4

2 0.000000 6.469393× 10−6 2.587757× 10−5 1.423267× 10−4

3 5.175515× 10−4 1.293879× 10−5 4.075718× 10−4 1.125674× 10−3

4 0.000000 0.000000 3.234697× 10−5 5.175515× 10−5

5 3.234697× 10−5 0.000000 6.469393× 10−5 1.358573× 10−4

6 4.528575× 10−5 0.000000 2.264288× 10−4 7.504496× 10−4

7 6.469393× 10−6 0.000000 1.035103× 10−4 1.552654× 10−4

8 0.000000 0.000000 1.293879× 10−5 9.057151× 10−5

9 0.000000 0.000000 0.000000 0.000000
10 0.000000 0.000000 6.469393× 10−6 0.000000
11 0.000000 0.000000 0.000000 6.469393× 10−6

12 7.116333× 10−5 1.293879× 10−5 3.622860× 10−4 1.268001× 10−3

13 0.000000 0.000000 3.881636× 10−5 1.164491× 10−4

14 1.035103× 10−4 0.000000 1.746736× 10−4 9.898172× 10−4

15 6.469393× 10−6 0.000000 1.293879× 10−5 0.000000
16 2.587757× 10−5 0.000000 9.704090× 10−5 5.175515× 10−5

17 0.000000 0.000000 1.293879× 10−5 0.000000
18 1.293879× 10−5 0.000000 1.940818× 10−5 4.528575× 10−5

19 2.587757× 10−5 0.000000 1.229185× 10−4 7.763272× 10−5

20 3.234697× 10−4 0.000000 2.264288× 10−4 6.081230× 10−4

21 0.000000 0.000000 0.000000 3.881636× 10−5

22 2.070206× 10−4 0.000000 2.587757× 10−4 9.121845× 10−4

308 Appendix A. Distributions of Event Messages

Table A.5: Overview of the probabilities of signed new books for all categories
(given in the rows) and formats (given in the columns). The first column
contains the category, abbreviated by “C”.

C Other format Mixed lot Softcover Hardcover

1 4.528575× 10−5 0.000000 6.857557× 10−4 3.098839× 10−3

2 0.000000 1.293879× 10−5 7.116333× 10−5 2.587757× 10−4

3 6.275312× 10−4 1.293879× 10−5 1.863185× 10−3 3.706962× 10−3

4 6.469393× 10−6 6.469393× 10−6 1.035103× 10−4 2.717145× 10−4

5 4.528575× 10−5 0.000000 3.493472× 10−4 7.763272× 10−4

6 1.035103× 10−4 6.469393× 10−6 7.504496× 10−4 1.999043× 10−3

7 2.587757× 10−5 0.000000 4.722657× 10−4 9.510008× 10−4

8 1.940818× 10−5 0.000000 4.528575× 10−5 3.493472× 10−4

9 0.000000 0.000000 6.469393× 10−6 2.587757× 10−5

10 0.000000 0.000000 6.469393× 10−6 6.469393× 10−6

11 0.000000 0.000000 1.293879× 10−5 1.940818× 10−5

12 1.487960× 10−4 1.293879× 10−5 1.442675× 10−3 2.969452× 10−3

13 1.293879× 10−5 0.000000 1.099797× 10−4 3.816942× 10−4

14 1.552654× 10−4 1.293879× 10−5 9.057151× 10−4 4.839106× 10−3

15 0.000000 0.000000 7.116333× 10−5 1.293879× 10−5

16 3.881636× 10−5 0.000000 2.652451× 10−4 2.264288× 10−4

17 0.000000 0.000000 3.234697× 10−5 6.469393× 10−6

18 6.469393× 10−6 0.000000 2.199594× 10−4 4.593269× 10−4

19 4.528575× 10−5 0.000000 1.274470× 10−3 1.196838× 10−3

20 3.558166× 10−4 0.000000 2.561880× 10−3 2.814186× 10−3

21 0.000000 0.000000 2.005512× 10−4 2.328982× 10−4

22 2.911227× 10−4 0.000000 1.953757× 10−3 2.600696× 10−3

A.2 Distributions of Attribute Values 309

Table A.6: Overview of the probabilities of new books neither specified as
signed nor specified as first edition for all categories (given in the rows) and
formats (given in the columns). The first column contains the category, ab-
breviated by “C”.

C Other format Mixed lot Softcover Hardcover

1 3.364085× 10−4 0.000000 4.366840× 10−3 9.568233× 10−3

2 5.693066× 10−4 1.293879× 10−5 9.315926× 10−4 1.022164× 10−3

3 9.121845× 10−4 7.116333× 10−5 5.654250× 10−3 6.779924× 10−3

4 7.116333× 10−5 1.940818× 10−5 5.822454× 10−4 8.022048× 10−4

5 1.940818× 10−4 6.469393× 10−6 1.694981× 10−3 1.779083× 10−3

6 2.328982× 10−4 3.234697× 10−5 3.137656× 10−3 3.855758× 10−3

7 2.199594× 10−4 6.469393× 10−6 3.001798× 10−3 3.157064× 10−3

8 9.057151× 10−5 0.000000 3.428778× 10−4 7.310414× 10−4

9 0.000000 0.000000 1.423267× 10−4 6.986945× 10−4

10 0.000000 0.000000 1.293879× 10−4 1.229185× 10−4

11 1.293879× 10−5 0.000000 4.075718× 10−4 3.558166× 10−4

12 2.587757× 10−4 2.587757× 10−5 4.218044× 10−3 4.593269× 10−3

13 5.175515× 10−5 0.000000 6.340005× 10−4 8.086742× 10−4

14 5.757760× 10−4 6.469393× 10−5 7.491557× 10−3 1.683336× 10−2

15 4.528575× 10−5 0.000000 4.011024× 10−4 8.410211× 10−5

16 1.099797× 10−4 0.000000 7.827966× 10−4 8.086742× 10−4

17 2.587757× 10−5 0.000000 9.057151× 10−5 6.469393× 10−6

18 1.617348× 10−4 6.469393× 10−6 2.988860× 10−3 2.937105× 10−3

19 1.940818× 10−4 2.587757× 10−5 1.126968× 10−2 6.715230× 10−3

20 9.380620× 10−4 3.234697× 10−5 7.038700× 10−3 6.042413× 10−3

21 5.822454× 10−5 0.000000 3.946330× 10−4 5.563678× 10−4

22 8.086742× 10−4 2.523063× 10−4 1.195544× 10−2 8.947171× 10−3

310 Appendix A. Distributions of Event Messages

Table A.7: Overview of the probabilities of books specified as Buy-It-Now
items (Buy It Now = Yes) for all categories (given in the rows).

Category Buy It Now

1 0.148564
2 0.137605
3 0.143228
4 0.162313
5 0.116194
6 0.177406
7 0.120268
8 0.136015
9 0.173759
10 0.314286
11 0.186170
12 0.120437
13 0.127722
14 0.169996
15 0.133903
16 0.101506
17 0.043605
18 0.164380
19 0.182857
20 0.135013
21 0.113257
22 0.138597

A.2 Distributions of Attribute Values 311

Table A.8: Overview of the probabilities of book items for all categories
(given in the rows) having 0 to 3 bids (given in the columns).

Category 0 bids 1 bid 2 bids 3 bids

1 0.890891 0.071063 0.014498 0.006369
2 0.856820 0.094574 0.019970 0.007913
3 0.814717 0.119045 0.024911 0.011824
4 0.840345 0.117584 0.014024 0.011866
5 0.873781 0.092817 0.014189 0.007685
6 0.861950 0.089958 0.017621 0.009009
7 0.847547 0.100000 0.020377 0.007170
8 0.871152 0.093501 0.018244 0.004561
9 0.891566 0.096386 0.008032 0.004016
10 0.835294 0.129412 0.023529 0.011765
11 0.866071 0.088170 0.014509 0.008929
12 0.866002 0.091617 0.016828 0.007323
13 0.868811 0.081164 0.012762 0.010720
14 0.884921 0.082129 0.012797 0.006242
15 0.887755 0.085034 0.017007 0.006803
16 0.880086 0.092077 0.009279 0.009279
17 0.815884 0.133574 0.021661 0.007220
18 0.823123 0.106225 0.023715 0.014575
19 0.859675 0.096295 0.017726 0.008275
20 0.850492 0.103581 0.018532 0.008505
21 0.828596 0.115872 0.024486 0.009182
22 0.869191 0.090694 0.016185 0.008324

312 Appendix A. Distributions of Event Messages

Table A.9: Overview of the probabilities of book items for all categories
(given in the rows) having 4 to 7 bids (given in the columns).

Category 4 bids 5 bids 6 bids 7 bids

1 0.005950 0.003771 0.001760 0.001844
2 0.004145 0.006405 0.003391 0.001507
3 0.008151 0.005510 0.004018 0.003444
4 0.004315 0.004315 0.002157 0.003236
5 0.003547 0.001774 0.002069 0.001478
6 0.005962 0.004240 0.002782 0.002517
7 0.006226 0.006604 0.005472 0.002075
8 0.003421 0.003421 0.000000 0.003421
9 0.000000 0.000000 0.000000 0.000000
10 0.000000 0.000000 0.000000 0.000000
11 0.006696 0.002232 0.005580 0.001116
12 0.005142 0.004363 0.004207 0.000779
13 0.008167 0.005615 0.003573 0.002552
14 0.003924 0.003567 0.002051 0.001204
15 0.001701 0.000000 0.000000 0.000000
16 0.001428 0.002855 0.001428 0.000714
17 0.003610 0.003610 0.000000 0.003610
18 0.008646 0.006423 0.005435 0.004447
19 0.006263 0.004289 0.001860 0.001632
20 0.005103 0.004834 0.003133 0.002596
21 0.006996 0.004373 0.004373 0.001749
21 0.005318 0.003295 0.002081 0.001561

A.2 Distributions of Attribute Values 313

Table A.10: Overview of the probabilities of book items for all categories
(given in the rows) having 8 to 20 bids (given in the columns).

Category 8 bids 9 bids 10 bids 11 to 20 bids

1 0.001006 0.000251 0.000587 0.001676
2 0.001130 0.000377 0.000754 0.002261
3 0.001492 0.000918 0.001837 0.004018
4 0.000000 0.001079 0.000000 0.001079
5 0.000000 0.000591 0.000591 0.000887
6 0.001722 0.001325 0.001325 0.001590
7 0.001698 0.000755 0.000943 0.001132
8 0.000000 0.001140 0.001140 0.000000
9 0.000000 0.000000 0.000000 0.000000
10 0.000000 0.000000 0.000000 0.000000
11 0.000000 0.002232 0.001116 0.002232
12 0.000779 0.000779 0.001246 0.000779
13 0.001531 0.001021 0.001531 0.002042
14 0.000803 0.000713 0.000535 0.000936
15 0.000000 0.000000 0.000000 0.001701
16 0.000000 0.000000 0.001428 0.000000
17 0.000000 0.003610 0.003610 0.003610
18 0.000988 0.000988 0.003211 0.001976
19 0.000797 0.000797 0.000683 0.001291
20 0.000269 0.000806 0.001343 0.000448
21 0.000000 0.000875 0.002186 0.001312
22 0.000983 0.000694 0.000751 0.000751

314 Appendix A. Distributions of Event Messages

Table A.11: Overview of the probabilities of book items for all categories
(given in the rows) having 21 or more bids (given in the columns).

Category 21 to 30 bids 31 to 40 bids 41 to 50 bids 51 or more bids

1 0.000000 0.000000 0.000335 0.000000
2 0.000754 0.000000 0.000000 0.000000
3 0.000000 0.000000 0.000000 0.000115
4 0.000000 0.000000 0.000000 0.000000
5 0.000591 0.000000 0.000000 0.000000
6 0.000000 0.000000 0.000000 0.000000
7 0.000000 0.000000 0.000000 0.000000
8 0.000000 0.000000 0.000000 0.000000
9 0.000000 0.000000 0.000000 0.000000
10 0.000000 0.000000 0.000000 0.000000
11 0.001116 0.000000 0.000000 0.000000
12 0.000000 0.000156 0.000000 0.000000
13 0.000000 0.000000 0.000510 0.000000
14 0.000000 0.000000 0.000178 0.000000
15 0.000000 0.000000 0.000000 0.000000
16 0.001428 0.000000 0.000000 0.000000
17 0.000000 0.000000 0.000000 0.000000
18 0.000000 0.000000 0.000247 0.000000
19 0.000000 0.000000 0.000418 0.000000
20 0.000358 0.000000 0.000000 0.000000
21 0.000000 0.000000 0.000000 0.000000
22 0.000173 0.000000 0.000000 0.000000

A.2 Distributions of Attribute Values 315

Table A.12: Overview of the probabilities of book items for all categories
(given in the rows) with prices up to $4.00 (given in the columns).

Category 0.00 to 1.00 1.01 to 2.00 2.01 to 3.00 3.01 to 4.00

1 0.348310 0.166654 0.112922 0.076866
2 0.234263 0.191902 0.099524 0.109051
3 0.130725 0.166924 0.103796 0.085752
4 0.167331 0.121293 0.084108 0.100930
5 0.212462 0.205325 0.114741 0.108976
6 0.276529 0.182667 0.105103 0.084285
7 0.244309 0.201649 0.117584 0.103155
8 0.221018 0.118093 0.080715 0.098050
9 0.381329 0.087025 0.050633 0.037975
10 0.250000 0.096591 0.113636 0.125000
11 0.206428 0.138072 0.101856 0.081938
12 0.184201 0.170094 0.110105 0.093919
13 0.245265 0.241477 0.119555 0.097301
14 0.323060 0.180753 0.121580 0.089227
15 0.164268 0.179509 0.101609 0.137172
16 0.100659 0.135370 0.077751 0.114196
17 0.098446 0.150259 0.056995 0.111399
18 0.246017 0.144734 0.148769 0.109559
19 0.385819 0.191166 0.117430 0.077845
20 0.210760 0.181639 0.098466 0.092014
21 0.228517 0.132477 0.103623 0.078559
22 0.255159 0.254382 0.101731 0.098515

316 Appendix A. Distributions of Event Messages

Table A.13: Overview of the probabilities of book items for all categories
(given in the rows) with prices ranging from $4.01 to $8.00 (given in the
columns).

Category 4.01 to 5.00 5.01 to 6.00 6.01 to 7.00 7.01 to 8.00

1 0.068251 0.039918 0.026253 0.025473
2 0.075536 0.044573 0.027731 0.034536
3 0.080234 0.050712 0.038020 0.042931
4 0.117751 0.067729 0.056662 0.048694
5 0.087977 0.059017 0.032116 0.030744
6 0.074114 0.044492 0.029562 0.026291
7 0.073400 0.047679 0.028410 0.031278
8 0.087216 0.060130 0.029252 0.033044
9 0.083861 0.036392 0.041139 0.050633
10 0.130682 0.079545 0.034091 0.028409
11 0.095971 0.035763 0.034405 0.038026
12 0.076398 0.050932 0.033484 0.034375
13 0.069839 0.044744 0.021780 0.026278
14 0.070070 0.037586 0.026428 0.025606
15 0.080440 0.060965 0.029636 0.049958
16 0.091982 0.078445 0.031586 0.049983
17 0.103627 0.077720 0.044041 0.056995
18 0.085558 0.057832 0.039727 0.028243
19 0.057004 0.032857 0.023640 0.019449
20 0.096204 0.049024 0.032682 0.035993
21 0.088037 0.052022 0.064027 0.061710
22 0.065713 0.049767 0.021895 0.031007

A.2 Distributions of Attribute Values 317

Table A.14: Overview of the probabilities of book items for all categories
(given in the rows) with prices ranging from $8.01 to $30.00 (given in the
columns). The first column contains the category, abbreviated by “C”.

C 8.01 to 9.00 9.01 to 10.00 10.01 to 20.00 20.01 to 30.00

1 0.017118 0.035797 0.047234 0.013702
2 0.016672 0.048826 0.064137 0.019224
3 0.026708 0.052202 0.107604 0.046904
4 0.036299 0.076140 0.078353 0.019035
5 0.021136 0.043234 0.053253 0.014411
6 0.016893 0.039317 0.058589 0.022841
7 0.021061 0.032443 0.065782 0.015056
8 0.028169 0.070423 0.086132 0.029252
9 0.034810 0.104430 0.071203 0.009494
10 0.022727 0.039773 0.056818 0.011364
11 0.044364 0.095971 0.071073 0.022182
12 0.028955 0.058876 0.077957 0.029475
13 0.018939 0.036932 0.047585 0.012311
14 0.016036 0.035979 0.049099 0.012485
15 0.033870 0.055885 0.055038 0.024555
16 0.045817 0.091982 0.108990 0.032280
17 0.082902 0.054404 0.090674 0.044041
18 0.017277 0.032899 0.057107 0.014277
19 0.011525 0.024688 0.041828 0.009266
20 0.020112 0.052837 0.070980 0.025895
21 0.021904 0.046967 0.064869 0.029697
22 0.018224 0.029587 0.045881 0.011604

318 Appendix A. Distributions of Event Messages

Table A.15: Overview of the probabilities of book items for all categories
(given in the rows) with prices from $30.01 (given in the columns). The first
column contains the category, abbreviated by “C”.

C 30.01 to 40.00 40.01 to 50.00 50.01 to 100.00 100.00 or more

1 0.005830 0.005199 0.006276 0.004196
2 0.006975 0.006125 0.011398 0.009527
3 0.024004 0.013575 0.019589 0.010319
4 0.006197 0.005755 0.007525 0.006197
5 0.005078 0.003843 0.005764 0.001921
6 0.012788 0.008506 0.011301 0.006721
7 0.005736 0.004571 0.006722 0.001165
8 0.012459 0.014085 0.021668 0.010293
9 0.004747 0.001582 0.003165 0.001582
10 0.005682 0.000000 0.000000 0.005682
11 0.012675 0.009507 0.007696 0.004074
12 0.015591 0.010840 0.015963 0.008835
13 0.005208 0.003314 0.006155 0.003314
14 0.004766 0.002523 0.003420 0.001383
15 0.008467 0.009314 0.003387 0.005927
16 0.009719 0.011107 0.013190 0.006942
17 0.018135 0.005181 0.005181 0.000000
18 0.009311 0.003621 0.004138 0.000931
19 0.003291 0.001965 0.001948 0.000278
20 0.011565 0.007039 0.009134 0.005657
21 0.013269 0.005265 0.005687 0.003370
22 0.005976 0.003082 0.004690 0.002787

A.2 Distributions of Attribute Values 319

Table A.16: Overview of the number of items for all categories (given in the
rows).

Category Number of items

1 12, 244
2 2, 833
3 8, 951
4 9, 84
5 3, 514
6 7, 799
7 5, 456
8 911
9 262
10 103
11 911
12 6, 673
13 2, 051
14 23, 292
15 627
16 1, 450
17 271
18 4, 142
19 27, 172
20 11, 407
21 2343
22 18, 206

320 Appendix A. Distributions of Event Messages

Appendix B

Attribute Domains & Predicate

Ranges

I
n this appendix, we provide details about the realization of attribute do-

mains in BoP (Appendix B.1). We also specify the ranges of the operands

that are used in the predicates of subscriptions (Appendix B.2) and advertise-

ments (Appendix B.3). The specifications we show in the following sections

are applied in the experiments described in Chapter 5 and Chapter 8.

B.1 Domains and Data Types

In Table 3.1 we give an overview of the attribute domains of online auctions

on eBay. Out of the 15 shown attributes, we chose the eight main attributes

to be included in event messages.

We decided to map all of these attributes to the integer data type in BoP.

This approach is straightforward to implement for enumerations and Boolean

domains (attributes Category, Format, Special Attribute, Condition, and

Buy It Now). Additionally, for numbers (attributes Price and Bids) and

times (attribute Ending Within), this approach is uncomplicated: Bids is

already defined as a natural number. Price involves two fractional digits;

they are modeled as an integer by multiplying the original price by 100. For

Ending Within, we use the number of minutes that is left in an auction for

the internal representation.

Also for the attributes Author and Title, we decided to use the inte-

ger data type but not a string type. This approach only marginally affects

attribute-value pairs in event messages and predicates in subscriptions: for

321

322 Appendix B. Attribute Domains & Predicate Ranges

event messages, the modeling as integer does not raise any validity questions

because messages only contain a single value (in either representation). For

subscriptions, our approach changes the semantics of predicates on Title (in

Subscription Class 1 and Subscription Class 2, see Section 3.3.1, page 79) and

Author (in Subscription Class 3, see Section 3.3.1) to exact string matching.

In practice, this semantics for predicates is straightforward to realize, for ex-

ample, by offering users a list of authors and book titles. Taking this approach,

moreover, decreases the number of typographical errors by users.

By applying this simplification in our experiments, we can abstract from the

exact values for the attributes Author and Title in event messages, and from

the exact predicate specifications in subscriptions. Even if we used the string

data type, the results of experiments do not become more realistic because we

have not been able to derive the exact values for these attributes on eBay (see

Section 3.2, page 72).

In general, the efficiency of predicate matching (see Section 4.3.1, page 107),

and thus the efficiency of the overall filtering process in brokers, should decrease

when using the string data type. For our comparative experiments, the ana-

lyzed algorithms utilize the same one-dimensional predicate index structures.

The utilization of strings thus leads to the same increase in computational

load for the compared algorithms. Hence our results do also hold when using

strings as attribute domains.

For advertisements, we apply the same data types as for subscriptions in

our experiments.

B.2 Predicates in Subscriptions

To derive a setting that is close to reality, we use subscriptions of the three

introduced subscription classes (see Section 3.3) in our experiments. For the

variable predicates of these subscriptions, we assign random but meaning-

ful values according to the domains of the respective attributes. We give an

overview of the ranges of the operands for these predicates in Table B.1. We

consider five different distributions for the values of these operands:

• Uniform distribution

• Normal distribution (minimum value has the highest probability)

• Zipf distribution (minimum value has the highest probability)

B.3 Predicates in Advertisements 323

Table B.1: Overview of the ranges of operands in the predicates of subscrip-
tions.

Class Predicate Range

Class 1 p1 Depends on Bprop (see Section 3.2.2, page 76)

Class 1 p4 $5.00 . . . $10.00

Class 1 p5 $1.00 . . . $5.00

Class 2 p1 Depends on Bprop (see Section 3.2.2)

Class 2 p6 $12.00 . . . $18.00

Class 2 p7 $8.00 . . . $13.00

Class 2 p10 $10.00 . . . $15.00

Class 2 p11 $5.00 . . . $10.00

Class 3 p1 22 categories (see Appendix A.1, page 301)

Class 3 p2 Depends on Bprop and Aprop (see Section 3.2.2, page 76)

• Reversed normal distribution (maximum value has the highest probabil-

ity)

• Reversed Zipf distribution (maximum value has the highest probability)

For the Zipf distributions with the k-th most popular value occurring k−α as

often as the most popular value, we set parameter α = 1.

For the computation of the normal distributions, we set the mean value to

µ = 0 (representing the most popular value of the domain) and use a standard

deviation σ of 1
4

of the overall number of values in the domain. We map both

sides of the bell curve (i.e., positive and negative values) to the same domain

value. Values outside of the interval that we map to the normal distribution

(interval [−4σ, 4σ]) are neglected (the number of such values is negligible due

to the properties of the distribution). We truncate the derived values in order

to map them to the discrete attribute domain.

B.3 Predicates in Advertisements

Similarly to subscriptions, when creating advertisements in experiments it is

our goal to create a random but meaningful setting. That is, there should exist

some overlap among advertisements and subscriptions in our experiments. We

324 Appendix B. Attribute Domains & Predicate Ranges

give an overview of the ranges of operands that are used within the predicates

of advertisements in Table B.2. The distributions for the values of operands

are the same as given in Appendix B.2.

B.3 Predicates in Advertisements 325

Table B.2: Overview of the ranges of operands in the predicates of advertise-
ments.

Class Predicate Range

Class 1 p1 22 categories (see Appendix A.1, page 301)

Class 1 p3 $5.00 . . . $30.00

Class 1 p4 $15.00 . . . $30.00

Class 2 p1 Depends on Bprop (see Section 3.2.2, page 76)

Class 2 p3 $5.00 . . . $30.00

Class 2 p4 $15.00 . . . $30.00

Class 3 p1 Depends on Bprop and Aprop(see Section 3.2.2, page 76)

Class 3 p3 $3.00 . . . $20.00

Class 3 p4 $8.00 . . . $25.00

Class 4 p1 Depends on Bprop (see Section 3.2.2)

Class 4 p3 $9.00 . . . $20.00

Class 4 p4 $8.00 . . . EbayDollar18.00

Class 5 p1 Depends on Bprop (see Section 3.2.2)

Class 5 p5 $9.00 . . . $25.00

Class 5 p6 $9.00 . . . $20.00

Class 5 p9 $8.00 . . . $22.00

Class 5 p10 $3.00 . . . $18.00

Class 6 p2 $3.00 . . . $20.00

Class 6 p3 $8.00 . . . $25.00

Class 7 p2 $9.00 . . . $20.00

Class 7 p3 $8.00 . . . $18.00

Class 8 p4 $9.00 . . . $25.00

Class 8 p5 $9.00 . . . $20.00

Class 8 p8 $8.00 . . . $22.00

Class 8 p9 $3.00 . . . $18.00

326 Appendix B. Attribute Domains & Predicate Ranges

Bibliography

[AAGC04] J. Antollini, M. Antollini, P. Guerrero, and M. Cilia. Extend-

ing Rebeca to Support Concept-Based Addressing. In Pro-

ceedings of the First Argentinean Symposium on Information

Systems (ASIS ’04), Cordoba, Argentina, September 23–24

2004. 25

[AJL02] G. Ashayer, H.-A. Jacobsen, and H. Leung. Predicate Match-

ing and Subscription Matching in Publish/Subscribe Systems.

In Proceedings of the 22nd IEEE International Conference on

Distributed Computing Systems Workshops (ICDCSW ’02),

pages 539–548, Vienna, Austria, July 2–5 2002. IEEE Com-

puter Society. 30, 37, 38, 39, 40, 41, 104, 116

[ASS+99] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and

T. D. Chandra. Matching Events in a Content-Based Sub-

scription System. In Proceedings of the 18th ACM Symposium

on Principles of Distributed Computing (PODC ’99), pages

53–61, Atlanta, USA, May 4–6 1999. ACM Press. 30, 32, 33,

34, 116

[BBC+04] A. P. Buchmann, C. Bornhövd, M. Cilia, L. Fiege, F. C.

Gärtner, C. Liebig, M. Meixner, and G. Mühl. DREAM: Dis-

tributed Reliable Event-Based Application Management. In

Web Dynamics, pages 319–352. Springer-Verlag, 2004. 14, 25

[BBHM95] J. Bacon, J. Bates, R. Hayton, and K. Moody. Using Events

to Build Distributed Applications. In Second International

Workshop on Services in Distributed and Networked Environ-

ments (SDNE ’95), pages 148–155, Whistler, Canada, June

5–6 1995. IEEE Computer Society. 96

327

328 Bibliography

[BCM+99] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. E.

Strom, and D. C. Sturman. An Efficient Multicast Protocol for

Content-based Publish-Subscribe Systems. In Proceedings of

the 19th IEEE International Conference on Distributed Com-

puting Systems (ICDCS ’99), pages 262–272, Austin, USA,

May 31–June 4 1999. IEEE Computer Society. 17

[BH04] S. Bittner and A. Hinze. Classification and Analysis of Dis-

tributed Event Filtering Algorithms. In Proceedings of the

12th International Conference on Cooperative Information

Systems (CoopIS 2004), pages 301–318, Agia Napa, Cyprus,

October 25–29 2004. Springer-Verlag. 42, 43, 295

[BH05a] S. Bittner and A. Hinze. A Detailed Investigation of Memory

Requirements for Publish/Subscribe Filtering Algorithms. In

Proceedings of the 13th International Conference on Coopera-

tive Information Systems (CoopIS 2005), pages 148–165, Agia

Napa, Cyprus, October 31–November 4 2005. Springer-Verlag.

120

[BH05b] S. Bittner and A. Hinze. On the Benefits of Non-Canonical

Filtering in Publish/Subscribe Systems. In Proceedings of

the 25th IEEE International Conference on Distributed Com-

puting Systems Workshops (ICDCSW ’05), pages 451–457,

Columbus, USA, June 6–10 2005. IEEE Computer Society.

103, 104, 112, 243

[BH06a] S. Bittner and A. Hinze. Arbitrary Boolean Advertisements:

The Final Step in Supporting the Boolean Publish/Subscribe

Model. Technical Report 06/2006, Computer Science Depart-

ment, The University of Waikato, June 2006. 206

[BH06b] S. Bittner and A. Hinze. Dimension-Based Subscription Prun-

ing for Publish/Subscribe Systems. In Proceedings of the

26th IEEE International Conference on Distributed Comput-

ing Systems Workshops (ICDCSW ’06), page 25, Lisbon, Por-

tugal, July 4–7 2006. IEEE Computer Society. 162

[BH06c] S. Bittner and A. Hinze. Optimizing Pub/Sub Systems by

Advertisement Pruning. In Proceedings of the 8th Interna-

Bibliography 329

tional Symposium on Distributed Objects and Applications

(DOA 2006), pages 1503–1521, Montpellier, France, October

30–November 1 2006. Springer-Verlag. 217

[BH06d] S. Bittner and A. Hinze. Pruning Subscriptions in Distributed

Publish/Subscribe Systems. In Proceedings of the Twenty-

Ninth Australasian Computer Science Conference (ACSC

2006), pages 197–206, Hobart, Australia, January 16–19 2006.

ACS. 161

[BH07] S. Bittner and A. Hinze. The Arbitrary Boolean Pub-

lish/Subscribe Model: Making the Case. In Proceedings of

the Inaugural International Conference on Distributed Event-

Based Systems (DEBS 2007), Toronto, Canada, June 20–22

2007. 14, 95

[Bit06] S. Bittner. Supporting Arbitrary Boolean Subscriptions

in Distributed Publish/Subscribe Systems. In Proceedings

of the 3rd International Middleware Doctoral Symposium

(MDS 2006), Melbourne, Australia, November 27–December

1 2006. ACM Press. 2

[Blo70] B. H. Bloom. Space/Time Trade-offs in Hash Coding with

Allowable Errors. Communications of the ACM, 13(7):422–

426, 1970. 56

[Bon00] A. Bondi. Characteristics of Scalability and Their Impact on

Performance. In Proceedings of the 2nd International Work-

shop on Software and Performance (WOSP ’00), pages 195–

203, Ottawa, Canada, September 17–20 2000. ACM Press. 24,

27

[Bry86] R. E. Bryant. Graph-Based Algorithms for Boolean Function

Manipulation. IEEE Transactions on Computers, 35(8):677–

691, 1986. 34, 116

[BW96] B. Bollig and I. Wegener. Improving the Variable Ordering of

OBDDs is NP-Complete. IEEE Transactions on Computers,

45(9):993–1002, 1996. 34

330 Bibliography

[BYRN99] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information

Retrieval. Addison-Wesley-Longman, Harlow, 1999. 72

[CB02] M. Cilia and A. P. Buchmann. An Active Functionality Ser-

vice For E-Business Applications. ACM SIGMOD Record,

Special Issue on Data Management Issues in Electronic Com-

merce, 31(1):24–30, 2002. 65

[CBGM03] A. Crespo, O. Buyukkokten, and H. Garcia-Molina. Query

Merging: Improving Query Subscription Processing in a Mul-

ticast Environment. IEEE Transactions on Knowledge and

Data Engineering, 15(1):174–191, 2003. 54, 55, 197

[CCC+01] A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith. Ef-

ficient Filtering in Publish-Subscribe Systems using Binary

Decision Diagrams. In Proceedings of the 23rd International

Conference on Software Engineering (ICSE 2001), pages 443–

452, Toronto, Canada, May 12–19 2001. IEEE Computer So-

ciety. 23, 30, 34, 35, 36, 37, 39, 59, 97, 98, 100, 116, 117

[CF03] R. Chand and P. A. Felber. A Scalable Protocol for Content-

Based Routing in Overlay Networks. In Proceedings of the

Second IEEE International Symposium on Network Comput-

ing and Applications (NCA 2003), pages 123–130, Cambridge,

USA, April 16–18 2003. IEEE Computer Society. 17, 51, 197

[CFMP04] G. Cugola, D. Frey, A. L. Murphy, and G. P. Picco. Minimiz-

ing the Reconfiguration Overhead in Content-Based Publish-

Subscribe. In Proceedings of the 2004 ACM Symposium on

Applied Computing (SAC ’04), pages 1134–1140, Nicosia,

Cyprus, March 14–17 2004. ACM Press. 18

[CKKM00] Z. Chen, N. Koudas, F. Korn, and S. Muthukrishnan. Selec-

tively Estimation For Boolean Queries. In Proceedings of the

Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on

Principles of Database Systems (PODS 2000), pages 216–225,

Dallas, USA, May 15–17 2000. ACM Press. 198

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.

Introduction to Algorithms. MIT Press, Cambridge, 2001. 194

Bibliography 331

[CMPC03] P. Costa, M. Migliavacca, G. P. Picco, and G. Cugola.

Epidemic Algorithms for Reliable Content-Based Publish-

Subscribe: An Evaluation. In Proceedings of the 24th IEEE

International Conference on Distributed Computing Systems

(ICDCS ’03), pages 552–561, Providence, USA, May 19–22

2003. IEEE Computer Society. 23, 25

[CNF01] G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI Event-

Based Infrastructure and Its Application to the Development

of the OPSS WFMS. IEEE Transactions on Software Engi-

neering (TSE), 27(9):927–850, 2001. 17, 91

[CRW99] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Interfaces

and Algorithms for a Wide-Area Event Notification Service.

Technical Report CU-CS-888-99, Department of Computer

Science, University of Colorado, October 1999. revised May

2000. 230

[CRW00] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Achiev-

ing Scalability and Expressiveness in an Internet-Scale Event

Notification Service. In Proceedings of the 19th ACM Sym-

posium on Principles of Distributed Computing (PODC ’00),

pages 219–227, Portland, USA, July 16–19 2000. ACM Press.

23, 25

[CRW01] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and

Evaluation of a Wide-Area Event Notification Service. ACM

Transactions on Computer Systems (TOCS), 19(3):332–383,

2001. 17, 32, 43, 44, 50, 51, 197, 230, 231

[CRW04] A. Carzaniga, M. J. Rutherford, and A. L. Wolf. A Routing

Scheme for Content-Based Networking. In Proceedings of the

23rd IEEE Conference on Computer Communications (IN-

FOCOM 2004), Hong Kong, China, March 7–11 2004. IEEE

Computer Society. 17

[CS04] F. Cao and J. P. Singh. Efficient Event Routing in Content-

Based Publish/Subscribe Service Network. In Proceedings

of the 23rd IEEE Conference on Computer Communications

332 Bibliography

(INFOCOM 2004), Hong Kong, China, March 7–11 2004.

IEEE Computer Society. 17, 25

[CW03] A. Carzaniga and A. L. Wolf. Forwarding in a Content-Based

Network. In Proceedings of the 2003 ACM SIGCOMM Con-

ference on Applications, Technologies, Architectures, and Pro-

tocols for Computer Communications (SIGCOMM ’03), pages

163–174, Karlsruhe, Germany, March 24–26 2003. ACM Press.

5, 69, 113

[Dag07] Event Processing. Dagstuhl Seminar 07191, 2007. 296

[DEB06] DEBS Participants. Discussion at the 6th International Work-

shop on Distributed Event-Based Systems (DEBS ’06), July

3 2006. 296

[DRW06] L. Duboc, D. S. Rosenblum, and T. Wicks. A Framework for

Modelling and Analysis of Software Systems Scalability. In

Proceedings of the 28th International Conference on Software

Engineering (ICSE 2006), pages 949–952, Shanghai, China,

May 20–28 2006. ACM Press. 24

[EFGH02] P. T. Eugster, P. Felber, R. Guerraoui, and S. B. Han-

durukande. Event Systems: How to Have Your Cake and Eat

It Too. In Proceedings of the 22nd IEEE International Con-

ference on Distributed Computing Systems Workshops (ICD-

CSW ’02), pages 625–632, Vienna, Austria, July 2–5 2002.

IEEE Computer Society. 25, 198

[EFGK03] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermar-

rec. The Many Faces of Publish/Subscribe. ACM Computing

Surveys, 35(2):114–131, 2003. 14, 25

[Eug01] P. T. Eugster. Type-Based Publish/Subscribe. PhD thesis,

Swiss Federal Institute of Technology in Lausanne (EPFL),

December 2001. 96

[FJL+01] F. Fabret, A. Jacobsen, F. Llirbat, J. Pereira, K. Ross, and

D. Shasha. Filtering Algorithms and Implementation for Very

Fast Publish/Subscribe Systems. In Proceedings of the 2001

Bibliography 333

ACM SIGMOD International Conference on Management of

Data (SIGMOD 2001), pages 115–126, Santa Barbara, USA,

May 21–24 2001. ACM Press. 23, 30, 32, 33, 37, 38, 116, 128

[FT87] M. L. Fredman and R. E. Tarjan. Fibonacci Heaps and Their

Uses in Improved Network Optimization Algorithms. Journal

of the ACM, 34(3):596–615, 1987. 194

[GD98] B. Genet and G. Dobbie. Is Semantic Optimisation Worth-

while? In Proceedings of the 21st Australasian Computer Sci-

ence Conference (ACSC 1998), pages 245–256, Perth, Aus-

tralia, February 1998. Springer-Verlag. 102

[GFGRAGC98] E. Giménez-Funes, L. Godo, J. Rodŕıguez-Aguilar, and

P. Garcia-Calvés. Designing Bidding Strategies for Trading

Agents in Electronic Auctions. In Proceedings of the 3rd Inter-

national Conference on Multi-Agent Systems (ICMAS 1998),

pages 136–143, Paris, France, July 3–7 1998. IEEE Computer

Society. 68

[GR03] M. Guimarães and L. Rodrigues. A Genetic Algorithm for

Multicast Mapping in Publish-Subscribe Systems. In Proceed-

ings of the Second IEEE International Symposium on Network

Computing and Applications (NCA 2003), pages 67–74, Cam-

bridge, USA, April 16–18 2003. IEEE Computer Society. 164

[GS95] J. Gough and G. Smith. Efficient Recognition of Events in a

Distributed System. In Proceedings of the 18th Australasian

Computer Science Conference (ACSC 1995), Adelaide, Aus-

tralia, February 1–3 1995. ACS. 30, 32, 33, 116

[GT98] A. Geppert and Dimitrios Tombros. Event-based Distributed

Workflow Execution with EVE. In Proceddings of the IFIP

International Conference on Distributed Systems Platforms

and Open Distributed Processing (Middleware ’98), pages 427–

442, The Lake District, UK, September 15–18 1998. Springer-

Verlag. 91

[Hah01] J. Hahn. The Dynamics of Mass Online Marketplaces: A Case

Study of an Online Auction. In Proceedings of the SIG-CHI

334 Bibliography

Conference on Human Factors in Computing Systems, pages

317–324, Seattle, USA, March 31–April 5 2001. ACM Press.

77

[Haw01] S. W. Hawking. The Universe in a Nutshell. Bantam, New

York, 2001. 2

[HB02] A. Hinze and S. Bittner. Efficient Distribution-based Event

Filtering. In Proceedings of the 22nd IEEE International Con-

ference on Distributed Computing Systems Workshops (ICD-

CSW ’02), pages 525–532, Vienna, Austria, July 2–5 2002.

IEEE Computer Society. 295

[HCH+99] E. N. Hanson, C. Carnes, L. Huang, M. Konyala, L. Noronha,

S. Parthasarathy, J. B. Park, and A. Vernon. Scalable Trigger

Processing. In Proceedings of the 15th International Confer-

ence on Data Engineering (ICDE ’99), pages 266–275, Syd-

ney, Australia, March 23–26 1999. IEEE Computer Society.

30, 37

[HCRW04] C. P. Hall, A. Carzaniga, J. Rose, and A. L. Wolf. A Content-

Based Networking Protocol For Sensor Networks. Techni-

cal Report CU-CS-979-04, Department of Computer Science,

University of Colorado, August 2004. 22

[Hei05] D. Heimbigner. Expressive and Efficient Peer-to-Peer Queries.

In Proceedings of the 38th Hawaii International Conference on

System Sciences (HICSS-38), Big Island, USA, January 3–6

2005. IEEE Computer Society. 230

[HGM01] Y. Huang and H. Garcia-Molina. Publish/Subscribe in a Mo-

bile Environment. In Proceedings of the 2nd ACM Interna-

tional Workshop on Data Engineering for Wireless and Mobile

Access (MobiDE ’01), pages 27–34, Santa Barbara, USA, May

20 2001. ACM Press. 14

[Hil90] M. D. Hill. What is Scalability? ACM SIGARCH Computer

Architecture News, 18(4):18–21, 1990. 24

Bibliography 335

[Hin03] A. Hinze. A-MEDIAS: Concept and Design of an Adaptive

Integrating Event Notification Service. PhD thesis, Freie Uni-

versität Berlin, Institute of Computer Science, July 2003. 5,

17, 230

[JH05a] D. Jung and A. Hinze. A Mobile Alerting System for the Sup-

port of Patients with Chronic Conditions. In Proceedings of

the First European Conference on Mobile Government (EURO

mGOV 2005), pages 264–274, Brighton, UK, July 10–12 2005.

91

[JH05b] D. Jung and A. Hinze. Capturing Context in Collaborative

Profiles. In Proceedings of On the Move to Meaningful Inter-

net Systems 2005: OTM Workshops, Workshop on Context-

Aware Mobile Systems (CAMS 2005), pages 152–155, Agia

Napa, Cyprus, October 30–31 2005. 91

[JK84] M. Jarke and J. Koch. Query Optimization in Database Sys-

tems. ACM Computing Surveys, 16(2):111–152, 1984. 6, 59

[JMS99] S. Jones, S. McInnes, and M. S. Staveley. A Graphical User

Interface for Boolean Query Specification. International Jour-

nal on Digital Libraries (IJDL), 2(2–3):207–223, 1999. 72

[JT92] R. P. Jacobi and A.-M. Trullemans. Generating Prime and Ir-

redundant Covers for Binary Decision Diagrams. In Proceed-

ings of the 3rd European Conference on Design Automation,

pages 104–108, Brussels, Belgium, March 16–19 1992. IEEE

Computer Society. 35, 100, 116

[JTS04] N. Joshi, K. Thakore, and S. Y. W. Su. IntelliBid: An Event-

Trigger-Rule-Based Auction System over the Internet. World

Wide Web Journal (W3J), 7(2):181–210, 2004. 69

[Jun07] D. Jung. Realisation and Representation of Collaborative

Profiles for Alerting in Health Care. In Graduate Work-

shop of the Eighth Annual ACM SIGCHI-NZ Conference on

Human-Computer Interaction (CHINZ 2007), Hamilton, New

Zealand, July 1–4 2007. 72

336 Bibliography

[KMPS94] A. Kemper, G. Moerkotte, K. Peithner, and M. Steinbrunn.

Optimizing Disjunctive Queries with Expensive Predicates. In

Proceedings of the 1994 ACM SIGMOD International Con-

ference on Management of Data (SIGMOD 1994), pages 336–

347, Minneapolis, USA, May 24–27 1994. ACM Press. 59

[LCB99] C. Liebig, M. Cilia, and A. Buchmann. Event Composition in

Time-Dependent Distributed Systems. In Proceedings of the

4th International Conference on Cooperative Information Sys-

tems (CoopIS 1999), pages 70–78, Edinburgh, UK, September

2–4 1999. IEEE Computer Society. 23

[Leh05] W. Lehner. Data Management Support for Notification Ser-

vices. In Data Management in a Connected World: Essays

Dedicated to Hartmut Wedekind on the Occasion of His 70th

Birthday, pages 111–136. Springer-Verlag, June 2005. 14

[LHJ05] G. Li, S. Hou, and H.-A. Jacobsen. A Unified Approach to

Routing, Covering and Merging in Publish/Subscribe Systems

based on Modified Binary Decision Diagrams. In Proceed-

ings of the 25th IEEE International Conference on Distributed

Computing Systems (ICDCS ’05), pages 447–457, Columbus,

USA, June 6–10 2005. IEEE Computer Society. 17, 25, 31,

35, 36, 37, 51, 53, 54, 100, 116, 117, 162, 197, 230, 231, 232

[LJ03] H. K. Y. Leung and H.-A. Jacobsen. Efficient Matching for

State-Persistent Publish/Subscribe Systems. In Proceedings

of the 2003 Conference of the Centre for Advanced Studies

on Collaborative Research (CASCON ’03), pages 182–196,

Toronto, Canada, October 6–9 2003. IBM Press. 14, 25

[LJ04] H. Liu and H.-A. Jacobsen. Modeling Uncertainties in Pub-

lish/Subscribe Systems. In Proceedings of the 20th Interna-

tional Conference on Data Engineering (ICDE ’04), pages

510–522, Boston, USA, March 30–April 02 2004. IEEE Com-

puter Society. 69

[LJ05] G. Li and H.-A. Jacobsen. Composite Subscriptions in

Content-Based Publish/Subscribe Systems. In Proceedings

Bibliography 337

of the 6th ACM/IFIP/USENIX International Conference

on Middleware (Middleware ’05), pages 249–269, Grenoble,

France, November 28–December 2 2005. Springer-Verlag. 91,

92

[LSB06] C. Lumezanu, N. Spring, and B. Bhattacharjee. Decentralized

Message Ordering for Publish/Subscribe Systems. In Proceed-

ings of the 7th ACM/IFIP/USENIX International Conference

on Middleware (Middleware ’06), pages 62–179, Melbourne,

Australia, November 27–December 1 2006. ACM Press. 23

[LV03] P. Lyman and H. R. Varian. How

Much Information, 2003. Retrieved from

http://www.sims.berkeley.edu/how-much-info-2003

on 16 April 2007. 1

[LW04] K. M. Lochner and M. P. Wellman. Rule-Based Specifica-

tion of Auction Mechanisms. In Proceedings of the 3rd Inter-

national Joint Conference on Autonomous Agents and Mul-

tiagent Systems (AAMAS-2004), pages 818–825, New York,

USA, July 19–23 2004. IEEE Computer Society. 69

[Men97] E. Mendelson. Introduction to Mathematical Logic. Chapman

& Hall/CRC, Boca Raton, 1997. 59

[MF01] G. Mühl and L. Fiege. Supporting Covering and Merg-

ing in Content-Based Publish/Subscribe Systems: Beyond

Name/Value Pairs. IEEE Distributed Systems Online (DSOn-

line), 2(7), 2001. 4, 50, 51, 53, 54, 197

[MF05] A. Michlmayr and P. Fenkam. Integrating Distributed

Object Transactions with Wide-Area Content-Based Pub-

lish/Subscribe Systems. In Proceedings of the 25th IEEE

International Conference on Distributed Computing Systems

Workshops (ICDCSW ’05), pages 398–403, Columbus, USA,

June 6–10 2005. IEEE Computer Society. 23

[MFB02] G. Mühl, L. Fiege, and A. Buchmann. Filter Similarities in

Content-Based Publish/Subscribe Systems. In Proceedings of

the International Conference on Architecture of Computing

http://www.sims.berkeley.edu/how-much-info-2003

338 Bibliography

Systems (ARCS ’02), pages 224–238, Karlsruhe, Germany,

April 8–12 2002. Springer-Verlag. 59

[MFP06] G. Mühl, L. Fiege, and P. R. Pietzuch. Distributed Event-

Based Systems. Springer-Verlag, Berlin and Heidelberg, 2006.

3, 31, 33, 34, 37, 42

[MG85] J. MacKinley and M. R. Genesereth. Expressiveness and Lan-

guage Choice. Data Knowledge Engineering (DKE), 1(1):17–

29, 1985. 25

[MK60] M. E. Maron and J. L. Kuhns. On Relevance, Probabilistic

Indexing and Information Retrieval. Journal of the ACM,

7(3):216–244, 1960. 72

[Müh01] G. Mühl. Generic Constraints for Content-Based Pub-

lish/Subscribe Systems. In Proceedings of the 6th Inter-

national Conference on Cooperative Information Systems

(CoopIS 2001), pages 211–225, Trento, Italy, September 5–

7 2001. Springer-Verlag. 153

[Müh02] G. Mühl. Large-Scale Content-Based Publish/Subscribe Sys-

tems. PhD thesis, Technische Universität Darmstadt, Septem-

ber 2002. 17, 25, 43, 44, 46, 51, 52, 54, 60, 69, 116, 204, 205,

213, 230, 231, 261

[OJPA06] A. M. Ouksel, O. Jurca, I. Podnar, and K. Aberer. Ef-

ficient Probabilistic Subsumption Checking for Content-

based Publish/Subscribe Systems. In Proceedings of the 7th

ACM/IFIP/USENIX International Conference on Middle-

ware (Middleware ’06), Melbourne, Australia, Nov 27–Dec

1 2006. Springer-Verlag. 51, 197

[PB02] P. R. Pietzuch and J. Bacon. Hermes: A Distributed Event-

Based Middleware Architecture. In Proceedings of the 22nd

IEEE International Conference on Distributed Computing

Systems Workshops (ICDCSW ’02), pages 611–618, Vienna,

Austria, July 2–5 2002. IEEE Computer Society. 45

Bibliography 339

[PCM03] G. P. Picco, G. Cugola, and A. L. Murphy. Efficient Content-

Based Event Dispatching in the Presence of Topological Re-

configuration. In Proceedings of the 23rd IEEE International

Conference on Distributed Computing Systems (ICDCS ’03),

pages 234–243, Rhode Island, USA, May 19–22 2003. IEEE

Computer Society. 23, 25

[PFLS00] J. Pereira, F. Fabret, F. Llirbat, and D. Shasha. Efficient

Matching for Web-Based Publish/Subscribe Systems. In Pro-

ceedings of the 7th International Conference on Cooperative

Information Systems (CoopIS 2000), pages 162–173, Eilat, Is-

rael, September 6–8 2000. Springer-Verlag. 31

[PI97] V. Poosala and Y. Ioannidis. Selectivity Estimation Without

the Attribute Value Independence Assumption. In Proceed-

ings of the 23rd International Conference on Very Large Data

Bases (VLDB 1997), pages 486–495, Athens, Greece, August

25–29 1997. Morgan Kaufmann. 198

[Pie04] P. R. Pietzuch. Hermes: A Scalable Event-Based Middleware.

PhD thesis, University of Cambrigde, Queens’ College, Febru-

ary 2004. 4, 23, 45, 46, 51, 52, 96, 230, 231, 261

[PSB04] P. R. Pietzuch, B. Shand, and J. Bacon. Composite Event

Detection as a Generic Middleware Extension. IEEE Network

Magazine, Special Issue on Middleware Technologies for Fu-

ture Communication Networks, 18(1):44–55, 2004. 23

[RDJ02] W. Rjaibi, K. R. Dittrich, and D. Jaepel. Event Matching in

Symmetric Subscription Systems. In Proceedings of the 2002

Conference of the Centre for Advanced Studies on Collabora-

tive Research (CASCON ’02), Toronto, Canada, September

30 – October 2 2002. IBM Press. 32, 33

[RKCD01] A. I. T. Rowstron, A.-M. Kermarrec, M. Castro, and P. Dr-

uschel. SCRIBE: The Design of a Large-Scale Event No-

tification Infrastructure. In Proceedings of the 3rd Inter-

national Workshop on Networked Group Communications

(NGC 2001), pages 30–43, London, UK, November 7–9 2001.

Springer-Verlag. 46

340 Bibliography

[Ros04] K. A. Ross. Selection Conditions in Main Memory. ACM

Transactions on Database Systems (TODS), 29(1):132–161,

2004. 72

[Ros05] D. Rosenblum. Content-Based Publish/Subscribe: A Re-

Assessment, 2005. Keynote at the 7th International Sympo-

sium on Distributed Objects and Applications (DOA 2005).

296

[RR06] C. Raiciu and D. S. Rosenblum. Enabling Confidentiality

in Content-Based Publish/Subscribe Infrastructures. In Pro-

ceedings of the Second IEEE/CreatNet International Confer-

ence on Security and Privacy in Communication Networks

(SecureComm 2006),, Baltimore, USA, August 28–September

1 2006. IEEE Computer Society. 22

[RWG01] D. M. Reeves, M. P. Wellman, and B. N. Grosof. Automated

Negotiation from Declarative Contract Descriptions. In Pro-

ceedings of the Fifth International Conference on Autonomous

Agents (Agents 2001), pages 51–58, Montreal, Canada, May

28–June 1 2001. ACM Press. 67

[SA97] B. Segall and D. Arnold. Elvin has left the building: A pub-

lish/subscribe notification service with quenching. In Proceed-

ings of the Australian UNIX and Open Systems User Group

Conference (AUUG97), Brisbane, Australia, September 3–5

1997. 30, 31, 32, 34, 39, 116

[SAB+00] B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Phelps.

Content based Routing with Elvin4. In Proceedings of Aus-

tralian UNIX and Open Systems User Group Conference

(AUUG2K), Canberra, Australia, June 25–30 2000. 30, 31,

32, 34, 39

[Sal68] G. Salton. Automatic Information Organization and Re-

trieval. McGraw-Hill, New York, 1968. 4

[Sil86] B. W. Silverman. Density Estimation for Statistics and Data

Analysis. Chapman & Hall/CRC, Boca Raton, 1986. 73

Bibliography 341

[SL95] A. Stepanov and M. Lee. The Standard Template Library.

Technical Report 95-11 (R.1), HP Laboratories, November

1995. 138

[Sri93] D. Srivastava. Subsumption and Indexing in Constraint Query

Languages with Linear Arithmetic Constraints. Annals of

Mathematics and Artificial Intelligence, 8(3–4):315–343, 1993.

51

[Ste86] R. E. Steuer. Multiple Criteria Optimization: Theory, Com-

putation, and Application. John Wiley & Sons Inc, Chichester,

1986. 187

[TAJ03] D. Tam, R. Azimi, and H.-A. Jacobsen. Building Content-

Based Publish/Subscribe Systems with Distributed Hash Ta-

bles. In Proceedings of First International Workshop on

Databases, Information Systems, and Peer-to-Peer Com-

puting (DBISP2P 2003), pages 138–152, Berlin, Germany,

September 7–8 2003. Springer-Verlag. 25

[Tar06] S. Tarkoma. Preventing Spam in Publish/Subscribe. In

Proceedings of the 26th IEEE International Conference on

Distributed Computing Systems Workshops (ICDCSW ’06),

page 21, Lisbon, Portugal, July 4–7 2006. IEEE Computer

Society. 22

[TE02] P. Triantafillou and A. Economides. Subscription Summaries

for Scalability and Efficiency in Publish/Subscribe Systems.

In Proceedings of the 22nd IEEE International Conference on

Distributed Computing Systems Workshops (ICDCSW ’02),

pages 619–624, Vienna, Austria, July 2–5 2002. IEEE Com-

puter Society. 56, 197

[TE04] P. Triantafillou and A. Economides. Subscription Summariza-

tion: A New Paradigm for Efficient Publish/Subscribe Sys-

tems. In Proceedings of the 24th IEEE International Confer-

ence on Distributed Computing Systems (ICDCS ’04), pages

562–571, Tokyo, Japan, March 24–26 2004. IEEE Computer

Society. 56, 57, 197

342 Bibliography

[TKD04] C. Tryfonopoulos, M. Koubarakis, and Y. Drougas. Filtering

Algorithms for Information Retrieval Models with Named At-

tributes and Proximity Operators. In Proceedings of the 27th

Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval (SIGIR 2004),

pages 313–320, Sheffield, UK, July 25–29 2004. ACM Press.

31

[WCEW02] C. Wang, A. Carzaniga, D. Evans, and A. L. Wolf. Security

Issues and Requirements for Internet-Scale Publish-Subscribe

Systems. In Proceedings of the 35th Hawaii International Con-

ference on System Science (HICSS-35), pages 3940–3947, Big

Island, USA, January 7–10 2002. IEEE Computer Society. 22

[WK05] B. Wang and M. Kitsuregawa. Dimension Transform Based

Efficient Event Filtering for Symmetric Publish/Subscribe

System. In Proceedings of the 16th International Conference

on Database and Expert Systems Applications (DEXA 2005),

pages 786–796, Copenhagen, Denmark, August 22–26 2005.

Springer-Verlag. 32, 33

[WMB99] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes:

Compressing and Indexing Documents and Images. Morgan

Kaufmann, San Francisco, 1999. 67

[WQV+04] Y.-M. Wang, L. Qiu, C. Verbowski, D. Achlioptas, G. Das,

and P. Larson. Summary-based Routing for Content-based

Event Distribution Networks. ACM SIGCOMM Computer

Communication Review, 34(5):59–74, 2004. 56, 57, 197, 231

[WWW01] P. R. Wurman, M. P. Wellman, and W. E. Walsh. A

Parametrization of the Auction Design Space. Games and

Economic Behavior, 35(1–2):204–238, 2001. 66

[YB05] E. Yoneki and J. Bacon. Distributed Multicast Grouping for

Publish/Subscribe over Mobile Ad Hoc Networks. In Proceed-

ings of the IEEE Wireless Communications and Networking

Conference (WCNC’ 2005), pages 2293–2299, New Orleans,

USA, March 13–17 2005. IEEE Computer Society. 56

Bibliography 343

[YGM94] T. W. Yan and H. Garćıa-Molina. Index Structures for Selec-

tive Dissemination of Information Under the Boolean Model.

ACM Transactions on Database Systems (TODS), 19(2):332–

364, 1994. 4, 5, 30, 38, 39, 40, 116

[YGM99] T. W. Yan and H. Garćıa-Molina. The SIFT Information Dis-

semination System. ACM Transactions on Database Systems

(TODS), 24(4):529–565, 1999. 5, 31

[YS93] D. Young and B. Shneiderman. A Graphical Filter/Flow Rep-

resentation of Boolean Queries: A Prototype Implementation

and Evaluation. Journal of the American Society for Infor-

mation Science, 44(6):327–339, 1993. 72, 82

[ZZJ+01] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D.

Kubiatowicz. Bayeux: An Architecture for Scalable and Fault-

tolerant Widearea Data Dissemination. In Proceddings of the

11th International Workshop Network and Operating System

Support for Digital Audio and Video (NOSSDAV 2001), pages

11–20, Port Jefferson, USA, June 25–27 2001. ACM Press. 46

