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Abstract 
 

 

 
 

Lake Rotokakahi is located 10 km south of Rotorua and is of immense cultural 

importance to the local iwi. The lake also has significant historical and 

recreational values, which prompted iwi to make the lake private in 1996. Lake 

Rotokakahi is one of several Rotorua/ Te Arawa lakes. Several of these lakes have 

become eutrophic and some have declining water quality. This study was 

prompted by declining water quality of Lake Rotokakahi and the need to identify 

potential sources of nutrients to the lake, particularly groundwater inflows. 

 

The interaction between groundwater and surface water has a major influence on 

the trophic status of lakes, particularly those that are predominantly or solely 

groundwater fed systems. Lake Rotokakahi has one small spring-fed surface water 

inflow and one outflow, the Te Wairoa stream. Thus the lake is predominantly 

groundwater fed. The main objective of this thesis was to quantify the 

contribution of groundwater and surface water to Lake Rotokakahi and to 

examine interactions of the groundwater system with the lake, in order to provide 

a basis to improve lake management practices. Multiple monitoring sites were 

established around the perimeter of the lake to determine the spatial and temporal 

variation of groundwater inputs, as well as the groundwater nutrient dynamics. A 

three-dimensional hydrodynamic lake model was set up and simulations were 

used to examine how groundwater and surface water inflows were dispersed 

within the lake upon entry. 

 

Monitoring of the shallow groundwater system took place from 1 January to 1 

July 2016. Three separate storm events were monitored at high frequency within 

this monitoring period. The monitoring results showed the groundwater system 

varied significantly both spatially and temporally and also contributed a high 

proportion of the total nutrient load to the lake. Groundwater discharge and nutrient 

concentrations generally increased in association with or immediately following 

high rainfall events. 
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The three-dimensional model ELCOM was set up using hydrological data for the 

catchment, meteorological data from a nearby station and bathymetry of the lake. 

Simulations were based upon different methods of calculating groundwater 

inflows. Simulation 1 was based upon the common water balance equation 

method. Simulation 2 used constant groundwater inflow and outflow volumes as 

determined by a groundwater flow model, MODFLOW, which had been applied 

to the catchment by White et al., (2015). Simulation 3 combined MODLFOW 

values and measured groundwater levels to create a varying inflow volume based 

on water level. The three simulations accurately captured surface and bottom 

temperatures and had varying lake water levels. Only simulation 3 accurately 

captured the presence of the groundwater spring near the lake shore and was 

concluded the more accurate method of groundwater inflow calculation. 
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1 Introduction 
 

 

 

 

1.1 Groundwater-surface water interaction 
 

New Zealand’s rivers, streams, lakes, estuaries, and aquifers are associated with 

its national identity (Wright 2015). Both surface and subsurface water quality in 

New Zealand is an issue causing immense public concern. The focus of attention 

has recently shifted to determining the sources of pollution and ways to 

effectively manage water resources and prevent further decline. 

 

Groundwater is an integral part of the hydrological cycle, however it is the least- 

understood component (Rosen & White, 2001). The interaction of groundwater 

with surface water systems is a topic gaining increasing attention (Kludge et al., 

2007) and is considered extremely complex and interconnected (Shaw et al., 

2013). In regard to lake ecosystems, the exchanges between the surface water and 

groundwater components play a major role in the ecological status of lake (Shaw 

et al., 2013). In spite of the importance of this interaction, groundwater resources 

have generally not been well quantified or estimated, largely due to the difficulty 

of locating and quantifying groundwater flows. Due to interaction of surface and 

groundwater systems the management of the two must be integrated (White et al., 

2001). 

 

Groundwater flows provide pathways for the transport of pollutants that can in 

turn impact sensitive aquatic receiving environments, particularly surface water 

systems that are predominantly groundwater fed.  However  groundwater discharge 

into surface water systems is not generally considered in quantifying 

biogeochemical fluxes in surface waters (Burnett et al., 2006). This is largely due 

to difficulties with quantifying and understanding groundwater discharges, as they 

tend to be patchy, rapidly diffused and show significant spatial and temporal 

variations, and there may also be multiple aquifers (Burnett et al., 2006). 
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Combined, groundwater and surface water inflows largely control lake water 

chemistry, water quality, aquatic habitat and biodiversity (Shaw et al., 2013). In 

groundwater-dominated catchments, water quality decline and eutrophication 

have sometimes been linked to groundwater composition, including in the Lake 

Rotorua catchment (White & Moreau-Fournier, 2012a). 

 
 

1.2 Rotorua Lakes Region 
 

The Rotorua Lakes region is located in the Central North Island of New Zealand 

and contains 12 lakes of varying size and depth. The region and lakes are relatively 

young, in geological terms, formed by volcanic events and tectonic plate 

subsidence. The lakes have many economic, historical, cultural, ecological and 

recreational values. Historically, lake catchments of this region were 

predominantly native forest. As settlements established and populations increased, 

widespread changes occurred to land use in the surrounding catchments. 

Significant areas of land have been cleared for farmland, exotic forest plantations 

and urban development. 

 

The Rotorua Lakes are of immense cultural importance to the local Te Arawa Iwi. 

Freshwater systems have always been considered tāonga (treasure) and of 

immense spiritual and cultural importance to Māori. This relationship begins from 

whakapapa, a genealogical association linking Māori with all natural resources. 

Freshwater plays a central role in tribal and personal identity, with each iwi 

having a special relationship with certain water bodies. With European settlement, 

which began in the 1800s, conflicts occurred between the new settlers and Te 

Arawa. In 1922 the Crown took ownership of the Rotorua Lakes area and paid an 

annuity to Te Arawa, except for Lake Rotokakahi which remained in ownership 

of the local iwi (Butterworth, 2008). Lake Rotokakahi is located within the Rotorua 

Lakes region and is owned by the Lake Rotokakahi Board of Control who are 

descendants of Ngati Tumatawera and Tuhorangi hapu, subtribes of Te Arawa 

(Butterworth 2008). The lake is administered by the Lake Rotokakahi Board 

of Control and is privately owned by iwi, with no public access permitted. Despite 

this, lake water quality has declined considerably in recent years (Jones et al., 

2014). 
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Water quality issues first arose in the Rotorua region in the 1950s and 1960s when 

the exotic weed species Lagarosiphon major and Egeria sp. first became 

prevalent in Lake Rotorua before spreading to surrounding lakes (Miller, 2003). 

As human populations and urban development in the area increased, increased 

nutrient loads to the lakes occurred from wastewater discharges, including input 

of treated sewage to Lake Rotorua from the city of Rotorua. Algal blooms began 

to occur in the 1960s together with eutrophication (Miller 2003). 

 

A measure of water quality used for Rotorua and New Zealand lakes is the 

Trophic Level Index (TLI). The TLI was established by (Burns et al., 2005) and 

is a number calculated from four different water quality parameters: total nitrogen, 

total phosphorus, water clarity and chlorophyll-a. The TLI numbers provide 

information on the trophic status category: super trophic, eutrophic, mesotrophic, 

oligotrophic and micro trophic. For the majority of lakes in the region, target TLIs 

have been set and Action Plans to achieve these targets have been put in place by 

the Bay of Plenty Regional Council, together with the Te Arawa Lakes Trust and 

the Rotorua Lakes Council. Lake Rotokakahi does not have an Action Plan and its 

TLI have increased over recent years (Scholes, 2011) (Butterworth, 2012a). 

 

As a result of declining TLI in Lake Rotokakahi, evaluation is required of the 

dynamics of the catchment and lake, to understand the dynamics of the lake and 

implement effective management actions. Groundwater is the main pathway for 

water and nutrients entering the lake (Butterworth 2012). The Rotokakahi Board 

of Control has encouraged research to assess the groundwater system and its 

impacts on the lake. Research on groundwater-lake interactions is relatively new 

and is relevant to Rotorua Lakes, which have a large relative volume of input 

from this source. 
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1.3 Aquatic Ecosystem Modelling 
 

Coupled hydrodynamic-ecological models are computer models developed for 

studies of aquatic ecosystems. These models have been widely applied to evaluate 

the ecology of lakes (Trolle et al., 2012). These models can then be used as a tool 

for decision makers to improve lake management. 

 

ELCOM (Estuary and Lake Computer Model) is a numerical model developed by 

the University of Western Australia. It applies hydrodynamic and thermodynamic 

models to simulate the temporal behaviour of stratified water bodies with 

environmental forcing (Hodges & Dallimore., 2008). The model simulates 

advection and diffusion in three dimensions and includes surface thermal forcing, 

inflows, outflows and wind stresses (Zhang, 2010). It is based on thermodynamic 

transfers in the water column and includes physical transport equations of 

Reynolds-averaged Navier-Stokes, scalar transport and Boussinesq approximation 

(Hodges and Dallimore. 2008). Combining hydrodynamic model simulations and 

field measurements enables an in depth understanding of processes that occur 

within lake ecosystems. These simulations can be used for evaluation of 

groundwater-lake interactions. 

 

Modelled data output from a Geological and Nuclear Sciences (GNS) research 

project from White, et al. (2015) has been used in this study for the purpose of 

calculating groundwater inflows. This research involved creating a groundwater 

flow model for the greater Tarawera catchment which included eight lakes, one of 

which was Lake Rotokakahi. These eight lakes are hydraulically linked through 

the groundwater system and lake zones were created for each lake. Output from a 

groundwater flow model MODFLOW – 2005 was used as a means of 

groundwater flow calculation for inflows and outflows from Lake Rotokakahi. 

 

In this study, a combination of high frequency monitoring data and field data have 

been combined with simulations from the hydrodynamic model ELCOM. 

Modelled data output from a Geological and Nuclear Sciences (GNS) research 

project from White, et al, (2015) has been used in this study for the purpose of 

calculating groundwater inflows. This has allowed for analysis of groundwater 
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interactions with the lake itself. This information is essential for understanding 

lake ecosystem processes. 

 
 

1.4 Research aims and objectives 
 

The overarching aim of this thesis is to determine the interactions between 

groundwater and surface water in Lake Rotokakahi and the impacts these 

interactions have on lake ecosystem health. 

 

To address this aim, the following objectives were set out: 

1) To gain an understanding of the groundwater system and quantify 

groundwater inflows through field surveys. 

2) To compare field groundwater observations with calculations derived from 

water balance equations and modelled values from a groundwater model. 

3) To set up a three–dimensional hydrodynamic model of Lake Rotokakahi to 

assist with evaluating groundwater inflows. 

4) To use the model developed in (3) to test the sensitivity of different methods 

for quantifying groundwater inputs to the lake. 
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2 Hydrogeological setting 
 

 

 

 

2.1 Study area 
 

Lake Rotokakahi (Green Lake) is located in the Rotorua Lakes Region of New 

Zealand and is 10 km south of Lake Rotorua and within the greater Tarawera 

catchment (Fig. 1). The hydrogeological components of the wider Lake 

Rotokakahi catchment area are relevant to groundwater investigations. 

Knowledge of the geology, soils, land use and hydrology are important as each 

affects groundwater movement and quality in different ways. These components 

are described separately below, together with the setting of Lake Rotokakahi and 

the history of the water quality and ecosystem health of the lake. 
 

 

Figure 1: Map of the North Island, New Zealand and the 

Rotorua Lakes region. 
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2.2 Geologic Setting 
 

The Rotorua Lakes Region lies in a geologically unique area in New Zealand. 

New Zealand lies upon the boundary of the Australasian and Pacific Plates. The 

collision of these two plates has resulted in the Pacific Plate sub ducting under the 

Australasian Plate, which has caused uplift, subsidence, volcanism, geothermal 

activity, erosion and deposition. This unique tectonic and geologic setting has 

resulted in aquifers with a range of lithologies within New Zealand. 

 

Lake Rotokakahi is within the Rotorua Volcanic Centre which is located in the 

central part of the larger Taupo Volcanic Zone (TVZ). The TVZ is a North-East 

striking zone of volcanic and geothermal activity which extends from Mt Ruapehu 

to beyond White Island, just off the Bay of Plenty coastline and is, on average, 50 

km wide (Wilson et al., 1995). The TVZ was formed due to the Pacific Plate 

subducting under the Australasian Plate, which began approximately 2 million 

years ago and resulted in a rift zone being created (Wilson et al., 2007). The TVZ 

includes a NE-trending zone of active rifting within the continental lithosphere 

that extends NW-SE at a rate ranging from ∼15 mm y-1 at the Bay of Plenty coast to < 5 mm y-1  south of Lake Taupo, with extension of ∼ 12 mm y-1  within the 
Rotorua Volcanic Centre (Cole et al., 2010). The study area contains several 

rhyolitc calderas and caldera complexes with associated rhyolite lavas and lava 

domes. The edges of the TVZ differ as they are characterised by andesitic to 

dacitic effusive volcanism with no rhyolitic calderas (Nairn & Kohn, 1973). The 

oldest geologic units or basement rocks in this area are referred to as greywacke, 

which contains sandstones, argilites and conglomerates (Wilson et al., 2007). The 

younger units that overlay the basement are described below (Fig. 2). 
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Figure 2: Simplified geologic map of greater Rotokakahi zone. Adapted from Leonard et al. 

(2010). 
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2.2.1 Geologic Units 
 

The major geologic units of the Lake Rotokakahi area are described below. The 

geological categorization of these units is based on the quarter million mapping 

programme (QMAP), 1:250 000 scale, series for the Rotorua geological map from 

Leonard et al,. (2010). 

 
 

2.2.2 Rhyolites 
 

Rhyolitic units have been grouped together as Okataina Rhyolites as they are 

sourced from the Okataina Volcanic Centre (OVC) which is the most recently 

active rhyolitic caldera complex located south of Lake Rotorua. The most recent 

volcanism in the OVC was the 1886 Mt Tarawera Eruption. The oldest unit is 

dated at 550 ka (Cole et al., 2010). The Okataina Rhyolites are grouped into 

youngest, middle and oldest rhyolites. The youngest rhyolites are post 61 ka, the 

middle rhyolites are between 61 and 180 ka and the oldest rhyolites are 180-322 

ka and older (Leonard et al., 2010). Rhyolite is known to be almost impermeable, 

thus groundwater flow is fracture dominated, with the size and number of fractures 

affecting the flow, as well as the linkages between them. The spring that flows into 

Lake Rotokakahi is located within the middle rhyolite unit near the east to west 

fault line (Fig. 2), indicating that the groundwater flow is controlled through 

a fault line within the rhyolitic unit. 

2.2.3 Earthquake Flat Formation 
 

The Earthquake Flat Formation is the other unit that dominates the geological 

catchment of Lake Rotokakahi. It is a thick, biotite-rich, rhyolitic ash and pumice 

deposit that covers 110 km2 (Nairn & Kohn, 1973). The unit extends from 

Waiotapu in the south to the Hemo Gorge, just south of Rotorua, in the north. The 

formation consists of many pyroclastic flow units with interbedded and mantling 

air fall pyroclastic units (Nairn & Kohn, 1973) and is sourced from a line of 

eruption craters to the west of Lake Tarawera (Cole et al., 2010). The Earthquake 

flat deposits have been considerably faulted, undergone erosion and have been 

described as highly permeable (Nairn, 1981) with a maximum thickness of 120 m 

(Leonard et al., 2010). The magma (biotite-bearing, crystal-rich) seems to be 

closely related to the Kapenga rhyolite lavas which was erupted earlier in the 



21  

Kapenga caldera to the northwest of Earthquake Flat (Cole et al., 2010). The NW 

trend of the Earthquake Flat formation vents suggests that the magma was 

produced by melting of a previously cooled and largely crystallised silicic pluton. 

The melting was induced by basalt under plating during a widespread episode of 

basalt intrusion that also affected the Rotoiti magma body (Cole et al., 2010). 

This is the unit that contains the majority of groundwater flow that enters Lake 

Rotokakahi. Due to the large pumice component and its permeable nature, this 

unit can contain a large aquifer that can have relatively fast groundwater flows. It 

is important to consider the land use practices that occur within the boundaries of 

the earthquake flat formation, as all areas within this zone, contribute to one 

aquifer. This area may extend out of Lake Rotokakahi’s topographical catchment 

as groundwater catchments differ from those of surface water. This is due to 

surface water catchments being dominated by topography and groundwater 

catchments being controlled by geological formations, hence a sound 

understanding of hydrogeology of a lakes catchment is important to derive 

groundwater inflows into lakes. 

 
 

2.2.4 Tauranga Group Alluvium 
 

This group comprises Pliocene to Holocene alluvial sediments (sands and gravels), 

non-welded ignimbrite and tephra layers (Leonard et al., 2010). These units are 

typically located in valleys around the lakes and are mostly saturated, indicating 

drainage of water to the groundwater system. However the unit is heterogeneous 

vertically and laterally which can result in varying hydraulic characteristics (White 

et al., 2015a). In the Rotokakahi catchment the lower lying valleys of the 

earthquake flat formation are covered with Tauranga Group alluvium, indicating 

areas of groundwater recharge and flow. 

 

 

2.2.5 Geologic Summary 
 

The geology of the Lake Rotokakahi area consists of a combination of ignimbrite 

sheets, pyroclastics materials, rhyolite and dacite lava domes and alluvial 

sediments. The alluvial sediments are constricted to valleys which are volcanic 

deposits from erosion, as observed in the Rotokakahi catchment. There are three 

rift  fault  zones  within  the  study  area  that  strike  northeast  to  southwest,  the 
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Ongahoro faults and the Tumunui fault (Leonard et al., 2010). There is a large 

degree of fracturing and interconnected fractures that control groundwater flow in 

rhyolite and welded ignimbrite units (Cole et al., 2010) whereas in the 

unconsolidated sediments and un-welded ignimbrites the groundwater flow is 

controlled by the grain size of the material. Deposits coarser in composition, such 

as the sands and gravels of the Tauranga Group, allow high permeability whereas 

fine-grained layers such as tephra’s and paleosols may act as aquitards that prevent 

groundwater flow between units. 

2.3 Soils 
 

The soils that dominate an area are dependent on different soil forming factors. 

These factors include climate, parent material, vegetation, time and topography 

and have given the soils of the Rotorua region unique characteristics. The parent 

material in the Rotorua region is dominated by volcanic deposits and includes 

tephra and peat deposits (Rijkse, 1979). The topography, particularly within the 

Rotokakahi catchment, is moderately steep with materials eroded and deposited in 

the lower lying valleys around the lake. There are three main soils that 

immediately surround the lake and several others higher up in the catchment. 

 
 

2.3.1 Okareka steep land soils 
 

Okareka steep land soils make up the majority of the soil surrounding Lake 

Rotokakahi (Fig. 3). These soils are defined as well drained and have high 

permeability (Rijkse & Guinto, 2010). They are described as recent tephric soils 

with the parent material being a thin layer of Rotomahana mud on rhyolitic tephra 

upon ignimbrite (Rijkse, 1979). The rhylotic tephra layer ranges in thickness from 

0 to 200 cm (Rijkse, 1979). The steep land soils have variable soil profiles and are 

largely modified by erosion. Many outcrops of ignimbrite or rhyolite occur and 

the steep slopes restrict land use due to the erosion potential (Rijkse, 1979). The 

south eastern area is in native forest and dry stock grazing, however on the 

northern side the area is exotic forest subject to frequent harvest. This results in 

large amounts of sediment and soil runoff entering the lake during harvesting, due 

to the high erosion potential of the Okareka Steep land soils. 
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2.3.2 Haparangi sandy loam and Haparangi hill soils 
 

Haparangi sandy loam and Haparangi hill soils occur to the western area of the 

Lake Rotokakahi catchment. These soils are described as being well drained with 

a loamy texture and rapid permeability (Rijkse & Guinto, 2010). They are very 

friable with very weakly developed structure (Rijkse & Guinto, 2010). The parent 

material for these units is Taupo Pumice < 50 cm thick, on weathered rhyolitic 

tephra (Rijkse & Guinto, 2010). Characteristics of this soil include low nutrient 

levels, high phosphate retention in the subsoil, and poor topsoil structure (Rijkse 

& Guinto, 2010). The majority of this area is in forest with a small area to the 

south being in dry stock farming. 

 

 

2.3.3 Whakarewarewa sandy loam and Whakarewarewa hill soils 
 

The Whakarewarewa sandy loam and Whakarewarewa hill soils dominate the 

western basin and western shores of Lake Rotokakahi, where it is forested. They 

are similar to the Haparangi sandy loam and hill soils and are differentiated by 

their different parent material. They are hill soils with parent materials being 

shallow patchy Rotomahana Mud, on 10 to 30 cm Taupo Pumice on weathered 

rhyolitic tephra, on ignimbrite (Rijkse, 1979). The Whakarewarewa soils have an 

unstable soil structure, erosion potential and low nutrient levels (Rijkse, 1979). 

 
 

2.3.4 Soil Summary 
 

The soils that are present in the Lake Rotokakahi catchment are all sourced from 

volcanic deposits. These deposits are rhyolitic, resulting in the soils having similar 

chemical composition. The soils on the western side of the lake are characterised 

by low moisture due to the large sand component and free-draining material. The 

majority of water does not reside on the surface, rather percolating through the 

soil layers to the groundwater table. The soils on the northern and southern ends 

of the lake have high erosion potential and should be managed in accordance. The 

soils that surround Lake Rotokakahi are largely sandy loams which can impact the 

hydrology of the area, particularly in regard to storm flows where, due to the 

nature of the soils, surface ephemeral streams do not form. The water instead 
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drains  down  into  the  soil  until  it  reaches  the  water  table  then  enters  the 

groundwater system. 

 

 

 

 
 

 
 

Figure  3:  Soil  map  of  the  Lake  Rotokakahi  Catchment  and  surrounding  area. 

Adapted from Bay of Plenty Regional Council GIS database. 
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2.4 Hydrology 
 

The hydrological characteristics of the Lake Rotokakahi catchment are unique and 

distinct. The lake has no surface water stream inflows and only one small surface 

outflow. There is a small spring located on the lake edge that is recognised as the 

only inflow. Due to the lack of surface water inflows the lake is assumed to be 

predominantly groundwater fed. 

 

The catchment, particularly in the southern end which is currently farmed, used to 

have several surface water streams. These streams reportedly flowed down the 

catchment from the higher elevations in the southern end down to the lower 

elevations of the lake surface and, at some points disappeared below the ground 

(Foster, 2015) and appeared further down the catchment and flowed into the lake. 

However it has been observed by locals in the area that these groundwater fed, 

intermittent streams have now dried up and no surface water flows occur (Foster, 

2015). The old dried-up stream channels have also been dammed along the lake 

edge which also prevents ephemeral streams from forming and flowing into the 

lake during periods of high rainfall. 

 

The only recorded inflow to the lake is a small spring located on the southern end 

of the catchment. The spring is covered by native bush and was only found 

through site exploration. The spring is routinely tested for water quality by Bay of 

Plenty Regional Council and was gauged during this study period. The average 

flow for the spring was recorded as 0.15 m3 s-1 during the study period 

 
Lake Rotokakahi also has only one surface water outflow, the Te Wairoa Stream. 

The Te Wairoa stream flows east into Lake Tarawera, with additions from several 

small tributaries along the way. The stream is located in the eastern most corner of 

the lake and has been used historically as a proxy for lake water quality. The 

stream was gauged during the field period and gave average discharge values 

between 0.15 m3 s-1 and 0.57 m3 s-1. 
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Due to the distinctive surface water setting, the lake is dominated by water entering 

from groundwater inflows. This has also been observed through the large areas of 

groundwater seepage around the lake shore during site visits. 

 
 

2.5 Land Use 
 

Historically, land use within the catchment was largely indigenous forest. The 

total catchment area is 19.7 km2 (Jones et al., 2014) and is now largely in exotic 

forest (Douglas fir and pine; (Butterworth, 2008) with little remaining native 

forest left (Fig. 4). The northern part of the catchment is the Whakarewarewa 

forest which is exotic and has been harvested right up to the lake margin and then 

re-planted. The south-west part of the catchment is in pasture for sheep and beef 

farming and covers the lake margin around Kaiteriria Bay and extends up to the 

southern end of the catchment. This is known as Highlands station and is 

administered by Tumunui, a Māori trust. The surrounding areas in the south east 

are in regenerating native forest. 

 

 
 

 
 

Figure 4: Lake Rotokakahi catchment land 

use.  Data from (Jones et al., 2014). 
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2.6 Water Quality 
 

Lake Rotokakahi was monitored monthly by Bay of Plenty Regional Council 

(BOPRC) up until permission to the lake was no longer granted by the owners 

from 1996. BOPRC began monitoring the lake outlet, Te Wairoa stream, in 2006 

and used it as a proxy for water quality of the lake. During the period 2006 – 2007 

water quality sampling in the lake was re-established due to an iwi member’s 

Master of Science research project (Butterworth, 2008) and monitoring has been 

carried out monthly from 2009 to present (Butterworth, 2012b). 

 

The quality of Lake Rotokakahi has recently declined and has shifted from a 

mesotrophic to a eutrophic state over time. The target TLI is set at 3.6 but is 

currently 4 (Fig. 5). It ranged from 3 to 3.5 between 1990 and 1996, but had 

increased to 4.5 by 2010 (Butterworth, 2012a). This decline has been due mostly 

to a decline in water clarity, with Secchi depth measurements declining from 6.6 

m in the 1990s to between 2 and 4 m between 2009 and 2012 (Butterworth, 

2012a). There was an algal bloom recorded in May 2011, which was of a 

potentially toxic cyanobacterial species (Anabaena lemmermannii) (Jones et al., 

2014). It was likely linked to a fish kill in Te Wairoa Stream. Nutrient 

concentrations (total nitrogen and total phosphorus) have also shown an 

increasing trend from 1990 to the present. There is some indication that lake 

phytoplankton are more likely to have become nitrogen limited more recently due 

to large increases in phosphorus concentrations (Butterworth, 2012a). 
 

 
 

Figure 5: Trophic Level Index values in Lake Rotokakahi from 2002 to 

2015 from Bay of Plenty Regional Council regular monitoring data. 
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The cause of decline on water quality of Lake Rotokakahi is unclear as catchment 

land use is predominantly forest and little land use change has occurred. There is 

only one sheep and beef farm in the southern catchment bordering Kaiteriria Bay 

(Highlands Station). It is administered by Tumunui, a Māori trust. Forestry 

operations have occurred in the northern catchment right up to the lake shore, 

which has possibly caused increased phosphorus and sediment loads to the lake 

through surface runoff. Harvesting of the plantation forest occurred in 2007 and 

2008, with 44% of the lake margin harvested (Butterworth, 2012a). This was done 

through conservative harvesting methods and included selective thinning, with 

trees harvested by helicopter to minimise the disturbance on the ground and in an 

attempt to minimise sediment run-off into the lake (Butterworth, 2012a). This 

water quality decline has also impacted the lake ecology, especially in regard to 

population numbers of freshwater mussel/kākahi (Echyridella menziesii) which 

has been studied through a Master of Science thesis (Butterworth, 2008). 

 
 

2.7 Groundwater 
 

Lake Rotokakahi has been identified as a groundwater dominated system. There 

has been limited research and monitoring done on groundwater inflows to the lake. 

In regard to nutrient budgets, groundwater inputs are generally neglected, 

although they can contribute a high proportion of nutrient loads. Shallow 

groundwater can provide 50% of nitrogen inputs to a lake and can reach a lake 

within months or years (White et al., 2015a) compared to deeper groundwater 

which may take decades to reach a lake. The lakes in the greater Tarawera region 

are all linked through the groundwater system. 

 

The northern part of the Rotokakahi catchment, the Whakarewarea forest, is an 

area where the Rotorua district’s treated sewage and wastewater is irrigated. A 

study undertaken by White and Moreau-Fournier (2012) showed that there is 

likely to be a groundwater divide, which is similar to the topographic divide, in 

the area, which prevents groundwater flow from the Whakarewarewa forest 

discharging to Lakes Rotokakahi and Tikitapu. All of the base flow within the 

Puarenga Stream catchment that flows from the forest to Rotorua is accounted for 

through irrigation  (White & Moreau-Fournier,  2012b) and  groundwater water 
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levels measured in monitoring wells through the Whakarewarewa forest are shown 

to be lower than the topographic contour of the lake level of Rotokakahi (White 

& Moreau-Fournier, 2012b), further indicating that groundwater flow into the lake 

from this area is unlikely. 

 

In an investigation undertaken by the Institute of Geological and Nuclear Sciences 

Limited (GNS) and commissioned through the Bay of Plenty Regional Council, a 

three-phase report was completed including a drilling programme, leading to the 

monitoring and development of geologic and groundwater flow models.  The report 

stated that insufficient piezometric levels were obtained from the Earthquake 

flat area to confirm groundwater flow directions as there could be some flow 

into the Waikato Region to the west of the Lake Rotokakahi zone which is not 

included in this report. The modelled output showed that a significant amount of 

groundwater was flowing into Lake Rotokakahi. The largest amount occurs at 

the lake edge and also groundwater outflow to Tarawera (White et al., 2015a). 

The calculated outputs from GNS research have given inflow and outflow volumes    

which    are    used    in    the    hydrodynamic    modelling    section. 

 

 
 

 

Figure  6:  Groundwater  flow  diagram  and  extent  of 

Rotokakahi zone from (White et al., 2015a). 
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3 Methodology 
 

 

 

 

3.1 Field Methods 
 

Lake Rotokakahi and its catchment were monitored between January 2016 and 

July 2016. Monitoring included monthly sampling of piezometers for water quality 

and water level, event-specific sampling of water quality during high rainfall 

events and high frequency (30 min intervals) of water level and temperature 

from loggers in the piezometers. Also, intermittent stream gauging, thermistor 

chain data from three deployments and meteorological data were measured and 

recorded during the sampling period 

3.1.1 Installation of piezometers 
 

Eight groundwater sampling sites were selected around the lake catchment (see 

Fig. 7, table1). The site locations were selected based on the different land use 

zones, ease of access and proximity to the water table, to ensure piezometers 

would not go dry during sampling period. Location of each of the sites was 

recorded by GPS and was able to be accessed by boat. 

 

The piezometers were installed manually using a hand auger. The auger head 

consists of a sharp, rounded, metal corer. The auger was driven into the ground by 

repeatedly turning and pushing down on the auger handle, driving the corer into 

the soil. The auger was then lifted up and some of soil was removed and the 

process is repeated until there was sufficient water depth in the piezometer. The 

piezometers were installed in 18 December 2015 during summer when the water 

table was assumed to be its lowest. They were installed up to 1 m below the water 

level at the time. 



31  

 

 
 

Figure 7: Map showing piezometer locations around Lake Rotokakahi. 
 

 

 

 

 
 

Table 1: Groundwater sampling sites and locations 

 

Site GPS Co-ordinates Land Use Piezometer 

depth (m) 

Logger 

P1A E1889800 N5763281 Farmland 0.95 Yes 

P1B E1889826 N5763263 Farmland 1.67 No 

P2A E1889908 N5763393 Farmland 0.3 Yes 

P2B E18889916 N5763345 Farmland 1.57 No 

P3 E1889750 N5765194 Exotic Forest 1.02 Yes 

P4 E1888881 N5765703 Exotic Forest 0.84 No 

P5A E1890229 N5763457 Farmland/Native Forest 1.62 No 

P5B E1890274 N5763408 Farmland/Native Forest 1.85 No 
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Figure 8: Equipment used for piezometer installation. Metal hand auger  (top), plastic 

tubing (middle), and screen and soil log taken from drilling (bottom). 

 

 

The piezometers were made with 32-mm diameter PVC pipes with a screen. The 

screen consisted of 2 mm incisions that were drilled into the plastic material 

around the perimeter of the piezometer. The screen was 40 cm in length. These 

pipes were placed into the holes and filled in with bentonite sands, until the area 

of the screen was covered, and then was filled in with soil. The piezometers were 

all capped. 

 
 

Figure 9: Diagram showing piezometer components and installation. 
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3.1.2 High frequency temperature and level measurements 
 

Solinist Level loggers, model 3001 (Canada), were installed in a selection of the 

piezometers and at the spring. The loggers were attached to a wire down the 

piezometer, the wire was fed through a small hole drilled at the top of the casing 

and a metal crimp was used to prevent the movement of the logger (Fig. 9). At the 

spring a logger was cable tied to a waratah that was inserted into the ground 

surface at a depth that prevented any movement. A barometric logger was installed 

on a fence post near P2 location to provide an atmospheric correction of water 

level. 

 

The Solinist loggers recorded water level and temperature every 30 minutes. The 

data were downloaded using the Solinist software and converted to text 

documents for analysis. 

3.1.3 Monthly groundwater monitoring 
 

Monthly monitoring was undertaken at the piezometer sites. The water level was 

measured by removing the logger (if present) and the level meter. Water level was 

measured to the top of the casing. 

 

The water from the piezometers was extracted using a GeoPump (ThermoFisher 

Scientific, Australia) powered by a 12W battery. The piezometer was purged three 

times before sampling and the purge volume (V) was calculated as: 

 
V = 3.14 x (well depth – depth to water) x (well radius) 2 x 1000 (1) 

 
 

where the units of volume are in litres, depth in metres and radius in metres. After 

the piezometer was purged the water was pumped into a bucket for field parameter 

measurements. Dissolved oxygen (DO) and temperature were measured using a 

hand-held Hach DO meter (model HQ 30d, New Zealand). Conductivity was 

measured using a Hach conductivity meter (Hach Pacific, New Zealand). pH was 

also measured, using a H-Series H160 pH meter (Hach Pacific, New Zealand). 
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Water quality samples for groundwater quality were collected using the GeoPump. 

Samples for total nutrient analysis were taken by transferring water into a 50 mL 

Falcon tube. Samples were then frozen at the laboratory. 

 
 

3.1.4 Flow gauging 
 

The flow of the spring and Te Wairoa stream was measured during the study 

period using a FLO-MATE, model 2000 portable flow meter (Marsh-McBirney 

Inc., Maryland). The FLO-MATE uses an electromagnetic sensor to measure the 

velocity (m s-1) in water, which is conductive. 

 

 

 
The FLO-MATE consists of a sensor attached to an adjustable wading rod and 

attached to a power box. The total wetted width of the stream was measured and 

divided into verticals at 10 cm intervals with recordings taken at each interval 

along the width of the stream (Fig. 10). Due to both the stream and the spring 

being too shallow to do recordings at 20, 60 and 80 % of the total depth, the 

sensor was placed at 50% of total depth across the segments. Velocity was 

measured in m s-1 at each vertical section. The area between  vertical measurements 

was calculated as the width between each vertical and the water depth. Discharge 

was calculated at each section and the sum of all verticals gave 

total discharge. Total discharge was calculated by: 
 

 

Where Q is discharge in (m3 s-1), V is velocity and A is area (m2). 

(2) 

 

 

 

 

 

 

 

Figure 10: Cross -section of stream verticals along the width of a stream (image 

FLO-MATE manual, Marsh McBriney 1990), verticals were spaced 10 cm apart 

due to size of waterways. 
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3.1.5 High frequency temperature data 
 

A 20-m thermistor chain was used to determine temperature changes along the 

lake shore. It consisted of 20 Dallas Instruments DS18B temperature sensors 

spaced at 1 m intervals. The cable was powered by a 12 Volt battery and solar 

panels. The thermistors were programmed to record data every 1 minute by an 

Arduino micro-controller. The factory accuracy was noted at 0.5 C, however 

laboratory calibration experiments gave accuracy within 0.2 C. 

 
The cable was placed at three different locations around the lake shore. The 

battery box was placed on the bank of the lake in a secure, open location for 

receiving sunlight. The cable was then moved by boat until it was in a tight, 

straight line perpendicular to the shore, and was carefully dropped to the lake bed. 

Fishing weights (1 kg) were attached to the cable every 3 m to ensure the cable 

would rest on the lake bed. The data were downloaded in the field after each 

deployment. It is important to note the data from the first two deployments was 

not corrected. 

 
 

 
 

Figure 11: Diagram showing how thermistor chain was placed on lake bed. Each 

sensor was 1 meter apart and a total of 20 sensors were on the chain which was 

connected to power box with a solar panel. 

Solar panel 
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3.1.6 Storm Sampling 
 

During periods of high rainfall, water samples were taken at 2.5 h intervals using 

a Manning Environmental Inc. Portable Vacuum Sampler (model VST-7750, 

United States of America). A total of three storm events were sampled at five sites 

around the lake. 

 

For the spring site (Fig. 7), the auto sampler was placed on a flat surface on the 

spring bank and the tubing was attached to a waratah in the middle of the flow, 

using cable ties. For the piezometer samples the auto sampler was placed directly 

beside the piezometers and the tubing was placed down the pipe until it was just 

above the base of the piezometer, to ensure it would always be submerged. The 

tubing was then taped to the top of the piezometer to prevent movement and avoid 

water entering the piezometer from above the ground surface. 

 

The sampler runs off a 12 V battery and uses an air compressor with associated 

valves to produce vacuum in a chamber to draw water in to be sampled. It also 

produces pressure to purge the chamber and intake tube. After purging the line 

water is drawn up the sample tube to the chamber. The volume in the chamber 

was set at 500 mL and the above process was repeated until 500 mL was in the 

chamber. The sample was then deposited into one of the 24 bottles and the 

process repeated every 2.5 hours so that the total duration of sampling was 36 

hours (i.e., 24 samples). This time value was set in order to capture the 

groundwater lag time from the increase in rainfall and subsequent infiltration to 

the water table resulting in subsurface quick flow. Samples were stored in plastic 

bottles on ice until they were taken to the laboratory for further analysis. 

 
 

3.2 Laboratory Analysis 
 

3.2.1 Nutrient samples 
 

Samples were filtered in the laboratory for dissolved nutrient analysis using a 50 

mL syringe and Whatman glass microfiber (GF/C) filter papers. Samples were 

then transferred into acid washed 50 mL Falcon tubes and frozen until analysis. 
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All nutrients were analysed using a Lachat QuickChem Flow Injection Analyser 

(FIA+8000 series, Zellweger Analytics, Inc.). Total nitrogen (TN) and total 

phosphorus (TP) samples were simultaneously determined using a persulphate - 

hydroxide digestion. The digested solution then underwent an ascorbic acid 

colorimetry (APHA 4500-P) and Discreet Analyser. The detection limit for total 

phosphorus was 0.004 mg/L. For total nitrogen the digested solution was analysed 

for nitrate using cadmium column reduction to nitrite and colorimetric analysis 

(APHA 4500-N C) with a default detection limit of 0.004 mg/L. 

 

Dissolved nutrients were determined by analysing the filtered samples. Phosphate 

(PO4-P) was analysed by molybdenum blue colorimetry and discreet analyser 

(APHA 4500-P-E). Ammonium (NH4-N) analysis involved reaction with 

hypochlorite ions to form monochloramine, which reacts with salicylate ions in 

the presence of sodium nitroprusside to form a blue compound. Nitrite (NO2-N) 

was analysed by the flow injection analyser. Nitrate (NO3-N) was determined 

through subtracting NO2-N values from NOX-N (NO3-N + NO2-N) values. All 

reagents were prepared fresh daily. Milli-Q water was used in preparing all 

standards and reagents. Calibration standards were prepared by diluting stock 

standards with Milli-Q water. 

 

 

3.3 Hydrodynamic Modelling 
 

3.3.1 ELCOM Model Description 
 

ELCOM (Estuary and Lake Computer Model) is a three-dimensional 

hydrodynamic model developed by the Centre for Water Research at the 

University of Western Australia. This model is based on the Navier-Stokes 

equation which describes the unsteady and viscous behaviour of flow and 

simulates the temporal behaviour of water bodies with environmental forcing. 

ELCOM was used in this study to simulate temperature, water levels and water 

transport in Lake Rotokakahi. ELCOM can also be coupled with an aquatic 

ecological model. 
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3.3.2 ELCOM Model Inputs 
 

Input files for the ELCOM model included inflows, outflows, lake and 

meteorological data. They were prepared in a specific format for the requirements 

of ELCOM. Three–dimensional model run times are notably long and greater than 

one- dimensional models. Therefore, the model simulation period was set for 6 

months from 1 January 2016 to 1 June 2016. For this period ELCOM was run at 

90 second time intervals, i.e., 145,920 time steps. 

3.3.3 Surface Inflow data 
 

The inflow data was given in daily values for discharge and temperature. There 

was only one surface inflow identified for Lake Rotokakahi and this was the 

spring (Fig. 7). Spring inflow was set as a constant value of 0.15 m3 s-1. This value 

was set as there were rare and sporadic discharge measurements which were 

averaged to provide this value. Temperature of the spring was also set to a constant 

of 10.5 C. This value was the average of data recorded by the Solinist logger 

which recorded spring water temperature every 30 minutes. The temperature data 

were averaged over the measured time period and showed little variation. 

 

 

3.3.4 Outflow Data 
 

Outflow data was derived through using interpolation of observed field data. Due 

to few stream gaugings being undertaken during the study period, historical data 

was used to show seasonal variation and daily values were obtained through 

interpolation. 
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Figure 12: Derived outflow data calculated for the 6-month study period from 1 Jan 

2016 to 1 Jul 2016. 

 

 

Outflow temperature was measured sporadically, thus to obtain daily values the 

stream temperature was modelled using air temperature using the method 

described in Mohseni et al. (1998): 

(3) 
 

 

 

where: Ts is the estimated stream temperature, Ta is the measured air temperature, 

α is the coefficient for the estimated maximum stream temperature, γ is a measure 

of the steepest slope of the function and β represents the air temperature at the 

inflection point. 
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3.3.5 ELCOM Bathymetry 
 

The bathymetry of Lake Rotokakahi was taken from a high resolution 

hydrographic survey, undertaken by Discovery Marine Ltd (DML) on 20 April 

2016. For model input the bathymetry data was averaged to a 30 m x 30 m 

resolution. A hypsographic curve  was also created using the bathymetry data. 
 

 
 

 

Figure 13: Hypsographic curve for Lake Rotokakahi showing depth 

(m)  versus  area  (m-2)  calculated  from  x,y,z  data  points  from 

Discovery Marine Ltd. bathymetry data. 

Figure 14: Bathymetry from 2016 used for ELCOM inputs. Bathymetry data 

sourced from Discovery Marine Ltd. 
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3.3.6 Meteorological Data Input 
 

Meteorological data were obtained from the National Climate Data Base for the 

Rotorua Airport Climate Station. The climate station is located 10 km from Lake 

Rotokakahi. The data collected from that station included rainfall (mm), air 

temperature (°C), wind speed (km h-1) and direction (°), relative humidity (% of 

saturation) and solar radiation (MJ m-2). Variables were measured at different time 

intervals and averaged to give hourly values. Wind direction and speed are 

measured at 10 minute intervals, temperature, atmospheric pressure and relative 

humidity are measured every minute, and rainfall and solar radiation are one-hour 

accumulated values. 

 

For the purpose of ELCOM configuration rainfall was converted to metres, relative 

humidity was converted from percentage to fraction of saturation (0-1) and solar 

radiation was converted from MJm-2 to Wm-2 for the 10-minute time step used 

in ELCOM. 

 

Cloud cover was calculated using historical data. A sinusoidal curve was fitted to 

shortwave radiation data from the Rotorua Airport climate station for from 2001 

to 2012. From this equation, coefficients were produced for 100% cloud cover and 

0% cloud cover. 

 
 

Figure 15: Eleven years of historical solar radiation (MJm-2) data with sinusoidal 

curve fitted (black dotted line). 



42  

Component equations of Fig. 15 include:  

 
 

(4) 

 

where: a,b, c and d are co-efficients with a is 54.976, b is 365.33, c is -1.375, d is 

65.024 and x is the day of the year. 
 

 

(5) 

 

where: a,b, c and d are co-efficients with a is 135.5362, b is 365.33, c is -1.375, d 

is 260.014 and x is the day of the year and: 
 

 

 

 

 
3.3.1 Groundwater inflow data 

 

 
(6) 

 

Groundwater inflows were calculated by three different methods and run in 

separate ELCOM model simulations in order to test model sensitivity to the three 

methods. The first method was based on a mass balance, with groundwater inflow 

calculated from surface inflow (spring observations), outflow (interpolated 

observations), catchment rainfall, evaporation and rainfall directly to the lake. The 

second simulation had groundwater inflows calculated by MODFLOW, a 

groundwater flow model set up by the Institute of Geological and Nuclear Science 

(GNS) and based on a flow model for the greater Tarawera region (White et al., 

2015b)The groundwater inflows in this scenario were given as constant values. 

The third simulation also used MODFLOW output, however it was compared 

with field level measurements and extrapolated to give a variable groundwater 

flow. The details behind these methods are outlined below. 

3.3.2 Water balance calculations 
 

A water balance was calculated for Lake Rotokakahi using data that was available 

for the catchment. This data included meteorology and inflow hydrological data. 

The water balance equation was: 
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(7) 
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Figure 16: Meteorological data used as input into the ELCOM model (01/01/2016 to 

01/06/ 2016). From top: Cloud cover, rainfall, Atmospheric Pressure, Relative Humidity, 

Solar radiation and wind speed. 
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Where  is evaporation in m3 d-1 and ∆S is change in storage. Evaporation from 

the lake was calculated using wind speed and air vapour pressure from the daily 

evaporative heat flux, from Fischer et al. (1979, equation 6.20). 

 

 

(8) 
 

 

 
 

where is evaporative heat flux (m3 d-1), P is atmospheric pressure (hPa), is 

latent heat transfer co-efficient for wind speed at a height of 10 m (1.2 x 10-3), 

density of air (kg m-3),  is latent heat of evaporation of water 2.453 x 106 J 

kg-1,  is wind speed (m s-1) at 10m height above ground level,  is water 

surface temperature derived from ELCOM output (°C),  is saturation 

vapour pressure at the water surface temperature (hPa) and  is vapour pressure 

of the air (hPa). 

 

 
 

Figure 17: Lake surface water temperature (°C) as derived output from 

ELCOM from 01/01/2016 to 01/06/2016 compared with observed surface water 

temperatures (°C) from monthly monitoring from Bay of Plenty Regional 

Council. 

 

 

 
 

A catchment water balance was carried out. Catchment land use data is useful for 

evaporation and run-off purposes. Data was obtained through the Bay of Plenty 

Regional Council GIS database and are shown in Table 2. 
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Figure 18: Daily evaporation (m-3day-1) calculated for Lake Rotokakahi 

from 01/01/2016 to 01/06/2016 calculated from equation 8 above. 

 

 

 

 

Table 2: Catchment land use types used for calculating the water balance for Lake 

Rotokakahi. 

 

Land use Area (km2) 

Farmland/ Pasture 5.48 

Exotic forest 9.17 

Native forest 5.07 

Total 19.72 

 

Overland flow occurred during storm events. Total daily rainfall > 20 mm was 

considered a storm event. For these cases it was estimated that 10% of the rainfall 

that fell on pasture in the catchment went into overland flow and flowed into the 

lake as surface inflow. 

 

Catchment evaporation rates were assumed to be similar to the values stated by 

Scotter and Kelliher (2004) of 800 mm yr-1 for pasture and 1000 mm yr-1 for 

forestry from an average annual rainfall of 1850 mm yr-1 based on the Rotorua 

catchment. Based on values given in Scotter and Kelliher (2004), annual 
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catchment evapotranspiration rate was calculated as 53.4% of rainfall with 

seasonal variation with a peak of 73.4% for summer and a minimum of 33.4% for 

winter (McBride et al., 2014). 

 

Using Eq. 1, groundwater inflow was calculated for Lake Rotokakahi using 

inflow, storage change, measured rainfall and estimated evaporation and outflow. 

Inflow from the spring was set as a constant due to limited measurements, and 

daily outflow values were calculated through interpolation of outflow discharge 

measurements collected from field gauging. 

 

 

Figure 19: Interpolated outflow volumes (m-3s-1) from the Te Wairoa stream during 

the 6-month sampling period from 01/01/2016 to 01/06/2016. 

 

 

Figure 20: Estimated groundwater inflow (m-3 s-1) calculated from the water balance 

equation during the 6-month sampling period from 01/01/2016  to 01/06/2016. 
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3.3.3 Groundwater flow model (MODFLOW) 
 

Modelled output data from the groundwater flow model in White et al. (2015) was 

used for calculating groundwater inflow and outflows for the hydrodynamic model. 

Groundwater flow values, based on hydraulic heads, were taken from Table 

4.7 of White et al (2015). The values were given as 87 L s-1 flow from the lake 

to the aquifer (groundwater outflow) and 176 L s-1 for flow from the aquifer to 

the lake (groundwater inflow). These values were set as constant values for 

ELCOM inputs for one of the simulations. 

 

The third simulation used the constant MOFLOW values from White et al. (2015) 

above and the observed groundwater level data. Groundwater level data measured 

in piezometers showed distinct variation over the sampling period. Following the 

assumption that groundwater level corresponds with groundwater flow the 

groundwater flow was calculated using the observed variation in groundwater 

level. The mean groundwater level was considered equal to the 0.176 m-3s-1 as 

outlined from White et al,.(2015). The groundwater levels (in 30 minute intervals) 

were divided by the mean groundwater level and multiplied by 0.176 m-3s-1 giving 

the groundwater flow volume for that specified water level in m-3s-1. The results 

were then averaged to give daily values (Fig. 21). 

 
 

 
 

Figure 21: Groundwater inflow (m-3s-1) based on measured groundwater levels and 

MODFLOW output from (White et al., 2015a). 



48  

4 Results 
 

 

 

 

4.1 Meteorology 
 

During the sampling period from 1 January to 1 June 2016, the daily mean air 

temperature was 16.2 °C, with the highest temperature 22.2 °C on 28 February 

and the lowest 5.4 °C on 1 June (Fig. 22). The total rainfall over the sampling 

period was 595.8 mm and there were three significant high rainfall/storm events 

(Fig. 22). Significant rainfall events were considered to be more than 20 mm a day. 

 

 
 

Figure 22: Temperature and rainfall (upper panel) and solar radiation and relative 

humidity over the sample period 01/01/2016 to 01/06/2016. 
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4.2 Groundwater 
 

The nutrient concentrations of the spring and the piezometer sites were measured 

monthly. The results for each component have been averaged over the sampling 

period and compared to the average concentration of both the lake and the spring 

inflow. Three of the eight piezometers were destroyed during the sampling period 

by either stock or human interference, thus the results from the five piezometers 

which remained intact are shown. For the dissolved nutrients, the farm sampling 

site P1 showed the highest concentration of nitrate (NO3–N) concentration over 

the sample period. Ammonium (NH4-N) concentrations were highest at P2, the 

swampy area within the farm land, and the lowest at P3, the forested site. 

Concentrations of phosphate (PO4–P) were highest at P5, another farm site, and 

lowest at P4, the site located by the boat ramp in the forested area. 

 

For NO3-N both the spring and lake levels were only 0.001 and the groundwater 

was  considerably  higher.  Ammonium  levels  in  the  groundwater  across  all 

piezometer sites were well below those of the spring, which were significantly 

higher at 0.2 mg L-1. The ammonium concentration in the lake was 0.08 mg L-1 

which was higher than all of the piezometer sites except P2. For phosphate (PO4-P) 

the spring had highly elevated levels (0.225 mg L-1) and the lake had very low 

levels (<0.001 mg L-1) (Fig. 23). 

 
Concentrations of total nutrients for the piezometer sites are shown in Fig. 24. 

Total nitrogen (TN) was highest at the farm site P1, the lowest at P2. For total 

phosphorus (TP), site P5 on farm land had the highest concentrations and P3, the 

forested site, the lowest. Compared to the spring and lake concentrations, total 

nitrogen in groundwater was considerably higher than levels in both the lake and 

the spring 
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Figure 23: From top: Nitrate (NO3-N), phosphate (PO4–P) and ammonium (NH4) 

averaged concentrations for groundwater sampling sites within the Lake Rotokakahi 

catchment, an in-lake site and a spring inflow site. Measurements are from the sampling 

period 01/01/2016 to 01/06. NH4 concentrations (0.2 mg L-1) were too high to show on 

plot. 
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Figure 24: From top: Total nitrogen (TN) and total phosphorus (TP) across the five 

groundwater sampling sites compared to in-lake and spring inflow concentrations. 

Piezometer concentrations were averaged over the sample period from 1/01/2016 to 

1/06/2016. 

4.3 Groundwater responses to high rainfall events 
 

4.3.1 Storm event one: 5/2/2016-7/2/2016 
 

A total of three storm or high rainfall events were sampled over the study period 

of 1 January to 1 July 2016. For the first storm event a total of 28 mm fell over the 

storm period of 5/2/2016 to 7/2/2016. The sampling period for this storm event 

was 60 hours, with samples taken every 2.5 h. The majority of the rain that fell in 

the first storm event was within the first 24 h, with a small burst of rain occurring 

later in the sampling period. The sites sampled for the first storm event were P2 

and the spring. P2 showed distinct increases in NO3-N, PO4-P, NH4-N, TN and TP 
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with increased rainfall. compared with the spring site where NH4, PO4-P, TN and 

TP concentrations were nearly constant. There were variations in NO3-N 

measurements during the storm period and concentrations of NO3-N in the spring 

were much higher than the piezometer site, however there was no relationship 

with rainfall. 

 
 

 
 

 

Figure 25: From top: NO3-N at P2 (left and the spring (right), PO4-P and 

NH4 concentrations in both the spring and P2 sites during storm event 1 

from 5/02/2016-7/02/2016. 
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Figure 26: Total nitrogen (TN) and total phosphorus concentrations in both 

the spring and P2 sites during storm event 1 from 5/02/2016-7/02/2016 against 

rainfall (mm). 

 

 

4.3.2  Storm event two: 17/2/2016 to 19/2/2016: 
 

The second storm sampling occurred was 17 February to 19 February 2016. The 

total rainfall for this period was 94 mm, considerably larger than the first storm 

event. During site visits before and after the storm, no surface water flows or 

ponding had occurred. The majority of the rain fell towards the end of the sampling 

period. The sites sampled during this storm were P2 and P4, the farm and the 

boat ramp site. The farm site showed higher concentrations of all nutrient species 

except for nitrate. Nitrate and phosphate at the boat ramp site remained stable 

and a slight increase in ammonium was observed after the large downpour of rain 

whereas a large peak was observed at P2 at the beginning if the rain event. 
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Total nitrogen increased with rainfall at both P2 and P4 sites with P4 showing a 

more rapid response. Total phosphorus also increased with rainfall, with an 

immediate increase at P2 and remaining high throughout the sampling period. P4 

showed more variable responses to rainfall, with a longer lag time but also a large 

increase after sustained heavy rainfall. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27: From top: NO3-N at boat ramp (P4) (left) and P2 (right) and PO4- 

P and NH4 across both sites during storm period during storm event 2 

17/02/2016 to 19/02/2016 
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Figure 28: From top: Total nitrogen (TN) concentrations at P4 (top) and P2 

(second down) and total phosphorus (TP) (bottom) during storm event 2 

17/02/2016 to 19/02/2016. 
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4.3.3 Storm event three: 25/03/2016 
 

On 25 March 2016 only one site was sampled, P3, the forest site. A paired site 

was set up at P2 however technical difficulties with the auto-sampler resulted in 

mechanical failure and no samples being taken during the storm event. For this 

period rain had begun falling before the sample station was set up,so concentrations 

may have already been affected by the rainfall. The majority of the rainfall during 

storm period was captured during the sampling period, however some rain had 

occurred before sampling began. Nitrate and ammonium showed distinct 

increases after heavy rainfall. Phosphate showed to decrease after heavy rain, 

similar to previous sample sites. 

 
 

4.3.4 Storm Event Summary 

 
 

For the storm sampling data, regression relationships were used to examine 

correlations between rainfall and nutrient concentration. Due to the groundwater 

system being sampled, it is important to consider the lag time that occurs. 

Regression relationships were established for each site and each nutrient species, 

with concentrations lagged from rainfall by 0,2.5, 5 and 7.5 h. (Table 3). 

 
 

Table 3: R2 values from nutrient concentrations versus rainfall with increasing lag 

times as averaged across all storm events 
 

 P2 P3 P4 Spring 

Normal time 0.05 0.05 0.03 0.11 
+2.5 hours 0.08 0.03 0.05 0.11 

+5 hours 0.07 0.07 0.13 0.08 

+7.5 hours 0.11 0.07 0.13 0.02 
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Figure 29: From top: NO3-N, PO4-P and NH4 concentrations at P3 during 

storm event 3 25/03/2016. 
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Figure 30: Total nitrogen (TN) (top) and total phosphorus (TP) (bottom) 

concentrations at P3 during storm event 3 25/03/2016. 

 

 

 

 

The R2 values differ for each site, suggesting the sites have different lag times 

between them. For P2 the lag time of 7.5 h produced the highest R2 value (0.11) . 

P3 showed generally low R2 values overall with the highest being at 5 and 7.5 h 

after rainfall initially fell. Nitrate (NO3-N) had the same R2 (0.2) at 5 and 7.5 h lag 

time. 

 

P4 had the highest R2 values at 5 and 7.5 hours after rain. A significant 

relationship between nitrate (NO3) (r2 of 0.4) was observed at this 7.5 hours lag 

time. The spring followed a different trend to that of the piezometer data and had 

the higher correlation values with no, or a small lag time (2.5 hours). These values 

-1
 

TN
 m

g 
L 

-1
 

TP
 m

g 
L 



59  

are generally too low to be significant in this instance however it is important to 

note that phosphate had a high R2 of 0.3 at 0 and 2.5 hours after. The spring 

results indicate the effect on the nutrients in the water are going to be relatively 

instant compared to the piezometer sites which suggested significant lag times. 

 
4.4 Groundwater level variations 

 

There was a strong relationship between daily rainfall and daily groundwater 

levels showing a large degree of variation. During storm event sampling the 

logger was removed from the piezometer, the data friom these time periods have 

been removed 

 

Water levels at P1 showed an immediate level of range during rainfall (Fig. 31). 

Out of a sample size of 3,787 recorded measurements it produced a P value of less 

than 0.01 meaning that it is a significant relationship and an r value of 0.12. The 

P2 site also showed a strong relationship with rainfall (Fig.31), with 3747 recorded 

measurements it also produced a significant P value of less than 0.1 and showed 

a higher coefficient of correlation than P1 with an r value of 0.31. P3 was the 

forested site and indicated a longer recovery time (Fig. 31), P2 responded 

rapidly to high rainfall and large peak in levels were observed before returning 

back to the base level relatively quickly where as P3 showed increases with 

rainfall but a slower, more gradual return to base flow level. P3 also showed a 

significant P value being less than 0.01 however a weak r value of 0.05 and 3830 

recorded measurements. 

 

The spring site showed a different relationship from the piezometer sites (Fig. 32). 

There was significantly less variation in water level and a smaller response to the 

larger rainfall events, indicating the spring may not be connected to any surface 

water system. The spring not responding to rainfall also indicates that the recharge 

zone is not located in close proximity and long travel times could be involved 

before the water is discharged at the spring. The largest variation in level was 

around then 26/2/2016 when there was relatively little rainfall recorded but a 

distinct increase in water level at the spring was observed from the data. 
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Figure 31: Groundwater levels and rainfall at P1 (top), P2 (second) and P3 (bottom) 

during study period 01/01/2016 to 01/06/2016. 
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Figure 32: Water levels at the spring versus rainfall (mm) during study period 

01/01/2016 to 01/06/2016 from water level loggers. 

 

 

4.5 Shore bed temperature profiles 
 

The thermistor chain was deployed at 3 locations within the lake. First 

deployment was at the spring out to the lake bed, the second deployment was on 

the eastern side of P5 (Fig. 7) and the third deployment was between P1 and P2 

(Fig. 7). The data from the thermistor chain showed temperature variations of the 

lake bed at high frequency. The first site was at the spring as the cable was placed 

from the base of the spring and ran outwards into the lake along the bed. The 

contour plot shows the cooler water coming from the spring from 0-2 m and does 

not plunge to the cooler deeper layers but rather spreads across the surface layer 

of the lake (Fig. 34). 

 

The second deployment had no rainfall during the recording (Fig. 35). It showed 

diurnal variation, with cooler temperatures at night and warming during the day. 

At around 4 metres along the lake bed a there was a colder section than at other 

depths. It is important to note that this does not represent vertical depth but mostly 

horizontal distance from the lake shore; the thermistor at 20 m was in 9 m depth 

of water. The third deployment there was rainfall was encountered during this 

period, however it did not appear to have been reflected in the temperature plot. 
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This site showed strong diurnal temperature variation in the first 10 thermistors 

(to depth ~ 4 m), but little temperature fluctuation in the remaining 10 thermistors. 

 

 
 

Figure 34: Contour plot of temperature (°C) with depth during the 

time of the first deployment at the spring location and rainfall (mm) 

during the same time period. 
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Figure 35: Contour plot of temperature (°C) with depth over time 

against rainfall (mm) during the second deployment. 
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Figure 36: Temperature contour plot (°C) from site 3 from 08/06/2016 

to 12/06/2016 and rainfall (mm) during the same period. 



65  

4.6 Hydrodynamic modelling 
 

The three different model simulations showed variation in regard to water level 

over the simulation period with water levels within 2.5 meters (Fig. 37). For 

simulation 1 which had groundwater inflows calculated through water balance 

equations, the water levels remained relatively constant but increased towards the 

end of the simulation period. The second simulation with the constant groundwater 

inflow and outflow values showed a slight decrease in water level over time 

and the third simulation showed the most variability, decreasing the most over 

the simulation period. There was limited observed data for the lake water level 

with only three observed measurements. 

 

There was little variation in modelled temperature among the three simulations 

(Fig. 38 and 39). The model accurately simulated temperature profiles (Fig. 38 

and 39). The lake was stratified for the entirety of the simulation and this was 

accurately simulated by the model simulations by having the thermocline depth 

the same as the observed data (Fig. 39). Simulation one and three were similar in 

regard to temperature and remain heated at the surface, however simulation 

two began mixing earlier, which matched the observed data. The third simulation 

also showed the location of the cooler spring water entering at the spring 

location constantly throughout the simulation period where as simulations 1 and 

2 only recognised the spring for shorter time periods (Fig. 40-44). 

 
 

 
 

Figure 37: Modelled water levels (m) from three simulations against observed water levels during the 

simulation period 01/01/2016 to 01/06/2016. 
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Figure 38: Modelled temperature (°C) throughout the simulation period 01/01/2016 

to 01/06/2016. Top to bottom, simulation 1, simulation 2 and simulation 3. 
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Figure 39: Temperature profiles (°C) of Lake Rotokakahi showing observed 

and modelled temperatures from all simulations. From left to right, top to 

bottom 26/01/2016, 18/02/2016, 30/03/2016, 25/04/2016, 25/05/2016 



 

 

 

 
 

Figure 40: Modelled surface temperatures (°C) and velocity arrows on 02/01/2016 (top) and 15/01/2016 (bottom) from all simulations, left 

to right: simulation 1, 2 and 3. 
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69 right: simulation 1, 2 and 3. 
 

 

 

 
 

Figure 41: Modelled surface temperatures (°C) and velocity arrows on 02/02/2016 (top) and 15/0/2016 (bottom) from all simulations, left to 



70 right: simulation 1, 2 and 3. 
 

 

 

 

 
 

Figure 42: Modelled surface temperatures (°C) and velocity arrows on 02/03/2016 (top) and 15/03/2016 (bottom) from all simulations, left to 

Spring 

Spring 
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Figure 43: Modelled surface temperatures (°C) and velocity arrows on 02/04/2016 (top) and 15/04/2016 (bottom) from all simulations, left to 

Spring 



 

 

 

 
 

Figure 44: Modelled surface temperatures (°C) and velocity arrows on 02/05/2016 (top) and 15/05/2016 (bottom) from all simulations, left 

to right: simulation 1, 2 and 3. 
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5 Discussion 
 

 

 

In this study the interaction between groundwater and surface water has been 

analysed in Lake Rotokakahi through observing the groundwater system, 

examining measurements of temperature where surface and groundwater flows 

enter the lake, and carrying out three-dimensional modelling of the lake. The three 

– dimensional hydrodynamic modelling was used to investigate the differences 

between three methods of groundwater volume calculation, each of which was 

entered as input to separate model simulations. 

 
5.1 Groundwater quality 

 

Sampling of the shallow groundwater system was undertaken during the study 

period and compared to nutrient concentrations of the lake and the spring inflow. 

Nutrient concentrations in general were higher in groundwater than in the 

receiving lake. 

 

Nitrite and nitrate are natural occurring ions that are abundant in the environment 

(Jahed Khaniki et al., 2008). Water quality monitoring shows that nitrite is present 

in the groundwaters surrounding Lake Rotokakahi, though in relatively low 

numbers in regard to drinking water standards (Drinking-water standards for New 

Zealand 2005 (Revised 2008), 2008) which has limit of 0.2  mg  L-1.  The dominant 

nitrogen compound found in the groundwaters in this area are in the form of 

nitrates (NO3-N). Nitrates in the groundwaters were highest in one of the farmland 

sites (P1) however the other farmland sites (P2 and P5) showed the lowest. All 

of the piezometer sites were higher in nitrates than the lake and the spring which 

showed extremely low nitrate values. The forested sites showed relatively high 

values which is common for harvested forestry area, however. The lower values at 

farm site (P2) can largely be attributed to the fact that the area is often highly 

saturated, near wetland conditions and P5 is located in a valley which is largely 

forested in the higher catchment but farmed on the immediate lake shore. 

 

Concentrations were shown to be lower in the groundwaters than the receiving 

lake, with the exception of the spring and one piezometer site. P2, located in the 
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saturated wetland area of the farmland showed the highest ammonium 

concentrations of the shallow groundwater system. The spring showed extremely 

elevated levels of ammonium (0.2 mg L-1) and was higher than the other 

groundwater sites. High ammonium concentrations are a common indicator of 

anthropogenic activity (Lingle, 2013) but can also occur through the decay of 

natural organic material (Lingle, 2013). In regards to the spring, the source of the 

high ammonium levels is most likely through the in situ decaying of organic 

material due to the native forest location, rather than from anthropogenic sources 

however isotopic analysis of the spring should be undertaken to determine 

recharge location and potential sources of nutrients. However, these ammonium 

concentrations are below 0.2 mg L-1 which is the upper limit for naturally occurring 

ammonium. 

 

In regards to total nitrogen, groundwater was shown to contribute the majority of 

nitrogen to the lake system. The lake had the lowest nitrogen concentration and 

the spring also had low concentrations. Groundwaters in the agricultursl area had 

the highest in nitrogen concentrations. One of the forested sites also showed 

relatively high nitrogen concentrations also. The nitrogen concentrations were 

below the national drinking water guidelines (Drinking-water standards for New 

Zealand 2005 (Revised 2008), 2008) indicating that they are still of good quality. 

 

Phosphorus can be a highly important in eutrophication of surface water systems. 

Excess phosphorus can cause an imbalance in nutrient cycling process (Ricklefs 

& Schluter, 1993). Phosphorous in groundwaters is largely sourced from 

overlying soils, dissolution of minerals from aquifer sediments, fertilisers and 

waste waters (Welch et al., 2010). Geologic sources generally have a greater 

influence on phosphorous concentrations than anthropogenic sources, however it 

is common for P to be immobile in groundwater systems (Meinikmann et al., 

2015) however the results have shown significant contribution of P from the 

groundwater system. 

 

The concentrations of phosphate in the piezometer sites were well below the 

standard value of 0.09mg L-1 for surface waters considered to be  ‘enriched’ (Scott 

& Wong, 2016), this value is used as there are currently no groundwater standards 

for phosphorus. There was one site P5, in the farmland which had values higher 



75  

than 0.03 mg L-1 which in the limit for excessive levels (Scott & Wong, 2016). 

The spring showed highly elevated levels of phosphate (0.225 mg L-1) which is 

also largely unexpected. This exceeds the ‘enriched’ standard as outlined above. 

In regard to phosphorus levels the groundwater sites including the spring were 

higher than the lake, with the exception of the forested site P3. The farm site (P5) 

showed the highest concentration across all sites. Phosphate monitoring of the 

groundwater has been important in determining that phosphate is entering the lake 

through the groundwater system which can have implications for overall lake 

ecology if these levels continue to rise and contribute higher concentrations to the 

lake. 

 

Sources of phosphorus are largely through wastewater contamination from urban 

sources (Meinikmann et al., 2015) however, this source is unlikely in the 

Rotokakahi catchment. The source of phosphorus in this catchment can be largely 

identified as coming from the local soil and geology structure. P5 showed the 

highest levels of phosphorus. This area where the piezometer was located was not 

commonly used by stock however had a very coarse, sandy substrate compared to 

the other farm sites which were dominated by smaller grained sand. 

 
5.2 Temporal variations in nutrients during high rainfall events 

 

From analysing the three storm events that were sampled during the study period 

a distinct insight was gained into how the shallow groundwater systems responds 

to high rainfall events. It is known that the majority of the nutrient loading into a 

lake is caused from storm events however due to the soil structure and geologic 

units within the Lake Rotokakahi catchment all water that would otherwise go 

into overland flow, infiltrates through the sandy soil layer and into the 

groundwater table. The shallow groundwater system is an area which is often 

ignored in terms of nutrients into the receiving water bodies. By observing the 

general nutrient concentrations between sites as above, the temporal variability of 

these flows and how they respond to high rainfall events was analysed. 

 

It is generally expected that higher rainfall will result in higher dilution and lower 

concentrations however the opposite has occurred (Abell, 2013). The relationships 

between nutrient concentrations and rainfall were similar between the different 
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piezometer sites and showed a general increase during periods of high rainfall. 

Nitrite levels across all sampled sites showed a distinct increase with rainfall, 

however the peak wasn’t observed for up to 12 hours after a period of heavy 

rainfall. Nitrate (NO3) generally increased with rainfall, apart from the first storm 

event when a decrease in concentration occurred. The first storm event was only 

28 mm of rain throughout the 60 our sampling period compared to the others 

which were 94 mm and 97 mm respectively. Light rain would have minor effects 

on nutrient concentrations. The events with higher rainfall had a small calculated 

lag time for nitrate delivery. Ammonium showed distinct peaks that corresponded 

closely with peaks in rainfall, particularly in the sites that were located in the farm 

land. Forest sites showed smaller, more delayed peaks in concentrations. This was 

expected due to the buffer that was provided by the vegetation in this area. By 

contrast rainfall on farmland would have infiltrated rapidly into the sandy soil 

layers until it reached the groundwater table. 

 

Phosphate showed to increase during light rainfall but decreased during heavy 

rainfall. The coarse volcanic soils in the catchment are high in allophanic clays 

(Rijkse & Guinto, 2010) and have a high capacity to absorb phosphorus (Abell et 

al., 2013) therefore the soils in which the shallow groundwater systems interacts 

with have the ability to buffer phosphate through either absorption or desorption 

processes (Abell et al., 2013). This means that increases in phosphate are likely to 

occur outside of storm events or with light rain, as observed during the first storm 

event. Total phosphorus however showed a distinct increase across the majority of 

the sites except for P4 where no relationship was observed. 

 

Total phosphorus concentrations increased substantially with rainfall, and remain 

elevated long after rainfall has ceased. Similar to nitrogen, the response was near 

instantaneous in the farm land sites however a considerable lag time was noticed 

in the forested sites. Higher TP concentrations are largely attributed to higher 

suspended sediments as phosphorus binds to particles. This was observed 

particularly when analysing and filtering the samples that contained large amounts 

of suspended sediments. As heavy rainfall infiltrates the surface layers, soil particle 

can be dislodged through the infiltration process, carrying phosphorus. 
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Whether the inflow spreads across the surface of the lake or whether it plunges to 

the deeper layers is dependent on buoyancy which is associated with temperature. 

Plunging of relatively cool stream inflows on entry to a lake is well recognised 

(Abell,. 2013) however figure 34 shows the cooler water of the spring inflow 

spreading across the surface of the lake during a period of rainfall. The nutrients 

transported during high rainfall events, based on this data, will spread across the 

surface of the lake rather than plunging into the deeper, cooler layers of the water 

column. This can have implications as these nutrients are likely to be accessible to 

phytoplankton within the shallow euphotic zone of the lake. 

 
5.3 Temporal variation of groundwater levels over study period 

 

It is generally assumed that groundwater systems are in a steady state. Steady state 

means groundwater flows remain constant over time however from high 

frequency groundwater level data obtained during the study period, immense 

variation has been observed. All sites showed significant relationships (P values 

<0.01) with rainfall. At most of the sites, distinct increases in groundwater level 

were observed almost simultaneously with rainfall. The groundwater levels 

peaked relatively quickly after rainfall and remained elevated for a period of time 

before slowly returning to base level conditions. This data indicates that the 

shallow groundwater system within the Lake Rotokakahi catchment is responsive 

to rainfall and highly variable over time and connected to the surface water system. 

Assuming groundwater levels correspond to groundwater flow, the groundwater 

flow can also be variable over time, similar to surface water systems. 

 

The exception to the above was the spring. Some large rainfall events had no 

impact on the water level of the spring where as some small events produced a 

slight increase in water level. This further emphasises the fact that the spring is 

most likely sources elsewhere, possibly out of the catchment where it may be 

sourced from a different groundwater system. 

5.4 Hydrodynamic modelling 
 

In this study ELCOM was set up and applied to Lake Rotokakahi to investigate 

the hydrodynamic differences when alternate methods of groundwater volume 

were used as major lake inflows. All modelled simulations accurately modelled 
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lake thermodynamics with modelled temperatures showing the lake was stratified 

during the simulation period which was observed from the monitoring data. The 

depth and extent of the thermocline was accurately modelled along with the 

depths of the hypolimnion. The eplimnion was accurately modelled up until the 

end of May 2016 where modelled temperatures showed to remain heated 

(simulations 1 and 2). The model was able to accurately simulate the 

hydrodynamics of Lake Rotokakahi as shown by the good fit with the observed 

temperature data. This also indicates that the location of the cooler groundwater 

inflows were placed in the correct position within the lake model grid as large 

inflows of cooler temperatures, if not in the correct locations or depths would 

drastically alter the temperature profile of the lake. 

 

It is important to consider that groundwater does not follow usual seasonal trends 

that would be expected for flowing surface water bodies. Due to the time delay 

rates of groundwater inflow are often reversed from surface water inflows with 

higher groundwater levels in the summer rather than winter. This could be the 

case for Rotokakahi with the third simulation having decreasing groundwater 

inflow values with the onset of winter due to the delayed effects of the summer 

drought. 

 

The different methods groundwater inflow calculation gave different volumes of 

water inflow however testing the accuracy of these different methods was largely 

impacted by the lack of observations for Rotokakahi. Of the observed values that 

were available simulation 3, which used the constant, steady state value generated 

through MODFLOW from White et al, (2015) combined with observed water 

level measurements, provided the most accurate form of groundwater volume 

calculation. More information particularly around lake levels as well as outflow 

volumes is required to accurately calibrate a water balance model. 
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6 Conclusions 
 

 

The aim of this study was to gain an understanding of how the groundwater 

system interacts with the surface water system and the potential impacts on lake 

water quality. The three-dimensional lake hydrodynamic model  ELCOM  was used 

as a tool to explore these impacts. 

 

Groundwater contributes a high proportion of the total nutrient load to the lake, 

especially during high rainfall events. During these events a slight time lag was 

observed between rainfall and nutrient concentration. The shallow groundwater 

system also varied considerably over time, largely in response to rainfall. ELCOM 

was used to demonstrate differences in the use of alternate methods of 

groundwater flow calculation and to reproduce hydrodynamic conditions in the 

lake during the sampling period. 

 

Quantifying groundwater – surface water interactions requires accurate models 

and , regular measured data to gain a comprehensive understanding of their 

dynamics. This study provided valuable information for the shallow groundwater 

system, however monitoring of the deeper system will provide insight into the 

long term responses and homogeneity through the aquifer. In particular, isotopic 

analysis of groundwaters will provide age and chemical structure which will aid in 

determining lag times on a catchment scale and of possible sources of the 

groundwater. Isotopic sampling within the lake itself can also be undertaken to 

accurately quantify groundwater inflow volumes and whether these inflows are 

constant throughout the entire lake or whether groundwater discharges are 

occurring in ‘hot spots’ or localised zones. Frequent monitoring of the lake and 

groundwater system is essential for providing information on the condition of the 

two systems. This could be done by the installation of a monitoring buoy and 

regular monitoring of the groundwater system. 

 

The addition of the model CAEDYM could also be considered as part of the lake 

modelling strategy. CAEDYM is an ecological model also developed by the 

University of Western Australia which is used to simulate  three-dimensional water   

quality   and   can   be   coupled   with   ELCOM   .   This   is   challenging 
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computationally and was not undertaken in this study due to time constraints, 

however is an area of future research. 

 

The management of Lake Rotokakahi requires attention at a catchment scale that 

should include consideration of both surface and groundwater systems. Land use 

in this catchment has impacts on the lake water quality and thus applying better 

land management practices in the headlands of the catchment, even though further 

way from the lake, could still be effective where it was in close proximity to the 

groundwater aquifer. It is important to consider that even though groundwater 

cannot be seen and is less obvious than surface water systems, the need to manage 

the groundwater system and prevent further increases in nutrients levels is of 

utmost importance. More specifically, in this catchment groundwater inflows 

dominate the inflows to Lake Rotokakahi. Significant planting of the lower lying, 

swampy areas on the southern shore of the catchment and exclusion of stock from 

particularly damp areas should help reduce the nutrient infiltration to the shallow 

groundwater system., Areas that have a high water table, as observed in the 

southern shore of the Rotokakahi catchment, provide minimal if any buffer zone 

for land use impacts to the aquifer. protecting these areas could decrease the 

impacts on the shallow groundwater system. 
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