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Abstract 

Precision agriculture is a farming practice that makes production more efficient. 

Farmers are able to treat infield variability optimising efficiency, growth, and yield 

by tailoring the time, rate, and type of fertilizer that is applied. This reduces costs, 

waste, and environmental side effects such as runoff and leaching caused by over-

fertilization. Precision agriculture technology measures the nutritional status of 

crops to inform what, and where, nutrients are needed. The sensors need to be 

precise, discriminative, and work in real time to ensure that optimal windows for 

nutrition are not missed. These sensor systems provide aerial imaging, and crop, or 

soil, colour index maps. 

 

A technology that has proven effective on some agricultural specimens is laser-

induced breakdown spectroscopy (LIBS). LIBS is an optical emission technique 

that utilizes a high-powered pulsed laser to create a plasma on the sample surface. 

As the plasma cools, photons are emitted at distinct wavelengths corresponding to 

the elemental composition in the plasma, which should represent the sample. This 

thesis investigates using LIBS as a sensor for precision agriculture. Multiple 

chemometric methods have been used on the pasture spectra to build calibration 

models. There are large deviations between spectra belonging to a single sample. 

This is due to surface inhomogeneity, particle size, lens-to-sample distance, 

temperature fluctuations between plasmas, and other causes. Temperature 

corrections were investigated using Boltzmann plots, Saha-Boltzmann plots, and 

intensity ratios.  

 

With limited success in mitigating the variations in pasture spectra, LIBS was used 

to investigate non-aqueous systems. The ability to selectively sinter the surface of 

injection moulded titanium was examined. Titanium metal injection moulding 

allows the creation of complex metal parts that are lightweight, biocompatible, and 

costs less than machining. Multiple LIBS pulses produced sintering in the ablation 

crater of injection moulded titanium by sufficiently heating the titanium particles 

so that fusion occurred. The spectra from LIBS can be used to monitor the extent 

to which the surface is sintered by measuring the reduction in carbon emissions. An 

autofocus system, based on the triangulation method, was used to minimise 

variations caused by lens-to-sample distance (LTSD). 
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With the success of sintering titanium, LIBS was used to investigate non-aqueous 

organic systems. Employing LIBS to discriminate bioplastics from regular plastics 

was explored in recycle waste streams. If bioplastics are present in the recovery 

process of regular plastics the resulting product contains impurities. This study was 

undertaken to determine the feasibility of incorporating bioplastics in the curbside 

pickup of recyclables in New Zealand. The common recyclables are plastics, glass, 

tin cans, and aluminium cans. The setup was designed to emulate a one-shot LIBS 

detection system in a recycling plant. Models were created using k nearest 

neighbours and soft independent modelling class analogy from the spectra. 100 % 

discrimination between bioplastics and regular plastics was achieved. An autofocus 

system, combining dual lasers, was used to overcome the occlusions produced by 

sample geometry. 
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Introduction 

Financial and environmental benefits are created by the precision agriculture (PA) 

strategy of applying the right fertilizer, at the right time and in the right place. This 

enables land users to maximise yield and profit, minimize expenses and reduce 

environmental side-effects caused by over-fertilisation such as leaching and 

excessive run-off into waterways. This is achieved by spatially measuring the 

macro (N, P, K, Ca, S, and Mg) and micro (B, Cl, Mn, Fe, Zn, Cu, Mo, and Ni) 

nutrients in the field of interest. This information can then be used to develop a 

fertilisation strategy that would apply different types of fertilizer at different rates 

and in specific sites. The current technologies used for PA that are capable of real-

time, in-field nutritional assessment of plants evaluate only a few of the essential 

nutrients. Greenseeker® is one of these technologies that focus on N [1]. Focussing 

on N alone diminishes improvements to crops and reduces the effectiveness of 

fertilizer application. 

 

The ideal technology for PA would be cost-effective, portable, make measurements 

in-situ and present information in real time [2]. Laser-induced breakdown 

spectroscopy (LIBS), also known as laser-induced plasma spectroscopy, caters to 

all the above and requires minimal preparation to samples, no chemical usage, non-

contact analysis of samples while removing a surface area of only a few hundred 

microns in diameter (almost non-destructive). LIBS can be used on samples 

irrespective of their state (solid, liquid or gas). For these reasons, LIBS is a perfect 

candidate for PA. The hypothesis is that LIBS technology can provide detailed, 

real-time information on the nutritional status of pasture and can be used to tailor 

fertiliser application rates. This will provide savings to New Zealand farmers, and 

to the country as a whole. 

 

LIBS is a spectroscopic technique that utilizes a short, high powered, pulsed laser 

focused on the surface of a sample (solid/liquid) or inside a sample (liquid/gas). 

The incident focused beam (usually >1 GW cm-2) rapidly melts and/or vaporizes a 

small amount of the sample surface, through inverse Bremsstrahlung, creating a 

plasma. As the plasma cools, electrons transition from high energy levels to lower 

ones. These transitions cause photons to be emitted at specific wavelengths 
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corresponding to the change in energy. Each atom and ion have particular energy 

levels, therefore particular wavelengths that will be present in the spectrum of the 

plasma’s radiated emission. To achieve the best signal-to-background ratio (S/B) 

experimental parameters such as spot size [3, 4], wavelength [5, 6], pulse duration 

[4], pulse energy [3-5, 7], power density [8], gate delay [3, 9], integration time [10], 

incident angle [11-13], lens-to-sample distance (LTSD) [11, 13-15], and power 

density [7] need to be optimized. To optimize these parameters, emission lines need 

to be chosen for the atoms and ions of interest because they do not react to the same 

set of values for each parameter [9, 16]. There is no standard set of values since 

each matrix behaves differently [13, 17-22]. Examples of these matrix effects are 

found in studies by Moros et al. [3] where graphs were produced displaying how 

the spot size, laser pulse energy, and delay time effect the emission lines in different 

types of explosive samples, Gomes et al. [17] in which particle sizes of different 

plant species effect the intensities of emission lines, and Gornushkin et al. [18] 

where no consistent calibration behaviour was found between spectra from organic 

and inorganic powders both containing magnesium. Other ways to improve S/B is 

by controlling the pressure and surrounding atmosphere of the sample [23]. 

 

To evaluate the spectra obtained from the plasma, chemometric techniques are used 

on the emission lines. This provides qualitative and quantitative information on the 

chemical makeup of the sample. The calibrations made from the chemometric 

analysis are only specific to that particular sample because each matrix responds 

differently to the same set of experimental parameters [13, 17-22]. Common 

chemometric techniques include principal component analyses (PCA) to identify 

samples from their spectra and partial least squares regression (PLS) which is used 

to build a calibration curve for quantitative analysis of samples. A method known 

as calibration-free LIBS can also be used to perform quantitative analysis on 

materials [24-27]. This technique assumes that the plasma is in local 

thermodynamic equilibrium (LTE) and utilises the Saha equation and Boltzmann 

plot on spectral lines to determine the concentration of the analysed element. These 

can help mitigate matrix effects. Another way to combat matrix effects is to build 

calibration curves using an internal standard [27-42]. The internal standard is 

usually of an element that comprises the majority of the sample. The sample can 

also be doped with an element of a known concentration which is used for the 
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internal standard. Other novel methods have also been used to increase model 

predictive capabilities [43]. 

 

A field deployable instrument needs to be able to work at varying distances. 

Standoff LIBS (ST-LIBS) is the art of performing LIBS at large distances [44]. 

Also known as open-path LIBS, it is not to be confused with remote LIBS where a 

fibre optic cable is used for covering large distances. The distances involved cover 

a few meters [45] to a few hundred meters [46]. This is achieved by changing the 

optics in the delivery system by increasing lens sizes and focal lengths, or by using 

telescopes. The important aspect is being able to vary the position of the optical 

arrangement so that the beam can be focused at varying distances. It is important 

not to increase the LTSD beyond the focal distance of the optics as an air plasma 

can be created above the sample surface and the spectra recorded would not be 

comparable to the sample [13]. The effect of decreasing the LTSD below the focal 

distance of the optics varies depending on the emission line. Different emission 

lines have peak intensities at different values of LTSD. This is caused by changes 

in spot size, mass ablated, and irradiance on the sample among other factors. There 

are also changes in plasma temperatures [13, 14]. Autofocus systems greatly 

increase the accuracy and speed of varying the LTSD. This concept also applies to 

focusing the LIBS beam within small deviations on the surface material of the 

investigated sample. 

 

The purpose of this thesis is to determine if LIBS is a suitable sensor technology 

for precision agriculture. This system would evaluate the nutritional status of 

pasture at variable distances in a minimal amount of time. The calibration curves 

created for the macro and micro nutrients in pasture should be accurate. This will 

allow in-field, real-time analysis of pasture so that the correct fertilisers can be 

applied on time and in the right place. This would increase yield and profits, at the 

same time eliminating over-fertilisation and the effects associated with it. This will 

also reduce costs connected with fertiliser application such as frequency of 

application and type of fertilizer used. 
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These specific objectives were addressed in seven chapters, made up of five peer-

reviewed journal publications, a peer-reviewed conference publication, and a 

concluding discussion. 

 

Chapter 2 discusses the studies that have been done on grass with mention of other 

important literature on agriculture. The literature on ST-LIBS and LIBS systems 

with autofocus are explored. An in-depth up-to-date list of LIBS for agriculture is 

found in Appendix A.  

 

Chapter 3 is a peer-reviewed publication that has been accepted [47]. It investigates 

using LIBS on fresh and dried pelletized pasture to predict nutrient levels. PLS was 

used to build models for each macro and micro nutrient. Spectra taken using an 

argon atmosphere are compared with spectra taken in air. A discussion on the 

prediction limitation for each nutrient is included. 

 

Chapter 4 is a book chapter to be submitted to a Springer published book titled 

“Smart Sensors for Precision Agriculture” [48]. It discusses using various 

chemometric methods to increase the predictive ability of LIBS on pasture. The 

methods explored were Savitzky Golay filtering, multiple linear regression, 

principal component regression, PLS, Gaussian process regression, and artificial 

neural networks. Categorical information, such as the dates and plots the samples 

were gathered from, were investigated to determine whether prediction accuracy 

would increase. 

 

Chapter 5 is a peer-reviewed, international conference publication [49]. It examines 

the emission line equation to determine the main contributors of within-sample 

spectral variation. These are namely the temperature dependence of the partition 

function and the Boltzmann factor. The temperature of the plasma for each 

spectrum was determined by Boltzmann plots and Saha-Boltzmann plots. It was 

then used to remove the partition function and Boltzmann factor from the equation. 

PLS was used on the result to build models for sodium. This chapter also discusses 

using internal references to improve the predictive ability of the calibration curves 

for sodium. Different combinations of internal references were used on the 

Na I 818.326 nm line.  



 

6 

 

Chapter 6 is a peer-reviewed publication which is published [50]. With the moisture 

being the main source of variation in fresh pasture, Chapter 6 investigates using 

LIBS on inorganic non-aqueous systems to confirm the performance of the 

technology. This chapter identifies the inaccuracies when measuring contamination 

levels in metal injection moulded titanium. Scanning electron microscopy imaging, 

electron dispersion spectroscopy point and area mapping, Trace analysis and X-ray 

diffraction elemental mapping are used to analyse samples. The relevant portion of 

this chapter, with regards to this thesis, is the work performed using LIBS. LIBS is 

used as a trial method to determine the binder levels in green, grey, brown, and 

sintered forms of the part. The ratio of Ti II 282.81 nm with C I 247.86 nm is used 

to give a relative measure of residual carbon. Energy-dispersive X-ray spectroscopy 

(EDS) results are compared with the LIBS results. An autofocus system based on 

the triangulation method is used to minimise LTSD variations. The system is 

described in this chapter. 

 

Chapter 7 is a peer-reviewed publication that is published [51]. It continues analysis 

of inorganic non-aqueous systems. This chapter explores the idea of using LIBS to 

selectively sinter the surface of injection moulded titanium. Repetitive LIBS laser 

pulses are fired on the same location increasing the heat on the sample surface 

fussing the titanium particles together. With the small amount of ablated surface in 

the plasma, the surface composition can be determined. Taking the ratio of 

Ti II 282.81 nm and the C I 247.86 nm lines gives a relative indication of the extent 

to which the surface under the laser has been sintered. EDS is used on the ablation 

craters to determine the amount of residual carbon and the results are compared to 

traditionally sintered titanium. The process of selective surface sintering is 

employed using an autofocus system. 

 

With the success of proving the performance of LIBS on inorganic non-aqueous 

systems, Chapter 8 investigates using LIBS on organic non-aqueous systems. 

Chapter 8 is a peer-reviewed publication under review [52]. This chapter discusses 

using LIBS to sort through common recycle waste streams in New Zealand. These 

are namely glass bottles, plastics bottles (polyethylene terephthalate and high-

density polyethylene), tin cans, and aluminium cans. Two bioplastics (polylactic 

acid (PLA) and Novatein® Thermoplastic Protein (NTP)) are investigated to 
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determine whether they can be added to the current recycling stream. This chapter 

focuses on the classification of recyclables using k-nearest neighbour (k-NN) and 

soft independent modelling by class analogy (SIMCA) on the principal components 

from PCA. PCA was performed on spectra of glass bottles, plastic bottles, a tin can, 

an aluminium can, PLA, and NTP. A dual laser autofocus system based on the 

triangulation method is implemented to ensure the correct LTSD and to overcome 

obstructions which limit single laser triangulation. 

 

Chapter 9 synthesizes chapters 3 through 8. This chapter adds further discussion on 

the limitations on using LIBS for precision agriculture and considerations for 

further work. The reasoning for the improved performance of LIBS on non-aqueous 

systems compared to aqueous systems is given.  

 

Finally, a conclusion is given which highlights the main findings of each chapter 

and offers discussion on further work and considerations. 

 



 

 

Chapter 2 

 

Literature Review  
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Literature review 

2.1 LIBS analysis of grass 

LIBS has been evaluated in laboratories on various plant materials, for various 

purposes. Appendix A contains a comprehensive up-to-date list of the plant material 

used in the literature with a detailed description of experimental parameters. This 

is not a complete list of literature dealing with agricultural material, but it is 

sufficient for the needs of this thesis and is an extension of the list published in 

Chapter 3. There are only seven articles that have been found with references to 

LIBS on the assessment of grass samples. A summary of the relevant parts of these 

studies is presented here. 

 

Only two studies have been performed on fresh grass. Chauhan et al. [53] studied 

the distribution of Si in Bermuda Grass (Cynodon dactylon). A 532 nm, 4 ns, 10 Hz 

Nd:YAG (neodymium-doped yttrium aluminium garnet) laser with a 10 mJ pulse 

was used to map the samples using a single shot. The spectrum recorded showed 

the presence of Si, Mg, Ca, C, Al, Zn, N and Sr in the leaves. The intensity of the 

Si I 288.15 nm line was used to find the Si concentration in various locations on the 

leaves. It was higher in leaf blades than leaf sheaths and stems. The strongest 

concentration of silica was found in the midrib area of the leaf. Reference is made 

to Boltzmann’s law that spectral lines are directly proportional to the concentration 

of the elements in the sample but no quantitative LIBS analysis was performed. 

 

Boyain-Goitia et al. [54] assessed the use of LIBS for analysing bioaerosols, namely 

pollen from lilies and marguerites. A 1064 nm, 5 Hz Nd:YAG laser with a 20-30 mJ 

pulse was focused to produce a 150 µm spot size. The single shot spectra obtained 

from the pollen was collected using a spectrometer with a 1 µs delay and integrated 

over 4 µs. The relevant portion of this study is where the pollen spectra were 

compared with spectra from fresh grass fragments. Both sets of data were 

normalised with the CN (Cyano radical) band peaks to reduce matrix effects. The 

differences found were that the grass fragments did not emit Cr and Fe lines, there 

were Si lines in the grass spectra, and the phenylalanine concentration in grass 

seems to be considerably lower than pollen. The Si was attributed to soil dust on 

the grass blade. The Ca and Al concentrations in the grass fragments were of similar 
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orders of magnitude to that of the pollen samples. Due to the limited samples, since 

the study was performed in autumn, it is difficult to distinguish between grass and 

pollen. No quantitative analysis was performed on the grass spectra. Only the 

normalized intensities of the emission lines of interest were compared. 

 

The remaining studies do not examine fresh grass samples. Braga et al. [36] 

investigated the efficiency of multivariate (PLS) and univariate linear regression 

calibrations to determine micro nutrients (B, Cu, Fe, Mn and Zn) in pelletized plant 

samples. The plant material used was from an aquatic plant, aquatic moss, bush 

branches and leaves, cabbage, soya flour, rice flour, wheat flour, spinach leaves, 

brachiaria, banana leaves, coffee leaves, maize leaves, mango leaves, pepper leaves, 

and soya leaves. Olive leaves, apple leaves, guava leaves, grass (Axonopus 

obtusifolius) and jackfruit leaves were used in the validation set for model 

calibrations. A 532 nm, 12 ns, 10 Hz Nd:YAG laser with a 71 mJ pulse was focused 

to produce a spot size of 600 µm with a fluence and irradiance of 25 J cm-2 and 

2.0 GW cm-2 respectively. Ar was pumped into the ablation chamber to increase 

emission line intensities. The spectra were collected using an echelle spectrometer 

with a delay and integration time of 9 µs and 1.1 µs. 10 locations were chosen on 

each sample and 30 consecutive laser pulses were taken in each location. These 

spectra were averaged to produce a single spectrum. This procedure was replicated 

five times for each sample. The replicates for each sample displayed shot-to-shot 

variation and matrix effects. To try to mitigate this, the emission lines for univariate 

linear regression (B I 249.773, Cu I 327.395, Fe II 238.200, Mn II 257.610, and 

Zn II 206.200 nm lines) and the spectra for PLS were normalised with the 

C I 193.090 nm emission line. The spectra were split up into regions and PLS was 

performed on them.  

 

Mixed results were obtained using normalisation and sub-intervals of the spectra. 

The C I 193.090 nm normalisation only improved correlations for Fe and B but not 

for Cu, Mn, and Zn. There was no significant difference between using the entire 

spectra and regions of the spectra. The only micro nutrient that benefited from this 

was Fe. Of particular interest is that the data suggested that the multivariate model 

for B in grass followed the expected values whereas the univariate model did not. 

One of the conclusions is that a specific calibration method should be done for each 
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plant species using plant material that closely resembles the chemical and physical 

makeup of the sample to be studied. This will reduce matrix effects and make the 

calibration matrix dependent. 

 

Martin et al. [55] assessed the use of LIBS for identifying endophyte-infected Tall 

Fescue Grass (Festuca arundinacea). The grass was ground and passed through a 

20-mesh screen then pressed into pellets. A 532 nm Nd:YAG laser with a 23 mJ 

pulse was focused to ablate the pelletized samples with an irradiance 

of  >10 GW cm-2. The spectra were collected using a spectrometer with a delay and 

integration time of 0.5 µs and 10 µs. The specific elements investigated were Fe, 

Mn, Mg, Pb, Ca, Zn, and Cd. The study found that LIBS was more sensitive to Cd 

detection than ICP-MS. It was also found that when endophyte was present the 

concentrations of Mg, Ca, Fe and Mn were different. Due to the lack of samples, 

no definite method was found to differentiate whether endophyte affected the 

concentrations of metals in the grass. However, LIBS was successful in 

qualitatively detecting Fe, Mn, Mg, Pb, Ca, Zn, and Cd. 

 

Rai et al. [35] investigated the effectiveness of Bermuda Grass (Cynodon dactylon) 

as a treatment for diabetics. Diabetes was induced in a group of male albino Wistar 

rats and the rats were feed the grass. There were different groups of rats to compare 

the treatment with other treatments. The grass samples were shade-dried, extracted 

with distilled water, and filtered. A 1 Hz Nd:YAG laser with a 175 mJ pulse was 

used on the samples. Each spectrum was an average of 100 shots. The LIBS analysis 

was used to detect the glycaemic elements present in Bermuda grass. The 

concentration ratios of Mg, Na, K, H, and N against C III 229.6 nm and O against 

N were calculated and compared to the results obtained from plantains (Musa 

paradisiaca). Mg/C was stronger in grass, whereas K/C and Na/C were weaker in 

grass. These ratios were possibly responsible for the antidiabetic effect in the rats 

studied. There is no mention of the actual concentration of these elements in the 

article other than that the spectral line is proportional to the concentration of the 

element. 

 

LIBS was compared to inductively coupled plasma-optical emission spectroscopy 

(ICP-OES) for measuring macro and micro nutrients (Na, K, Mg, Ca, Mn, Fe, Cu, 
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Zn, B, P, and S) in pasture by Devey et al. [56]. The pasture samples, comprised 

mainly of ryegrass (Lolium perenne) and white clover (Trifolium repens), were 

dried and ground to less than a millimetre and pressed into pellets. A 1064 nm 

Nd:YAG laser with a 200 mJ pulse was used on the samples. One cleaning shot was 

used followed by a measuring shot. 80 shots were taken, each in a different location, 

then averaged. The spectra were collected after a 1 µs delay. Savitzky Golay (SG) 

smoothing, vector normalization, and wavelet smoothing were performed on the 

spectra before analysis. The correlation of each wavelength was calculated and the 

peak with the highest correlation and the region surrounding it were used in PLS 

regression. The peaks of the elements analysed were 819.4 nm (Na), 696.4 nm (K), 

882.4 nm (Mg), 212.3 nm (Ca), 257.6 nm (Mn), 248.5 nm (Fe), 213.8 nm (Zn), 

249.7 nm (B), and 214.9 nm (P). There were no strong correlations for Cu and S. 

Wavelengths at the expected emission lines, 324.7 nm (Cu) and 921.3 nm (S), were 

used. Using PLS on these regions, rather than the whole spectra, increased the 

accuracy of the models. The best results were found for Na, K, Ca, and P. These 

results were similar to that of ICP-OES. LIBS had poorer correlation for Zn and Cu 

than ICP-OES.  

 

Kunz et al. [57] explored using the plasma temperature to distinguish between 

different plant species. The tested samples were dried leaves from dallisgrass 

(Paspalum dilatatum), wheat (Triticum aestivum), soybean (Glycine max), and bell 

pepper (Capsicum annuum). An 800 nm, 35 fs, 1 kHz Ti:Sapphire laser with a 

0.3 mJ pulse was focused to produce a spot size of ~100 μm with a fluence and 

irradiance of 3.8 J cm-2 and ~3.8 kW cm-2 respectively. The spectra were collected 

using a spectrometer with an integration time of 0.5 s. 500 laser pulses were taken 

for each of the 10 spectra on both replicates of each species. Each spectrum was 

gathered from a different surface on the leaf. Boltzmann plots were created using 

the Ca I 422.874, Ca I 518.542, and Ca I 559.849 nm lines. The temperature of 

each plasma was calculated from the gradient of the line of best fit through the 

points from these three lines. The R2 value for the Boltzmann plot of dallisgrass 

was 0.7 and the average temperature was 5638 K. The average temperatures of the 

different species were diverse enough that they could be used to identify each 

sample. A main source of variation is the inhomogeneity of the samples. The 

authors state that their method produces semi-quantitative results. 
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From these articles, only Braga et al. [36] and Devey et al. [56] performed 

quantitative analysis of grass. Explanations of the origin of the variances for each 

nutrient have not been discussed in depth and quantitative models specifically for 

fresh grass have not been created. 

 

2.2 Focusing of LIBS at various distances 

Changes in the distance to the sample introduce a number of complications in beam 

focusing, emission collection, and shot-to-shot variation [58, 59]. One of the major 

issues is that as the distance to the sample increases the intensity of the emission 

line decreases and broadens thus decreasing the S/B [60, 61]. Wiens et al. [62] 

suggest that emission line ratios can be used, instead of individual line intensities, 

to disregard the effects of changes in distance. This fact is demonstrated by 

Stepputat and Noll [63]. By investigating the methods used for focusing ST-LIBS 

a similar approach can be taken for focusing the LIBS beam on a sample close to 

the system with deviations on the sample surface. The majority of experiments for 

ST-LIBS have used telescopes to both focus the beam and collect the radiated 

emissions. This reduces the spot size, increases the irradiance, as well as increases 

the solid angle of the received light waves thus increasing the intensity of the signal. 

Almost all of the ST-LIBS investigations have been at specific distances which 

suggest that the optical setup has been adjusted to be only used at that specific 

distance. Very few papers have expressed what mechanical systems were used to 

achieve variable focal distances or how the distance to sample was obtained let 

alone any automated process involved. 

 

Gaona et al. [64] surveyed the main façade of the Cathedral of Malaga with LIBS 

to identify the chemical composition of the architecture at an average distance of 

35 m. A Cassegrain telescope was used to deliver the LIBS beam and receive the 

radiated emissions from the plasma. A 632 nm laser was utilized to accurately align 

the LIBS system. A motorized mirror shift mechanism was used to adjust the focus 

of the telescope. There was no mention made of how the distance was found or how 

the distance was used to focus the telescope. The group (Lucena et al.) used the 

same setup in other experiments [65]. 
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Gottried et al. [66] developed a double-pulse ST-LIBS system to detect hazardous 

material at 20 m. The laser pulses were expanded with two lenses and focused on 

the target with a three-inch lens. A Schmidt-Cassegrain telescope was used to 

collect the radiated emissions from the plasma. A 632 nm diode laser, coincident 

with the LIBS beam, was used for alignment. A wireless range finder measured the 

distance to the sample with a digital camera remotely viewing the target. There was 

no further expansion on how the distance from the range finder correlated to an 

autofocus mechanism for the laser and telescope. This setup was known as the first-

generation system. The same setup was used in their following experiments [67-

69]. In the fourth-generation system [70] controls for the autofocus of the laser and 

collection optics were automated, but there is no mention of how this was achieved. 

An important observation of the study is that at 20 m the double-pulse significantly 

enhanced the emission lines in the spectra compared to single pulsed LIBS. For the 

Al lines, there was an increase by a factor of 20. 

 

Palanco et al. [60] created a field-deployable LIBS instrument for making 

measurements in the range of hundreds of meters. The system was made using a 

Herschelian telescope to deliver the LIBS beam and receive the radiated plasma 

emissions. A motorized flat aluminium mirror was used to adjust the distance to the 

diverging lens thus changing the focal point. This design was optimized to 120 m. 

To increase the useful range of the instrument, mention is given to motorisation of 

the remaining optical components. This additional setup was not used in their study. 

The combination of using a single telescope for beam focusing and emission 

collection simplifies focusing since the same focus is used for both. No mention is 

made to how the distance to the sample was found or if there was an autofocus 

regime employed. An important highlight of the study was that the LIBS signal 

strongly decayed with range because of plasma formation and emission collection. 

The beam divergence and size of the optical elements are also important. In later 

work by the same group [12], the beam focusing was done by a pair of lenses with 

a motorized linear stage to separate the lenses. There is no mention of distance 

acquisition or automation. 

 

Stepputat and Noll [63, 71] used LIBS to analyze heavy metals in electric and 

electronic waste and implemented an automatic on-line LIBS analyser. A Nokra 
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laser triangulation sensor in conjunction with a dynamic focusing unit (VarioSCAN, 

SCANLAB) was used to measure the distance to the surface of a sample and focus 

the LIBS. It was used in a feedback loop to adjust a variable optics system in the 

autofocus unit. The sensor and optical system are both standalone products that 

have been combined to achieve autofocus. The design had a measuring frequency 

and accuracy of 50 Hz and ± 70 µm with a working range of 50 mm. To measure 

the overall system accuracy multiple shots were taken at various places within the 

50 mm range. The intensities of these shots were averaged and then different 

distances compared. This produced a 5 % variation between the observed intensities. 

There is no statement on how fast focusing was or the algorithm used to achieve 

autofocus. This system was used by the same group in later studies [72]. 

 

Werheit et al. [73] developed a fast identification of metals for recycling using LIBS. 

An autofocus unit was integrated into a recycling LIBS system that had a conveyer 

belt which moved at 2-4 m per second. The unit used a 3D CCD camera in 

conjunction with a line-projection laser to locate and track the scrap metal. Through 

triangulation, the distance to the sample was found and sent to the galvo-scanner 

mirrors which focus the LIBS beam onto the sample. The unit could move the focal 

position of the LIBS laser through a range of 100 mm. This was achieved using a 

fast diverging lens followed by a fixed focusing lens. One problem was that when 

the sample moved after it was scanned, and before plasma formation, the focal 

position would be incorrect. With the current setup, if there was an object between 

the camera and the reflected autofocus laser line, the LIBS beam would not be 

focused in the correct place. Noll et al. [74], from the same group, used a 

triangulation sensor in their inspection system, called LIFT, to identify different 

high-alloy steel grades. The sensor used a 670 nm laser diode, collinear to the LIBS 

beam, to measure the distance between a reference plane and the surface of the 

sample. Noll [71] also described the TeleLis system for ST-LIBS that uses an 

integrated rangefinder coaxial to the LIBS laser to find the distance to the sample. 

Once the distance was found the system automatically adjusts the optics in the 

Galilean telescope to focus the beam. 

 

Balzer et al. [75] used LIBS to acquire a depth profile of sheet steel. A triangulation 

sensor was employed to keep the focus of the laser on the surface of the steel in the 
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presence of vibrations. The working distance was 1.5 mm. The beam from the 

triangulation sensor is transmitted through two dichroic mirrors then through the 

focusing lens onto the sample surface. The reflection is observed using a CCD 

camera inside the sensor and the distance calculated. Software was then used to 

control a diverging lens in the telescope used to focus the LIBS beam. The focus is 

adjusted to coincide with the surface. There is no mention of the accuracy or speed 

of the autofocus unit. 

 

Wiens et al. [62] incorporated LIBS in their Mars rover design for determining the 

elemental composition of rock and soil targets. The system was aimed using bore-

sighted cameras. A simple two-lens system was used to focus the LIBS laser on 

working distances of 2-6 m. An off-axis rangefinder was used to acquire the 

distance to the sample then the concave lens was moved, via a linear programmable 

translation stage, to focus the LIBS beam on the target. There was no discussion on 

whether the programmed displacement of the translation stage, which corresponded 

to the distance to sample, was based on calculation or experiment. Also, there is no 

mention of how accurate the system was or the time taken to focus. 

 

The same group developed the autofocus system for ChemCam® [76, 77]. The first 

mention of the autofocus unit for ChemCam® [76] employs a modulated (to 

increase S/N) 785 nm continuous-wave (CW) laser reflected off the target to find 

the distance to the sample with a working range of 1-9 m. This is done by moving 

the secondary mirror on a Schmidt telescope with a stepper micro-motor and 

sensing the intensity of the reflected light with a photodiode. Moving the translation 

stage through its entire range would produce a hill shape on an intensity versus 

mirror position plot. A digital processor then calculates the best focus position by 

using the data obtained between 15-80 % of the maximum received signal and 

computing where the two symmetric lines would intersect. A problem that arose 

was that the distance to target obtained from the autofocus was not in the same 

position as the optimal position for plasma collection. This is due to an offset that 

can be programmed out using a lookup table for calibrations. The electronic noise 

was also found to contribute to errors. This autofocus system is used in a later 

experiment by the same group [78]. Again, there is no mention of the speed of the 
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routine or whether the routine takes into consideration movement of the sample 

while evaluating the position of best focus. 

 

The final design of the ChemCam® autofocus system is described in detail by 

Maurice et al. [77]. The Schmidt-Cassegrain telescope had a working range of 1.5-

9 m. This was achieved by a 2-phase stepper micro-motor driving a screw-nut [79] 

setup through a range of 15 mm connected to the secondary mirror. The screw-nut 

design was employed because of the strict mass and volume requirements for the 

spacecraft. The time taken to focus, within 0.5 % of the distance to sample, is two 

minutes but can be up to three minutes at lower temperatures. To accomplish this, 

the NavCam unit estimates the distance to a target within 5 % using stereo vision. 

The position of the secondary mirror is then changed to correspond to the estimated 

target distance by using the relationship between motor steps and distance to the 

target. This relationship has already been determined. The autofocus routine is the 

same as [76], with the CW laser being modulated at 10 kHz. Using a modulated 

CW laser reduces the effect of ambient light on the photodiode. Even though slight 

beam wander is considered, the technique used is intended for a stationary target 

which limits its uses for alternate applications. There is a large amount of time taken 

to focus because of the number of intensity readings taken at each displacement of 

the secondary mirror. There is no mention as to whether the method of taking a 

large number of readings is for the extreme accuracy needed for the rover or if it is 

a standard number for the technique. The speed of the stepper motor also impacts 

on the time taken to focus. This may be adjusted if one is not concerned with the 

robustness needed for space exploration. 

 

Barnett et al. [80] used ST-LIBS to investigate the performance of their spatial 

heterodyne LIBS spectrometer. A Schmidt-Cassegrain telescope was used to focus 

the laser onto the samples 20 m away. Focusing on the sample was done by using 

an amplified electret microphone and oscilloscope to monitor the shockwave 

produced by the LIBS spark. The acoustic signals of the sparks were taken within 

a range of distances to find the optimal focal point. The intensity of the shockwave 

was found to be proportional to the irradiance on the sample. There is no mention 

of the speed of focusing or how the telescope was focused.  
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Grönlund et al. [81] investigated using LIBS for remote imaging and ablative 

cleaning for cultural heritage. A Newtonian telescope was used to deliver the LIBS 

beam and receive the emitted radiation from the plasma 60 m away. A mirror, 

controlled with stepper motors, was used to fold the LIBS beam so that the targets 

could be scanned. A lidar system was used to find the distance to the targets. It was 

equipped with two cameras to identify the location of the laser spot. There is no 

mention of the speed or accuracy of the focusing mechanism.  

 

The papers above are the only literature that has been found with mention of 

focusing for ST-LIBS. There are two LIBS papers, which do not use ST-LIBS, that 

have been found which use focusing mechanisms. Novotný et al. [82] which 

compares image processing autofocus techniques used for distances of 16 mm and 

100 mm. The method employs a CCD camera to detect the sharpness, through 

image processing, of the image taken at a particular focus. The time taken to focus 

was between 1.37-5.75 s depending on which method is chosen. The intended use 

was for two-dimensional surface analysis. This method may be adopted in a three-

dimensional environment. This would be an intense algorithm which would only 

assess the target spot and disregard the rest of the image. Also, the algorithm would 

need to differentiate between the different planes of focus. The new method would 

have a huge increase in the time taken to focus. 

 

Ashrafkhani et al. [83] used an autofocus system to improve the repeatability of 

LIBS. Their method uses point auto-focus. A CW diode laser is reflected off a 

mirror, so that it is parallel with the LIBS beam, then transmitted through the 

focusing lens of the LIBS system onto the sample surface. The reflected beam is 

transmitted, off-axis, back through the optics and finally threw a lens which focuses 

it onto a CCD camera. The image captured by the CCD camera is filtered so that 

only the beam spot is visible. A reference image of the focal point is compared to 

the current filtered image to find which way the sample should be shifted so that 

the correct position is achieved. The autofocus system increased the relative 

standard deviation of emission lines from 24-46 % to 2-16 % on aluminium samples. 

There is no mention of the speed of the system or how the CW laser beam 

obstructions are dealt with. 
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From the reviewed literature, there are multiple ways of focusing a laser. The use 

of a rangefinder parallel with the LIBS laser is not suitable for targets smaller than 

the distance between the parallel beams. The rangefinder can be made to be 

collinear so that it can point at targets along the axis of the LIBS laser. Having a 

detection system off-axis can introduce problems such as obstructions that are only 

in one optical path. The same problem for the rangefinder applies to all off-axis 

collection. This is not a concern in most of the literature because their targets are 

larger than a blade of grass. The gradient-based methods of focusing have a large 

number of problems primarily with the processing algorithm. The ChemCam® 

instrument uses a simple technique, but there is still major room for improvement. 

The concerns with lidar are the cost of the system and if the accuracy of the system 

could deal with small blades of grass. The acoustic method needs to be close to the 

sample and would need to be in an environment free from high-frequency noises. 

This may work for precision agriculture, but there may be situations in which it 

would fail. A robust method is needed infield. The point autofocus method is a 

simple proven method, but the issue is obstructions to either the transmitted or 

reflected beams. This is highly likely when investigating pasture. 
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Abstract 

Precision agriculture aims to increase yield and profits while reducing costs, waste, 

and environmental side-effects. This is achieved through a process of measuring, 

modelling and acting; for example, laser-induced breakdown spectroscopy (LIBS) 

can be used to measure macro and micro nutrients in crops to determine nutrient 

requirements. The limiting factor with quantitative LIBS analysis of plant nutrient 

levels is the variation between shots on the same sample. Following a review of 

current literature relevant to LIBS for agriculture, this work investigates whether 

different chemometric methods can mitigate these variations and can create 

quantitative calibrations for nutrient levels in fresh and dried pelletised pasture 

under laboratory conditions. The methods explored were Savitzky Golay filtering, 

multiple linear regression, principal component regression, partial least-squares 

regression, gaussian process regression, and artificial neural networks. The 

algorithms that performed best were partial least-squares with gaussian process 

regression (R2 of 0.93, 0.95, and 0.92 for K, Na, and Mn, respectively), principal 

components analysis with artificial neural networks (R2 of 0.94, 0.83, and 0.80 for 

Fe, Ca, and Mg, respectively), and partial least-squares with artificial neural 

networks (R2 of 0.77 for B). Removing the moisture from the pasture improved 

model R2 values by 4-5 % on average. Acquiring spectra under an argon purge 

produced a small reduction in accuracy for some nutrients compared to models 

acquired in air. Including categorical data in the principal component regression 

and the artificial neural networks produced negligible improvements in prediction. 



 

48 

 

 

This chapter will give an introduction to using different types of chemometric 

analyses on spectra generated by LIBS to measure micro and macro nutrients in 

pasture under laboratory conditions. It discusses the challenges faced when building 

models for each nutrient. 

 

Keywords: Laser-induced breakdown spectroscopy, Pasture, Chemometrics, 

Agriculture. 

 

Introduction 

Precision agriculture is a farming technique that measures and reacts to site-specific 

crop variability. One method is to optimise crop yield through precisely timed and 

tailored fertiliser application and application rates. This not only creates financial 

benefits, through increased yield and reducing the amount of fertiliser applied, but 

also reduces the environmental side effects caused by over fertilisation, i.e., 

leaching and runoff into streams and rivers. Accurate sensor technologies able to 

give real-time information on the nutritional status of crops are needed to realise 

precision agriculture [1]. Laser-induced breakdown spectroscopy (LIBS) is a 

technique that has become popular for its ability to make fast elemental analyses. 

LIBS uses a high powered pulsed laser to create a plasma on a target material’s 

surface through inverse Bremsstrahlung [2]. As the plasma cools, electrons 

transition from high energy levels to lower levels and emit photons. Photons are 

emitted at specific wavelengths corresponding to the particular elements that 

constitute the plasma and represent the elemental makeup of the sample. The 

concentration of these elements directly affects the intensities of the emission lines 

in the spectrum [3]. LIBS is a sensitive technique that needs no sample preparation 

and has the potential to produce reliable calibrations that determine the nutrient 

levels in pasture. The essential elements needed for plant growth are the macro (N, 

P, K, Ca, S, and Mg) and micro nutrients (B, Cl, Mn, Fe, Zn, Cu, Mo, and Ni).  

 

LIBS spectra exhibit strong within- and between-sample variation which reduces 

the repeatability of measurements [4]. The shot-to-shot variations originate from 

multiple sources, like sample inhomogeneity, surface roughness, matrix effects, 
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sample moisture, and differences in experimental parameters. The main cause of 

variability in spectra is the difference in plasma temperatures. The exponential 

Boltzmann factor and the partition function in the emission line intensity equation 

both have strong temperature dependence. Averaging multiple spectra from the 

same sample, using internal standards, normalisation, and chemometric algorithms 

can reduce the shot-to-shot variation. Some of the first quantitative chemometric 

methods that have been used for LIBS include linear or rank correlation [5], 

multiple linear regression (MLR) [6], principal component regression (PCR) [7], 

partial least squares regression (PLS) [8], and artificial neural networks (ANN) [9]. 

Increasing the signal to noise ratio by increasing the emission line intensities can 

produce additional lines that contain valuable information. This is achieved through 

increasing the temperature in the plasma by increasing the laser pulse energy or 

using an argon atmosphere. 

 

LIBS for agriculture 

There have been many studies using LIBS on agriculture. A summary of the 

majority of these studies is presented in Table 1. This table contains studies 

performed on agricultural material, including all those which are relevant for the 

following discussion. Various wavelengths, pulse durations, and repetition rates 

have been used for the lasers in these studies. Nd:YAG lasers are typically used for 

LIBS because they are reliable, compact, and are easy to use [10]. Most of the 

studies mentioned below use a 1064 nm Nd:YAG laser. Unfortunately, there are a 

few studies where there is no information on the spectrometer settings.  
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Table 1. Laser parameters and spectrometer settings for LIBS on various agricultural samples.  

(: wavelength, tp: pulse duration, f: pulse frequency, E: pulse energy, td: gate delay, t: integration time) 

Sample Laser Spectrometer Ref. 

 [nm] tp[ns] f[Hz] E[mJ] td[µs] t[µs]  

Algae 1,064 7 2 100 6 0.6 [11] 

Algae 1,064 5-7 10 30 - 2,000,000 [12] 

Apple leaves, pine needles, citrus leaves, tea leaves, rice flour, Cannabis plant leaves and flower 

tops 

1,064 7 10 200 - - [13] 

Aquatic plant, aquatic moss, bush branches and leaves, cabbage, soya flour, rice flour, wheat 

flour, spinach leaves, brachiaria, banana leaves coffee leaves, maize leaves, mango leaves, 

pepper leaves, soya leaves, olive leaves, apple leaves, guava leaves, grass and jackfruit leaves 

532 12 10 71 9 1.1 [14] 

Bean leaves 1,064 5 10 200 2 5 [15] 

Bean leaves, bush branches and leaves, cabbage, soya flour, rice flour, apple leaves, peach 

leaves, wheat flour and spinach leaves 

1,064 5 10 360 2 5 [16] 

Bermuda grass 532 4 - 10 - - [17] 

Bermuda Grass and Musa paradisiaca - - 1 175 - - [18] 

Bitter gourd (Momordica charantia L.) 1,064 - - 200 - - [19] 

Bitter Melon - - 10 40 - - [20] 

Black tea (Anxi, Fujian), Huangya tea (Ya’an, Sichuan), Longjing tea and Pu’er tea (Pu’er, 

Yunnan) 

1,064 8 20 20-100 2-30 2 [21] 

Boldo leaves (Peumus boldus Molina) 1,064 5 10 110 and 

220 

2 5 [22] 

Bran tissues and wheat grain 193 15 1 - - 2,000 [23] 

Broad bean (Vicia faba)  266 

1,064 

- 

- 

1 

1 

5 

100 

1 (delay) 

0.5 (interpulse 

delay) 

10 [24] 

Cabbage leaf 532 4 4 20 1.5 - [25] 

Capsicum leaves 532 5 - 10 1 10 [26] 

Carrot Root (Daucus carota) 532 8 10 - - - [27] 

Cauliflower and broccoli 532 7 2 96 1 5 [28] 

Chinese cabbage 1,064 8 2 120 2 2,000 [29] 

Chinese tea leaves, Longjing green tea, Mengding Huangya, White tea, Tie Guanyin, Wuyi 

black tea, and Pu'er tea 

1,064 5.82 - 50 1.2 4 [30] 

Citrus leaf 355 

1,064 

5 

5 

10 

10 

5 

110 

1 50 [31] 

Citrus leaves 1,064 - 10 50 48.5 - [32] 

Citrus leaves 1,064 8 10 50 2.5 2,000 [33] 

Coffee 1,064 8 10 50 - - [34] 

Coffee 266 8 20 31 0.4 - [35] 
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Coffee beans 1,064 8 - 50 11 2,100 [36] 

Cotton 1,064 5 0.67 - 1.3 4.5 [37] 

Cucurbita maxima seeds 532 4 1 100 - - [38] 

Dallisgrass (Paspalum dilatatum); wheat (Triticum aestivum), soybean (Glycine max); bell 

pepper (Capsicum annuum) 

800 0.000,035 1,000 0.3 - 500,000 [39] 

Duckweed (Lemna minor) 266 

1,064 

5 

5 

- 

- 

10 

100 

1 

1 

10 

10 

[40] 

Emblica officinalis - - 2 175 - - [41] 

Ficus bengalensis - - - - - - [42] 

Folium lycii 1,064 8 - - 0.8 2,000 [43] 

Gannan navel orange - - 2 20 1.2 2,000 [44] 

Gannan navel orange 1,064 8 0.1-10 110 2 - [45] 

Green herb, tomato leaves and coffee beans 1,064 5 - - - - [46] 

Guava - - 2 175 - - [47] 

Holly leaves 1,064 

266 

10 

- 

10 

- 

45 

45 

0.5 

0.5 

2,000 

2,000 

[48] 

Holly leaves 1,064 

266 

- 

- 

- 

- 

10-80 

10-80 

- 

- 

- 

- 

[49] 

Juncus efiusus L. 1,064 3-5 2 340 1 1,000 [50] 

Lettuce 532 5 - 10 1 10 [51] 

Ligusticum wallichii 1,064 5.82 20 26.8 1.5 20 [52] 

Maize (Zea mays L.) - - - - - - [53] 

Maize (Zea mays), sunflower (Helianthus annuus) and lettuce (Lactuca sativa) 532 5 - 10 1 10 [54] 

Maize and holly (Ilex chinensis Sims) 1,064 - - 90 - - [55] 

Maize leaf and Red osier dogwood leaves 795 0.000,16 10 0.1 - - [56] 

Mustard grass 1,064 - 10 300 - - [57] 

Navel oranges 1,064 8 10 200 1.28 2,000 [58] 

Ocimum sanctum, Ocimum americanum, Ocimum gratissimum, and Ocimum basilicum 532 4 10 - - - [59] 

Orange leaves 1,064 10 10 200 1.28 - [60] 

Orange peel 1,064 8 10 200 1.28 2,000 [61] 

Orange tree leaves 1,064 8 10 - 1.28 2,000 [62] 

Peach, apple, and spinach 1,064 - - 10-30 - - [63] 

Perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) 1,064 - - 200 1 - [64] 

Phaleria Macrocarpa leaves 1,064 10 - 100 - - [65] 

Pollen - 10 - 30 1.5 2,000 [66] 

Pollen and fresh grass fragments 1,064 - 5 20-30 1 4 [67] 

Poplar tree leaves 800 0.000,1 10 25 - - [68] 

Potato skin 266 5 10 5-20 Various Various [69] 

Potato skin 1,064 5 - 10 1 1 [70] 

Potato skin and flesh 1,064 4 20 10 1 5 [71] 

Potato, carrot, celery and aubergine 266 - 10 10 0.1 5 [72] 
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Powdered rice, starch and seaweed 10,600 200 10 1,500 1 100 [73] 

Prickle pears 1064 20 - 300 - - [74] 

Psoralea corylifolia seed - - 2 175 - - [75] 

Psoralea corylifolia seed - - 2 175 - - [76] 

Red Fuji apples and Hosui pears 1,064 - 20 160 2 - [77] 

Rice 1,064 5 1 - - - [78] 

Rice Leaves (Oryza sativa L.) 532 8 1 60 4 20 [79] 

Rice seed and milk powder 10,600 200 20 1,500 - 2,000,000 [80] 

Saffron (C. sativus L.), safflower (Carthamus tinctorius L.), marigold flower (Calendula 

officinalis L.), turmeric (Curcuma longa L.) 

1,064 - 4 38 0.3 20 [81] 

Scented geranium 1,064 8 - 80 5 15 [82] 

Scented geranium 1,064 12 1 - 2 2 [83] 

Seed kernels of pumpkin (Cucurbita maxima), ash gourd (Benincasa hispida), watermelon 

(Citrullus lanatus) and muskmelon (Cucumis melo) 

532 4 2 40 1 5 [84] 

Sophora leaves 800 0.000,15 10 5 - - [85] 

Soybean leaves 532 

1,064 

4 

6 

- 

- 

1, 4, 8, 16 

and 32 

1, 4, 8, 16 

and 32 

1 

1 

- 

- 

[86] 

Spinach leaf powder and unpolished rice flour 1,064 7 10 80-140 - - [87] 

Spinach leaves 532 12 10 70 1.1 9 [88] 

spinach, mustard, chenopodium, fenugreek, and chickpea leaves 532 4 10 10 - - [89] 

Spirulina and chlorella 10,600 100 1.3 Various - 30,000,000 [90] 

Starch powders and rice flour 1,064 7 10 30 - - [91] 

Sugar cane 1,064 5 10 220 2 4.5 [92] 

Sugar cane - - - 50, 75 0.5, 1  [93] 

Sugar cane (Saccharum offcinarum) 532 4 10 10 - - [94] 

Sugar cane and Boldo leaves 1,064 5 10 365 2 5 [95] 

Sugar cane leaves 1,064 5 10 - 2 5 [96] 

Sugar cane leaves 1,064 5 10 110 2 4.5 [97] 

Sugar cane leaves 1,064 5 10 110 2 5 [98] 

Sugar cane, orange tree leaves and soy leaves 1,064 5 10 110 2 4.5 [99] 

Sugarcane (Saccharum officinarum), soy (Glycine max), citrus (Citrus sinensis), coffee (Coffea 

arabica), maize (Zea mays), eucalyptus (Eucalyptus sp.), mango (Mangifera indica), bean 

(Phaseolus vulgaris), banana (Musa paradisiaca), lettuce (Lactuca sativa), brachiaria 

(Brachiaria decumbens), pearl millet (Pennisetum americanum), grape (Vitis sp.), rubber tree 

(Hevea brasiliensis), tomato (Solanum lycopersicum), apple leaves, peach leaves, spinach 

leaves, tomato leaves, and pine needles 

1,064 

532 

266 

800 

6 

6 

6 

0.000,6 

3.3 

3.3 

3.3 

1,000 

70 

70 

70 

1.65 

0.75 

0.75 

0.75 

0.35 

3 

3 

3 

0.25 

[100] 

Sunflower (Helianthus annuus), leaves/stem 532 5 - 10 1 10 [101] 

Sunflower (Helianthus annuus), leaves/stem 795 0.000,16 10 0.1 - - [102] 

Sunflower (Helianthus annuus), leaves/stem 532 5 - 10 1 10 [103] 
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Sunflower (Helianthus annuus), leaves/stem 532 5 - 10 1 10 [104] 

Sunflower (Helianthus annuus), leaves/stem 532 5 - 10 1 10 [105] 

Sunflower, leaves/stem 355 

790 

6 

0.000,03 

20 

20 

- 

- 

- 

- 

0.50 

0.50 

[106] 

Tall fescue and apple leaf 532 - - 23 0.5 10 [107] 

Tangerine leaves and Rhododendron leaves 1,064 20 100 1.1 - 100,000 [108] 

Tea leaves 1,064 8 4 30 1.5 2 [109] 

Tea plants (Sambucus nigra L., Hypericum perforatum L., Crataegus oxyacantha auct. non L., 

Rubus idaeus L. and Betula species L.) 

1,064 8 10 70 1 1,050 [110] 

Tobacco 266 6 10 25 0.25 1,050 [111] 

Tobacco leaves 532 8 1 60 1.5 10 [112] 

Tomato leaves 1,064 6 20 100 2 5 [113] 

Tomato leaves, spinach leaves, apple leaves, peach leaves Spanish moss and pine needles 1,064 5 1 100 1 10 [114] 

Trichosanthes dioica fruit 532 3-4 2 175 - - [115] 

Tsumura kackontou 10,600 200 - 1,500 10 100 [116] 

Tsumura kackontou  10,600 200 - 1,000-

1,500 

- - [117] 

Turmeric 532 4 10 18 - - [118] 

Wheat and gardenia 800 0.000,035 1,000 0.3 - - [119] 

Wheat flour 1,064 5 - - 1-3 1-10 [120] 

Wheat flour 1,064 - 4 38 0.3 1,050 [121] 

Wheat grain 193 15 1 35 - - [122] 

Wheat grain 532 

193 

5 

15 

20 

1 

80 

- 

0.5 2,000 [123] 

Wheat leaves, poppy leaves, barley leaves and rape leaves 1,064 12 - 80-150 - 1  [124] 

Wheat seedlings (Triticum aestivum L.) 532 4 4 10 - - [125] 

Wheat seedlings (Triticum aestivum L.) 532 4 4 10 - - [126] 

White chickpea 1,064 - 8 40 0.650 1,050 [127] 

Withania coagulans fruit - - - - - - [128] 

Withania coagulans fruit - - - - - - [129] 

Wood 1,064 5 10 50-70 3 10 [130] 

Wood 1,064 8 2 - 17 5,000 [131] 

Wood 1,064 10 2 - - 5,000 [132] 

Wood 532 - - 45 - 10 [133] 

Wood - 10 10 200 - - [134] 

Wood 532 5 - - - - [135] 

Wood and babassu mesocarp 266 - 5-20 5-25 0-0.4 - [136] 
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The extensive literature list of Table 1 shows that there have been many studies on 

biological material and agricultural products, but there are very few related to 

pasture. Studying fresh herbage using LIBS has not been explored in-depth. 

Chauhan et al. [17] used fresh Bermuda grass in their study of Si distribution within 

leaves. Spectra were averaged and the Si I 288.15 nm emission line was used to 

analyse the amount of silicon at different locations on the leaves. Jull et al. [137] 

investigated fresh and dried, pelletized pasture in air and under an argon atmosphere 

using PLS. The root mean square error of cross-validation (RMSECV) of the 

models were better for pellets, but the fresh pasture models had better precision. 

The pellet spectra exhibited less between-sample variation because the moisture 

was removed from the samples. The moisture reduced the intensity of the fresh 

pasture emission lines. An explanation of the limiting factors inhibiting calibrations 

were given for each macro and micro nutrient. The best results were obtained for 

K, Na, and Mn. Jull et al. [138] studied temperature correction on pasture spectra 

using Boltzmann plots, Saha-Boltzmann plots, and internal standards. The 

Boltzmann plot and Saha-Boltzmann plot methods needed additional emission lines, 

confirmation of local thermodynamic equilibrium, and the degree of instrument 

broadening to produce better accuracies. PLS models were created using spectra 

normalised to carbon lines. Violet band and swan band heads produced better 

results. The best results were generated by taking the ratio of two emission lines 

with similar upper level electron energies. Boyain-Goitia et al. [67] investigated 

similarities between fresh grass fragments and pollen using LIBS spectra. The main 

difference was that the pollen spectra had Cr and Fe emission lines. Concentrations 

for Ca and Al were similar for the samples. Differentiating between the samples 

was hard due to the limited number of samples. Si was found in the grass spectra. 

This was attributed to soil dust on the samples. It was found that normalising the 

spectra with the CN violet band produced a reduction in matrix effects.  

 

There have been other studies on grass that did not use fresh samples. Bermuda 

grass (Cynodon dactylon) was investigated for a possible treatment for diabetics by 

Rai et al. [18]. The sap in the samples was removed, and the resulting plant material 

was crushed and lyophilized into powders which were dissolved in distilled water. 

The C III 229.6 nm line was used to normalise the emission lines of interest. The 

resulting ratios identified that certain amounts of K, Na, and Mg in Bermuda grass 
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have antidiabetic effects. Tall Fescue Grass (Festuca arundinacea) was formed into 

pellets and investigated for endophyte infection by Martin et al. [107]. The small 

number of samples made it difficult to discriminate between healthy and infected 

grass. Braga et al. [14] used pelletized grass (Axonopus obtusifolius) to validate 

micronutrient calibration models. The study compared multivariate (PLS) and 

univariate calibrations. The spectra were normalised by the C I 193.09 nm line to 

reduce variations. The PLS models performed better than the univariate models. 

The physical and chemical makeup of the samples used in the calibration should be 

similar to the intended plant species to be studied. This will produce superior 

calibrations. Pelletized pasture samples were used to create calibration models for 

macro and micronutrients by Devey et al. [64]. LIBS was compared to inductively 

coupled plasma - optical emission spectroscopy (ICP-OES). The spectra were 

processed using Savitzky Golay (SG) smoothing, vector normalisation, and wavelet 

smoothing before PLS models were generated on different spectral regions using 

selected wavelengths only. The best results were found for Na, K, Ca, and P and 

were similar to those for ICP-OES. 

 

Experimental setup 

A LIBS-6 (Applied Photonics, UK) system with a Nd:YAG laser (Big Sky Ultra, 

Quantel, France) operating at 1064 nm with a pulse width of 7 ns, and pulse energy 

of 100 mJ was focused perpendicular to the sample surface to generate the plasma. 

The setup had a fixed distance to the sample. Each spectrum was acquired with six 

(Avantes, The Netherlands) spectrometers in a LIBS-6 unit covering the range 

182.26-908.07 nm. All spectrometers were set to start recording after a delay time 

of 1.27 μs with respect to the laser pulse and an integration time of 1 ms. A 3-axis 

translation stage was employed to move the sample so that each LIBS pulse was on 

a fresh surface but at the same height. 

 

Fresh pasture (a mix of ryegrass and clover) from 20 different plots was harvested 

over a 13 month period creating a total of 280 samples. The fresh pasture was 

pressed flat in a holder. An accumulation of 100 shots under an air atmosphere, and 

100 shots under an argon purge were taken for each batch of harvested pasture. 

Each shot was taken from a new location on the sample. The pasture samples were 
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sent to a commercial analytical laboratory where they were dried at 62°C overnight 

and ground to pass through a 1 mm screen. Nitrogen was estimated by Dumas 

combustion calibrated NIR. All other elements were determined by nitric 

acid/hydrogen peroxide digestion followed by ICP-OES. Table 2 contains the limits 

of detection for the qualitative analysis performed by the laboratory. A portion of 

the powder was returned and pellets were pressed for each batch of harvested 

pasture. An accumulation of 100 shots under an air atmosphere, and 100 shots under 

an argon purge were taken for each pellet. Each shot was taken from a new location 

on the sample. All spectra were corrected for dark current and background. 

 

Data treatment 

Building quantitative models on raw spectroscopic data can lead to low correlations. 

Pre-processing can enhance the data by removing noise and recovering peaks. 

Regression techniques can then build models on improved data, producing better 

results. Pre-processing of data includes smoothing, removal of dark current and 

background, and transformations. After pre-processing, calibrations are produced. 

Simple univariate linear regression on LIBS spectra can produce poor results due 

to the variations in the data. These variations include nonlinearities, interferences, 

and noise. The advantages of using multivariate over univariate models include data 

compression, reduction of noise, increased tolerance of interferences, instrument 

selectivity becomes less important, and outliers are easily detected. The 

multivariate models also provide information on which variables are important in 

the calibration [139]. Multivariate chemometric methods can build models on the 

entire spectrum captured by the spectrometers whereas univariate methods only use 

one wavelength, or more in the case of internal normalisation. The methods used in 

this study are briefly explained. A detailed explanation can be found in the 

references quoted. 

 

Table 2. Description of the macro and micro nutrients in the dataset determined by 

a commercial analytical laboratory. 

Element Range Mean Detection limit 

N (wt. %) 1.8-4.0 2.8±0.49 0.1 

P (wt. %) 0.25-0.59 0.36±0.054 0.02 

K (wt. %) 1.0-4.0 2.7±0.68 0.1 
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S (wt. %) 0.23-0.46 0.33±0.042 0.02 

Ca (wt. %) 0.39-1.31 0.68±0.18 0.02 

Mg (wt. %) 0.12-0.28 0.19±0.03 0.02 

Na (wt. %) 0.0730-0.608 0.26±0.12 0.002 

Fe (mg/kg) 48-644 100±82 5 

Mn (mg/kg) 30-144 61±25 3 

Zn (mg/kg) 16-82 44±57 2 

Cu (mg/kg) 5-12 7.5±1.8 1 

B (mg/kg) 3-16 6.2±3.0 1 

 

Savitzky Golay 

A SG filter is a type of filter that is used for reducing noise, thus smoothing the data 

[140]. The result is an increase to the signal-to-noise ratio without overly distorting 

the data. Filtering is done by applying a polynomial function to a windowed set of 

the data and then adjusting the coefficients of the polynomial to minimise the mean-

squared approximation error for the window. The central data point in the window 

is then replaced with the new value obtained from the polynomial function. The 

window is propagated through the entire data set until all data points have been 

processed. SG filtering can be used to calculate the derivatives of a signal.  

Multiple Linear Regression 

MLR is an extended version of simple linear regression which builds a model 

between the variables in the predictors and the output responses [141]. The 

predictor variables are regressed to find constant regression coefficients that 

minimises the sum of squares on the responses. Problems occur when some of the 

predictors are strongly correlated with each other (multicollinearity), or with a 

linear combination of several predictors. 

Principal Component Regression 

PCR compresses data by creating new variables called Principal Components (PCs) 

[141]. The PCs are linear combinations of the predictors and are uncorrelated. The 

first PC contains as much of the variability in the predictors as possible. Each 

successive PC accounts for the highest amount of variance in an orthogonal 

direction to the preceding PCs. With a small number of PCs the data set can be 

reduced but still retains a large portion of the variability. The drawback of PCR is 
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that the variance caught by some of the PCs does not correspond to the responses. 

Thus there are various ways to determine which PCs to retain. 

Partial Least-Squares Regression 

PLS is a chemometric technique that has been employed to overcome the 

drawbacks of between spectra variability, which is not related to the responses [141]. 

PLS is used when there are many variables, compared to observations, and when 

there is high collinearity between variables. This is perfectly suited to LIBS spectra 

that have thousands of variables, many of which are collinear. PLS maximises the 

covariance between the predictors and responses by projecting the responses and 

the predictors to a new space. An underlying relationship can be found that is not 

easily detected by inspecting the spectra. This relationship is conveyed through the 

Latent Variables (LVs) which, like PCs, are a compression of the original data. PLS 

has found great success building calibration models that perform better than simple 

linear regression of a single emission line [97, 142]. 

Gaussian Process Regression 

Gaussian process regression (GP) generates nonparametric kernel-based 

probabilistic models [143]. They take a collection of random variables which 

defines a distribution over functions. This is done by including only those functions 

that agree with the observations reducing the uncertainty around those data points. 

A noise function is added to the model that explains how much deviation there is 

between the response and function values. The function used in this study is the 

squared exponential covariance function, also known as the radial basis function. 

Tuning of the noise and length-scale parameters is needed to produce an accurate 

model. 

Artificial Neural Networks 

ANN are a group of techniques that based on the workings of biological systems. 

A feed-forward network is one of the types of ANN that handles nonlinearities in 

data [141]. The predictors are called the input layer and the responses are called the 

output layer. Between these layers are hidden layers that are comprised of elements 

called neurons. Each input to a neuron has an associated weighting which it is 

multiplied by before being summed and passed on to all the neurons in the next 

layer. The output layer and neurons are non-linear functions of linear combinations 
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from the input layer and are commonly a sigmoid function. To train the network 

back-propagation is commonly used to update the regression coefficients as each 

observation is processed by the network. This continues until the prediction error is 

as small as possible. 

 

Chemometric methods can fail when there are a large number of predictors and not 

enough data in the responses. Dimension reduction is a method of overcoming this 

problem. Techniques such as PCR and PLS compress the data into a few new 

variables (PCs and LVs). The scores from these can then be used as inputs for 

methods like ANN and GP significantly improving results [144, 145]. 

Figures of merit 

To ensure that statistical results generalise for prediction of an independent dataset 

a model validation technique known as cross-validation may be used [146]. Cross-

validation splits the data up into training and test sets. A model is created on the 

training set and then evaluated on the test set. The process is repeated choosing a 

new test set which was not a part of the previous test set. This continues until each 

observation has been included in a test set. The number of iterations and the size of 

the test and training sets are determined by the split in the dataset. The percentage 

split is determined by how many folds are specified, this is known as k-fold cross-

validation. A moderate number for k reduces the variance, increasing the 

performance of the method [147]. In this study 10-fold cross-validation is used. The 

accuracy of a model is determined by the difference between the predicted results 

and the actual responses. 

 

One measure of accuracy for a cross-validated model is the RMSECV, which is 

calculated as 

 

RMSECV =  √
∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑛

𝑖=1

𝑛
 (1) 

 

where 𝑦̂ are the predictions from the cross-validation for the i-th sample which was 

not used in building the model for that fold, y are the actual responses, and n is the 

number of samples. Normalizing the RMSECV provides a better comparison 
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between the models created for the different nutrients. The normalized root mean 

squared error of cross-validation (NRMSECV) is  

 

NRMSECV =  
RMSECV

𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛
 (2) 

 

where ymax and ymin refer to the maximum and minimum concentrations of the 

particular nutrient the model was built for. The result is expressed as a percentage. 

 

Calibration models for N, P, K, S, Ca, Mg, Na, Fe, Mn, Zn, Cu, and B were 

generated using multiple chemometric methods. No standardisation was done on 

the spectra before analyses. SG filtering, SG first derivative, and SG second 

derivative were performed on the spectra followed by PLS to find out if this form 

of pre-processing would benefit this particular type of data. The harvest site and 

date were investigated with PCR to determine whether this information would 

explain some variations in the data. PCR performed on the spectra alone was used 

for a comparison. MLR, PCR, PLS, PLS+GP, PCR+ANN, and PLS+ANN 

performed on the spectra were compared to determine which method would be best 

for pasture. The results were used to investigate the effects that argon and moisture 

had on the models. All methods used were investigated using 10-fold cross-

validation to tune the parameters (number of latent variables, noise and length-scale, 

principal components, and neurons) reducing the RMSECV. The software packages 

that were used were Matlab (MathWorks, US) and Weka (The University of 

Waikato, NZ) (for a description of the software refer to [148]). 

 

Results and Discussion 

Savitzky Golay filtering 

SG filtering was investigated to see if improvements could be made through pre-

processing the spectra. SG, SG first derivative, and SG second derivative filtering 

followed by PLS were performed on the four datasets (fresh pasture in air, fresh 

pasture under argon, pellets in air, and pellets under argon) and compared to PLS 

with no filtering. A 6th order polynomial fit with a window length of 11 were used 

for filtering with the number of LVs depending on the element for the model.  
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SG filtering of LIBS spectra from nitrogen in pellets sampled in air resulted in a 

reduction in NRMSECV of 1.7 % which was the only model to show a decrease of 

NRMSECV greater than 1 %. Overall SG was considered ineffective since there 

was little to no reduction in NRMSECV. For this reason, it was not used in any 

further analyses. 

 

Categorical data 

There may be perturbations between samples caused by site specific environmental 

effects and date specific events. These are hard to identify through visual inspection, 

but the influence can be detected and compensated for through chemometric 

techniques such as PCR and ANN. PCR and PCR+ANN were used to investigate 

whether including categorical data (date and site of harvest) would increase 

predictions in the models. There were six neurons in the first hidden layer and three 

in the second hidden layer for each model. The number of PCs depended on the 

element analysed.  

 

There was very little change in the results using the categorical data. The biggest 

change recorded was a 0.2 % decrease in NRMSECV when including the 

categorical data for potassium in pellet samples in argon. Performing ANN after 

PCR did not significantly increase the accuracy of the models. The model that had 

the largest improvement in NRMSECV, using PCR+ANN, was sulphur (0.4 %) in 

pellets under argon. 

 

Argon and moisture effects 

Argon is commonly used in plasma spectroscopy to increase the electron density 

and temperature in plasmas. The chemometric methods used to investigate the 

effects of an argon purge were MLR, PCR, PLS, PLS+GP, PCR+ANN, and 

PLS+ANN. The noise and length-scale parameters were optimised with values of 

0.01 and 5.77 respectively for GP and 6 neurons in the first hidden layer and 3 in 

the second hidden layer for ANN. The number of PCs and LVs were dependant on 

the element of interest.  
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Using an argon purge produced small differences. The changes can be seen in Fig. 1. 

The NRMSECV for these models were averaged to see the overall effect that argon 

had on fresh and pelletized pasture. Table 3 displays the results. Models created 

from fresh pasture under argon for N, K, Fe, Mn, Zn, and B produced NRMSECV 

over 1 % better than models created in air, Mn having the largest increase of 2.1 %. 

Pelletized pasture models created under argon only produced 1.2 % better 

NRMSECV for N and Cu. NRMSECV for Ca and B were worse, a decrease of 1.2 % 

and 1.6 %, respectively. 

 

There is a marked increase in accuracy for models built on pellets compared to 

models built on fresh samples, due to the reduction in moisture content in the 

samples. The moisture changes the breakdown threshold of a material which 

increases both within-sample and between-sample variations [79]. Fig. 1 and 

Table 3 show that removing the moisture in the pasture leads to an average increase 

in accuracy of 4-5 % with the highest increase recorded for B, that of 9.6 %. The 

increase may also be partially attributed to the increased homogenisation produced 

by grinding the samples. Fresh pasture will have different nutrient distributions in 

each blade of grass. 
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Fig. 1. Accuracy of models created for (a) fresh and (b) pelletized pasture. The bars indicate NRMSECV produced from spectra 

recorded in air and the solid black lines within the bars represent values created under argon. 
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Table 3. Average NRMSECV values calculated from MLR, PCR, PLS, PLS+GP, 

PCR+ANN, and PLS+ANN. The uncertainty is one standard deviation. 

Element 
Fresh pasture Pelletized pasture 

In air Under argon In air Under argon 

N (%) 18.2 ±0.3 16.4 ±0.8 13.7 ±0.5 12.5 ±0.9 

P (%) 12.8 ±0.5 12.9 ±0.5 9.6 ±0.3 9.7 ±0.4 

K (%) 11.5 ±0.4 10.4 ±0.3 6.9 ±0.6 6.5 ±0.4 

S (%) 16.0 ±0.4 15.4 ±0.3 13.5 ±1.1 14.0 ±0.4 

Ca (%) 15.6 ±0.5 14.9 ±1.2 7.3 ±0.3 8.5 ±0.4 

Mg (%) 13.4 ±0.2 12.7 ±0.5 8.1 ±0.5 7.9 ±0.3 

Na (%) 14.7 ±1.4 14.6 ±0.7 5.8 ±0.3 5.4 ±0.4 

Fe (%) 8.7 ±0.5 7.5 ±1.0 5.1 ±1.0 4.7 ±1.0 

Mn (%) 11.1 ±0.9 9.0 ±0.4 6.9 ±0.9 7.0 ±0.4 

Zn (%) 13.4 ±0.3 12.2 ±1.1 10.2 ±0.5 9.2 ±0.6 

Cu (%) 15.8 ±0.3 15.1 ±0.8 13.7 ±0.9 12.5 ±0.4 

B (%) 19.1 ±0.3 18.0 ±1.5 9.5 ±0.4 11.1 ±0.5 

 

Comparison of models 

Comparing the different chemometric algorithms, there were mixed results with no 

single method outperforming the rest. Different techniques worked better on 

different elements. Fig. 2 and Fig. 3 display the best calibration curves generated 

for fresh pasture in air and pelletized pasture under argon. Looking at which 

methods produced the best models for each element in the different datasets (fresh 

pasture in air, fresh pasture under argon, pelletized pasture in air, and pelletized 

pasture under argon) can give a general overview of which algorithm performed 

best overall.  

 

Looking at the best performing models for the 12 nutrients from the 4 data sets 

showed that PLS+GP, PCR+ANN, and PLS+ANN were the best algorithms 

producing 19, 15, and 7 of the 48 models respectively. MLR, PCR, and PLS only 

produced only one, four, and two of the best models. Looking specifically at 

elements that produce models with R2 values over 0.8 and NRMSECV under 10 %, 

the more complex methods, PLS+GP, PCR+ANN, and PLS+ANN produced 

models with higher accuracy for K, Na, Ca under argon, Mg and Fe in pelletized 

samples, and Mn in air. The largest improvement was a reduction in NRMSECV of 

3.3 % when comparing the PLS+ANN model with the MLR model for Na in fresh 
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pasture. The time taken to perform ANN is the compromise for increasing the 

accuracy of the model. Inspection of Fig. 2 and Fig. 3 shows that there are two 

groupings of concentrations for K and Mn. The low K and high Mn concentrations 

harvested in March 2014 were caused by a drought in the region. The non-Normal 

range of concentrations provides added leverage for R2 and NRMSECV values 

making them look similar to other elements. 

 

Table 4 displays the RMSECV values to provide a better idea of how the predictions 

are distributed. The data in Table 4 was made by choosing the best RMSECV with 

the best R2 value from all algorithms. K has the second worse RMSECV out of the 

macronutrients, but because of the range of concentrations in the samples it has one 

of the best correlation coefficients even without the drought data. 

 

Another way to increase the predictive ability of the models is to build them on 

better data with stronger, consistent emissions. The spectra in this work had weak 

emission lines for N, P, Mg, Fe, and Cu. Zn lines only appeared under an argon 

atmosphere, and B lines were only visible on a few occasions. The major problem 

with N comes from the N contribution in the atmosphere. Using argon did increase 

the accuracy of the N models. Emissions for S could not be obtained with the 

spectrometers used in this work, so the models would have been created on inferred 

data. The strongest line for P had interferences from Fe which would limit 

quantitative analysis. Ca and Mg produced some of the better models even though 

some of the emissions from these elements were not from ionised Ca and Mg. The 

ratio of neutral calcium to ionised calcium changes from shot to shot producing 

varying spectra for the same sample. This is the same for magnesium.  
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Fig. 2. The best calibrations created for fresh pasture in air. 

 

Fig. 3. The best calibrations created for pelletized pasture under argon. 
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Table 4. The best algorithms for the nutrients in each dataset. 

Element 
Pasture in air Pasture under argon Pellets in air Pellets under argon 

Method RMSECV Method RMSECV Method RMSECV Method RMSECV 

N (wt. %) PCR 0.40 PLS+GP 0.35 PLS+GP 0.28 PLS+GP 0.26 

P (wt. %) PLS+GP 0.042 PLS+GP 0.043 PLS+GP 0.032 PLS 0.032 

K (wt. %) PLS+ANN 0.32 PCR+ANN 0.30 PLS+GP 0.18 PLS+GP 0.18 

S (wt. %) PLS+GP 0.036 PLS+GP 0.035 PLS+GP 0.029 PLS+GP 0.031 

Ca (wt. %) PCR 0.14 PLS+GP 0.13 PLS+ANN 0.064 PCR+ANN 0.073 

Mg (wt. %) PLS 0.021 PCR 0.020 PCR+ANN 0.012 PCR+ANN 0.012 

Na (wt. %) PLS+ANN 0.068 PCR+ANN 0.076 PLS+GP 0.030 PLS+GP 0.026 

Fe (mg/kg) PLS+GP 48 PLS+GP 41 PCR+ANN 21 PCR+ANN 20 

Mn (mg/kg) PCR+ANN 11 PLS+ANN 9.4 PLS+ANN 6.7 PLS+GP 7.4 

Zn (mg/kg) PCR+ANN 8.5 PCR+ANN 7.3 PLS+GP 6.5 MLR 5.7 

Cu (mg/kg) PCR+ANN 1.1 PCR+ANN 1.0 PCR+ANN 0.88 PCR+ANN 0.84 

B (mg/kg) PCR 2.5 PCR+ANN 2.1 PLS+ANN 1.2 PLS+ANN 1.3 

 

In field application 

As discussed above, the major issue with LIBS measurements on pasture is 

variability. The chemometric methods used in this study provide reasonable models 

to estimate semi-quantitative levels of nutrients. These laboratory results indicate 

how an in field system would perform minus the added in field variability. For in 

field use to be realised, improved models from better quality spectra with less shot-

to-shot variation are needed [149]. The variations in experimental parameters, 

surface roughness, and local inhomogeneity may be mitigated by increasing the 

spot size and ablating more material. Finding a way to normalise the spectra to 

disregard moisture would help increase predictability of quantitative calibration 

models. Accurate chemometric models can be produced once these factors are 

minimised. Infield implementation can then be realised for fresh pasture using a 

LIBS sensor to determine fertilizer application and rate in real time. 

 

Conclusions 

SG filtering was ineffective, there was little to no reduction in NRMSECV since 

the main source of disparity is shot-to-shot variation, not noise in the spectra. 

Including categorical data for PCR and PCR+ANN did not produce a significant 

increase in prediction. The use of an argon purge increased the predictive capability 

in fresh samples with a reduction of over 1 % in NRMSECV for N, K, Fe, Mn, Zn, 
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and B. For pelletised samples only N, Cu, and Zn had an improvement over 1 % in 

NRMSECV with Ca and B producing a decrease of 1.2 % and 1.6 %, respectively. 

The highest increase in predictive ability was produced by using dried pellets 

instead of fresh samples. The reduction in moisture led to models having an average 

increase in accuracy of 4-5 %. No single chemometric method provided 

improvement for all nutrients. The algorithms that performed the best were 

PLS+GP, PCR+ANN, and PLS+ANN.  

 

To increase the predictive ability of chemometric models improved spectra are 

needed and the shot-to-shot variation needs to be reduced. Temperature differences 

between plasmas is a main factor contributing to the variations. Ca and Mg suffer 

the most from the temperature difference between plasmas because the temperature 

changes the amount of Ca and Mg being ionised. This significantly changes the 

intensities of the neutral and ionised emission lines. Other issues that need resolving 

are that some of the nutrients displayed weak lines or interferences from other lines 

and the surrounding atmosphere. The chemometric methods used in this study 

provide reasonable models. Before infield use is viable, a moisture normalisation 

method needs to be developed to produce accuracies similar to that of dried pasture.  
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Abstract 

With the ever-increasing amount of generated waste governments around the world 

are looking for, and implementing, ways to minimise waste output and maximise 

waste recovery. The main difficulties are sorting waste items, identifying the 

different types of plastics, and the time taken to sort them manually. Bioplastics 

such as polylactic acid and Novatein thermoplastic protein can be incorporated into 

the recycling stream to minimise waste. Laser-induced breakdown spectroscopy 

spectra analysed by k-nearest neighbour and soft independent modelling by class 

analogy were investigated as methods that can rapidly identify recyclables. Raw, 

peak normalised, and total intensity normalised spectra were used to identify which 

would improve classification. Laser-induced breakdown spectroscopy spectra were 

generated by single laser shots to different locations on nine samples, glass (brown, 

green, and clear), tin, aluminium, polylactic acid, Novatein, polyethylene 

terephthalate, and high-density polyethylene. To prove that the system has the 

potential to be used on a waste sorting stream an autofocus unit was developed to 

move the laser-induced breakdown spectroscopy beam into focus on the different 

sample geometries. Two classification methods were investigated, soft independent 

modelling by class analogy and the k-nearest neighbours algorithm. k-nearest 

neighbours on raw spectra produced the best results. Discrimination between 

bioplastics and plastics were 100 %. Glass samples could not be reliably 

distinguished from each other. Surface contamination produced 3 misclassifications 
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from 405 spectra in the training data. The same results were obtained when the 

spectral range was reduced from 182.26 - 908.07 nm to 313.20 - 908.07 nm.  

 

Keywords: Laser induced breakdown spectroscopy, LIBS, Polylactic acid, 

Novatein Thermoplastic Protein, Recycling. 

 

Highlights: Waste management, Laser-induced breakdown spectroscopy, bioplastic, 

recycling. 

 

8.1 Introduction 

With large amounts of waste being generated around the world, countries and 

industries are implementing strategies to recycle as much of this waste as possible. 

New Zealand government and local councils are implementing safeguards such as 

legislation, initiatives, and accords to minimise waste and increase recycling [1-3]. 

The Waste Minimisation Act [1] requires local councils to promote waste 

management and minimisation, and create a waste management and minimisation 

plan. Local government and industry have adhered to the act to improve the 

sustainability of packaging used in New Zealand through greater material and 

energy efficiency in the production, use, and recovery of packaging materials [3]. 

There has been great success thus far with 73 % of New Zealanders having access 

to kerbside recycling, and a further 24 % having access to drop-off centres in 2006 

[2]. Kerbside recycling accepts aluminium and tin cans, paper, glass, and various 

plastics depending on location. All local councils recycle polyethylene 

terephthalate (PET) and high-density polyethylene (HDPE) [4]. 

 

Currently material recovery facilities in New Zealand sort plastics manually by 

product. Around the world different sorting methods are used. The difficulties with 

these methods include separating and identifying plastics, and the time taken to 

perform these processes. For example, near-infrared spectroscopy is not applicable 

to black samples, mid-infrared spectroscopy takes several seconds to acquire a 

measurement and has difficulty identifying heavy metals [5-7]. An automated 

process using laser-induced breakdown spectroscopy (LIBS) would greatly 

mitigate these difficulties, if not eliminate them. Plastic packaging contains 
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additives such as fillers, colorants, and plasticisers all of which can be disposed of 

or recycled in various ways. These additives reduce the reliability and quality of 

sorted materials because they introduce impurities within the sorted plastic types, 

which is one of the main shortfalls of recycling [8]. 

 

8.1.1 Bioplastics 

Another way to minimise waste would be to use bioplastics, which may be 

biodegradable and compostable under appropriate conditions. Packaging industries 

have become increasingly interested in developing bioplastics to replace food 

packaging [9]. Global production of bioplastics has an estimated annual growth rate 

of up to 30 % and will reach an expected capacity of 3.5 million tonnes in 2020 [10, 

11]. Not all plastics produced from bio-mass feedstocks are necessarily 

biodegradable and compostable [10]. Some, for example bio-based polyethylene, 

are chemically identical to conventionally derived plastics which are recycled [11]. 

 

A major concern with recycling bio-based plastics, that are biodegradable, is that 

they may be mistaken for, and combined with, regular plastics contaminating plastic 

waste streams. Thus, they may need removal and separation from existing recycling 

streams if found in kerbside collection. Polylactic acid (PLA) is a commonly known 

biodegradable bioplastic which is derived from corn or other carbohydrate sources 

[9]. PLA has the potential to replace PET, HDPE, low-density polyethylene (LDPE), 

and polystyrene (PS) for many applications ([9, 10, 12] and the references therein) 

because it has similar properties. These properties include high versatility, 

thermoplasticity, good resistance against grease and oil, low permeability to aromas, 

and low temperature sealability [11, 13, 14]. A few items made from PLA are blow 

moulded bottles, dinnerware, food packaging, food wrap, deli trays, and injection 

moulded food containers [12, 14, 15]. Novatein® Thermoplastic Protein [16] is an 

up-and-coming thermoplastic currently being developed by Aduro Biopolymers LP. 

Novatein is derived from blood meal, which is a by-product of the meat processing 

industry. Using the by-products not only maximises the value from co-products 

from the meat processing, but it also minimises waste by creating biodegradable 

plastics which can replace plastics going into landfills. Novatein has mechanical 

properties comparable to LDPE [17]. 
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8.1.2 Laser induced breakdown spectroscopy 

LIBS is a type of optical emission spectroscopy which focuses a high-power, short-

pulsed laser onto the surface of a sample, ablating a tiny amount of sample material, 

and creating a plasma [18]. During the early lifetime of the plasma excited electrons 

decay from high energy levels triggering free-free and free-bound transitions. The 

spectrum produced is dominated by a continuum background [19, 20]. As the 

plasma continues to cool the excited electrons decay even more allowing atomic 

and molecular emissions to dominate. The spectra generated at this time provide 

qualitative and quantitative information on the chemical makeup of the sample. 

LIBS measurements can be done in situ, at varying distances, and can provide 

results in real time. These advantages make LIBS very attractive for use in the 

recycling industry. 

 

LIBS has been used for classification, identification, recycling, and sorting of 

plastics and other waste. Applications include determining the manufacturer and 

origin of mobile phones from polymer fragments [21], sorting cement, brick, 

gypsum block, wood, polyvinyl chloride (PVC), glass (white, green and brown), 

sandstone, gabbro, and steel rebar in waste streams from demolished build sites [22]. 

Some of the plastics that have been investigated for recycling are PET [7, 23-30], 

HDPE [7, 23-30], LDPE [7, 23, 24, 26-30], polyethylene (PE) [26, 27, 31, 32], 

polypropylene [7, 23-32], PS [23-33], PVC [7, 22, 26-31, 33], polyoxymethylene, 

[31], polytetrafluoroethylene [31], polyoxyethylene [31], polyamide [31-33], 

polybutylene terephthalate [31], acrylonitrile butadiene styrene [31-33], 

polycarbonate [31-33], styrene-butadiene [33], polyphenylene oxide [33], and 

thermoplastic polyester [33]. 

 

A recycling technique should have very little, if any, pre-processing to make the 

method as efficient as possible. Aquino and Pereira-Filho [21] fired a single, low 

energy pulse with a 250 µm spot diameter to clean the surfaces of the samples. The 

spot area was reduced and the pulse energy increased before analysing the samples. 

Xia and Bakker [22] used compressed air to clean the dust off of their samples. The 

samples were then placed on a rotating plate in a way so that they were all level. 

The setup simulated the intended application where the waste would have the 

surface scraped off to provide a flat surface for analysis, removing the need for an 
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autofocus unit. Despite efforts to flatten the sample surface a problem encountered 

was that shot-to-shot variation was caused mostly by the LIBS pulses missing the 

samples. Gondal and Siddiqui [28] formed pellets out of plastics granules and 

powder. Sattmann et al. [7] washed, dried, and shredded plastic bottles into flakes. 

The flakes were then pressed into a mould. 

 

Sorting is not a trivial task, which can be attested to by the many post processing 

techniques that have been employed on LIBS spectra for recycling. These include 

using specific emission lines [7, 21, 23, 31], emission line ratios [7, 23, 26, 28, 29, 

31, 33], specific regions of wavelengths [23, 25], the entire range of wavelengths 

[21, 22, 24, 27, 30, 33],and spectra have been normalised by different methods [21, 

22, 32, 33]. Many chemometric methods have been used [7, 21, 24, 25, 27, 29, 30].  

 

The work presented here explores LIBS’ suitability for sorting recycling waste 

streams. Principal component analysis (PCA) [21-23, 25, 31, 33], soft independent 

modelling by class analogy (SIMCA) [21], and k-nearest neighbour (k-NN) [21] are 

compared for spectral analysis. Peak normalisation and total intensity normalisation 

are investigated as possible spectral pre-treatment methods [34, 35]. In addition to 

identifying materials that are common to all sorting facilities around New Zealand 

the possibility of distinguishing PLA and Novatein from regular plastic waste is 

also investigated.  

 

8.2 Experimental setup 

A LIBS-6 system (Applied Photonics, UK) containing a Nd:YAG laser (Big Sky 

Ultra, Quantel, France) operating at the fundamental wavelength of 1064 nm, with 

a pulse width of 7 ns, was focused perpendicular to the sample surface to generate 

the plasma. The pulse energy was 100 mJ. Each spectrum was acquired with the six 

spectrometers in the LIBS-6 unit covering the range 182.26 - 908.07 nm. All 

spectrometers were set to start recording after a delay time of 1.27 μs with respect 

to the laser pulse and an integration time of 1.1 ms. A 3-axis translation stage moved 

the sample along the axis of the LIBS beam. 
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8.2.1 Autofocus 

Two 635 nm, 5 mW, continuous wave lasers directed on the ablation site were used 

in conjunction with a miniature CCD video camera to create an autofocus system 

based on the laser triangulation [36]. The CCD video camera was part of the LIBS-

6 system. The lasers were mounted on the LIBS-6 nozzle opposite each other as in 

Fig. 1. The lasers were aligned so that the axis of each laser beam would intersect 

with the ablation site. One of the lasers was turned on, illuminating the site to be 

ablated, and an image was taken using the CCD camera. The distance to the sample 

was then found using triangulation. The laser was then turned off and the process 

was repeated for the remaining laser. The two 635 nm lasers were used to overcome 

the geometric limitations of using the triangulation method from one angle.  If one 

of the lasers has its beam blocked then the other laser will still acquire a valid 

distance. The AForge.NET framework (a library of common computer vision 

algorithms [37]) filtered the beam spot from the image. The centroid of the spot was 

used to find the distance to the sample surface and the 3-axis translation stage was 

moved into place. 

 

 

Fig. 1. Autofocus setup on the LIBS-6 nozzle. The charge-coupled device camera is 

located inside the nozzle. 

 

8.2.2 Samples 

The samples consisted of the common items collected in kerb-side recycling, glass 

bottles (clear, green, and brown), plastics bottles (PET and HDPE), a tin can, and 

an aluminium can. Two bioplastics (PLA and Novatein) were also included to 

determine whether they can be distinguished from the other recycled plastics. The 

bioplastic grades used were NatureWorks® PLA Polymer 3051D (Natureworks, 

LLC) and Novatein® IR3020 (Aduro Biopolymers, Hamilton, New Zealand). Both 
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are suitable for injection moulding and could mistakenly be discarded in curb-side 

recycling. 

 

To resemble the intended implementation of LIBS in a sorting facility, where 

possibly only one shot will be taken of an item, the spectra gathered from the 

samples were not averaged. A total of 50 spectra was collected for each sample. 

Each spectrum corresponding to a single shot in a new location on the surface of 

the sample. Dark current and background removal was performed on the spectra. 

 

8.2.3 Statistical analysis 

The spectrum from each sample was mean centered before processing. PCA was 

then performed on the spectra. PCA transforms a set of variables into a new set of 

orthogonal variables called principal components (PCs) that capture as much of the 

variability in the original data as possible. The first PC contains the largest variance 

in the data. The next PC accounts for the maximum possible variance in an 

orthogonal direction compared to the previous PC. The number of PCs range from 

one to the number of variables in the data set. By applying PCA to the spectra the 

dimensions are reduced while retaining as much of the variability as possible. 

Leave-one-out cross-validation (LOO-CV) was used on the PCA model to reduce 

the effects of overfitting. The PCs were used as inputs for k-NN classification [38]. 

k-NN is a classification algorithm that uses a distance measure, the Euclidean 

distance in this study, to determine how far away the investigated sample is away 

from the k closest samples surrounding it. The classifications of the k samples are 

averaged to classify the unknown sample. The optimal k number of neighbours was 

determined by minimising the loss function, which in this case was taken to be the 

percentage of misclassifications.  

 

Individual PCA models were made for each class and LOO-CV was used to find 

the optimal number of PCs for each class. These models were used as inputs for 

SIMCA. SIMCA is a classification algorithm that calculates the orthogonal distance 

and scores distance from each model to the sample under investigation [39]. In the 

PLS_Toolbox [40] version of SIMCA, called alternative SIMCA, the Mahalanobis 

distance and the squared residuals are used to calculate the reduced distance. The 
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class boundaries determined by the PCA models of each class are used with the 

calculated reduced distance to classify the new sample as belonging to a single class, 

more than one class, or not belonging to any class. The samples belonging to 

multiple classes, or not assigned to any classes, can be forced into the class that it 

is closest to. 

 

The above analyses were repeated for two types of normalisation. The first type 

was dividing each spectrum by its highest intensity. The second type was dividing 

each spectrum by the accumulated total of emission line intensities. The results of 

the normalisations were compared to results on raw spectra without normalisations. 

The data were split, using 45 spectra from each sample for training and validation 

in the cross-validation, and 5 spectra from each sample for testing. Analysis was 

done using the PLS_Toolbox (Eigenvector Research Inc, US) in Matlab 

(MathWorks, US). 

 

8.3 Results and Discussions 

By averaging the bioplastic and plastic spectra visual differences can be seen 

between PLA, Novatein, PET, and HDPE. Fig. 2 displays the averaged spectra. The 

Sodium D-lines at around 589 nm were very strong in the spectrum for Novatein 

(NTP) with intensities of roughly 52,000 and 40,000. Because of that the y-axis of 

the Novatein plot in Fig. 2 has been limited to 10,000 a.u. so spectra could be more 

easily compared. One major difference seen is that the CN violet band emissions at 

388.34 nm were weaker for bioplastics. However, these results are misleading. 

Visual classification cannot be relied on because of the shot-to-shot variation seen 

in LIBS spectra. The variation can produce similar spectra from different samples. 

The purpose of this study is to have one-shot classification regardless of variation. 
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Fig. 2. Average spectra from different plastics and bio plastics. The y-axis for 

Novatein has been reduced cutting off the sodium D lines which are five times larger 

than the next strongest lines. 

 

The spectra from glass bottles, plastics, tins, and aluminium cans are also 

distinguishable from each other by visual inspection. It is harder to classify items 

that are similar, such as the different types of glass bottles, because there is less 

variation in the spectra. Separating the glass bottles into three categories (clear, 

green, and brown) and performing the statistical analysis on the spectra produced a 

lot of misclassifications. For this reason, the different coloured glass bottles were 

combined to make a single category of glass bottles. PCA was done on the spectra, 

and the variability captured by the first two PCs, which accounts for 69 % of the 

variation, is displayed in Fig. 3 and Fig. 4.  
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Fig. 3. Scores plot of the first two principal components of the principal component 

analysis on the different items in recycled waste. 

 

It can be seen that the main variation separates the tin can and the aluminium can 

from the rest of the items. Fig. 4 shows that PLA is separated by only two PCs and 

that there are clear overlaps between PET and HDPE, and between glass and 

Novatein. The overlap between PET and HDPE was not unexpected since Anzano 

et al. [23] had similar misclassifications using PCA on PET and HDPE.  

 

 

Fig. 4. Closer view of the first two principal components from principal component 

analysis showing the clustering of samples. 

 

The results form LOO-CV suggested that the optimum number of PCs for the entire 

dataset was nine and the optimum number of neighbours was two. The optimal 

number of PCs for each class is shown in Table 1. The number of misclassifications 
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for k-NN and SIMCA, over the entire dataset (training and test set), are displayed 

in Table 2. The confusion matrices for the spectra without normalisation are shown 

in Table 3-5. Neither type of normalisation increases performance for classification. 

This could be due to contaminates on the sample surface and temperature 

fluctuations in the plasma changing emission line intensities.  

 

SIMCA classifies a lot of samples as not belonging to any class which is why there 

are so many misclassifications. Class assignment can be forced by assigning the 

closest class to the sample. This increases the classifications of SIMCA for all 

methods of normalisation and by 4 % for the non-normalised spectra. The best 

classification algorithm is k-NN without normalisation which produces 0.89 % 

misclassification. The reason SIMCA did not work well is that the models created 

for each class maximises the within class variation whereas the model created for 

k-NN maximises the variation over all classes. 

 

Table 1. Optimum number of principal components used for soft independent 

modelling by class analogy. Determined by leave-one-out cross-validation. 

Class PCs 

Glass 3 

PLA 2 

NTP 2 

PET 6 

HDPE 5 

Tin can 7 

Aluminium can 2 

 

 

Table 2. Performance of the different normalisations and algorithms. 

Normalisation 
Misclassification (%) 

k-NN SIMCA SIMCA (forced) 

None 0.89 5.11 1.11 

Maximum intensity 1.78 9.78 6.67 

Total intensity 1.56 8.44 1.78 
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Table 3. Confusion matrix for k-nearest neighbours classification on spectra with no 

normalisation. 

  Actual Class 

  Glass PLA NTP PET HDPE Tin Aluminium 

Predicted 

Class 

Glass 148 0 0 0 0 0 0 

PLA 0 49 0 0 0 0 0 

NTP 2 1 50 0 0 0 0 

PET 0 0 0 50 1 0 0 

HDPE 0 0 0 0 49 0 0 

Tin 0 0 0 0 0 50 0 

Aluminium 0 0 0 0 0 0 50 

 

 

Table 4. Confusion matrix for soft independent modelling by class analogy 

classification on spectra with no normalisation. 

  Actual Class 

  Glass PLA NTP PET HDPE Tin Aluminium 

Predicted 

Class 

Glass 141 0 0 0 0 0 0 

PLA 0 48 0 0 0 0 0 

NTP 0 0 49 0 0 0 0 

PET 0 0 0 47 0 0 0 

HDPE 0 0 0 1 48 0 0 

Tin 0 0 0 0 0 48 0 

Aluminium 0 0 0 0 0 0 48 

No class 9 2 1 2 2 2 2 
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Table 5. Confusion matrix for soft independent modelling by class analogy 

classification on spectra with no normalisation. Samples that were classified as 

belonging to multiple classes, or to no class, were assigned to the class closest to 

them. 

  Actual Class 

  Glass PLA NTP PET HDPE Tin Aluminium 

Predicted 

Class 

Glass 148 0 0 0 0 0 0 

PLA 0 49 0 0 0 0 0 

NTP 2 0 50 0 0 0 0 

PET 0 0 0 48 0 0 0 

HDPE 0 1 0 2 50 0 0 

Tin 0 0 0 0 0 50 0 

Aluminium 0 0 0 0 0 0 50 

 

There were three samples that were misclassified in every analysis. Two were glass 

spectra from the training dataset and one was a PLA spectrum from the test dataset. 

Inspection of the spectra from the two glass instances revealed that the Sodium D-

lines (Na I 589.00 nm and Na I 589.59 nm) are larger than usual for glass. This is 

due to the large sodium contribution from fingerprints and the sweat in fingerprint 

residue on the glass [41, 42]. Fig. 5 shows the dependence of the PCA model on the 

Sodium D-lines, which has some of the highest loadings. Comparing the 

misclassified PLA spectrum to the other PLA spectra revealed that there were 

unusually high emissions for Ca II 393.37 nm, Ca II 396.85 nm, Ca I 422.67 nm, 

Sodium D-lines (Na I 589.00 nm and Na I 589.59 nm), K I 766.49 nm, and 

K I 769.90 nm. These lines all correspond to the strongest constituents in sweat 

which makes up a lot of the residue in fingerprints [42]. 

 

The results for the best performing method (k-NN without normalisation) shows a 

misclassification error of 0.79 % which is equivalent to 4 errors. Three of the errors 

have been discussed above. The two glass spectra and the PLA spectrum were 

categorised as Novatein. The remaining error was from assigning a HDPE sample 

to PET. Inspection of the misclassified HDPE spectra revealed a lot of deviations 

from the typical HDPE spectra. These include no emissions from C I 247.86 nm, 

K I 766.49 nm, and K I 769.90 nm, lower than usual emissions from 
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Ca II 393.37 nm, Ca II 396.85 nm, Na I 589.00 nm, Na I 589.59 nm, Hα 656.28 nm, 

N triplet (742, 744, and 746 nm), and the O 777 nm triplet. These differences are 

possibly from sample contamination. The spectra showed typical emissions from 

the CN violet bands (388.29, 387.08, 386.14, 385.44 and 385.03 nm) and the C2 

swan bands (516.42 and 512.80 nm).  Even with the misclassifications, bioplastics 

were distinguishable from plastics using single shot LIBS spectra. 

 

 

Fig. 5. Principal component analysis loadings plot of the nine principal components. 

 

Ideally a recycling system would have to be as inexpensive as possible. The major 

cost of a LIBS system is the number of spectrometers used to capture a large range 

of wavelengths. LOO-CV on k-NN was performed on the spectra from each 

individual spectrometer to see if a single spectrometer could be used thus reducing 

the cost of the system. The results presented in Table 6 are of the k-NN models that 

have been tuned using LOO-CV. Spectrometers 3-6 produced the best results which 

agrees with the loadings seen in Fig. 5. The accuracy arises from the CN violet 

bands, C2 swan bands, calcium, sodium, oxygen, nitrogen, potassium, and Hα lines 

covered in this spectral range. 

 

Different combinations of two different spectrometers were used to see if they 

would give classification errors close to that of using all six spectrometers. Table 7 

displays the results. Combinations of spectrometers 3 with 4, 3 with 5, 4 with 6, and 

5 with 6 produce only four misclassifications, one more that using six spectrometers. 

Using combinations of three different spectrometers produced similar results with 

a minimum of four misclassifications. This was for spectrometer combinations 3, 4, 
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5 (6 PCs) and 3, 5, 6 (7 PCs) setting k equal to 2. The misclassifications from the 

different combinations were not all from the same spectra. Combining four 

spectrometers (3, 4, 5, and 6) produces the same results as using all spectrometers, 

that of 3 misclassifications using 8 PCs and setting k to 2. Increasing the number of 

PCs to 18 produces only two errors, the same as using 19 PCs on the entire spectrum. 

These two errors are from the two glass spectra discussed earlier.  

 

Table 6. Parameters and performance of using a single spectrometer for 

classification. 

Spectrometer Spectral range (nm) Resolution (nm) PCs k Misclassified (%) 

1 182.26 - 256.27 0.037 12 2 12.8 

2 256.28 - 313.19 0.031 5 2 25.2 

3 313.20 - 417.13 0.052 19 2 2.47 

4 417.14 - 495.12 0.043 11 2 2.22 

5 495.15 - 715.63 0.11 18 2 2.22 

6 715.64 - 908.07 0.096 6 2 2.96 

 

Table 7. Misclassification errors using different combinations of spectrometers. The 

numbers in the brackets are the numbers used for principal components and k. 

Spectrometer 
Misclassification (%) 

1 2 3 4 5 6 

1 12.8 (12,2) 10.4 (18,2) 1.98 (20,2) 1.73 (18,2) 1.98 (19,2) 2.72 (20,2) 

2  25.2 (5,2) 2.72 (4,2) 2.96 (13,2) 2.72 (16,2) 2.22 (8,2) 

3   2.47 (19,2) 0.99 (12,2) 0.99 (5,2) 1.23 (15,2) 

4    2.22 (11,2) 2.22 (8,2) 0.99 (10,1) 

5     2.22 (18,2) 0.99 (6,2) 

6      2.96 (6,2) 

 

To use LIBS in practical recycling systems problems caused by surface 

contamination need to be overcome. Many types of contaminates can obstruct 

sampling of the actual sample surface and cause errors. These would include labels, 

water, fingerprints, and residue from consumables. Cleaning shots could be used to 

overcome this problem but at the cost of the speed of sorting the waste. Each sample 

would also need to be subjected to multiple shots in different locations to increase 

the chance of avoiding labels. 
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8.4 Conclusions 

A comparison between k-NN and SIMCA was performed with no data pre-

treatment, peak normalisation, and total intensity normalisation. The best results 

were generated by k-NN with no normalisation. Using k-NN 100 % discrimination 

between bioplastics and plastics using single shot LIBS spectra was achieved. One 

HDPE spectrum was misclassified as PET in the cross-validation and one PLA 

spectrum was misclassified as Novatein from the test set. Fingerprint residue is the 

main reason for misclassifications, adding extra sodium, potassium, and calcium 

emissions. The different colours of glass samples could not be distinguished from 

each other. Tin and aluminium cans had 100 % success rate of correct classification. 

Reducing the number of spectrometers will significantly reduce the cost of a LIBS 

system. Using four spectrometers covering the range 313.20-908.07 nm produces 

the same results as using six spectrometers. Alternative chemometric methods may 

be able to reduce the number of spectrometers further. In real waste streams samples 

have coatings on their surfaces, some in the form of labels, which will cause 

problems with classification. This would mean that the same item would need to 

have multiple points on the surface investigated by LIBS to avoid thick parts of the 

coatings. Cleaning shots would also need to be applied. Using LIBS would 

eliminate the need for roadside and manual sorting, increasing efficiency and 

minimising costs. It would also increase the reliability and quality of sorted 

materials. This work demonstrates the ability of LIBS as a one-shot sorting system 

for recycling waste streams and the viability of incorporating bioplastics in kerbside 

collection within New Zealand. This is the first time LIBS has been used to 

differentiate between bioplastics and plastics. 
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Process monitoring using LIBS 

The primary aim of this thesis was to develop a LIBS system that could be used on 

agricultural vehicles, or on a robotic platform. Appendix B discusses the work done 

on designing a robotic platform that a micro-LIBS unit could be mounted on for 

autonomous nutritional surveying of a field. Pasture was investigated and variations 

caused by moisture, and temperature differences, limited the accuracy of the 

calibrations. Non-aqueous inorganic samples of injection moulded titanium were 

then investigated to see if removing the complexities of the sample would generate 

improved results. With success in measuring non-aqueous inorganic material, the 

focus was turned to non-aqueous organic samples of bio-plastics. This chapter 

discusses the synthesis of this thesis, combining the works done in chapter 3 

through to chapter 8. It gives a summary of the studies and explains the rationale of 

progression from one study to the next. 

 

Chapter 3 investigated the viability of using LIBS in-field to measure micro and 

macro nutrients in fresh untreated pasture. Comparisons were made between PLS 

models created on spectra acquired in air and under an argon atmosphere and 

between PLS models created on spectra from fresh and dried pasture. The only pre-

processing on the spectra was dark current and background subtraction. The 

coefficient of determination (R2), root mean squared error of cross-validation 

(RMSECV), limits of detection (LOD), precision, and variables importance on PLS 

projections (VIP) were used as figures of merit. The effect of using argon on 

samples increased the performance of the figures of merit for most nutrient models, 

some only slightly. This could be due to the increased temperature in the plasma. 

Fresh pasture samples had higher RMSECV and lower R2 for all nutrients compared 

to dried samples.  

 

Comparing the LOD of fresh pasture and dried samples showed that the fresh 

samples were worse.  The change in precision between fresh and dried samples was 

mixed. The reduction of moisture in the samples causes an increased performance 

in the PLS modelling, which is seen in Table 3 of Chapter 3. This may be due to an 

increase in emission line intensity caused by the reduction in moisture in the 

samples [84-86]. It can also be seen in the increased emissions of nitrogen for the 
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fresh samples collected during the drought period (Fig. 4, Chapter 3). K, Mg, and 

Fe concentrations were also affected by the drought. The concentration of K 

decreased whereas the concentrations of Mg and Fe were higher than normal. The 

increase in Fe is in agreement with a study performed on detecting drought stress 

in gardenia and wheat [87]. Fe was found in drought-stressed samples but not in 

non-stressed samples and K was only found in stressed wheat. This shows that the 

effects of drought are plant specific. 

 

The extremely weak emission lines for P, Zn and B are a concern since P is only 

observed in dried samples under argon, Zn only appears under argon, and B lines 

were not consistently present. Accurate quantitative calibrations cannot be created 

on spectra that do not have the emission lines of the analysed nutrient. The accuracy 

would be reliant on the stoichiometric relationships within the matrix. This is also 

the case for S, which does not have any persistent emission lines in the wavelength 

range of the spectrometers used in this work. The weak emission lines for N, Mn, 

Mg, Cu, and Fe should produce accurate models if the lines have sufficient S/B. 

Variation between spectra acquired from the same sample was the reason why the 

models for these nutrients are not accurate. Averages were taken from multiple 

spectra to try to mitigate these variations. The problem with this is that the plasmas 

formed on each sample are dependent on laser-sample interaction which is affected 

by the level of moisture present. There is no way to know that the averaged value 

is representative of the actual concentration in the sample since the variance 

produced from averaging is quite large. N also has additional problems associated 

with atmospheric N contribution to the emissions. 

 

Ca and Mg share the problem of their low ionization potentials causing fluctuations 

between the intensities of both neutral and ionized emission lines. This is because 

of the different temperatures in each plasma. These temperatures cause the ratio of 

neutral to ionised emission in the plasma to change between plasmas created on the 

same sample. The concentrations in the plasma are split between the two species 

for both Ca and Mg. Figure 1 shows an example of this with two spectra on the 

same sample. 
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Figure 1. Ionisation effects causing changes in the Ca II and Ca I intensities on the 

same sample. 

The nutrients with successful calibration curves on pasture pellets, having an R2 

greater than 0.90, were K with 0.92, Na with 0.93, and Mn with 0.90. The RMSECV 

for K, Na, and Mn were 0.2 wt.%, 0.029 wt.%, and 0.0008 wt.% respectively. Most 

nutrients exhibit weak emissions which affect the accuracy of their PLS models. If 

the temperature was increased in the plasma this may increase the intensities of 

emission lines and the number of lines observed. The current setup will not allow 

for this. Weak lines, ionization effects, and sample moisture contribute to the 

variations in the spectra as do sample inhomogeneity, matrix effects, perturbations 

in experimental parameters, amount of ablated material, and the temperature 

dependence of the plasma [88]. The shot-to-shot variation is the limiting factor in 

creating accurate models. Pre-processing the spectra and using chemometric 

methods may increase the accuracy of calibration curves [89-91]. With higher 
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accuracies, implementation of LIBS systems on agricultural vehicles or robots 

could be realised infield. 

 

Chapter 4 considers using temperature correction to minimize variations in spectra 

used to determine sodium concentration in dried pasture. Boltzmann and Saha-

Boltzmann plots were used to determine the temperature of the plasmas. The 

sodium emission lines were corrected using the acquired temperatures and models 

were created for sodium. These models were compared to models created on the 

peak intensity and peak area of the sodium emission lines 588.995, 589.592, 

818.326 and 819.482 nm. The best R2 values using peak intensities with and 

without temperature correction using Boltzmann plots were 0.347 and 0.019. When 

using the integrated peak area, the best values were 0.308 and 0.023. Figure 2 in 

Chapter 5 shows an example of the Boltzmann plot used. Finding the temperature 

using Boltzmann plots was not very accurate since the emission lines used had 

similar upper-level electron energies (Ek). There needs to be a range of Ek to 

increase the accuracy of the fitted line. Using the Saha-Boltzmann plots ionised 

species can be used, increasing the range of Ek. The R2 values, using the Saha-

Boltzmann plots, ranged between 0.344-0.347. Figure 2 in Chapter 5 shows an 

example of the Saha-Boltzmann plot used. The low correlations may be due to 

inaccurate calculations of Stark width, electron density, and plasma temperature. 

Finding the contribution of instrument broadening will increase the accuracy of the 

Stark width calculation. The inaccuracies may also occur because the plasma may 

not be in local thermodynamic equilibrium (LTE). A condition called partial-LTE 

exists when parts of the plasma have different temperatures. LTE needs to be 

confirmed before calculating the temperature in the plasma. Matrix effects may also 

cause inaccuracies. 

 

Internal references of C, C2 swan band head, CN violet band head, O, and 

combinations of these were used on the Na I 818.326 nm line to investigate 

reducing variations. Using a combination of a carbon line added with the C2 swan 

band head, CN violet band head, and an oxygen line performed the best with an R2 

of 0.665. The reason the internal references did not produce good correlations was 

that of the large difference in Ek between the lines. Using PLS on the whole spectra 
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increased the accuracy of the sodium models with an R2 of 0.855. Performing PLS 

on particular lines with significant latent variable weights produced an R2 of 0.835.  

 

The ratio of Na/K is important in identifying salinity stress which is important to 

plant growth. Similar to using an internal reference, different ratios of Na and K 

lines were used to minimise the effects of between-plasma temperature variations 

and experimental variations. The best results were an R2 of 0.918 and an error in 

prediction of 0.0587 for the peak intensity ratio of Na I 818.326 nm/ 

K I 693.876 nm compared to the concentration ratio of Na/K. This ratio produced 

good correlations because the difference in Ek is small. The small change in Ek 

reduces the effect of temperature and the ratio itself mitigates other experimental 

parameter variations.  

 

Chapter 5 investigates using different chemometric methods to mitigate the shot-

to-shot variations and create quantitative calibrations on fresh pasture and dried 

pelletised pasture. The methods explored were Savitzky Golay filtering (SG), 

multiple linear regression (MLR), principal component regression (PCR), partial 

least-squares (PLS) regression, Gaussian process regression (GP), and artificial 

neural network (ANN). R2, RMSECV, and normalised root mean squared error of 

cross-validation (NRMSECV) were the figures of merit used. The NRMSECV was 

used so that the different nutrients models could be compared. It takes into 

consideration the range of concentrations used to build the models.  

 

Overall, using different chemometric methods only slightly increased the accuracy 

of the nutrient models. SG filtering was ineffective since there is minimal noise in 

the spectra. Introducing categorical data of the plot location and date also did not 

significantly increase the accuracy of the models. The algorithms that had better 

performances were PLS+GP with R2 of 0.93, 0.95, and 0.92 for K, Na, and Mn 

respectively, PCR+ANN with R2 of 0.94, 0.83, and 0.80 for Fe, Ca, and Mg 

respectively, and PLS+ANN with R2 of 0.77 for B (Table 2, Table 3, Fig 2, and 

Fig. 3 in Chapter 4). As in Chapter 3, we see that the removal of moisture increases 

the predictive ability of the models by 4-5 %. For dried samples, some nutrients 

models still need a higher increase in accuracy to be useful. 
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A temperature correction on the spectra needs to be made to reduce the shot-to-shot 

variation. This will be the best way to mitigate the moisture and temperature effects. 

To determine the temperature in the plasma Boltzmann plots and Saha-Boltzmann 

plots can be used. The temperature can then be used to correct the spectroscopic 

emissions. Using internal standards or ratios can mitigate the temperature effect if 

correct lines are chosen [89]. Lines for internal standards need to have similar 

upper-level electron energies to minimise temperature effects, have comparable 

ionization energies, have similar intensities, must not transition to a ground state to 

avoid self-absorption effects, must not have relatively high intensities because the 

population is over-estimated, and among other criteria they must have sufficient 

S/B [54, 92-95]. 

 

To further increase the accuracy of nutrient models for pasture, the shot-to-shot 

variations need to be minimized. These variations are caused by changes in LTSD 

[15, 96, 97], the amount of sample ablated [36], particle size [36, 98], the 

microheterogeneity in the pellets [36, 98], matrix effects [99], spectrometer gate 

delay [25, 100], integration time [101], different laser parameters such as 

wavelength [102, 103], pulse energy [96, 97, 100], and pulse duration [101]. Many 

experimental conditions are influenced by the choice of laser wavelength including 

material ablation and laser penetration depth [104]. Shorter wavelengths have been 

shown to be more effective at reducing plasma shielding and increasing sample 

ablation ([105] and the references therein). Studies have found that reducing the 

particle size in pellets increases the accuracy of models [36, 98], using a 

femtosecond laser lowers the continuum background producing accurate results for 

plant material [87], and increasing the fluence by lowering the wavelength of the 

LIBS laser also increases prediction [36]. Before LIBS can be realised infield, for 

precision agriculture, a method needs to be developed to produce an accurate 

quantitative analysis of fresh pasture with minimal variation. This may mean 

changing the experimental setup or using other post-processing techniques.  

 

With the limitations found in measuring agricultural samples, studies were 

performed to assess the effectiveness of LIBS on inorganic non-aqueous samples. 

Many studies using LIBS have been performed on metals and they have found good 

accuracies [71]. This could be because the metal samples have very few elements 
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in them which would reduce matrix effects, they have smoother surfaces increasing 

the consistency of ablated material, and there is no moisture in the samples.  

 

Chapter 6 uses LIBS to identify the contamination levels of carbon in injection 

moulded titanium. The elements in the binder used for injection moulding of 

titanium powders needs to be controlled so that the sintered composition is not 

changed too much. The residual amounts of carbon change the mechanical 

properties of the sintered titanium. To minimize the carbon levels, debinding 

removes as much of the binder as possible. An autofocus system, based on the 

triangulation method, was created to minimise the shot-to-shot variations caused by 

changes in the LTSD. The on-board LIBS-6 camera and a CW diode laser were 

used for implementation. The dynamic range of the autofocus system was limited 

by the LIBS-6 nozzle obstructing the laser spot on the sample from the laser diode.  

 

The LIBS measurements on the surface of the parts at different stages of the 

injection moulding process give a relative indication of how much carbon is present. 

The ratio of Ti II 282.806 nm to C I 247.856 nm was used which reduces the 

temperature variations. The traditional method of mass determination was more 

accurate for green and grey parts, but LIBS was able to detect residual carbon in 

brown and sintered parts.  

 

Chapter 7 investigates using LIBS for selective surface sintering of injection 

moulded titanium. Sintered titanium parts have high elemental levels of residual 

carbon near the external surface. Reducing the carbon will decrease porosity, 

increase density, and improve the mechanical properties of the injection moulded 

parts. Multiple LIBS shots were used on the same spot of the surface of solvent and 

thermally debound injection moulded titanium. The temperature from the LIBS 

process was sufficient to remove the carbon and sinter the titanium particles.  

 

Multiple lines were investigated to find a line ratio that would reduce the 

temperature variations. The ratio of Ti II 282.81 nm to C I 247.86 nm performed 

the best because of the small change in Ek. This ratio was used to determine when 

sintering was achieved. This ratio gives a relative indication of the amount of carbon 

on the surface of the part but can be calibrated to Energy-dispersive X-ray 
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Spectroscopy (EDS) to determine when sintering is complete. The resultant sintered 

spot was compared to traditional sintered titanium using EDS on the ablation craters. 

The LIBS sintered spot had a carbon concentration of 2.13 wt.% which is 

comparable to the traditionally sintered carbon concentration of 1.79 wt.% and 

confirms that LIBS can be used to selectively sinter the surface of the injection 

moulded titanium.  

 

A LIBS system, with the same autofocus system as in chapter 6, was used to prove 

that this process could be performed on a production line. Lines were sintered in 

debound injection moulded titanium parts at varying heights. The autofocus system 

reduces variations caused by LTSD. The accuracy of the autofocus system is 

determined by the displacement caused by a single step of the motor which was 

1.5 µm, not including hysteresis.   

 

With the success of using LIBS on inorganic non-aqueous samples, studies were 

performed to assess the effectiveness of LIBS on organic non-aqueous samples. 

The inorganic non-aqueous samples of titanium were only comprised of a few 

elements whereas organic non-aqueous samples will have multiple elements which 

will increase matrix effects and possibly increase variations. 

 

Chapter 8 uses LIBS to distinguish bio-plastics from regular plastics. This study 

was performed to determine whether bio-plastics could be incorporated into regular 

recycling streams. Using LIBS to automatically sort the recyclables would reduce 

the processing time in recycling factories. Identifying bio-plastics would also 

reduce the contamination that bio-plastics would produce if present in regular 

plastic recycling. Single shot LIBS was performed on glass, tin, aluminium, 

polylactic acid (PLA), Novatein thermoplastic protein (NTP), polyethylene 

terephthalate (PET), and high-density polyethylene (HDPE). Different spectral 

normalisations and two classification methods were investigated. These were peak 

and total intensity normalisations with k-nearest neighbour (k-NN) and soft 

independent modelling by class analogy on the principal components of principal 

component analysis (SIMCA).  
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An autofocus system was used to keep the LTSD consistent. The system consisted 

of two CW lasers directed on the ablation site from opposite sides of the LIBS 

nozzle and a CCD camera. Each laser coupled with the CCD camera resembles the 

triangulation method of autofocus. The reason there were two CW lasers is that one 

laser beam can be obstructed and the reflection would not be acquired by the CCD 

camera. Having two lasers at different angles reduced this effect.  

 

Single LIBS shots were used so that one-shot classification, regardless of variation, 

could be investigated. The normalisations did not increase the accuracy of the 

classification. This may be because of contaminants on the surfaces of samples, 

temperature fluctuations, or other difficulties. k-NN was more accurate than 

SIMCA at classifying the recyclables with 100 % discrimination between bio-

plastics and regular plastics and 0.89 % misclassifications for all recyclables. The 

success is because k-NN maximises the variation over all classes but SIMCA 

maximises the variation within each class.  

 

To realise LIBS in a recycling plant, the cost of the system needs to be reduced. 

This can be done by reducing the number of spectrometers required for 

classification. The LIBS-6 system used is comprised of six spectrometers. Using 

combinations of spectrometers 3 with 4, 3 with 5, 4 with 6, and 5 with 6 produces 

only four misclassifications, one more than using six spectrometers. This would 

give similar performance at a fraction of the cost of the whole unit. Also, surface 

contamination from labels, water, fingerprints, and residue is a major drawback that 

would need to be addressed before adopting LIBS for recycling.  
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Conclusion 

The aim of this thesis is that a LIBS system can provide detailed, real-time 

information on the nutritional status of pasture and can be used to tailor fertiliser 

application rates. This will provide savings to New Zealand farmers, and to the 

country as a whole. LIBS investigations of fresh and dried pasture were performed 

in this work. It was established that the difference in moisture between pasture 

samples hinders accurate prediction of macro and micro nutrients. Removing the 

moisture in the samples lead to an increase in accuracy of NRMSECV by 4-5 % on 

average. Moisture, among other factors, contributes to between-spectra variation 

caused by temperature variations which is difficult to overcome. Multiple 

chemometric methods and temperature corrections have been performed on the 

pasture spectra to mitigate these disadvantages.  

 

The work on pasture has found that emission lines from N, P, Mg, Fe, Cu, Zn, and 

B have weak lines which make it difficult to create a quantitative model. N also has 

atmospheric interferences. S lines did not appear in the spectral range investigated 

so the stoichiometric relation between elements is relied upon to create the model. 

With these disadvantages, success was achieved using PLS+GP (for K, Na, and 

Mn), PCR+ANN (for Ca, Mg, and Fe), MLR (for Zn), and line ratios (for Na/K).  

 

To increase the performance and accuracy of quantitative models on pasture, 

repeatable spectra are needed or alternative postprocessing schemes need to be 

investigated. This may mean that the experimental parameters and setup need to be 

changed. Once adequate models are created for fresh pasture a LIBS system can be 

mounted on an agricultural vehicle or robot for infield use. 

 

With the limitations found in measuring agricultural samples, studies were 

performed on inorganic non-aqueous samples of injection moulded titanium. LIBS 

was able to acutely detect residual binder for brown and sintered parts better than 

the traditional mass determination method. A new technique called selective surface 

sintering using LIBS was also developed for injection moulded titanium. The 

technique takes advantage of the residual heat, from multiple LIBS shots, to sinter 

the surface of the samples. At the same time, the spectra produced by LIBS was 
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used as feedback to monitor the amount of sintering achieved. The results were 

verified using EDS and SEM images. An autofocus method was developed, based 

on the triangulation method, to prove the viability of using this technique on metal 

parts with complex shapes. The autofocus system was verified by sintering injection 

moulded titanium with varying step heights. 

 

With the success of using LIBS on inorganic non-aqueous samples, studies were 

performed on organic non-aqueous samples of bio-plastics PLA and NTP. 

Discriminating HDPE and PET from PLA and NTP was 100 % successful using 

PCA and k-NN. This result proves that bio-plastics can be included in regular 

curbside collection within New Zealand if LIBS is used in sorting factories. Street 

sorting would be eliminated if LIBS was implemented and the reliability and quality 

of sorted materials would increase. To minimise the cost of such systems the 

number of spectrometers needed can be reduced. Problems may arise with 

misclassifications generated by surface coatings and contaminates. An autofocus 

system with two CW lasers, based on the triangulation method, was developed to 

minimise the obstruction problem inherent to the triangulation method. The 

autofocus system was validated, in conjunction with LIBS, on classifying 

recyclables of differing heights. 

 

The work presented in this thesis of quantitative models on fresh pasture, 

chemometric analyses on pasture, discussion on the leading factors contributing to 

poor models, and temperature correction and line ratios with regards to pasture are 

all original works. LIBS for detecting residual carbon in sintered injection moulded 

titanium, LIBS for selective surface sintering injection moulded titanium, and LIBS 

for distinguishing bio-plastics from regular plastics are also original works. The 

success of the work performed is evident by the papers and book chapter under peer 

review, the peer reviewed papers published in Precision Agriculture, Key 

Engineering Materials, and the Journal of Spectroscopy, and the peer reviewed 

paper published in the IEEE conference proceedings of the 6th International 

Conference on Automation, Robotics and Applications (ICARA). Success is also 

evident from the presentations in the Eleventh International Conference on Sensing 

Technology (ICST) 2017, Waikato Young Research Engineers Symposium 

(WYRES) 2017, IEEE Instrument & Measurement Society Workshop 2016, New 
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Zealand Institute of Physics Conference (NZIP) 2015, 6th IEEE International 

Conference on Automation, Robotics and Applications (ICARA), IEEE Instrument 

& Measurement Society Workshop 2014, and Electronics New Zealand Conference 

(ENZCon) 2014.  
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The following is comprehensive list of the plant material used in LIBS studies with a detailed description of experimental parameters in each. This covers the majority of literature and all studies performed on pasture. 

Sample Laser E 

(mJ) 

Shots Spot 

size 

(µm) 

LTSD 

(mm) 

I 

(GW cm-2) 

td tb Analysed lines 

λ (nm) 

LOD Analysis method Ref. 

Tomato leaves, spinach 

leaves, apple leaves, 

peach leaves Spanish 

moss and pine needles, 

dried and ground 

1064 nm 

5 ns 

1 Hz 

100 20 700, 

100 

- - 1 us 10 us Al I 308.215 

Ca I 428.301 

Cu I 324.754 

Fe I 404.582 

Mg I 277.983 

Mn I 403.076 

P I 213.618 

Zn I 213.856 

192±6 ppm 

- 

3.3±0.3 ppm 

227±21 ppm 

- 

32±3 ppm 

0.1±0.01% 

56±5 ppm 

Univariate [1] 

Starch powders and rice 

flour 

1064 nm 

7 ns 

10 Hz 

30 5x20 - 100 - - - Al I 396.153 

Cd II 226.502 

Cr I 425.435 

Cu I 324.754 

K I 766.49 

Mg II 279.553 

Mn II 257.61 

Pb I 405.782 

Rb I 780.023 

Sr II 421.552 

2 µg/g 

8 µg/g 

1 µg/g 

1 µg/g 

3 µg/g 

0.4 µg/g 

0.7 µg/g 

18 µg/g 

1 µg/g 

0.3 µg/g 

Univariate, Boltzmann 

plot 

[2] 

Wood 1064 nm 

5 ns 

10 Hz 

50-

70 

10-20 300-

500 

250 5.1-19.8 3 us 10 us Al 

As 

B 249.773 

C 247 

Cd 

Cr 

Cu 

Hg 

K 

Mg 

Na 

Pb 

Si 288.158 

Sn 

18, 3.3 ppm 

15, 2.7 ppm 

1.5, 0.3 ppm 

- 

1.6, 0.5 ppm 

<1 ppm 

1.8, 0.3 ppm 

19, 4.6 ppm 

3.5, 0.7 ppm 

<1 ppm 

<1 ppm 

8.4, 0.6 ppm 

5.3, 1 ppm 

8.2, 2.2 ppm 

Univariate, normalised 

with C I 247.857 

[3] 
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Sample Laser E 

(mJ) 

Shots Spot 

size 

(µm) 

LTSD 

(mm) 

I 

(GW cm-2) 

td tb Analysed lines 

λ (nm) 

LOD Analysis method Ref. 

Peach, apple, spinach, 

powdered 

1064 nm 

- 

- 

10-

30 

5-10 200 100 0.025 - - Mg 285.213 - Univariate [4] 

Wood 1064 nm 

8 ns 

2 Hz 

- 1, 5, 10, 

25 

- 200 - 17 us 5 ms Cr I 425.4 

Cr I 427.5 

Cr I 428.9 

- Depth profiling [5] 

Algae, fried powder 1064 nm 

5-7 ns 

10 Hz 

30 5 - 4-5 - - 2 s Sr II 421.55 39.4±3, 

1011±42 µg/g 

Univariate, normalised 

with Ca 

[6] 

Sunflower (leaves/stem) 355, 790 nm 

6 ns, 30 fs 

20 Hz 

- 200 30, 2 15, 10 - - 50 ns Ca+Ca2+ 391-398 - - [7] 

Pollen and fresh grass 

fragments 

1064 nm 

- 

5 Hz 

20-

30 

1 150 300 - 1 us 4 us Ca II 396.847 

Ca 422.673 

Ca 430.252 

Al 396.152 

Cr 396.618 

Cr 425.433 

Fe 388.628 

Fe 427.176 

Si 390.552 

- Intensity ratios [8] 

Pollen - 

10 ns 

- 

30 5 - - - 1.5 us 2 ms Mg II 279.55 

Mg II 280.27 

Mg II 285.21 

Mg II 385.04 

Ca II 500.14 

Ca I 616.21 

H I 656.29 

N I 744.23 

N I 746.83 

N I 821.63 

N I 868.03 

O I 777.19 

- PCA [9] 
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Sample Laser E 

(mJ) 

Shots Spot 

size 

(µm) 

LTSD 

(mm) 

I 

(GW cm-2) 

td tb Analysed lines 

λ (nm) 

LOD Analysis method Ref. 

Wood 1064 nm 

10 ns 

2 Hz 

- 10-15 - 200 - - 5 ms Ca, Cr - Peak-to-base ratio [10] 

Maize leaf and Red osier 

dogwood leaves 

795 nm 

160 fs 

10 Hz 

0.1 - 10-300 - - - - Fe - Two-dimensional maps [11] 

Sophora leaves 800 nm 

150 fs 

10 Hz 

5 5x3 - 30 - - - Ca - Classification [12] 

Sunflower (Helianthus 

annuus), leaves/stem 

532 nm 

5 ns 

- 

10 - 350 16 - 1 us 10 us K 

Mn 

Pb I 405.76 

- Normalized peak areas [13] 

Sunflower (Helianthus 

annuus), leaves/stem 

795 nm 

160 fs 

10 Hz 

0.1 - 100 100 - - - Pb 

Cd 

- Qualitative [14] 

Wood 532 nm 

- 

- 

45 10 - - - - 10 us C 247.856 - Univariate, PCA, PLS [15] 

Guava peel - 

- 

2 Hz 

175 100 - 300 - - - C II 247.88 

Na 589.89 

Na 891.12 

K 766.88 

H 656.77 

O 777.79 

O 845.10 

N 868.39 

Mg II 279.48 

Mg II 280.20 

- Line ratios [16] 

Wood, pelletized 

powered 

532 nm 

5 ns 

- 

- - - - - - - Cu 

Zn 

As 

Cr 

- PCA, PLS [17] 
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Sample Laser E 

(mJ) 

Shots Spot 

size 

(µm) 

LTSD 

(mm) 

I 

(GW cm-2) 

td tb Analysed lines 

λ (nm) 

LOD Analysis method Ref. 

Sunflower (Helianthus 

annuus), leaves/stem 

532 nm 

5 ns 

- 

10 - 250 16 - 1 us 10 us Ag I 328.07 

Cu I 324.75 

- Two-dimensional maps [18] 

Scented geranium 1064 nm 

8 ns 

- 

80 20 300 250 max 70 5 us 15 us Pb 405.78 54-2291 mg/kg Univariate [19] 

Potato, carrot, celery and 

aubergine 

266 nm 

- 

10 Hz 

10 5x1000 100 50 - 100 ns 5 us Mg 

Al 

Ca 

Ti 

Mn 

Fe 

- Normalized with C 

247.86 nm 

[20] 

Rice seed and milk 

powder 

10600 nm 

200 ns 

20 Hz 

1500 5x20 1 100 0.75 - 2 s Ca II 393.3 - Ratio [21] 

Sunflower (Helianthus 

annuus), leaves/stem 

532 nm 

5 ns 

- 

10 1 - 16 - 1 us 10 us Ag I 328.07 

Cu I 324.75 

- Normalized intensity [22] 

Bean leaves, bush 

branches and leaves, 

cabbage, soya flour, rice 

flour, apple leaves, 

peach leaves, wheat flour 

and spinach leaves, 

ground and pelletized 

1064 nm 

5 ns 

10 Hz 

360 8 1050 200 8.3 2 us 5 us K I 404.721 

P I 214.911 

Fe 

Ca II 315.901 

P I 214.911 

Mg I 277.993 

Ca II 315.901 

Ca I 422.677 

K I 404.721 

K I 404.420 

Mg I 280.224 

Mg I 277.993 

P I 214.911 

P I 255.329 

Various 

Various 

Various 

Various 

Various 

Various 

0.03 g/kg 

0.01 g/kg 

3.2 g/kg 

2.5 g/kg 

0.02 g/kg 

0.06 g/kg 

0.08 g/kg 

0.3 g/kg 

Boltzmann plot, LTSD, 

univariate 

[23] 
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Sample Laser E 

(mJ) 

Shots Spot 

size 

(µm) 

LTSD 

(mm) 

I 

(GW cm-2) 

td tb Analysed lines 

λ (nm) 

LOD Analysis method Ref. 

Prickle pears 1064 nm 

20 ns 

- 

300 - 1000 50 0.6 - - Na I 589.5 - Observation [24] 

Wood - 

10 ns 

10 Hz 

200 15x5 - - - - - Cr 425.4 

C 247.85 

- Univariate [25] 

Withania coagulans fruit, 

ground 

- 

- 

- 

- - - - - - - - - - [26] 

Sunflower (Helianthus 

annuus), leaves/stem 

532 nm 

5 ns 

- 

10 - - 30 - 1 us 10 us Pb I 283.31 

Mg I 277.98 

 

- Two-dimensional maps [27] 

Tsumura kackontou 

(herb medicine), paste 

10600 nm 

200 ns 

- 

1000

-

1500 

- 2 200 0.18 - - Cr I 425.4 

Pb I 405.8 

1 mg/kg 

5 mg/kg 

Ratio, univariate [28] 

Maize (Zea mays), 

sunflower (Helianthus 

annuus) and lettuce 

(Lactuca sativa) 

532 nm 

5 ns 

- 

 

10 - - 30 - 1 us 10 us Pb I 283.31 - Two-dimensional maps [29] 

Potato skin 266 nm 

5 ns 

10 Hz 

5-20 4x500 100 50 - Various Variou

s 

Hα 656.27 

Ca II 393.37 

C I 247.86 

Na I 588.75 

Mg I 285.21 

Si I 288.16 

Al I 308.22 

Sr II 407.77 

Fe I 383.04 

Ti 

- Boltzmann plots, Saha-

boltzmann plots, 

temporal evolution 

[30] 

Wheat grain 193 nm 

15 ns 

1 Hz 

35 1-100 - - - - - - - Depth profiling [31] 
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Sample Laser E 

(mJ) 

Shots Spot 

size 

(µm) 

LTSD 

(mm) 

I 

(GW cm-2) 

td tb Analysed lines 

λ (nm) 

LOD Analysis method Ref. 

Spinach leaves 532 nm 

12 ns 

10 Hz 

70 - - 400 - 1.1 9 us Al I 309.271 

B I 249.773 

Ca I 422.544 

Cu I 327.395 

Fe I :259.940 

Mg I 285.213 

Mn II 259.375 

P I 214.914 

Si I 251.611 

Zn I 213.861 

- ANOVA, BRANN [32] 

Wheat leaves, poppy 

leaves, barley leaves and 

rape leaves 

1064 nm 

12 ns 

- 

80-

150 

30 200 - -  1 us K 404.72 

P 213.61 

Mg 277.98 

Ca 428.94 

30-66 g/kg 

2.8-6.6 g/kg 

1-5.6 g/kg 

6-24 g/kg 

Univariate [33] 

Tangerine leaves and 

Rhododendron leaves 

1064 nm 

20 ns 

100 Hz 

1.1 - - 25 - - 100 ms Ca I 558.876 

Ca I 616.217 

Ca I 643.907 

Ca I 714.815 

Ca I 422.673 

Ca I 657.278 

Ca II 501.997 

Fe I 373.713 

Na I 588.995 

K I 766.490 

Mo I 317.035 

- Observations [34] 

Bitter Melon - 

- 

10 Hz 

40 - - 300 - - - K 

Mg 

Na 

Fe 

Ca 

Al 

- CF-LIBS [35] 
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Sample Laser E 

(mJ) 

Shots Spot 

size 

(µm) 

LTSD 

(mm) 

I 

(GW cm-2) 

td tb Analysed lines 

λ (nm) 

LOD Analysis method Ref. 

Bean leaves 1064 nm 

5 ns 

10 Hz 

200 10x8 - 165 - 2 us 5 us B I 249.773 

Cu I 324.754 

Cu I 327.396 

Fe II 275.573 

Fe II 259.940 

Mn II 257.610 

Mn II 294.920 

Zn II 206.200 

Zn I 213.865 

2.2, 1.4 mg/kg 

3, 2.5 mg/kg 

5, 4 mg/kg 

5.6, 4.6 mg/kg 

3.6, 2.8 mg/kg 

1.8, 1.1 mg/kg 

5.5, 4.2 mg/kg 

1.2, 1 mg/kg 

3.2, 2.9 mg/kg 

Univariate [36] 

Bermuda Grass and 

Musa paradisiaca 

- 

- 

1 Hz 

175 - - 300 - - - C III 229.6 

C 247.8 

Mg II 279.4 

Mg II 280.2 

N II 567.9 

Na II 589.4 

N I 593.9 

H 656.7 

N 744.5 

N 747.1 

O 777.8 

K 766.4 

K770.3 

Na 819.1 

N 868.4 

O 845.1 

- Ratios [37] 

Ficus bengalensis aerial 

roots 

- 

- 

- 

- - - - - - - Mg 

Ca 

- - [38] 

Holly leaves 1064, 266 nm 

10 ns 

10 Hz 

45 3000 - 100 - 500 ns 2 ms Spectra - Observations [39] 
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Sample Laser E 

(mJ) 

Shots Spot 

size 

(µm) 

LTSD 

(mm) 

I 

(GW cm-2) 

td tb Analysed lines 

λ (nm) 

LOD Analysis method Ref. 

Potato skin and flesh 1064 nm 

4 ns 

20 Hz 

10 50 120 150 - 1 us 5 us H 

C 

O 

N 

Mg 

Al 

Ca 

Fe 

Na 

Mn 

Ti 

Li 

Si 

K 

Cu 

10 % ppm 

9.10 % ppm 

79 % ppm 

0.30 % ppm 

1300 ppm 

- 

170 ppm 

20 ppm 

34 ppm 

- 

- 

- 

- 

15000 ppm 

30 ppm 

Plasma temperature 

calculations, quantitative 

calculations 

[40] 

Lettuce 532 nm 

5 ns 

- 

10 1 - 16 - 1 us 10 us Pb I 283.31 - 2D elemental map [41] 

Green herb, tomato 

leaves and coffee beans 

1064 nm 

5 ns 

- 

- - - - - - - - - PCA [42] 

Withania coagulans fruit - 

- 

- 

- - - 300 - - - Mg 

Na 

K 

Zn 

Ca 

N 

- Observations [43] 

Wheat grain 532, 193 nm 

5, 15 ns 

20, 1 Hz 

80, - 10 120, - - - 500 ns 2 ms Ca II 396.85 

Mg II 279.55 

- Normalised to Swan 

band, Moving-Window 

Two-Dimensional 

Correlation, PLS-DA 

[44] 
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Sample Laser E 

(mJ) 

Shots Spot 

size 

(µm) 

LTSD 

(mm) 

I 

(GW cm-2) 

td tb Analysed lines 

λ (nm) 

LOD Analysis method Ref. 

Tall fescue and apple 

leaf, ground and 

pelletised 

532 nm 

- 

- 

23 10 - - - 0.5 us 10 us Cd 276.47 

 

 

6 µg/kg One-way ANOVA, 

univariate 

[45] 

Auatic plant, aquatic 

moss, bush branches and 

leaves, cabbage, soya 

flour, rice flour, wheat 

flour, spinach leaves, 

brachiaria, banana leaves 

coffee leaves, maize 

leaves, mango leaves, 

pepper leaves, soya 

leaves, olive leaves, 

apple leaves, guava 

leaves, grass and 

jackfruit leaves 

532 nm 

12 ns 

10 Hz 

71 30 600 - 2 9 us 1.1 us B 249.773 

Cu 327.395 

Fe 275.578 

Mn 257.610 

Zn 206.200 

5, 3 mg/kg 

10, 5 mg/kg 

7, 7 mg/kg 

9, 4 mg/kg 

4, 12 mg/kg 

Univariate, PLS [46] 

Emblica officinalis seeds - 

- 

2 Hz 

175 100 - 300 - - - O 844.62 

H 656.27 

N 746.83 

N 868.02 

O 777.41 

Cl 822.17 

Na 819.47 

C 247.8 

Mg II 279.553 

Mg II 280.271 

Ca II 393.366 

Ca II 396.847 

Ca 422.673 

- Line ratios [47] 

Bermuda grass 532 nm 

4 ns 

- 

10 - - - - - - Si 288.1 - Normalised intensity [48] 
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Sample Laser E 

(mJ) 

Shots Spot 

size 

(µm) 

LTSD 

(mm) 

I 

(GW cm-2) 

td tb Analysed lines 

λ (nm) 

LOD Analysis method Ref. 

Mustard grass 1064 nm 

- 

10 Hz 

300 - - - - - - Pb 217 

Pb 220 

- Comparison of resonant 

lines with trace elements 

[49] 

Sugar cane leaves, 

ground and pelletised 

1064 nm 

5 ns 

10 Hz 

110 30x25 - 175 - 2 us 4.5 us P I 214.914 

K I 404.414 

Ca I 315.895 

Ca I 422.673 

Mg I 277.983, II 257.611 

Fe II 259.940 

Zn I 213.861, II 206.200 

B I 249.773 

0.03, 0.02 g/kg 

0.21, 0.35 g/kg 

0.08, 0.08 g/kg 

0.12, 0.03 g/kg 

6.6, 0.5 mg/kg 

9.5, 1.3 mg/kg 

1.2, 1.9 mg/kg 

0.8, 0.5 mg/kg 

Univariate, PLS, 

BRANN 

[50] 

Cotton (unprocessed), 

ground and pelletised 

1064 nm 

5 ns 

0.67 Hz 

- 5x90 125 - 55 1.3 us 4.5 us Al I 396.1 

Ba II 493.4 

Ca II 315.8 

Cr I 428.9 

Cu I 327.4 

Fe I 748.4 

Mg II 279.5 

Mg II 280.2 

Sr II 421.5 

12 ppm 

8 ppm 

51 ppm 

>12 ppm 

>19 ppm 

2 ppm 

2 ppm 

2 ppm 

0.9 ppm 

PCA, LDA [51] 

Holly leaves 1064, 266 nm 

10 ns 

- 

10-

80 

- - 100 - - - Mn 279.82 

Mg 280.28 

Si 288.19 

Al 309.31 

Ti 334.92 

Fe 372.03 

Ca 422.63 

- Observations [52] 

Capsicum leaves 532 nm 

5 ns 

- 

10 - 200 - - 1 us 10 us Pb I 405.78 

Mn I 403.07 

Mn I 403.31 

K I 404.41 

K I 404.72 

- 2D elemental maps [53] 
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Sample Laser E 

(mJ) 

Shots Spot 

size 

(µm) 

LTSD 

(mm) 

I 

(GW cm-2) 

td tb Analysed lines 

λ (nm) 

LOD Analysis method Ref. 

Folium lycii 1064 nm 

8 ns 

- 

- - 150 300 10 800 ns 2 ms Ca I 335.02 

Ca I 336.19 

Ca I 422.67 

Ca I 428.30 

Ca I 428.94 

Ca I 429.90 

Ca I 430.77 

Ca I 431.87 

Ca II 373.69 

Ca II 370.60 

Ca II 393.37 

Al 

Si 

Mg 

Ti 

Na 

K 

Li 

- Plasma temperature 

calculation, ratios 

[54] 

Orange leaves 1064 nm 

10ns 

10 Hz 

200 20x100 - 200 - 1.28 us - N 

P 

Ca 

Mg 

S 

Fe 

Cu 

Mn 

Zn 

Cl 

- Observations [55] 
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Sample Laser E 

(mJ) 

Shots Spot 

size 

(µm) 

LTSD 

(mm) 

I 

(GW cm-2) 

td tb Analysed lines 

λ (nm) 

LOD Analysis method Ref. 

Citrus leaves, dried 1064 nm 

- 

10 Hz 

50 10x1 - - - 48.5 us - C I 193.027 

C I 247.856 

C II 426.726 

Fe I 229.817 

Fe I 251.428 

Fe I 399.739 

Mn I 279.482 

Mn I 279.827 

Mn II 270.845 

Mn II 344.199 

H I 656.279 

S I 744.335 

N I 746.831 

N II 567.602 

N I 818.802 

K I 766.490 

K I 769.896 

O I 777.417 

O I 844.636 

O II 868.609 

O II 328.747 

Zn I 328.233 

Ni II 334.924 

Ca I 863.395 

Ca II 393.366 

Ca II 396.847 

Cl II 478.132 

Mg I 516.732 

Mg I 517.268 

Mg I 552.840 

Mg I 821.303 

Na I 588.995 

Na I 589.592 

- PCA, SIMCA [56] 
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Sample Laser E 

(mJ) 

Shots Spot 

size 

(µm) 

LTSD 

(mm) 

I 

(GW cm-2) 

td tb Analysed lines 

λ (nm) 

LOD Analysis method Ref. 

Trichosanthes dioica 

fruit 

532 nm 

3-4 ns 

2 Hz 

175 100 - 300 - - - Mg 285.2 

Mg II 279.5 

Mg II 280.2 

Fe II 234.3 

Fe II 238.2 

Fe II 239.5 

Fe II 240.4 

Fe II 249.3 

Fe II 258.5 

Fe II 259.8 

Fe II 260.7 

Fe II 261.1 

Fe II 273.9 

Fe II 274.9 

Fe II 275.5 

K 766.4 

K769.9 

Ca II 315.8 

Ca II 317.9 

Ca II 393.3 

Ca II 396.8 

Ca II 422.6 

C 247.8 

C III 229.62 

Zn 202.5 

Zn 206.2 

O 777.2 

O 844.6 

H 656.2 

Na 818.3 

Na 589.5 

N 744.2 

N 746.8 

N 868.3 

- One-way ANOVA, 

ratios 

[57] 
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Sample Laser E 

(mJ) 

Shots Spot 

size 

(µm) 

LTSD 

(mm) 

I 

(GW cm-2) 

td tb Analysed lines 

λ (nm) 

LOD Analysis method Ref. 

Coffee 1064 nm 

8 ns 

10 Hz 

50 20 - - - - - Spectra - Decision tree, Rotation 

Based Method, random 

subspace method 

[58] 

Potato skin 1064 nm 

5 ns 

- 

10 20x20 100 150 - 1 us 1 us Mg 

Al 

Ca 

Fe 

Na 

Mn 

Ti 

Li 

Si 

K 

Cu 

Sr 

Ba 

50, 20 ppm 

10, 5 ppm 

2, 1 ppm 

100, 50 ppm 

2, 1 ppm 

7, 3 ppm 

9, 4 ppm 

0.05, 0.02 ppm 

5, 2 ppm 

20, 10 ppm 

2, 1 ppm 

3, 1 ppm 

3, 1 ppm 

Plasma temperature 

calculations, compare 

spectra with plasma 

model 

[59] 

Sugar cane, orange tree 

leaves and soy leaves, 

ground and pelletised 

1064 nm 

5 ns 

10 Hz 

110 30x25 - 175 - 2 us 4.5 us B 

Mn 

P 

Mg 

Cu 

Zn 

Fe 

Ca 

K 

- STD [60] 

Scented geranium, 

ground and pelletised 

1064 nm 

12 ns 

1 Hz 

- 5x5 - 95 - 2 us 2 us Pb 405.78 - Ratio [61] 

Tsumura kackontou 10600 nm 

200 ns 

- 

1500 - - 200 0.18 10 us 100 us Mg I 333.6 

Zn 334.5 

- Ratio [62] 



 

173 

 

Sample Laser E 

(mJ) 

Shots Spot 

size 

(µm) 

LTSD 

(mm) 

I 

(GW cm-2) 

td tb Analysed lines 

λ (nm) 

LOD Analysis method Ref. 

Powdered rice, starch 

and seaweed 

10600 nm 

200 ns 

10 Hz 

1500 - - 200 - 10 us 100 us Cr 

N II 399.5 

Ca II 393 

Cu I 521.8 

Cu I 510.5 

Cu I 324.7 

Cu I 327.4 

0.55 mg/kg 

- 

- 

- 

- 

0.22 mg/kg 

0.22 mg/kg 

Ratio [63] 

Orange peel, fresh and 

ground and pelletised 

1064 nm 

8 ns 

10 Hz 

200 30x20 - 200 - 1.28 us 2 ms Na I 588.866 

Na I 589.449 

Ca I 616.795 

Ca I 643.799 

K I 766.441 

K I 769.860 

- Relative intensity [64] 

Poplar tree leaves, dried 800 nm 

100 fs 

10 Hz 

25 - - 35 - - - Fe 

Ca 

N 

P 

- CF-LIBS [65] 

Bran tissues and wheat 

grain 

193 nm 

15 ns 

1 Hz 

- - - - - - 2 ms Ca I 422.67 

Ca II 396.85 

Mg I 285.22 

Mg II 279.55 

- Ratio, ANOVA, Duncan 

mean test 

[66] 

Navel Oranges 1064 nm 

8 ns 

10 Hz 

200 10 - 200 - 1.28 us 2 ms Cu 939.0176 

Ca 926.5298 

Fe 656.2375 

Na 588.995 

- Line intensities [67] 

Citrus leaf 355, 1064 nm 

5 ns 

10 Hz 

5, 

110 

5x20 - 70, 100 - 1 us 50 us Ca II 393.3, 396.8 10 mg/kg Ratios [68] 

Sugar cane (Saccharum 

offcinarum) 

532 nm 

4 ns 

10 Hz 

10 5 50 150 1000 - - Si 288.1 - Plasma temperature 

calculation, normalised 

intensity, PCA 

[69] 
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Sample Laser E 

(mJ) 

Shots Spot 

size 

(µm) 

LTSD 

(mm) 

I 

(GW cm-2) 

td tb Analysed lines 

λ (nm) 

LOD Analysis method Ref. 

Sugar cane and Boldo 

leaves, ground and 

pelletised 

1064 nm 

5 ns 

10 Hz 

365 30x20 180, 

450, 

600, 

750, 

1050 

200 - 2 us 5 us Mg I 277.983 

Mg II 279.553 

Mn II 257.610 

P I 213.618 

Mn II 294.920 

Zn II 206.200 

Cu I 324.755 

Fe II 261.187 

Fe II 259.940 

Ca II 393.366 

B I 249.773 

Al I 309.271 

Cd II 214.441 

Pb II 220.353 

K I 404.414 

- 

0.01 mg/kg 

0.3 mg/kg 

1 mg/kg 

- 

0.2 mg/kg 

0.4 mg/kg 

- 

0.4 mg/kg 

0.1 mg/kg 

0.5 mg/kg 

3.9 mg/kg 

0.2 mg/kg 

0.4 mg/kg 

2 g/kg 

Univariate [70] 

Spinach leaf powder and 

unpolished rice flour, 

pelletised 

1064 nm 

7 ns 

10 Hz 

80-

140 

50 - 90 - - - Mg II 279.6 

Ca I 643.9 

Na I 819.5 

K I 766.5 

29.63 mg/kg 

102.65 mg/kg 

36.36 mg/kg 

44.46 mg/kg 

PLS-DA, univariate [71] 

Orange tree leaves 1064 nm 

8 ns 

10 Hz 

- - - 200 - 1.28 us 2 ms Fe 422.743 

K 234.212 

Al 237.218 

Mg 263.008 

Na 588.977 

Ca 643.895 

Mn 870.169 

- Ratio [72] 

Sugar cane leaves, 

ground and pelletised 

1064 nm 

5 ns 

10 Hz 

110 25 - 175 - 2 us 5 us Mg I 277.669 

Mn II 257.610 

Ca 

K 

P 

Cu 

Zn 

0.01 g kg-1 

0.8 mg kg-1 

0.01 g kg-1 

1.4 g kg-1 

0.03 g kg-1 

0.6 mg kg-1 

1.0 mg kg1 

Univariate [73] 
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Sample Laser E 

(mJ) 

Shots Spot 

size 

(µm) 

LTSD 

(mm) 

I 

(GW cm-2) 

td tb Analysed lines 

λ (nm) 

LOD Analysis method Ref. 

Psoralea corylifolia 

seeds, solution 

- 

- 

2 Hz 

175 100 - 300 - - - Mg 285.213 

Mg 279.078 

Mg 279.553 

Mg 279.8 

Mg 280.271 

C 247.856 

C 229.689 

Ca 393.366 

Ca 396.847 

Ca 422.673 

Si 250.69 

Si 251.611 

Si 251.92 

Si 252.411 

Si 252.851 

Si 288.158 

Zn 434.97 

Zn 445.1 

H 656.27 

N 746.83 

N 868.02 

K 766.49 

K 769.89 

O 777.41 

O 844.62 

Cl 822.17 

Na 819.47 

- Ratios [74] 

Sugar cane 1064 nm 

5 ns 

10 Hz 

220 25 750 200 - 2 us 4.5 us Si I 212.412 - Univariate [75] 

Gannan navel orange 

skin 

1064 nm 

8 ns 

0.1-10 Hz 

110 15 - 100 - 2 us - Cr I 425.43 - Univariate using 

intensity 

[76] 
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Sample Laser E 

(mJ) 

Shots Spot 

size 

(µm) 

LTSD 

(mm) 

I 

(GW cm-2) 

td tb Analysed lines 

λ (nm) 

LOD Analysis method Ref. 

Psoralea corylifolia seed 
extract dissolved in 

distilled water 

- 

- 

2 Hz 

175 100 - 300 - - - Mg 285.213 

Mg 279.078 

Mg 279.553 

Mg 280.271 

C 247.856 

C 229.689 

Ca 393.366 

Ca 396.847 

Ca 422.673 

Si 250.69 

Si 251.611 

Si 251.92 

Si 252.411 

Si 252.851 

Si 288.158 

Zn 434.97 

Zn 445.1 

H 656.27 

N 746.83 

N 868.02 

K 766.49 

K 769.89 

O 777.41 

O 844.62 

Cl 822.17 

Na 819.47 

- Intensity ratios [77] 

Turmeric 532 nm 

4 ns 

10 Hz 

18 10 - 300 - - - C 247.8 

Mg 279.6 

Ca 422.5 

Pb 220.3 

Cr 357.8 

Si 288.2 

- PCA [78] 
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Sample Laser E 

(mJ) 

Shots Spot 

size 

(µm) 

LTSD 

(mm) 

I 

(GW cm-2) 

td tb Analysed lines 

λ (nm) 

LOD Analysis method Ref. 

Algae 1064 nm 

7 ns 

2 Hz 

100 - - 100 - 6 us 0.6 us Mg II 279.55 

Mg I 324.75 

Mg I 327.39 

Mg I 465.11 

Mg I 510.55 

Mg I 515.32 

Mg I 521.82 

Mg I 578.21 

- Plasma temperature 

calculation, ratio, 

univariate 

[79] 

Tomato leaves, ground 

and pelletized 

1064 nm 

6 ns 

20 Hz 

100 200 - 100 - 2 us 5 us Zn 213.86 

Pb 405.78 

Cr 425.43 

Cd 228.8 

As 234.98 

Hg 253.65 

2.8 ppm 

1.3 ppm 

0.5 ppm 

1.6 ppm 

20 ppm 

Qualitative [80] 

Boldo leaves (Peumus 

boldus Molina), ground, 

pelletized 

1064 nm 

5 ns 

10 Hz 

110 

and 

220 

20 per 

spot 

750 175 5 and 10 2 us 5 us- Ca I 442.544 

K I 404.414 

P I 213.618 

Mg I 277.983 

B I 249.773 

- Measured peak area as 

particle size changed 

[81] 

Wheat flour, pellets 1064 nm 

5 ns 

- 

- 30x10 750 - 4-10 1-3 us 1-10 us Ca II 315.887 

Ca II 393.366 

P I 213.618 

Mg I 285.213 

Mg II 279.553 

K I 404.414 

Fe II 259.940 

Mn II 257.610 

Cu I 324.755 

Zn II 202.548 

17 mgkg-1 

1 mgkg-1 

0.04 mgkg-1 

10 mgkg-1 

0.2 mgkg-1 

1.2 mgkg-1 

0.7 mgkg-1 

0.5 mgkg-1 

0.5 mgkg-1 

1 mgkg-1 

Univariate using peak 

area 

[82] 

White chickpea, ground 

and pelletized 

1064 nm 

- 

8 Hz 

40 3x100 - 100 - 650 ns 1.05 

ms 

Ti 390.11 33.9 ppm 

(Univariate) 

60.9 ppm (PLS) 

Univariate and PLS [83] 
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Sample Laser E 

(mJ) 

Shots Spot 

size 

(µm) 

LTSD 

(mm) 

I 

(GW cm-2) 

td tb Analysed lines 

λ (nm) 

LOD Analysis method Ref. 

Bitter gourd (Momordica 

charantia L.), ground 

1064 nm 

- 

- 

200 - - - - - - Fe 393.33475 

Ca 422.63925 

Ca 558.92704 

Ca 616.21483 

Ca 643.92843 

Mg 518.35337 

Na 588.96954 

- Reported intensities 

being higher with higher 

elemental 

concentrations. 

[84] 

Wheat seedlings 

(Triticum aestivum L.) 

532 nm 

4 ns 

4 Hz 

10 10 - 150 1000 - - Si 532 

Ca II 315.8 

Ca II 317.9 

Cr 

- Emission line intensity 

equation. Optically thin 

plasma criteria. 

[85] 

Sugar cane leaves, dried 1064 nm 

5 ns 

10 Hz 

- 100x5 750 - - 2 us 5 us P I 213.618 

K I 404.414 

Ca II 315.887 

Mg I 277.983 

Fe II 259.940 

Cu I 324.754 

Mn II 259.373 

Zn 

B I 249.772 

Si I 212.412 

- Elemental mapping. 

EDXRF vs LIBS. 

[86] 

Perennial ryegrass 

(Lolium perenne) and 

white clover (Trifolium 

repens), ground and 

pelletized 

1064 nm 

- 

- 

200 8 shots 

on new 

site after 

1 

cleaning 

shot 

- - - 1 us - Na 819.4 

K 696.4 

Mg 882.4 

Ca 212.3 

Mn 257.6 

Fe 248.5 

Zn 213.8 

B 249.7 

P 214.9 

Cu 324.7 

S 921.3 

- PLS [87] 



 

179 

 

Sample Laser E 

(mJ) 

Shots Spot 

size 

(µm) 

LTSD 

(mm) 

I 

(GW cm-2) 

td tb Analysed lines 

λ (nm) 

LOD Analysis method Ref. 

Wheat seedlings 

(Triticum aestivum L.) 

532 nm 

4 ns 

4 Hz 

10 - - 150 - - - Si  

Pb 

- Compared spectra [88] 

Ligusticum wallichii, 

powdered and pelletized 

1064 nm 

5.82 ns 

20 Hz 

26.8 20 - - - 1.5 us 20 us Pb I 405.8 

Cu I 324.46 

15.7 µg g−1 

6.3 µg g−1 

Different pressures, 

investigation of delay 

times and energy, MLR. 

[89] 

Duckweed (Lemna 

minor), dried 

266 nm 

5 ns 

1064 nm 

5 ns 

10 

 

100 

- - 80.5 - 1000 ns 

(delay) 

500 ns 

(interpulse 

delay) 

10 us Cd I 508.58 - Two-dimensional maps [90] 

Broad bean (Vicia faba) 

roots, cross sections 

266 nm 

1 Hz 

1064 nm 

1 Hz 

5 

 

100 

- - 80.5 - 1 us 

(delay) 

500 ns 

(interpulse 

delay) 

10 us Cu I 324.754 

Ag I 328.068 

4 pg 

18 pg 

Spatial distribution 

mapping 

[91] 

Coffee beans, ground 

and pelletized 

1064 nm 

8 ns 

- 

50 200 - - 1000 11 us 2.1 ms C I 193.0  

CN 0.0 387.0 

CN 1.1 388.5 

C2 0.0 516.6 

H 656.2 

N I 742.3 

N I 744.2 

N I 746.8 

O I 777.4 

- ANOVA and PCA [92] 

Soybean leaves, dried, 

ground, and pelletised 

532 nm 

4 ns 

- 

1064 nm 

6 ns 

- 

1, 4, 

8, 16 

and 

32 

10   - 1 us - C I 247.856 

Mg II 280.27 

Mg I 285.213 

Si 288.158 

Mg I 285.21 

Mg II 280.27 

Ca II 315.887 

Ca II 393.366 

- Individual lines and 

ratios 

[95] 
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Sample Laser E 

(mJ) 

Shots Spot 

size 

(µm) 

LTSD 

(mm) 

I 

(GW cm-2) 

td tb Analysed lines 

λ (nm) 

LOD Analysis method Ref. 

Rice Leaves (Oryza 

sativa L.), fresh and 

dried 

532 nm 

8 ns 

1 Hz 

60 25 - - - 4 us 20 us CN 388.29 

Cr 425.44 

Cr 427.48 

Cr 425.44 

Cr 427.48 

Cr 425.44 

Cr 427.48 

Cr 425.44 

Cr 427.48 

- 

4.4665 mg/kg 

5.2346 mg/kg 

4.1505 mg/kg 

4.8613 mg/kg 

4.7078 mg/kg 

5.5340 mg/kg 

4.3856 mg/kg 

5.1602 mg/kg 

Univariate and PLS 

calibration, moisture 

decreases intensities, 

plasma parameter 

analysis. 

[93] 

Citrus leaves, fresh 1064 nm 

8 ns 

10 Hz 

50 - - 7 - 2.5 us 2 ms Mg II 279.55 

Mg II 280.27 

Mg I 285.21 

Si I 288.16 

Al I 308.22 

Na II 309.27 

Ca II 315.89 

Ca II 317.93 

Cu I 324.75 

Cu I 327.40 

Ti II 334.94 

Ca II 370.60 

Fe I 373.71 

Ca II 393.37 

Ca II 396.85 

Ca I 422.63 

Ca I 445.48 

Ca I 526.56 

Ca I 527.03 

Ca I 558.88 

Ca I 559.45 

Ca I 559.85 

Ca I 610.27 

Ca I 612.22 

- Student’s t-test, one-way 

ANOVA, PCA, PLS 

with classification 

via regression 

[94] 
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Sample Laser E 

(mJ) 

Shots Spot 

size 

(µm) 

LTSD 

(mm) 

I 

(GW cm-2) 

td tb Analysed lines 

λ (nm) 

LOD Analysis method Ref. 

         (cont.) 

Ca I 646.26 

Ca I 732.61 

K I 766.49 

K I 769.90 

Ca I 854.21 

   

Cabbage leaf, pellets 532 nm 

4 ns 

4 Hz 

20 Various - - - 1.5 us - - - PLSDA and PLSR [96] 

Dallisgrass (Paspalum 

dilatatum); wheat 

(Triticum aestivum), 

soybean (Glycine max); 

bell pepper (Capsicum 

annuum), dried leaves 

800 nm 

35 fs 

1 kHz 

0.3 10x100 100 - 3.8x10-6 - 0.5 s Ca I 422.874 

Ca I 518.542 

Ca I 559.849 

- Plasma temperature 

calculation 

[97] 

Chinese cabbage, fresh 

leaves 

1064 nm 

8 ns 

2 Hz 

120 3 

cleaning 

50 

- - - 2 us 2 ms Cd II 214.43 

Cd II 226.50 

Cd I 228.80 

- Univariate, Savitzky–

Golay smoothing, 

standard normal variate, 

and PLSR 

[98] 

Saffron (C. sativus L.), 
safflower (Carthamus 

tinctorius L.), marigold 

flower (Calendula 

officinalis L.), turmeric 

(Curcuma longa L.), 

ground and pelletised 

1064 nm 

- 

4 Hz 

38 10x15 - - - 300 ns 20 us - - PCA and PLS [99] 

Tea plants (Sambucus 

nigra L., Hypericum 

perforatum L., Crataegus 

oxyacantha auct. non L., 

Rubus idaeus L. and 

Betula species L.), 

pellets 

1064 nm 

8 ns 

10 Hz 

70 - 100  -- 1 us 1.05 

ms 

Ca I 527.027 

K I 693.878 

Mg I 517.268 

C I 193.090 

C I 247.856 

- PCA and PLS [100] 
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Sample Laser E 

(mJ) 

Shots Spot 

size 

(µm) 

LTSD 

(mm) 

I 

(GW cm-2) 

td tb Analysed lines 

λ (nm) 

LOD Analysis method Ref. 

Seed kernels of pumpkin 

(Cucurbita maxima), ash 

gourd (Benincasa 

hispida), watermelon 

(Citrullus lanatus) and 

muskmelon (Cucumis 

melo), dried, ground, and 

pelletised 

532 nm 

4 ns 

2 Hz 

40 20 - - - 1 us 5 us Mg II 279.5 

Ca II 393.3 

Na I 588.9 

K I 766.4 

0.32-1.20 mg/100 g 

1.81-3.58 mg/100 g 

3.68 -4.79 mg/100 g 

2.11-3.79 mg/100 g 

Univariate, PCA [101] 

Wheat and gardenia, 

fresh leaves 

800 nm 

35 fs 

1 kHz 

0.3 20 - - - - - Fe I 383.92556 

Ca II 393.366 

Ca II 396.847 

K I 404.7208 

Ca I 422.673 

O II 430.8999 

Na II 445.5224 

Ca I 518.885 

Ca I 559.849 

Na I 588.995 

- Plasma temperature 

calculation,  

[102] 

Cauliflower and 

broccoli, ground 

532 nm 

7 ns 

2 Hz 

96 10x10 - - - 1 us 5 us Ca I 422.67 

Ca I 558.87 

Ca I 643.90 

Ca I 646.25 

Ca II 315.88 

Ca II 370.60 

Ca II 393.36 

Ca II 396.84 

Ca II 396.84 

Mg II 279.55 

K I 769.89 

Na I 588.99 

Ca II 396.84 

Mg II 279.55 

- Plasma temperature 

calculation, PCA, ratios 

[103] 
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Sample Laser E 

(mJ) 

Shots Spot 

size 

(µm) 

LTSD 

(mm) 

I 

(GW cm-2) 

td tb Analysed lines 

λ (nm) 

LOD Analysis method Ref. 

Tobacco leaves, fresh 

and dried pellets 

532 nm 

8 ns 

1 Hz 

60 - - - - 1.5 us 10 us C I 247.86 

Si I 251.61 

Si I 288.16 

Fe I 293.69 

Fe I 385.99 

Fe II 253.54 

Mg I 277.98 

Mg I 285.21 

Mg I 382.94 

Mg I 383.23 

Mg I 383.83 

Mg I 389.19 

Mg I 516.73 

Mg I 517.27 

Mg I 518.36 

Mg II 279.08 

Mg II 279.55 

Mg II 279.80 

Mg II 280.27 

Ca I 422.67 

Ca I 428.30 

Ca I 428.94 

Ca I 429.90 

Ca I 430.25 

Ca I 430.77 

Ca I 431.87 

Ca I 442.54 

Ca I 443.57 

Ca I 457.86 

Ca I 458.15 

Ca I 458.60 

Ca I 487.81 

Ca I 504.16 

Ca I 518.88 

- Plasma temperature 

calculation, PCA, 

PLSDA, SVM 

[104] 
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Sample Laser E 

(mJ) 

Shots Spot 

size 

(µm) 

LTSD 

(mm) 

I 

(GW cm-2) 

td tb Analysed lines 

λ (nm) 

LOD Analysis method Ref. 

         (cont.) 

Ca I 526.22 

Ca I 526.56 

Ca I 527.03 

Ca I 558.20 

Ca I 558.87 

Ca I 559.45 

Ca I 559.85 

Ca I 560.13 

Ca I 585.75 

Ca I 610.27 

Ca I 612.22 

Ca I 616.22 

Ca I 616.64 

Ca I 643.91 

Ca I 644.98 

Ca I 646.26 

Ca I 647.17 

Ca I 649.38 

Ca I 671.77 

Ca I 714.82 

Ca I 720.22 

Ca I 854.21 

Ca II 315.89 

Ca II 317.93 

Ca II 370.60 

Ca II 373.69 

Ca II 393.37 

Ca II 396.85 

Ca II 849.80 

Ca II 866.21 

Mn II 292.87 

Sc II 364.38 

CN 387.12 
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Sample Laser E 

(mJ) 

Shots Spot 

size 

(µm) 

LTSD 

(mm) 

I 

(GW cm-2) 

td tb Analysed lines 

λ (nm) 

LOD Analysis method Ref. 

         (cont.) 

CN 388.29 

Al I 394.40 

Al I 396.15 

K I 404.41 

K I 404.72 

K I 693.88 

K I 766.49 

K I 769.90 

Sr I 460.73 

Sr II 407.77 

4 Sr II 21.55 

Na I 589.00 

Na I 589.59 

Ba I 649.88 

H α 656.28 

Li I 670.79 

N I 742.36 

N I 744.23 

N I 746.83 

N I 818.49 

N I 821.63 

N I 824.39 

N I 862.92 

N I 868.03  

O I 777.42 

O I 844.68 

   

Tea leaves, dried and 

pelletised 

1064 nm 

8 ns 

4 Hz 

30 10x20 - - - 1.5 us 2 us Pb I 405.78 

C I 247.856 

Mn I 403.076 

Mn I 403.307 

Mn I 403.449 

- External and internal 

standards, MLR 

[105] 
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Sample Laser E 

(mJ) 

Shots Spot 

size 

(µm) 

LTSD 

(mm) 

I 

(GW cm-2) 

td tb Analysed lines 

λ (nm) 

LOD Analysis method Ref. 

spinach, mustard, 

chenopodium, 

fenugreek, and chickpea 

leaves, fresh and pellets 

532 nm 

4 ns 

10 Hz 

10 5 - - 1000 - - Si 288.1 

Si 251.4 

Mg 285.1 

Mg 279.5 

Mg 279.8 

Ti 334.9 

Ti 336.1 

Ti 337.2 

Fe 344.1 

Fe 238.3 

Fe 240.4 

Ca 422.6 

Ca 393.3 

Ca 396.8 

Ca 443.5 

Ca 445.5 

C 247.8 

C 229.6 

Al 308.2 

Al 309.2 

- RSD of individual lines [106] 

Rice, ground and 

pelletised 

1064 nm 

5 ns 

1 Hz 

- - - - - - - Cd 

Ca 

Cu 

Mg 

Mn 

Na 

Zn 

Ni 

K 

5.6 ppb Univariate [107] 
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Sample Laser E 

(mJ) 

Shots Spot 

size 

(µm) 

LTSD 

(mm) 

I 

(GW cm-2) 

td tb Analysed lines 

λ (nm) 

LOD Analysis method Ref. 

Carrot Root (Daucus 

carota), fresh and 

pelletised 

532 nm 

8 ns 

10 Hz 

- - - - - - - Cu 203.5 

Cu 218.1 

Co 228.6 

Fe 238.2 

Fe 261.1 

Fe 358.1 

Fe 385.9 

Mg 279.5 

Mg 285.2 

Ca 317.9 

Ca 393.3 

Ca 396.8 

Ca 422.6 

Ca 445.5 

Ca 643.9 

Ti 323.4 

Ti 430.5 

Zn 330.2 

Zn 468.0 

K 404.4 

K 766.4 

K 769.8 

Sr 460.7 

Na 589.5 

Na 819.4 

Hg 794.4 

C 283.6 

H 434.0 

H 486.1 

H 656.2 

N 444.7 

N 463.0 

N 500.5 

N 594.1 

- CF-LIBS [108] 
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Sample Laser E 

(mJ) 

Shots Spot 

size 

(µm) 

LTSD 

(mm) 

I 

(GW cm-2) 

td tb Analysed lines 

λ (nm) 

LOD Analysis method Ref. 

         (cont.) 

N 746.8 

N 868.3 

O 777.5 

O 844.6 

   

Spirulina and chlorella, 

pellets 

10.6 um 

100 ns 

1.3 Hz 

Vari

ous 

- - - - - 30 s Ba 455.40 

Sr 460.73 

Mn 403.45 

Fe 259.94 

Mg 285.21 

0.96 ppm 

0.10 ppm 

0.50 ppm 

7.08 ppm 

3.51 ppm 

Univariate [109] 

Wheat flour, pellets 1064 nm 

- 

4 Hz 

38 7x15 - - - 300 ns 1.05 

ms 

Ca 

K 

- PLS [110] 

Maize and holly (Ilex 

chinensis Sims) 

1064 nm 

- 

- 

90 - 75 - - - - Mg 

K 

P I 213.62 

P I 214.91 

P I 253.56 

P I 255.33 

Cl I 827.59 

Si 288.16 

- Elemental Mapping, 

MLR, ratios 

[111] 

Coffee, ground and 

pelletised 

266 nm 

8 ns 

20 Hz 

31 - - - - 400 ns - Al 618.45 

Mn I 358.65 

Ce II 466 

Cu II 780.76 

Cr I 286.09 

N II 567.95 

Na I 588.99 

Na I 589.59 

- Univariate [112] 

Phaleria Macrocarpa 

leaves, ground and 

pelletised 

1064 nm 

10 ns 

- 

100 - - - - - - Ca I 422.67 

Ca I 445.48 

Pb I 363.95 

- Plasma temperature 

calculation, univariate 

[115] 
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Sample Laser E 

(mJ) 

Shots Spot 

size 

(µm) 

LTSD 

(mm) 

I 

(GW cm-2) 

td tb Analysed lines 

λ (nm) 

LOD Analysis method Ref. 

Tobacco, ground 

pelletised 

266 nm 

6 ns 

10 Hz 

25 100 50 - - 0.25 us 1.05 

ms 

Ba II 493.409 

Ca I 422.673 

K I 766.490 

Mn II 259.373 

C I 247.856 

25 ug g-1 

488 ug g-1 

197 ug g-1 

32 ug g-1 

- 

Univariate [113] 

Chinese tea leaves, 

Longjing green tea, 

Mengding Huangya, 

White tea, Tie Guanyin, 

Wuyi black tea, and 

Pu'er tea 

1064 nm 

5.82 ns 

- 

50 - - - - 1.2 us 4 us Mg 279.55 

Mn 279.83 

CN (0-0) 388.34 

Ca 393.37 

Al 396.15 

C2 (0-0) 516.45 

Fe 517.46 

K 766.49 

C I 247.86 

- Fisher Discriminant 

Analysis, Bayes 

discriminant analysis 

[114] 

Sugar cane - 

- 

- 

50, 

75 

 75, 125   0.5, 1  C I 193.1  PCA, PLS [116] 

Maize (Zea mays L.), 

pellets 

- 

- 

- 

- 30 - - - - - Na 588.99 

Ca 445.49 

Mg 285.22 

K 404.39 

Fe 239.54 

- Qualitative [117] 

Cucurbita maxima seeds, 

powder 

532 nm 

4 ns 

1 Hz 

100 - - - - - - C 247.856 

O 777.417 

Ca 393.366 

Mg 279.553 

P 253.561 

Na 589.592 

K 766.49 

N 567.956 

H 656.271 

- one-way ANOVA, 

followed by a post hoc 

Scheffe’s test, ratio 

[118] 
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Sample Laser E 

(mJ) 

Shots Spot 

size 

(µm) 

LTSD 

(mm) 

I 

(GW cm-2) 

td tb Analysed lines 

λ (nm) 

LOD Analysis method Ref. 

Ocimum sanctum, 

Ocimum americanum, 

Ocimum gratissimum, 

and Ocimum basilicum, 

ground and pelletised 

532 nm 

4 ns 

10 Hz 

- 10 - - - - - C 229.6 

C 247.8 

Si 251.4 

Si 288.1 

Mg 277.9 

Mg 279.7 

Mg 279.5 

Mg 280.2 

Mg 285.2 

Mg 382.9 

Mg 383.2 

Mg 383.8 

Ca 315.8 

Ca 317.9 

Ca 370.6 

Ca 373.6 

Ca 393.3 

Ca 396.8 

Ca 422.6  

Ca 428.3 

Ca 443.5 

Ca 445.4 

Ca 714.8 

Ca 854.2 

Fe 258.5 

Fe 259.9 

Na 330.2 

Na 589.6 

K 766.4 

K 769.8 

N 463.0 

N 744.2 

N 868.0 

H 656.2 

- PCA [119] 
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Sample Laser E 

(mJ) 

Shots Spot 

size 

(µm) 

LTSD 

(mm) 

I 

(GW cm-2) 

td tb Analysed lines 

λ (nm) 

LOD Analysis method Ref. 

         (cont.) 

O 777.4 

O 844.6 

   

Gannan Navel Orange 

peels 

- 

- 

2 Hz 

20 10x10 - - - 1.2 us 2 ms Cu I 324.754 

Cu I 327.396 

- Univariate [120] 

Red Fuji apples and 

Hosui pears 

1064 nm 

- 

20 Hz 

160 - - - - 2 us - P 213.62 

P 214.91 

P 253.56 

P 255.33 

Cl 837.59 

4.3 mg kg-1 

2.1 mg kg-1 

1.5 mg kg-1 

6.9 mg kg-1 

3.0 mg kg-1 

Univariate [121] 

Wood and babassu 

mesocarp, ground and 

pelletised 

266 nm 

- 

5-20 Hz 

5-25 5-200 35-140 - - 0-0.4 us - K I 766.49 

K I 769.896 

Mg II 279.553 

Mg II 280.27 

C I 247.856 

12-30 ug g-1 

36-72 ug g-1 

14-27 ug g-1 

6-10 ug g-1 

- 

Univariate [122] 

Apple leaves, pine 

needles, citrus leaves, tea 

leaves, rice flour, 

Cannabis plant leaves 

and flower tops, ground 

and pelletised 

1064 nm 

7 ns 

10 Hz 

200 30 - - 5.2 - - Al I 394.4 

Ba I 649.88 

Ca I 643.91 

Br I 751.3 

Cu I 324.75 

Fe II 238.2 

K I 766.49 

Mg I 285.21 

Mn II 257.61 

Na I 330.3 

P II 458.8 

Rb I 794.76 

Sr I 460.73 

4.71 13.80 

0.22 

69.40 

0.11 

0.12 

1.65 

158.00 

14.87 

3.01 

1.39 

21.92 

0.09 

0.77 

Quantitative, ANOVA 

and Tukey’s HSD test 

[123] 



 

192 

 

Sample Laser E 

(mJ) 

Shots Spot 

size 

(µm) 

LTSD 

(mm) 

I 

(GW cm-2) 

td tb Analysed lines 

λ (nm) 

LOD Analysis method Ref. 

Black tea (Anxi, Fujian), 

Huangya tea (Ya’an, 

Sichuan), Longjing tea 

and Pu’er tea (Pu’er, 

Yunnan), ground and 

pelletised 

1064 nm 

8 ns 

20 Hz 

20-

100 

10x20 - - - 2-30 us 2 us C I 247.86 

Mg II 279.55 

Mn I 279.83 

Ca II 393.37 

Al I 396.15 

CN (0-0) 388.34 

Na I 589.59 

H I 656.28 

K I 766.49 

Ca II 317.93 

Ca II 370.60 

Ca II 373.69 

Ca II 396.85 

- Plasma temperature 

calculation, ratios 

[124] 

Sugarcane (Saccharum 

officinarum), soy 

(Glycine max), citrus 

(Citrus sinensis), coffee 

(Coffea arabica), maize 

(Zea mays), eucalyptus 

(Eucalyptus sp.), mango 

(Mangifera indica), bean 

(Phaseolus vulgaris), 

banana (Musa 

paradisiaca), lettuce 

(Lactuca sativa), 

brachiaria (Brachiaria 

decumbens), pearl millet 

(Pennisetum 

americanum),  

1064 nm 

532 nm 

266 nm 

6 ns 

- 

800 nm 

60 fs 

1 kHz 

70 

1.65 

15 500 

150 

- 6 

1.6x105 

0.75 us 

35 ns 

3 us 

250 ns 

Ca II 315.887 

Mg I 285.212 

P I 213.618 

Cu I 324.755 

Fe II 238.204 

Mn II 257.610 

Zn II 202.548 

0.005-0.01 g kg-1 

0.01-0.05 g kg-1 

0.1-0.4 g kg-1 

1-7 mg kg-1 

3-12 mg kg-1 

1-2 mg kg-1 

4-80 mg kg-1 

Hierarchical clustering, 

dendrogram 

classification using 

Euclidean distance, 

univariate, PLS 

[125] 
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Sample Laser E 

(mJ) 

Shots Spot 

size 

(µm) 

LTSD 

(mm) 

I 

(GW cm-2) 

td tb Analysed lines 

λ (nm) 

LOD Analysis method Ref. 

(cont.) 

grape (Vitis sp.), rubber 

tree (Hevea brasiliensis), 

tomato (Solanum 

lycopersicum), apple 

leaves, peach leaves, 

spinach leaves, tomato 

leaves, and pine needles, 

dried and pelletised 

            

Juncus efiusus L. 1064 nm 

3-5 ns 

2 Hz 

340 - - - - 1 us 1 ms C 192.77 

C 247.725 

Na 588.952 

Na 589.554 

Mg 279.418 

Mg 280.123 

H 656.315 

H 777.492 

Ca 393.375 

Ca 396.816 

Li 670.754 

C-N 383.522 

C-N 386.105 

C-N 387.08 

C-N 388.296 

K 766.52 

K 769.96 

Al 394.417 

Al 396.097 

O 777.212 

O 777.492 

Ba 455.358 

Ba 493.388 

- Relative standard 

deviation 

[126] 
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Sample Laser E 

(mJ) 

Shots Spot 

size 

(µm) 

LTSD 

(mm) 

I 

(GW cm-2) 

td tb Analysed lines 

λ (nm) 

LOD Analysis method Ref. 

         (cont.) 

Ba 553.52 

N 715.709 

N 744.306 

N 746.918 

N 843.762 

N 869.367 

N 870.256 

N 870.947 

Mg 517.245 

Mg 518.316 

   

 



 

195 

 

[1] Q. Sun, M. Tran, B. W. Smith et al., “Direct determination of P, Al, Ca, Cu, Mn, 

Zn, Mg and Fe in plant materials by laser-induced plasma spectroscopy,” Canadian 

Journal of Analytical Sciences and Spectroscopy, vol. 44, no. 6, pp. 164-170, 1999. 

[2] H. H. Cho, Y. J. Kim, Y. S. Jo et al., “Application of laser-induced breakdown 

spectrometry for direct determination of trace elements in starch-based flours,” 

Journal of Analytical Atomic Spectrometry, vol. 16, no. 6, pp. 622-627, 2001. 

[3] A. Uhl, K. Loebe, and L. Kreuchwig, “Fast analysis of wood preservers using laser 

induced breakdown spectroscopy,” Spectrochimica Acta - Part B Atomic 

Spectroscopy, vol. 56, no. 6, pp. 795-806, 2001. 

[4] S. I. Gornushkin, I. B. Gornushkin, J. M. Anzano et al., “Effective normalization 

technique for correction of matrix effects in laser-induced breakdown spectroscopy 

detection of magnesium in powdered samples,” Applied Spectroscopy, vol. 56, no. 

4, pp. 433-436, 2002. 

[5] T. M. Moskal, and D. W. Hahn, “On-line sorting of wood treated with chromated 

copper arsenate using laser-induced breakdown spectroscopy,” Applied 

Spectroscopy, vol. 56, no. 10, pp. 1337-1344, 2002. 

[6] L. Niu, H. H. Cho, K. S. Song et al., “Direct determination of strontium in marine 

algae samples by laser-induced breakdown spectrometry,” Applied Spectroscopy, 

vol. 56, no. 11, pp. 1511-1514, 2002. 

[7] A. Assion, M. Wollenhaupt, L. Haag et al., “Femtosecond laser-induced-

breakdown spectrometry for Ca 2+ analysis of biological samples with high spatial 

resolution,” Applied Physics B: Lasers and Optics, vol. 77, no. 4, pp. 391-397, 

2003. 

[8] A. R. Boyain-Goitia, D. C. S. Beddows, B. C. Griffiths et al., “Single-pollen 

analysis by laser-induced breakdown spectroscopy and raman microscopy,” 

Applied Optics, vol. 42, no. 30, pp. 6119-6132, 2003. 

[9] A. C. Samuels, F. C. DeLucia Jr, K. L. McNesby et al., “Laser-induced breakdown 

spectroscopy of bacterial spores, molds, pollens, and protein: Initial studies of 

discrimination potential,” Applied Optics, vol. 42, no. 30, pp. 6205-6209, 2003. 

[10] H. M. Solo-Gabriele, T. G. Townsend, D. W. Hahn et al., “Evaluation of XRF and 

LIBS technologies for on-line sorting of CCA-treated wood waste,” Waste 

Management, vol. 24, no. 4, pp. 413-424, 2004. 

[11] O. Samek, J. Lambert, R. Hergenroder et al., “Femtosecond laser spectrochemical 

analysis of plant samples,” Laser Physics Letters, vol. 3, no. 1, pp. 21-5, 2006. 

[12] M. Bossu, Z. Q. Hao, M. Baudelet et al., “Femtosecond laser-induced breakdown 

spectroscopy for detection of trace elements in sophora leaves,” Chinese Physics 

Letters, vol. 24, no. 12, pp. 3466-3468, 2007. 

[13] M. Galiova, J. Kaiser, K. Novotny et al., “Utilization of laser induced breakdown 

spectroscopy for investigation of the metal accumulation in vegetal tissues,” 

Spectrochimica Acta - Part B Atomic Spectroscopy, vol. 62, no. 12, pp. 1597-1605, 

2007. 

[14] J. Kaiser, O. Samek, L. Reale et al., “Monitoring of the heavy-metal 

hyperaccumulation in vegetal tissues by X-ray radiography and by femto-second 

laser induced breakdown spectroscopy,” Microscopy Research and Technique, vol. 

70, no. 2, pp. 147-153, 2007. 

[15] M. Z. Martin, N. Labbé, N. André et al., “High resolution applications of laser-

induced breakdown spectroscopy for environmental and forensic applications,” 

Spectrochimica Acta - Part B Atomic Spectroscopy, vol. 62, no. 12, pp. 1426-1432, 

2007. 

[16] P. K. Rai, N. K. Rai, A. K. Rai et al., “Role of LIBS in elemental analysis of 

Psidium guajava responsible for glycemic potential,” Instrumentation Science and 

Technology, vol. 35, no. 5, pp. 507-522, 2007. 

[17] M. Z. Martin, N. Labbé, T. G. Rials et al., “Analysis of preservative-treated wood 

by multivariate analysis of laser-induced breakdown spectroscopy spectra,” 

Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 60, no. 7–8, pp. 1179-1185, 

2005. 



 

196 

 

[18] M. Galiova, J. Kaiser, K. Novotny et al., “Investigation of heavy-metal 

accumulation in selected plant samples using laser induced breakdown 

spectroscopy and laser ablation inductively coupled plasma mass spectrometry,” 

Applied Physics A: Materials Science and Processing, vol. 93, no. 4, pp. 917-922, 

2008. 

[19] M. Hassan, M. Sighicelli, A. Lai et al., “Studying the enhanced phytoremediation 

of lead contaminated soils via laser induced breakdown spectroscopy,” 

Spectrochimica Acta - Part B Atomic Spectroscopy, vol. 63, no. 10, pp. 1225-1229, 

2008. 

[20] V. Juvé, R. Portelli, M. Boueri et al., “Space-resolved analysis of trace elements in 

fresh vegetables using ultraviolet nanosecond laser-induced breakdown 

spectroscopy,” Spectrochimica Acta - Part B Atomic Spectroscopy, vol. 63, no. 10, 

pp. 1047-1053, 2008. 

[21] A. Khumaeni, M. Ramli, Y. Deguchi et al., “New technique for the direct analysis 

of food powders confined in a small hole using transversely excited atmospheric 

CO2 laser-induced gas plasma,” Applied Spectroscopy, vol. 62, no. 12, pp. 1344-

1348, 2008. 

[22] S. Krizkova, P. Ryant, O. Krystofova et al., “Multi-instrumental analysis of tissues 

of sunflower plants treated with silver(I) ions - Plants as bioindicators of 

environmental pollution,” Sensors, vol. 8, no. 1, pp. 445-463, 2008. 

[23] L. C. Trevizan, D. Santos Jr, R. E. Samad et al., “Evaluation of laser induced 

breakdown spectroscopy for the determination of macronutrients in plant 

materials,” Spectrochimica Acta - Part B Atomic Spectroscopy, vol. 63, no. 10, pp. 

1151-1158, 2008. 

[24] T. Flores, L. Ponce, M. Arronte et al., “Free-running and Q:Switched LIBS 

measurements during the laser ablation of Prickle Pears spines,” Optics and Lasers 

in Engineering, vol. 47, no. 5, pp. 578-583, 2009. 

[25] B. A. Gething, J. J. Janowiak, and R. H. Falk, “Assessment of laser induced 

breakdown spectroscopy (LIBS) for classification of preservative in CCA-treated 

lumber,” Forest Products Journal, vol. 59, no. 3, pp. 67-74, 2009. 

[26] D. Jaiswal, P. K. Rai, and G. Watal, “Antidiabetic effect of Withania coagulans in 

experimental rats,” Indian Journal of Clinical Biochemistry, vol. 24, no. 1, pp. 88-

93, 2009. 

[27] J. Kaiser, M. Galiova, K. Novotny et al., “Mapping of lead, magnesium and copper 

accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-

ablation inductively coupled plasma mass spectrometry,” Spectrochimica Acta - 

Part B Atomic Spectroscopy, vol. 64, no. 1, pp. 67-73, 2009. 

[28] A. Khumaeni, H. Niki, Y. Deguchi et al., “Analysis of organic powder samples by 

using the metal-assisted subtarget effect in a Transversely-Excited Atmospheric 

(TEA) CO2 laser-induced he gas plasma at 1 atm,” Journal of the Korean Physical 

Society, vol. 55, no. 6, pp. 2441-2446, 2009. 

[29] O. Krystofova, V. Shestivska, M. Galiova et al., “Sunflower plants as bioindicators 

of environmental pollution with lead (II) ions,” Sensors, vol. 9, no. 7, pp. 5040-

5058, 2009. 

[30] W. Lei, V. Motto-Ros, M. Boueri et al., “Time-resolved characterization of laser-

induced plasma from fresh potatoes,” Spectrochimica Acta - Part B Atomic 

Spectroscopy, vol. 64, no. 9, pp. 891-898, 2009. 

[31] M. R. Martelli, C. Barron, P. Delaporte et al., “Pulsed laser ablation: A new 

approach to reveal wheat outer layer properties,” Journal of Cereal Science, vol. 

49, no. 3, pp. 354-362, 2009. 

[32] L. C. Nunes, G. A. da Silva, L. C. Trevizan et al., “Simultaneous optimization by 

neuro-genetic approach for analysis of plant materials by laser induced breakdown 

spectroscopy,” Spectrochimica Acta - Part B Atomic Spectroscopy, vol. 64, no. 6, 

pp. 565-572, 2009. 

[33] M. Pouzar, T. Cernohorsky, M. Prusova et al., “LIBS analysis of crop plants,” 

Journal of Analytical Atomic Spectrometry, vol. 24, no. 7, pp. 953-957, 2009. 



 

197 

 

[34] T. Ohta, M. Ito, T. Kotani et al., “Emission enhancement of laser-induced 

breakdown spectroscopy by localized surface plasmon resonance for analyzing 

plant nutrients,” Applied Spectroscopy, vol. 63, no. 5, pp. 555-558, 2009. 

[35] N. K. Rai, P. K. Rai, S. Pandhija et al., “Application of LIBS in detection of 

antihyperglycemic trace elements in Momordica charantia,” Food Biophysics, vol. 

4, no. 3, pp. 167-171, 2009. 

[36] L. C. Trevizan, D. Santos Jr, R. E. Samad et al., “Evaluation of laser induced 

breakdown spectroscopy for the determination of micronutrients in plant materials,” 

Spectrochimica Acta - Part B Atomic Spectroscopy, vol. 64, no. 5, pp. 369-377, 

2009. 

[37] P. K. Rai, D. Jaiswal, N. K. Rai et al., “Role of glycemic elements of Cynodon 

dactylon and Musa paradisiaca in diabetes management,” Lasers in Medical 

Science, vol. 24, no. 5, pp. 761-768, 2009. 

[38] R. K. Singh, S. Mehta, D. Jaiswal et al., “Antidiabetic effect of Ficus bengalensis 

aerial roots in experimental animals,” Journal of Ethnopharmacology, vol. 123, no. 

1, pp. 110-114, 2009. 

[39] D. C. Zhang, X. Ma, W. Q. Wen et al., “Studies of laser induced-breakdown 

spectroscopy of holly leaves,” Journal of Physics: Conference Series, vol. 185, 

2009. 

[40] S. Beldjilali, D. Borivent, L. Mercadier et al., “Evaluation of minor element 

concentrations in potatoes using laser-induced breakdown spectroscopy,” 

Spectrochimica Acta - Part B Atomic Spectroscopy, vol. 65, no. 8, pp. 727-733, 

2010. 

[41] V. Diopan, V. Shestivska, O. Zitka et al., “Determination of plant thiols by liquid 

chromatography coupled with coulometric and amperometric detection in lettuce 

treated by lead(II) ions,” Electroanalysis, vol. 22, no. 11, pp. 1248-1259, 2010. 

[42] A. A. Bol'shakov, J. H. Yoo, C. Liu et al., “Laser-induced breakdown spectroscopy 

in industrial and security applications,” Applied Optics, vol. 49, no. 13, pp. C132-

C142, 2010. 

[43] D. Jaiswal, P. K. Rai, and G. Watal, “Hypoglycemic and antidiabetic effects of 

withania coagulans fruit ethanolic extract in normal and streptozotocin-induced 

diabetic rats,” Journal of Food Biochemistry, vol. 34, no. 4, pp. 764-778, 2010. 

[44] M. R. Martelli, F. Brygo, A. Sadoudi et al., “Laser-induced breakdown 

spectroscopy and chemometrics: A novel potential method to analyze wheat grains,” 

Journal of Agricultural and Food Chemistry, vol. 58, no. 12, pp. 7126-7134, 2010. 

[45] M. Z. Martin, A. J. Stewart, K. D. Gwinn et al., “Laser-induced breakdown 

spectroscopy used to detect endophyte-mediated accumulation of metals by tall 

fescue,” Applied Optics, vol. 49, no. 13, pp. C161-C167, 2010. 

[46] J. W. B. Braga, L. C. Trevizan, L. C. Nunes et al., “Comparison of univariate and 

multivariate calibration for the determination of micronutrients in pellets of plant 

materials by laser induced breakdown spectrometry,” Spectrochimica Acta - Part 

B Atomic Spectroscopy, vol. 65, no. 1, pp. 66-74, 2010. 

[47] S. Mehta, P. K. Rai, D. K. Rai et al., “LIBS-based detection of antioxidant elements 

in seeds of Emblica officinalis,” Food Biophysics, vol. 5, no. 3, pp. 186-192, 2010. 

[48] D. K. Chauhan, D. K. Tripathi, N. K. Rai et al., “Detection of Biogenic Silica in 

Leaf Blade, Leaf Sheath, and Stem of Bermuda Grass (Cynodon dactylon) Using 

LIBS and Phytolith Analysis,” Food Biophysics, vol. 6, no. 3, pp. 416-423, 2011. 

[49] M. Barbafieri, R. Pini, A. Ciucci et al., “Field assessment of Pb in contaminated 

soils and in leaf mustard (Brassica juncea): The LIBS technique,” Chemistry and 

Ecology, vol. 27, no. SUPPL. 1, pp. 161-169, 2011. 

[50] L. C. Nunes, J. W. Batista Braga, L. C. Trevizan et al., “Optimization and 

validation of a LIBS method for the determination of macro and micronutrients in 

sugar cane leaves,” Journal of Analytical Atomic Spectrometry, vol. 25, no. 9, pp. 

1453-1460, 2010. 

[51] E. R. Schenk, and J. R. Almirall, “Elemental analysis of cotton by laser-induced 

breakdown spectroscopy,” Applied Optics, vol. 49, no. 13, pp. C153-C160, 2010. 



 

198 

 

[52] D.-C. Zhang, X.-W. Ma, W.-Q. Wen et al., “Influence of Laser Wavelength on 

Laser-induced Breakdown Spectroscopy Applied to Semi-Quantitative Analysis of 

Trace-Elements in a Plant Sample,” Chinese Physics Letters, vol. 27, no. 6, pp. 

063202 (4 pp.), 2010. 

[53] M. Galiová, J. Kaiser, K. Novotný et al., “Utilization of laser-assisted analytical 

methods for monitoring of lead and nutrition elements distribution in fresh and 

dried Capsicum annuum l. leaves,” Microscopy Research and Technique, vol. 74, 

no. 9, pp. 845-852, 2011. 

[54] D. Sun, M. Su, C. Dong et al., “A semi-quantitative analysis of essential 

micronutrient in folium lycii using laser-induced breakdown spectroscopy 

technique,” Plasma Science and Technology, vol. 12, no. 4, pp. 478-481, 2010. 

[55] M. Yao, M. Liu, J. Zhao et al., "Identification of nutrition elements in orange leaves 

by laser induced breakdown spectroscopy," 2010 International Symposium on 

Intelligent Information Technology and Security Informatics, IITSI 2010. pp. 398-

401. 

[56] F. M. V. Pereira, D. M. B. P. Milori, A. L. Venâncio et al., “Evaluation of the 

effects of Candidatus Liberibacter asiaticus on inoculated citrus plants using laser-

induced breakdown spectroscopy (LIBS) and chemometrics tools,” Talanta, vol. 

83, no. 2, pp. 351-356, 2010. 

[57] G. Watal, B. Sharma, P. K. Rai et al., “LIBS-based detection of antioxidant 

elements: a new strategy,” Methods in molecular biology (Clifton, N.J.), vol. 594, 

pp. 275-285, 2010. 

[58] E. J. Ferreira, E. C. Ferreira, A. C. B. Delbem et al., “Ensemble of predictors and 

laser induced breakdown spectroscopy for certifying coffee,” Electronics Letters, 

vol. 47, no. 17, pp. 967-969, 2011. 

[59] S. Beldjilali, W. L. Yip, J. Hermann et al., “Investigation of plasmas produced by 

laser ablation using single and double pulses for food analysis demonstrated by 

probing potato skins,” Analytical and Bioanalytical Chemistry, vol. 400, no. 7, pp. 

2173-2183, 2011. 

[60] M. D. S. Gomes, D. Santos Jr, L. C. Nunes et al., “Evaluation of grinding methods 

for pellets preparation aiming at the analysis of plant materials by laser induced 

breakdown spectrometry,” Talanta, vol. 85, no. 4, pp. 1744-1750, 2011. 

[61] M. Hassan, M. Abdelhamied, A. H. Hanafy et al., "Laser monitoring of 

phytoextraction enhancement of lead contaminated soil adopting EDTA and 

EDDS," 8th International Conference on Laser Applications, ICLA 2011. pp. 93-

100. 

[62] A. Khumaeni, H. Niki, K. I. Fukumoto et al., “A unique technique of laser-induced 

breakdown spectroscopy using transversely excited atmospheric CO2 laser for the 

sensitive analysis of powder samples,” Current Applied Physics, vol. 11, no. 3, pp. 

423-427, 2011. 

[63] A. Khumaeni, Z. S. Lie, H. Niki et al., “Direct analysis of powder samples using 

transversely excited atmospheric CO 2 laser-induced gas plasma at 1 atm,” 

Analytical and Bioanalytical Chemistry, vol. 400, no. 10, pp. 3279-3287, 2011. 

[64] Z. Lei, M. Yao, M. Liu et al., "Analysis the macronutrients in Gannan navel 

oranges for three kinds of sample state by laser induced breakdown spectroscopy," 

4th International Congress on Image and Signal Processing, CISP 2011. pp. 2464-

2466. 

[65] S. Ma, X. Gao, K. Guo et al., “Analysis of the element content in poplar tree leaves 

by femtosecond laser-induced breakdown spectroscopy,” Science China: Physics, 

Mechanics and Astronomy, vol. 54, no. 11, pp. 1953-1957, 2011. 

[66] M. R. Martelli, F. Brygo, P. Delaporte et al., “Estimation of Wheat Grain Tissue 

Cohesion via Laser Induced Breakdown Spectroscopy,” Food Biophysics, vol. 6, 

no. 4, pp. 433-439, 2011. 

[67] Y. Mingyin, L. Jinlong, L. Muhua et al., "Discrimination of Ca, Cu, Fe, and Na in 

Gannan Navel orange by laser induced breakdown spectroscopy," 4th IFIP 

International Conference on Computer and Computing Technologies in 



 

199 

 

Agriculture and the 4th Symposium on Development of Rural Information, CCTA 

2010, 2011, pp. 608-613. 

[68] M. M. Suliyanti, M. Pardede, T. J. Lie et al., “Direct powder analysis by laser-

induced breakdown spectroscopy utilizing laser-controlled dust production in a 

small chamber,” Journal of the Korean Physical Society, vol. 58, no. 5, pp. 1129-

1134, 2011. 

[69] D. K. Tripathi, R. Kumar, D. K. Chauhan et al., “Laser-induced breakdown 

spectroscopy for the study of the pattern of silicon deposition in leaves of 

saccharum species,” Instrumentation Science and Technology, vol. 39, no. 6, pp. 

510-521, 2011. 

[70] G. G. A. De Carvalho, D. Santos Jr, L. C. Nunes et al., “Effects of laser focusing 

and fluence on the analysis of pellets of plant materials by laser-induced 

breakdown spectroscopy,” Spectrochimica Acta - Part B Atomic Spectroscopy, vol. 

74-75, pp. 162-168, 2012. 

[71] G. Kim, J. Kwak, J. Choi et al., “Detection of nutrient elements and contamination 

by pesticides in spinach and rice samples using laser-induced breakdown 

spectroscopy (LIBS),” Journal of Agricultural and Food Chemistry, vol. 60, no. 3, 

pp. 718-724, 2012. 

[72] X. Zhang, M. Yao, M. Liu et al., "Analysis of trace elements in leaves using laser-

induced breakdown spectroscopy," 5th International Conference on Computer and 

Computing Technologies in Agriculture, CCTA 2011, 2012, pp. 334-339. 

[73] M. da Silva Gomes, G. G. A. de Carvalho, D. Santos Junior et al., “A novel strategy 

for preparing calibration standards for the analysis of plant materials by laser-

induced breakdown spectroscopy: A case study with pellets of sugar cane leaves,” 

Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 86, no. 0, pp. 137-141, 

2013. 

[74] P. Dhar, I. Gembitsky, P. K. Rai et al., “A Possible Connection Between 

Antidiabetic & Antilipemic Properties of Psoralea corylifolia Seeds and the Trace 

Elements Present: A LIBS Based Study,” Food Biophysics, pp. 1-9, 2012. 

[75] P. F. de Souza, D. Santos, G. G. A. de Carvalho et al., “Determination of silicon in 

plant materials by laser-induced breakdown spectroscopy,” Spectrochimica Acta - 

Part B Atomic Spectroscopy, 2013. 

[76] M. Yao, L. Huang, J. Zheng et al., “Assessment of feasibility in determining of Cr 

in Gannan Navel Orange treated in controlled conditions by laser induced 

breakdown spectroscopy,” Optics & Laser Technology, vol. 52, no. 0, pp. 70-74, 

2013. 

[77] P. Dhar, I. Gembitsky, P. Rai et al., “A Possible Connection Between Antidiabetic 

& Antilipemic Properties of Psoralea corylifolia Seeds and the Trace Elements 

Present: A LIBS Based Study,” Food Biophysics, vol. 8, no. 2, pp. 95-103, 

2013/06/01, 2013. 

[78] M. Tiwari, R. Agrawal, A. K. Pathak et al., “Laser-induced breakdown 

spectroscopy: An approach to detect adulteration in turmeric,” Spectroscopy 

Letters, vol. 46, no. 3, pp. 155-159, 2013. 

[79] M. Garcimuño, D. M. Díaz Pace, and G. Bertuccelli, “Laser-induced breakdown 

spectroscopy for quantitative analysis of copper in algae,” Optics and Laser 

Technology, vol. 47, pp. 26-30, 2013. 

[80] X. Fang, and S. R. Ahmad, “Elemental analysis in environmental land samples by 

stand-off laser-induced breakdown spectroscopy,” Applied Physics B, pp. 1-7, 

2013/09/07, 2013. 

[81] G. G. A. de Carvalho, D. Santos Jr, M. da Silva Gomes et al., “Influence of particle 

size distribution on the analysis of pellets of plant materials by laser-induced 

breakdown spectroscopy,” Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 

105, no. 0, pp. 130-135, 2015. 

[82] L. C. Peruchi, L. C. Nunes, G. G. A. de Carvalho et al., “Determination of 

inorganic nutrients in wheat flour by laser-induced breakdown spectroscopy and 

energy dispersive X-ray fluorescence spectrometry,” Spectrochimica Acta Part B: 



 

200 

 

Atomic Spectroscopy, vol. 100, no. 0, pp. 129-136, 2014. 

[83] B. Sezer, G. Bilge, A. Berkkan et al., “A rapid tool for determination of titanium 

dioxide content in white chickpea samples,” Food Chemistry, vol. 240, pp. 84-89, 

2018. 

[84] M. Iqbal, Z. ul Haq, A. Malik et al., “Pre-sowing seed magnetic field stimulation: 

A good option to enhance bitter gourd germination, seedling growth and yield 

characteristics,” Biocatalysis and Agricultural Biotechnology, vol. 5, pp. 30-37, 

2016. 

[85] D. K. Tripathi, V. P. Singh, S. M. Prasad et al., “Silicon-mediated alleviation of 

Cr(VI) toxicity in wheat seedlings as evidenced by chlorophyll florescence, laser 

induced breakdown spectroscopy and anatomical changes,” Ecotoxicology and 

Environmental Safety, vol. 113, pp. 133-144, 2015. 

[86] M. B. Bueno Guerra, A. Adame, E. De Almeida et al., “Direct analysis of plant 

leaves by EDXRF and LIBS: microsampling strategies and cross-validation,” 

Journal of Analytical Atomic Spectrometry, vol. 30, no. 7, pp. 1646-1654, 2015. 

[87] K. Devey, M. Mucalo, G. Rajendram et al., “Pasture Vegetation Elemental 

Analysis by Laser-Induced Breakdown Spectroscopy,” Communications in Soil 

Science and Plant Analysis, vol. 46, pp. 72-80, 2015. 

[88] D. K. Tripathi, V. P. Singh, S. M. Prasad et al., “LIB spectroscopic and 

biochemical analysis to characterize lead toxicity alleviative nature of silicon in 

wheat (Triticum aestivum L.) seedlings,” Journal of Photochemistry and 

Photobiology B: Biology, vol. 154, pp. 89-98, 2016. 

[89] J. Wang, S. Xue, P. Zheng et al., “Determination of Lead and Copper in Ligusticum 

wallichii by Laser-Induced Breakdown Spectroscopy,” Analytical Letters, vol. 50, 

no. 12, pp. 2000-2011, 2017. 

[90] P. Modlitbová, K. Novotný, P. Pořízka et al., “Comparative investigation of 

toxicity and bioaccumulation of Cd-based quantum dots and Cd salt in freshwater 

plant Lemna minor L,” Ecotoxicology and Environmental Safety, vol. 147, pp. 334-

341, 2018. 

[91] L. Krajcarová, K. Novotný, M. Kummerová et al., “Mapping of the spatial 

distribution of silver nanoparticles in root tissues of Vicia faba by laser-induced 

breakdown spectroscopy (LIBS),” Talanta, vol. 173, pp. 28-35, 2017. 

[92] T. V. Silva, S. Z. Hubinger, J. A. Gomes Neto et al., “Potential of Laser Induced 

Breakdown Spectroscopy for analyzing the quality of unroasted and ground coffee,” 

Spectrochimica Acta - Part B Atomic Spectroscopy, vol. 135, pp. 29-33, 2017. 

[93] J. Peng, Y. He, L. Ye et al., “Moisture Influence Reducing Method for Heavy 

Metals Detection in Plant Materials Using Laser-Induced Breakdown 

Spectroscopy: A Case Study for Chromium Content Detection in Rice Leaves,” 

Analytical Chemistry, vol. 89, no. 14, pp. 7593-7600, 2017. 

[94] A. C. Ranulfi, R. A. Romano, A. Bebeachibuli Magalhães et al., “Evaluation of 

the Nutritional Changes Caused by Huanglongbing (HLB) to Citrus Plants Using 

Laser-Induced Breakdown Spectroscopy,” Applied Spectroscopy, vol. 71, no. 7, pp. 

1471-1480, 2017. 

[95] G. Nicolodelli, G. S. Senesi, A. C. Ranulfi et al., “Double-pulse laser induced 

breakdown spectroscopy in orthogonal beam geometry to enhance line emission 

intensity from agricultural samples,” Microchemical Journal, vol. 133, pp. 272-

278, 2017. 

[96] S. Awasthi, R. Kumar, A. Devanathan et al., “Multivariate methods for analysis of 

environmental reference materials using laser-induced breakdown spectroscopy,” 

Analytical Chemistry Research, vol. 12, pp. 10-16, 2017. 

[97] J. N. Kunz, D. V. Voronine, B. A. Ko et al., “Interaction of femtosecond laser 

pulses with plants: towards distinguishing weeds and crops using plasma 

temperature,” Journal of Modern Optics, vol. 64, no. 9, pp. 942-947, 2017. 

[98] M. Yao, H. Yang, L. Huang et al., “Detection of heavy metal Cd in polluted fresh 

leafy vegetables by laser-induced breakdown spectroscopy,” Applied Optics, vol. 

56, no. 14, pp. 4070-4075, 2017. 



 

201 

 

[99] S. Varliklioz Er, H. Eksi-Kocak, H. Yetim et al., “Novel Spectroscopic Method for 

Determination and Quantification of Saffron Adulteration,” Food Analytical 

Methods, vol. 10, no. 5, pp. 1547-1555, 2017. 

[100] D. F. Andrade, E. R. Pereira-Filho, and P. Konieczynski, “Comparison of ICP OES 

and LIBS analysis of medicinal herbs rich in flavonoids from Eastern Europe,” 

Journal of the Brazilian Chemical Society, vol. 28, no. 5, pp. 838-847, 2017. 

[101] J. Singh, R. Kumar, S. Awasthi et al., “Laser Induced breakdown spectroscopy: A 

rapid tool for the identification and quantification of minerals in cucurbit seeds,” 

Food Chemistry, vol. 221, pp. 1778-1783, 2017. 

[102] J. N. Kunz, D. V. Voronine, H. W. H. Lee et al., “Rapid detection of drought stress 

in plants using femtosecond laser-induced breakdown spectroscopy,” Optics 

Express, vol. 25, no. 7, pp. 7251-7262, 2017. 

[103] C. R. Bhatt, B. Alfarraj, C. T. Ghany et al., “Comparative Study of Elemental 

Nutrients in Organic and Conventional Vegetables Using Laser-Induced 

Breakdown Spectroscopy (LIBS),” Applied Spectroscopy, vol. 71, no. 4, pp. 686-

698, 2017. 

[104] J. Peng, K. Song, H. Zhu et al., “Fast detection of tobacco mosaic virus infected 

tobacco using laser-induced breakdown spectroscopy,” Scientific Reports, vol. 7, 

2017. 

[105] J. Wang, M. Shi, P. Zheng et al., “Quantitative Analysis of Lead in Tea Samples 

by Laser-Induced Breakdown Spectroscopy,” Journal of Applied Spectroscopy, 

vol. 84, no. 1, pp. 188-193, 2017. 

[106] P. Shukla, R. Kumar, and A. K. Raib, “Detection of Minerals in Green Leafy 

Vegetables Using Laser Induced Breakdown Spectroscopy,” Journal of Applied 

Spectroscopy, vol. 83, no. 5, pp. 872-877, 2016. 

[107] T. J. Jiang, Z. Guo, M. J. Ma et al., “Electrochemical laser induced breakdown 

spectroscopy for enhanced detection of Cd(II) without interference in rice on layer-

by-layer assembly of graphene oxides,” Electrochimica Acta, vol. 216, pp. 188-

195, 2016. 

[108] N. Shukla, A. S. Bharti, S. Srivastava et al., “Determination of Elements in Carrot 

Root by Laser Induced Breakdown Spectroscopy,” National Academy Science 

Letters, vol. 40, no. 1, pp. 47-51, 2017. 

[109] S. Zivkovic, M. Momcilovic, A. Staicu et al., “Spectrochemical analysis of 

powdered biological samples using transversely excited atmospheric carbon 

dioxide laser plasma excitation,” Spectrochimica Acta - Part B Atomic 

Spectroscopy, vol. 128, pp. 22-29, 2017. 

[110] G. Bilge, B. Sezer, K. E. Eseller et al., “Determination of Ca addition to the wheat 

flour by using laser-induced breakdown spectroscopy (LIBS),” European Food 

Research and Technology, vol. 242, no. 10, pp. 1685-1692, 2016. 

[111] C. Zhao, D. Dong, X. Du et al., “In-field, in situ, and in vivo 3-dimensional 

elemental mapping for plant tissue and soil analysis using laser-induced 

breakdown spectroscopy,” Sensors (Switzerland), vol. 16, no. 10, 2016. 

[112] M. A. Gondal, U. Baig, M. A. Dastageer et al., "Determination of elemental 

composition of coffee using UV-pulsed laser induced breakdown spectroscopy." 

[113] D. M. Silvestre, F. de Oliveira Leme, C. S. Nomura et al., “Direct analysis of 

barium, calcium, potassium, and manganese concentrations in tobacco by laser-

induced breakdown spectroscopy,” Microchemical Journal, vol. 126, pp. 545-550, 

2016. 

[114] J. Wang, P. Zheng, H. Liu et al., “Classification of Chinese tea leaves using laser-

induced breakdown spectroscopy combined with the discriminant analysis method,” 

Analytical Methods, vol. 8, no. 15, pp. 3204-3209, 2016. 

[115] Z. Haider, J. Ali, M. Arab et al., “Plasma Diagnostics and Determination of Lead 

in Soil and Phaleria Macrocarpa Leaves by Ungated Laser Induced Breakdown 

Spectroscopy,” Analytical Letters, vol. 49, no. 6, pp. 808-817, 2016. 

[116] J. P. R. Romera, P. L. Barsanelli, and F. M. V. Pereira, “Expeditious prediction of 

fiber content in sugar cane: An analytical possibility with LIBS and chemometrics,” 



 

202 

 

Fuel, vol. 166, pp. 473-476, 2016. 

[117] S. Qamar, M. Aslam, and M. A. Javed, "Determination of Proximate Chemical 

Composition and Detection of Inorganic Nutrients in Maize (Zea mays L.)." pp. 

715-718. 

[118] D. K. Kushawaha, M. Yadav, S. Chatterji et al., “α-amylase and α-glucosidase 

inhibitory activity assessment of Cucurbita maxima seeds – A LIBS based study,” 

International Journal of Phytomedicine, vol. 8, no. 3, pp. 312-318, 2016. 

[119] D. K. Tripathi, A. K. Pathak, D. K. Chauhan et al., “An efficient approach of Laser 

Induced Breakdown Spectroscopy (LIBS) and ICAP-AES to detect the elemental 

profile of Ocimum L. species,” Biocatalysis and Agricultural Biotechnology, vol. 

4, no. 4, pp. 471-479, 2015. 

[120] H. Hu, L. Huang, M. Liu et al., “Nondestructive determination of cu residue in 

orange peel by laser induced breakdown spectroscopy,” Plasma Science and 

Technology, vol. 17, no. 8, pp. 711-715, 2015. 

[121] X. Du, D. Dong, X. Zhao et al., “Detection of pesticide residues on fruit surfaces 

using laser induced breakdown spectroscopy,” RSC Advances, vol. 5, no. 97, pp. 

79956-79963, 2015. 

[122] D. M. Silvestre, F. M. Barbosa, B. T. Aguiar et al., “Feasibility study of calibration 

strategy for direct quantitative measurement of K and Mg in plant material by laser-

induced breakdown spectrometry,” Analytical Chemistry Research, vol. 5, pp. 28-

33, 2015. 

[123] M. M. El-Deftar, J. Robertson, S. Foster et al., “Evaluation of elemental profiling 

methods, including laser-induced breakdown spectroscopy (LIBS), for the 

differentiation of Cannabis plant material grown in different nutrient solutions,” 

Forensic Science International, vol. 251, pp. 95-106, 2015. 

[124] P. Zheng, M. Shi, J. Wang et al., “The spectral emission characteristics of laser 

induced plasma on tea samples,” Plasma Science and Technology, vol. 17, no. 8, 

pp. 664-670, 2015. 

[125] G. G. Arantes de Carvalho, J. Moros, D. Santos, Jr. et al., “Direct determination of 

the nutrient profile in plant materials by femtosecond laser-induced breakdown 

spectroscopy,” Analytica Chimica Acta, vol. 876, pp. 26-38, 2015. 

[126] X. Liu, J. Huang, Z. Wu et al., “Microanalysis of multi-element in Juncus effusus 

L. by LIBS technique,” Plasma Science and Technology, vol. 17, no. 11, pp. 904-

908, 2015. 

 
 

 



 

 

Appendix B 

 

Agricultural robot platform 

 

 

 

 

 

 

 

 



 

 

204 

 

 

B. 1 Agricultural robot platform 

The purpose of this thesis was to determine if LIBS was suitable for precision 

agriculture. The LIBS system would have to be attached to an agricultural vehicle 

because of the size of the laser unit. With the emergence of smaller lasers, LIBS 

systems have been created that are now a fraction of the size we have used. An 

example is the micro-LIBS unit [106]. With such small units, placing a LIBS system 

on a small autonomous robot is achievable. For this reason, a prototype agricultural 

robot was developed that could theoretically carry an onboard micro-LIBS unit. 

This appendix discusses how the robot functions and the equipment used. This robot 

would serve as a starting point for a LIBS agricultural rover. 

 

B. 2 Setup and connections 

A Botboardunio (Lynxmotion, USA), shown in Figure 1, which is based on the 

Duemilanove (Arduino), is the central board controlling the robot. All 

communication and control go through this microcontroller. The Botboardunio 

communicates to an Uno (Arduino) and an HC-05 Bluetooth transmitter via serial 

protocol.  

 

 

Figure 1. Botboardunio microcontroller [107]. 

 

The Uno listens to the transmission line (Tx) of the Botbaorduino. It takes the 

encoded motor commands out of the serial stream and transmits them to the 
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Sabretooth motor controller using servo commands. The reason the Uno was used 

is that when a second serial line is used on the Botboarduino it fills the buffer up 

and slows down the entire programme. This effects the feedback timing on the PI 

controller for the motors, producing slower corrections. 

 

A Sabretooth Motor Controller (Lynxmotion, USA) takes servo commands from 

the Uno through the cables intended for the remote-control receiver and controls 

the four HN-GHIZ-1634T (Lynxmotion, USA) 12V DC gear motors for the robot’s 

wheels. 

 

An optical encoder (E4P OEM Miniature Optical Kit, US Digital, USA) is used to 

implement PID control in the motors. It is attached to the shaft of one of the motors. 

The downside of having only one encoder is that if one of the wheels without the 

encoder slips it will not be picked up. 

 

A magnetometer (GY-273 HMC5883L, Honeywell, USA) determines the current 

bearing of the robot. It was placed on top of the robot via a cardboard box since 

metal surfaces disturb the magnetic field around the magnetometer causing it to 

give false readings. 

 

The GPS (NEO-6M, u-blox, Switzerland) gets the current coordinates of the robot. 

The U Center (u-blox, Switzerland) software was used to change the default settings 

on the GPS module to increase accuracy. 

 

The Bluetooth (HC-05) module is used to send data to a computer. This can be used 

for debugging. It sends longitude, latitude, bearing, heading, and the current state 

of the robot. The Bluetooth module is connected to a Logic Level Converter to 

change the communication voltages. 

 

B. 3 System Identification and PID Control 
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The robot must navigate different terrain where extra effort is needed so that the 

robot stays at a constant speed. PID control can achieve this with the correct gains. 

The transfer function of the robot wheels looks like  

𝐺(𝑠) =
𝐴𝑒−𝐿𝑠

𝜏𝑠 + 1
 

and the parameters are acquired by measuring the step response at the output (rpm). 

The servo input for the Sabretooth motor driver takes inputs from 1500-2000. 

Shifting the input index from 1500-2000 to 0-500, for simplicity, places the median 

effort at 250 which allows for more effort when using PI control. The rpm was 

measured by setting the input of the servo to 250 and then the gain (A) was 

calculated. 

A = 154 [rpm] / 250 [servo] = 0.616 [rpm/servo] 

The steady state (K) of the step response and the delay (L) was determined from 

Figure 2, calculated as 154 rpm and 37.5 ms. 

 

Figure 2. Step response of the robot. Circles are the raw data, stars are the average 

of the raw data. Steady state is determined from the horizontal line and the delay is 

found from where the line of the slope crosses the x-axis. 

A slope (R) of 0.48 rpm/ms was calculated for the step response by fitting a slope 

to the initial part of the curve as seen in Figure 3. 
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Figure 3. The fitted line to find the slope (R) of the step response. 

The time constant (τ) can then be found 

τ = K/R = 154 / 0.48 = 321 ms (3 s.f.) 

Using these parameters, the plant transfer function is 

𝐺(𝑠) =
0.616𝑒−37.5𝑠

321𝑠 + 1
 

Using this transfer function the Ziegler Nichols tuning parameters were calculated 

and used as a starting point for PID tuning. 

Kp = 0.9/RL = 0.9 / (0.48 x 37.5) = 0.05 rpm-1 

Ki = 0.9x0.3/RL2 = 0.3Kp/L = 0.0004 rpm-1 ms-1 

The parameters were varied to get the response in Figure 4. Only proportional and 

integral control were needed to give a faster response with no overshoot and no 

oscillations. The proportional (Kp) and integral (Ki) gains were 2.5 and 0.008 

respectively. The timing of the controller was a problem. It caused oscillations and 

incorrect RPM readings. This is caused by reading the RPM too quickly and a time 

delay caused by serial communications. Waiting for a period before updating the 

controller fixes both this problem and the incorrect RPM readings.  
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Figure 4. Tuned PI controller in blue compared to the plant in red. 

 

B. 4 GPS navigation 

To have a fully autonomous system for precision agriculture the robot needs to be 

able to navigate given coordinates without assistance from an operator. Along the 

path, the LIBS laser would take spectra of the pasture and use its current location 

to store the results. This would allow real-time 2D elemental mapping of a field. 

 

Four waypoints were programmed into the Botboarduino for the robot to navigate 

around. A state machine was used to implement navigation. The five states were 

INIT (initialize), CD (change direction), GTG (go to goal), RW (reached waypoint), 

and STOP (stop). The robot starts off in the INIT state which initializes the position 

of the robot. The robot stays in this state reading the GPS position and 

magnetometer heading until the GPS has acquired enough satellites to function 
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accurately. It then moves to the CD state which compares the heading from the 

magnetometer to the bearing of the next waypoint. The robot then rotates until it is 

within a ±5˚ window of the correct heading. The robot then changes to the GTG 

state which makes the robot drive in a straight line. If the heading exceeds ±5˚ of 

the bearing the robot goes back into the CD which decreases the speed of the wheels 

on one side of the robot to slowly change direction. Once the heading is within ±5˚ 

of the bearing the robot goes back into the GTG state. When the robot is within 

1.5 m of the current waypoint the state changes to RW. The next waypoint is then 

set and the robot is placed in the CD state to rotate so that it is heading in the right 

direction. This continues until the last waypoint is reached which triggers the STOP 

state which stops the robot from moving. Figure 8 and Figure 9 show the optimal 

route (red) if the robot was to go straight to each waypoint and the actual route 

(blue). 

 

The actual route is not very smooth because of the algorithm used in the CD state. 

Using PID control, or more elegant methods, for steering the robot would produce 

smoother navigation. The last leg of the journey had a large deviation from the 

optimal route. This is due to an antenna (Figure 7) on the stairwell of the parking 

building causing interference with the magnetometer. To prove this the robot was 

programmed to drive in a straight line past the antenna and the heading from the 

magnetometer was recorded. Figure 5 shows the journey of the robot. The curve in 

the path was caused by the wheels not having the same distance from the robot and 

from an unbalanced load on top of the robot. Figure 6 shows the disturbance caused 

by the antenna as the robot passed by. Comparing Figure 5 and Figure 6 it can be 

seen that just after the robot passed by the antenna is where the maximum 

interference is located. This may cause a problem for farms with power pylons. GPS 

could find the heading of the robot by calculating the difference between two points 

along the journey. The downfall is this is not as accurate for small distances. 
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Figure 5. The route taken by the robot next to stairwell with the antenna. 

 

 

Figure 6. Magnetometer readings as the robot passed by the antenna. 
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Figure 7. The antenna on the stairwell creating interference. 
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Figure 8. Google maps view of the NOVA Southeastern University campus. Optimal route for the robot in red and actual route in blue. 
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Figure 9. Zoomed in view of Figure 8. Optimal route (red), actual route (blue). 
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B. 5 Image modelling of grass 

A webcam (HD C310, Logitech, USA) was attached to the robot, as can be seen in 

Figure 10, to determine if the LIBS sensor would be sampling pasture. 50 photos 

(480x640) were taken of pure grass, 50 photos were taken of pure dirt, and 50 

photos were taken of scenes with both grass and dirt. The angle of the camera was 

fixed for all images. The purpose was to find a model that would suggest that there 

is enough grass in the image that a sample should be taken. If there is not enough 

grass then a sample would not be taken. 

 

 

Figure 10. Prototype Robot. 

 

C.5.1 Classification by fitting Gaussian profiles to each channel of the 

image 

45 photos were taken from each set and converted from RGB (red, green, blue) 

colour space to the HSI (hue, saturation, intensity) colour space. A histogram was 

created for each channel of each photo. The histograms for each channel were 

averaged and a Gaussian profile was fitted to the Hue (Figure ) and Intensity 
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(Figure ) channels. The values of the hue and intensity were normalised. The 

intensity histogram was a summation of two Gaussian profiles which can be seen 

in Figure . Considering the broader curve as a baseline it can be ignored and the 

parameters of the thinner curve can be used. The mean of the fitted profiles for the 

hue and intensity curves were 0.206±0.0552 and 0.515±0.137 respectively. Using 

these values all images were filtered using a binary threshold where one was for 

values within the range of plus or minus one standard deviation and zero elsewhere. 

The percentage of black pixels to white pixels was then calculated and the averages 

for each set are presented in Table 1.  

 

Table 1. Percentage of black pixels to white pixels in each photo. 

 Mean 

(%) 

Standard deviation (%) 

Grass 55.1 6.40 

Dirt 87.1 5.91 

Combo 85.1 2.88 

 

 

Figure 11. Fitted Gaussian profile for the averaged histograms for the hue channel 

of each photo. 
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Figure 12. Fitted Gaussian profile for the averaged histograms for the intensity 

channel of each photo. 

 

 

Figure 13. Average intensity histogram decomposed into two Gaussian profiles. 

 

To confirm that the results from the dirt and combination sets are different from the 

grass set a T-Test was performed. The T-Test result between dirt and grass was 

P = 2.46·10-41 and between combination and grass was P = 1.65·10-46 which proves 

that they are not from the same distribution. Figure  shows the results of calculating 

the percentages of black to white pixels. 
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Figure 14. Histograms of the grass (blue), dirt (red), and combination (orange) sets. 

 

Since the standard deviations of the grass and dirt distributions are comparable the 

threshold can be placed between the means of these distributions which is 71.1 %. 

The five samples that were left out of each set were then used to test the model. All 

photos were classified correctly. Figure  displays the classifications. 

 

Figure 15. Results of classifying all photos. The dashed line is the threshold. 
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C.5.2 Classification using a Euclidean rectangle with PCA 

A single image of grass which was not from the original 50 photos was taken and 

the RGB channels were converted to HSI channels. PCA was performed using each 

pixel as an observation and the HSI channels as the variables for each observation. 

Because of the noise (pixels not of grass, or grass pixels to bright or dark), the mean 

of the density of points is not in the centre of the scores plot. The mean and standard 

deviations of the three scores were taken and used as a threshold to define if a pixel 

was grass. This produces a 3D rectangle with width 2σ and with the planes of the 

rectangle in the directions of the eigenvectors. Any pixel within this boundary was 

considered grass. 45 photos from each set were filtered using this rectangle and the 

percentage of black to white pixels were determined. Table 1 shows the means and 

standard deviations for each set. The difference between the grass and dirt means 

was taken as the threshold. The five remaining photos from each set was then used 

to test the threshold of 71.9 %. This produced 100 % classification as seen in Figure . 

 

C.5.3 Classification using PCA and the Mahalanobis distance  

The same procedure in C.5.2 was used except the Mahalonobis distance was used 

instead of the Euclidean distance. The Mahalonobis distance creates an elliptical 

sphere around the dense cluster of pixels that are classed as grass. This reduces the 

pixels that may get misclassified by using the Euclidean rectangle. The 

Mahalonobis distance was varied to find the greatest separation between the grass 

and dirt sets. Table 2 shows the results. Using a Mahalanobis distance of 1.35 gave 

the greatest separation of 41.3 %, as seen in Table 3, between the means of the grass 

and dirt sets. The threshold was set to 64.9 % to separate grass from dirt. Figure  

shows 100 % classification of grass, dirt, and the grass and dirt combination photos. 

 

 

 

 

 



 

 

219 

 

 

Table 1. Percentage of black pixels to white pixels in each photo using the Euclidean 

distance. 

 Mean Standard deviation 

Grass 53.8 5.94 

Dirt 90.0 2.80 

Combo 82.5 3.89 

 

 

Figure 16. Results of classifying all photos using the Euclidean distance. 

 

Table 2. Separation caused by different Mahalanobis distances. 

Mahalanobis  1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 

Grass µ (%) 53.3 50.0 47.0 44.3 41.7 39.2 37.0 34.9 

 σ (%) 6.15 6.49 6.74 6.94 7.07 7.15 7.16 7.14 

Dirt µ (%) 92.8 90.4 88.1 85.5 82.8 79.9 76.9 73.7 

 σ (%) 2.73 3.37 4.12 4.93 5.77 6.59 7.34 8.09 

Diff  39.5 40.4 41.1 41.3 41.1 40.7 39.9 38.8 

 



 

 

220 

 

 

Table 3. Percentage of black pixels to white pixels in each photo using the 

Mahalanobis distance. 

 Mean Standard deviation 

Grass 44.3 6.94 

Dirt 85.5 4.93 

Combo 77.9 4.49 

 

 

Figure 17. Results of classifying all photos using the Mahalanobis distance. 

 

C.5.5 PCA with a Euclidean rectangle using a Box-cox transformation 

Some of the channels in the HSI space were skewed. A box-cox transformation was 

performed on all channels to make them more Gaussian-like before PCA was 

performed. The rest of the procedure is the same as C.5.2, creating a Euclidean 

rectangle to differentiate grass from dirt. The threshold was set to 71.2 % and it had 

100 % success at classifying grass. Table 4 and Figure  show the results. Using the 

box-cox transformation did not improve the classification. The photos closest to the 

threshold on either side had a separation of 4.88 % using the box-cox transformation 

and 6.75 % without the transformation. 
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Table 4. Percentage of black pixels to white pixels in each photo using a box-cox 

transformation. 

 Mean Standard deviation 

Grass 52.9 6.89 

Dirt 89.5 4.92 

Combo 81.8 3.83 

 

Figure 18. Results of classifying all photos using a box-cox transformation. 

 

B. 6 Summary 

Using PCA and the Mahalanobis distance produced 41.3 % separation which was 

the greatest separation between the grass and dirt samples. The raspberry pi toolbox 

in Simulink does not allow the Mahalonobis calculation to be uploaded to the 

raspberry pi. For this reason, PCA with the Euclidean rectangle would have to be 

used for implementation. Figure  shows an example of the PCA-Euclidean rectangle 

thresholding for an image from each set of data. The percentage of black to white 

pixels in the figure are 57.2 %, 89.7 %, and 92.6 % for the grass, dirt, and 

combination images respectively.  
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This could not be implemented on the robot because power could not be supplied 

to the raspberry pi without additional batteries. It was tested by using power 

supplied by a computer and by connecting the web camera to the raspberry pi. It 

was slow but could be used to sample every few seconds. Using some code 

optimization may reduce the computation time of the algorithm. 
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a) b) c) 

d) e) f) 

Figure 19. Photos of a) grass, b) dirt, and c) a combination of both. The thresholded images d), e), and f) of a), b), and c) respectively with only the ‘grass’ 

pixels shown. PCA with a Euclidean rectangle was used. 
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