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Abstract 

Casein is the major protein component of cow‟s milk and is extracted commercially 

for a wide range of applications. Before casein is precipitated from milk by acid, milk 

is commonly concentrated by ultrafiltration to increase throughput and partly recover 

lactose. The degree to which the milk can be concentrated is limited due to higher 

concentrations producing a tough rubbery curd that causes downstream processing 

difficulties, particularly when casein is washed to remove calcium, lactose, whey and 

other impurities. 

 

This thesis examines using milk protein concentrates, MPC70 and MPC85 retentates 

from ultrafiltration, to manufacture casein. MPC85 was used on a large scale process, 

and MPC70 was used on lab scale process. Lab scale casein production techniques 

were developed to produce a similar casein to process scale. Effects of dilution and 

pH were examined on casein properties and calcium and lactose removal. Diluting the 

retentates prior to acidification was effective at reducing the residual levels of 

calcium and lactose in the casein, and no increase in residual whey protein was found 

compared to conventional casein production. The optimal precipitation pH remained 

at 4.60, and the resulting casein was not found to have any reduction in its functional 

performance. Lowering precipitation pH increased casein losses due to fines being 

formed and difficulty in separating wash water from the curd.  

 

Use of milk retentate for casein manufacture allows greater recovery of lactose and 

may have positive implications for the economics of the process in reducing washing 

required to produce high quality casein. 
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Chapter 1. Introduction 

1.1 Background 

This project was carried out at out Westland Milk Products in Hokitika, on the West 

Coast of New Zealand‟s South Island. Westland was first established in 1937 by the 

amalgamation of several smaller dairy companies. In 2001, during deregulation of 

New Zealand‟s dairy industry, Westland‟s shareholding farmers voted to remain 

independent. In 2006, Westland constructed a new processing plant which now 

produces various casein, caseinates and other dairy powders for export. The stated 

aim of the company is to be the preferred supplier of premium quality dairy and 

nutritional products, and the investment in protein production is a key part of this.  

 

Casein is the principal protein found in cow‟s milk. It represents approximately 80% 

of the mass of milk‟s total protein component, with the remaining 20% mainly whey 

protein. Casein consists of αS1, αS2, β and κ casein, as well as subtypes and is present 

in milk as a stable micelle suspension. It contains minerals such as calcium and 

phosphate, which also play a role in its stability. Casein is precipitated out of milk on 

acidification to its isoelectric point of pH 4.6, or when treated with enzymes such as 

rennet. Casein has been extracted commercially from milk since the early 20
th

 century 

(Southward 1998). It is now used mainly in nutritional applications and can undergo 

further processing to produce caseinates. These soluble casein powders are also used 

in a wide range of nutritional applications. New Zealand is a leading producer and 

exporter of casein products and primarily produces casein by acid precipitation. In 

this process, skim milk is acidified either by direct acid addition or the use of lactic 

acid producing bacteria. This results in the precipitation of the casein curd. The curd 

is then separated from the whey stream and washed extensively with water to remove 

impurities such as lactose, calcium and residual whey protein before drying. There 

are increasingly stringent quality requirements on casein products. The final product 

should be almost entirely protein, with very low levels of impurities. It should contain 

none of the calcium that was originally associated with the casein micelles (Walstra et 

al. 2006) and its mineral content should consist almost entirely of the organically 
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bound phosphate associated with the casein (Southward 2002). This means that the 

washing stage of the process is critical to product quality. 

 

1.2 Problem Statement 

Ultrafiltration (UF) of skim milk prior to casein manufacture is common practice in 

the dairy industry. This allows increased throughput due to the reduced volume. 

Additionally, lactose recovered in the permeate stream at this point can be utilised 

more easily than the lactose from the whey stream later in the process. Also, as less 

lactose enters the process, washing efficiency may be improved. UF to a volumetric 

concentration factor (VCF) of 1.6 – 1.8 prior to casein making is the industry 

standard, though UF plants are capable of much higher concentration. However, use 

of high VCF retentates for casein manufacture results in a tough, rubbery curd which 

is difficult to process, particularly during washing. Studies have shown that as the 

casein concentration of a milk retentate is increased, greater pH reduction is required 

to solubilise the minerals present in the casein micelles (Le Graët and Gaucheron 

1999). The proportion of calcium that can enter the whey is limited by the amount of 

water available to take it into solution. Informal communications have also claimed 

that casein products made in this way have reduced viscosity, a key functional 

property, than conventionally produced ones.  

 

1.3 Project Aim 

The aim of this research is to examine the effects skim milk UF retentate 

concentration, water addition to UF retentate, and pH have on key casein properties 

such as toughness, and the residual content of lactose, calcium and whey protein. 
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1.4 Thesis Structure 

An overview of milk composition with a focus on milk proteins and their structure 

and properties is presented in Chapter Two. The range of commercial milk protein 

products is then introduced with a discussion of their properties and uses. Current 

milk processing details are reviewed, before casein manufacture is covered in detail at 

the end of the chapter. 

 

Materials and methods used for all analyses in the thesis are summarised in Chapter 

Three. 

 

Before any changes to the process could be investigated, a set of baseline results was 

required. An assessment of the casein process under normal running conditions is 

presented in Chapter Four. 

 

A laboratory-based method of casein production that could stand in for a pilot plant 

and allow small scale trials to be carried out was developed. This is discussed in 

Chapter Five. 

 

In Chapter Six, retentate is used to make casein under different conditions using the 

techniques developed in the previous chapter. These results are compared to the 

initial plant results to assess the effect on the casein produced and help confirm 

optimal conditions. 

 

Chapter Seven contains conclusions from the research and recommendations for any 

future work. 
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Chapter 2. Literature Review 

2.1 Introduction 

This chapter reviews a range of dairy topics, with particular attention given to aspects 

relating directly to the work undertaken in the later thesis chapters. The composition 

of milk is introduced, before a more comprehensive overview of the literature relating 

to milk proteins, particularly the caseins and the current understanding of their 

properties. The modern range of milk protein products is discussed, particularly those 

related to this work. Their commercial uses are also covered where relevant to the 

properties influenced by their production. The latter half of the chapter focuses on 

dairy processing, initially on the normal milk and powder processes before moving 

on to cover the manufacture of casein in detail. Finally, the combination of casein and 

membrane processing technologies at the centre of the thesis are discussed using what 

published information is available. 

 

2.2 Milk composition 

Milk is the secretion of the mammary gland of mammals and its primary function is 

for the nutrition of their young. As a result it is one of the most complete food sources 

known. It is a complex fluid containing fat globules in an emulsion, minerals and 

some proteins in solution while other proteins are held in colloidal suspension. The 

main components of milk are summarised in Table 1. The earliest milk of lactation is 

known as colostrum, and differs in composition from normal milk. A significant 

difference is the presence of large numbers of antibodies, which function to confer 

immunity from the mother to her offspring. The composition of milk also varies by 

species as it is closely linked to the exact requirements of the physiology of the young 

of that species. The usefulness of milk to the human diet has lead to the domestication 

of various milk-producing species. The domestic cow Bos primigenius in particular is 

now present across the world and bovine milk is the most well characterised and 

understood type of milk in the world today. Bovine milk also accounts for the vast 

majority of milk processed worldwide, though milk from other species such as water 

buffalo, goat and sheep are significant to various regions of the world. Dairy products 

represent a significant part of the Western diet, and their consumption in other 
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cultures is also increasing. Milk derived products are one of the most important 

sources of calcium in the diet of a large proportion of the world‟s population. 

 

Table 1: Approximate composition of milk (Walstra and Jenness 1984) 

Component 
Average Content 

(% by wt) 
Average of Dry 

Matter (% by wt) 

Water 87.3  

Lactose 4.6 36 

Fat 3.9 31 

Protein 3.25 26 

Minerals 0.65 5.1 

Organic acids 0.18 1.4 

Miscellaneous 0.14 1.1 

 

2.2.1 Lipids 

Almost all of the lipid content of milk is in the form of fat globules. These can be 

easily removed from the parent milk by separation due to gravity. Traditionally this 

was achieved by „skimming‟ the cream layer off the top, leading to the term skim 

milk for de-fatted milk. Until relatively recently, fat was the most valuable 

component of milk. Even well into the 20
th

 century, many dairy farms recovered only 

the cream for sale, while the skim milk was used as stock feed. Changes in dietary 

patterns and increasing awareness of milk composition meant that the protein fraction 

of milk is now its most valuable constituent, though milk fat derived products still 

represent a significant part of the Western diet. The protein component of milk is of 

major significance to this work and as such, is discussed in greater detail in later 

sections.  
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2.2.2 Carbohydrates 

Lactose is the major carbohydrate of milk. It is a dissacharide, found in the milk of 

nearly all mammals and is unique to milk (Walstra et al. 2006). Lactose is hydrolysed 

by the enzyme β-galactosidase, commonly known as lactase, which is present in the 

digestive system of young mammals specifically for this purpose. In all mammals 

except some humans, the amount of lactase produced reduces to a very low level after 

weaning. The retention of lactase activity occurs in some humans and is thought to be 

a relatively recent genetic adaptation. Individuals unable to digest lactose are known 

as lactose mal-digesters or lactose intolerant depending on the severity of the 

symptoms (Walstra et al. 2006). The prevalence of lactose maldigestion varies by 

region, with Scandinavia having a rate of around 2% and some Asian countries 

reaching almost 100%. The rate in New Zealand is around 9% (Vesa et al. 2000). 

Lactose is utilised commercially in a wide range of applications, which are discussed 

further in section 2.6.  

 

2.2.3 Salts 

The mineral fraction of milk is often expressed as its „ash‟ content. This is because 

standard dairy industry testing uses the reduction of dairy products to ash in a 

laboratory furnace to give an approximate mineral content. This is not the true 

mineral content as organic acids such as citrate and acetate are destroyed by ashing. 

The ashing procedure also transfers organic phosphorus and sulfur to inorganic salts 

(Walstra et al. 2006). The principal salts of milk are sodium, potassium, calcium, 

magnesium, chloride, phosphate and citrate (Walstra and Jenness 1984). Some of 

these are present at levels well below their solubility limit, while others such as 

calcium and phosphate are present in such high concentrations that they exist in milk 

only partly in soluble form with the rest associated in a colloidal form with the 

caseins. These are collectively referred to as micellar or colloidal calcium phosphate 

(CCP) and play a major role in micellar integrity (Fox 2001). About 67% and 57%, 

respectively, of the total calcium and phosphate present in milk are in the colloidal 

phase (Fox and McSweeney 1998).  
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2.2.4 Proteins 

As mentioned, in the modern dairy industry protein is the most valuable dairy 

component. Bovine milk has a nitrogen content of about 5.3 g per kilogram with 

around 95% of this is in the form of proteins (Walstra and Jenness 1984). Most of the 

protein component of milk can be separated broadly into groups depending on their 

solubility at pH 4.6, as summarised in Table 2 below. 

 

Table 2: Some properties of the main groups of protein in skim milk (Walstra et al. 

2006) 

Property Caseins Globular Proteins Proteose-Peptone 

Present in Casein micelles Serum Both 

Soluble at pH 4.6 No Yes Yes 

Clotted by rennet Yes No Partly 

Heat denatured No Yes No 

 

Casein and whey proteins are present in milk in a ratio of around 4:1. Together they 

represent the vast majority of the total protein fraction of milk, though a large number 

of other proteins are present at low levels. The principal proteins present in milk have 

now been well characterised and are summarised in Table 3. This grouping could be 

substantially subdivided as all of the primary milk proteins exhibit genetic 

polymorphism (Walstra and Jenness 1984). Multiplication of the nitrogen content of 

milk and milk products by a Kjeldahl factor of 6.38 is officially accepted to give their 

protein content (Walstra et al. 2006). Though the Kjeldahl factor differs for individual 

proteins, this average value provides a relatively accurate approximation and has been 

agreed upon for use worldwide. 
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Table 3: Concentration of proteins in milk (Walstra and Jenness 1984) 

 
Concentration in Milk Percentage of Total 

Protein (by wt) g/kg mmol/m³ 

Total Protein 33.0 ~1490 100.0 
Total Casein 26.0 1170 79.5 
Whey Proteins 6.3 ~320 19.3 
MGFM Proteins 0.4  1.2 
αS1-casein 10.0 440 30.6 
αS2-casein 2.6 110 30.6 
β-casein 9.3 400 30.6 
γ-casein 0.8 40 2.4 
ĸ-casein 3.3 180 10.1 
α-lactalbumin 1.2 90 3.7 
β-lactoglobulin 3.2 180 9.8 
Blood Serum Albumin 0.4 6 1.2 
Immunoglobulins 0.7 ~4 2.1 
Misc. including 
Proteose-Peptone 

0.8 ~40 2.4 

 

The minor proteins of milk are diverse and have only relatively recently become well 

characterised. Serum albumin is synthesised in the liver and makes its way into the 

milk through the secretory cells. The milk of all mammalian species that have been 

examined share this feature (Walstra and Jenness 1984). Immunoglobulins are present 

in milk to confer immunity to the ingesting calf, though this function is associated 

more with colostrum than milk due to its much higher immunoglobulin concentration. 

A very different group of minor proteins is the fat globule membrane proteins. These 

surround the fat globules in milk and play a role in stabilising it, both by preventing 

agglomeration of the globules and by preventing the access of lipases present in milk. 

Additionally, some of these proteins play an important part in various cell processes 

and defense against bacteria and viruses in the newborn (Fong et al. 2007). 
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2.2.4.1 Whey Proteins 

The whey, or serum, proteins are the protein fraction which is not precipitated from 

milk at pH 4.6, though aside from this commonality, they share relatively few 

characteristics. The main whey proteins are α-lactalbumin, β-lactoglobulin, serum 

albumin and immunoglobulins. β-Lactoglobulin is the major serum protein, and its 

properties tend to dominate the properties of whey protein preparations, especially the 

reactions occurring upon heat treatment (Walstra et al. 2006). Proteose peptone is a 

minor whey fraction which is comprised largely of three different degradation 

products of β-casein. Another minor whey protein of note is lactoferrin, which as well 

as being present in whey is found in a range of tissues both in humans and other 

mammals (Levay and Viljoen 1995). It is a member of the transferrin group, and has 

an extremely high affinity for Fe
3+

 ions. This gives it anti-bacterial properties, and 

studies have shown that it has a wide range of other potentially useful properties 

including anti-cancer and anti-inflammatory effects (Wakabayashi et al. 2006). 

Lactoferrin is commercially extracted from bovine milk and used as a nutritional 

ingredient because of these properties. 

 

2.2.4.2 Casein 

The ability to separate milk into casein and whey by precipitation at pH 4.6 has been 

used for centuries, as it forms the basis of many traditional dairy products. Casein 

was initially thought to be a single protein, until in 1939 its heterogeneity was 

confirmed using electrophoresis (Mellander 1939). This work found three 

components of casein, which were named α-casein, β-casein and γ-casein in order of 

reducing mobility under electrophoresis. It was subsequently discovered by Waugh & 

von Hippel (1956) that α-casein when treated with CaCl2 could be separated into two 

further fractions. The calcium sensitive fraction was named αS-casein and the calcium 

insensitive fraction, ĸ-casein. Further work by Annan and Manson (1969) showed 

that αS-casein is actually comprised of two proteins, αS1 and αS2 casein. It was also 

discovered that γ-casein was actually the C-terminal segment of β-casein after it had 

undergone proteolysis by plasmin (Groves 1969). As a result, the complete casein 

protein complement of milk is now known to be αS1, αS2, β and ĸ caseins. These are 
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present in the approximate proportions of 4:1:4:1 respectively (Guo et al. 2003). 

Further diversity can be caused by genetic variation and post-translational 

modifications such as phosphorylation, glycosylation, disulphide bonding and 

proteolysis (Ng-Kwai-Hang 2002, Walstra et al. 2006). The 3-dimensional structure 

of these four casein types has not been measured as they cannot be crystallised for x-

ray crystallography, and cannot be dissolved at a high enough concentration for 

nuclear magnetic resonance (NMR) spectroscopy without causing structural changes 

(Creamer 2002). 

 

Table 4: Average characteristics of casein micelles (Fox and Brodkorb 2008)  

Characteristic Value

Diameter 120nm (range: 50-500nm)

Surface area 8 x 10-10 cm2 

Volume 2.1 x 10-15 cm3

Density (hydrated) 1.0632 g cm-3

Mass 2.2 x 10-15 g

Water content 63%

Hydration 3.7 g H2O g-1 protein

Voluminosity 44 cm3 g-1

Molecular mass (hydrated) 1.3 x 109 Da

Molecular mass (dehydrated) 5 x 108

No. of peptide chains 5 x 103

No. of particles per mL milk 1014-1016

Surace of micelles per mL milk 5 x 104 cm3

Mean free distance 240nm
 

 

In milk, the caseins are associated into spherical particles known as casein micelles, 

properties of which are given in Table 4. As the structure of the micelle has not been 

directly measured, various techniques have been applied, to allow aspects of its 

structure to be understood. Caseins have quite different properties from those of most 

other proteins. They are hydrophobic and have a high charge, which is required to 

keep them in solution. Structurally, they do not form anything more than short α-

helices and have little tertiary structure, which accounts for their stability against heat 

denaturation (Hallén 2008, Walstra et al. 2006). As milk is generally the sole food 

source for the developing mammal, the specific biological role of casein within milk 
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is believed to be mainly a nutritional one. This is evident in a number of its structural 

features. Casein micelles allow milk to remain a free-flowing, low-viscosity fluid 

while transporting calcium and phosphate at levels that would otherwise precipitate in 

the mammary gland (Horne 2002). A high proportion of proline gives the caseins a 

very loose structure that causes them to be very susceptible to enzymatic hydrolysis, 

resulting in a well-balanced mixture of amino acids. Casein digestion then results in 

the release of these large quantities of calcium and phosphorous (Ng-Kwai-Hang 

2002). 

 

It has been known since the end of the 19
th

 century that casein particles in milk 

contain colloidal calcium phosphate (CCP). Of the high calcium content in milk 

(~1.20 mg/ml), around half is bound to casein as CCP (Hallén 2008). The exact 

nature of the relationship between colloidal casein particles and calcium phosphate 

has been extensively researched, but is still not completely understood. The main 

aspects which have been focused on are the composition of the CCP, the nature of the 

association between the CCP and casein, and the effect of CCP on casein micelle 

stability and size (Fox and Brodkorb 2008). The result of this work has been a 

number of competing theories as to its exact structure. Known for certain is that all of 

the caseins are distributed evenly throughout the micelle, apart from κ-casein which 

has been shown to play a key role in the stability of the entire particle (Creamer 

2002). Around 12% of total casein is κ-casein, and it is able to stabilise ten times its 

own mass of the other, calcium insoluble, caseins. This finding, combined with the 

fact that κ-casein is preferentially hydrolysed when exposed to chymosin are 

evidence that κ-casein predominates around the surface of the micelle (Farrell 2006, 

Fox and Brodkorb 2008). The break up of micelles when CCP is removed by 

acidification or a calcium chelator shows that CCP plays a vital role in the stability of 

the micelle. The susceptibility of the micelle to dispersal by urea, SDS, high pH and 

ethanol indicate that hydrogen bonding, hydrophobic and electrostatic interactions 

must also play a stabilising role (Fox and Brodkorb 2008). Electron microscopy has 

shown that the casein micelle has an uneven surface, which has been likened to the 

appearance of a raspberry. This finding was interpreted to mean that the micelle is 
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composed of sub-micelles as pictured in Figure 1, themselves having the κ-casein 

clustered around the surface protecting the calcium sensitive caseins (Fox and 

Brodkorb 2008). This has led to discussions of whether each sub-micelle has this κ-

casein layer, or whether their location in the micelle is determined by their κ-casein 

content, with κ-casein richer sub-micelles clustering around the outside of the 

micelle, shielding κ-casein deficient ones. The lack of a proposed mechanism for the 

association of κ-casein with only certain sub-micelles is the main criticism of the sub-

micelle model (Horne 2002). The existence of the sub-micelle is still debated by 

some authors. Another proposed structure is the „hairy micelle‟ or Holt model in 

which calcium phosphate nanoclusters interact with casein molecules through their 

phosphoserine groups. However, this model does not include a mechanism to limit 

the growth of the casein gel, there is no role for κ-casein as it lacks a phosphate 

cluster and it has no explanation for the prevalence of κ-casein at the micelle surface 

(Horne 2002). 

 

Figure 1: Highly schematic illustration of modified sub-micelle model (Walstra 1999) 

 

Another model has been proposed, in which the assembly and growth of the micelles 

occurs in two ways. These are bonding between the hydrophobic regions of caseins 

and bridging across CCP nanoclusters (Horne 1998). This dual-binding model is 
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depicted in Figure 2. It relies on the previously well-known property of the caseins to 

self-associate into polymers. Proponents of this model believe it provides satisfactory 

mechanisms for assembly, growth and termination of growth of the micelle. 

 

 

Figure 2: Schematic depiction of casein conformations proposed under the dual-

binding model (Horne 2002) 

 

Other models competing with the sub-micelle model also depict the micelle as casein 

molecules joined by CCP and hydrophobic bonds. Further improvements in electron 

microscopy may be able to help clarify the situation and allow further refinements to 

these models (Fox and Brodkorb 2008).  
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2.3 Coagulation of Milk 

The stability of casein micelles in milk is dependant on the negative charge and 

hydrophilic nature of the C-terminal ends of the ĸ-casein at the casein micelle surface 

(Hallén 2008). Coagulation of milk can be induced by broadly two different methods; 

enzymatic hydrolysis or acidification. These result in quite different casein curd 

properties, some of which are summarised in Table 5 below. 

 

Table 5: Properties of gels made by rennet or by slow acidification (Walstra et al. 

2006) 

Property Rennet Gel Acid Gel 

pH 6.65 4.6 

Fractal dimensionality 2.25 2.35 

Elastic shear modulus (Pa) 30 100 

Fracture stress (Pa) 10 100 

Fracture strain ~3 ~1 

Size of largest pores (µm) ~10 ~18 

Occurrence of syneresis Yes Virtually none 
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2.3.1 Enzymatic coagulation 

Cheese is probably the most well known product of enzymatic coagulation. This 

process primarily uses rennet, the term for the clotting enzymes originally sourced 

from the abomasum of calves. The primary enzyme of rennet is chymosin, which has 

a high specificity for the peptide bond between residues 105 and 106 (Phe-Met) of ĸ-

casein. The hydrolysis of ĸ-casein results in two segments, and the “hairs” of the 

micelle being much reduced in length. The segment remaining in the micelles is 

known as para-ĸ-casein, while the hydrophilic part released into the whey is known 

as caseino-macropeptide (CMP) or glycomacropeptide (GMP) and can be isolated for 

use as a food ingredient (Tek et al. 2005). When approximately 70% of the ĸ-casein 

has been hydrolysed the colloidal stability of the micelle is sufficiently reduced for 

aggregation to begin to occur (Walstra et al. 2006). The micelles form a gel through 

hydrophobic bonding, which is further solidified by calcium cross-linking between 

the para-casein micelles. As the cross-links increase the contraction of the gel, whey 

is expelled from the structure. 
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2.3.2 Acid coagulation 

The other method of milk coagulation is by acidification. This occurs naturally 

through the effect of lactic acid bacteria, though direct addition of acid achieves the 

same result. Acid coagulation is used in the production of some cheeses, known as 

fresh acid cheeses or lactic cheeses. These differ from yoghurts and other fermented 

dairy products in that some of the moisture is often removed by separation or 

ultrafiltration prior to inoculation (Lucey 2002). 

 

Various interactions are responsible for the integrity of the casein micelle. The 

lowering of the pH by acid, either added or produced by bacteria, reduces the 

negative charge repulsion forces between the casein micelles and as the isoelectric 

point of the casein micelle (pH 4.6) is approached the micelles begin to aggregate. 

The lowering of pH by acid causes colloidal calcium phosphate to become soluble 

and dissociate from the micelle (Walstra and Jenness 1984). This causes the micelle 

to swell and become more flexible internally (Lucey 2002) before the casein 

eventually precipitates at pH 4.6. 

 

Depending on the severity of the heat treatment the milk has been subjected to prior 

to acidification, denatured whey proteins (particularly β-lactoglobulin) may form di-

sulphide bonds with ĸ-casein or each other. The interaction of denatured whey 

proteins, associated with the micelles, with each other results in increased curd 

firmness (Lucey and Singh 1998). Although firmer, these gels can also be more 

susceptible to wheying-off, as the gel has undergone greater rearrangement (Lucey 

2002).  
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2.4 Milk Protein Products 

The protein component of milk is utilised to make a vast range of different products. 

This includes various cheeses, individual protein fractions and modified proteins. 

Traditionally, the four major commercial casein products were lactic casein, mineral 

acid casein, rennet casein and caseinates. More recently products with whey included 

have become established. Of these, total milk protein and milk protein concentrates 

are the most significant (Munro 2002). This section covers the three most relevant 

product groups to the project: milk protein concentrates (MPC), whey protein 

concentrates (WPC) and casein products. 

 

2.4.1 Milk Protein Concentrates 

MPCs are milk powders in which the protein content has been increased using 

membrane processing. These differ from casein and whey products in that the protein 

ratios within the product should be broadly the same as skim milk. UF retains almost 

all of the whey and casein while lactose and minerals pass the membrane into the 

permeate phase. This can also be supplemented with diafiltration, with which the 

protein content can reach over 85%. An advantage of MPC production is that it 

provides a source of lactose, which can be further utilised for protein standardisation 

or processed into a range of products. 

 

MPCs are now widely used ingredients in a range of nutritional applications. They 

are frequently used in a similar manner to other milk powders, as an ingredient in 

foods such as desserts, baked goods, low-fat spreads and beverages. They are also an 

effective way to increase the dairy protein content of foods as their blandness limits 

the effect on the flavour of the food. The USA is a major export market for MPCs, 

where they are sometimes a controversial subject due to their perceived displacement 

of domestic milk products. As more unique functional and nutritional properties of 

MPCs have been discovered, they have extended the market for high protein dairy 

products that was once dominated by casein and caseinates (Kelly P. M. 2002).  
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2.4.2 Whey Protein Products 

Whey can be obtained from a variety of different sources. Each of these will produce 

whey with a different composition. Common types are: 

 

 Whey sourced from cheese-making. As well as the soluble components of milk, 

it contains GMP from the hydrolysis of ĸ-casein. Active rennet enzymes and 

starter bacteria may also be present, as well as lactic acid produced by lactic 

bacteria. The cheese making process that the whey has come from also influences 

acidity. Whey with a high salt content can sometimes occur as a result of certain 

types of cheese making, including cheddar-type cheeses (Walstra et al. 2006).  

 Whey from rennet casein manufacture. It shares a number of characteristics with 

cheese whey and will also contain GMP. However, it will have a lower fat 

content and contain no starter bacteria or the resulting lactic acid. 

 Whey from acid casein manufacture. This contains no rennet or GMP and has a 

low fat content compared to cheese whey (Walstra et al. 2006). The pH of the 

whey will be around 4.6 and the shifting of the ionic equilibrium of the casein 

micelles as a result will cause additional minerals, such as calcium and 

phosphate, to be present (Foegeding and Luck 2002). The acid source may also 

have important effects on this whey. For example, lactic casein whey will contain 

some starter culture and sulfuric acid whey may have increased sulfate levels. 

 

The whey protein products derived from these are primarily whey powders and whey 

protein concentrates. Whey powders are dried whey, which is often also 

demineralised. Whey protein concentrates are products made from a whey source in 

which the protein content has been increased by UF. These are used in specific 

functional and nutritional applications. The whey protein content of these products 

ranges from 25% to over 90% (Foegeding and Luck 2002). Generally though, WPCs 

are produced with protein concentrations from 35 to 90%. If the protein concentration 

is over 90%, they are known as whey protein isolates, though the exact 

categorisations can vary. Other compositional properties of whey powders are 

summarised in Table 6. The processing of whey into whey protein concentrate is 
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usually achieved by pressure-driven membrane separation techniques such as UF. To 

get the higher concentrations required for whey protein isolates, diafiltration can also 

be used. Depending on the whey source, the lactose removed during these steps may 

be of use. Lactose from cheese or rennet casein making can be utilised for milk 

protein standardisation of other dairy products. This provides an economical 

alternative for dairy manufacturers to purchasing dried lactose for the same purpose. 

Whey from acid casein production is however not as useful for this as it contains 

additional minerals and salts from the acidification process, and has a low pH.  

 

Table 6: Average composition of whey products (Foegeding and Luck 2002) 

Ingredient Protein (%) Moisture (%) Lactose (%) Fat (%) Ash (%) 

WPC35 34.0 – 35.4 3.5 – 4.0 51.0 – 54.5 3.5 – 5.0 3.1 – 8.0 

WPC80 80.0 – 83.0 4.2 – 5.5 4.2 – 10.0 4.2 – 10.0 2.9 – 5.0 

WPI 92.0 – 96.1 4.0 – 5.5 0.6 – 2.0 0.4 – 1.0 2.6 – 3.4 

 

Whey protein products are sought after for their functionality, in particular their gel 

forming properties. Their nutritional benefits are also becoming increasingly 

recognised. Whey protein is one of the most nutritionally complete proteins known 

and is rapidly absorbed into the bloodstream after consumption. This has led to it 

being used in a vast array of nutritional formulations. For many consumers, having a 

high protein content is the primary concern, even over others such as taste and 

solubility. 

 

2.4.3 Casein Products  

Until the 1960‟s the major use of casein was in technical, or non-food, applications 

(Southward 1998). These included adhesives, coatings and plastics. From the 1970‟s 

however, the main use of casein products gradually began to transition to food 

product applications. This was largely as a result of the increased recognition of 

casein‟s functional properties in food systems. Primarily these include whipping, 

foaming, water-binding, thickening, emulsification and textural effects (Southward 



20 

 

1998). Casein is now a commonly used nutritional ingredient and is produced in large 

quantities, as shown in Table 7 below. Casein must be made from highly skimmed 

milk, with a heat treatment that denatures as little of the serum protein as possible 

(Walstra et al. 2006). All methods of casein production involve making it insoluble; 

the difference in them depends on how this is achieved. Micellar casein is an unusual 

exception to this as it is processed in a soluble form. 

 

Table 7: Annual production of casein in selected countries (000’s tons) (Southward 

2002) 

Country 1994 1995 1996 1997 1998 1999 Mean 

Australia 4.6 6.5 6.2 5.6 9.0 7.5 6.5 

Denmark 11.9 12.5 12.7 12.0 - - 12.3 

France 26.4 38.2 35.4 34.4 38.3 42.6 35.9 

Germany 8.4 12.4 12.4 10.6 12.9 11.9 11.4 

Irish 

Republic 
36.0 42.5 42.7 42.0 42.0 46.1 41.9 

Netherlands - 33.0 - - 31.5 - - 

New Zealand 79.4 70.0 79.2 92.2 103.7 86.7 85.2 

Poland 3.0 3.0 2.2 1.3 6.9 - 3.7 

 

2.4.3.1 Acid Casein 

Acid casein is produced by acidifying skim milk to pH 4.6, leading to curd formation. 

The casein curd must then be separated from the whey, and washed so that as many 

impurities as possible are removed. It can then be dried as casein powder or continue 

on through the caseinating process. A variation on this is the use of lactic acid 

producing bacteria to acidify the milk. In this process the milk is pumped into a silo 

with the culture added in a frozen or freeze-dried form and held at the optimal 

temperature for the culture‟s growth. The culture utilises lactose within the milk to 

produce lactic acid. Once the casein has coagulated, the silo is pumped out 

(Southward and Walker 1980). Lactic casein is popular due the perception that it is a 



21 

 

more „natural‟ process, as well as its flavour. The physical appearance, composition 

and functional properties of lactic and mineral acid casein are similar (Munro 2002). 

Disadvantages of this casein process generally relate to the unpredictability that 

comes with any biological process. Starter culture selection must consider their 

growth rate, as this directly impacts the throughput of the process. Proteolysis is also 

a concern as this represents a direct loss of products. Strains such as Lactococcus 

lactis subsp. lactis biovar. diacetylactis produce diacetyl during gas-production which 

can impart a taint into the whey and derived products. Gas production can be a useful 

property however, as it results in a more open, porous curd. No single bacterial strain 

is able to satisfy all requirements, so in practice a mixed culture of strains is used. 

Specific strains can be added or removed to prevent bacteriophage levels becoming 

too high in the plant and surrounding area. Of the genus Lactococcus, only 

Lactococcus lactis subsp. lactis and Lactococcus lactis subsp. cremoris are used as 

starter cultures in food fermentations (Limsowtin et al. 2002, Southward 2002). Acid 

casein which is produced by direct acid addition is generally known as mineral acid 

casein, while casein from the starter culture process is known as lactic casein, not to 

be confused with the less common production of casein from the direct addition of 

lactic acid. 
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2.4.3.2 Rennet Casein 

The action of rennet on casein was discussed in section 2.3.1. Commercial rennet 

casein production may use highly purified rennet preparations from a microbial 

source or the traditional calf rennet. Although the specifics of the process are 

different from acid casein, after the coagulation point it undergoes broadly the same 

process as other casein types. One point of note is that there is a loss of around 4% of 

protein by weight as the CMP split off from the ĸ-casein is lost into the whey stream 

(Walstra et al. 2006). 

 

2.4.3.3 Caseinates 

Acid casein products can be further processed by solubilising them in alkali and then 

drying them. These soluble casein powders are known as caseinates, with a pre-fix 

normally indicating the alkali used. Common examples are sodium caseinate, calcium 

caseinate and potassium caseinates. The alkalis used to produce these are NaOH, 

Ca(OH)2 and KOH respectively. These products have useful functional properties 

which differ greatly depending on the alkali used. Calcium caseinate in particular is 

quite different to sodium and potassium caseinate, and requires the use of ammonia in 

the process to help solubilise the curd. Caseinate is typically a fine white power that 

is readily soluble in water if properly dispersed (Munro 2002). 

 

2.4.3.4 Micellar Casein 

A microfiltration membrane of the correct pore size can be used to remove almost all 

serum proteins from skim milk. This leaves a retentate with concentrated casein still 

in its micellar form. The retentate is diafiltered to further remove dissolved 

substances (Walstra et al. 2006). The resultant product can be dried and then 

reconstituted with little apparent effect on the micelles. Micellar casein is not a 

commercial product to the same degree as the others discussed, though its unique 

properties mean that it may become more common in the future. The development of 

cross-flow microfiltration technology may facilitate the commercialisation of native 

micellar casein, as well as its unique whey protein isolate co-product (Daufin et al. 

2001).  
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2.5 Commercial use of milk proteins 

Some of the earliest commercial uses for dried casein products were what are now 

known as the „technical‟ applications. This was where it was used to make functional 

objects such as buttons and knitting needles. These types of uses have become far less 

common due to the ubiquity of plastics. Today, milk protein preparations are far more 

valuable and are primarily used in foods. Walstra et al. (2006) separates the reasons 

for the use of milk proteins into the following four main groups: 

 

 Provide foods with a specific nutritive value 

 Replace more expensive proteins 

 Provide a product with specific physical properties 

 Make novel products 
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2.5.1 Functional Properties 

The functional property of a material is its ability to produce a specified property in 

the environment to which the material is applied (Walstra et al. 2006). The relatively 

high cost of milk proteins means that they are used often when very specific 

functional properties are required. Some of these and their associated foods are given 

in Table 8 below. The properties can often be modified by the processing conditions 

used to isolate them, meaning that maintaining the consistency of proteins sold into 

functional applications often represents a significant challenge to manufacturers.  

 

Table 8: Functional properties of milk proteins in food systems (Singh 2002) 

Functional Property Food System 

Solubility Beverages 

Emulsification Coffee whitener, cream liqueurs, salad dressings, desserts 

Foaming Whipped toppings, shakes, mousses, cakes, meringues 

Water-binding Bread, meats, bars, custard, soups, sauces, cultured foods 

Heat stability UHT and retort-processed beverages, soups, sauces, custard 

Gelation Meats, curds, cheese, surimi, yoghurt 

Acid stability Acid beverages, fermented drinks 
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2.5.2 Functional properties of casein products 

The solubility of a dried protein product over a range of pH, temperatures and 

concentrations can be a good predictor of other functional properties (Singh 2002). 

Caseins are completely insoluble in water without pH adjustment and so in most 

commercial applications they are dissolved in alkali before use (Munro 2002). Casein 

molecules tend to unfold in solution, which can markedly increase their viscosity 

(Walstra et al. 2006). An essential factor in causing a high viscosity is the association 

of the molecules, both by hydrophobic and electrostatic interactions (Walstra et al. 

2006). Sodium caseinate is becomes exponentially more viscous with increasing 

protein concentration. At concentrations greater than 15% this can make it very 

difficult to process, though calcium caseinate does not share this property to 

anywhere near the same degree (Singh 2002). 

 

Milk proteins have excellent emulsifying properties and are often used to form oil-in-

water emulsions and stabilise them against physical changes (Walstra et al. 2006). 

Caseins and whey proteins are surface active and are rapidly adsorbed (Singh 2002). 

Caseinates in particular are widely used for this application in foods, where their 

emulsifying capabilities often see them used over cheaper protein sources. The 

surface activity of milk proteins also allows them to adsorb to the air-water interface 

during foam formation (Singh 2002). In the absence of lipid, sodium and potassium 

caseinates create copious and stable foams. Calcium caseinate is however not so 

suitable (Walstra et al. 2006). Overrun is a measure of the amount of gas that can be 

held within a foam. An un-denatured whey protein concentrate at only 3 or 4% 

concentration can achieve an overrun of 1000% with relatively good stability 

(Walstra et al. 2006). Caseinates generally give higher overruns than whey protein 

products but at the expense of foam stability (Singh 2002). Casein micelles are also 

able to bind large quantities of water in their native state (Singh 2002). This is 

important in many foods, particularly when used in viscous products such as soups 

and custards (Singh 2002)  
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2.6 Commercial lactose utilisation 

Increasing use of UF in the dairy industry, and the resultant ability to standardise 

protein content, has led to greater planning being required around lactose utilisation. 

The increasing production of WPCs also means that large volumes of whey permeate 

are available, the major component of which is lactose. Average compositions of 

some lactose-rich process streams are summarised in Table 9 below. Although New 

Zealand is a major dairy exporter, some domestic dairy companies import lactose for 

protein standardisation purposes, while others export lactose and derived products. 

Depending on the mix of products being made at a factory at a given time, there may 

be a surplus or deficit of lactose on-site. Dry lactose is a shelf-stable alternative to the 

requirement for milk permeate to reduce protein content. 

 

Table 9: Average composition (% by wt) of lactose-containing streams (Zadow 1984) 

Product Na Ca Mg K Ash NPN Lactose 

Skim milk permeate 1.01 0.43 0.11 2.36 10.0 3.43 84 

Cheese whey permeate 1.12 0.70 0.15 2.74 10.2 3.57 86 

Whey 0.75 0.70 0.12 2.57 5.0 3.30 77 

 

Early large-scale production of lactose involved removal of proteins from whey, 

followed by concentration, filtration, crystallisation and centrifugation. This resulted 

in about a 50% lactose recovery, while the mother liquid was sold as de-lactosed 

whey powder. This had to be carried out on a large scale to be viable (Zadow 1984). 

The physical properties of lactose make it a useful additive in the food and 

pharmaceutical industries. Lactose lacks sweetness compared with other sugars and 

has a moderate, clean flavour with no aftertaste. This means that lactose is suitable 

for incorporation into foods or beverages at relatively high concentrations. For 

example, it can be used at double the concentration of glucose or over triple the 

concentration of sucrose at equivalent levels of sweetness (Muir 2002). Lactose can 

also confer „body‟ or mouthfeel to foods (Muir 2002). However, the nutritional uses 
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of lactose are limited by the high occurrence of lactose intolerance in many regions 

(Schaafsma 2002). 

 

Lactose can be used as a substrate for fermentation processes and is used routinely for 

the production of ethanol (Muir 2002). Pharmaceutical lactose is of a sufficient 

quality that it conforms to the requirements of national and international 

pharmacopoeias, rather than the lower standard required for edible lactose (Booij 

1985). Quality issues for lactose can include turbidity caused by residual proteins and 

calcium phosphate. The presence of riboflavin will cause a yellow colour, while 

minerals will increase the ash content (Booij 1985). The primary pharmaceutical use 

of lactose is as a tabletting agent or binder. Properties of lactose which make it widely 

used for this purpose are its neutral taste, low hygroscopicity, low reactivity and good 

flow properties (Booij 1985). A newer pharmaceutical application is inhalation-grade 

lactose, in which the lactose crystals are fine enough to be inhaled without causing 

irritation of the respiratory tract. This product is used in dry-powder inhalers, 

particularly for asthma and chronic obstructive pulmonary disease. Lactose can also 

be converted into useful derivatives. Important amongst these are lactulose, lactitol, 

galacto-oligosaccharides, lactobionic acid and tagatose (Mann 2002, Schaafsma 

2002). Lactulose and lactitol have prebiotic effects and are widely used in the 

treatment of patients with chronic hepatic encephalopathy and chronic constipation as 

both are not absorbed in the small intestine and are fermented by the intestinal flora 

(Schaafsma 2002). The main use of Lactulose is as a mild laxative, and it is a growth-

promoting factor for Bifidobacterium species (Mann 2002, Schaafsma 2002). 

 

The various uses of lactose and derived products mean that lactose is not just a by-

product of dairy processing, but can be economically significant if sufficient 

quantities are available in a useable state. Dairy processors can find themselves in the 

position of purchasing dry lactose for standardisation at certain times of the dairy 

season, while having to dispose of excess lactose at others. The price of lactose also 

varies with other dairy commodity prices so the ability of a dairy manufacturer to 

remain in a positive lactose balance can be economically important.  
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2.7 Milk Processing 

The perishability and seasonal production of milk meant that traditionally, any 

surplus was made into more stable products for later use. Butter, ghee, fermented 

milks and cheese are examples of long-established products that were made for this 

reason. It is believed that some dried milk was also made by sun-drying (Fox 2002, 

Pearce 1998). While these products are still widely produced and consumed, the 

introduction of new technologies over the last 130 years has allowed the development 

of new products. Liquid products which fit into this category include sweetened 

condensed milk, UHT milk and ice creams (Fox 2002). These new processing 

technologies have also allowed the introduction of many dry products such as milk 

powders and milk protein products. New Zealand‟s dairy industry is unusual in that 

the vast majority of the domestic milk supply is exported. This is possible only 

because of the development of dried dairy products and therefore by necessity, most 

domestic milk is converted to shelf-stable products. The most common of these is 

milk powder, which is used as an ingredient in many other foods. Approximate 

compositions of selected dairy powders are summarised in Table 10 below. 

 

Table 10: Composition (% w/w) of selected powders, adapted from Walstra et al. 

(2006) 

Constituent 
Wholemilk 

Powder 
Skimmilk 
Powder 

Whey 
Powder 

Buttermilk 
Powder 

Acid 

Casein 

Sodium 
Caseinate 

Fat 26 1 1 5 1 1 

Lactose 38 51 72 - 74 46 0.1 0.1 

Casein 19.5 27 0.6 26 88 92 

Other Protein 5.3 6.6 8.5 8 - - 

Ash 6.3 8.5 8 8 1.8 3.5 

Lactic acid - - 0.2 – 2 - - - 

Water 2.5 3 3 3 10 4 
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2.7.1 Membrane Separation 

Membrane separation is the general term for processes which use semi-permeable 

membranes to selectively remove solutes from fluids based on their size. The range of 

applications for these techniques is vast. In the dairy industry alone, membrane 

separation can be used for pre-concentration, partial demineralisation, protein 

separation, bacteria removal, brine clarification and wastewater recycling as shown in 

Figure 3. This represents one of the greatest technological developments in dairy 

processing during the latter half of the 20
th

 century (Kelly P. M. 2002). The food 

sector is responsible for 20 - 30% of the total turnover of membrane manufacturers. 

Of this, the dairy industry represents 40%, of which over 10% is used for protein 

standardisation (Daufin et al. 2001). Microfiltration (MF), reverse osmosis (RO) and 

UF are all membrane separation techniques, the only fundamental difference between 

them being the pore size of the membranes used, which controls the types of 

materials that may cross them. UF membranes retain macromolecules such as protein, 

while allowing the passage of lower molecular weight substances such as lactose and 

minerals. 

 

In a dairy application, membrane elements are generally of the spiral-wound type. 

These are effectively two sheets of membrane material separated by a supporting 

sheet and two mesh feed spacers. The assembly is then wrapped around a permeate 

collecting tube. This design allows the membrane installation to be very compact, 

thereby helping to minimise capital and installation costs (Kelly P. M. 2002). In an 

industrial setting, membrane plants are generally configured to operate continuously 

on a multistage recycle (MSR) system. This allows for the declining volume of 

retentate due to concentration to be processed in a separate stage, so that diminishing 

velocity and higher viscosity can be corrected for (Kelly P. M. 2002). 
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Figure 3: Overview of the membrane separation spectrum as applied to milk 

processing. RO, reverse osmosis; NF, nanofiltration; UF, ultrafiltration; MF, 

microfiltration (Kelly P. M. 2002)  
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2.7.2 Milk reception and liquid processing 

After milking, collection and transportation, raw milk is stored on the processing site 

until entering the plant. The milk first undergoes a heat treatment known as 

pasteurisation. This is not intense enough to completely sterilise the milk, as a 

balance must be found between product safety and quality. Instead, pasteurisation is 

designed to kill all of the non spore-forming pathogenic organisms commonly found 

in milk. Early pasteurisation systems heated milk to 63 - 65°C for around 30 minutes, 

before cooling. This process was known as low-temperature long-time pasteurisation 

(LTLT). This has now been superseded in most cases by plate heat exchanger based 

systems, which heat milk to 72 - 74°C for at least 15 seconds. This approach has very 

high-throughput and is known as high-temperature short-time pasteurisation (HTST) 

(Kelly A. L. and O'Shea 2002).  

 

The next processing step is separation of fat, creating two product streams: cream and 

skim milk. This is performed on a large scale by centrifugal separators, which operate 

almost continuously. This processing step is applied in the manufacture of nearly all 

dairy products, as it allows standardisation of products to a desired fat content 

(Walstra et al. 2006). The cream can then be further processed into a variety of 

products including liquid cream, butter or anhydrous milk fat. It may also be added 

back into the skim milk during further processing, to allow precise standardisation of 

fat-containing milk products. In this way, the dairy manufacturer can account for the 

seasonal and geographical variation in fat levels. Fat standardisation has been 

common practice for many decades, as traditionally fat was the most valuable milk 

component (Rattray and Jelen 1996).  

 

Most commonly, the next step will be protein standardisation. It was not until 1999 

that the Codex Alimentarius allowed the protein standardisation of milk powders by 

UF and specified a minimum protein value of 34%. The definition of protein 

standardisation implied by the International Dairy Federation consists of relatively 

small changes in protein concentration, within the limits of natural variability 

(Rattray and Jelen 1996). The resulting consistency of the milk or derived products is 
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beneficial to both milk processors and consumers. The decision to allow protein 

standardisation was promoted since the 1980s, largely by New Zealand and Denmark, 

both of whom have a large international trade in milk powders, as well as a natural 

protein content significantly higher than average (Burgess 1997). During 

standardisation, the protein content can be increased by UF. Reduction of protein 

content requires the addition of lactose, which effectively dilutes the protein content 

by increasing the non-protein solids content. This may be achieved by adding lactose 

made from dry lactose powder, or by addition of milk permeate. This is commonly 

done at the start and end of the dairy season, when protein levels elevate beyond their 

normal range, as shown in Figure 4. From this point any number of dairy products 

can be produced. 

 

Figure 4: Changes in the concentration of fat (∆), protein (□) and lactose (○) in milk 

during lactation (Fox and McSweeney 1998) 
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2.7.3 Milk Powder Manufacture 

As stated, the New Zealand dairy industry primarily produces milk powders for 

export. Milk powder production is a high-throughput and largely automated process. 

Economies of scale mean that dairy companies have consolidated and ever-larger 

drying plants are becoming more common. Liquid milks, protein concentrates and 

some other products are dried in much the same way, depicted in Figure 5. The initial 

step after standardisation is a heat treatment known as pre-heating. This is performed 

using plate heat exchangers at temperatures of 88 - 95°C for 15 - 30 seconds. The 

objectives of this heat treatment are to destroy pathogenic bacteria and inactivate 

enzymes. An important consequence of this is the controlled denaturation of whey 

proteins (Pearce 1998), including the activation of the sulfhydryl groups of β-

lactoglobulin, which results in an anti-oxidative effect (Caric 2002). 

 

 

Figure 5: The milk powder manufacturing process. Adapted from Pearce (1998)  
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The milk next undergoes evaporation in falling film evaporators. These operate under 

reduced pressure, to allow the evaporation to take place at lower temperatures and 

reduce heat damage. Modern evaporators utilise multiple effects, with a progressive 

pressure reduction allowing vapor separated in the first effect to evaporate the water 

in the second effect and so on. This is quite efficient, using around a tenth the energy 

of the next drying stage. However, it is only able to concentrate the milk up to 

approximately 50% total solids (Pearce 1998). Older drying methods such as roller 

drying have largely been phased out (Caric 2002). Spray drying is now the industry 

standard. Spray dryers consist of a tall stainless steel cylinder with a conical lower 

section, though they vary somewhat in design. Heated air enters the drying chamber 

through the top, and exits lower down the chamber. Milk concentrate enters the top of 

the drying chamber as an atomised spray. The atomisation of the concentrate is 

achieved by one of two methods depending on dryer design. Disc dryers contain a 

disc rotating at 10000 - 20000 RPM into which the concentrate is fed. Nozzle dryers 

use a series of lances pointing into the drying chamber, tipped with nozzles that 

atomise the concentrate by pressurising it at 17 – 25 MPa to force it through a 

specially designed orifice (Caric 2002). Both dryer designs have major impacts on the 

nature of the milk powder particles produced. Atomising the milk concentrate 

increases its surface area, so that as it enters the drying chamber concurrently with the 

heated air there is a rapid and intensive transfer of heat from air to milk, and mass 

from milk to air (Caric 2002). Evaporative cooling means that during drying the milk 

powder actually reaches no greater temperature than the outlet air from the dryer 

(Pearce 1998). Some powder is entrained in the air exiting the dryer and is recovered 

by cyclonic or bag-house separation. In a two-stage dryer, the powder then enters a 

fluidised bed for its final drying. Two-stage dryers produce milk powders with better 

reconstitution properties and have improved heat utilisation compared to single-stage 

dryers (Caric 2002). The primary advantage of spray drying is the gentle treatment of 

the milk, by reducing heat exposure and the low residence time. As well, the high 

level of automation possible with spray drying reduces process costs. Disadvantages 

include its relatively high energy usage and its large up-front capital cost. 
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2.7.4 Acid casein manufacture 

The commercial production of casein has occurred for most of the 20
th

 century. Until 

1960, the majority of this was for non-food applications. This has since however 

changed to its use now being predominantly in foods, which has resulted in greater 

requirements for quality and purity (Southward 2002). Many advances have been 

made during this time, due both to an increased understanding of milk and casein 

itself, as well as the availability of new processing technologies and equipment. The 

manufacture of the major types of casein all involve precipitation of casein from skim 

milk, heating, whey separation, multiple-stage washing, dewatering and drying of the 

resultant precipitate (Mulvihill 1989). The lactic acid casein process is depicted in 

Figure 6 below. The focus of this section will be on mineral acid casein, precipitated 

by sulphuric acid, as this is the primary product of the plant being studied. Sulphuric 

is the standard acid used for this purpose in New Zealand, while hydrochloric acid 

precipitation is most commonly used overseas (Southward 2002). Skim milk can be 

considered the basic material from which all casein products are made (Southward 

1998). 

 

2.7.4.1 Precipitation 

The initial stages of casein manufacture are known as wet-processing and the post-

dewatering stages as dry processing. In mineral acid casein production, acid is added 

to skim milk as it flows through static mixers welded into the inside of the line. The 

milk from this point is referred to as the separate components curd and whey, or 

collectively as the coagulum. This is a key control point for the process, as the rate of 

acid addition is altered by the operators depending on the pH attained. During steady 

state running this should not require much adjustment. 
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Figure 6: Generalised outline of lactic casein production from skim milk. 

Annotations: Wm -whole milk, Sm - skim milk, Co - coagulum, Cas - casein (Munro 

2002)  
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2.7.4.2 Cooking 

The next stage of the process is known as “cooking” and involves the controlled 

heating of the curd. Heat causes the curd particles to contract and expel trapped whey, 

a phenomenon known as syneresis, as well as making it more cohesive and resistant 

to breakdown during further processing steps. Heating also promotes agglomeration 

of the casein granules (Southward 2002) which helps prevent the loss of fine 

particles. The cooking temperature in generally within the range 50 - 57°C, though 

this may be changed depending on downstream conditions. There are a variety of 

plant configurations available for cooking of casein. The most common of these are 

injection of steam directly into the pipeline carrying acidified milk, indirect heating 

by heat exchanger or some combination of the two (Southward 2002). The plant 

being studied uses a tubular heat exchanger in conjunction with direct steam 

injection, a common design. The coagulum then enters the „low-velocity cooker‟, a 

larger diameter pipe with a 10 - 60 second residence time (Southward 2002) that 

allows the casein to agglomerate due to the less turbulent conditions, resulting in 

reduced generation of fine particles which may otherwise be lost during subsequent 

processing steps.  

 

2.7.4.3 Acidulation 

After cooking the coagulum begins „acidulation‟. This takes place in a long vat, 

gently agitated by paddles. The volume of the acidulation vat is sufficient to provide a 

residence time of at least 10 minutes to all of the coagulum. The purpose of 

acidulation is to allow time for the dissociation of calcium and phosphate from the 

casein. Another important aspect of this stage is that it allows continued 

agglomeration of the casein. Acidulation is especially important to allow equilibrium 

to be attained between the calcium in the curd and in the whey (Southward 2002). 

Ideally, the final preparation should contain all of the casein and none of the colloidal 

calcium phosphate (Walstra et al. 2006). The acidulation vat provides a useful point 

for assessment of the casein. If curd taken from the vat is hard or rubbery, the pH is 

probably too high and the acid addition rate may need to be increased. Alternatively, 

if the curd is overly soft the acid may need to be decreased. The ideal curd at this 
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stage is soft and spongy but still able to maintain its structure, and should readily 

expel whey when squeezed. 

 

2.7.4.4 De-wheying 

The casein now must be separated from the whey stream in which it is entrained. This 

is sometimes performed by running the coagulum over screens which retain the curd 

and allow the whey to drain through. This does not result in a particularly good 

recovery of whey, as no direct pressure is applied to the curd to expel it. The modern 

method of de-wheying is a horizontal solid-bowl centrifuge, known as a decanter 

(Southward 2002). The separated whey stream is then put through a clarifying 

centrifuge to remove any casein fines before being concentrated by UF for further 

processing, while the de-wheyed curd continues on to be washed. 

 

2.7.4.5 Washing 

The casein stream at this stage consists of casein curd, with some whey trapped 

between or within curd particles. Impurities contained within the whey, which can 

affect final casein quality, include lactose, whey proteins, minerals and residual acid. 

The properties of the curd produced prior to entering the washing system greatly 

affect the washing stage. With a curd that is too fine, unacceptable amounts of protein 

will be lost to the wash water and wasted. Conversely, a tough curd will make it more 

difficult for impurities to diffuse out into the wash water. Washing is a water 

intensive part of the process and is one of the most heavily studied parts of 

commercial casein manufacture. Washing in modern casein plants is done by a 

counter-current system. Under this, the purest wash water encounters curd which has 

already been mostly washed, while the wash water most concentrated with impurities 

from previous washing encounters the unwashed curd. This results in the most 

efficient use of wash water.  
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2.7.4.6 Dewatering 

Residual moisture is removed from the curd prior to drying in a process stage known 

as dewatering. The washing temperature is important to dewatering as it affects curd 

texture. With a high wash water temperature, more water is released during 

dewatering but a tougher, more plastic curd results which is harder to dry. Washing 

temperature therefore needs to be controlled to optimise the minimum moisture 

requirement and curd friability (Southward 2002). Efficient dewatering lowers the 

evaporative load required of the dryer, and results in improved process economics. 

The plant being studied uses a Conturbex screen centrifuge. This consists of a 

rotating mesh cone into which the curd is fed. The curd works its way to the wide end 

of the cone while liquid is removed from the narrow end and through the mesh. This 

results in a friable curd containing around 50% moisture.  

 

2.7.4.7 Drying 

A number of drier types are suitable for casein drying, including pneumatic-

conveying ring driers and attrition driers. Most commonly used though are horizontal 

vibrating fluid-bed driers (Southward 2002). These consist of two levels of perforated 

trays through which heated air (75 - 115°C) is blown upwards, which in combination 

with the shaking of the drier, fluidises the casein. The gradually drying casein works 

its way along the top deck before falling through a rotating grinder, which breaks up 

any large lumps, then working its way back along the lower deck. Adjustable weirs at 

the end of the decks set the product depth at each level, and thereby help control the 

level of fluidisation and residence time. The major control point for the dryer is the 

outlet temperature. Product off the end of the dryer is closely monitored to be within 

a specified moisture range. Most moisture is removed during early stages of drying as 

it evaporates from the particle surface. The later stages require transfer of moisture 

from the centre to the surface of particles, which is a much slower process 

(Southward 2002). The robust nature of dried casein results in some potential 

problems during drying. These include case hardening, in which only the outer layer 

of the particle is left dried and rubbery, with moisture trapped in the particle.  
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2.7.4.8 Tempering and Milling 

The casein is cooled by air while being conveyed to tempering bins. The purpose of 

tempering is to provide sufficient time (8 - 24 hours) for moisture equilibration to 

occur within and between casein particles (Southward 2002). Without this step, 

moisture remains trapped within the relatively large and robust casein particles. This 

results in plasticised or rubbery casein and reduces the effectiveness of milling. The 

casein is then milled and sieved into various particle size fractions. Particle size of 

casein is generally measured using „mesh‟ sizes, which denotes the number of holes 

per inch in a sieve. Common sizes for casein are 30 and 80 mesh, which correspond 

to 600 µm and 180 µm apertures respectively. After milling, the casein is blended to 

ensure uniformity within each batch. It is generally packed into the dairy industry 

standard 25 kg bags, though much larger bulk bags can also be used. Casein is shelf 

stable for several years, when stored at temperatures below 20°C and relative 

humidity below 70%. 
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2.7.5 Caseinate Manufacture 

The caseinate process is the neutralisation of acid casein with alkali (Southward 

2002). This can be performed on dried casein, or using dewatered curd directly from 

the casein process outlined above. The casein or curd is suspended and hydrated in 

water before being passed through two colloid mills. In the second of these mills, the 

alkali is injected directly into the hydrated casein. The caseinating reaction then takes 

place in a heated and agitated reaction vessel. The caseinate solution moves through a 

series of these vessels until the reaction is complete and the product is spray dried. 

Caseinates are typically made at concentrations of up to 20% solids (Southward 

2002). The viscosity of sodium caseinate in particular makes exceeding this 

concentration impractical. Exposure of protein to high pH and high temperatures as 

found in many food processing operations, and particularly during caseinate 

manufacture, can result in the formation of cross-linked amino acids. These include 

lysinoalanine (LAL), ornithinoalanine, lanthionine and methyl-lanthionine (Friedman 

1999). The presence of LAL, as well as affecting the digestibility and nutritional 

quality of the protein, has been reported to enlarge the nuclei of kidney cells in rats 

(Friedman 1999). Because of this, measurement of LAL content is often used as an 

indicator of the harshness of processing. Avoiding the use of high pH, high 

temperatures and limiting the proteins exposure time if these treatments are 

necessary, are essential to minimise LAL content. Customer specifications for 

commercial protein products often have stated maximum LAL concentrations, 

generally in the low part per million range. 
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2.8 Ultrafiltration and Casein Making 

This work investigates the effect of using ultrafiltered milk for casein making. The 

overall aim is the elucidation of conditions under which good quality casein can be 

made from milk which has been ultrafiltered to remove most of the lactose. UF of 

milk causes the loss of lactose and soluble salts to the permeate stream, thereby 

increasing the protein content of the retentate on a solids basis. This means that 

lactose from the permeate can be recovered in a usable state and the amount of 

lactose and minerals to be washed out of the casein during washing has also been 

reduced. In practice, the casein plant being studied has made casein from milk at a 

volumetric concentration factor (VCF) of up to two, while anecdotal information 

from other plants is that a maximum VCF of 1.5 – 1.7 is more appropriate. Ideally, 

the milk would be concentrated several times further, to maximise the recovery of 

lactose and increase the throughput of the plant, but currently this is not the case. This 

is because more concentrated retentates result in curd property changes which cause 

problems in the plant. Primarily, high concentration factors cause the formation of an 

overly tough curd, which is difficult to wash effectively, and in the worst cases can 

cause plant blockages. Additionally, the VCF used in the plant already needs to be 

adjusted over the course of the year to account for the seasonal variation in protein 

levels. Any change in the size distribution of curd particles is important as efficient 

solid-liquid separation at the de-wheying, washing and de-watering steps depends on 

particle size. Secondly, mass transfer from the particles in the washing and drying 

steps depends on particle size (Teo et al. 1997). The cause of the tough curd 

phenomenon is believed to be reduced solubility of colloidal calcium phosphate after 

concentration. Although all of the colloidal calcium phosphate is normally solubilised 

in milk after the pH is reduced to 4.6, in milk retentate there is much less water 

present. Figure 7 shows a clear reduction in the proportion of calcium that becomes 

soluble at decreasing pH as the concentration of casein increases. Of particular 

interest is the inset, which shows the calcium solubilised at pH 4.6 as a function of 

casein concentration. 
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Figure 7: Calcium concentration in the aqueous phase of casein micelle suspensions 

as a function of pH. Casein concentrations of each data series have been recorded 

above the first data point of each (Le Graët and Gaucheron 1999) 

 

Richert (1975) specified that casein preferably be precipitated at pH 4.3 to 4.5 as this 

results in a lower ash content in the final product, due to increased solubilisation of 

phosphate at these pH levels and preferable curd handling properties at pH 4.3. 

Presumably, this is because a more „sloppy‟ curd performed well in the systems used 

at the time. Although this is well below the optimal precipitation pH of 4.6, it 

indicates that lower pH has in some cases been a valid option when retention of 

minerals in the curd is a problem. The use of UF has been described as “a revolution 

in cheesemaking” (Mistry and Maubois 1993) and as a result there have been 

numerous studies of UF retentates in cheese applications published. However, there 

appears to be almost no published work directly covering its use in commercial casein 

production available. However, a number of insights can be gained from the work 

into the effect of UF on cheese making and then applied to elements of the casein 

process. 
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When milk is ultrafiltered at its normal pH (6.7), mineral salts (Ca, Mg, P) bound to 

casein micelles are concentrated in the same proportion as the proteins. This increases 

the buffering capacity of the retentates and consequently modifies basic parameters of 

the cheesemaking process such as acidification kinetics and final pH value (Mistry 

and Maubois 1993). This point is equally true of casein making, which as a 

continuous process is potentially even more at risk from deviations from normal 

conditions than carefully monitored batch cheesemaking. Some of these effects could 

be mitigated by pH adjustment prior to UF. Reduction of milk pH from 6.6 to 6.0 and 

5.6 increases the calcium content of UF permeate from 0.38 g/kg to 0.50 g/kg and 

0.80 g/kg respectively. Consequently, a UF retentate at a VCF of five obtained at pH 

5.6 has a Ca content 2.6 times that in milk instead of 3.8 times for the UF retentate 

obtained at pH 6.6 (Le Graët and Gaucheron 1999). Other options include the 

addition of NaCl (0.5 - 0.9%) to UF retentate during or after UF to increase the ionic 

strength, reducing the ionisation of casein phosphoseryl groups and consequently 

leading to solubilisation of colloidal calcium phosphate in the permeate (up to 15 - 

18% depending on the pH and amount of NaCl added) (Mistry and Maubois 1993). 

Although these approaches may not be practical for the purposes of this work, it is 

clear that there are various means of avoiding the problem of mineral retention in 

milk retentate sourced products. 
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2.9 Conclusion 

This chapter introduced a range of milk topics, with the aim of giving context to the 

more detailed discussion of the function, structure and properties of casein. This also 

applied to casein processing, with the more common milk powder process being 

covered due to its cross-over with the preparation of the skim milk required for casein 

manufacture. 

 

The ongoing work to uncover the precise structure of the casein micelle and the 

nature of the interaction between the individual casein proteins was also reviewed. 

For the purpose of this work, the acid precipitation of casein is already understood 

well enough as the departure of CCP from the micelle structure is known to be key to 

the phenomenon. There is little information available in the scientific literature on the 

effect of UF prior to casein manufacture. Some crossover however exists with cheese-

making, so some of the information available on that topic is of use. The work of Le 

Graët et al. (1999) provides analytical data which supports in-plant observations. 

Overall, the practical effect on casein manufacture of UF retentate use has not been 

published though may have been studied by private companies. This means that 

initially the effect of the problem has to be examined, as most of the information on 

the effects comes from observations or informal discussions. This thesis aims to 

clarify these points and find a solution whereby the desire for increased process 

efficiency and lactose recovery can be achieved without compromising product 

quality. 
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Chapter 3. Materials and Methods 

 

3.1 Introduction 

This chapter presents the analytical methods used in this research. These include 

standard dairy industry methods, some modified, which were used to characterise the 

products used and produced in both the commercial process and laboratory 

experiments. Other methods were also used to provide additional information to that 

normally required during the production of casein products. 
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3.2 Calcium by complexometric titration 

The method determines calcium content using a complexometric back-titration. A 

known quantity of EDTA solution is added to the dissolved sample, which is then 

titrated with a calcium chloride solution in the presence of indicator. This test has 

been widely applied to calcium measurement of milk and milk powder but is also 

suitable for protein products with some changes to the sample preparation. The test 

method is based on an EDTA titration described by Vogel (1989). 

 

Testing procedure 

Casein was weighed accurately into a 150 ml Erlenmeyer flask and mixed with 30 ml 

deionised water. 0.1 M hydrochloric acid was then added to solubilise the sample. For 

casein testing the particles must be finely milled and may require heating up to 60°C 

under agitation before the sample is completely dissolved. A volume of 0.010 M 

EDTA solution 10 ml in excess of that sufficient to complex all of the calcium 

present was added. Magnesium sulfate solution was then added before the pH was 

adjusted to exceed 10 by adding 8 M sodium hydroxide. Under these conditions, all 

of the magnesium is present as Mg(OH)2 instead of an EDTA complex since calcium 

forms a more stable complex with EDTA than magnesium does (Kaur 2007). After 

sufficient mixing, 0.1 g of Patton and Reeders indicator (2-hydroxy-1-(2-hydroxy-4-

sulpho-1-naphthylazo)-3-napthoic acid) was added and the sample was titrated with 

0.01 M CaCl2. A subtle colour change from purple to pink indicates the end-point. 

Calcium concentration was calculated by: 

 

 

Where: 

V = Volume, in millilitres, of standard EDTA solution added to sample 

T1 = Volume, in millilitres, of calcium chloride solution used in the back titration 

W = Sample weight in grams  
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3.3 Calcium by ion selective electrode 

An ion selective electrode (ISE) generates an electrical potential from the activity of a 

specific ion in solution. This can then be measured by a device which gives a 

numerical output. 

 

Use with titration 

The electrode was used in combination with the EDTA titration in an attempt to 

improve end-point detection. This was attempted to see if the two methods could 

provide higher sensitivity and greater accuracy, particularly for the relatively dilute 

whey samples. The titration was carried out as detailed earlier, aside from the 

presence of the calcium electrode in the sample. The volume of titrant added was 

recorded with the corresponding electrical potential in mV given by the electrode 

across a range of values from before to after the endpoint. For measurement, an Orion 

ionplus® calcium combination electrode was used. This is a single junction 

combination electrode. A Metrohm 744 pH meter operating in mV mode was used as 

the output device. 
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3.4 Lactose by Phenol Sulphuric method 

Lactose content is an important property for casein products as residual lactose can 

cause quality issues in the casein, the main one being a noticeable brown colour. 

Lactose is one of the key impurities removed during curd washing and as such, 

residual lactose is a good indicator of washing efficiency. This test utilises the 

reaction of carbohydrates with phenol in sulfuric acid. Casein samples were dissolved 

in sodium bicarbonate solution to release lactose, then removed by acid precipitation. 

Although the test measures all soluble carbohydrates, in this case that is effectively 

only lactose. This test method is from the International Dairy Federation Standard 

106:1982 Casein and Caseinates. Determination of Lactose content. Photometric 

method. 

 

Testing Procedure 

1 g dry casein samples were weighed into 75 ml stoppered glass tubes to which 25 ml 

0.4% NaHCO3 was added. The tubes were placed in a 65°C waterbath until the 

sample was dissolved. After cooling, the pH was adjusted down to 4.4 – 4.6 with 

0.05 M H2SO4. The sample volume was made up to 50 ml with water and the 

precipitated casein was filtered off. The filtrate at this point was checked for clarity to 

ensure that no casein remained in solution. In a test tube 1 ml of the filtrate was 

mixed with 1 ml phenol before 5 ml 98% H2SO4 was rapidly added. The reaction 

gives a pink-orange colour which was measured in a spectrophotometer at 490 nm. A 

standard curve was constructed using lactose standards at 20, 40 and 60 µg/ml, from 

which the lactose concentration of the original casein could be calculated using: 

 

 

Where: 

c = The lactose content as obtained from the calibration graph, expressed in 

grams. 

W = The weight, in grams, of the sample. 

50 = Factor to account for the 50 ml sample size.  
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3.5 Moisture 

The reference method for moisture is the gravimetric method and is suitable for use 

on all milk protein products. Moisture is calculated from the weight loss of the 

sample during drying. The method is based on the International Dairy Federation 

Provisional Standard 78C:1991.  

 

Testing Procedure 

To ensure the sample was representative, the bulk sample was thoroughly mixed. A 

50 g sub-sample was passed through a test sieve with a nominal aperture size of 

500 µm to check the particle size was small enough for moisture to diffuse out during 

drying. A sample unable to pass the sieve would require grinding. An empty metal 

drying dish was dried for at least an hour in an oven (102±2°C) then the weight 

recorded after cooling in a dessicator. 5±0.0001 g casein was placed in the dish 

before it was put back in the oven for three hours. The dish was then allowed to cool 

in the dessicator before being weighed and placed back in the oven for one hour 

before being re-weighed. Once constant weight was achieved the moisture was 

calculated as follows: 

 

 

Where: 

W0 = The weight, in grams, of the empty dish 

W1 = The weight, in grams, of the dish and un-dried sample 

W2 = The weight, in grams, of the dish and dried sample 
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3.6 Spectroscopic rapid analysis  

Near-infrared (NIR) and mid-infrared (MIR) spectroscopy are analytical methods that 

utilise the absorption of light in the infra-red area of the spectrum, used here for 

measuring total solids, protein and lactose. These are the wavelengths from 

approximately 0.8 – 2.5 µm for NIR and 2.5 - 20.0 µm for MIR. If a robust 

calibration is available, results can be obtained almost instantly. This has made NIR 

analysis widely used as a cost and time saving method for industry.  

 

Testing Procedure  

Milk and milk retentate samples were analysed for total solids, protein and, for 

MPC85, lactose on a Milkoscan FT2 (Foss Analytical, Denmark). This instrument 

uses a Fourier transform infrared (FTIR) interferometer which scans the MIR 

spectrum using a diode laser. No sample preparation was required as the instrument is 

designed for the analysis of viscous fluids. The instrument was controlled by an 

external PC running Foss Integrator software. The software package was capable of 

partial least squares (PLS), modified PLS calibrations and principal component 

analysis. Instrument calibrations were created and maintained using the Foss WinISI 

software package in conjunction with reference results obtained by IDF standard 

methods from an accredited dairy testing laboratory.   
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3.7 Protein by Kjeldahl method 

Reference protein content for all sample types was calculated from total nitrogen 

content determined by the Kjeldahl method. This consists of digestion of the sample 

using 98% sulfuric acid, with copper (II) sulfate present as a catalyst, to convert 

organic nitrogen into ammonium sulfate. After digestion the ammonium sulfate is 

converted to ammonia by heating with sodium hydroxide. The ammonia is steam 

distilled into an excess of boric acid solution to form borate, the quantity of which is 

then determined by titration with hydrochloric acid. The method does not give a true 

protein value as the non-protein nitrogen (NPN) component of the product is 

included. The NPN value can be tested separately and subtracted if required. The total 

nitrogen value obtained by this method is converted to protein content by 

multiplication by 6.38. This is the agreed conversion factor for bulk dairy protein, 

though individual proteins may require different values. This method is based on 

International Dairy Federation Standard 20-2B:2001. 

 

Testing Procedure 

The sample was initially weighed and placed into a glass digestion tube with 

potassium sulfate to raise the boiling point of the acid and copper sulfate catalyst. 

Retentates required 1 ml of sample, while powders expected to be over 80% protein 

(all of those tested in this work) required 0.2 g of sample. 15 ml concentrated sulfuric 

acid was added to the tubes before being placed in a Foss Tecator digestion block 

(Foss Analytical, Denmark) where they were progressively heated up to 425°C and 

held for at least 135 minutes. The conversion of ammonium sulfate and the acid 

titration were performed automatically in a Kjeltech 8400 analyser unit with a 

Kjeltech 8420 sampler unit (Foss Analytical, Denmark). The instrument also 

calculates protein values automatically but the calculation used is as follows: 
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Where: 

Vs = The volume, in millilitres, of acid titrant used in the determination 

Vb = The volume, in millilitres, of acid titrant used in the blank sample test 

M = The exact molarity of the standard volumetric solution of acid 

W = The sample mass, in grams 

 

For dairy products, the total nitrogen value must be multiplied by 6.38 to give the 

protein content.  
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3.8 Protein Profile by RP-HPLC 

The protein profiles of skim milk, UF retentate and casein samples were analysed by 

reversed phase high performance liquid chromatography (RP-HPLC). RP-HPLC 

separates components based on their hydrophobicities and can be applied well to milk 

proteins. 

 

Buffer preparation 

The loading buffer (buffer A) used was an aqueous solution of 0.1% TFA. This was 

prepared by adding 1 ml of TFA to 999 ml water. Elution buffer (buffer B) was 0.1% 

TFA in acetonitrile, prepared by adding 0.5 ml TFA to 499.5 ml acetonitrile. Sample 

buffer was prepared by adding 0.78 g Tris-HCl, 0.65 g tri-sodium citrate and 30 mg 

DDT in 42 ml water. Once these were dissolved, 24 g urea was added. Dilution buffer 

was prepared by dissolving 18 g urea in 45 ml 0.1% TFA (buffer A). 

 

Sample preparation 

Preparation of casein samples for analysis used a method based on that of Alim et al. 

(2005). 50 mg of dried casein sample was weighed accurately into a 35 ml sample 

container and 2 ml of sample buffer was added. These were mixed by inversion for an 

hour in an automatic horizontal mixer. These samples were then centrifuged at 

14,000 g for 10 min before being diluted by adding 200 µl of sample into 800 µl of 

dilution buffer and mixed thoroughly. These were then centrifuged at 14,000 g for 

10 min before being transferred to 1.5 ml glass vials with rubber septum closures for 

HPLC analysis. 
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Analytical Method 

The HPLC used was a Shimadzu modular system consisting of an SCL-10AVP 

system controller, LC-10ADVP binary pump unit, FCV-10ALVP gradient valve, 

SIL-10ADVP auto-injector, CTO-10AVP columns oven and SPD-M10AVP diode 

array detector. HPLC system control was by external PC running Class VP 7.0 

software (Shimadzu Corporation. Kyoto, Japan). The separation itself used a Zorbax 

300SB C8 analytical column with a length of 150 mm and internal diameter of 

4.6 mm. (3.5 µm, 300 Å. Agilent Technologies, USA) which was maintained at 45°C 

during the analysis. The gradient conditions used were an in-house method developed 

from published methods (Bonfatti et al. 2008, Bordin et al. 2001). The method used a 

flow rate of 0.48 ml/min and the sample injection volume was 10 µl. Peaks were 

identified by comparison to standard profiles obtained from previous work using 

protein standards. 

 

 

Figure 8: Example chromatogram showing milk protein peaks in skim milk  



56 

 

3.9 Total solids 

The solids content of liquid milk and retentate samples was measured by the 

gravimetric method. Moisture is initially removed from the sample by evaporation on 

a steam bath before oven drying. Total solids are the percentage of residue remaining 

as a percentage of the initial sample weight. The method is based on the International 

Dairy Federation Standard 21B:1987. 

 

Testing procedure  

A dry, empty metal drying dish was accurately weighed. Approximately 4 ml of milk 

of 1 g of concentrated milk was then placed in the dish and the weight accurately 

recorded. The dish was placed on a boiling waterbath for 30 minutes before being 

transferred to a drying oven (102 ±2°C) for two hours before being weighed. The dish 

was then placed back in the oven for an hour before re-weighing. This was repeated 

until successive weighing steps differed by less than 0.1 mg. The result was 

calculated as follows: 

 

 

 

Where: 

W0 = The weight, in grams, of the empty dish 

W1 = The weight, in grams, of the dish and un-dried sample 

W2 = The weight, in grams, of the dish and dried sample 

 

This procedure is commonly used in conjunction with fat testing using the Roese-

Gottlieb method to report the non-fat solid (SNF) content of dairy products. 
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3.10 Water activity 

Water activity (aw) is a measure of the energy status of the water in a system, and is 

therefore more useful than water content as a measure of perishability in foods. It 

represents only the „unbound‟ water in a system, or that which is free to react. Water 

activity measurements were used as a convenient alternative to full moisture analysis 

by drying due to the speed and non-destructive nature of the test. These 

measurements were carried out using an Aqualab 3TE (Decagon Devices, Inc. 

Washington, USA.).  

 

Testing procedure  

The instrument measures the water activity of a sample by the chilled-mirror dew 

point technique. In this, the sample is equilibrated with the headspace of a sealed 

chamber containing a mirror. The chamber is then chilled until condensation is 

detected on the mirror and the temperature at which this takes place is recorded. The 

sample is cycled through this a number of times to give a more accurate reading. The 

temperature of the sample was controlled to 25°C and repeatability was to within aw ± 

0.003. 
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3.11 Particle size analysis by laser diffraction 

Particle size of dried samples was measured by a Mastersizer MS2000 (Malvern 

Instruments, UK). This instrument passes the sample through a laser beam and then 

utilises Mie theory to calculate the particle size distribution from the scattering 

pattern produced. 

 

Procedure 

The wet dispersion cell of the Mastersizer was used to disperse the sample and pass it 

through the measurement cell. The dispersant used was de-aerated isopropanol. 

Samples were well mixed and representatively sampled before sufficient mass was 

added to dispersant flowing through the wet cell to achieve between 10% and 20% 

obscuration of the laser, as this is the optimal measurement level. The scattering 

pattern was then measured for 20 seconds before conversion to a numerical particle 

size distribution by Mastersizer 2000 software, version 5.30 (Malvern Instruments, 

UK). 
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3.12 Viscosity by glass capillary viscometer 

The viscosity of liquids can be measured by a range of methods. Glass capillary 

viscometers, sometimes known as Ostwald viscometers, are able to measure 

relatively small sample volumes to a high degree of accuracy. 

 

Procedure 

Temperature control is critically important in accurate viscosity measurement. This is 

difficult using the capillary method as a line of sight must be maintained with the 

viscometer. The apparatus used consisted of a wide-mouthed two litre conical flask, 

half submerged in a 25°C water bath. This meant that the viscometer was clearly 

visible while a small pump was used to circulate water between the flask and water 

bath at a rate of 10 litres per minute. 

 

Figure 9: Glass capillary viscometer  
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Chapter 4. Assessment of Current Casein Process 

 

4.1 Introduction 

The primary aim of this work was to determine the effect of high pre-concentration of 

skim milk retentates on the casein products subsequently made from them. If 

possible, this would lead to a set of operating conditions under which the maximum 

amount of lactose could be recovered from the milk without degrading the quality of 

the resultant products. The initial stage was to characterise the effect of processing on 

the properties of the current casein so that any changes made later could be assessed 

and compared. Another aspect was that it would provide more data from which a lab-

scale procedure to mimic the processing plant could be developed and tested. 

Although casein is thoroughly tested, the testing is focused mainly on the quality of 

the final product, and does not look at changes during processing in detail. This 

meant that useful methods of establishing the effects of milk composition on the 

casein process had to be found. 

 

The casein plant studied in this work was broadly outlined in the literature review. 

The limitations imposed by commercial production meant that at this stage there was 

no ability to alter the running conditions, so in-process product sampling followed by 

laboratory testing of manufacturing runs was the most practical way to characterise 

the current product. 

 

Although the casein process involves multiple unit operations all of which had the 

potential to be of interest, key points of the process to be monitored had to be 

selected. As the pre-concentration conditions and the resultant effect on calcium 

solubility were expected to change the firmness of the precipitated curd, only sample 

points which would reveal the effect of these conditions on the final casein product 

were used. 
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As stated earlier, this specific area does not appear to have been covered greatly in 

the scientific literature. Studies on the effect of parameters such as temperature, time 

and concentration on acid milk gels have been performed (Anema 2008, Gastaldi et 

al. 1997). The effect of precipitation temperature and pH on casein curd particle size 

and calcium content has been studied. This has a small degree of crossover with this 

work, though even the authors of that work acknowledged that the literature 

contained little fundamental information on many casein processing steps (Jablonka 

and Munro 1985).  
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4.2 Results 

To gather information on normal plant running conditions, a set of standard sample 

points was defined.  

 

Retentate:  Sample of UF retentate prior to acid addition, taken either from end of 

UF membranes for a spot sample, or a storage silo. 

Acidulation: Taken from a fixed point at the start of the acidulation vat. Sample 

consists of curd and whey. Curd samples were tested either directly as 

collected or rinsed to remove whey before analysis. 

WS1:  Wash screen 1, the first screen separating wash water from curd. 

WS2:  Wash screen 2, the second screen separating wash water from curd. 

WS3:  Wash screen 3, the third screen separating wash water from curd. 

Conturbex: Sample point at base of screen bowl centrifuge used for dewatering. 

These samples were curd containing ~50% residual moisture. 

Drier:  Un-milled casein sample from end of Pillet drier. 

 

Wet curd samples taken through the process from acidulation to dewatering were 

dried to aw < 0.400 and manually crushed. They were then tested for residual lactose 

and calcium content. 
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4.2.1 Pre-concentration conditions 

A standard casein production run was selected for monitoring. Samples of the low 

VCF UF retentate being used were taken from the pre-acidification balance tank. 

 

Table 11: RP-HPLC peak areas for skim milk and low concentration UF retentate 

Peak 
Peak Area Area % 

Skim milk UF Retentate Skim UF Retentate 

para-κ-casein 63203 78299 3.88 2.93 

κ-casein B 29034 45664 1.78 1.71 

κ-casein A/E 76607 145032 4.70 5.44 

αS2-casein A 217473 352476 13.34 13.21 

αS1-casein B/C 750883 1302654 46.05 48.83 

β-caseinB 38141 59308 2.34 2.22 

β-casein A1 83743 149366 5.14 5.60 

β-casein A2 174253 259842 10.69 9.74 

α-lactalbumin 37621 43010 2.31 1.61 

β-lactoglobulin B 75371 98195 4.62 3.68 

β-lactoglobulin A 84321 134146 5.17 5.03 

 

Table 11 shows the peak areas obtained for this retentate as well as skim milk from 

the same time period. It should be noted that the skim milk sample was not the actual 

parent milk of the retentate but was taken at approximately the same time.  

Figure 10 below shows clearly the increase in protein concentration with no apparent 

change to the overall proportions of individual proteins. 
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Figure 10: RP-HPLC chromatogram with overlaid traces of retentate used for casein making and skim milk.
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To calculate the concentrations of the individual proteins the following extinction 

coefficients were used: κ-casein 10.5, αS1-casein 10.05, αS2-casein 11.5, β-casein 4.7, 

α-lactalbumin 20.06 and β-lactoglobulin 9.41. The calculated results are given in 

Table 12. The value obtained for total protein of 3.8% is plausible for the milk 

sample and time of season during which it was taken. 

 

Table 12: Casein and whey protein concentrations in low concentration retentate and 

skim milk 

Peak 
Retention time 

(minutes) 

Proteins (%) 

Skim milk UF Retentate 

para-κ-casein 13.1 0.12 0.15 

κ-casein B 15.9 0.06 0.09 

κ-casein A/E 18.4 0.15 0.28 

αS2-casein A 19.3 0.37 0.59 

αS1-casein B/C 28.2 1.49 2.59 

β-casein B 33.6 0.16 0.25 

β-casein A1 35.1 0.36 0.64 

β-casein A2 36.4 0.74 1.11 

α-lactalbumin 39.5 0.04 0.04 

β-lactoglobulin B 41.5 0.16 0.21 

β-lactoglobulin A 43.0 0.18 0.29 

Total  3.82 6.23 
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The samples were also tested in the plant by FTIR and later by reference methods, as 

shown in Table 13 below. 

 

Table 13: Composition of retentate sample 

 Retentate 
(FTIR) 

Retentate 
(Reference) 

Protein 8.81 6.70 

Total Solids 14.50 12.68 

 

 

  



 

67 

 

4.2.2 Curd washing 

 

Table 14: Lactose results for washed and dried casein samples from normal casein 

manufacture 

Sample 
Weight 
(grams) 

Absorbance 
Lactose content 

of test (µg) 
Lactose monohydrate 

(% by wt) 

Acidulation 0.5005 3.11 354.94 3.55 

WS1 1.0005 1.88 214.43 1.07 

WS2 1.0002 0.61 69.80 0.35 

WS3 1.0026 0.20 21.45 0.11 

Conturbex 1.0018 0.05 4.98 0.02 

 

 

 

Figure 11: Reduction in lactose through casein washing process 

 

Lactose removal is the key measure of washing effectiveness. The reduction through 

the four washing stages is clearly identifiable in Table 14 and Figure 1. An 

acidulation sample was included for completeness but as the absorbance result was 
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above the optimal linear range for the spectrophotometer the result should not be 

considered as accurate at the other sample points. 

 

Since a large number of calcium measurements were required, it was planned to 

avoid having to perform the full EDTA back-titration for all samples. Initially the 

calcium electrode was used for direct measurement of calcium with liquid, or 

dissolved solid samples. However, attempts at this showed a large amount of drift in 

the results. The calcium electrode was then used in conjunction with the titration as 

outlined in section 3.3. The intention was that this would allow the titration to be 

performed more quickly as fixed amounts of titrant could be added to the sample and 

the potential measured at each point. The endpoint could then be interpolated from 

the change in the potential recorded from the electrode, using the Gran plotting 

method to find it precisely. This worked relatively well, though the problems with 

electrode drift, combined with the relatively small titration steps required meant that 

it was more time-consuming than expected. In the end the conventional titration using 

a burette was the most effective option for all calcium measurements. 

 

Table 15: Calcium results by EDTA titration for washed and dried casein samples 

from normal casein manufacture. 

Sample 
Sample 
(grams) 

EDTA added 
(ml) 

CaCl2 standard 
used (ml) 

% Ca (m/m) 

Acidulation 0.4010 10 3.15 0.69 

WS1 0.4010 10 7.90 0.21 

WS2 0.4010 10 9.00 0.10 

WS3 0.4007 10 9.70 0.03 

Conturbex 0.4014 10 10.00 0.00 
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Figure 12: Reduction in residual calcium during casein washing process 

 

The calcium results are given in Table 15 and plotted in Figure 12. The values 

obtained for this run were comparable to those measured in earlier runs, but at the 

lower end of the range. This indicates that a reasonably high level of variation exists 

due to changes in processing conditions. 
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4.2.3 Casein properties 

The dried final product was not of direct interest to this study, as the pre-dewatering 

part of the process was the main focus. However, to help ensure that the run sampled 

was representative of normal production, the quality of the final product was checked. 

This product met the relatively broad codex standard, as well as the more rigorous 

standard generally required for acid caseins and appeared in all respects to be typical 

of high grade New Zealand manufactured casein, summarised in Table 16. 

 

 

Table 16: Casein final product quality results 

Attribute 
Codex 

Alimentarius 
Standard 

Standard 
Specification 

Result 

Minimum protein (dry) 90 95 97.37 

Maximum moisture 12 10 9.63 

Maximum milk fat 2.0 1.5 0.71 

Maximum ash 2.5 2.2  

Maximum lactose 1.0 0.2 0.05 

Maximum free acid 0.27 6.2 5.3 

Casein colour (max)  3 2 

Scorched particles  A A 

Foreign matter (max)  1 1 

Insolubles (max)  3 1 
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4.3 Discussion  

The purpose of this initial work was to gain a better understanding of the casein 

process during normal production. This is because, although the product is well 

characterised for sale, the testing regime normally performed on the dried product is 

designed to show the quality of the product to customers and does not provide 

detailed enough information to adequately assess the processing itself. The retentate 

was also analysed by FTIR spectroscopy, which gave a protein result of 8.81% and 

total solids of 14.5%. This protein result is higher than the 6.23% calculated from the 

HPLC peak areas. This may be due to a problem with the HPLC analysis, such as 

protein denaturation during sample preparation. Alternatively, the FTIR analysis may 

be at fault as the sample was outside of the calibration‟s normal range at that 

particular concentration. The HPLC analysis was performed several days after the 

sample was taken, so it was not available for further testing. The quality of the HPLC 

results is further supported by subsequent testing of the protein and total solids by 

reference methods, which gave results of 6.7% and 12.68% respectively. Whatever 

the reason for the discrepancy, the initial HPLC results were still able to confirm that 

no major changes in the proportions of proteins took place during the UF process. 

The α-lactalbumin peaks in the HPLC analysis were lower than expected, though the 

reason for this was not clear. 

 

The major consequence of using concentrated retentate for casein production is its 

effect on the resultant casein curd. This is why the washing section of the process was 

such a focus. The lactose results obtained showed clearly the effectiveness of the 

washing system at removing lactose entrained within the casein curd. Approximately 

70% of the lactose present at each stage sampled had been removed by the next stage. 

These results are comparable to values obtained in separate testing and are consistent 

with the final product values routinely obtained. Lactose is required to be under 0.1% 

and around 0.2% is where browning of the product can occur. These results show that 

the washing system functions well and may therefore be able to continue to remove 

lactose effectively even with non-ideal curd.  
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Calcium had special significance in this work because the supposed reduction in its 

ability to move from the casein micelles into the whey during acidification was 

proposed as a key factor to overcome before casein of acceptable quality could be 

made using retentate. Initial testing for baseline calcium solubility data was intended 

to be performed on whey, in a similar procedure to that employed by Le Graët and 

Gaucheron (1999). However, although this would allow direct comparisons to their 

work, it would not yield as much information about the direct effect of changing 

concentrations and pH on the casein micelles as direct measurement of retained 

calcium in the casein fraction itself would. The same samples were therefore used for 

the calcium testing as the earlier lactose testing. 

 

Calcium testing was initially expected to be far more convenient than the lengthy 

lactose test through using the calcium ISE. However, despite multiple attempts, the 

ISE never achieved the level of accuracy or reliability required. Calibration using 

standards showed that it was able to perform adequately, but when used in protein 

solutions either directly or in conjunction with a titration was much less accurate. The 

measured potential drifted over time to such a degree that the recording of results was 

almost impossible. This may have been due to the relatively impure samples in which 

it was being used. A possible reason could be a reaction between protein and silver 

ions in the plug junction of the electrode. The next attempted method was the use of 

the ISE to help detect the endpoint of an EDTA titration. This did work to some 

degree, though the endpoint was not found to be any sharper than could be seen using 

the conventional method with indicator, as shown in Appendix A. This was because 

fixed volumes of titrant had to be added and the result recorded after each, whereas 

the normal titration proceeds using a burette until the change is seen. The high pH 

used during the titration was also likely to damage the ISE over extended use. 

Although somewhat time consuming, the conventional EDTA titration proved to be 

the most accurate and reliable method of calcium measurement that was readily 

available.  
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Chapter 5. Laboratory scale processing 

 

5.1 Introduction 

Performing trials in the plant to assess the effect of the UF retentates was not practical 

due to it being in constant use for commercial production through the dairy season. 

There was no access to a pilot scale plant and even subtle changes in the type of 

casein process could have major effects on the casein produced, making the 

replication of the process difficult. With all of these factors taken into account, the 

most suitable way to begin the investigation was the development of a laboratory 

procedure which could reproduce the commercial process on a lab scale. The 

intention was to be able to trial different retentates and produce casein which could 

then be analysed and compared to that from the full-scale process.  

 

Producing acid casein from retentates in the laboratory presented some additional 

challenges compared to the relatively straightforward precipitation of normal milk. 

Additionally, the intention was to mimic the commercial process as closely as 

possible rather than just separating a pure casein fraction. Without the ideal 

equipment available, some experimentation was required to find a suitable method. 

This section outlines the steps used in this procedure and some of the findings during 

its development. 

 
5.2 Results 

Each stage of the process is presented as separate sub-sections for direct comparison 

to the commercial process. 
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5.2.1 Precipitation 

The initial challenge was adding the acid in an effective way. In the plant, excellent 

mixing of the acid into the milk is achieved as the acid is injected directly before it 

encounters the static mixers. In the laboratory, adding the acid directly into a 

container of milk results in localised precipitation of casein at the point of addition 

while other parts of the milk may still not have been exposed to acid. This effect was 

even more pronounced in the retentates used in this study because of their high 

viscosity. Good mixing is then very difficult as the precipitated casein may still 

contain pockets of acid and un-reacted milk. Extreme low pH causes a very fine-

grained curd, as shown in Figure 13, with pockets of low pH due to inadequate acid 

mixing. To avoid this, the milk was kept cold while the acid was added, to slow the 

precipitation enough that the acid could be well mixed into the milk. When warmed, 

the casein precipitation occurred more evenly through the sample. This is similar to 

the approach used by Teo et al. (1997). Other recommendations for laboratory 

preparation of caseins include performing the acidification at 2°C using dilute acid 

and holding for 30 minutes before warming to 30-35°C. This procedure allows the 

CCP to dissolve. The dilute acid is recommended to avoid localised precipitation 

(Fox and McSweeney 1998). 

 

Figure 13: Effect of low pH on casein curd properties.  
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5.2.2 Cooking 

Casein cooking in the plant utilises direct steam injection, which is then followed by 

a large diameter cooking vessel in which the curd particles agglomerate, helping to 

reduce the number of fines. This is difficult to replicate in the laboratory. Heating in a 

waterbath is not fast enough, and requires vigorous stirring to achieve an even 

temperature through the sample. The different concentrations of UF retentate samples 

also heat at differing rates and hotplates and other types of direct heat tended to cause 

only localised cooking. The best compromise was use of a microwave. This provided 

an even, rapid heat with good temperature control and resulted in a curd similar to 

that from the commercial process as shown in Figure 14. The lack of stirring also 

helped minimise the generation of casein fines. To mimic the gentle agitation and 

long holding time of the acidulation vat, each sample was placed in a horizontal 

centrifuge device at a speed of 20 RPM after being cooked. 

 

 

Figure 14: Acidified milk before (left) and after (right) being ‘cooked’ in the 

laboratory  
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5.2.3 Washing 

Curd washing was arguably the most difficult part of the commercial process to 

accurately replicate. Trying to match the efficiency of the washing system would be 

impossible, so the main effort was placed into finding a very reproducible procedure. 

In this way all the samples could be compared directly to each other, but could only 

be compared to the process samples in a relative sense. To do this, the curd was 

mixed with ultrapure water and allowed to stand for five minutes before being 

centrifuged. The separated wash water was then decanted off through cheese cloth. 

This was repeated three times to keep some commonality with the commercial 

process. As can be seen in Figure 15 this stage did result in some breakdown of the 

curd and generation of more fines which increases the loss of casein into the wash 

water.  

 

 

Figure 15: Casein samples with wash water during laboratory washing. Progressing 

from left to right. 
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The differences between this method and the plant washing tube and screen system 

are significant. As washing is a key element of this study, the conditions were kept as 

consistent as possible. A similar washing technique was used by Jablonka and Munro 

(1985), who also looked at residual calcium as part of their study. Figure 16 below 

shows samples obtained from the plant and can be compared to the previous Figure 

15. Aside from the finer particles of the laboratory samples and increased whey 

during initial washing, the two sets are similar in appearance. 

 

 

Figure 16: Samples of casein with retained liquid from commercial process. Left to 

right are: Acidulation, WS1 and WS2. 
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5.2.4 Drying 

Drying the curd is another step which was difficult to fully replicate. The casein plant 

utilises a shaking bed to convey the casein, as well as a “mincer” which helps to 

break up large lumps. Simply placing curd in an oven results in an extremely 

plasticised sample which is impossible to further process, or in some cases even 

analyse. It was found that the first few hours of drying were the most important. If the 

curd was repeatedly cut with a spatula during this time, the resulting small particles 

did not tend to re-agglomerate as they dried. Although manually intensive, this results 

in far less work during subsequent analysis and results in finer particles which more 

closely resemble commercial casein directly after drying. High pH curd was very 

difficult to dry due to its extremely rubbery texture. Medium to low pH curds all 

dried well as shown in Figure 17, where a conventional and very low pH curd have a 

similar appearance after drying.  

 

 

Figure 17: Casein samples as shown in Figure 14, after oven drying. 
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5.2.5 Milling 

A number of approaches were trialled to mill the particles. Although laboratory scale 

mills are available, these were prohibitively expensive for this work. To allow small-

scale milling of the samples, a section of stainless steel pipe had a cap welded onto 

one end. A plunger section that fitted into it was then machined from a solid steel 

section. This allowed the casein to be placed in the pipe section while a hammer was 

used to drive the plunger into it. Although this method produced a wide particle size 

distribution, enough suitable particles were produced that they could be sieved out 

and retained. As shown in Figure 18, the difference between the dried casein 

produced this way and that from the plant is actually quite small. If the particles were 

not sufficiently dried, or only case-hardened, there was no way to mill them 

effectively. Samples taken directly from the plant presented fewer difficulties. Casein 

from throughout the washing stages was already in the form of a cohesive curd, and 

could simply be dried in the oven before milling. Samples that had not been de-

wheyed, such as the acidulation vat, could be rinsed or dried as they were depending 

on the testing they were intended for. 
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Figure 18: Comparison of casein samples from the plant to those produced in the 

laboratory.  



 

81 

 

The particle size distribution of the hand-milled samples was determined by laser 

diffraction on the MS2000. Some commercial casein samples were also tested to 

compare the milling. These showed that on average the hand-milled samples were 

much coarser than the commercial samples, but the spread of sizes was similar. Table 

17 summarises some particle size parameters for the samples. The values for d(0.1), 

d(0.5) and d(0.9) are the size in µm which 10%, 50% and 90% of the particles are 

below, respectively. The particle size distributions of these samples are shown in 

Figure 19. All subsequent testing of the prepared samples only required that they be 

fine enough to solubilise, so the slight size difference was not a concern. However, if 

this milling technique was to be used to test casein properties in which particle size 

was important, another method would likely have to be used.  

 

Table 17: Particle size parameters for standard casein and lab-milled casein samples 

 

Plant 

Sample 

Lab - High 

conc, high pH 

Lab - Low 

conc, high pH 

Lab - Low 

conc, low pH 

Lab - High 

conc, low pH 

d (0.1) 177.9 145.4 101.0 148.5 107.5 

d (0.5) 394.1 473.2 346.8 539.3 417.5 

d (0.9) 703.2 1114.4 934.6 1207.2 1075.0 
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Figure 19: Particle size distribution of standard casein product and lab-milled casein samples
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5.3 Discussion 

Although precipitating casein from milk is a relatively straightforward task, making a 

casein preparation which adequately matched the commercial plant was more 

challenging. The precipitation of highly concentrated retentates was the first issue, as 

these formed an extremely viscous gel as soon as acid was added. The cold acid 

approach seemed to fix this problem, and after acidulation a very even curd structure 

was obtained. Adjusting the acidification temperature from that used in the plant is 

not without risk of changing the curd properties. Acidification temperature, as well as 

acidification time, has been shown to affect the rheological properties of acid milk 

gels (Anema 2008). However, as this work was looking at gross curd properties 

rather than the properties of a slow set gel, this was not expected to have a major 

effect. The limitations of the laboratory procedure excluded any alternative means of 

acidification without risking localised precipitation. Another factor at the 

precipitation stage was the increased buffering capacity of the UF retentates. This 

meant a replicate of each sample needed to be titrated with acid to establish the 

correct addition rate before adding this fixed volume of acid to the actual sample. The 

stirring of the samples is also likely to have resulted in additional fines compared to 

the plant process. The temperature control available with microwave heating of the 

curd was not as good as cooking by heat exchanger. However, this is unlikely to have 

had any substantial effect on the experiment as the treatment still caused the required 

changes in the properties of the curd and all samples received the same heat 

treatment. Curd washing was the experimental step which differed most from the 

commercial process. There was no practical way to replicate wash tubes and screens 

with the laboratory equipment available. The batch washing technique used however 

did allow a very consistent treatment of all samples, which in this case was more 

useful than directly replicating the plant. Comparison of Figure 15 and Figure 16 

shows that laboratory washing samples did have finer curd particles than samples 

from the plant. The de-wheying stage is also more effective in the plant, as the first 

laboratory wash sample appears to contain a large amount of whey. The effectiveness 

of the washing stage was later tested; this is detailed in Chapter Six. As the procedure 

was designed to compare the effect of process changes, the absolute values of the 
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retained impurities compared to those from the commercial process was less 

important than the change in impurity levels between different sample treatments.  

 

None of the laboratory milling techniques available were aggressive enough to reduce 

the size of the dried casein particles, which initially presented a problem. Almost all 

of the test methods required that the casein be dissolved, and this was impractical 

without some sort of particle size reduction. The manual milling device finally used 

gave a wide particle size distribution compared to the commercial process. However, 

the particle size itself should not have affected any of the subsequent testing. The 

values given in Table 17 and Figure 19 show that the final size was similar to that of 

the commercial casein sample. The samples obtained by this procedure were small, 

less than 6 g of dried casein was recovered in all samples. This allowed most intended 

testing to be performed but prevented some other types of test such as viscosity using 

a Brookfield viscometer from being practical. Although the procedure outlined was 

time consuming and relatively labour intensive, it produced good quality casein 

samples which could be measured using the standard analytical methods without any 

additional preparation. 
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Chapter 6. High concentration retentate casein-making 

 

6.1 Introduction 

Using UF retentates for casein making on a commercial basis does not appear to have 

been covered in detail in the literature. One of the most relevant papers in the area is 

the work of Le Graët and Gaucheron (1999), which determined the levels of minerals 

upon acidification of milk ultrafiltrates. However, that work focused on the aqueous 

phase of the milk, and did not examine the effect on casein precipitation. The work 

described in this chapter instead placed the focus on the residual calcium content of 

the casein itself. This meant that other factors, such as the structure of the casein curd 

itself, became important because of their effect on the ability of minerals to be 

washed out of the casein. The techniques developed in the previous two chapters 

were employed to assist in this. In the work of Le Graët and Gaucheron, rennet was 

added to the samples to help whey recovery. This technique was also employed here, 

to allow casein to be recovered from samples where the pH was well above the 

isoelectric point of casein. The intention of the trial and experimental work described 

was to establish whether UF retentates caused the expected processing problems 

during casein precipitation and whether adjusting concentration or pH could mitigate 

these effects. Finally, from the experiments some optimal conditions for the 

production of casein from UF retentates could be identified. 

 

  



 

86 

 

6.2 Results 

As outlined previously, milk is routinely concentrated to a VCF slightly below 2.0 

before being used for casein manufacture, the precise level depending on the protein 

concentration of the milk. Membrane concentration equipment of a suitable scale for 

laboratory trials was not available on-site. This meant that this experimental stage 

was reliant on the full-scale UF plant, and was timed around the preparation of 

retentate for MPC production at a suitable concentration. Choosing an appropriate 

retentate concentration for the laboratory trials had to be made on the basis of 

availability as well as suitability. A range of samples of MPC70 and 85 samples were 

either tested or compositional data retrieved from recent analyses to show the normal 

variation in the product and ensure that only samples representative of normal 

production would be used in experiments. These are summarised in Table 18 and 

Table 19 below. Note that only the MPC85 calibration set included lactose results, so 

this is not available for other retentates. This was due to only MPC85 having 

sufficient lactose results available when the calibrations were last modified. MPC85 

initially seemed to be the most advantageous product for this work as its production 

recovers more lactose. However, as permeate is perishable, an excess can result in 

disposal costs. MPC70 contains more lactose, but is still highly concentrated. It was 

also produced more frequently during the course of the project so was a more 

practical source material.  
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Table 18: Variation in composition of MPC85 retentate (% by weight) 

 Sample A 
Reference 

Sample B 
Reference 

Sample B 
FTIR 

Sample C 
FTIR 

Sample D 
FTIR 

Protein 14.63 13.14 13.35 13.74 12.98 

Lactose - - 0.78 0.79 0.62 

Total Solids 16.47 15.84 15.58 16.08 15.35 

 

Table 19: Variation in composition of MPC70 retentate (% by weight) 

 Sample A 

FTIR 

Sample B 

FTIR 

Sample C 

FTIR 

Sample D 

FTIR 

Protein 12.08 12.41 12.56 12.25 

Total Solids 16.52 17.16 17.21 16.88 

  



 

88 

 

6.2.1 Plant Trial 

Soon after the initial work on this project began a quantity of MPC85 retentate, 

unable to be dried due to the dryer being off-line, was available. This presented the 

opportunity for an impromptu full-scale trial of its use in the casein plant. 

Approximately 8 m³ of retentate was diluted with 12 m³ of RO water in the retentate 

storage silo before running it through the casein plant on the end of a standard 

mineral acid casein production run. Exact volume measurements could not be 

obtained, so silo level indicators and operator judgement were used. Samples of the 

diluted retentate were analysed by FTIR at the start of the trial. Samples were also 

taken from the retentate silo before and after dilution for subsequent reference testing. 

These results are summarised in Table 20, with a comparison to a sample of the low 

VCF retentate normally used. 

 

Table 20: Composition of pre and post dilution retentate used in trial 

 Retentate 

(Reference) 

Diluted 

(Reference) 

Diluted 

(FTIR) 

Normal casein 

feed 

Protein 14.63 4.69 4.36 12.68 

Total Solids 16.47 5.35 4.80 6.70 

Lactose   0.81  

 

 

These results show that the retentate was diluted to a final protein concentration only 

slightly above that of un-concentrated milk, i.e. less concentrated than the retentate 

normally used in the casein plant. While this was not ideal, the trial still gave insights 

into the practicality of using diluted retentates and any effects on the final casein. It 

also provided a comparison to previous attempts at casein production from more 

concentrated retentate.  
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Initially, during the precipitation stage, pH control was difficult. Larger variations in 

pH than were expected occurred, which was likely due to changing feedstock from 

normal conditions to diluted retentate while the plant was running. As RO water was 

used to dilute the retentate, it had a lower buffering capacity; hence the greater 

change in pH during acid addition. Numerous adjustments to the acid addition rate 

were required before the plant began to run steadily, at which point the pH of the 

acidulation vat was found to be 4.68. With only approximately 20 m³ of diluted 

retentate available and a throughput of 14 m³/hr there was limited time to ensure 

steady state, though this was achieved after 30 minutes. Some key process variables 

are summarised in Table 21. No major differences were noted during the run, though 

the operators observed that while passing over the washing screens, the curd appeared 

whiter than normal. This is consistent with the whiter appearance of milk retentates, 

particularly those at high concentrations, due to the lower lactose and mineral content 

compared with normal milk. 

 

Table 21: Processing conditions used during plant trial 

Cooking 

rate 

(m3/hr) 

Indirect cooker 

temperature 

(°C) 

Cooking 

temperature 

(°C) 

3rd Wash 

temperature 

(°C) 

4th Wash 

temperature 

(°C) 

14.0 35.0 51.8 72.0 42.1 

 

Samples were collected through the wet processing part of the process and 

refrigerated overnight. Dried samples were also collected but could not be confirmed 

as being completely free of residual casein from the earlier part of the run so were not 

analysed further. There was no visible difference in the appearance of the final casein 

produced from the retentate and the conventional casein produced earlier on the same 

plant. In the laboratory, the acidulation vat sample was gently rinsed to remove 

trapped whey, then all samples were dried at 60°C in a ventilated oven until reaching 

a water activity of aw <0.400 (approximately 20 hours) and milled by hand using the 

method outlined in section 5.2.5. These were then analysed for residual calcium 
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content using the EDTA titration method. The results are shown in Figure 20, plotted 

against the conventional casein samples from Chapter Four. The retained calcium in 

the curd through the early part of the process was significantly lower than during 

normal processing. The samples were also tested for lactose. Again these are plotted 

against casein samples from Chapter Four in Figure 21. 

 

Figure 20: Calcium results for dried samples collected through process 

 

 

Figure 21: Lactose results for dried samples collected through process  
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6.2.1.1 RP-HPLC comparison of samples 

The trial samples were also analysed by RP-HPLC. This was to determine whether 

the residual whey protein content differed from normal casein production and to 

confirm that the unusual treatment of the milk prior to casein-making, or differences 

in the way this product dealt with processing, may have caused some protein damage. 

For comparison, the samples obtained during normal processing described in Chapter 

Four were also analysed. Figure 22 shows the traces obtained for these samples. The 

main observable difference is that the β-casein peaks are less well resolved in the 

samples obtained from the washing system compared to those of the de-watered 

casein. Possible reasons for this are not clear. However, this difference occurs in the 

WS3 samples from both the conventional casein and the trial product. Overall, the 

results clearly show that there is little difference between the two sets of samples, 

with any variations small enough to be a result of normal sample and testing 

variation. Around the 40 minute mark of the run, where the whey proteins elute, there 

is a small increase in absorbance. However, this was undetectable as a peak and is 

similar in size with both sample sets. Overall these results showed the absence of any 

detectable residual whey protein in the trial product.  
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Figure 22: RP-HPLC chromatograms showing trial and standard product from process against starting retentate. 
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6.2.1.2 Viscosity results 

Informal communications with production staff had indicated a concern that 

increased retentate concentration resulted in lower viscosity in the final product. 

Although no mechanism for this was proposed, to ensure that the supposed viscosity 

changes were not an issue, viscosity measurement was carried out using the 

procedure outlined in section 3.12. This also provided an opportunity to check for 

unnoticed product changes as viscosity is a key functional property. Excellent 

temperature control was accomplished using the circulation pump, which is reflected 

in the repeatability of the tests as shown in Table 22. No reduction in caseinate 

viscosity through the use of the diluted MPC85 retentate was observed. In fact the 

trial sample had a higher viscosity, though at less than 10% this was within the range 

of up to 20% sometimes seen during routine testing of caseinates. The increase may 

be due to this testing error or the different composition of the trial sample. Previous 

research has shown that the addition of salts including CaCl2, NaCl and NaH2PO4 can 

change the viscous properties of sodium caseinate solutions, and that calcium 

addition in particular appears to act as a viscosity limiting factor (Konstance and 

Strange 1991). These effects are likely to relate to their influence on solubility of the 

proteins, just as the use of monovalent or divalent salts such as Na
+
 and Ca

2+
 in 

caseinate manufacture dramatically changes their viscous properties. It has been 

suggested that this is caused by the salts effectively increasing protein concentration 

by competing with the casein for water (Loveday et al. 2007). 
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Table 22: Comparison of sodium caseinate viscosities 

Normal Conditions - Conturbex  Plant Trial - Conturbex 

Efflux 

time 

Viscometer 

constant 

Kinematic 

viscosity 

 Efflux 

time 

Viscometer 

constant 

Kinematic 

viscosity 

(Sec) (mm2/s2) (cSt)  (Sec) (mm2/s2) (cSt) 

158.01 0.035 5.53  169.20 0.035 5.92 

159.17 0.035 5.57  169.11 0.035 5.92 

156.86 0.035 5.49  169.01 0.035 5.92 

157.75 0.035 5.52  169.01 0.035 5.92 

157.73 0.035 5.52  169.10 0.035 5.92 

157.77 0.035 5.52  168.70 0.035 5.90 

157.61 0.035 5.52  168.48 0.035 5.90 

157.54 0.035 5.51  168.36 0.035 5.89 

157.51 0.035 5.51  168.58 0.035 5.90 

157.45 0.035 5.51  168.20 0.035 5.89 

157.29 0.035 5.51  168.26 0.035 5.89 
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6.2.1.3 Trial Summary 

The run itself, and the casein produced, yielded useful data about the effect of diluted 

retentates on the process. The washing system coped well with the changed curd 

properties, though the over-dilution would have helped with this. This was 

demonstrated by the fact that washing was much more effective during this run than 

under normal conditions. The extra water used in the dilution may even result in a 

reduction in total water use if the wash water volumes could be decreased. Overall, 

the trial showed clearly that casein can be successfully made in this plant from high 

VCF retentates by the use of dilution prior to precipitation. 
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6.2.2 Initial Laboratory Trial 

The plant trial successfully proved some elements of the concept, but to build upon 

those findings casein-making experiments had to be carried out in the laboratory. The 

work consisted of two main trials following the procedure developed earlier in 

Chapter Five. The initial trial was designed to establish the effect of a very wide 

range of pH and concentration treatments on the casein.  

 

A four litre sample of freshly concentrated MPC70 retentate was obtained directly 

from the UF plant and refrigerated overnight. Milk retentates have different buffering 

capacities due to the differences in the composition and distribution of minerals and 

proteins between the aqueous and micellar phases as reviewed by Salaün et al (2005). 

To account for this, before starting casein preparation samples were titrated with 10% 

sulphuric acid to determine the total volume required to achieve a specified pH. 

Figure 23 displays the curves obtained for the MPC70 sample prior to the initial 

laboratory trial. 

 

 

Figure 23: Acid addition to MPC70 retentate at different dilutions showing buffering 

effects. 
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The design of this experiment is summarised in Table 23. In all, 24 samples of 

approximately 100 g each were made, which were separated into three sets (100%, 

80% and 60% MPC70) with eight subsamples in each. Each of the 24 had a specific 

quantity of acid added, based on the results shown in Figure 23, to give a range of 

final pH values as shown in Table 23. 70 µl of commercial rennet was also added to 

each sample, as the samples at high pH would not have precipitated. In this way the 

residual calcium across an extremely wide range of pH values could be measured in 

the casein. 

 

The three sets of eight samples described were all treated as individual samples with 

the same procedure followed for each, other than the differing dilution and acid 

additions. The target pH were: natural, ≈5.5, ≈5.2, ≈4.9, ≈4.7, ≈4.5, ≈4.3 and ≈4.1. As 

the table illustrates, these were difficult to achieve in some cases. Accurate pH 

measurement was only possible on separated whey after cooking, so no further pH 

adjustments were able to be made. The yield of dried casein has not been reported as 

the drying and hand-milling procedures used resulted in inconsistent losses between 

samples.  
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Table 23: Experimental summary of laboratory MPC70 casein-making 

Sample 
Retentate 

(g) 
Water 

(g) 
H2SO4 

(ml) 
Final 
pH 

Wet 
Curd 
(g) 

Whey 
Calcium 

(%) 

Casein 
Calcium 

(%) 

1 100.25 0.00 0.00 6.69 43.05 0.040 2.46 

2 100.17 0.00 1.50 5.57 34.48 0.101 1.95 

3 100.01 0.00 2.00 5.34 35.78 0.138 1.64 

4 100.09 0.00 3.50 4.94 42.08 0.242 1.15 

5 100.02 0.00 4.25 4.76 46.20 0.269 1.03 

6 100.08 0.00 4.85 4.49 50.96 0.253 1.19 

7 100.04 0.00 5.25 4.31 56.17 0.274 1.12 

8 100.03 0.00 5.50 4.19 57.57 0.264 1.18 

9 80.04 20.53 0.00 6.68 30.56 0.034 2.60 

10 80.02 21.80 1.25 5.58 24.55 0.111 1.78 

11 80.10 20.05 2.00 5.25 26.00 0.169 1.31 

12 80.10 20.10 3.00 4.93 33.41 0.248 0.56 

13 80.03 20.04 3.50 4.74 33.89 0.272 0.36 

14 80.07 20.42 4.00 4.44 38.96 0.275 0.58 

15 80.28 20.27 4.25 4.22 43.62 0.256 0.63 

16 80.08 20.29 4.50 4.09 46.69 0.256 0.64 

17 60.16 40.28 0.00 6.74 24.00 0.027 2.51 

18 60.04 40.02 0.50 6.04 20.90 0.058 2.12 

19 60.23 40.72 1.00 5.62 19.50 0.099 1.58 

20 60.11 40.41 2.50 4.89 25.57 0.218 0.16 

21 60.05 40.28 2.75 4.70 30.40 0.228 0.16 

22 60.25 40.18 3.00 4.51 34.54 0.234 0.06 

23 60.25 40.36 3.25 4.33 35.61 0.236 0.06 

24 60.64 40.22 3.50 4.11 33.91 0.239 0.04 
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Figure 24: Wet curd mass recovered 

 

 

Figure 25: Recovered curd normalised for original retentate mass 
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The mass of wet curd recovered varied in line with expectations from the solubility of 

casein at different pH. The use of rennet will have influenced these results so they 

cannot be compared directly to a normal mineral acid casein precipitation. The raw 

results are plotted in Figure 24, while Figure 25 shows them normalised for the initial 

quantity of retentate present in the sample. These show that the highest recovery 

occurs at pH below 4.5 and in the lowest concentration samples.  

 

Calcium was measured for all whey and casein samples, also summarised in Table 

23. Whey analyses were first performed in duplicate and in some cases triplicate; 

these results can be found in Appendix B. The variation in results was very small, 

less than 0.01% in all whey samples and 0.2% for the caseins. The majority of the 

variation is likely to come from the indistinctness of the end-point when determining 

it visually. The release of calcium into the whey upon acidification is clearly 

illustrated in the whey results, plotted in Figure 26. By pH 4.7, the calcium content 

for all three sample sets has begun to level off. The pH 4.49 result in the 100% set is 

slightly lower than would be expected by the general trend; this can be attributed to 

the difficulty of getting a clean separation of whey at low pH due to the softness of 

the curd as discussed previously. These calcium results are presented in Figure 27 

normalised for the initial retentate concentration. The increased solubility of the 

calcium as the retentate concentration is decreased is readily apparent below pH 5. 

Above this point, where the casein has been predominantly coagulated by rennet, 

there is little difference between the sample sets.  
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Figure 26: Calcium results for whey samples across a wide pH range 

 

 

Figure 27: Whey calcium results normalised for retentate concentration 
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Figure 28: Calcium results for casein samples across a wide pH range 

 

 

Figure 29: Casein calcium results normalised for retentate concentration  
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The casein calcium results were of more direct relevance than those from the whey as 

the intention of the experiment was to determine the effect on casein. These are 

summarised in Figure 28. Higher pH samples in particular appeared to share more 

physical properties with rennet casein than acid casein during their preparation such 

as a very dense curd which was difficult to wash. This was due to the acid 

precipitating a much lower proportion of the total casein. This made the measurement 

of these samples difficult, as can be seen by the difference between the calcium 

results for the un-acidified samples of the three dilutions in both the whey and casein 

analyses. Figure 29 shows these same results normalised for the original retentate 

concentration. The key finding from this was that by around pH 4.7, the calcium 

levels for all calcium samples had reached steady-state. That is, they either did not 

reduce or reduced by only a small amount as the precipitation pH was further 

lowered. In this set of samples, only the 60% MPC70 at the correct pH produced 

casein with calcium results comparable to those found during the assessment of 

standard processing from Chapter Three. As stated earlier, the differences between 

the laboratory and commercial procedures mean that the absolute values obtained in 

these experiments would not exactly match those obtained when scaled up to a 

commercial process. However, the conditions resulting in good curd properties will 

still apply to a similar process at any scale. 

 

This initial experiment clearly showed the solubilisation of calcium upon 

acidification of the retentate. The addition of rennet was useful to be able to show the 

effect of acidification across a full range of pH conditions, but the differences that it 

caused in the precipitation conditions meant that the findings could not be directly 

applied to a commercial process. The findings from this experiment were therefore 

used to help plan a second laboratory trial in which likely plant conditions could be 

more closely matched.  
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6.2.3 Second Laboratory Trial 

The second full laboratory experiment again made use of MPC70 directly from the 

UF plant as it was the most concentrated MPC product available. The sample 

obtained was analysed by reference methods from Chapter Three to give a total solids 

result of 18.25% and protein of 13.44%. Table 24 outlines the sample preparation 

used for this experiment. Unlike the previous experiment, the four sets of diluted 

retentates were prepared as batches before being split into six sub-samples for 

acidification. This was to minimise any variation in concentration between 

subsamples of the same set. The acid addition information from the first experiment 

was used to try and give a range of final pH values between 5.2 and 4.2, though the 

final values were not able to be measured until the whey had been separated. 

 

The mass of the separated whey phase after cooking was recorded. These results are 

given in Table 24. Recovered wash water masses are shown in Table 25, with the 

asterisked results indicating samples where more water was present, but containing a 

large number of casein fines. All of these are the one or two samples with the lowest 

pH in each sample set, showing clearly the degree to which the low pH caused a very 

soft curd resulting in large losses of fine casein particles. As this was making the 

recording of yields difficult, only two washes were used for samples in this 

experiment. This also provided an opportunity to investigate the sensitivity of the 

final casein to the washing procedure itself. 
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Table 24: Experimental design and recoveries from second laboratory trial 

Sample 
Retentate 

(g) 
Water 

(g) 
Acid 
(g) 

Final 
pH 

Whey 
(g) 

Curd 
(g) 

Loss 
(g) 

1 70.15 30.07 2.30 5.09 77.55 24.89 0.1 

2 70.13 30.05 2.60 5.00 69.96 32.48 0.3 

3 70.01 30.01 3.00 4.83 59.11 43.25 0.7 

4 70.11 30.05 3.20 4.72 57.48 45.74 0.1 

5 70.09 30.04 3.40 4.56 37.07 66.04 0.4 

6 70.25 30.11 3.80 4.26 56.63 43.08 4.4 

7 60.05 40.03 2.10 5.05 79.61 22.45 0.1 

8 60.02 40.02 2.70 4.75 64.92 37.95 -0.1 

9 60.03 40.02 3.00 4.53 61.60 41.61 -0.2 

10 60.02 40.01 3.20 4.35 56.67 46.72 -0.2 

11 60.00 40.00 3.30 4.26 52.33 51.12 -0.2 

12 60.09 40.06 3.40 4.16 65.65 34.99 2.9 

13 50.02 50.02 1.70 5.16 85.82 15.80 0.1 

14 50.01 50.01 2.00 5.00 81.93 20.09 0.0 

15 50.02 50.02 2.25 4.77 71.71 30.58 0.0 

16 50.01 50.01 2.50 4.53 68.68 33.78 0.1 

17 50.01 50.01 2.70 4.33 72.21 30.61 -0.1 

18 50.01 50.01 2.70 4.24 73.03 26.33 3.4 

19 40.00 60.00 1.45 5.15 88.87 12.34 0.2 

20 40.04 60.07 1.65 4.96 86.10 15.62 0.0 

21 40.02 60.04 1.85 4.75 79.96 21.75 0.2 

22 40.05 60.08 2.00 4.58 78.61 22.87 0.7 

23 40.02 60.03 2.20 4.29 78.30 23.69 0.3 

24 40.00 60.00 2.25 4.16 76.59 22.49 3.2 
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Table 25: Experimental results from second laboratory trial 

Sample 

Retentate 
Concentration 

(%) 

Final pH 
Washwater 

#1 (g) 

Casein 
Calcium 

(%) 

Whey 
Calcium 

(%) 

1 70 5.09 43.74 0.781 0.190 

2 70 5.00 50.96 0.526 0.219 

3 70 4.83 50.58 0.341 0.242 

4 70 4.72 52.42 0.321 0.257 

5 70 4.56 48.06 0.411 0.261 

6 70 4.26 42.69* 0.354 0.271 

7 60 5.05 46.53 0.680 0.180 

8 60 4.75 45.61 0.290 0.223 

9 60 4.53 39.04 0.370 0.232 

10 60 4.35 37.75 0.391 0.236 

11 60 4.26 37.94* 0.371 0.236 

12 60 4.16 37.74* 0.175 0.239 

13 50 5.16 45.69 0.685 0.146 

14 50 5.00 46.99 0.361 0.171 

15 50 4.77 46.89 0.220 0.184 

16 50 4.53 40.02* 0.240 0.189 

17 50 4.33 35.65* 0.185 0.193 

18 50 4.24 38.02* 0.180 0.195 

19 40 5.15 46.55 0.515 0.117 

20 40 4.96 46.43 0.270 0.137 

21 40 4.75 44.62 0.150 0.146 

22 40 4.58 40.17 0.080 0.150 

23 40 4.29 35.46* 0.055 0.152 

24 40 4.16 37.72* 0.050 0.154 
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Figure 30: Wet curd mass recovered 

 

 

Figure 31: Curd mass normalised for retentate concentration 
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Visual assessment of the samples from this experiment during their preparation, 

particularly the precipitation stage, showed that they more closely matched the 

physical properties of those from normal production. As the maximum target pH 

values were only slightly over five, there was no need for rennet addition. This trial 

therefore was a much closer representation of plant conditions than the initial one. 

The recovered mass of casein is plotted in Figure 30. These results are also shown 

normalised for initial retentate concentration in Figure 31. These are comparable to 

the results from the first laboratory trial though do show more scatter. This resulted 

mainly from the softness of low pH curd resulting in losses into the whey and wash 

water. 

 

The calcium content of the wash water from the first washing step was also measured. 

These samples all contained less than half the calcium of their corresponding whey 

samples. Further washing samples were not measured as their contribution to the 

calcium mass balance would have been negligible due to the relatively low 

concentrations found. Whey and casein samples were measured using the same 

procedure used in the initial laboratory trial and are shown in Table 25. Figure 32 

depicts the calcium results in the whey, where there is a constant increase in the 

calcium content as the pH is lowered, particularly in the 70% and 60% sample sets. 

For the 50% and 40% samples the increase in calcium has almost stopped by pH 4.6. 

The normalised results from Figure 33 are interesting in that they appear to show 

little variation with retentate concentration. However, when compared to results from 

the first laboratory trial, they agree closely. The 100% and 80% retentate sample sets 

from the first trial have lower calcium concentrations, while the other five sets match 

very closely. This shows that for the samples at 70% and lower and once the pH is 

below five, little additional calcium enters the whey.  
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Figure 32: Calcium results for whey from MPC70 casein from second laboratory 

trial 

 

 

Figure 33: Whey calcium results normalised for retentate concentration  
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In the casein sample calcium results shown in Figure 34, the results are higher than 

those obtained in the first experimental trial. This is likely due to the omission of the 

final wash during this experiment as outlined. The effect of washing is therefore 

critically important to the calcium values obtained when precipitating casein in the 

laboratory and means that the scope for reduction of wash water usage may be 

limited. However, this would vary greatly in a commercial plant from the laboratory 

procedure used here. The normalised results from Figure 35 show clearly once again 

that calcium removal is better at lower retentate dilutions and pH values between 4.2 

and 4.6. From these results the optimal precipitation conditions are to continue 

precipitating at pH 4.6, with retentate concentrations at 50% and below. These results 

are well within the range achieved in casein using reconstituted skim milk at 9% total 

solids concentration by Jablonka and Munro (1985). 

 

 

Figure 34: Calcium results for MPC70 sourced casein from second laboratory trial 
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Figure 35: Casein calcium results normalised for retentate concentration  
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6.3 Discussion   

The plant trial using MPC85 retentate was a useful opportunity to see the practical 

effect of using a retentate in commercial scale casein production. The total solids 

reference result of 4.8% for the diluted retentate showed that the over-dilution had 

brought the concentration to less than half that normally used in the plant. The 

dilution itself was carried out in a very impromptu manner, using silo level indicators 

as a measurement system. This aspect would need to be improved if this trial was to 

be repeated in a more meaningful way. Comparing the casein produced from the 

normal UF retentate at the start of the run, to the trial production at the end, there is 

little obvious difference. It should be noted though that some of the conventional 

casein will have been included with the dry trial product, and the extensive blending 

used before casein packing helps average out any deviations. The whiteness of the 

curd noticed during washing may have been due to the presence of far fewer 

impurities, mainly lactose, than would normally be expected. Since this was not 

visible in the dried casein, this means that the washing system is effective at 

removing these during normal casein production anyway. Viscosity testing of the 

casein was as a result of discussions with manufacturing staff which indicated there 

may have been a correlation between increased UF and reduced solution viscosity in 

the resulting product. It presented a good opportunity to investigate changes in a key 

functional property of casein products. The standard test method for sodium caseinate 

uses a Brookfield spindle-type viscometer to measure a 15% solution at 25°C. The 

lengthy sample preparation time and the casein quantities yielded made this 

impractical, so capillary viscometry was used instead. The temperature was carefully 

controlled and good repeatability was observed using this technique. No other 

functional properties of the trial product were tested as viscosity is the primary one 

for casein products. 
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Overall, although limited in the specific areas outlined, the trial effectively proved the 

concept that milk can undergo extensive UF to recover usable permeate, be diluted 

with water, and then be used to successfully make casein. However the excessive 

dilution meant that the ability of the plant to process less dilute retentates remained 

unknown. This is why the lab trials were required to study the properties of casein 

produced in this manner in more detail. 

 

This first experiment using high VCF retentate for casein production in the laboratory 

was not designed to mimic the plant exactly, but to produce data similar to the graphs 

published by Le Graët and Gaucheron (1999). This was the rationale for the very 

wide pH range used. Using samples with pH of well over five meant that rennet 

addition was required to recover usable casein samples. The different properties of 

acid and rennet caseins meant that the samples obtained could not be compared 

directly to the plant samples. Samples with greater acid addition were visually much 

more similar to acid casein than those at higher pH, due to the reduced influence of 

the rennet. Calcium testing of the dried casein samples showed clearly the expected 

trend of reduced calcium upon pH reduction; however the data was much noisier than 

intended. Samples were tested in duplicate and in some cases triplicate, with the same 

result. This means that the differences must be as a result of the preparation procedure 

itself, particularly the batch washing system used. Although not ideal, they compare 

very well with results published by Jablonka and Munro (1985), who used a similar 

test method. Their work also shows an increase in residual calcium at high 

precipitation pH, though it was most dramatically increased by high precipitation 

temperature. Reducing precipitation temperature may therefore be another potential 

area of investigation. It is likely that a large part of the variation in results is due to 

inconsistencies in the de-wheying and washing steps as performed in the laboratory. 

The lack of access to small-scale UF and analysis equipment did limit the scope of 

this work as different retentate compositions could not also be trialled.   
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The only method of reliable calcium measurement available, as discussed previously, 

was the EDTA titration. Off-site access was potentially available to inductively 

coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atomic 

emission spectroscopy (ICP-AES). ICP-MS can handle no more than around 0.1% 

total dissolved solids as the sample must be nebulised, and levels of more than 

100 ppm require dilution. ICP-AES was more robust in terms of sample preparation, 

but would have a depressed response if protein was present. As no small-scale UF 

was available on-site, the samples were unable to be tested by these methods. 

Additionally, the addition of preservatives or use of freezing had been shown to affect 

results in the past. The initial intention of the work had been to use more 

sophisticated methods of mineral analysis to obtain precise results that could then be 

used to model the concentration of various species under different concentration and 

pH conditions. However, it seems likely that even if those techniques had been used 

the variation in the prepared casein samples themselves would have prevented the 

development of a useful model from being achievable. Although the EDTA titration 

lacks the precision of these instruments, the level of accuracy achieved has shown 

that it was suitable for this work. 

 

The second experiment focused on the pH range from 5.2 to 4.0 and was intended to 

be more applicable to the commercial process as the addition of rennet was not 

required. A comparison of the two experiments shows that any slight changes to the 

washing procedure used results in quite different residual calcium levels in the casein. 

For this reason the shape of the curves obtained are more useful than the absolute 

values when trying to compare to a full-scale washing system. The 80% and 70% 

sample sets continued to show variation in the calcium levels even once the pH 4.6 

point had been passed. This was probably due to the variability in washing as the 

curds remained very dense even as the pH was reduced past this point. The other two 

sets, 60% and 50%, reached a steady state by around pH 4.6. This indicates both that 

the use of a pH below the normal precipitation value is unjustified, and that the 50% 

set in particular was at a level of dilution practicable for processing. Therefore the 
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dilution factor used in the plant trial was approximately twice what is required for 

adequate curd properties during wet curd processing by this method.   
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Chapter 7. Conclusions and Recommendations 

 

The Westland Milk Products casein process was characterised under normal running 

conditions, analysing the effectiveness of the tube/screen washing system at reducing 

key impurities in the precipitated curd. This was followed by laboratory experiments 

examining the effect of producing casein from skim milk ultrafiltration retentate 

(MPC70). With adequate dilution, and careful control of pH, MPC70 retentate (initial 

solids and protein content of 18.3% and 13.4% respectively) can be acidified and 

washed to produce high quality casein. The use of dilution is simple, requires no 

capital expenditure and should not adversely affect plant throughput or operating 

costs. The effect of dilution and acidification pH on colloidal calcium phosphate 

(CCP) solubility during casein precipitation from MPC70 retentate was explored. 

This showed that CCP solubility increased as retentate concentration was reduced. 

MPC70 retentate at between 50% and 40% of original concentration was found to 

produce curd with good washability. Reducing acidification pH below the normal 

range of 4.60 – 4.65 was not found to be a practical means of reducing the residual 

calcium levels in casein made from these retentates. Lowering pH increased casein 

losses due to an increase in the formation of fines and difficulty in separating wash 

water from the curd. This effect was very pronounced in the laboratory and would 

have a detrimental effect on yields in the commercial process. 

 

A plant trial was conducted where MPC85 retentate with a total solids content of 

16.5% and protein of 14.6% was diluted and used to make casein. Analysis of this 

product showed it to be of excellent quality. Low levels of calcium and lactose 

indicate the curd was very well washed and RP-HPLC testing was not able to detect 

any residual whey protein. Previous observations indicated that the use of high 

concentration UF retentates may result in caseinates with lower than normal 

viscosities. This was investigated by making a 5% total solids sodium caseinate 

solution from the trial casein and comparing it to conventionally-produced casein. 

The trial sample in fact had a slightly higher viscosity, though the change was not 

thought to be significant.  
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7.2 Further work 

 

Based on the findings of the literature review, plant analysis, plant trial and 

experiments the following recommendations for further work can be made: 

 

 Repeating the experimental conditions used in this work, but with more detailed 

analysis of the mineral compositions of the feed material and all of the resultant 

streams. Ideally this would be done with ready access to laboratory-scale 

membrane separation and more sophisticated analytical techniques such as ICP-

AES or mass spectrometry. The data obtained could then be used in conjunction 

with chemical speciation software to optimise the concentration and pH 

conditions. 

 More investigation into the effect of UF retentate use on the whey stream is 

required. WPC is sold as a highly functional ingredient so even subtle changes to 

its composition may be commercially important. The addition of dilution water 

which must be subsequently removed to concentrate WPC may have an impact 

on process economics. 

 Repeated trials, either on a pilot or full-scale plant are needed to confirm these 

findings. The use of plants with different washing systems would be important to 

this, as these can vary widely in design and possibly their ability to wash the 

more cohesive curds obtained. 
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Chapter 9. Appendices 

 

Appendix A Calcium ISE with EDTA titration 

 

 

Figure 36: Example output of calcium ISE during EDTA titration. EDTA added by 

auto-pipette to diluted whey samples. 
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Appendix B  Calcium data from first Laboratory Trial  

 

Whey results 

 

Table 26: Raw calcium results – whey from laboratory trial one 

Sample Concentration pH W V T1 % Ca 

1 100% 6.69 4.0324 10 6.00 0.040 

1 100% 6.69 4.0260 20 16.00 0.040 

1 100% 6.69 4.0141 10 6.00 0.040 

1 100% 6.69 4.0265 10 5.90 0.041 

2 100% 5.57 4.0241 20 9.90 0.101 

2 100% 5.57 4.0167 25 14.80 0.102 

3 100% 5.34 4.0358 20 5.90 0.140 

3 100% 5.34 4.0170 50 36.40 0.136 

4 100% 4.94 4.0153 50 26.10 0.239 

4 100% 4.94 4.0358 35 10.20 0.246 

5 100% 4.76 4.0204 50 22.90 0.270 

5 100% 4.76 4.0030 50 23.30 0.267 

5 100% 4.76 4.0043 50 23.20 0.268 

6 100% 4.49 4.0265 35 9.50 0.254 

6 100% 4.49 4.0044 50 24.60 0.254 

6 100% 4.49 4.0031 50 24.80 0.252 

7 100% 4.31 4.0294 50 22.40 0.275 

7 100% 4.31 4.0042 50 22.65 0.274 

8 100% 4.19 4.0029 50 23.50 0.265 

8 100% 4.19 4.0110 50 23.80 0.262 

       9 80% 6.68 4.0039 10 6.65 0.034 

9 80% 6.68 4.0036 10 6.55 0.035 

10 80% 5.58 4.0228 20 8.90 0.111 

10 80% 5.58 4.0177 25 13.75 0.112 

11 80% 5.25 4.0221 25 8.10 0.168 

11 80% 5.25 4.0188 35 18.00 0.170 

12 80% 4.93 4.0115 35 10.20 0.248 

13 80% 4.74 4.0175 35 7.70 0.272 

13 80% 4.74 4.0293 35 7.75 0.271 

14 80% 4.44 4.0159 35 7.65 0.273 

14 80% 4.44 4.0193 35 7.20 0.277 

15 80% 4.22 4.0033 35 9.30 0.257 

15 80% 4.22 3.9970 35 9.60 0.255 

16 80% 4.09 4.0124 35 9.40 0.256 

16 80% 4.09 4.0206 35 9.20 0.257 

       17 60% 6.74 4.0136 10 7.40 0.026 

17 60% 6.74 4.0203 10 7.10 0.029 

18 60% 6.04 4.0096 20 14.15 0.058 

18 60% 6.04 3.9978 25 19.20 0.058 
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19 60% 5.62 3.9995 25 15.10 0.099 

19 60% 5.62 4.0015 25 15.10 0.099 

20 60% 4.89 4.0090 25 3.40 0.216 

20 60% 4.89 4.0242 35 13.00 0.219 

21 60% 4.70 4.0155 25 2.20 0.228 

21 60% 4.70 4.0151 35 12.10 0.229 

22 60% 4.51 4.0045 25 1.70 0.233 

22 60% 4.51 4.0046 35 11.60 0.234 

23 60% 4.33 4.0039 35 11.50 0.235 

23 60% 4.33 4.0071 35 11.40 0.236 

24 60% 4.11 4.0259 35 11.00 0.239 

24 60% 4.11 4.0060 35 11.10 0.239 
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Casein Results 

Table 27: Raw calcium results – casein from laboratory trial one 

Sample Concentration pH W V T1 % Ca 

1 100% 6.69 0.1022 25 18.40 2.59 

1 100% 6.69 0.1058 10 3.50 2.46 

1 100% 6.69 0.1027 10 3.75 2.44 

2 100% 5.57 0.1005 10 5.10 1.95 

2 100% 5.57 0.1012 10 5.10 1.94 

3 100% 5.34 0.1020 10 5.90 1.61 

3 100% 5.34 0.1077 10 5.60 1.64 

4 100% 4.94 0.1014 10 7.10 1.15 

4 100% 4.94 0.1022 10 7.10 1.14 

5 100% 4.76 0.1007 10 7.40 1.03 

5 100% 4.76 0.1032 10 7.60 0.93 

6 100% 4.49 0.1027 10 7.10 1.13 

6 100% 4.49 0.1084 10 6.70 1.22 

6 100% 4.49 0.1009 10 7.00 1.19 

7 100% 4.31 0.1216 10 6.60 1.12 

7 100% 4.31 0.1007 10 6.80 1.27 

8 100% 4.19 0.1125 10 6.70 1.18 

8 100% 4.19 0.1023 10 7.00 1.18 

8 100% 4.19 0.1036 10 7.00 1.16 

       9 80% 6.68 0.1018 10 3.40 2.60 

9 80% 6.68 0.1001 10 3.50 2.60 

10 80% 5.58 0.1000 10 5.50 1.80 

10 80% 5.58 0.1023 10 5.45 1.78 

11 80% 5.25 0.1009 10 6.70 1.31 

12 80% 4.93 0.1006 10 8.60 0.56 

12 80% 4.93 0.1030 10 8.60 0.54 

13 80% 4.74 0.1015 10 9.10 0.36 

13 80% 4.74 0.1018 10 9.10 0.35 

14 80% 4.44 0.1323 10 8.10 0.58 

15 80% 4.22 0.1012 10 8.40 0.63 

16 80% 4.09 0.1029 10 8.35 0.64 

       17 60% 6.74 0.1037 10 3.50 2.51 

18 60% 6.04 0.1050 10 4.45 2.12 

19 60% 5.62 0.1037 10 5.90 1.58 

20 60% 4.89 0.1020 10 9.60 0.16 

20 60% 4.89 0.1015 10 9.70 0.12 

21 60% 4.70 0.1105 10 9.60 0.15 

21 60% 4.70 0.1016 10 9.60 0.16 

22 60% 4.51 0.1033 10 9.85 0.06 

22 60% 4.51 0.1035 10 9.85 0.06 

23 60% 4.33 0.1056 10 9.90 0.04 

23 60% 4.33 0.1064 10 9.80 0.08 

24 60% 4.11 0.2070 10 10.00 0.00 

24 60% 4.11 0.1035 10 10.00 0.00 
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